WorldWideScience

Sample records for r-mad decontamination facility

  1. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  2. Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted

  3. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Obi, C.M.

    2000-01-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document

  4. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results

  5. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results.

  6. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  7. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  8. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  9. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  10. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  11. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  12. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    International Nuclear Information System (INIS)

    Bossart, Steven J.; Blair, Danielle M.

    2003-01-01

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D and D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials

  13. Facility decontamination technology workshop

    International Nuclear Information System (INIS)

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted

  14. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  15. Alpha Decontamination and Disassembly Pilot Facility. Final report

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Clark, H.E.

    1985-04-01

    The Alpha Decontamination and Disassembly (AD and D) Pilot Facility was built to develop and demonstrate a reference process for the decontamination and size reduction of noncombustible transuranic (TRU) waste. The goals of the reference process were to remove >99% of the surface contamination to the high-level waste tanks, and to achieve volume reduction factors greater than 15:1. Preliminary bench-scale decontamination work was accomplished at Savannah River Laboratory (SRL), establishing a reference decontamination process. Initially, the pilot facility did not achieve the decontamination goals. As the program continued, and modifications to the process were made, coupon analysis idicated that 99% of the surface contamination was removed to the high-level drain system. Prior to the AD and D Pilot Facility, no size reduction work had been done at SRL. Several other Department of Energy (DOE) facilities were experimenting with plasma arc torches for size reduction work. Their methods were employed in the AD and D hot cell with moderate success. The experimental work concluded with recommendations for further testing of other size reduction techniques. 11 figs., 6 tabs

  16. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  17. A review of chemical decontamination systems for nuclear facilities

    International Nuclear Information System (INIS)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1996-01-01

    With the downsizing of the Department of Energy (DOE) complex, many of its buildings and facilities will be decommissioned and dismantled. As part of this decommissioning, some form of decontamination will be required. To develop an appropriate technology for in situ chemical decontamination of equipment interiors in the decommissioning of DOE nuclear facilities, knowledge of the existing chemical decontamination methods is needed. This paper attempts to give an up-to-date review of chemical decontamination methods. This survey revealed that aqueous systems are the most widely used for the decontamination and cleaning of metal surfaces. We have subdivided the aqueous systems by types of chemical solvent: acid, alkaline permanganate, highly oxidizing, peroxide, and proprietary. Two other systems, electropolishing and foams and gels, are also described in this paper

  18. PND fuel handling decontamination: facilities and techniques

    International Nuclear Information System (INIS)

    Pan, R.Y.

    1996-01-01

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at Ontario Hydro's Pickering Nuclear Division. This paper presents an overview of the set up and techniques used for decontamination in the PND Fuel Handling Maintenance Facility and the effectiveness of each. (author). 1 tab., 9 figs

  19. PND fuel handling decontamination: facilities and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pan, R Y [Ontario Hydro, Toronto, ON (Canada)

    1997-12-31

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at Ontario Hydro`s Pickering Nuclear Division. This paper presents an overview of the set up and techniques used for decontamination in the PND Fuel Handling Maintenance Facility and the effectiveness of each. (author). 1 tab., 9 figs.

  20. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    International Nuclear Information System (INIS)

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA's hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R ampersand D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required

  1. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  2. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    International Nuclear Information System (INIS)

    Klute, Stefan; Kupke, Peter

    2013-01-01

    In February 2009, Siempelkamp Nukleartechnik GmbH was awarded the contract for the design, manufacture, delivery and construction of a new Decontamination Facility in the controlled area for Kruemmel NPP. The new decontamination equipment has been installed according to the state of art of Kruemmel NPP. The existing space required the following modification, retrofitting and reconstruction works: - Demounting of the existing installation: to create space for the new facility it was necessary to dismantle the old facility. The concrete walls and ceilings were cut into sizes of no more than 400 kg for ease of handling. This enabled decontamination so largest possible amount could be released for recycling. All steel parts were cut into sizes fitting for iron-barred boxes, respecting the requirement to render the parts decontaminable and releasable. - Reconstructing a decontamination facility: Reconstruction of a decontamination box with separate air lock as access area for the decontamination of components and assemblies was conducted using pressurized air with abrasives (glass beads or steel shots). The walls were equipped with sound protection, the inner walls were welded gap-free to prevent the emergence of interstices and were equipped with changeable wear and tear curtains. Abrasive processing unit positioned underneath the dry blasting box adjacent to the two discharge hoppers. A switch has been installed for the separation of the glass beads and the steel shot. The glass beads are directed into a 200 l drum for the disposal. The steel shot was cleaned using a separator. The cleaned steel shot was routed via transportation devices to the storage container, making it available for further blasting operations. A decontamination box with separate air lock as access area for the decontamination of components and assemblies using high pressure water technology was provided by new construction. Water pressures between 160 bar and 800 bar can be selected. The inner

  3. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Kupke, Peter [Siempelkamp Nukleartechnik GmbH Am Taubenfeld 25/1, 69123 Heidelberg (Germany)

    2013-07-01

    In February 2009, Siempelkamp Nukleartechnik GmbH was awarded the contract for the design, manufacture, delivery and construction of a new Decontamination Facility in the controlled area for Kruemmel NPP. The new decontamination equipment has been installed according to the state of art of Kruemmel NPP. The existing space required the following modification, retrofitting and reconstruction works: - Demounting of the existing installation: to create space for the new facility it was necessary to dismantle the old facility. The concrete walls and ceilings were cut into sizes of no more than 400 kg for ease of handling. This enabled decontamination so largest possible amount could be released for recycling. All steel parts were cut into sizes fitting for iron-barred boxes, respecting the requirement to render the parts decontaminable and releasable. - Reconstructing a decontamination facility: Reconstruction of a decontamination box with separate air lock as access area for the decontamination of components and assemblies was conducted using pressurized air with abrasives (glass beads or steel shots). The walls were equipped with sound protection, the inner walls were welded gap-free to prevent the emergence of interstices and were equipped with changeable wear and tear curtains. Abrasive processing unit positioned underneath the dry blasting box adjacent to the two discharge hoppers. A switch has been installed for the separation of the glass beads and the steel shot. The glass beads are directed into a 200 l drum for the disposal. The steel shot was cleaned using a separator. The cleaned steel shot was routed via transportation devices to the storage container, making it available for further blasting operations. A decontamination box with separate air lock as access area for the decontamination of components and assemblies using high pressure water technology was provided by new construction. Water pressures between 160 bar and 800 bar can be selected. The inner

  4. Decontamination demonstration facility (D.D.F) modularization/mobility study

    International Nuclear Information System (INIS)

    FitzPatrick, V.F.; Butts, H.L.; Moles, R.G.; Lundgren, R.A.

    1980-11-01

    The component decontamination technology, developed under the DOE sponsored TRU Waste Decontamination Program, has potential benefits to nuclear utility owners in four strategic areas: (1) Meeting ALARA Criteria for Maintenance/Operations; (2) Management of wastes and waste forms; (3) Accident Response; (4) Decommissioning. The most significant step in transferring this technology directly to the nuclear industry is embodied in the TMI Decontamination Demonstration Facility

  5. Remote Decontamination Facility and Repair Station for hot-cell manipulators

    International Nuclear Information System (INIS)

    Ryz, M.A.

    1977-01-01

    Increasingly high radiation levels on manipulators at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada, necessitated design and construction of a Remote Decontamination Facility and Repair Station. This facility reduces radiation levels on manipulators by an order of magnitude over previous hand decontamination techniques. The reduced radiation levels have allowed superior manipulator repair and maintenance, resulting in 50% fewer manipulator breakdowns

  6. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Choi, W. K.; Jung, C. H.; Oh, W. Z.

    2007-06-01

    The originative CO 2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  7. Designing of a mobile decontamination facility (MDF) for preparedness and response to nuclear/radiological emergencies

    International Nuclear Information System (INIS)

    Joshi, G.H.; Garai, S.K.; Chatterjee, M.K.; Pradeepkumar, K.S.; Sharma, D.N.

    2005-01-01

    During a radiological emergency in public domain, likelihood of radioactive contamination cannot be completely ruled out. Timely and effective decontamination can significantly reduce possible external and internal radiation exposure to public. The objective of designing of a mobile decontamination facility is to develop the capability for decontaminating affected persons in case of any radiological emergency in public domain. A fully equipped decontamination facility on the wheels will be able to reach at the scene and will be able to decontaminate a large number of victims with the help of optimized decontamination procedures in short duration avoiding unwanted radiation exposure. This self-supporting decontamination facility is designed to be equipped with sufficient number of radiation monitoring instruments, equipments for decontamination, decontamination agents etc. (author)

  8. Assessment of the proposed decontamination and waste treatment facility at LLNL

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1987-01-01

    To provide a centralized decontamination and waste treatment facility (DWTF) at LLNL, the construction of a new installation has been planned. Objectives for this new facility were to replace obsolete, structurally and environmentally sub-marginal liquid and solid waste process facilities and decontamination facility and to bring these facilities into compliance with existing federal, state and local regulations as well as DOE orders. In a previous study, SAIC conducted a preliminary review and evaluation of existing facilities at LLNL and cost effectiveness of the proposed DWTF. This document reports on a detailed review of specific aspects of the proposed DWTF

  9. 105-DR Large Sodium Fire Facility decontamination, sampling, and analysis plan

    International Nuclear Information System (INIS)

    Knaus, Z.C.

    1995-01-01

    This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility in the 100-D Area of the Hanford Site. The LSFF was established to investigate fire fighting and safety associated with alkali metal fires in the liquid metal fast breeder reactor facilities. The decontamination, sampling, and analysis plan identifies the decontamination procedures, sampling locations, any special handling requirements, quality control samples, required chemical analysis, and data validation needed to meet the requirements of the 105-DR Large Sodium Fire Facility Closure Plan in compliance with the Resource Conservation and Recovery Act

  10. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel.

    Science.gov (United States)

    Tambe, Mahesh; Pruikkonen, Sofia; Mäki-Jouppila, Jenni; Chen, Ping; Elgaaen, Bente Vilming; Straume, Anne Hege; Huhtinen, Kaisa; Cárpen, Olli; Lønning, Per Eystein; Davidson, Ben; Hautaniemi, Sampsa; Kallio, Marko J

    2016-03-15

    The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an essential component of the spindle assembly checkpoint that monitors the fidelity of chromosome segregation. The microRNA targets the 3' UTR of Mad2 mRNA thereby preventing translation of the Mad2 protein. In cancer cells, overexpression of miR-493-3p induced a premature mitotic exit that led to increased frequency of aneuploidy and cellular senescence in the progeny cells. Importantly, excess of the miR-493-3p conferred resistance of cancer cells to microtubule drugs. In human neoplasms, miR-493-3p and Mad2 expression alterations correlated with advanced ovarian cancer forms and high miR-493-3p levels were associated with reduced survival of ovarian and breast cancer patients with aggressive tumors, especially in the paclitaxel therapy arm. Our results suggest that intratumoral profiling of miR-493-3p and Mad2 levels can have diagnostic value in predicting the efficacy of taxane chemotherapy.

  11. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  12. Final report on the decontamination of the Curium Source Fabrication Facility

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1983-12-01

    The Curium Source Fabrication Facility (CSFF) at Oak Ridge National Laboratory (ORNL) was decontaminated to acceptable contamination levels for maintenance activities, using standard decontamination techniques. Solid and liquid waste volumes were controlled to minimize discharges to the ORNL waste systems. This program required two years of decontamination effort at a total cost of approximately $700K. 5 references, 7 figures, 2 tables

  13. Solid waste handling and decontamination facility

    International Nuclear Information System (INIS)

    Lampton, R.E.

    1979-01-01

    The Title 1 design of the decontamination part of the SWH and D facility is underway. Design criteria are listed. A flowsheet is given of the solid waste reduction. The incinerator scrubber is described. Design features of the Gunite Tank Sludge Removal and a schematic of the sluicer, TV camera, and recirculating system are given. 9 figures

  14. Rundt om Mad Men

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2011-01-01

    Artiklen gør rede for Mad Mens tilblivelse, dens populærkulturelle efterdønninger, multimediale forgreninger og værkæstetiske karakteristika. "Story Matters Here" lyder AMCs motto, men Mad Men tilbyder et bredspektret engagement, der går langt ud over at følge med i en vedkommende fortælling...

  15. PNL size reduction and decontamination facilities and capabilities

    International Nuclear Information System (INIS)

    Allen, R.P.; Fetrow, L.K.; McCoy, M.W.

    1983-07-01

    Studies sponsored by the US Department of Energy at Pacific Northwest Laboratory (PNL) have resulted in the development of an effective, integrated size reduction and decontamination system for transuranically contaminated components. Using this system, a reduction of more than 95% in the volume of transuranic waste requiring interim storage and eventual geologic disposal has been achieved for typical plutonium contaminated glove boxes. This paper describes the separate preparation, size reduction, decontamination and waste treatment operations and facilities that have been developed and demonstrated as part of this work

  16. Methods and techniques for decontamination design and construction of facilities

    International Nuclear Information System (INIS)

    Augustin, X.; Cohen, S.

    1986-01-01

    TECHNICATOME and STMI have jointly solved a wide range of problems specific to decontamination from the very design studies up to operation. TECHNICATOME has brought its expertise in the design and construction of nuclear facilities concerned in particular with decontamination and radwaste management. STMI is an experienced operator with expertise in designing tools and developing advanced techniques in the same fields. The expertise of both companies in this field cumulated for many years has resulted in developing techniques and tools adapted to most of the decontamination problems including specific cases [fr

  17. A survey of decontamination processes applicable to DOE nuclear facilities

    International Nuclear Information System (INIS)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs

  18. A survey of decontamination processes applicable to DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  19. Radiation protection procedures for the dismantling and decontamination of nuclear facility

    International Nuclear Information System (INIS)

    Almeida, C.C.; Garcia, R.H.L.; Cambises, P.B.S.; Silva, T.M. da; Paiva, J.E.; Carneiro, J.C.G.G.; Rodrigues, D.L.

    2013-01-01

    This work presents the operational procedures and conditions to ensure the required level of protection and safety during the dismantling and decontamination of a natural uranium purification facility at IPEN-CNEN/SP, Brazil. The facility was designed for chemical processing of natural uranium, aiming to obtain the uranyl nitrate, nuclear-grade. Afterwards, the installation operated in treatment and washing of thorium sulfate and thorium oxycarbonate dissolution, to get thorium nitrate as final product. A global evaluation of the potential exposure situation was carried out by radioprotection team in order to carry out the operations planned. For the facility dismantling, was established both measures to control the radiation exposure at workplace and individual monitoring of workers. A combination of physical, chemical and mechanical methods was used in the decontamination procedure applied in this unit. Concerning the internal operation procedures of IPEN-CNEN/SP, the radioactive waste control, the transport of the radioactive materials and authorization of use of decontaminated equipment were also subject of study. (author)

  20. KEWB facilities decontamination and disposition. Final report

    International Nuclear Information System (INIS)

    Ureda, B.F.

    1976-01-01

    The decontamination and disposition of the KEWB facilities, Buildings 073, 643, 123, and 793, are complete. All of the facility equipment, including reactor enclosure, reactor vessel, fuel handling systems, controls, radioactive waste systems, exhaust systems, electrical services, and protective systems were removed from the site. Buildings 643, 123, and 793 were completely removed, including foundations. The floor and portions of the walls of Building 073 were covered over by final grading. Results of the radiological monitoring and the final survey are presented. 9 tables, 19 figures

  1. Development of Decontamination and Decommissioning Technologies for Nuclear Facilities

    International Nuclear Information System (INIS)

    Moon, Jei Kwon; Lee, Kune Woo; Won, Hui Jun

    2010-04-01

    A laser ablation decontamination technology which is reportedly effective for a removal of fixed contaminants has been developed for three years as the first stage of the development. Lab scale experimental equipment was fabricated and the process variables have been assessed for determination of appropriate decontamination conditions at the laser wave lengths of 1,064 nm and 532 nm, respectively. The decontamination tests using radioactive specimens showed that the decontamination efficiency was about 100 which is quite a high value. An electrokinetic-flushing, an agglomeration leaching and a supercritical CO 2 soil decontamination technology were development for a decontamination of radioactive soil wastes from the decommissioned sites of the TRIGA research reactor and the uranium conversion facilities. An electrokinetic-flushing process was found to be effective for soil wastes aged for a long time and an agglomeration leaching process was effective for soil wastes of surface contamination. On the other hand, a supercritical CO 2 soil decontamination technology was found to be applicable for U or TRU bearing soil wastes. The remediation monitoring key technologies such as a representative sample taking and a measurement concept for the vertical distribution of radionuclides were developed for an assessment of the site remediation. Also an One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code was developed to interpretate the radionuclide migration in the unsaturated zone

  2. DWTF [decontamination and waste treatment facilities] assessment

    International Nuclear Information System (INIS)

    Maimoni, A.

    1986-01-01

    The purpose of this study has been to evaluate the adequacy of present and proposed decontamination and waste treatment facilities (DWTF) at LLNL, to determine the cost effectiveness for proposed improvements, and possible alternatives for accomplishing these improvements. To the extent possible, we have also looked at some of the proposed environmental compliance and cleanup (ECC) projects

  3. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  4. Decommissioning and Decontamination Program: Battelle Plutonium Facility, Environmental assessment

    International Nuclear Information System (INIS)

    1979-09-01

    This assessment describes the decontamination of Battelle-Columbus Plutonium Facility and removal from the site of all material contamination which was associated with or produced by the Plutonium Facility. Useable uncontaminated material will be disposed of by procedures normally employed in scrap declaration and transfer. Contaminated waste will be transported to approved radioactive waste storage sites. 5 refs., 1 fig

  5. Decontamination and decommissioning of nuclear facilities: a literature search

    International Nuclear Information System (INIS)

    Sande, W.E.; Freeman, H.D.; Hanson, M.S.; McKeever, R.

    1975-05-01

    is bibliography includes 429 unclassified references to the decontamination and decommissioning of nuclear facilities. The references are arranged in chronological order and cover the period from 1944 through 1974. Subject and author indexes are e provided. (U.S.)

  6. Innovative ways of decontaminating nuclear facilities

    International Nuclear Information System (INIS)

    Bremmer, Jan; Gentes, Sascha; Ambos, Frank

    2009-01-01

    The great variety of surfaces to be decontaminated in a nuclear power plant increases demand for economic solutions and efficient processing systems. The Institute for Technology and Management in Building (TMB) of the University of Karlsruhe (TH) is working on this task in the new professorship of Sascha Gentes and, together with sat Kerntechnik GmbH, developing innovative techniques and tools for surface decontamination. In this effort, sat.Kerntechnik GmbH contributes 50% to the funding of the new professorship at the Karlsruhe Institute of Technology, the merger of the University of Karlsruhe and the Karlsruhe Research Center. The new professorship will extend its work also to various other innovative concepts to be employed not only in demolition but also in maintenance and operation of nuclear facilities. Above and beyond theoretical approaches, practical solutions are in the focus of work. For this reason, new developments are elaborated in close cooperation with the respective users. (orig.)

  7. Decontamination of radioisotope production facility

    International Nuclear Information System (INIS)

    Daryoko, M.; Yatim, S.; Suseno, H.; Wiratmo, M.

    1998-01-01

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na 2 , sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10 -3 μCi/cm 2 . This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO 4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  8. Radiation resistant, decontaminable and sealing jointing compounds for application in nuclear facilities

    International Nuclear Information System (INIS)

    Kunze, S.

    1991-09-01

    The sealing jointing compounds applied in practice and already examined for decontaminability will be presented here. Solvent-free sealing compounds, emulsifiable in water, with low molecular epoxy resins as binders, quite a number of curing versions, and little hygroscopic filler mixtures adapted in grain size have been tested with a view to ceramic tile jointing in nuclear facilities. The sealing compounds were examined before and after exposure to gamma irradiation (300 KGy energy dose) for decontaminability, color, gloss and resistance to decontaminants. Out of fourteeen compounds exhaustively investigated ten are very well decontaminable and four well decontaminable. After exposure to radiation no or only minor changes in color and gloss, respectively, were observed. Visible changes such as cracking, bubbles, etc. were not found and the resistance to decontaminants was neither affected. It has even been possible to replace in the well decontaminable sealing compounds developed until now part of the epoxy resin binder with elasticizing components such as Thiokol which is very important as a base material for sealing compounds in the construction industry, but difficult to decontaminate. (orig.) [de

  9. [Madness in Foucault: art and madness, madness and unreason].

    Science.gov (United States)

    Providello, Guilherme Gonzaga Duarte; Yasui, Silvio

    2013-10-01

    After presenting the ideas on madness and its interface with art as expressed in the writings of Michel Foucault, Peter Pál Pelbart, and Gilles Deleuze, the article explores how these authors question the relationship between art and madness. It begins with the notion that madness does not tell the truth about art, and vice versa, but that there are links between both that must be delved into if we are to engage in deeper reflection on the topic. The text problematizes the statement that madness is the absence of an oeuvre and examines how this impacts the possibility of achieving an artistic oeuvre. It further problematizes the idea of madness as excluded language, that is, the idea that madness implies not only the exclusion of the body but also the disqualification of discourse.

  10. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  11. Laser-based characterization and decontamination of contaminated facilities

    International Nuclear Information System (INIS)

    Leong, K.H.; Hunter, B.V.; Grace, J.E.; Pellin, M.J.; Leidich, H.F.; Kugler, T.R.

    1996-01-01

    This study examines the application of laser ablation to the characterization and decontamination of painted and unpainted concrete and metal surfaces that are typical of many facilities within the US Department of Energy complex. The utility of this promising technology is reviewed and the essential requirements for efficient ablation extracted. Recent data obtained on the ablation of painted steel surfaces and concrete are presented. The affects of beam irradiance, ablation speed and efficiency, and characteristics of the aerosol effluent are discussed. Characterization of the ablated components of the surface offers the ability of concurrent determination of the level of contamination. This concept can be applied online where the ablation endpoint can be determined. A conceptual system for the characterization and decontamination of surfaces is proposed

  12. Development of the Los Alamos National Laboratory Plutonium Facility decontamination room

    International Nuclear Information System (INIS)

    Mosso, J.S.; Smith, F.E.; Owen, M.J.; Treadaway, W.A.

    1987-01-01

    For several years the Health Protection Group attempted to remedy the problem of a facility to adequately handle personnel plutonium contamination incidents. Through the efforts of our Quality Circle a presentation was made to management, which immediately appropriated space and funds for the construction of a complete decontamination facility. 9 refs

  13. Dismantlement and decontamination of a plutonium-238 facility at SRS

    International Nuclear Information System (INIS)

    Smith, R.H. Jr.; Hootman, H.E.

    1994-01-01

    There has been very little, documented decontamination and decommissioning (D ampersand D) experience on which to project cleanup costs and schedules for plutonium facilities at SRS and other DOE sites. A portion of the HB-Line, a plutonium-238 processing facility at SRS, has been undergoing D ampersand D intermittently since 1984. Although this cleanup effort was not originally intended to quantify results, some key data have been project has demonstrated effective methods of accumulated, and the performing D ampersand D work, and has demonstrated cleanup equipment and techniques under conditions of high contamination. Plutonium facilities where D ampersand D is already underway provide an opportunity for' timely field testing of characterization, size reduction, and decontamination techniques. Some data are presented here; however, more specific tests and data may be obtained during the remainder of this project. This project has been recommended as a candidate test facility for a DOE planned ''Integrated D ampersand D Demonstration'' managed by EM-50 to develop and demonstrate technology for D ampersand D and surplus facilities deactivation. Both the remainder of this project and the Integrated D ampersand D Demonstration Program can benefit from a joint effort, and the, overall costs should be reduced

  14. Chemical decontamination method in nuclear facility system

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi; Oka, Shigehiro.

    1996-01-01

    Pumps and valves in a closed recycling loop system incorporating materials to be chemically decontaminated are decomposed, a guide plate having the decomposed parts as an exit/inlet of a decontaminating liquid is formed, and a decontaminating liquid recycling loop comprising a recycling pump and a heater is connected to the guide plate. Decontaminating liquid from a decontaminating liquid storage tank is supplied to the decontaminating liquid recycling loop. With such constitutions, the decontaminating liquid is filled in the recycling closed loop system incorporating materials to be decontaminated, and the materials to be decontaminated are chemically decontaminated. The decontaminating liquid after the decontamination is discharged and flows, if necessary, in a recycling system channel for repeating supply and discharge. After the decontamination, the guide plate is removed and returned to the original recycling loop. When pipelines of a reactor recycling system are decontaminated, the amount of decontaminations can be decreased, and reforming construction for assembling the recycling loop again, which requires cutting for pipelines in the system is no more necessary. Accordingly, the amount of wastes can be decreased, and therefore, the decontamination operation is facilitated and radiation dose can be reduced. (T.M.)

  15. Environmental decontamination

    International Nuclear Information System (INIS)

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination

  16. Environmental decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.; Jernigan, H.C. (eds.)

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  17. Radioactivity decontamination in and around school facilities in Fukushima

    International Nuclear Information System (INIS)

    Saegusa, Jun; Tagawa, Akihiro; Kurikami, Hiroshi; Iijima, Kazuki; Yoshikawa, Hideki; Tokizawa, Takayuki; Nakayama, Shinichi; Ishida, Junichiro

    2016-01-01

    Approximately two months after the Fukushima nuclear accident, the Japan Atomic Energy Agency (JAEA) led off a series of demonstration tests to develop effective but easily applicable decontamination methods for various school facilities in Fukushima. This effort included (1) dose reduction measures in schoolyards, (2) purification of swimming pool water, and (3) removal of surface contamination from playground equipment. Through these demonstration tests, they established practical methods suitable for each situation: (1) In schoolyards, dose rates were drastically reduced by removing topsoil, which was then placed in 1-m-deep trenches at a corner of the schoolyard. (2) For the purification of pool water, the flocculation coagulation treatment was found to be effective for collecting radiocesium dissolved in the water. (3) Demonstration tests for playground equipment, such as horizontal bars and a sandbox wood frame indicated that the decontamination effectiveness considerably varied depending on the material, paint or coating condition of each equipment piece. These findings were summarized in reports, some of which were compiled in local/national guidelines or handbooks for decontaminating the living environment in Fukushima. (author)

  18. Radioactivity decontamination in and around school facilities in Fukushima

    International Nuclear Information System (INIS)

    Saegusa, Jun; Iijima, Kazuki; Yoshikawa, Hideki; Ishida, Junichiro; Tagawa, Akihiro; Kurikami, Hiroshi; Nakayama, Shinichi; Tokizawa, Takayuki

    2015-01-01

    Approximately two months after the Fukushima nuclear accident, the Japan Atomic Energy Agency (JAEA) led off a series of demonstration tests to develop effective but easily applicable decontamination methods for various school facilities in Fukushima. This effort included (1) dose reduction measures in schoolyards, (2) purification of swimming pool water, and (3) removal of surface contamination from playground equipment. Through these demonstration tests, they established practical methods suitable for each situation: (1) In schoolyards, dose rates were drastically reduced by removing topsoil, which was then placed in 1-m-deep trenches at a corner of the schoolyard. (2) For the purification of pool water, the flocculation coagulation treatment was found to be effective for collecting radiocesium dissolved in the water. (3) Demonstration tests for playground equipment, such as horizontal bars and a sandbox wood frame indicated that the decontamination effectiveness considerably varied depending on the material, paint or coating condition of each equipment piece. These findings were summarized in reports, some of which were compiled in local/national guidelines or handbooks for decontaminating the living environment in Fukushima. (author)

  19. Summary review of Mound Facility's experience in decontamination of concrete

    International Nuclear Information System (INIS)

    Combs, A.B.; Davis, W.P.; Garner, J.M.; Geichman, J.R.

    1980-01-01

    Most of the current concrete decontamination work at Mound Facility involves surfaces that are contaminated with plutonium-238. Approximately 60,000 sq. ft. of concrete floors will have to be decontaminated in Mound's current Decontamination and Decommissioning (D and D) Project. Although most of these surfaces are partially protected by a barrier (tile or paint), contaminated water and acid have penetrated these barriers. The technique for decontaminating these floors is desribed. The initial cleaning of the floor involes standard water and detergent. Acids are not used in cleaning as they tend to drive the contamination deeper into the concrete surface. Next, the floor tile is manually removed inside a temporary enclosure under negative and filtered ventilation. Finally, layers of contaminated concrete are mechanically removed inside the ventilated enclosure. The suspected depth and surface area of contamination determines the type of mechanical tool used. In summary, several generic methods of concrete decontamination can be utilized: chemical, such as water, detergent, acids, paint remover, strippable paints, etc.; rotary using sanders, grinders, scarifiers, etc.; impact such as pressure washers (hydrolasers), particle blasters, scabblers, needlers, spallers, paving and rock breakers, ram hoes, etc. The particular method used depends on several factors: surface and area involved; depth of contamination; cost and availability of equipment; usage safety and radiological control; and waste generated

  20. MadR1, a Mycobacterium tuberculosis cell cycle stress response protein that is a member of a widely conserved protein class of prokaryotic, eukaryotic and archeal origin.

    Science.gov (United States)

    Crew, Rebecca; Ramirez, Melissa V; England, Kathleen; Slayden, Richard A

    2015-05-01

    Stress-induced molecular programs designed to stall division progression are nearly ubiquitous in bacteria, with one well-known example being the participation of the SulA septum inhibiting protein in the SOS DNA damage repair response. Mycobacteria similarly demonstrate stress-altered growth kinetics, however no such regulators have been found in these organisms. We therefore set out to identify SulA-like regulatory proteins in Mycobacterium tuberculosis. A bioinformatics modeling-based approach led to the identification of rv2216 as encoding for a protein with weak similarity to SulA, further analysis distinguished this protein as belonging to a group of uncharacterized growth promoting proteins. We have named the mycobacterial protein encoded by rv2216 morphology altering division regulator protein 1, MadR1. Overexpression of madR1 modulated cell length while maintaining growth kinetics similar to wild-type, and increased the proportion of bent or V-form cells in the population. The presence of MadR1-GFP at regions of cellular elongation (poles) and morphological differentiation (V-form) suggests MadR1 involvement in phenotypic heterogeneity and longitudinal cellular growth. Global transcriptional analysis indicated that MadR1 functionality is linked to lipid editing programs required for growth and persistence. This is the first report to differentiate the larger class of these conserved proteins from SulA proteins and characterizes MadR1 effects on the mycobacterial cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Pilot scale, alpha disassembly and decontamination facility at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Cadieux, J.R.; Becker, G.W. Jr.; Richardson, G.W.; Coogler, A.L.

    1982-01-01

    An alpha-contained pilot facility is being built at the Savannah River Laboratory (SRL) for research into the disassembly and dcontamination of noncombustible, Transuranic (TRU) waste. The design and program objectives for the facility are presented along with the initial test results from laboratory scale decontamination experiments with Pu-238 and Cm-244

  2. Decontamination/decommissioning of the Princeton Pennsylvania Accelerator Facility

    International Nuclear Information System (INIS)

    Bair, W.A.

    1990-01-01

    The Princeton Pennsylvania Accelerator Facility was a 3 GeV proton synchrotron operated jointly by Princeton University and the University of Pennsylvania from 1962 to 1972 on Princeton University's Forrestal Campus. During synchrotron operations, certain portions of the PPA central accelerator chamber and structural members became neutron activated. Upon termination of accelerator operations due to funding problems, Princeton desired to utilize the PPA site for other purposes, and commissioned a study to investigate Decommissioning and Decontamination options and methodologies. The study investigated several methods for in-place, surgically removing the neutron activated from the uncontaminated concrete. Since each technique produced different volumes of removed concrete all methods investigated were studied from the total economics of the problem and the cost of limiting and clean-up of secondary contamination. The decontamination method selected used a diamond wire cutting technique to sever in-place, the activated concrete from the uncontaminated. Large, intact, activated structural segments were cut and removed from the central accelerator chamber's floor, outer walls, internal columns and ceiling. Nonactivated portions of the structure, and the remainder of the central chamber were subsequently razed by conventional demolition methods. The paper describes the decontamination methodology, its effectiveness, disposal economics and radiological safety problems related thereto

  3. Decontamination Project for Cell G of the Metal Recovery Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mandry, G.J.; Grisham, R.W.

    1994-02-01

    The goal of the decontamination effort in Cell G at the Metal Recovery Facility, Building 3505, located at the Oak Ridge National Laboratory, was two-fold: to determine the effectiveness of the dry decontamination technique employed and to provide data required to assess whether additional decontamination using this method would be beneficial in the eventual decommissioning of the facility. Allied Technology Group (ATG) was contracted to remove a portion of the concrete surface in Cell G by a technique known as scabbling. Some metallic cell components were also scabbled to remove paint and other surface debris. Generally, the scabbling operation was a success. Levels of contamination were greatly reduced. The depth of contaminant penetration into the concrete surfaces of certain areas was much greater than had been anticipated, necessitating the removal of additional concrete and extending ATG's period of performance. Scabbling and other related techniques will be extremely useful in the decontamination and decommissioning of other nuclear facilities with similar radiological profiles

  4. Dismantling and decontamination of the PIVER prototype vitrification facility

    International Nuclear Information System (INIS)

    Jouan, A.

    1989-01-01

    The PIVER facility was dismantled for replacement by a new continuous pilot plant. The more important operation concerns the vitrification cell, containing equipments of the process, for complete disposal and maximum decontamination, requiring dismantling, cutting, conditioning and removal of equipment inside the cell. Manipulators, handling and cutting tools were used. Activity of removed material and irradiation of personal are followed during the work for matching intervention means to operation conditions [fr

  5. Decontamination and recovery of a nuclear facility to allow continued operation

    International Nuclear Information System (INIS)

    Cavaghan, Josh

    2017-01-01

    A power supply failure caused a loss of power to key ventilation systems in an operating nuclear facility. The in-cell depression was lost, which led to an egress of activity through prepared areas and into the normal operating areas. After an initial programme of radiological monitoring to quantify and categorise the activity in the operating areas, a plan was developed for the decontamination and remediation of the plant. The scope of the recovery plan was substantial and featured several key stages. The contamination was almost entirely "1"3"7Cs, reflecting the α:β/γ ratio for the facility. In addition to the physical remediation work, several administrative controls were introduced such as new local rules, safety signage to indicate abnormal radiological conditions in certain areas and training of the decontamination teams. All areas of plant, which were contaminated, were returned to normal access arrangements and the plant was successfully returned to full operational capability, <12 months from the date of the event. (authors)

  6. Development of the Decontamination and Decommissioning Technology for Nuclear Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Moon, J. K.; Won, C. H.

    2010-04-01

    The research results could be used for a design of a remote ablation decontamination system and ultimately applicable for an decontamination of high radiation facilities such as the DUPIC and PIEF. The evaluation technology of decommissioning process must be developed and will be used for the ALARA planning tool of decommissioning process and demonstrated for tools of decommissioning equipment. Also, this technology can be used for tools workplaces with high work difficulty such as large-scale chemical plant, under water and space. It is expected that the technology for a volume reduction and self-disposal of dismantled concrete wastes can be contributed to the establishment of a management plan for radioactive dismantled concrete wastes through the minimization of final waste volume

  7. Suspension, abandonment, decontamination, and surface land reclamation of upstream oil and gas facilities : informational letter IL 98-2

    International Nuclear Information System (INIS)

    1998-01-01

    This release of the Alberta Energy and Utilities Board (EUB) is intended to clarify the jurisdictional roles of Alberta Environmental Protection (AEP) and the EUB with regard to their respective responsibilities for the regulation of the suspension, abandonment, decontamination and surface land reclamation of active and inactive upstream oil and gas facilities. The EUB, AEP and industrial operators all have separate roles and responsibilities when active and inactive upstream facilities are suspended or reclaimed. In the future, industry operators will have more interaction with the AEP during the decontamination of a site, while the EUB will concentrate on pollution prevention and abandonment of non-economic facilities. All oilfield waste generated from suspension, abandonment, decontamination, and surface land reclamation of an active or inactive upstream oil and gas facility will fall under the jurisdiction of the EUB. Contaminated soils, sludges, and waters that are physically removed as a result of decontamination activities are considered to be oilfield wastes. The regulatory responsibility between the AEP and the EUB remains unchanged for the reclamation process of on-lease and off-lease spills, releases or pipeline breaks. Industry operators are no longer allowed to discharge any produced liquid to earthen pits or ponds and are encouraged to reclaim existing ones. 3 figs

  8. Mad Cow Disease

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Mad Cow Disease KidsHealth / For Teens / Mad Cow Disease What's ... are people to get it? What Is Mad Cow Disease? Mad cow disease is an incurable, fatal ...

  9. Influence of Decontamination

    International Nuclear Information System (INIS)

    Knaack, Michael

    2016-01-01

    This paper describes the influence of several decontamination techniques on the decommissioning of nuclear facilities. There are different kinds of decontamination methods like mechanical and chemical processes. The techniques specified, and their potential to change measured characteristics like the isotope vector of the contamination is demonstrated. It is common for all these processes, that the contamination is removed from the surface. Slightly adhered nuclides can be removed more effectively than strongly sticking nuclides. Usually a mixture of these nuclides forms the contamination. Problematically any kind of decontamination will influence the nuclide distribution and the isotope vector. On the one hand it is helpful to know the nuclide distribution and the isotope vector for the radiological characterization of the nuclear facility and on the other hand this information will be changed in the decontamination process. This is important especially for free release procedures, radiation protection and waste management. Some questions on the need of decontamination have been discussed. (authors)

  10. Safety assessment document for spent fuel handling, packaging, and storage demonstrations at the E-MAD facility on the Nevada Test Site

    International Nuclear Information System (INIS)

    1985-04-01

    The objectives for spent fuel handling and packaging demonstration are to develop the capability to satisfactorily encapsulate typical commercial nuclear reactor spent fuel assemblies and to establish the suitability of interim dry surface and near surface storage concepts. To accomplish these objectives, spent fuel assemblies from a pressurized water reactor have been received, encapsulated in steel canisters, and emplaced in on-site storage facilities and subjected to other tests. As an essential element of these demonstrations, a thorough safety assessment of the demonstration activities conducted at the E-MAD facility has been completed. This document describes the site location and characteristics, the existing E-MAD facility, and the facility modifications and equipment additions made specifically for the demonstrations. The document also summarizes the Quality Assurance Program utilized, and specifies the principal design criteria applicable to the facility modifications, equipment additions, and process operations. Evaluations have been made of the radiological impacts of normal operations, abnormal operations, and postulated accidents. Analyses have been performed to determine the affects on nuclear criticality safety of postulated accidents and credible natural phenomena. The consequences of postulated accidents resulting in fission product gas release have also been estimated. This document identifies the engineered safety features, procedures, and site characteristics that (1) prevent the occurrence of potential accidents or (2) assure that the consequences of postulated accidents are either insignificant or adequately mitigated

  11. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  12. Madness Decolonized?: Madness as Transnational Identity in Gail Hornstein's Agnes's Jacket.

    Science.gov (United States)

    Miller, Gavin

    2017-02-13

    The US psychologist Gail Hornstein's monograph, Agnes's Jacket: A Psychologist's Search for the Meanings of Madness (2009), is an important intervention in the identity politics of the mad movement. Hornstein offers a resignified vision of mad identity that embroiders the central trope of an "anti-colonial" struggle to reclaim the experiential world "colonized" by psychiatry. A series of literal and figurative appeals makes recourse to the inner world and (corresponding) cultural world of the mad as well as to the ethno-symbolic cultural materials of dormant nationhood. This rhetoric is augmented by a model in which the mad comprise a diaspora without an origin, coalescing into a single transnational community. The mad are also depicted as persons displaced from their metaphorical homeland, the "inner" world "colonized" by the psychiatric regime. There are a number of difficulties with Hornstein's rhetoric, however. Her "ethnicity-and-rights" response to the oppression of the mad is symptomatic of Western parochialism, while her proposed transmutation of putative psychopathology from limit upon identity to parameter of successful identity is open to contestation. Moreover, unless one accepts Hornstein's porous vision of mad identity, her self-ascribed insider status in relation to the mad community may present a problematic "re-colonization" of mad experience.

  13. MadEvent: automatic event generation with MadGraph

    International Nuclear Information System (INIS)

    Maltoni, Fabio; Stelzer, Tim

    2003-01-01

    We present a new multi-channel integration method and its implementation in the multi-purpose event generator MadEvent, which is based on MadGraph. Given a process, MadGraph automatically identifies all the relevant subprocesses, generates both the amplitudes and the mappings needed for an efficient integration over the phase space, and passes them to MadEvent. As a result, a process-specific, stand-alone code is produced that allows the user to calculate cross sections and produce unweighted events in a standard output format. Several examples are given for processes that are relevant for physics studies at present and forthcoming colliders. (author)

  14. Decontamination and decommissioning of the initial engine test facility and the IET two-inch hot-waste line

    International Nuclear Information System (INIS)

    Stoll, F.E.

    1987-04-01

    The Initial Engine Test Decommissioning Project is described in this report. The Initial Engine Test facility was constructed and operated at the National Reactor Testing Station, now known as the Idaho National Engineering Laboratory, to support the Aircraft Nuclear Propulsion Program and the Systems for Nuclear Auxiliary Power Transient test program, circa 1950 through 1960s. Due to the severe nature of these nuclear test programs, a significant amount of radioactive contamination was deposited in various portions of the Initial Engine Test Facility. Characterizations, decision analyses, and plans for decontamination and decommissioning were prepared from 1982 through 1985. Decontamination and decommissioning activities were performed in such a way that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory remains. These decontamination and decommissioning activities began in 1985 and were completed in 1987. 13 figs

  15. Development of decommissioning, decontamination and reuse technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Moon, J. K.; Choi, B. S.

    2012-03-01

    In this project, the foundation of decommissioning technology through the development of core technologies applied to maintenance and decommissioning of nuclear facility was established. First of all, we developed the key technology such as safety assessment technology for decommissioning work needed at the preparatory stage of decommissioning of the highly contaminated facilities and simultaneous measurement technology of the high-level alpha/beta contamination applicable to the operation and decommissioning of the nuclear facilities. Second, we developed a remotely controlled laser ablation decontamination system which is useful for a removal of fixed contaminants and developed a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels. Third, we developed a volume reduction and self-disposal technology for dismantled concrete wastes. Also, the technology for volume reduction and stabilization of the peculiar wastes(HEPA filter and organic mixed wastes), which have been known to be very difficult to treat and manage, generated from the high radioactive facilities in operation, improvement and repair and under decommissioning was developed. Finally, this research project was developed a system for the reduction of radiotoxicity of several uranium mixtures generated in the front- and back-end nuclear fuel cycles with characteristics of highly enhanced proliferation-resistance and more environmental friendliness, which can make the uranium to be recovered or separated from the mixtures with a high purity level enough for the uranium to be reused and to be classified as C-class level for burial near the surface, and then which result in the much reduction in volume of the uranium mixture wastes

  16. Lessons learned from decontaminating and decommissioning fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Bordier, Jean-Claude; Dalcorso, J. P.; Nokhamzon, Jean-Guy

    2000-01-01

    This paper draws on 20 years of experience and lessons learned by COGEMA and the CEA during the decontamination and decommissioning (DandD) of its nuclear fuel cycle facilities. COGEMA and the CEA have developed a wealth of knowledge on issues such as assessing decommissioning alternatives, selecting appropriate technical procedures on the basis of thorough site characterization, and developing waste management and disposal procedures. (author)

  17. Decontamination of stainless steel using cerium(IV): Material recycle and reuse

    International Nuclear Information System (INIS)

    Kurath, D.E.; Bray, L.A.; Jarrett, J.H.

    1997-01-01

    It has been demonstrated that the Cerium(IV) process can effectively remove radioactive contamination from stainless steel. Ce(IV) is a powerful oxidizing agent that is applied in an inorganic acid solution or as an atomized spray by injection into steam directed at the contaminated surface. Ce(IV) attacks the oxide layer and underlying metal surface to remove a 0.5-μm to 3-μm layer. This process has been implemented in a number of actual operations. In one application, a Ce(IV) steam decontamination process was instrumental in renovating hot cells at the High-Level Radiochemistry Facility (325-A building) at the Hanford site. The initial dose rate of approximately 100,000 mR/h was reduced to <50 mR/h and allowed manned entry during hot cell renovation activities. These valuable facilities have been returned to full operation. In an application at the West Valley Nuclear Services Co., Inc., the surfaces of stainless steel canisters that had been filled with vitrified high-level waste have been decontaminated. In some cases the free release levels for surface contamination have been achieved. In another application, five plutonium contaminated stainless steel vessels were decontaminated during decommissioning of the Critical Mass Facility at Hanford

  18. Manual on decontamination of surfaces

    International Nuclear Information System (INIS)

    1979-01-01

    The manual is intended for those who are responsible for the organization and implementation of decontamination programmes for facilities where radioactive materials are handled mainly on a laboratory scale. It contains information and guidelines on practical methods for decontaminating working spaces, equipment, laboratory benches and protective clothing. Useful information is also provided on the removal of loose skin contamination from personnel by mild, non-medical processes. Methods of removing skin contamination needing medical supervision, or of internal decontamination, which is entirely a medical process, are not covered in this manual. Large-scale decontamination of big nuclear facilities is also considered as outside its scope

  19. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  20. Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer.

    LENUS (Irish Health Repository)

    Furlong, Fiona

    2012-04-01

    Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3\\' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3\\'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3\\' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict

  1. Ontario Hydro decontamination experience

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, C S; Patterson, R W; Upton, M S [Chemistry and Metallurgy Department, Central Production Services, Ontario Hydro, ON (Canada)

    1991-04-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  2. Ontario Hydro decontamination experience

    International Nuclear Information System (INIS)

    Lacy, C.S.; Patterson, R.W.; Upton, M.S.

    1991-01-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  3. Decontaminating agents and decontamination processes for nuclear industry and for plant demolition

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2012-01-01

    Decontamination of surfaces of materials in nuclear facilities or in nuclear power plants under demolition can be carried out successfully if surface treatment is performed by dipping or in an ultrasonic bath by alternating between alkaline and acid baths with intermediate rinsing in demineralized water. Decontaminating aluminium surfaces sensitive to corrosion requires further treatment in an ultrasonic bath, after the first 2 ultrasonic baths, with a weak alkaline decontaminating agent. This applies alike to components to be decontaminated for re-use and parts of materials to be disposed of. The decontamination action depends on the surfaces either being free from corrosion or else showing pronounced corrosion. (orig.)

  4. Decontamination and decommissioning criteria for use in design of new plutonium facilities

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1975-01-01

    Decontamination and decommissioning (D and D) criteria were assembled for use in designing new plutonium facilities. These criteria were gathered from literature searches and visits to many plutonium facilities around the country. The recommendations of reports and experienced personnel were used. Since total D and D costs can be millions of dollars, improved designs to facilitate D and D will result in considerable savings in cost and time and will help to leave the site for unrestricted future use after D and D. Finally, better design will reduce hazards and improve safety during the D and D effort

  5. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Mirro, G.A. [Growth Resources, Inc., Lafayette, LA (United States)

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  6. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  7. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    International Nuclear Information System (INIS)

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D ampersand D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project

  8. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  9. A direct role of Mad1 in the spindle assembly checkpoint beyond Mad2 kinetochore recruitment

    DEFF Research Database (Denmark)

    Kruse, Thomas; Larsen, Marie Sofie Yoo; Sedgwick, Garry G

    2014-01-01

    in the SAC beyond recruitment of C-Mad2 to kinetochores has not yet been addressed. Here, we show that Mad1 is required for mitotic arrest even when C-Mad2 is artificially recruited to kinetochores, indicating that it has indeed an additional function in promoting the checkpoint. The C-terminal globular...... domain of Mad1 and conserved residues in this region are required for this unexpected function of Mad1........ The conversion of O-Mad2 into C-Mad2 at unattached kinetochores is thought to be a key step in activating the SAC. The "template model" proposes that this is achieved by the recruitment of soluble O-Mad2 to C-Mad2 bound at kinetochores through its interaction with Mad1. Whether Mad1 has additional roles...

  10. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    International Nuclear Information System (INIS)

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-01-01

    The results of bench scale tests demonstrated that TechXtract R RadPro TM technology (hereinafter referred to as RadPro R ) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro R can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro R , one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro R could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro R at other DOE and commercial facilities also support these data. (authors)

  11. Sampling and decontamination plan for the Transuranic Storage Area--1/-R container storage unit

    International Nuclear Information System (INIS)

    Barry, G.A.

    1992-11-01

    This document describes the sampling and decontamination of the Transuranic Storage Area (TSA)-l/-R container storage area and the earthen-covered portion of the TSA-2 container storage unit at the Radioactive Waste Management Complex. Stored containers from the earthen-covered asphalt pads will be retrieved from the TSA-l/-R and TSA-2 container storage units. Container retrieval will be conducted under the TSA retrieval enclosure, a fabricated steel building to be constructed over the earthen-covered pad to provide containment and weather protection. Following container retrieval, the TSA retrieval enclosure will be decontaminated to remove radioactive and hazardous contamination. The underlying soils will be sampled and analyzed to determine whether any contaminated soils require removal

  12. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  13. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-21). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  14. Mad Cow Disease (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Mad Cow Disease KidsHealth / For Parents / Mad Cow Disease What's ... Is Being Done About It Print About Mad Cow Disease Mad cow disease has been in the ...

  15. Cutting and decontamination technologies for nuclear facility dismantling; Technologien zur Zerlegung und zur Dekontamination von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Grone, Georg von; Schultmann, Frank

    2017-03-15

    The German Government's decision to phase-out nuclear power will lead to a substantial increase of the number of nuclear decommissioning and dismantling projects. The decommissioning of nuclear facilities must meet the requirements of the radiation protection ordinance. This study deals with the decontamination and dismantling technologies available to meet radiation protection requirements. The aim of this study is to determine the state of the art in the field of decommissioning and dismantling technologies. Furthermore, future trends in the development and application of such technologies should be identified. A detailed study of current literature provides an overview of established decommissioning technologies. Moreover, experts were consulted in order to facilitate a practical assessment. The experts' statements indicate that (apart from the chemical decontamination of the primary circuit) the use of mechanical methods is generally preferred. Abrasive methods are rated as particularly efficient. According to the experts, the development of new decontamination technologies may allow a more efficient decontamination. However, the success of a new technology will be subject to its application costs. Mechanical technologies are preferred for the dismantling of nuclear facilities. The band saw has been identified as a standard tool in nuclear dismantling. The survey has concluded that there is no need for new dismantling technologies. The potential lies in the optimization of existing processes and techniques. With regard to remotely operated systems, experts' opinions vary on whether the use of these systems will increase in future. Most areas inside a nuclear facility have low radiation levels that allow the use of human labour for the dismantling. However, there is a need for an improvement in the allocation and management of decommissioning projects.

  16. Decontamination and decommissioning of the Organic Moderated Reactor Experiment facility (OMRE)

    International Nuclear Information System (INIS)

    Hine, R.E.

    1980-09-01

    This report describes the decontamination and decommissioning (D and D) of the Organic Moderated Reactor Experiment (OMRE) facility performed from October 1977 through September 1979. This D and D project included removal of all the facilities and as much contaminated soil and rock as practical. Removal of the reactor pressure vessel was an unusually difficult problem, and an extraordinary, unexpected amount of activated rock and soil was removed. After removal of all significantly contaminated material, the site consisted of a 20-ft deep excavation surrounded by backfill material. Before this excavation was backfilled, it and the backfill material were radiologically surveyed and detailed records made of these surveys. After the excavation was backfilled and graded, the site surface was surveyed again and found to be essentially uncontaminated

  17. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  18. Cloning and Functional Analysis of the MADS-box CiMADS9 Gene from Carya illinoinensis

    Directory of Open Access Journals (Sweden)

    Zhang Jiyu

    2015-07-01

    Full Text Available A MADS-box gene, CiMADS9, was cloned from the male flowers of Carya illinoinensis by rapid amplification of cDNA ends. The gene was 1 077 bp with a 768 bp open reading frame encoding 255 amino acids. Multiple sequence comparisons revealed that CiMADS9 is a typical MIKC-type MADS-box gene with a MADS-box domain and a K semi-conserved region. Phylogenetic analysis indicated that CiMADS9 belongs to the AGL15 group of the MADS-box gene family. Quantitative reverse transcription polymerase chain reaction analysis indicated that the expression levels in reproductive organs (i.e., flowers and young fruits were considerably higher than in vegetative tissues (i.e., leaves and branches. The highest expression levels were observed in male flowers. An overexpression vector for CiMADS9 was constructed and the gene was inserted into the Arabidopsis thaliana genome. CiMADS9 expression was confirmed in all transgenic lines. Compared with wild-type plants, transgenic A. thaliana plants overexpressing CiMADS9 exhibited delayed flowering and an increased number of leaves.

  19. MadGraph/MadEvent. The new web generation

    International Nuclear Information System (INIS)

    Alwall, J.

    2007-01-01

    The new web-based version of the automatized process and event generator MadGraph/MadEvent is now available. Recent developments are: New models, notably MSSM, 2HDM and a framework for addition of user-defined models, inclusive sample generation and on-line hadronization and detector simulation. Event generation can be done on-line on any of our clusters. (author)

  20. Metformin Protects Neurons against Oxygen-Glucose Deprivation/Reoxygenation -Induced Injury by Down-Regulating MAD2B.

    Science.gov (United States)

    Meng, Xianfang; Chu, Guangpin; Yang, Zhihua; Qiu, Ping; Hu, Yue; Chen, Xiaohe; Peng, Wenpeng; Ye, Chen; He, Fang-Fang; Zhang, Chun

    2016-01-01

    Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neurotoxicity. The present study investigated whether metformin modifies the expression of MAD2B and to exert its neuroprotective effects in primary cultured cortical neurons during oxygen-glucose deprivation/reoxygenation (OGD/R), a widely used in vitro model of ischemia/reperfusion. Primary cortical neurons were cultured, deprived of oxygen-glucose for 1 h, and then recovered with oxygen-glucose for 12 h and 24 h. Cell viability was measured by detecting the levels of lactate dehydrogenase (LDH) in culture medium. The levels of MAD2B, cyclin B and p-histone 3 were measured by Western blot. Cell viability of neurons was reduced under oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of MAD2B was increased under OGD/R. The levels of cyclin B1, which is a substrate of APC, were also increased. Moreover, OGD/R up-regulated the phosphorylation levels of histone 3, which is the induction of aberrant re-entry of post-mitotic neurons. However, pretreatment of neurons with metformin alleviated OGD/R-induced injury. Metformin further decreased the expression of MAD2B, cyclin B1 and phosphorylation levels of histone 3. Metformin exerts its neuroprotective effect through regulating the expression of MAD2B in neurons under OGD/R. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Overview of nonchemical decontamination techniques

    International Nuclear Information System (INIS)

    Allen, R.P.

    1984-09-01

    The decontamination techniques summarized in this paper represent a variety of surface cleaning methods developed or adapted for component and facility-type decontamination applications ranging from small hand tools to reactor cavities and other large surface areas. The major conclusion is that decontamination is a complex, demanding technical discipline. It requires knowledgeable, experienced and well-trained personnel to select proper techniques and combinations of techniques for the varied plant applications and to realize their full performance potential. Unfortunately, decontamination in many plants has the lowest priority of almost any activity. Operators are unskilled and turnover is so frequent that expensive decontamination capabilities remain unused while decontamination operations revert to the most rudimentary type of hand scrubbing and water spray cleaning

  2. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    Science.gov (United States)

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is

  3. Abject Magic: Reasoning Madness in Justine Larbalestier's "Magic or Madness" Trilogy

    Science.gov (United States)

    Potter, Troy

    2013-01-01

    This paper explores the representation of magic and madness in Justine Larbalestier's "Magic or Madness" trilogy (2005-2007). Throughout the series, magic is constructed as an abject and disabling force that threatens to disable magic-wielders, either through madness or death. Despite being represented as a ubiquitous force, the…

  4. Model for analyzing decontamination process systems

    International Nuclear Information System (INIS)

    Boykin, R.F.; Rolland, C.W.

    1979-06-01

    Selection of equipment and the design of a new facility in light of minimizing cost and maximizing capacity, is a problem managers face many times in the operations of a manufacturing organization. This paper deals with the actual analysis of equipment facility design for a decontamination operation. Discussions on the selection method of the equipment and the development of the facility design criteria are presented along with insight into the problems encountered in the equipment analysis for a new decontamination facility. The presentation also includes a review of the transition from the old facility into the new facility and the process used to minimize the cost and conveyance problems of the transition

  5. Use of citric acid for large parts decontamination

    International Nuclear Information System (INIS)

    Holland, M.E.

    1979-01-01

    Laboratory and field studies have been performed to identify and evaluate chemical decontamination agents to replace ammonium carbonate, an environmentally unacceptable compound, in the decontamination facility for large process equipment at the Portsmouth Gaseous Diffusion Plant. Preliminary screening of over 40 possible decontamination agents on the basis of efficiency, availability, toxicity, cost, corrosiveness, and practicality indicated sodium carbonate and citric acid to be the most promising. Extensive laboratory studies were performed with these two reagents. Corrosion rates, decontamination factors, uranium recovery efficiencies, technetium ( 99 Tc)/ion exchange removal effects, and possible environmental impacts were determined or investigated. Favorable results were found in all areas. Detailed monitoring and analysis during two-week trial periods in which sodium carbonate and citric acid were used in the large parts decontamination facility resulted in similar evaluation and conclusions. Because it has cleaning properties not possessed by sodium carbonate, and because it eliminated several operational problems by incorporating two acidic decontamination reagents (citric and nitric acids) instead of one basic reagent (sodium or ammonium carbonate) and one acidic reagent (nitric acid), citric acid was selected for one-year field testing. On the basis of its excellent performance in the field tests, citric acid is recommended as a permanent replacement for ammonium carbonate in the decontamination facility for large process equipment

  6. Guide for decontamination in P.W.R. power plants

    International Nuclear Information System (INIS)

    Herisson, J.; Glorennec, C.

    1992-01-01

    Nuclear power plant components or equipment often need to be more ore less decontaminated before maintenance. In order to coordinate the activities of the various maintenance specialists belonging to the corporate or Site Organizations, the Management of EDF/Nuclear and Fossil Division has created a 'Decontamination Task Force'. The first objective of this Task Force was to prepare this 'Decontamination Guide for Nuclear Power Plants'. This document is the result of a close collaboration, within a specific working group, between representatives of Nuclear Fossil Division (from Nuclear Power Plants and Corporate Departments) and EDF Project and Construction Group. It will provide assistance to Nuclear Plants Operators in the very specific field of decontamination. (author)

  7. Decontamination of skin in emergency situation

    International Nuclear Information System (INIS)

    Harase, Chieko

    1988-01-01

    The report briefly discusses the organization of decontamination personnel and facilities to be used for decontamination in the event of an emergency, and outlines the author's experience in carrying out decontamination of the skin of tourists who came back to Japan after staying in Kiev at the time of the accident at Chernobyl (about 150 km away from Kiev). In Japan at present, no nuclear facilities seem to have sufficient personnel who are in charge of skin decontamination activities required in the event of an emergency, and emergency measures are generally limited to the development of emergency plans and implementation of drills. It is necessary to establish training courses for medical doctors and other medical personnel. Each plant has plans for skin decontamination procedures designed for professional workers in the plant. Plans should also be established for general people who might suffer skin decontamination in the event of an accident. What is the most important is to ease their anxiety about the contamination of their skin. The procedures, including washing and shampooing, used for the tourist returning from Kiev are described, and some problems encountered or expected to occur in similar cases are outlined and discussed. (Nogami, K.)

  8. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  9. Safeguards considerations related to the decontamination and decommissioning of former nuclear weapons facilities

    International Nuclear Information System (INIS)

    Crawford, D.

    1995-01-01

    In response to the post-Cold War environment and the changes in the U. S. Department of Energy defense mission, many former nuclear operations are being permanently shut down. These operations include facilities where nuclear materials production, processing, and weapons manufacturing have occurred in support of the nation's defense industry. Since defense-related operations have ceased, many of the classification and sensitive information concerns do not exist. However, nuclear materials found at these sites are of interest to the DOE from environmental, safety and health, and materials management perspectives. Since these facilities played a role in defense activities, the nuclear materials found at these facilities are considered special nuclear materials, primarily highly enriched uranium and/or plutonium. Consequently, these materials pose significant diversion, theft, and sabotage threats, and significant nuclear security issues exist that must be addressed. This paper focuses on the nuclear materials protection issues associated with facility decommissioning and decontamination, primarily safeguards

  10. Method for decontaminating radiation metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Akimoto, Hidetoshi

    1991-01-01

    This report describes a method for decontaminating radiation metal waste characterized by the following properties: in order to decontaminate radiation metal waste of various shapes produced by facilities involved with radioactive substances, non-complex shapes are decontaminated by electropolishing the materials in a neutral saline solution. Complex shapes are chemically decontaminated by means of an acid solution containing permanganic acid or an alkaline solution and a mineral acid solution. After neutralizing the solutions used for chemical decontamination, the radioactive material is separated and removed. Further, in the decontamination method for radioactive metal waste, a supernatant liquid is reused as the electrolyte in electropolishing decontamination. Permanganic ions (MnO 4 - ) are reduced to manganese dioxide (MnO 2 ) and deposited prior to neutralizing the solution used for chemical decontamination. Once manganese dioxide (MnO 2 ) has been separated and removed, it is re-used as the electrolyte in electropolishing decontamination by means of a process identical to the separation process for radioactive substances. 3 figs

  11. LASL experience in decontamination of the environment

    International Nuclear Information System (INIS)

    Ahlquist, A.J.

    1981-01-01

    This discussion represents one part of a major effort in soil decontamination at the Los Alamos site. A contaminated industrial waste line in the Los Alamos townsite was removed, and a plutonium incineration facility, and a filter building contaminated with actinium-227 were dismantled. The former plutonium handling facility has been decontaminated, and canyons and an old firing site contaminated with strontium-90 have been surveyed

  12. Preparations for decontamination and disposition of the Sodium Reactor Experiment (SRE) and other ERDA facilities at AI

    International Nuclear Information System (INIS)

    Heine, W.F.; Graves, A.W.

    1975-01-01

    The program plan for the decontamination and disposition of facilities at the Sodium Reactor Experiment and other ERDA-owned, AI-operated, radioactive facilities is described. The program objective along with a description of each of the subject facilities is presented. A description of the organizational structure within supporting the program is given. The elements of planning required to prepare for the task are detailed, including the requirements for cost and schedule control. Progress to date and the future plans are presented. The available technology utilized in the program is described

  13. Decontamination and demolition of concrete and metal structures during the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of this report is to give a concise technical description of the techniques and equipment being used or developed for the decontamination and demolition of nuclear facilities in sufficient detail to assist Member States to plan decommissioning operations and make preliminary evaluations of techniques and equipment. This report also reviews new and/or different aspects which have not been well covered previously in readily available review documents or IAEA publications. This report is an up to date review of techniques and equipment being used or developed for decontamination or dismantling work during the decommissioning of all types of nuclear facility except mining and milling sites. Although the information presented is aimed at countries initiating decommissioning programmes, it should also be useful to others who are responsible for or interested in the planning and implementation of decommissioning tasks. This report describes the relevant techniques and equipment, their areas of application and degree of development and the conditions in which they are used, when these details are known. However, this publication should be used in conjunction with other published technical information on these topics, experience gained as a result of previous decommissioning operations and the assistance of experts in the appropriate areas are required. 64 refs, 33 figs, 5 tabs

  14. Tritium decontamination of machine components and walls

    International Nuclear Information System (INIS)

    Hircq, B.; Wong, K.Y.; Jalbert, R.A.; Shmayda, W.T.

    1991-01-01

    Tritium decontamination techniques for machine components and their application at tritium handling facilities are reviewed. These include commonly used methods such as vacuuming, purging, thermal desorption and isotopic exchange as well as less common methods such as chemical/electrochemical etching, plasma discharge cleaning, and destructive methods. Problems associated with tritium contamination of walls and use of protective coatings are reviewed. Tritium decontamination considerations at fusion facilities are discussed

  15. Effluent treatment plant and decontamination centre, Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    The Bhabha Atomic Research Centre, Trombay, has a number of plants and laboratories, which generate Radioactive Liquid Waste and Protective Wears. Two facilities have been established in late 1960s to cater to this requirement. The Centre, on the average generates about 50,000 m"3 of active liquid effluents of varying specific activities. The Effluent Treatment Plant was setup to receive and process radioactive liquids generated by various facilities of BARC in Trombay. It also serves a single-point discharge facility to enable monitoring of radioactive effluents discharged from the Trombay site. About 120-150 Te of protective wears and inactive apparel are generated annually from various radioactive facilities and laboratories of BARC. In addition, contaminated fuel assembly components are generated by DHRUVA and formerly by CIRUS. These components require decontamination before its recycle to the fuel assembly process. The Decontamination Centre, setup in late 1960s, is mandated to carry out the above mentioned decontamination activities

  16. Decontamination in the Republic of Belarus

    International Nuclear Information System (INIS)

    Antsipov, G.V.; Matveenko, S.A.; Mirkhaidarov, A.Kh.

    2002-01-01

    To continue the decontamination work in the Republic of Belarus, which was carried out by the military troops, the state specialized enterprises were formed in Gomel and Mogilev in 1991. The organization and regulations were developed inside the country: instructions, rules, radiological and hygienic criteria and norms. The enterprises concentrated on decontamination of the most socially significant facilities: kindergartens, schools, medical institutions and industrial enterprises. During 9 years Gomel State Specialized Enterprise 'Polessje' decontaminated 130 kindergartens, schools and hospitals. The total decontaminated area was 450 000 m 2 . The ventilation systems and equipment at 27 industrial enterprises in Gomel were decontaminated. The practical decontamination methods for areas, buildings, roofs, industrial equipment, ventilation systems were developed and tested. The special rules for handling wastes contaminated with Cs were elaborated. The paper analyzes and sums up the acquired experience which is important for implementation of rehabilitation programs and improvement of decontamination methods. (author)

  17. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  18. Methods to estimate equipment and materials that are candidates for removal during the decontamination of fuel processing facilities

    International Nuclear Information System (INIS)

    Duncan, D.R.; Valero, O.J.; Hyre, R.A.; Pottmeyer, J.A.; Millar, J.S.; Reddick, J.A.

    1995-02-01

    The methodology presented in this report provides a model for estimating the volume and types of waste expected from the removal of equipment and other materials during Decontamination and Decommissioning (D and D) of canyon-type fuel reprocessing facilities. This methodology offers a rough estimation technique based on a comparative analysis for a similar, previously studied, reprocessing facility. This approach is especially useful as a planning tool to save time and money while preparing for final D and D. The basic methodology described here can be extended for use at other types of facilities, such as glovebox or reactor facilities

  19. A Sandia National Laboratories decontamination and demolition success story

    International Nuclear Information System (INIS)

    Miller, D.R.; Barber, D.S.; Lipka, G.

    1994-01-01

    Sandia National Laboratories/New Mexico (SNL/NM) has established a formal facility assessment, decontamination and demolition oversight process with the goal of ensuring that excess or contaminated facilities are managed in a cost-effective manner that is protective of human health and the environment. The decontamination and demolition process is designed so that all disciplines are consulted and have input from the initiation of a project. The committee consists of all essential Environmental, Safety and Health (ES and H) and Facilities disciplines. The interdisciplinary-team approach has provided a mechanism that verifies adequate building and site assessment activities are conducted. This approach ensures that wastes generated during decontamination and demolition activities are handled and disposed according to Department of Energy (DOE), Federal, state, and local requirements. Because of the comprehensive nature of the SNL decontamination and demolition process, the strategy can be followed for demolition, renovation and new construction projects, regardless of funding source. An overview of the SNL/NM decontamination and demolition process is presented through a case study which demonstrates the practical importance of the formal process

  20. Treatment of wastes arising from decontamination process using citric acid as a decontaminate agent

    International Nuclear Information System (INIS)

    Mierzwa, J.C.; Riella, H.G.; Carvalho, E.U. de

    1993-01-01

    Wastes arising from equipment decontamination processes from nuclear fuel cycle facilities at Coordenacao de Projetos Especiais - Comissao Nacional de Energia Nuclear, Sao Paulo (COPESP-CNEN/SP) has been studied after using citric acid as a decontaminate agent. Precipitation of uranium and metallic impurities resulted from use of sodium hydroxide or calcium oxide plus a flocculation agent. The removal efficient of uranium was 95% and 99% for sodium hydroxide and calcium oxide respectively. The results shows that this process can be used to test wastes from decontamination processes which use citric acid. (B.C.A.). 03 refs, 08 figs, 04 tabs

  1. Decontamination of TRU glove boxes

    International Nuclear Information System (INIS)

    Crawford, J.H.

    1978-03-01

    Two glove boxes that had been used for work with transuranic nuclides (TRU) for about 12 years were decontaminated in a test program to collect data for developing a decontamination facility for large equipment highly contaminated with alpha emitters. A simple chemical technique consisting of a cycle of water flushes and alkaline permanganate and oxalic acid washes was used for both boxes. The test showed that glove boxes and similar equipment that are grossly contaminated with transuranic nuclides can be decontaminated to the current DIE nonretrievable disposal guide of <10 nCi TRU/g with a moderate amount of decontamination solution and manpower. Decontamination of the first box from an estimated 1.3 Ci to about 5 mCi (6 nCi/g) required 1.3 gallons of decontamination solution and 0.03 man-hour of work for each square foot of surface area. The second box was decontaminated from an estimated 3.4 Ci to about 2.8 mCi (4.2 nCi/g) using 0.9 gallon of decontamination solution and 0.02 man-hour for each square foot of surface area. Further reductions in contamination were achieved by repetitive decontamination cycles, but the effectiveness of the technique decreased sharply after the initial cycle

  2. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    International Nuclear Information System (INIS)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO 3 ) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities

  3. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  4. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1992-01-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  5. MAD data collection - current trends

    International Nuclear Information System (INIS)

    Dementieva, I.; Evans, G.; Joachimiak, A.; Sanishvili, R.; Walsh, M. A.

    1999-01-01

    The multi-wavelength anomalous diffraction, or MAD, method of determining protein structure is becoming routine in protein crystallography. An increase in the number of tuneable synchrotrons beamlines coupled with the widespread availability position-sensitive X-ray detectors based on charged-coupled devices and having fast readout raised MAD structure determination to a new and exciting level. Ultra-fast MAD data collection is now possible. Recognition of the value of selenium for phasing protein structures and improvement of methods for incorporating selenium into proteins in the form of selenomethionine have attracted greater interest in the MAD method. Recent developments in crystallographic software are complimenting the above advances, paving the way for rapid protein structure determination. An overview of a typical MAD experiment is described here, with emphasis on the rates and quality of data acquisition now achievable at beamlines developed at third-generation synchrotrons sources

  6. Decontamination of surfaces (1961); La decontamination des surfaces (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The continued expansion of atomic Energy has led the S.C.R.G.R. to extend simultaneously the recovery of materials contaminated by use in radio-active media. The importance of this aspect of atomic Energy was not immediately obvious to those concerned but is now fully recognized due to the cost of the materials and installations, and also to the time required for the construction of special equipment for the C.E.A. Another very important reason is the dangers associated with the handling of contaminated material. The S.C.R.G.R. attacked this problem from the point of view of these dangers. It later became apparent to the users, once the decontamination methods had proved their worth, that the process presented advantages from the material and cost-saving point of view. (author) [French] Le developpement toujours croissant de l'Energie atomique a conduit le S.C.R.G.R. a developper parallelement la recuperation des materiels contamines par leur emploi en milieu radioactif. Cet aspect de l'Energie atomique n'est pas apparu des le debut aux utilisateurs mais s'est tres vite impose etant donne, d'une part, le cout des installations et du materiel, d'autre part le temps necessaire a la fabrication d'un materiel special aux travaux du C.E.A., enfin et surtout, les risques associes a la manipulation d'un materiel contamine. Les risques seuls ont ete pris comme point de depart a l'examen de ce probleme par le S.C.R.G.R. puis avec le temps, les methodes de decontamination ayant fait leur preuve, les utilisateurs ont alors apercu les aspects materiels et la rentabilite de la decontamination. (auteur)

  7. Decontamination of polyvinylchloride- and rubber type flooring

    International Nuclear Information System (INIS)

    Kunze, S.

    1975-01-01

    These types, fabricated by mixing of the basic components, showed no relation between content of fillers and decontamination results. Decontamination results are partly poorer, if the flooring contains a high concentration of the filler, especially if the latter consists mainly of hydrophilic materials. The coloring of the floorings seems to have no influence on the decontamination but floorings with clearly separated patterns can not be recommended for nuclear facilities. Fabricated by chemical reactions between polymeres, vulcanization materials and fillers, the decontamination results depend definitely from the proper choice of the filler. Flooring types, containing lampblack, graphite, kaoline, barium sulfate and titanium oxide are easy to decontamine. Again, increasing contents of hydrophilic filler cause a fall off in the decontamination results. (orig.) [de

  8. Electrolytic decontamination of stainless steel using a basic electrolyte

    International Nuclear Information System (INIS)

    Childs, E.L.; Long, J.L.

    1981-01-01

    An electrolytic plutonium decontamination process or stainless steel was developed for use as the final step in a proposed radioactive waste handling and decontamination facility to be construced at the Rockwell International Rocky Flats plutonium handling facility. This paper discusses test plan, which was executed to compare the basic electrolyte with phosphoric acid and nitric acid electrolytes. 1 ref

  9. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish trademark. The surface contamination, as shown by swipe surveys, was reduced from 4x10 4 --10 6 disintegrations per minute (dpm)/cm 2 to 2x10 2 --4x10 4 dpm/cm 2 . Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  10. MADS Users' Guide

    Science.gov (United States)

    Moerder, Daniel D.

    2014-01-01

    MADS (Minimization Assistant for Dynamical Systems) is a trajectory optimization code in which a user-specified performance measure is directly minimized, subject to constraints placed on a low-order discretization of user-supplied plant ordinary differential equations. This document describes the mathematical formulation of the set of trajectory optimization problems for which MADS is suitable, and describes the user interface. Usage examples are provided.

  11. MAD-X Training Course – 2016

    CERN Multimedia

    2016-01-01

    MAD-X 2016 is a annual course series at CERN, within the framework of the 2016 Technical Training Programme on the MAD-X tool used around the world for designing, studying and simulating beam physics for particle accelerators. The lecturer is Laurent Deniau from BE-APB, who has led the MAD team since 2011.    Two courses are available: Methodical Accelerator Design MAD-X: Beginners Session: 1-2 March (half day: mornings)   Methodical Accelerator Design MAD-X: Intermediate Session: 10-11 March (half day: mornings) Target audience: Designed for those needing to become familiar with and acquire some practical experience of particle accelerator design with MAD-X. Pre-requirements: The course requires some prior knowledge of accelerators and beam physics (e.g. optics) as the theory is not detailed. The series will be composed of 4 half-day lectures, given in English with questions and answers also possible in French. Participation in all lectures ...

  12. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    International Nuclear Information System (INIS)

    Rudolph, A.; Kirsch, G.; Toy, H.L.

    1984-01-01

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980

  13. ORNL decontamination and decommissioning program

    International Nuclear Information System (INIS)

    Bell, J.P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed

  14. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1989-06-01

    Since 1973, when the IAEA first introduced the subject of decontamination and decommissioning into its programme, twelve Agency reports reflecting the needs of the Member States on these topics have been published. These reports summarize the work done by various Technical Committees, Advisory Groups, and International Symposia. While the basic technology to accomplish decontamination and decommissioning (D and D) is fairly well developed, the Agency feels that a more rapid exchange of information and co-ordination of work are required to foster technology, reduce duplication of effort, and provide useful results for Member States planning D and D activities. Although the Agency's limited financial resources do not make possible direct support of every research work in this field, the IAEA Co-ordinated Research Programme (CRP) creates a forum for outstanding workers from different Member States brought into closer contact with one another to provide for more effective interaction and, perhaps subsequently, closer collaboration. The first IAEA Co-ordinated Research Programme (CRP) on decontamination and decommissioning was initiated in 1984. Nineteen experts from 11 Member States and two international organizations (CEC, OECD/NEA) took part in the three Research Co-ordination Meetings (RCM) during 1984-87. The final RCM took place in Pittsburgh, USA, in conjunction with the 1987 International Decommissioning Symposium (sponsored by the US DOE and organized in co-operation with the IAEA and OECD/NEA). The present document summarizes the salient features and achievements of the co-ordinated research work performed during the 1984-87 programme period. The document consists of two parts: Part 1, Summary of the three research co-ordination meetings and Part 2, Final submissions by participants on the research work performed during 1984-1987. A separate abstract was prepared for each of the 7 reports presented. Refs, figs and tabs

  15. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  16. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of D evelopment of decontamination, decommissioning and environmental restoration technology , the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  17. The pineapple AcMADS1 promoter confers high level expression in tomato and arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant

    Science.gov (United States)

    A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of e...

  18. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Poderis, Reed J. [NSTec; King, Rebecca A. [NSTec

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  19. Decontaminating products for routine decontamination in nuclear power plants

    International Nuclear Information System (INIS)

    Henning, K.

    2001-01-01

    Routine decontamination work that has to be carried out in practical operation includes the cleaning of all kinds of surfaces such as floors, walls and apparatus, the decontamination of professional clothes and of the personnel. In order to ensure a trouble-free functioning of plants for the treatment of waste water and concentrate in nuclear power plants, radioactive liquid wastes appearing in the controlled area should be compatible with the treatment methods in practice. Radioactive concentrates and resides obtained from the treatment methods are mixed with matrix materials like cement or bitumen or treated by roller frame drying and thus are conditioned for intermediate or final storage. Several requirements should be made on decontaminating agents used in the controlled area. Some of these physical-chemical criteria will be described in detail. (R.P.)

  20. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    International Nuclear Information System (INIS)

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-01-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  1. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  2. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  3. A Modular GIS-Based Software Architecture for Model Parameter Estimation using the Method of Anchored Distributions (MAD)

    Science.gov (United States)

    Ames, D. P.; Osorio-Murillo, C.; Over, M. W.; Rubin, Y.

    2012-12-01

    The Method of Anchored Distributions (MAD) is an inverse modeling technique that is well-suited for estimation of spatially varying parameter fields using limited observations and Bayesian methods. This presentation will discuss the design, development, and testing of a free software implementation of the MAD technique using the open source DotSpatial geographic information system (GIS) framework, R statistical software, and the MODFLOW groundwater model. This new tool, dubbed MAD-GIS, is built using a modular architecture that supports the integration of external analytical tools and models for key computational processes including a forward model (e.g. MODFLOW, HYDRUS) and geostatistical analysis (e.g. R, GSLIB). The GIS-based graphical user interface provides a relatively simple way for new users of the technique to prepare the spatial domain, to identify observation and anchor points, to perform the MAD analysis using a selected forward model, and to view results. MAD-GIS uses the Managed Extensibility Framework (MEF) provided by the Microsoft .NET programming platform to support integration of different modeling and analytical tools at run-time through a custom "driver." Each driver establishes a connection with external programs through a programming interface, which provides the elements for communicating with core MAD software. This presentation gives an example of adapting the MODFLOW to serve as the external forward model in MAD-GIS for inferring the distribution functions of key MODFLOW parameters. Additional drivers for other models are being developed and it is expected that the open source nature of the project will engender the development of additional model drivers by 3rd party scientists.

  4. Long-term decontamination engineering study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  5. Long-term decontamination engineering study. Volume 1

    International Nuclear Information System (INIS)

    Geuther, W.J.

    1995-01-01

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site

  6. Decontamination of medical radioisotopes from hard surfaces using peelable polymer-based decontamination agents

    International Nuclear Information System (INIS)

    Draine, Amanda E.; Walter, Ken J.; Johnson, Thomas E.

    2008-01-01

    Full text: Medical radioisotopes used to treat and diagnose patients often contaminate surfaces in patient treatment rooms. They are typically short-lived and decay within a matter of days or weeks. However, down time in a medical facility related to radioisotope contamination is costly and can impact patient care. Most liquid or solid spills can be contained and disposed in radioactive wastes fairly completely and quickly; however residual contamination may remain on the contacted surface. Although liquid decontamination agents can be used to address the issue of residual contamination, they often require multiple applications with attendant scrubbing and wiping. Liquid decontamination can also produce large volumes of low-level radioactive waste. To look at reducing radioactive waste volumes, research was conducted on the efficacy of three low-volume peel able decontamination agents. Testing was performed on hard surfaces, such as vinyl composition floor tiles and stainless steel, which are found in many hospitals, research laboratories, and universities. The tiles were contaminated with the medical use isotopes of 99m Tc, Tl-201, and I-131 and subsequently decontaminated with one of the three decontamination agents. Quantitative and qualitative data were obtained for each of three different peel able decontamination agent formulations. Quantitative data included environmental temperature and relative humidity, application thickness, dry time, contact time, and decontamination efficacy of the agents on the tested surfaces. Qualitative factors included ease of application and pee lability, as well as sag resistance and odor of each agent. Initial studies showed that under standard conditions there were reproducible differences in the decontamination efficacies among the three different decontamination formulations. (author)

  7. Portfolio optimization using Mean Absolute Deviation (MAD and Conditional Value-at-Risk (CVaR

    Directory of Open Access Journals (Sweden)

    Lucas Pelegrin da Silva

    Full Text Available Abstract This paper investigates the efficiency of traditional portfolio optimization models when the returns of financial assets are highly volatile, e.g., in financial crises periods. We also develop alternative optimization models that combine the mean absolute deviation (MAD and the conditional value at risk (CVaR, attempting to mitigate inefficient, low return and/or high-risk, portfolios. Three methodologies for estimating the probability of the asset’s historical returns are also compared. By using historical data on the Brazilian stock market between 2004 and 2013, we analyze the efficiency of the proposed approaches. Our results show that the traditional models provide portfolios with higher returns, but our propose model are able to generate lower risk portfolios, which might be more attractive in volatile markets. In addition, we find that models that do not use equiprobable scenarios produce better results in terms of return and risk.

  8. Performance test of wet type decontamination device

    International Nuclear Information System (INIS)

    Lee, E. P.; Kim, E. G.; Min, D. K.; Jun, Y. B.; Lee, H. K.; Seu, H. S.; Kwon, H. M.; Hong, K.P.

    2003-01-01

    The intervention area located at rear hot cell can be contaminated by hot cell maintenance work. For effective decontamination of the intervention floor a wet type decontamination device was developed. The device was assembled with a brush rotating part, a washing liquid supplying part, an intake part for recovering contaminated liquid and a device moving cart part. The device was made of stainless steel for easy decontamination and corrosion resistance. The function test carried out at intervention area of the PIE facility showed good performance

  9. Chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The present invention concerns a method for chemical decontamination of radioactive metal waste materials contaminated with radioactive materials on the surface, generated in radioactive materials-handling facilities. The invention is comprised of a method of chemical decontamination of stainless steel, characterized by comprising a first process of immersing a stainless steel-based metal waste material contaminated by radioactive materials on the surface in a sulfuric acid solution and second process of immersing in an aqueous solution of sulfuric acid and oxidizing metal salt, in which a portion of the surface of the stainless steel to be decontaminated is polished mechanically to expose a portion of the base material before the above first and second processes. 1 figs., 2 tabs

  10. The separation of particulate within PFC decontamination wastewater generated by PFC decontamination

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin; Park, Jin Ho; Narayan, M.

    2005-01-01

    When PFC(Perfluoro carbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was 0.1∼10μm. Hot particulate of more than 2μm in PFC contamination wastewater was removed by first filter and then hot particulate of more than 0.2μm was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was 95∼97%. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate H 2 gas in alpha radioactivity environment

  11. Soil surface decontamination and revegetation progress

    International Nuclear Information System (INIS)

    Graves, A.W.

    1981-01-01

    A review is given of work by Rockwell Hanford Operations related to large-area decontamination efforts. Rockwell has a Program Office which manages the decontamination and decommissioning (D and D) efforts. Part of the program is involved with large-surface area cleanup in conjunction with surveillance and maintenance of retired sites and facilities. The other part is the decontamination and decommissioning of structures. There are 322 surplus contaminated sites and facilities for which Rockwell has responsibility on the Hanford Site. A Program Office was established for a disciplined approach to cleanup of these retired sites. There are three major projects: the first is surveillance and maintenance of the sites prior to D and D, the project under which the radiation area cleanup is contained. Another project is for contaminated-equipment volume reduction; size reduction with arc saw cut-up and volume reduction with a vacuum furnace meltdown are being used. The third major project is structural D and D

  12. Decommissioning plan depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Bernhardt, D.E.; Pittman, J.D.; Prewett, S.V.

    1987-01-01

    Aerojet Ordnance Tennessee, Inc. (Aerojet) is decommissioning its California depleted uranium (DU) manufacturing facility. Aerojet has conducted manufacturing and research and development activities at the facility since 1977 under a State of California Source Materials License. The decontamination is being performed by a contractor selector for technical competence through competitive bid. Since the facility will be released for uncontrolled use it will be decontaminated to levels as low as reasonably achievable (ALARA). In order to fully apply the principles of ALARA, and ensure the decontamination is in full compliance with appropriate guides, Aerojet has retained Rogers and Associaties Engineering Corporation (RAE) to assist in the decommissioning. RAE has assisted in characterizing the facility and preparing contract bid documents and technical specifications to obtain a qualified decontamination contractor. RAE will monitor the decontamination work effort to assure the contractor's performance complies with the contract specifications and the decontamination plan. The specifications require a thorough cleaning and decontamination of the facility, not just sufficient cleaning to meet the numeric cleanup criteria

  13. Genome-wide characterization of the MADS-box gene family in radish (Raphanus sativus L. and assessment of its roles in flowering and floral organogenesis

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-09-01

    Full Text Available The MADS-box gene family is an important transcription factor (TF family that is involved in various aspects of plant growth and development, especially flowering time and floral organogenesis. Although it has been reported in many plant species, the systematic identification and characterization of MADS-box TF family is still limited in radish (Raphanus sativus L.. In the present study, a comprehensive analysis of MADS-box genes was performed, and a total of 144 MADS-box family members were identified from the whole radish genome. Meanwhile, a detailed list of MADS-box genes from other 28 plant species was also investigated. Through the phylogenetic analysis between radish and Arabidopsis thaliana, all the RsMADS genes were classified into two groups including 68 type I (31 Mα, 12 Mβ and 25Mγ and 76 type II (70 MIKCC and 6 MIKC*. Among them, 41 (28.47% RsMADS genes were located in nine linkage groups of radish from R1 to R9. Moreover, the homologous MADS-box gene pairs were identified among radish, A. thaliana, Chinese cabbage and rice. Additionally, the expression profiles of RsMADS genes were systematically investigated in different tissues and growth stages. Furthermore, quantitative real-time PCR analysis was employed to validate expression patterns of some crucial RsMADS genes. These results could provide a valuable resource to explore the potential functions of RsMADS genes in radish, and facilitate dissecting MADS-box gene-mediated molecular mechanisms underlying flowering and floral organogenesis in root vegetable crops.

  14. Decontamination activities at the National Institute of Oncology and Radiobiology in Havana, Cuba

    International Nuclear Information System (INIS)

    Castillo, R.; Salgado, M.; Madrazo, S.; Flores, J.; Marcos, J.

    2002-01-01

    The National Institute of Oncology and Radiobiology had a facility contaminated with 137 Cs. The contamination was produced by a leaking source stored in the place. First decontamination work was performed in 1988. Some highly contaminated floor tiles and other contaminated items were removed. Spent sealed sources stored in the facility were collected. The facility was closed because of the remaining contamination. As the Regulatory Body allowed the unrestricted use of the facility, decontamination and decommissioning were needed. D and D activities were requested to the CPHR. Contamination surveys conducted in 1999 confirmed the extent of contamination with 137 Cs. Items inside the contaminated area were carefully monitored and segregated. Six Radium sources were recovered. Physical and chemical methods of decontamination were used. For different reasons, the requirements established by the Regulatory Authority for decommissioning could not be achieved, and therefore the facility could not be released from regulatory control. A Radiological Status Report was done explaining the high cost of decontamination according to the established clearance levels. New alternatives were then proposed for decommissioning of this facility. (author)

  15. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint

    DEFF Research Database (Denmark)

    Sironi, L; Melixetian, M; Faretta, M

    2001-01-01

    Mad2 is a key component of the spindle checkpoint, a device that controls the fidelity of chromosome segregation in mitosis. The ability of Mad2 to form oligomers in vitro has been correlated with its ability to block the cell cycle upon injection into Xenopus embryos. Here we show that Mad2 forms...

  16. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S.

    2005-10-01

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site

  17. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S

    2005-10-15

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site.

  18. Decontamination and dismantlement of Plant 7 at Fernald

    International Nuclear Information System (INIS)

    Albertin, M.; Borgman, T.; Zebick, B.

    1994-01-01

    Decontamination and dismantlement (D ampersand D) tasks have been successfully completed on Plant 7 at the Fernald Environmental Management Project. The seven story facility was radiologically, chemically, and biologically contaminated. The work involved the D ampersand D work beginning with safe shutdown and gross decontamination, and ended with removal of the structural steel. A series of lessons learned were gained which include use of explosives, bidding tactics, safe shutdown, building decontamination and lockdown, use of seam climbers, etc

  19. Cloning and analysis of two Ceratopteris thalictroides MADS-box genes

    Directory of Open Access Journals (Sweden)

    XU Daolan

    2014-06-01

    Full Text Available MADS-box transcription factors,as a large gene family,play an important role in plant growth and development,especially act as key regulators in controlling the identities of floral organs in flowering plants.They are also significant in the evolutionary revelation.In order to understand MADS-box genes,we need more information of MADS-box genes in non flowering plant.MADS-box genes of Ceratopteris thalictroides were selected to clone and analysis by using RACE method.Two MADS-box genes,designated CtMADS1 and CtMADS2 in C. thalictroides,were cloned.Analysis indicates that CtMADS1 is belonged to MIKC*-clade,while CtMADS2 is belonged to MIKCc-clade.Phylogeny suggests that these two MADS-box genes of C. thalictroides have a close relationship with flowering plants,the data indicates that at least two different MADS-box genes are homologous to floral homeotic genes existed in the last common ancestor of contemporary vascular plants.

  20. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  1. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    None

    1997-01-01

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  2. Development of filtration equipment to reuse PFC decontamination wastewater

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung Chong Hun; Oh, Won Zin; Park, Jin Ho

    2005-01-01

    When PFC(Perfluorocarbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination

  3. Lessons learned at West Valley during facility decontamination for re-use (1982--1988)

    International Nuclear Information System (INIS)

    Tundo, D.; Gessner, R.F.; Lawrence, R.E.

    1988-11-01

    The primary mission of the West Valley Demonstration Project (WVDP) is to solidify a large volume of high-level liquid waste (2.3 million liters -- 600,000 gallons) produced during reprocessing plant operations and stored in underground tanks. This is to be accomplished through the maximum use of existing facilities. This required a significant effort to remove existing equipment and to decontaminate areas for installation of liquid and cement processing systems in a safe environment while maintaining exposure to workers as low as reasonably achievable. The reprocessing plant occupied a building of about 33,000 m 2 (350,000 ft 2 ). When the WVDP was initiated, approximately 6 percent of the plant area was in a non-contaminated condition where personnel could function without protective clothing or radiological controls. From 1982 to 1988, an additional 64 percent of the plant was cleaned up and much of this converted to low- and high-level waste processing areas. The high-level liquid and resulting low-level liquids are now being treated in these areas using an Integrated Radwaste Treatment System (IRTS). The Project has now focused attention on installation, qualification and operation of a vitrification system which will convert the remaining high-level waste into borosilicate glass logs. The stabilized waste will be sent to a Federal Repository for long-term storage. From 1982 to 1988, about 70 technical reports were dealing with specific tasks and cleanup efforts. This report provides an overview of the decontamination and decommissioning work done in that period. The report emphasizes lessons learned during that effort. Significant advances were made in: remote and contact decontamination technology; personnel protection and training; planning and procedures; and radiological controls. 62 refs., 35 figs., 5 tabs

  4. UK fast reactor components. Sodium removal decontamination and requalification

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Bray, J.A.; Newson, I.H.

    1978-01-01

    Extensive experience gained at the U.K.A.E.A. Dounreay Nuclear Power Development Establishment is being applied to form the basis of the plant to be provided for sodium removal, decontamination, and requalification of components in future commercial fast reactors. In the first part of a three part paper, the factors to be taken into account, showing the UK philosophy and approach to maintenance and repair operations are discussed. In the second part, PFR facilities for sodium removal and decontamination are described and some examples are given of cleaning components such as pumps, charge machine, cold trap baskets, and steam generator units. Similar facilities at DFR are briefly described. In the third part of the paper a short description is given of the Harwell mass transfer loop, currently used to study the deposition of activated stainless steel corrosion products. Decontamination method for pipework specimens cut from the loop are described and results of first screening tests of various chemical decontaminants are presented. (U.K.)

  5. Equipment decontamination: A brief survey of the DOE complex

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes

  6. Decontamination of process equipment using recyclable chelating solvent

    International Nuclear Information System (INIS)

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-01-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. open-quotes Hardclose quotes chemical decontamination solutions, capable of achieving decontamination factors (Df's) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. open-quotes Softclose quotes chemical decontamination solutions, capable of achieving Df's of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock ampersand Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment

  7. A scaffold easy to decontaminate

    International Nuclear Information System (INIS)

    Mourek, D.

    1992-01-01

    The conventional scaffold used in the assembling work and in revisions of technological facilities at nuclear power plants has many drawbacks. The most serious of them are a high amount of radioactive waste arising from the decontamination (planing) of the floor timber and from the discarding of damaged irreparable parts, and a considerable corrosion of the carbon steel supporting structure after the decontamination. A detailed description is given of a novel scaffold assembly which can be decontaminated and which exhibits many assets, in particular a good mechanical resistance (also to bad weather), a lower weight, and the use of prepreg floor girders for the construction of service platforms or scaffold bridges which can readily be assembled from the pressed pieces in a modular way. (Z.S.). 4 figs., 4 refs

  8. Criteria and evaluation of three decontamination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tripp, J.L.

    1994-01-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO{sub 2} pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used.

  9. Criteria and evaluation of three decontamination techniques

    International Nuclear Information System (INIS)

    Tripp, J.L.

    1994-01-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO 2 pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used

  10. Laser Decontamination of Surfaces Contaminated with Cs+ Ion

    International Nuclear Information System (INIS)

    Baigalmaaa, B.; Won, H. J.; Moon, J. K.; Jung, C. H.; Lee, K. W.; Hyun, J. H.

    2008-01-01

    Laser decontamination technology has been proven to be an efficient method for a surface modification of metals and concretes contaminated with radioactive isotopes. Furthermore, the generation of a secondary waste is negligible. The radioactivity of hot cells in the DFDF (Dupic Fuel Development Facility) is presumed to be very high and the predominant radionuclide is Cs-137. A series of laser decontamination studies by a fabricated Q-switched Nd:YAG laser system were performed on stainless steel specimens artificially contaminated with Cs+ ion. Decontamination characteristics of the stainless steel were analyzed by SEM and EPMA

  11. Lawrence Livermore National Laboratory Decontamination and Waste Treatment Facility: Documentation of impact analysis for design alternatives presented in the Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1988-05-01

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct and operate a new Decontamination and Waste Treatment Facility (DWTF). The proposed DWTF would replace the existing Hazardous Waste Management (HWM) facilities at LLNL. The US Department of Energy (DOE) is preparing a Draft Environmental Impact Statement (DEIS) to assess the environmental consequences of the proposed DWTF and its alternatives. This report presents the assumptions, methodologies, and analyses used to estimate the waste flows, air emissions, ambient air quality impacts, and public health risks that are presented in the DEIS. Two DWTF design alternatives (Level I and Level II) have been designated as reasonable design alternatives considering available technologies, environmental regulations, and current and future LLNL waste generation. Both design alternatives would include new, separate radioactive and nonradioactive liquid waste treatment systems, a solidification unit, a new decontamination facility, storage and treatment facilities for reactive materials, a radioactive waste storage area, receiving and classification areas, and a uranium burn pan. The Level I design alternative would include a controlled-air incinerator system, while the Level II design alternative would include a rotary kiln incinerator system. 43 refs., 4 figs., 24 tabs

  12. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  13. KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2016-06-01

    Full Text Available The multivariate alteration detection (MAD algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA. The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1 data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.

  14. Survey of decontamination and decommissioning techniques

    International Nuclear Information System (INIS)

    Kusler, L.E.

    1977-01-01

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  15. Analysis of decontamination methods used at nuclear power plants and in other facilities. Research report

    International Nuclear Information System (INIS)

    Podlaha, Josef

    2011-10-01

    Methods used in the Czech Republic and in other countries are described. The following topics are treated: Introduction into decontamination; Chemical methods; Foam methods; Electrochemical methods; Mechanical methods; Other methods; Decontamination of civil engineering structures; Technologies suitable for disposal decontamination; and Effect of decontamination on waste management. (P.A.)

  16. An experimental study on decontamination by surface condition

    International Nuclear Information System (INIS)

    Lee, Young Hae

    1974-01-01

    Surface decontamination is one of the very important problem to be completely solved in the isotope laboratory where there is always the possibility of radioactive contamination, i.e., on the floors, walls, working tables and benches etc., Isotope laboratories require surface covering of material which can be easily and effectively decontaminated. These experiment were done to find an effective decontamination procedure for kind of surfaces which usually are found in radioisotope laboratories and the best type of surface material, that is, one which is easily decontaminated from the point of view of radiation health and safely. This study is presented to guide radioisotope laboratories in Korea which may need to renovate existing unsafe facilities. In some contaminated facilities entirely new installations may be required. Twelve types of surface material are used for study in this experiment. These include 10 cm square of stainless steel, aluminum, ceramic and mosaic tiles, glass, acrylic, formica board, asphalt tile and coated wood with 4 kinds of paints. Stepwise decontamination was performed with various decontamination procedures following a spill of I 1 31 on the center of the surface material being tested. Twelve different decontamination procedures were tested. These included wet wiping with water and detergent, or dry wiping, or removing with gummed paper. Additional chemical procedures used 10% solution of hydrochloric acid, or surface acid, or ammonium citrate, or potassium iodide, or acetone or carbon tetrachloride. The final testing method was abrasion of the test surfaces. Brief analysis of experimental results on the decontaminability on the tested surface showed: 1. Metallic surfaces such as stainless steel or aluminum, or glass, or a piece of ceramic tile or acrylic are recommended as the surface materials for isotope laboratories because these are easily decontaminated by wet wiping only. 2. Formica board, asphalt tile and wood are not easily

  17. Decontamination and decommissioning technology tree and the current status of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H.J.; Kim, G.N.; Lee, K.W.; Chol, W.K.; Jung, C.H.; Kim, C.J.; Kim, S.H.; Kwon, S.O.; Chung, C.M

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point.

  18. Decontamination and decommissioning technology tree and the current status of the technologies

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, G. N.; Lee, K. W.; Chol, W. K.; Jung, C. H.; Kim, C. J.; Kim, S. H.; Kwon, S. O.; Chung, C. M.

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point

  19. MAD parsing and conversion code

    International Nuclear Information System (INIS)

    Mokhov, Dmitri N.

    2000-01-01

    The authors describe design and implementation issues while developing an embeddable MAD language parser. Two working applications of the parser are also described, namely, MAD-> C++ converter and C++ factory. The report contains some relevant details about the parser and examples of converted code. It also describes some of the problems that were encountered and the solutions found for them

  20. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD.

    Directory of Open Access Journals (Sweden)

    Henri Vähä-Ypyä

    Full Text Available Our recent study of three accelerometer brands in various ambulatory activities showed that the mean amplitude deviation (MAD of the resultant acceleration signal performed best in separating different intensity levels and provided excellent agreement between the three devices. The objective of this study was to derive a regression model that estimates oxygen consumption (VO2 from MAD values and validate the MAD-based cut-points for light, moderate and vigorous locomotion against VO2 within a wide range of speeds.29 participants performed a pace-conducted non-stop test on a 200 m long indoor track. The initial speed was 0.6 m/s and it was increased by 0.4 m/s every 2.5 minutes until volitional exhaustion. The participants could freely decide whether they preferred to walk or run. During the test they carried a hip-mounted tri-axial accelerometer and mobile metabolic analyzer. The MAD was calculated from the raw acceleration data and compared to directly measured incident VO2. Cut-point between light and moderate activity was set to 3.0 metabolic equivalent (MET, 1 MET = 3.5 ml · kg-1 · min-1 and between moderate and vigorous activity to 6.0 MET as per standard use.The MAD and VO2 showed a very strong association. Within individuals, the range of r values was from 0.927 to 0.991 providing the mean r = 0.969. The optimal MAD cut-point for 3.0 MET was 91 mg (milligravity and 414 mg for 6.0 MET.The present study showed that the MAD is a valid method in terms of the VO2 within a wide range of ambulatory activities from slow walking to fast running. Being a device-independent trait, the MAD facilitates directly comparable, accurate results on the intensity of physical activity with all accelerometers providing tri-axial raw data.

  1. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  2. Slow ventricular response atrial fibrillation related to mad honey poisoning

    OpenAIRE

    Osken, A.; Yaylacı, S.; Aydın, E.; Kocayigit, İ; Cakar, M.A.; Tamer, A.; Gündüz, H.

    2012-01-01

    Mad honey poisoning which is induced by Grayanotoxin (Andromedotoxin), is also known to have adverse effects in the cardiovascular system leading to different clinical entities. This toxin is produced by a member of the Rhododendron genus of plants of two R. Luteum and R. Panticum. In this article, we presented a case of slow ventricular response atrial fibrillation complaints with nausea, vomiting, dizziness and chest pain about an hour after eating honey produced in the Black Sea Region.

  3. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    International Nuclear Information System (INIS)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D ampersand D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D ampersand D plans for the turbine building were prepared from 1979 through 1990. D ampersand D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D ampersand D activities were completed with no radiation exposure to the workers. The D ampersand D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain

  4. Summary of sodium removal and decontamination programs in the USA

    International Nuclear Information System (INIS)

    Steele, O.P.; Brehm, W.F.

    1978-01-01

    The goals of the United States Department of Energy sodium removal and decontamination programs are: 1) to identify plant requirements and develop safe effective processes for sodium removal, both for experimental facilities and for reactor components; 2) to develop effective decontamination processes for removing deposited radioactivity; 3) to establish and put into use a set of workable criteria for requalification and return to service of components after sodium removal and decontamination; 4) to design, build and operate facilities in which to perform the sodium removal and decontamination operations. This paper gives a summary of progress toward each of these goals; details will be presented in other papers at this meeting. Three basic processes for sodium removal have been investigated extensively: the use of water vapor in an inert carrier gas, the use of an alcohol-type reagent, and evaporation. The process development work on the first two processes has been essentially completed. The evaporative process is still under development, but preliminary parameters have been established

  5. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2006-07-01

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO 2 - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and Dismantlement

  6. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO{sub 2} - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and

  7. Turned Back: Mad Men as Intermedial Melodrama

    Directory of Open Access Journals (Sweden)

    Monique Rooney

    2012-09-01

    Full Text Available This essay draws on definitions of gesture (Giorgio Agamben and Peter Brooks and catachresis (Peter Brooks, Jacques Derrida to examine the primacy of non-verbal signifiers as communicators of meaning in AMC’s Mad Men. Beginning with an analysis of Mad Men’s credit sequence, it draws attention to Mad Men’s use of gesture and catachresis in relation to melodrama’s privileging of non-verbal and naturalistic expression and its persistence as an intermedial mode that has moved back and forth between various media (theatre, novel, cinema, television and now digital formats. It argues that Mad Men’s melodramatic aesthetic is one that obliquely, and via a gestural and rhetorical ‘turned back’, communicates its relation to the past and the present.

  8. Slow ventricular response atrial fibrillation related to mad honey poisoning

    Science.gov (United States)

    Osken, A.; Yaylacı, S.; Aydın, E.; Kocayigit, İ; Cakar, M.A.; Tamer, A.; Gündüz, H.

    2012-01-01

    Mad honey poisoning which is induced by Grayanotoxin (Andromedotoxin), is also known to have adverse effects in the cardiovascular system leading to different clinical entities. This toxin is produced by a member of the Rhododendron genus of plants of two R. Luteum and R. Panticum. In this article, we presented a case of slow ventricular response atrial fibrillation complaints with nausea, vomiting, dizziness and chest pain about an hour after eating honey produced in the Black Sea Region. PMID:22923947

  9. Municipalities' opinions about decontamination in special decontamination area. Records from four and a half years after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kawasaki, Kota

    2016-01-01

    This study discusses opinions of 11 municipalities in Fukushima Prefecture designated as Special Decontamination Area as of the end of September 2015, about four and a half years afters the Fukushima Daiichi Nuclear Power Plant accident. This study shows that (1) more than half of the municipalities recognize that decontamination activities of the national government which is responsible for decontamination in Special Decontamination Area are inadequate, (2) most municipalities recognize that residents cannot live their lives with a sense of safety and security unless air radiation dose is reduced to the level before the accident or less than 0.23 μSv/h, (3) many municipalities recognize that residents will not be able to live their lives with a sense of safety and security even if the national government implements decontamination, (4) municipalities points out 'decontamination of forests or rivers and reconsideration of decontamination methods of forests or rivers', 'securement and maintenance of temporary storage site' and 'setting forth a numeric target concerning decontamination and implementation of additional decontamination after the first decontamination' as issues for the promotion of decontamination, and (5) all the municipalities recognize that that there are a lot of problems concerning the installation of interim storage facilities by the national government. (author)

  10. [Surrealism and madness].

    Science.gov (United States)

    Flora, Κ

    2017-01-01

    This article attempts an approach of madness by surrealism, as reflected in the pathway of the surrealist movement. In the light of enlargement of the concept of mental illness and the experience of madness, an approach is being attempted regarding the early surrealist views as they precursory appear e.g. from the case of Hieronymus Bosch to the meeting of the dominant psychiatry and the surrealist movement in the 19th and 20th century. Then, the paper attempts to present the main positions of representatives of the movement, such as Breton, Dali and Kalas. These three surrealists were chosen among others, for this brief report, as the representatives of three remarkable moments in the surrealistic route. Breton introduces the element of fiction and hyper-reality while he questions the distinction between normal and abnormal element. Dali with his paranoid critical method reconciles actual representations with mythical and symbolic elements, breaking through the limits between objectivity and subjectivity. Kalas puts forward the social origin of insanity along with the fundamental surrealist notions of individual freedom and will. For a more complete understanding of this attempt, it was considered useful to include elements of the main views on madness from the standpoint of a critical approach in psychiatry and psychology. The surrealistic view seems to be close to this critical approach which is likely to have been affected by it on the level in which the movements and scientific fields meet and interact. The relationship between surrealism, the notion and expression of madness and the absurd seems to be inherent to the very development of the movement through its core and individual pursuits. In conclusion, the relationship between surrealism and the notion and expression of the madness and the absurd seems to be inherent to the very birth of the movement through its main positions and pursuits. The question of so-called reality, its overshoot and the vision of

  11. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  12. Experience Practices on Decontamination Activity in NPP Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Kim, Jeongju; Sohn, Wook [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning of a nuclear power plant (NPP) involves various technical and administrative activities for a utility to terminate its license, which allows the plant site to be released from the regulatory control (site release). Decontamination activity in NPP decommissioning is one of the main technical activities to be performed during the decommissioning. The decontamination at decommissioning sites is usually performed due to several reasons such as reducing personnel dose and disposal costs, and cleanup to meet license termination requirements by using physical or chemical removal techniques proven through the previous experience practices. This paper introduces the best and worst practices for the decontamination activities collected from the decommissioning operational experiences through the implementation of nuclear decommissioning projects around the world. Review of the experiences of decontamination shows that it is important to conduct an advanced planning for optimized implementation of decontamination taking into considering site specific conditions such as operating time, reactor type, system, and so on. Also, a review of newer decontamination methods is necessary to safely and economically decommission the nuclear facility.

  13. A State of the Art Report on the Case Study of Hot Cell Decontamination and Refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    Won, H. J.; Jung, C. H.; Moon, J. K.; Park, G. I.; Song, K. C

    2008-08-15

    As the increase of the operation age of the domestic high radiation facilities such as IMEF, PIEF and DFDF, the necessity of decontamination and refurbishment of hot cells in these facilities is also increased. In the near future, the possibilities of refurbishment of hot cells in compliance with the new regulations, the reuse of hot cells for the other purposes and the decommissioning of the facilities also exist. To prepare against the decontamination and refurbishment of hot cells, the reports on the refurbishment, decommissioning and decontamination experiences of hot cells in USA, Japan, France, Belgium and Great Britain were investigated. ANL of USA performed the project on the decontamination of hot cells. The purpose of the project was to practically eliminate the radioactive emissions of Rn-220 to the environment and to restore the hot cells to an empty restricted use condition. The five hot cells were emptied and decontaminated for restricted use. Chemical processing facility in JAEA of Japan was used for the reprocessing study of spent fuels, hot cells in CPF were refurbished from 1995 for the tests of the newly developed reprocessing process. In a first stage, decommissioning and decontamination were fully performed by the remote operation Then, decommissioning and decontamination were performed manually. By the newly developed process, they reported that the radiation exposure of workers were satisfactorily reduced. In the other countries, they also make an effort for the refurbishment and decontamination of hot cells and it is inferred that they accumulate experiences in these fields.

  14. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process.

  15. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    International Nuclear Information System (INIS)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu

    2015-01-01

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process

  16. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  17. Final remediation of the provisional storage near Zavratec. Separation of waste, decontamination and radiological measurements

    International Nuclear Information System (INIS)

    Stepisnik, M.; Zeleznik, N.; Mele, I.

    2000-01-01

    This paper presents remedial activities in Zavratec during winter 1999 - 2000. The difficult and slow process of separation radioactive from non-radioactive waste is explained, and the measuring techniques and equipment for separation are presented. The measurements of storage contamination and its decontamination, involving different practical problems, are described in detail. As a result, the initial volume of the waste was reduced to 50%, in spite of the extended decontamination works. The waste has been relocated to the Brinje storage facility. Measurements inside and outside the Zavratec facility after decontamination showed that no radioactivity higher than the natural background was present. The facility was released for unrestricted use. (author)

  18. Electrochemical decontamination system for actinide processing gloveboxes

    International Nuclear Information System (INIS)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL's Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused

  19. Decontamination of the chemical crane room and decontamination and decommissioning of the extraction chemical room at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Phillips, E.C.; Golden, M.P.

    1986-01-01

    This paper describes the decontamination of the Chemical Crane Room (CCR) of the West Valley Plant and the Extraction Chemical Room (XCR) from radioactively contaminated conditions to essentially shirt sleeve environments. In both cases, subsequent use re-contaminated the rooms. Prior to decontamination, general exposure rates in the CCR were 50 to 100 mR/hr with hot spots as high as 2000 mR/hr. Smearable levels on the floor were in the range of 10 5 to 10 6 dpm per 100/cm 2 . Respiratory protection was mandatory for entry. In the Extraction Chemical Room (XCR) prior to decontamination and decommissioning (D/D), radiological surveys indicated a maximum radiation field of 5 mR/hr, due to sources internal to the room, and 20,000 dpm beta/100 cm 2 surface contamination. A radiation source external to the XCR caused a hot spot with a 9 mR/hr exposure rate inside the XCR. The CCR, located at the north end of the Chemical Process Cell (CPC) is for the storage and servicing of two bridge cranes used in the CPC. Decontamination and exposure reduction in the CCR has been completed using vacuum cleaning, damp wipe down, and surface grinding followed by shielding and painting. The decontamination and decommissioning of the Extraction Chemical Room (XCR), located on the fifth floor elevation (160') of the reprocessing plant at the WVDP, has been completed. D/D operations included removal of piping, tanks, supports, and equipment to provide a clean work area of about 3000 square feet and 17 feet high

  20. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology.

  1. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  2. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  3. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  4. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building

  5. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  6. Decontamination and decorporation: the clinical experience

    International Nuclear Information System (INIS)

    Poda, G.A.

    1979-01-01

    Decontamination and decorporation are quite interrelated when dealing with a contaminated person. Some clinical experiences from a transuranium production facility are offered. Skin decontamination is accomplished by washing with detergent and water. Stubborn cases are treated with sodium hypochlorite followed by rinsing, and emery cloth is used on more stubborn nail or finger pad contamination. If inhaled, the usual skin cleansing followed by nasal douche with normal saline decontaminates reachable areas and one of the DTPA salts given via aerosol both decontaminates and decorporates the inner recesses. Saline laxative reduces the time inhaled, and ingested particles remain in the gastro-intestinal tract. Conservatism prevails in general, but most persons found to have inhaled contamination are given a single chelation within the hour of discovery and if subsequently found to have over 10% M.P.P.B. of a soluble actinide are offered further chelation. Single dose chelation has been found to be relatively innocuous and usually sufficient. The longest case of chelation therapy spanned 2-1/4 years and encompassed 123 doses of CaNa-DTPA

  7. Financial assurance for decontamination and decommissioning: a Texas perspective

    International Nuclear Information System (INIS)

    Rao, C.D.; Etter, S.D.; Dziuk, T.W.

    1986-01-01

    The Texas Department of Health (TDH) has the regulatory responsibility to ensure that funds are available for decontamination, decommissioning, and reclamation of uranium recovery facilities in Texas. Uranium recovery licensees are required to post financial security with the Agency for that purpose. Texas uranium facilities include (1) conventional surface mining and milling plants, including tailings ponds, and (2) in situ solution mining plants, each with somewhat different cost elements for decontamination, decommissioning, reclamation, and closure. Cost estimates for decontamination, decommissioning, and reclamation, along with a facility closure plan, are initially submitted to the Agency by the licensees. These are verified and compared with detailed independent cost estimates prepared by Agency staff. Significant differences between the two estimates are examined and resolved by negotiation and/or recalculation to the satisfaction of the state. The Texas philosophy for maintaining financial security permits flexibility in the closure plan without jeopardizing or compromising the ultimate long-term objectives of closure. Review of closure plans incorporates new technological developments In contrast, financial security is established expeditiously by applying the best available cost data to necessarily conservative estimates of the work involved. Financial security cost estimates are subject to annual review and adjustment

  8. Decontamination of Stainless Steel SS 304 Type with Pressurized CO2 Solid

    International Nuclear Information System (INIS)

    Sutoto

    2007-01-01

    The abrasive decontamination of the stainless steel valve using 12 bar pressurized CO 2 solid has been done. Experiment activities was performed in the HOT CELL facility with variation of blasting time 15, 30, 45 and 60 seconds. The result of experiment shown that the operation of abrasive decontamination during 45 seconds gives the decreasing of the equipment radiation dose rate from 460 to 200 mRem/h and decontamination factor 1.35. The secondary waste from decontamination activities was treated by filtration method using HEPA filter and activated carbon filter. (author)

  9. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination. 4 refs., 6 figs

  10. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination

  11. Development of the dry decontamination technique using plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Seo, Yong Dae; Lee, Dong Uk; Jeon, Sang Hwan; Jung, Young Suk [Hanyang University, Seoul (Korea)

    2001-04-01

    In order to develop an advanced dry decontamination method, dry decontamination technique using gaseous plasma is studied. Scopes of the research are 1) literature survey and case studies of the international R and D activities and industrial application, 2) contaminant characteristics analysis, 3) feasibility and applicability study of the unit techniques, 4) process development study on the plasma decontamination, 5) plasma diagnostics and quantitative analysis by QMS and OES, and 6) design of (microwave) plasma torch system. The major research results are as belows. The maximum etching rate of UO{sub 2} is achieved to be 0.8 {mu}m/min. under 300 deg C, 150 W CF{sub 4}/O{sub 2}/N{sub 2} r.f. plasma maintaining the optimum ratio of CF{sub 4}/O{sub 2} of four, and that of Co and Mo is 0.06 {mu}m/min. and 1.9 {mu}m/min., respectively, under 380 deg C, 220 W CF{sub 4}/O{sub 2} r.f. plasma. The optimum process for the dry decontamination of TRU, CP, and or FP nuclides, therefore, requires the optimum gas composition above 350 deg C and 220W power. It is also demonstrated that this optimum process can be extrapolated to atmospheric high power torch system. In conclusion, if plasma power and temperature increases with maintaining the optimum gas composition, this dry decontamination techniques must be definitely effective and efficient. 17 refs., 62 figs., 4 tabs. (Author)

  12. Mad Cow Disease

    Indian Academy of Sciences (India)

    Mad Cow Disease, or bovine spongiform encephalopathy (BSE) is one of ... humoral immunity is developed against such infections. ... Most infecti ve agents, ranging from the more complex protozoans to bacteri(! and viruses, contain nucleic.

  13. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    International Nuclear Information System (INIS)

    Hinkle, A.W.; Jacobsen, P.H.; Lucas, D.R.

    1994-01-01

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M

  14. 40 CFR 264.114 - Disposal or decontamination of equipment, structures and soils.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Disposal or decontamination of equipment, structures and soils. 264.114 Section 264.114 Protection of Environment ENVIRONMENTAL PROTECTION... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post-Closure § 264.114 Disposal or decontamination...

  15. Y-12 Plant Decontamination and Decommissioning Program

    International Nuclear Information System (INIS)

    1992-01-01

    The Decontamination and Decommissioning (D and D) Program at the Oak Ridge Y-12 Plant is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide Y-12 the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER program. The D and D Program provides collective management of sites within the Plant which are in need of decontamination and decommissioning efforts, prioritizes those areas in terms of health, safety, and environmental concerns, and implements the appropriate level of remedial action. The D and D Program provides support to identifiable facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each facility has been prepared. This report provides this documentation for the Y-12 facilities currently included in the D and D Program, as well as those planned for future inclusion in the Program, and includes projected resource requirements for the planning period of FY 1993 through FY 2000

  16. A case of acute hepatitis following mad honey ingestion

    Directory of Open Access Journals (Sweden)

    Fatma Sari Dogan

    2015-12-01

    Full Text Available Acute hepatitis is characterized by liver inflammation and liver cell necrosis. The most frequently observed underlying cause thereof is viruses, but various other causes, such as alcohol, medication, or toxins may also lead thereto.In this paper, a case of acute hepatitis presenting with bradycardia, hypotension, and a prominent increase in liver enzymes following mad honey ingestion is discussed. Since there are only few cases of acute hepatitis following mad honey ingestion in the literature, we want to present this subject matter. Keywords: Mad honey poisoning, Mad honey intoxication, Bradycardia, Hypotension, Acute hepatitis

  17. [Decontamination of chemical and biological warfare agents].

    Science.gov (United States)

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  18. Commercial Nuclear Waste Research and Development Program. Annual report, fiscal year 1985

    International Nuclear Information System (INIS)

    1985-12-01

    Nuclear waste handling, packaging, and dry storage testing for the Department of Energy (DOE) Commercial Nuclear Waste Research and Development Program are conducted at the E-MAD (Engine Maintenance, Assembly and Disassembly) facility in Area 25 of the Nevada Test Site. Brief discussions of E-MAD activities are included in this report. Significant accomplishments for this period are as follows: (1) Integrity monitoring of the 17 fuel assemblies located at E-MAD was performed to determine if handling, packaging, or storage had affected the overall integrity of the fuel. (2) The 24-month Dry Storage Fuel Integrity Demonstration Test being conducted at the E-MAD facility was completed. Two fuel rods, removed from the assembly prior to the test, were reinserted into the fuel assembly. (3) The remaining nine fuel assemblies were removed from their seal-welded canisters and characterized to verify their integrity following storage tests. (4) The decay heat rates of five fuel assemblies were measured using the E-MAD boiling water calorimeter. The measured decay heat rates were compared to predicted rates. (5) At DOE/NV request, plans were prepared and submitted to ship the 17 E-MAD fuel assemblies to the Idaho National Engineering Laboratory and then shut down the E-MAD facility. (6) The revised safety assessment document was approved and transmitted to DOE/NV. (7) Quality Assurance personnel assisted in the completion of the DOE/NV Quality Assurance Manual and it was approved and published. (8) Technical support was provided to Lawrence Livermore National Laboratories in the decontamination of electronic equipment

  19. Development of chemical decontamination process with sulfuric acid-cerium (IV) for decommissioning

    International Nuclear Information System (INIS)

    Suwa, Takeshi; Kuribayashi, Nobuhide; Tachikawa, Enzo

    1988-01-01

    The electrolytic regeneration of Ce 4+ from Ce 3+ , which is required to achieve a high decontamination factor (DF) in this process, has been investigated. A calculating model was derived for the regenerating current required during the decontamination as a function of dissolution rate of crud, corrosion rate (R c ), current efficiency (η e ) and characteristics of decontamination loop. From the above calculation, it was found that the current was mainly governed by R c and η e . A condition to obtain a high DF at low R c and high η e has been found experimentally by use of a mixture of Ce 3+ at the ratio of Ce 4+ /Ce 3+ = 0.1 ∼ 0.2. The desired values to be η e ≥ 80 % at above 50 A/m 2 was obtained under the flow rate above 300 cm/min and Ce 3+ concentration above 10 x 10 -3 M at 60 deg C using the dual-cylindrical type cell. The current efficiency was also investigated with cells of various geometries. The present decontamination process has been proposed as a system decontamination process, which is essentially a single-step decontamination process for Cr-rich oxides. (author)

  20. TrMADS3, a new MADS-box gene, from a perennial species Taihangia rupestris (Rosaceae) is upregulated by cold and experiences seasonal fluctuation in expression level.

    Science.gov (United States)

    Du, Xiaoqiu; Xiao, Qiying; Zhao, Ran; Wu, Feng; Xu, Qijiang; Chong, Kang; Meng, Zheng

    2008-06-01

    In many temperate perennial plants, floral transition is initiated in the first growth season but the development of flower is arrested during the winter to ensure production of mature flowers in the next spring. The molecular mechanisms of the process remain poorly understood with few well-characterized regulatory genes. Here, a MADS-box gene, named as TrMADS3, was isolated from the overwintering inflorescences of Taihangia rupestris, a temperate perennial in the rose family. Phylogenetic analysis reveals that TrMADS3 is more closely related to the homologs of the FLOWERING LOCUS C lineage than to any of the other MIKC-type MADS-box lineages known from Arabidopsis. The TrMADS3 transcripts are extensively distributed in inflorescences, roots, and leaves during the winter. In controlled conditions, the TrMADS3 expression level is upregulated by a chilling exposure for 1 to 2 weeks and remains high for a longer period of time in warm conditions after cold treatment. In situ hybridization reveals that TrMADS3 is predominantly expressed in the vegetative and reproductive meristems. Ectopic expression of TrMADS3 in Arabidopsis promotes seed germination on the media containing relatively high NaCl or mannitol concentrations. These data indicate that TrMADS3 in a perennial species might have its role in both vegetative and reproductive meristems in response to cold.

  1. Thermal decontamination of transformers: A new technology

    International Nuclear Information System (INIS)

    Colak, P.Z.

    1992-01-01

    After evaluating a number of methods for decontaminating or disposing of transformers that contained polychlorinated biphenyls (PCB), it was concluded that no entirely satisfactory procedure or technology was yet available which was permanent, effective, safe, relatively simple, and based on proven technology or conventional practice. The most desirable compromise appears to be thermal decontamination. It is proposed to decontaminate transformers by controlled incineration in a specially designed, indirect-fired furnace which resembles the conventional bell-type, vertical elevator, metal heat treating type of furnace. The design differs in the incorporation of those essential features required to achieve oxidation of the organic components, to provide internal air circulation needed to ensure efficient heat and mass transfer, and other factors. The most appropriate decontamination facility would provide for implementation of the following procedures: draining of PCB-containing liquids from the transformer; limited disassembly of the transformer, which in most instances would imply only removal of the top cover to expose the insides; and controlled incineration with any vapors generated being conducted to a secondary combustion chamber. Experiments were conducted in a kiln to simulate the proposed transformer incinerator. Results show that exposure of the transformer segments to a temperature in the 950-1,000 degree C range for over 90 min is generally sufficient to reduce the PCB content to under 1 ppM. Based on the work conducted, a suitable bell furnace was constructed and added to the Swan Hills (Alberta) waste treatment facility. 2 figs., 3 tabs

  2. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong seon; Kim, Wi soo [NESS, Daejeon (Korea, Republic of); Han, Byoung sub. [Enesys Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH.

  3. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    International Nuclear Information System (INIS)

    Jeon, Jong seon; Kim, Wi soo; Han, Byoung sub.

    2016-01-01

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH

  4. Fag Men: Mad Men, Homosexuality and Televisual Style

    OpenAIRE

    Wallace, Lee

    2012-01-01

    Among the many retro-fittings achieved by Mad Men—Matthew Weinerʼs still unfurling television series set in the advertising world of the early 1960s—is the representation of the homosexual closet as a thing of the past. This essay approaches Mad Men’s account of the homophobic past in order to think about sexuality and televisual style. A landmark programme coterminous with American television transferring from analogue to digital signal, Mad Men allegorizes another moment in television histo...

  5. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  6. Development and design application of cerium (IV) decontamination process

    International Nuclear Information System (INIS)

    Bray, L.A.; Seay, J.M.

    1988-01-01

    A simple and effective method was developed for decontamination of high-level waste canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. Conceptual design of the cerium [Ce(IV)] decontamination process equipment has been completed for the West Valley Demonstration project (WVDP) vitrification facility. This remote equipment, which is the first engineering scale application of this technology, will remove surface contamination from stainless-steel (SS) containers containing high-level waste (HLW) glass prior to placing them into temporary storage and ultimate shipment to a U.S. Department of Energy (DOE) repository for disposal. The objective of the development and design study was to identify an effective chemical process and to design equipment to decontaminate the HLW glass canisters to limits that meet U.S. DOE requirements. The equipment includes canister-capping and smear stations in addition to the decontamination module and associated services

  7. Development and design application of cerium (IV) decontamination process

    International Nuclear Information System (INIS)

    Bray, L.A.; Seay, J.M.

    1988-10-01

    A simple and effective method was developed for decontamination of high-level waste canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. Conceptual design of the cerium [Ce(IV)] decontamination process equipment has been completed for the West Valley Demonstration Project (WVDP) vitrification facility. This remote equipment, which is the first engineering scale application of this technology, will remove surface contamination from stainless-steel (SS) containers containing high-level waste (HLW) glass prior to placing them into temporary storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. The objective of the development and design study was to identify an effective chemical process and to design equipment to decontaminate the HLW glass canisters to limits that meet USDOE requirements. The equipment includes canister-capping and smear stations in addition to the decontamination module and associated services. 2 refs., 1 fig

  8. Decontamination of radionuclides on construction materials

    International Nuclear Information System (INIS)

    Samuleev, P.V.; Andrews, W.S.; Creber, K.A.M.; Velicogna, D.

    2013-01-01

    A wide variety of materials can become contaminated by radionuclides, either from a terrorist attack or an industrial or nuclear accident. The final disposition of these materials depends, in large part, on the effectiveness of decontamination measures. This study reports on investigations into the decontamination of a selection of building materials. The aim has been to find an effective, easy-to-use and inexpensive decontamination system for radionuclides of cesium and cobalt, considering both the chemical and physical nature of these potential contaminants. The basic method investigated was surface washing, due to its ease and simplicity. In the present study, a basic decontamination formulation was modified by adding isotope-specific sequestering agents, to enhance the removal of cesium(I) and cobalt(II) from such construction materials as concrete, marble, aluminum and painted steel. Spiking solutions contained 134 Cs or 60 Co, which were prepared by neutron activation in the SLOWPOKE-2 nuclear reactor facility at the Royal Military College of Canada. Gamma spectroscopy was used to determine the decontamination efficiency. The results showed that the addition of sequestering agents generally improved the radiological decontamination. Although the washing of both cesium and cobalt from non-porous materials, such as aluminum and painted steel, achieved a 90-95 % removal, the decontamination of concrete and marble was more challenging, due to the porous nature of the materials. Nevertheless, the removal efficiency from 6-year-old concrete increased from 10 % to approximately 50 % for cobalt(II), and from 18 to 55 % for cesium(I), with the use of isotope binding agents, as opposed to a simple water wash. (author)

  9. Madness as disability.

    Science.gov (United States)

    Gilman, Sander L

    2014-12-01

    How does society imagine mental illness? Does this shift radically over time and with different social attitudes as well as scientific discoveries about the origins and meanings of mental illness? What happens when we begin to think about mental illness as madness, as a malleable concept constantly shifting its meaning? We thus look at the meanings associated with 'general paralysis of the insane' in the nineteenth century and autism today in regard to disability. In this case study we examine the claims by scholars such as the anthropologist Emily Martin and the psychiatrist Kay Jamison as to the relationship between mental illness, disability and creativity. Today, the health sciences have become concerned with mental illness as a form of disability. How does this change the meaning of madness for practitioners and patients? © The Author(s) 2014.

  10. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Franco, Milton B.; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G.

    2009-01-01

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO 3 , KMnO 4 , C 2 H 2 O 4 , HBF 4 ) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  11. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    International Nuclear Information System (INIS)

    Heiser, J.; Sullivan, T.

    2009-01-01

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  12. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers

  13. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  14. Municipalities' opinions about decontamination in special decontamination area. Records from three and a half years after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kawasaki, Kota

    2015-01-01

    This study discusses opinions of 11 municipalities in Fukushima Prefecture designated as Special Decontamination Area as of the end of September 2014, about three and a half years after the Fukushima Daiichi Nuclear Power Plant accident. This study shows that (1) more than half of the municipalities recognize that decontamination activities of the national government which is responsible for decontamination in Special Decontamination Area are inadequate, (2) more than half of the municipalities recognize that residents cannot live their lives with a sense of safety and security unless air radiation dose is reduced to the level before the accident or less than 0.23 μSv/h, and (3) many municipalities recognize that residents will not be able to live their lives with a sense of safety and security even if the national government implements decontamination, (4) many municipalities points out 'Inability to secure enough temporary storage sites' and 'Inappropriateness of the decontamination policy and methods for forests or reservoir' as problems for the promotion of decontamination, and (5) almost all the municipalities recognize the necessity of the installation of interim storage facilities to accelerate the reconstruction of towns. (author)

  15. Radioactive decontamination

    International Nuclear Information System (INIS)

    1983-07-01

    This Code of Practice covers: (a) the decontamination of plant items, buildings and associated equipment; (b) decontamination of protective clothing; (c) simple personal decontamination; and (d) the basic mechanisms of contamination and their influence on decontaminability. (author)

  16. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  17. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench)

  18. Demonstration recommendations for accelerated testing of concrete decontamination methods

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  19. Demonstration recommendations for accelerated testing of concrete decontamination methods

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are 137 Cs, 238 U (and its daughters), 60 Co, 90 Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 x 10 8 ft 2 or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling

  20. Decontamination and decommissioning of the Argonne National Laboratory East Area radioactively contaminated surplus facilities: Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Fassnacht, G.F.; Moe, H.J.

    1987-07-01

    ANL has decontaminated and decommissioned (D and D) seven radiologically contaminated surplus facilities at its Illinois site: a ''Hot'' Machine Shop (Building 17) and support facilities; Fan House No. 1 (Building 37), Fan House No. 2 (Building 38), the Pangborn Dust Collector (Building 41), and the Industrial Waste Treatment Plant (Building 34) for exhaust air from machining of radioactive materials. Also included were a Nuclear Materials Storage Vault (Building 16F) and a Nuclear Research Laboratory (Building 22). The D and D work involved dismantling of all process equipment and associated plumbing, ductwork, drain lines, etc. After radiation surveys, floor and wall coverings, suspended ceilings, room partitions, pipe, conduit and electrical gear were taken down as necessary. In addition, underground sewers were excavated. The grounds around each facility were also thoroughly surveyed. Contaminated materials and soil were packaged and shipped to a low-level waste burial site, while nonactive debris was buried in the ANL landfill. Clean, reusable items were saved, and clean metal scrap was sold for salvage. After the decommissioning work, each building was torn down and the site relandscaped. The project was completed in 1985, ahead of schedule, with substantial savings

  1. Proposed draft standard ANS 11.18: recommendations to facilitate decontamination and decommissioning

    International Nuclear Information System (INIS)

    Jenkins, C.E.; LaGuardia, T.S.; Jones, J.W.

    1981-01-01

    The purpose of ANS Standard 11.18 is to recommend design guides to facilitate decontamination and eventual decommissioning of a remotely operated radioactive facility. This design guide contains generic recommendations to assist in the planning, selection and arrangement of equipment and materials, and the protection of surfaces to enhance system decontamination and disassembly

  2. SRP decontamination and decommissioning scoping study

    International Nuclear Information System (INIS)

    Martin, W.P.

    1986-06-01

    Of the approximately 3000 site facilities, 496 were judged to be radioactively contaminated thereby requiring Decontamination and Decommissioning (D and D) after shutdown. To enable projection of D and D timing for each of the 496 facilities, a plant shutdown schedule was developed. A 5-year ''cool-down'' period was added to the highly contaminated facilities to allow radioactive decay resulting in a reduction of cost, waste volume, and radiation exposure. D and D of all facilities is projected to be completed in FY 2045. Since essentially all of the plant facilities are scheduled to operate past FY 2000, only seventy-four of the 496 facilities are projected to be decommissioned prior to FY 2000. These facilities include currently excessed facilities and those scheduled for shutdown in the near future - seepage basins, HWCTR, R-Reactor, high level waste tanks, etc. The type of D and D chosen is the factor having the most significant effect on D and D costs and waste volumes. The two types of final D and D are Entombment and Dismantlement. Dismantlement can increase costs and waste volumes by a factor of 2 to 100 compared to Entombment. This point should be kept in mind when reviewing this scoping study as approximately 75% of the projects are estimated based upon the less costly Entombment option. The D and D estimates for the 496 facilities are summarized by plant area in Table 3 and by custodian group (Program/General Department) in Table 4. The total estimated D and D cost in constant FY 1986 dollars is approximately $800,000,000, with total solid waste volumes of 5,000,000 and 170,000 cubic feet, for low level waste (LLW) and transuranic waste (TRU), respectively. A 6% annual escalation factor increases the total project costs of 800,000,000, FY 1986 dollars to 7 billion dollars. 27 refs

  3. Loop cleanup with redox decontamination technique

    International Nuclear Information System (INIS)

    Ren Xian Wen; Zhang Yuan

    1998-01-01

    The corrosion rate of stainless steel in nitric acid solution will be enhanced by existence of Ce 4+ . The goal of this study is to develop a circular decontamination process in medium of nitric acid, in order to use it in a loop clean up. That needs a specially designed electrolytic cell to oxidize the Ce 3+ into Ce 4+ . This regenerator's structure should be simple and easy to operate, and can meet the requirements of practical decontamination operation. The concentration of Ce 4+ in the nitric acid solution was selected to provide a suitable corrosion rate to contaminated stainless steel. The total concentration of cerium (III+IV) was also optimized to ensure that the regeneration rate of Ce 4+ could satisfy the consumption rate of Ce 4+ during decontaminating process. The operation parameters were selected strictly on the basis of our experimental results, so that the regeneration rate of Ce 4+ can be higher reasonably in proper operation conditions and not arise any problem related to safety of operation and nuclear aspects. It is considered that this decontamination process could be applied into either decommissioning or maintenance stage of nuclear facilities. The concentration of Ce 4+ and temperature are the main factors for corrosion rate, other factors should also be considered during decision of decontamination process. With the regenerator developed under contract No 7959/RB could obtain sufficient decontamination factors, when use following conditions: concentration of Ce 4+ is higher than 0.2 mol/1, the total concentration of cerium (III+IV) is higher than 0.4 mol/1, concentration of nitric acid is higher than 2 mol/1, temperature of decontamination operation is within 25 deg. C - 40 deg. C and temperature of regeneration is within 40 deg C - 50 deg.C

  4. Cleanout and decontamination of radiochemical hot cells

    International Nuclear Information System (INIS)

    Surma, J.E.; Holton, L.K. Jr.; Katayama, Y.B.; Gose, J.E.; Haun, F.E.; Dierks, R.D.

    1990-01-01

    The Pacific Northwest Laboratory is developing and employing advanced remote and contact technologies in cleaning out and decontaminating six radiochemical hot cells at Hanford under the Department of Energy's Surplus Facilities Management Program. The program is using a series of remote and contact decontamination techniques to reduce costs and to significantly lower radiation doses to workers. Refurbishment of the cover blocks above the air lock trench reduced radiation exposure in the air lock and cleanout and decontamination of an analytical cell achieved a reduction in radioactive contamination. Nuclear Regulatory Commission-approved Type B burial boxes are also being used to reduce waste disposal costs and radiation doses. PNL is currently decommissioning its pilot-scale radioactive liquid-fed ceramic melter. Special tools have been developed and are being used to accomplish the world's first such effort. 4 refs., 5 figs

  5. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  6. Decontamination of transport casks and of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    The present document provides an analysis of the technical papers presented at the meeting as well as a summary of the panel discussion. Conclusions and Recommendations: The meeting agreed that the primary source of contamination of transport casks is the production of radioactive isotopes in nuclear fuel and activation products of fuel components in nuclear reactors. The type, amount of mechanism for the release of these isotopes depend on the reactor type and fuel handling process. The widespread use of pools for the storage and handling of fuel provides an easy path for the transfer of contamination. Control of pool water conditions is essential for limiting the spread of contamination. For plants where casks are immersed in pools for loading, the immersion times should be minimised. Casks should be designed for ease of decontamination. The meeting discussed the use of stainless steel and suitable paints for coating casks. Designers should consider the appropriate coating for specific applications. The use of pressurized water for decontamination is recommended whenever possible. A number of commercially available reagents exist for decontaminating cask external surfaces. More work, however, is needed to cope with Pressurized Water Reactor crud within casks. Leaking fuel should be identified and isolated before storage in pools. Basic studies of the uptake and release of contamination from cask surfaces should be initiated. Standardization of methods of contamination measurement and instrumentation should be instituted. Refs, figs and tabs

  7. A Study on Decontamination Process Using Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Jeon, Sang Hwan; Jin, Dong Sik; Park, Dong Min

    2010-05-01

    Radioactive decontamination process using atmospheric pressure plasma which can be operated parallel with low vacuum cold plasma processing is studied. Two types of cold plasma torches were designed and manufactured. One of them is the cylindrical type applicable to the treatment of three-dimensional surfaces. The other is the rectangular type for the treatment of flat and large surface areas. Ar palsam was unstable but using He as a carrier gas, discharge condition was improved. Besides filtering module using pre, medium, charcoal, and HEPA filter was designed and manufactured. More intensive study for developing filtering system will be followed. Atmospheric pressure plasma decontamination process can be used to the equipment and facility wall decontamination

  8. Integrated five station nondestructive assay system for the support of decontamination and decommissioning of a former plutonium mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Bieri, J.M.; Hastings, R.D.; Horton, W.S.; Kuckertz, T.H.; Kunz, W.E.; Plettenberg, K.; Smith, L.D.

    1990-01-01

    The goal of a safe, efficient and economic decontamination and decommissioning of plutonium facilities can be greatly enhanced through the intelligent use of an integrated system of nondestructive assay equipment. We have designed and fabricated such a system utilizing five separate NDA stations integrated through a single data acquisition and management personal computer-based controller. The initial station utilizes a passive neutron measurement to determine item Pu inventory to the 0.1 gm level prior to insertion into the decontamination cell. A large active neutron station integrated into the cell is used to measure decontamination effectiveness at the 10 nci/gm level. Cell Pu buildup at critical points is monitored with passive neutron detectors. An active neutron station having better than 1 mg Pu assay sensitivity is used to quantify final compacted waste pucks outside the cell. Bulk Pu in various forms and isotopic enrichments is quantified in a combined passive neutron coincidence and high resolution gamma ray spectrometer station outside the cell. Item control and Pu inventory are managed with bar code labeling and a station integrating algorithm. Overall economy is achieved by multiple station use of the same expensive hardware such as the neutron generator

  9. Full system decontamination (FSD) at NPP Stade prior to dismantling activities

    International Nuclear Information System (INIS)

    Christoph Stiepani; Karl Seidelmann

    2006-01-01

    Full text of publication follows: Introduction: Minimization of personnel dose rates and generation of material free for release is of the highest priority and requires Full System Decontamination (FSD) as a first and important measure when decommissioning Nuclear Power Plants. Framatome ANP has many years experience with Full System Decontaminations for operating nuclear power plants in general and for decommissioning in particular. The latest decommissioning project was the FSD at the PWR Stade which was permanently shut down in November 2003 after 31 years of operation. FSD was scheduled within a short period after shutdown and prior to decommissioning activities. Full System Decontamination at Stade: The PWR Stade is a 4 loop design. FSD included the entire primary circuit with RPV and the auxiliary systems (RHR, VCS and RWCU). The decontamination circuit had a total volume of ∼310 m 3 and an overall surface of ∼17000 m 2 . The Framatome ANP decontamination process HP/CORD R UV was selected for application. The decontamination was performed by using NPP systems in combination with the Framatome mobile decontamination equipment AMDA R (Automated Mobile Decontamination Appliance). A total of 4 decontamination cycles were performed and excellent results were obtained. The average decontamination factor (DF) was 160 for the steam generators with an outstanding ambient dose reduction factor (DRF) of 75. Conclusions: FSD at the PWR Stade has shown that the HP/CORD UV process yields excellent results in primary and auxiliary systems. The significant ambient dose reduction factor of 75 is remarkable. This very high DRF, no other decontamination application came even close, will result in excellent cost-benefit ratios for additional decommissioning activities at Stade. The applied HP/CORD UV process is not a specific decontamination process for decommissioning. Therefore the obtained decontamination and dose reduction factors demonstrate the advantage/potential for

  10. Decontamination and decommissioning focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities

  11. W-12 valve pit decontamination demonstration

    International Nuclear Information System (INIS)

    Benson, C.E.; Parfitt, J.E.; Patton, B.D.

    1995-12-01

    Waste tank W-12 is a tank in the ORNL Low-Level Liquid Waste (LLLW) system that collected waste from Building 3525. Because of a leaking flange in the discharge line from W-12 to the evaporator service tank (W-22) and continual inleakage into the tank from an unknown source, W-12 was removed from service to comply with the Federal Facilities Agreement requirement. The initial response was to decontaminate the valve pit between tank W-12 and the evaporator service tank (W-22) to determine if personnel could enter the pit to attempt repair of the leaking flange. Preventing the spread of radioactive contamination from the pit to the environment and to other waste systems was of concern during the decontamination. The drain in the pit goes to the process waste system; therefore, if high-level liquid waste were generated during decontamination activities, it would have to be removed from the pit by means other than the available liquid waste connection. Remote decontamination of W-12 was conducted using the General Mills manipulator bridge and telescoping trolley and REMOTEC RM-10 manipulator. The initial objective of repairing the leaking flange was not conducted because of the repair uncertainty and the unknown tank inleakage. Rather, new piping was installed to empty the W-12 tank that would bypass the valve pit and eliminate the need to repair the flange. The radiological surveys indicated that a substantial decontamination factor was achieved

  12. MADS box genes expressed in developing inflorescences of rice and sorghum

    NARCIS (Netherlands)

    Greco, R.; Stagi, L.; Colombo, L.; Angenent, G.C.; Sari-Gorla, M.; Pé, M.E.

    1997-01-01

    With the aim of elucidating the complex genetic system controlling flower morphogenesis in cereals, we have characterized two rice and two sorghum MADS box genes isolated from cDNA libraries made from developing inflorescences. The rice clones OsMADS24 and OsMADS45, which share high homology with

  13. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  14. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  15. Decontamination of the product handling area at the West Valley Demonstration Project: Final topical report for period July 1985 to February 1986

    International Nuclear Information System (INIS)

    Phillips, E.C.

    1986-06-01

    The purpose of this report is to describe the decontamination and decommissioning (D and D) preparations of an existing facility at the West Valley Demonstration Project (WVDP), the Product Handling Area (PHA), to be part of a Liquid Waste Treatment System (LWTS) in conjunction with the Cement Solidification System (CSS). Two interconnected facilities, the Uranium Product Cell (UPC) and the Uranium Loadout Area (ULO), form the PHA. Both of these facilities contain large tanks. Both of the tanks in the UPC are suitable for use as components of the LWTS. In addition, the UPC is the only existing means of access to the bottom of the Product Purification Cell (PPC) in which some of the equipment for the LWTS will be installed. Consequently, this report describes the decontamination of the PHA from a radioactively contaminated environment to one which may be entered in street clothes. Of the two facilities of the PHA, the UPC was the more highly contaminated prior to decontamination. Decontamination of the UPC has been completed leaving most of the surfaces in the facility smearably clean. Decontamination of the UPC consisted of washing all surfaces, draining the floor sump, removing unneeded piping, installing a back flow filter system, painting all surfaces, installing rubber matting on the floor and placing new stainless steel covering on the UPC ledge. Decontamination operations in the ULO have been completed and were similar to those in the UPC consisting of decontaminating by hand wipedown, removing contamination fixed in paint, and applying new paint. In addition, two pumps and a concrete pump niche were removed. Prior to decontamination, surface contamination was present in the ULO. After decontamination, most of the surfaces in the ULO were clean of smearable contamination. D and D Operations were initiated in the PHA in July 1985 and completed in February 1986. 13 figs., 9 tabs

  16. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    International Nuclear Information System (INIS)

    Traynor, J. L.

    2001-01-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure

  17. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Traynor

    2001-03-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure.

  18. The removal of Cs-137 from soil using washing-electrokinetic decontamination equipment

    International Nuclear Information System (INIS)

    Kim, Gyenam; Kim, Seungsoo; Kim, Geunho; Park, Hyemin; Kim, Wansuk; Park, Ukryang; Kwon, Hyeokju; Ryu, Ohha; Moon, Jeikwon

    2012-01-01

    The radioactive soil at the KAERI radioactive waste storage facility has slightly high hydro-conductivity, and was mainly contaminated with 137 Cs 30-35 years ago. Recently, a soil washing method has been applied to remove 137 Cs from radioactive soil, but it appears that the removal efficiency of 137 Cs had low and a lot of waste solution was generated. Meanwhile, an electrokinetic decontamination method provides high removal efficiency of 137 Cs and generates little waste effluent. Thus, it is suggested that an electrokinetic decontamination method is a suitable technology in consideration of the soil characteristics near South Korean nuclear facilities

  19. Comparative scrub solution tests for decontamination of transuranic radionuclides from soils

    International Nuclear Information System (INIS)

    Stevens, J.R.; Kochen, R.L.; Rutherford, D.W.; Riordan, G.A.; Delaney, I.C.

    1982-08-01

    Soil decontamination tests were done using three scrubbing solutions on five different transuranic-contaminated soils from Department of Energy sites. The soils came from Rocky Flats, Colorado; Hanford, Washington; Mound Facility, Ohio; Idaho National Engineering Laboratory, Idaho; and Los Alamos National Laboratory, New Mexico. Decontamination was effected by physical and chemical means. A pH 12.5 scrub effected decontamination by serving as a hydraulic grading and attrition scrub medium; this solution did not solubilize the actinide contamination. A 2% HNO 3 , 0.2% HF, 2% pine oil, and 5% Calgon solution effected decontamination by physical and chemical means; this solution solubilized particulate actinide and actinide dispersed on the surface of soil particles. A 2N HCl scrub was also used to effect decontamination by physical and chemical means; this reagent solubilized soil constituents, removing contamination that had migrated into mineral surfaces. Only Rocky Flats soil was effectively decontaminated by the high pH solution although all soils had an enrichment of the activity in the -150 mesh fraction. Attrition scrubbing with both acid solutions had a better decontamination ability for the +150 mesh fraction for Hanford, INEL, and LANL soils. In addition, the acid solutions solubilized some of the plutonium and had a decontamination effect on the fine fractions

  20. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan

    International Nuclear Information System (INIS)

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53–5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55–2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. - Highlights: • Evaluation of cost and effectiveness of decontaminating Fukushima Prefecture. • Reductions in external exposure under various decontamination scenarios were similar. • Decontamination costs for the basic scenario were estimated at JPY2.53–5.12 trillion.

  1. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    International Nuclear Information System (INIS)

    Ferguson, R.L.

    1993-10-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide

  2. The sequential decontamination of an abandoned uranium fabrication facility

    International Nuclear Information System (INIS)

    Land, R.R.; Allen, R.M.

    1992-01-01

    In 1984, Congress authorized the Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including a property in Colonie, New York, that was formerly owned by National Lead Industries (NLI) and is now referred to as the Colonie Interim Storage Site (CISS). The site covers 4,5 ha (11.2 acres) and includes the plant building [1,023 m 2 (11,000 ft 2 )] and two smaller storage buildings. As a result of NLI operations, the plant buildings, grounds, and vicinity properties became contaminated. The contaminants can be divided into four categories: asbestos, hazardous wastes, low-level radioactive waste (LLRW), and mixed LLRW. The decontamination of the site will be implemented in seven sequential phases and will be carried out under various authorities and with differing categories of response activity. The governing authorities for CISS include the National Environmental Policy Act (NEPA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and the Resource Conservation and Recovery Act (RCRA). This paper discusses the relationship between each phase of the proposed restoration activity and the collective requirements of NEPA, CERCLA, and RCRA. (author)

  3. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.

    Science.gov (United States)

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica).

    Science.gov (United States)

    Zhang, Lin; Xu, Yong; Ma, Rongcai

    2008-06-01

    MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADS10, were cloned using degenerate primers and 5'- and 3'-RACE based on the sequence database of P. persica and P. dulcis. The full length of PpMADS1 cDNA is 1,071 bp containing an open reading frame (ORF) of 717 bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADS10 cDNA is 937 bp containing an ORF of 633 bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADS10 were highly homologous to genes AP1 and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADS10 is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern of AP1; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADS1 was assigned onto the Bin1:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADS10 onto the Bin1:73 on the same linkage group between the markers Lap-1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.

  5. Training of skin decontamination and its results

    International Nuclear Information System (INIS)

    Yasunaka, Hideo; Wadachi, Yoshiki.

    1976-01-01

    In the nuclear power and radioisotope handling facilities, one of the most important problems is a radioactive contamination on skin. Hand skin contamination occurs very often in the operation area and such surface contamination must be removed as soon as possible to prevent an internal contamination. From 1967 to 1975, training courses for skin decontamination had been held with total 536 of trainee based on the radiation protection manual at the Oarai Research Establishment of JAERI. In the training courses, fresh pig skin samples used instead of human skin were contaminated with 137 Cs, 131 I, 85 Sr, 60 Co, 144 Ce, 88 Y, 239 Pu, fission products and activated metal corrosion particles, respectively. These samples were washed practically by each trainee with the skin decontamination method recommended in the manual. Results obtained in the training showed that such training itself is a significant work and this skin decontamination method is an excellent first aid. (auth.)

  6. Reactor component chemical decontamination-developments in waste handling and disposal

    International Nuclear Information System (INIS)

    Papesch, R.; Atwood, K.L.

    1989-01-01

    Because of restrictive limits on man-rem exposure in European nuclear plants, a company has developed and applied a number of chemical decontamination techniques for components that must be periodically maintained. These techniques are particularly effective for components that can be placed in a decontamination bath for dose reduction prior to performing maintenance. The cleaning technique has the ability to achieve decontamination factors of at least 20 and in some cases much greater. For components with before cleaning dose rates of between 1 to as high as 80 R/hr, significant man-rem reductions are achieved when hundreds of manhours may be required to complete required component maintenance. Transferring this solvent technology to the U.S. required a program to develop solidification formulas to allow the solvent wastes to be disposed of in accordance with regulations and in a cost effective manner. This paper demonstrates in chemical decontaminations with small liquid volume systems that concentrated decontamination solvents can be employed to achieve high decontamination factors

  7. [Travelers, mad, wandering].

    Science.gov (United States)

    Vaschetto, Emilio

    2014-01-01

    This article explores the notion of "wandering" through the use of some phenomena enrolled at the dawn of modernity such as the Rousseau dromomanie's philosopher and writer, the origin of the first mad traveler (Albert Dadas), epidemics of mad travelers Europe and romantic tourism (with renewed acquires significance in the "beat generation" of the twentieth century). These historical facts are "mounting" as play contemporary manifestations such as loss, disorientation, to lose one's way, and wandering without reducing them only to clinical psychosis. Readings of classic psychiatrists such as Régis, Foville, Sérieux and Capgras, Tissié, go hand in hand with the current readings of the philosopher Ian Hacking and critics of pop culture as S. Reynolds and D. Diederichsen, illustrating how the travel's phenomenon can make different subjective configurations depending on historical times. In conclusion it is noted that not only psychosis exposes the wandering soul of suffering but there are also subject positions (as will be exemplified in a clinical case) and go no further nesting wandering into human existence.

  8. Automated MAD and MIR structure solution

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    A fully automated procedure for solving MIR and MAD structures has been developed using a scoring scheme to convert the structure-solution process into an optimization problem. Obtaining an electron-density map from X-ray diffraction data can be difficult and time-consuming even after the data have been collected, largely because MIR and MAD structure determinations currently require many subjective evaluations of the qualities of trial heavy-atom partial structures before a correct heavy-atom solution is obtained. A set of criteria for evaluating the quality of heavy-atom partial solutions in macromolecular crystallography have been developed. These have allowed the conversion of the crystal structure-solution process into an optimization problem and have allowed its automation. The SOLVE software has been used to solve MAD data sets with as many as 52 selenium sites in the asymmetric unit. The automated structure-solution process developed is a major step towards the fully automated structure-determination, model-building and refinement procedure which is needed for genomic scale structure determinations

  9. Chemical decontamination method

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1996-01-01

    Metal wastes contaminated by radioactive materials are contained in a rotational decontamination vessel, and the metal wastes are rotated therein while being in contact with a slight amount of a decontamination liquid comprising a mineral acid. As the mineral acid, a mixed acid of nitric acid, hydrochloric acid and fluoric acid is preferably used. Alternatively, chemical decontamination can also be conducted by charging an acid resistant stirring medium in the rotational decontamination vessel. The surface of the metal wastes is uniformly covered by the slight amount of decontamination liquid to dissolve the surface layer. In addition, heat of dissolution generated in this case is accumulated in the inside of the rotational decontamination vessel, the temperature is elevated with no particular heating, thereby enabling to obtain an excellent decontamination effect substantially at the same level as in the case of heating the liquid to 70degC in a conventional immersion decontamination method. Further, although contact areas between the metal wastes and the immersion vessel are difficult to be decontaminated in the immersion decontamination method, all of areas can be dissolved uniformly in the present invention. (T.M.)

  10. Chemical Decontamination of Metallic Waste from Uranium Conversion Plant Dismantling

    International Nuclear Information System (INIS)

    Hwang, D. S.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Byun, J. I.; Jang, N. S.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of the uranium conversion plant. Pre-work was carried as follows; installation of the access control facility, installation of a changing room and shower room, designation of an emergency exit way and indicating signs, installation of a radiation management facility, preparation of a storage area for tools and equipments, inspection and load test of crane, distribution and packaging of existing waste, and pre-decontamination of the equipment surface and the interior. First, decommissioning work was performed in kiln room, which will be used for temporary radioactive waste storage room. Kiln room housed hydro fluorination rotary kiln for production of uranium tetra-fluoride. The kiln is about 0.8 m in diameter and 5.5 m long. The total dismantled waste was 6,690 kg, 73 % of which was metallic waste and 27 % the others such as cable, asbestos, concrete, secondary waste, etc. And effluent treatment room and filtration room were dismantled for installation of decontamination equipment and lagoon sludge treatment equipment. There were tanks and square mixer in these rooms. The total dismantled waste was 17,250 kg, 67% of which was metallic waste and 33% the others. These dismantled metallic wastes consist of stainless and carbon steel. In this paper, the stainless steel plate and pipe were decontaminated by the chemical decontamination with ultrasonic

  11. Mapping bipolar worlds: lived geographies of 'madness' in autobiographical accounts.

    Science.gov (United States)

    Chouinard, Vera

    2012-03-01

    This article aims to advance our understanding of women's and men's experiences of negotiating bipolar 'madness' in society and space. It addresses gaps in the clinical literature on life with bipolar and geographic accounts of 'madness' and psycho-emotional distress by considering altered ways of being in place that bipolar 'madness' entails and how narrative sense is made of these. Conceptually, I build on Cosgrove's (2000) approach to psycho-emotional distress and geographic insights about being 'mad' in place. Methodologically and empirically, I draw on thematic narrative analysis of autobiographies of living with bipolar. Key findings include altered paradoxically (dis)embodied ways of being-in-place, 'fractured' or 'whole' senses of self and ways of relating to people/places, 'straddling' 'real' and 'delusional' worlds and bipolar ways of negotiating places are not straightforwardly 'irrational'. While narrative accounts most often invoke dominant discourses about bipolar, sometimes these are challenged through 'rescripting' and 'revaluing mad' identities and ways of being in place. In conclusion, key findings and avenues for future geographical research are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Training requirements for health physicists in the decontamination/decommissioning field

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Parzyck, D.C.

    1986-01-01

    While a significant decrease in the number of new facilities requiring health physics surveillance has occurred in the past decade, there has been a tremendous increase in the need for health physicists to fill regulatory requirements at existing facilities and the Decontamination and Decommissioning requirements of older facilities nearing the end of their operational lifetime. There is a continuing long-term need to provide trained health physicists with the special skills to meet these requirements. Decontamination and decommissioning programs require both basic and specialized health physics activities to be performed (1) to evaluate the radiation environment of the facility under consideration, (2) to establish the standards to which cleanup activities must be pursued, and (3) to adequately protect the personnel involved in the cleanup. Performance-based training, based on job task analysis, is an appropriate way to define the different types of health physics expertise required for D and D programs. Materials have been developed to describe potential job requirements in the radiation protection field, and the appropriate training goals to meet these requirements. 14 refs., 3 tabs

  13. Training requirements for health physicists in the decontamination/decommissioning field

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Parzyck, D.C.

    1986-01-01

    While a significant decrease in the number of new facilities requiring health physics surveillance has occurred in the past decade, there has been a tremendous increase in the need for health physicists to fill regulatory requirements at existing facilities and the Decontamination and Decommissioning requirements of older facilities nearing the end of their operational lifetime. There is a continuing long-term need to provide trained health physicists with the special skills to meet these requirements. Decontamination and decommissioning programs require both basic and specialized health physics activities to be performed (1) to evaluate the radiation environment of the facility under consideration, (2) to establish the standards to which cleanup activities must be pursued, and (3) to adequately protect the personnel involved in the cleanup. Performance-based training, based on job task analysis, is an appropriate way to define the different types of health physics expertise required for D and D programs. Materials have been developed to describe potential job requirements in the radiation protection field, and the appropriate training goals to meet these requirements

  14. Cadmium decontamination using in-house resin

    International Nuclear Information System (INIS)

    Pal, Sangita; Thalor, K.L; Prabhakar, S.; Srivastava, V.K.; Goswami, J.L.; Tewari, P.K.; Dhanpal, Pranav; Goswami, J.L.

    2010-01-01

    A selective and strong in-house chelator has been studied w.r.t. basic parameters like concentration, time, and elution. De-contamination of cadmium, mercury, chromium, lead etc by using high uptake values fro cadmium ions proves its selectivity with high elution ratio ensures further decontamination of run-off water during natural calamities. In three step cascade use the concentration of original cadmium solution (500 ppm) decocted to safe disposable attribute. This polymeric ligand exchanger displayed outlet effluent concentration to 1 ppm and less than 200 ppb when treated for inlet feed concentration of 50 ppm and 500 ppm respectively. (author)

  15. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D and D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies

  16. Full system decontamination. AREVAs experience in decontamination prior to decommissioning

    International Nuclear Information System (INIS)

    Topf, Christian

    2010-01-01

    Minimizing collective radiation exposure and producing free-release material are two of the highest priorities in the decommissioning of a Nuclear Power Plant (NPP). Full System Decontamination (FSD) is the most effective measure to reduce source term and remove oxide layer contamination within the plant systems. FSD is typically a decontamination of the primary coolant circuit and the auxiliary systems. In recent years AREVA NP has performed several FSDs in PWRs and BWRs prior to decommissioning by applying the proprietary CORD copyright family and AMDA copyright technology. Chemical Oxidation Reduction Decontamination or CORD represents the chemical decontamination process while AMDA stands for Automated Mobile Decontamination Appliance, AREVA NPs decontamination equipment. Described herein are the excellent results achieved for the FSDs applied at the German PWRs Stade in 2004 and Obrigheim in 2007 and for the FSDs performed at the Swedish BWRs, Barsebaeck Unit 1 in 2007 and Barsebaeck Unit 2 in 2008. All four FSDs were performed using the AREVA NP CORD family decontamination technology in combination with the AREVA NP decontamination equipment, AMDA. (orig.)

  17. [Madness in the German cinema (1913-1933].

    Science.gov (United States)

    Aulas, J J

    1980-01-01

    During these twenty years, from 1913 to 1933, of the history of the German cinema, the cinematographic representation of madness varies according to the fluctuations of the social and economical background. The political and ideological chaos of the immediate post-war years was symbolized in the allegorical imagery of unreason in the expressionist cinema. The same equivalence, the same symbolization can be found in the cinema of the thirties when the crash of Wall-Street foretells a crisis like the former. On the contrary in the course of the so-called "relative stabilization" (1924-1929) the meaning of the representation of madness is totally different from the representation of the previous period. At this period of economical restoration, madness which could henceforth be cured on the psychoanalyst's couch (acc. G. W. Pabst's film: "Geheimnisse einer Seele") became the symbol of the absolute power rediscovered by Germany.

  18. Design, construction and monitoring of temporary storage facilities for removed contaminants

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Funaki, Hironori; Kurikami, Hiroshi; Sakamoto, Yoshiaki; Tokizawa, Takayuki

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011, decontamination work has been conducted in the surrounding environment within the Fukushima prefecture. Removed contaminants including soil, grass and trees are to be stored safely at temporary storage facilities for up to three years, after which they will be transferred to a planned interim storage facility. The decontamination pilot project was carried out in both the restricted and planned evacuation areas in order to assess decontamination methods and demonstrate measures for radiation protection of workers. Fourteen temporary storage facilities of different technical specifications were designed and constructed under various topographic conditions and land use. In order to support the design, construction and monitoring of temporary storage facilities for removed contaminants during the full-scale decontamination within the prefecture of Fukushima, technical know-how obtained during the decontamination pilot project has been identified and summarized in this paper. (author)

  19. The removal of Cs-137 from soil using washing-electrokinetic decontamination equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyenam; Kim, Seungsoo; Kim, Geunho; Park, Hyemin; Kim, Wansuk; Park, Ukryang; Kwon, Hyeokju; Ryu, Ohha; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The radioactive soil at the KAERI radioactive waste storage facility has slightly high hydro-conductivity, and was mainly contaminated with {sup 137}Cs 30-35 years ago. Recently, a soil washing method has been applied to remove {sup 137}Cs from radioactive soil, but it appears that the removal efficiency of {sup 137}Cs had low and a lot of waste solution was generated. Meanwhile, an electrokinetic decontamination method provides high removal efficiency of {sup 137}Cs and generates little waste effluent. Thus, it is suggested that an electrokinetic decontamination method is a suitable technology in consideration of the soil characteristics near South Korean nuclear facilities.

  20. Mad og måltider bidrager til dannelse og læring

    DEFF Research Database (Denmark)

    Jacobsen, Mikkel

    2017-01-01

    Vi lever i en kultur der på mange måder knytter vores identitet til mad, fx i forhold til hvad vi poster på sociale medier, om vi køber økologi, stenaldermad, er tykke eller tynde, om vi går op i dyrevelfærd, miljø, osv. Elementer der er med til at skabe vores identitet gennem de valg vi træffer...

  1. Skin decontamination

    International Nuclear Information System (INIS)

    Moehrle, G.

    1975-01-01

    A general survey of skin decontamination is given. The success of every decontamination treatments depends mainly on the speed, but also on the care, with which the action is taken. The best way to remove the skin contaminants is thorough washing under lukewarm running water with mild soap and a soft brush. This washing is to be repeated several times for a period of several minutes. If results are not satisfactory, light duty detergents and wetting agents available commercially may also be used. Some solutions which have proved useful are mentioned. The decontamination solutions are best used in the order given. When one has no satisfactory decontamination effect, the next one is to be used. If necessary, these agents must be used several times in the stated order as long as this does not involve too much strain for the skin. All the decontamination measures mentioned refer, of course, to intact healthy skin. After decontamination has been completed, the skin should be treated with a protective cream

  2. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency

  3. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M.

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described

  4. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described.

  5. New Waste Calcining Facility (NWCF) Waste Streams

    International Nuclear Information System (INIS)

    K. E. Archibald

    1999-01-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF

  6. Decontamination

    International Nuclear Information System (INIS)

    Montford, B.

    1975-01-01

    Development of special techniques has permitted the use of mild decontamination processes for the CANDU type reactor primary coolant circuit, overcoming many of the problems associated with conventional decontamination processes, which use strong, acidic reagents. (Author)

  7. ALARA review for the decontamination and decommissioning of the 233-S P.R. can loadout and decontamination

    International Nuclear Information System (INIS)

    Kornish, J.M.

    1998-01-01

    The 233-S Facility was completed in 1955 to expand plutonium production by further concentrating the plutonium nitrate product solution from the Reduction Oxidation (REDOX) Plant. The facility is radiologically contaminated because of operations and accidents. The building is presently a Hazard Category 2 Nuclear Facility. Disassembly of the loadout hood and its associated equipment may be done in parallel with the isolation of 233-S from REDOX via the pipe trench equipment removal. The work scope is to remove the entire loadout hood from the Product Receiver (P.R.) Can Loadout and Decon Room inside the 233-S Facility. A formal as low as reasonably achievable (ALARA) review is required by BHI-SH-02, Vol. 1, Procedure 1.22, Planning Radiological Work, when radiological conditions exceed trigger levels. The level of contamination inside the loadout hood and its associated equipment is unknown. The potential exists to exceed the level of loose surface contamination, which requires a formal ALARA review when opening the loadout hood and disassembly commences. This ALARA review is for the task instruction 1997-03-18-010 Revision 0, 233-S Loadout Hood Decon and Dismantlement

  8. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    Science.gov (United States)

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  9. Development of melting facilities and techniques for decontamination and recycling of radioactively contaminated material

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1998-01-01

    One decade after the accident at unit 4 of the Chernobyl nuclear power station a melting plant for radioactively contaminated metallic materials, the so-called SURF facility is being planned and licensed for erection in the direct neighbourhood of the NPP area. Main goal is the recycling of the material, largely decontaminated by the melting process, by means of manufacturing of casks and containers for waste disposal and of shielding equipment. The melting plant will be placed as part of the Ukrainian waste handling centre (CPPRO). The technology is based on the long-term experience gained at Siempelkamp's CARLA plant in Krefeld. In 1995-1997 the licensing conditions were defined, the licensing documents prepared and the formal procedure initiated. For completion of the recycling technique and to broaden the application fields for the re-usable material a granules production method has been developed and formally qualified. The essential is the substitution of the hematite portion in concrete structures providing an alternative sink for recycling material. (author)

  10. Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-21

    The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  11. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  12. Conference on decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Meservey, R.H.

    1979-01-01

    A brief history of Decontamination and Decommissioning (D and D) experience at the Idaho National Engineering Laboratory is presented as an introduction to the status of current projects. Details are then presented as an introduction to the status of current projects. Details are then presented on a project to remove sodium from some major components of the Hallam reactor and on the Organic Moderated Reactor Experiment (OMRE) decommissioning project. Cost, schedule, waste volume, and other technical data from these projects are presented. In addition, a brief summary of the future INEL D and D program is presented

  13. Restoration projects for decontamination of facilities from chemical, biological and radiological contamination after terrorist actions

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Lumley, T.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Payette, P.; Laframboise, D.; Best, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Krishnan, J.; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Winnipeg, MB (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada); Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada)

    2006-07-01

    This paper reviewed studies that identified better decontamination methods for chemical, biological and radiological/nuclear (CBRN) attacks. In particular, it reviewed aspects of 3 projects in which procedures were tested and validated for site restoration. Cleanup targets or standards for decontaminating buildings and materials after a CBRN attack were also developed. The projects were based on physicochemical and toxicological knowledge of potential terrorist agents and selected surface matrices. The projects also involved modeling and assessing environmental and health risks. The first multi-agent project involved gathering information on known procedures for restoration of areas including interiors and exteriors of buildings, contents, parking lots, lawn, and vehicles. Air inside the building was included. The efficacy of some of the proposed concepts was tested. Results included the determination of appropriate surrogates for anthrax and tests of liquid and gaseous biocides on the surrogates. The development of new contamination procedures using peroxyacetic acid were also discussed. The second project involved decontamination tests on CBRN using specially-constructed buildings at the Counter-terrorism Technology Centre at Defence Research and Development Canada in Suffield. The buildings will be contaminated with chemical and biological agents and with short-lived radionuclides. They will be decontaminated using the best-performing technologies known. Information collected will include fate of the contaminant and decontamination products, effectiveness of the restoration methods, cost and duration of cleanup and logistical problems. The third project is aimed at developing cleanup standards for decontaminating buildings and construction materials after a chemical or biological attack. It will create as many as 12 algorithms for the development of 50 standards which will help cleanup personnel and first-responders to gauge whether proposed methods can achieve

  14. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    International Nuclear Information System (INIS)

    Zhuang Xuliang; Han Zhen; Bai Zhihui; Zhuang Guoqiang; Shim Hojae

    2010-01-01

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  15. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Xuliang, E-mail: xlzhuang@rcees.ac.c [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Bureau of Science and Technology for Resources and Environment, Chinese Academy of Sciences, Beijing 100864 (China); Han Zhen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Bai Zhihui; Zhuang Guoqiang [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Shim Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau (China)

    2010-05-15

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  16. Exit Planning at Anette's Mad APS

    DEFF Research Database (Denmark)

    Nellemann, Camilla

    2017-01-01

    This is a Danish version. The 60-year old Anette Hansen established her catering firm Anette's Mad in 2012. She wants to sell her company within 7 years but so far hasn't thought a lot about ownership transfer. Anette's Mad employs 5 people and has a yearly turnover of about DKK200,000. The company...... benefits from Anette's strong, local network. At this point, Anette has invested DKK1.5 million in her business which she hopes to get back once she sells the company. The question is how Anette can prepare her business for sale so that it may sell at the price that she aims at....

  17. Evaluation of separation distance from the temporary storage facility for decontamination waste to ensure public radiological safety after Fukushima nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jung; Go, A Ra; Kim, Kwang Pyo [Kyung Hee University, Yongin (Korea, Republic of)

    2016-09-15

    The object of this study was to evaluate the separation distance from a temporary storage facility satisfying the dose criteria. The calculation of ambient dose rates took into account cover soil thickness, facility size, and facility type by using MCNPX code. Shielding effects of cover soil were 68.9%, 96.9% and 99.7% at 10 cm, 30 cm and 50 cm respectively. The on-ground type of storage facility had the highest ambient dose rate, followed by the semi-ground type and the underground type. The ambient dose rate did not vary with facility size (except 5 × 5 × 2 m size) due to the self-shielding of decontamination waste in temporary storage. The separation distances without cover soil for a 50 × 50 × 2 m size facility were evaluated as 14 m (minimum radioactivity concentration), 33 m (most probably radioactivity concentration), and 57 m (maximum radioactivity concentration) for on-ground storage type, 9 m, 24 m, and 45 m for semi-underground storage type, and 6 m, 16 m, and 31 m for underground storage type.

  18. Decontamination and decommissioning of a luminous dial painting facility: radiological characterization, segregation and disposal of building materials

    International Nuclear Information System (INIS)

    Ed, D.; Chu, L.; Chepulis, P.; Hamel, M.

    1986-01-01

    The State of Illinois, Department of Nuclear Safety, has decontaminated and decommissioned the defunct Luminous Processes, Inc. facility located in Ottawa, Illinois. The state's overall experience throughout the project is generally described, with particular emphasis given to the radiological characterization (Ra-226+progeny and H-3) and subsequent segregation and disposal of building materials as either radioactive or non-radioactive. Experiences involving direct application of health physics principles (criteria selection, sampling schemes, analytical techniques, data reduction, quality assurance) are discussed. Experiences involving other health physics regimens (personnel protection and dosimetry, environmental monitoring) as well as social sciences and economic considerations (public perception, media relations, political involvement, contractor interactions, fiscal management) are discussed only insofar as they affect the radiological characterization, segregation and disposal processes

  19. MAD Phasing with Krypton

    International Nuclear Information System (INIS)

    Cohen, A.

    2001-01-01

    Phasing of two proteins, the 17 kDa Fe protein myoglobin from sperm whale (P. catodon) and an 18 kDa protein (SP18) from green abalone (H. fulgens), using Kr-edge MAD with frozen crystals demonstrates the feasibility of this technique as a routine method for structure determination

  20. Prognosis End-Time: Madness and Prophecy in Melancholia and Take Shelter

    Directory of Open Access Journals (Sweden)

    Briohny Doyle

    2013-05-01

    Full Text Available This paper discusses two films released in 2011, Lars Von Trier's Melancholia and Jeff Nichols Take Shelter in the context of the history of dominant conceptions of madness as laid out in Foucault's History of Madness. I argue that these films allegorise protagonists' experiences of depression and schizophrenia in order to critique the present moment in North America as well as to restore a poetic link between madness, prophecy and apocalypse in the popular imagination.

  1. Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program

    International Nuclear Information System (INIS)

    1998-05-01

    An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived

  2. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Chad W Stratilo

    Full Text Available Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin, compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  3. Unit for air decontamination

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-02-01

    To fulfill the applicable requirements of safety to the ventilation systems in nuclear facilities, it is necessary to make a cleaning of the air that hurtles to the atmosphere. For that which was designed and it manufactured an unit for decontamination of the air for the Pilot plant of production of Nuclear Fuel that this built one with national parts, uses Hepa national filters and the design can adapt for different dimensions of filters, also can be added a lodging for a prefilter or to adopt two Hepa filters. (Author)

  4. New methods and techniques for decontamination in maintenance or decommissioning operations. Results of a co-ordinated research programme 1994-1998

    International Nuclear Information System (INIS)

    1998-06-01

    Decontamination of nuclear facilities is a subject of increasing importance as the nuclear community considers the issues related to the decommissioning of surplus or obsolete facilities and making modifications to operational facilities, or conducts the necessary inspections and maintenance to permit continued efficient and safe operation of existing facilities. Previous co-ordinated research programmes (CRP) conducted respectively from 1984 to 1987, and from 1989 to 1993, highlighted the role of decontamination within the overall domain of decommissioning. Having recognized technological progress in decontamination and the large potential for optimization, the CRP on New Methods and Techniques for Optimization of Decontamination for Maintenance or Decommissioning was launched and conducted by the IAEA from 1994 to 1998. Concluding reports that summarized the work undertaken under the aegis of the CRP were presented at the third and final Research Co-ordination Meeting (RCM) held in Mol, Belgium, 12-16 January 1998 and are collected in this Technical Document. Operating experience in real-scale applications, lessons learned, key results in laboratory scale or pilot scale research, and validation of mathematical models, are among the most significant achievements of the CRP and have been highlighted

  5. Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3

    International Nuclear Information System (INIS)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities

  6. Interdisciplinary Critical Inquiry: Teaching about the Social Construction of Madness

    Science.gov (United States)

    Connor-Greene, Patricia A.

    2006-01-01

    Theories and treatments of mental illness reflect the social, philosophical, and historical context in which they developed. This article describes ways to invite students to grapple with complex questions about "madness" from an interdisciplinary perspective. Looking at the construct of madness through multiple lenses (e.g., literature,…

  7. CO2 pellet blasting literature search and decontamination scoping tests report

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1993-12-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using current decontamination techniques. Chemical decontamination flushes have provided a satisfactory level of decontamination. However, this method generates large amounts of sodium-bearing secondary waste. Steam jet cleaning has also been used with a great deal of success but cannot be used on concrete or soft materials. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. Treatment of sodium-bearing waste is a particularly difficult problem due to the high content of alkali metals in the sodium-bearing liquid waste. It requires a very large volume of cold chemical additive for calcination. In addition, the sodium content of the sodium-bearing waste exceeds the limit that can be incorporated into vitrified waste without the addition of glass-forming compounds (primarily silicon) to produce an acceptable immobilized waste form. The primary initiatives of the Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals and to minimize all liquid decontamination wastes. One method chosen for cold scoping studies during FY-93 was CO 2 pellet blasting. CO 2 pellet blasting has been used extensively by commercial industries for general cleaning. However, using this method for decontamination of nuclear materials is a fairly new concept. The following report discusses the research and scoping tests completed on CO 2 pellet blasting

  8. Surface decontamination

    International Nuclear Information System (INIS)

    Silva, S. da; Teixeira, M.V.

    1986-06-01

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.) [pt

  9. Reactive decontamination formulation

    Science.gov (United States)

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  10. MADS interactomics : towards understanding the molecular mechanisms of plant MADS-domain transcription factor function

    NARCIS (Netherlands)

    Smaczniak, C.D.

    2013-01-01

    Protein-protein and protein-DNA interactions are essential for the molecular action of transcription factors. By combinatorial binding to target gene promoters, transcription factors are able to up- or down-regulate the expression of these genes. MADS-domain proteins comprise a large family of

  11. Air Activated Self-Decontaminating Polydicyclopentadiene PolyHIPE Foams for Rapid Decontamination of Chemical Warfare Agents.

    Science.gov (United States)

    McGann, Christopher L; Daniels, Grant C; Giles, Spencer L; Balow, Robert B; Miranda-Zayas, Jorge L; Lundin, Jeffrey G; Wynne, James H

    2018-06-01

    The threat of chemical warfare agents (CWA) compels research into novel self-decontaminating materials (SDM) for the continued safety of first-responders, civilians, and active service personnel. The capacity to actively detoxify, as opposed to merely sequester, offending agents under typical environmental conditions defines the added value of SDMs in comparison to traditional adsorptive materials. Porous polymers, synthesized via the high internal phase emulsion (HIPE) templating, provide a facile fabrication method for materials with permeable open cellular structures that may serve in air filtration applications. PolyHIPEs comprising polydicyclopentadiene (polyDCPD) networks form stable hydroperoxide species following activation in air under ambient conditions. The hydroperoxide-containing polyDCPD materials react quickly with CWA simulants, Demeton-S and 2-chloroethyl ethyl sulfide, forming oxidation products as confirmed via gas chromatography mass spectrometry. The simplicity of the detoxification chemistry paired with the porous foam form factor presents an exciting opportunity for the development of self-decontaminating filter media. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Experimental engineering section off-gas decontamination facility's fractionator column: installation and performance

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Fowler, V.L.; Inman, D.J.

    1978-03-01

    A detailed description of the third column recently installed in the Experimental Engineering Section Off-Gas Decontamination Facility (EES-ODF) is presented. The EES-ODF is being used to provide engineering-scale experiments (nominal gas and liquid flows of 5 scfm and 0.5 gpm, respectively) in the development of the Krypton Absorption in Liquid CO 2 (KALC) process. A detailed discussion of the column's construction is provided. This discussion includes the peripherals associated with the column, such as refrigeration, heat exchangers, instrumentation, etc. The compressibility of Goodloe packing (the packing in the other columns) and the possible reduced throughput due to this compression have revealed the desirablility of a random (i.e., noncompressible) packing. Toward this end, the third column is packed with a new random packing (PRO-PAK). A preliminary comparison between this packing and the woven wire mesh packing (Goodloe) used in the other two columns has been made. Experiments comparing the throughput capacity indicate that the PRO-PAK packing has approximately 60% the capacity of Goodloe for a CO 2 system. When used as a fractionator or stripper with the basic O 2 -Kr-CO 2 KALC system, the PRO-PAK column produced HTU values less than or equal to the GOODLOE columns under similar operating conditions

  13. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT; TOPICAL

    International Nuclear Information System (INIS)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project

  14. Decontamination and decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Walton, G.R.; Perry, E.D.; Commander, J.C.; Spampinato, P.T.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) is scheduled to complete its end-of-life deuterium-tritium (D-T) experiments in September 1994. The D-T operation will result in the TFTR machine structure becoming activated, and plasma facing and vacuum components will be contaminated with tritium. The resulting machine activation levels after a two year cooldown period will allow hands on dismantling for external structures, but require remote dismantling for the vacuum vessel. The primary objective of the Decontamination and Decommissioning (D ampersand D) Project is to provide a facility for construction of a new Department of Energy (DOE) experimental fusion reactor by March 1998. The project schedule calls for a two year shutdown period when tritium decontamination of the vacuum vessel, neutral beam injectors and other components will occur. Shutdown will be followed by an 18 month period of D ampersand D operations. The technical objectives of the project are to: safely dismantle and remove components from the test cell complex; package disassembled components in accordance with applicable regulations; ship packages to a DOE approved disposal or material recycling site; and develop expertise using remote disassembly techniques on a large scale fusion facility. This paper discusses the D ampersand D objectives, the facility to be decommissioned, and the technical plan that will be implemented

  15. History of decontamination after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Omura, Takashi; Onodera, Hideaki; Morishita, Satoru; Kato, Sei

    2015-01-01

    The magnitude 9.0 earthquake (the Great East Japan Earthquake) hit Japan on March 11, 2011 brought tsunami hazard as well as a nuclear accident in addition to the seismic hazard. A wide area of the eastern Japan was contaminated by radioactive materials released from the Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. In response to the unprecedented situation of the radioactive pollution after the accident, the Act on Special Measures Concerning the Handling of Radioactive Pollution was enacted in August 2011. The Ministry of the Environment (MOE) has formulated a set of guidelines by the end of 2011 to provide information on how to store and manage contaminated waste. In addition, the MOE established 'The Policies for the Decontamination of Specific Areas (Decontamination Roadmap)' in January 2012. As a result, the radiation dose rate has decreased by approximately 46% in the residential area of Naraha town. The MOE will have been promoting decontamination and construction of interim storage facilities which are able to store and manage the removed soils and incineration ashes generated from decontamination works. (author)

  16. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.

    1989-10-01

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft 2 and $96 per ft 2 of cell surface area. 14 figs., 4 tabs

  17. Current status and problems of decontamination by municipalities in Fukushima Prefecture. Records from four and a half years after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kawasaki, Kota

    2016-01-01

    This study discusses the current status and problems of decontamination by 52 municipalities out of 59 municipalities in Fukushima Prefecture, four and a half years after the Fukushima Daiichi Nuclear Power Plant accident, mainly based on the results of a questionnaire survey. The area corresponds to in all municipalities except for the 7 whose entire administrative area has been designated as Special Decontamination Area. This study reveals that (1) the number of municipalities which planned, ordered and implemented decontamination work has peaked although decontamination work of public facilities, housing, roads, farmland and forests has been still carried out in many municipalities, (2) about half of the municipalities have not secured enough temporary storage sites for contaminated soil and waste, (3) many municipalities recognize that construction of interim storage facilities, transfer of contaminated soil and waste from each municipality to interim storage facilities, and maintenance of temporary storage sites are major challenges concerning decontamination work, (4) about half of the municipalities regard efforts concerning decontamination work by the national government and the Fukushima prefectural government office as inadequate, (5) not a few municipalities recognize that residents cannot live their lives with a sense of safety and security unless air radiation dose is reduced to the level before the accident, and (6) most municipalities recognize that safe living environments can be recovered by decontamination work. Finally, based on these results, this study points out early completion of interim storage facilities and development of conditions to maintain and manage temporary storage sites, the end of decontamination work based on the air radiation dose rate, and establishment of decontamination policies concerning forests, rivers and waterways, as main future challenges concerning decontamination work by municipalities. (author)

  18. ["I am but mad north-north-west"--Hamlet's portrayed delusion].

    Science.gov (United States)

    Schulte Herbrüggen, H

    1996-01-01

    Whereas science refers to the real world existing independently and conditioned by cause and effect, the world of literature is fictitious, created by the artist in our imagination by means of language, an artefact conditioned by aesthetic laws, a world sui generis. Accordingly, Hamlet is no person, but a literary figure, doing, saying, thinking and feeling only what the poet dictated him word for word. The essential difference between the two worlds is often overlooked. That "blind spot" has a long-standing tradition in European intellectual history and goes back i.a. to the German "Hamlet experience" in the eighteenth, the "Hamlet fever" and the felt spiritual kinship (Seelenverwandtschaft) in the nineteenth century. Teleological literary criticism, centering around Hamlet's "character" and isolating his psychologically evaluated monologues (e.g. Bradley), refrained from Hamlet's fictionality and role-play and led to blurring beyond recognition the boundaries between real person and literary figure (e.g. Freud, Jones) and assisted in reducing a dramatic role to a medical case history. Speaking of Hamlet, one has to start from Shakespeare's text, our subject matter. A dramatic play being a plot turned into dialogue, the poet's vocabulary used (but indirectly also the vocabulary not used) is particularly informative. When referring to Hamlet's "antic disposition", Shakespeare uses a wide range of over 20 different terms, the most frequented being mad/madness (44 times). Evidence of primary importance are the five occasions after the apparition of his father's ghost, when Hamlet speaks of hist "madness" as an assumed role. In Act I "madness occurs first as a mere possibility when Hamlet informs his friends, he might "put an antic disposition on"; in Act II vis-a-vis Rosencrantz and Guildenstern ("I am but mad north-north-west") it is his deliberate action under certain conditions; in Act III it occurs thrice, first in his declaration of intent ("They are coming to

  19. Washing-electrokinetic Decontamination for Concrete Contaminated with Cobalt and Cesium

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Yang, Byeong Il; Choi, Wang Kyu; Lee, Kune Woo; Hyeon, Jay Hyeok

    2009-01-01

    A great volume of radioactive concrete is generated during the operation and the decommissioning of nuclear facilities. The washing-electrokinetic technology in this study, which combined an electrokinetic method and a washing method, was developed to decontaminate the concrete generated in nuclear facilities. The results of only an electrokinetic decontamination for the concrete showed that cobalt was removed to below 1% from the concrete due to its high pH. Therefore, the washing electrokinetic technology was applied to lower the pH of the concrete. Namely, when the concrete was washed with 3 M of hydrochloric acid for 4 hours (0.17 day), the CaCO 3 in the concrete was decomposed into CO 2 and the pH of the concrete was reduced to 3.7, and the cobalt and cesium in the concrete were removed by up to 85.0% and 76.3% respectively. Next, when the washed concrete was decontaminated by the electrokinetic method with 0.01M of acetic acid in the 1L electrokinetic equipment for 14.83 days, the cobalt and the cesium in the concrete were both removed by up to 99.7% and 99.6% respectively. The removal efficiencies of the cobalt and cesium by 0.01M of acetic acid were increased more than those by 0.05M of acetic acid due to the increase of the concrete zeta potential. The total effluent volume generated from the washing-electrokinetic decontamination was 11.55L (7.2ml/g).

  20. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    International Nuclear Information System (INIS)

    Benavides, E.; Fajardo, M.

    1992-01-01

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m 2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  1. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    International Nuclear Information System (INIS)

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D ampersand D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development

  2. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, R.E. [ed.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

  3. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  4. Fag Men: Mad Men, Homosexuality and Televisual Style

    Directory of Open Access Journals (Sweden)

    Lee Wallace

    2012-09-01

    Full Text Available Among the many retro-fittings achieved by Mad Men—Matthew Weinerʼs still unfurling television series set in the advertising world of the early 1960s—is the representation of the homosexual closet as a thing of the past. This essay approaches Mad Men’s account of the homophobic past in order to think about sexuality and televisual style. A landmark programme coterminous with American television transferring from analogue to digital signal, Mad Men allegorizes another moment in television history when the medium was defined not by convergence and time-shifting but by liveness, scheduling flow, mass-market demographics and synchronous viewing. Though it confines its gay content to minor characters and narrative arcs that phase in and out in relation to open-ended long-form needs, the programme’s representation of homophobia as a thing of the past provides a useful lens on the complex temporal co-ordinates of contemporary television.

  5. R.4. Innovative concept for plutonium finishing facility

    International Nuclear Information System (INIS)

    Bertolotti, G.; Laguerie, I.V. de; Richter, R.; Gillet, B.

    1998-01-01

    After complete shutdown of the units of the previous UP2 plant, the new R4 facility will ensure the purification of Plutonium of the UP2-800 plant for the whole range of fuel to be reprocessed in the years to come. This facility features four main units: - Purification of plutonium nitrate; - Conversion into plutonium oxide; - PuO 2 conditioning into cans; Acid recovery. An extensive R and D program resulted in significant innovations. From a technological aspect the centrifugal extractor and the sub-critical tube bundle tank contributed to the reduction of the building dimensions. The extensive use of on-line analyses enables a more efficient follow-up of the process while minimizing the effluent production. On the other hand, the organization of the building which consists in grouping the rooms presenting the same risk of dispersal of nuclear materials also contributed to reduce the active zone volume. This facility, as any other facilities on the LA HAGUE site, will be remotely operated. (author)

  6. MAD-X progress and future plans

    CERN Document Server

    Deniau, L

    2012-01-01

    The design efforts for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC) will require significant extensions of the MAD-X code widely used for designing and simulating particles accelerators. These changes are framed into a global redesign of the MADX architecture meant to consolidate its structure, increase its robustness and flexibility, and improve its performance. Some examples of recent extensions to MAD-X like the RF-Multipole element will be presented. Improvement for models and algorithms selection providing better consistency of the results and a wider range of use will be discussed. The computation efficiency will also be addressed to profit better of modern technologies. In this paper, we will describe the last improvements and the future plans of the project.

  7. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  8. Decontamination and decommissioning of the Chemical Process Cell (CPC): Topical report for the period January 1985-March 1987

    International Nuclear Information System (INIS)

    Meigs, R.A.

    1987-07-01

    To support interim storage of vitrified High-Level Waste (HLW) at the West Valley Demonstration Project, the shielded, remotely operated Chemical Process Cell (CPC) was decommissioned and decontaminated. All equipment was removed, packaged and stored for future size reduction and decontamination. Floor debris was sampled, characterized, and vacuumed into remotely handled containers. The cell walls, ceiling, and floor were decontaminated. Three 20 Mg (22.5 ton) concrete neutron absorber cores were cut with a high-pressure water/abrasive jet cutting system and packaged for disposal. All operations were performed remotely using two overhead bridge cranes which included two 1.8 Mg (2 ton) hoists, one 14.5 Mg (16 ton) hoist, and an electromechanical manipulator or an industrial robot mounted on a mobile platform. Initial general area dose rates in the cell ranged from 1 to 50 R/h. Target levels of less than 10 mR/h general area readings were established before decontamination and decommissioning was initiated; general area dose rates between 200 mR/h and 1200 mR/h were obtained at the completion of the decontamination work. 4 refs., 11 figs., 8 tabs

  9. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  10. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    International Nuclear Information System (INIS)

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail

  11. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  12. 78 FR 29393 - University of Missouri-Columbia Facility Operating License No. R-103

    Science.gov (United States)

    2013-05-20

    ... Facility Operating License No. R-103 AGENCY: Nuclear Regulatory Commission. ACTION: License renewal... the renewal of Facility Operating License No. R-103 (``Application''), which currently authorizes the... application for the renewal of Facility Operating License No. R-103, which, currently authorizes the licensee...

  13. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report

    International Nuclear Information System (INIS)

    Wiese, E. C.

    1998-01-01

    The Building 594 D and D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 microCi (175 kBq). The radionuclides of concern were Co 60 , Cs 137 , and Am 241 . The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr)

  14. Feasibility study on decontamination of the contaminated stainless steel with HBF4 solution

    International Nuclear Information System (INIS)

    Dong Ruilin; Zhang Yuan; Qiu Dangui; Huang Yuying; Ren Xianwen

    2002-01-01

    Decontamination experiments were carried out with HBF 4 solution on the following four kinds of sample: 1Cr18Ni9Ti stainless steel with and without welding line, 1Cr18Ni9Ti stainless steel with oxide layer formed in boiling concentrated nitric acid solution, natural uranium and 230 Th contaminated stainless steel pipe sample from one decommissioning nuclear facility. The results indicated that the oxide layer, the welding line of the 1Cr18Ni9Ti stainless steel and itself can be dissolved in the HBF 4 decontamination solution. The solubility of the 1Cr18Ni9Ti stainless steel in the HBF 4 solution used in the test is more than 5 g/L, which means that the 0.13 m 2 stainless steel could be dissolved up to a thickness of 5 μm in one liter of decontamination solution. The decontamination efficiency is more than 85% in 30 minutes for the 230 Th contaminated sample, and 87% in 2 hours for the natural uranium contaminated sample. Both samples could be decontaminated to the background level after several runs of the decontamination

  15. Restoring Madness to History in J.M. Coetzee’s In the Heart of the Country

    Directory of Open Access Journals (Sweden)

    William Collins

    2015-01-01

    Full Text Available This article interrogates the curious dismissal of madness from the critical landscape surrounding J. M. Coetzee’s In the Heart of the Country, and makes suggestions concerning how madness works in the novel and why—given certain critical and historical pressures—it has been persistently sidelined. An analysis of the novel in light of Coetzee’s scholarship on Samuel Beckett suggests that Magda’s discourse, like those of many Beckettian narrators, follows patterns of affirmation and auto-negation, constituting a fiction of what Coetzee calls “net zero.” In particular, Magda extends this pattern to the taking on and casting off of identities, perhaps in the style of the hermit crab she puts forward as an image of herself. An intertextual examination of the semantic and rhetorical range of madness as it appears in Coetzee’s other fiction and scholarship reveals that madness, for Coetzee, consistently denotes: on the one hand, a contagious force moving throughout a social body, and on the other hand, the labor of writing under the threat of illegibility—a threat conditioned in large part by the madness of the social body. By infecting the writer who might record its workings in history and thereby inhibiting or distorting that record, madness likewise appears in historical record as “net zero.” Thus, rather than simply being mad, Magda’s relationship with madness is emblematic of the (disappearance of madness in and from history.

  16. WIS decontamination factor demonstration test with radioactive nuclides

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu.

    1987-01-01

    A radioactive Waste Incineration System (WIS) with suspension combustion is noticed as effective volume reduction technology of low level radiactive wastes that are increasing every year. In order to demonstrate the decontamination efficiency of ceramic filter used on WIS, this test has been carried out with the test facilities as joint research of Central Research Institute of Electric Power Industry (CRIEPI) and Sumitomo Heavy Industries, Ltd. Miscellaneous combustible waste and power resin, to which 5 nuclides (Mn-54, Fe-59, Co-60, Zn-65, Cs-137) were added, were used as samples for incineration. As the result of the test, it was verified that Decontamination Factor (DF) of the single stage ceramic filter was usually kept over 10 5 for every nuclide, and from the results of above DF, over 10 8 is expected for real commercial plant as a total system. Therefore, it is realized that the off-gas clean up system of the WIS composed of only single stage of ceramic filter is capable of sufficiently efficient decontamination of exhaust gas to be released to stack. (author)

  17. Assessment of strippable coatings for decontamination and decommissioning

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described

  18. Surface decontamination of Type 304L stainless steel with electrolytically generated hydrogen: Design and operation of the electrolyzer

    International Nuclear Information System (INIS)

    Bellanger, G.

    1993-01-01

    The surface of tritiated Type 304L stainless steel is decontaminated by isotopic exchange with the hydrogen generated in an electrolyzer. This steel had previously been exposed to tritium in a tritium gas facility for several years. The electrolyzer for the decontamination uses a conducting solid polymer electrolyte made of a Nafion membrane. The cathode where the hydrogen is formed is nickel deposited on one of the polymer surfaces. This cathode is placed next to the region of the steel to be decontaminated. The decontamination involves, essentially, the tritiated oxide layers of which the initial radioactivity is ∼ 5 kBq/cm 2 . After treatment for 1 h, the decontamination factor is 8. 9 refs., 16 figs., 2 tabs

  19. The horror of madness in Estrella distante and Nocturno de Chile

    Directory of Open Access Journals (Sweden)

    Bernardo Rocco

    2017-03-01

    Full Text Available The article examines the thematic dimension of madness present in the novels Estrella distante and Nocturno de Chile by Roberto Bolaño in order to determine the various ways by which the narrator subjectivity develops a critical consciousness of madness from the traumatic experience of the Chilean dictatorship. Also, this dimension evidences the articulation of a language of madness as literary aesthetics of artistic experience of limits: the horror. Accordingly, a preliminary analysis of contemporary history as a meeting place between violent media versus artistic media that account for the chiaroscuro of Latin American modernity is offered.

  20. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  1. Derrida, Foucault and “Madness, the Absence of an Œuvre”

    Directory of Open Access Journals (Sweden)

    Seferin James

    Full Text Available This article argues that Foucault's 1964 paper “La folie, l'absence d'œuvre” ought to be understood as a response to Derrida's 1963 paper “Cogito et histoire de la folie”. I clarify the chronology of the exchange between these two thinkers and follow commentators Bennington and Flynn in emphasising themes other than the status of madness in Descartes. I undertake a thematic investigation of Foucault's 1961 characterisation of madness as the absence of an œuvre and the role of this characterisation in Derrida's 1963 paper. Then I turn to an investigation of Foucault's substantial change in position on these key themes with his 1964 paper. I argue that Foucault seeks to minimise the initial importance he attributed to his characterisation of madness as the absence of an œuvre, altering his understanding of the relation between madness and language as well as shifting the event that silences madness from Descartes to Freud. Derrida's reconsideration of Foucault's Folie et déraison in 1991 treats Freud as the new locus of the exchange. This is an implicit recognition by Derrida of Foucault's “La folie, l'absence d'œuvre” and confirmation of its place within the exchange.

  2. Decontamination of surfaces (1961)

    International Nuclear Information System (INIS)

    Mestre, E.

    1961-01-01

    The continued expansion of atomic Energy has led the S.C.R.G.R. to extend simultaneously the recovery of materials contaminated by use in radio-active media. The importance of this aspect of atomic Energy was not immediately obvious to those concerned but is now fully recognized due to the cost of the materials and installations, and also to the time required for the construction of special equipment for the C.E.A. Another very important reason is the dangers associated with the handling of contaminated material. The S.C.R.G.R. attacked this problem from the point of view of these dangers. It later became apparent to the users, once the decontamination methods had proved their worth, that the process presented advantages from the material and cost-saving point of view. (author) [fr

  3. Vaporized Hydrogen Peroxide (VHP) Decontamination of a Section of a Boeing 747 Cabin

    National Research Council Canada - National Science Library

    Shaffstall, Robert M; Garner, Robert P; Bishop, Joshua; Cameron-Landis, Lora; Eddington, Donald L; Hau, Gwen; Spera, Shawn; Mielnik, Thaddeus; Thomas, James A

    2006-01-01

    The use of STERIS Corporation's Vaporized Hydrogen Peroxide (VHP)* technology as a potential biocide for aircraft decontamination was demonstrated in a cabin section of the Aircraft Environment Research Facility...

  4. A decontamination technique for decommissioning waste

    International Nuclear Information System (INIS)

    Heki, H.; Hosaka, K.; Kuribayashi, N.; Ishikura, T.

    1993-01-01

    A large amount of radioactive metallic waste is generated from decommissioned commercial nuclear reactors. It is necessary from the point of environmental protection and resource utilization to decontaminate the contaminated metallic waste. A decommissioning waste processing system has been previously proposed considering such decommissioning waste characteristics as its large quantity, large radioactivity range, and various shapes and materials. The decontamination process in this system was carried out by abrasive blasting as pretreatment, electrochemical decontamination as the main process, and ultrasonic cleaning in water as post-treatment. For electrochemical decontamination, electrolytic decontamination for simple shaped waste and REDOX decontamination for complicated shaped waste were used as effective decontamination processing. This time, various kinds of actual radioactive contaminated samples were taken from operating power plants to simulate the decontamination of decommissioning waste. After analyzing the composition, morphogenesis and surface observation, electrolytic decontamination, REDOX decontamination, and ultrasonic cleaning experiments were carried out by using these samples. As a result, all the samples were decontaminated below the assumed exemption level(=4 x 10 -2 Bq/g). A maximum decontamination factor of over 104 was obtained by both electrolytic and REDOX decontamination. The stainless steel sample was easy to decontaminate in both electrochemical decontaminations because of its thin oxidized layer. The ultrasonic cleaning process after electrochemical decontamination worked effectively for removing adhesive sludge and the contaminated liquid. It has been concluded from the results mentioned above that electrolytic decontamination and REDOX decontamination are effective decontamination process for decontaminating decommissioning waste

  5. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akinori [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Kikuguchi, Chisato [Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan); Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  6. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    International Nuclear Information System (INIS)

    Takahashi, Akinori; Kikuguchi, Chisato; Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru; Yamamoto, Tadashi

    2012-01-01

    Highlights: ► CNOT3 depletion increases the mitotic index. ► CNOT3 inhibits the expression of MAD1. ► CNOT3 destabilizes the MAD1 mRNA. ► MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4–NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4–NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4–NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4–NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  7. Safety analysis for the 233-S decontamination and decommissioning project

    International Nuclear Information System (INIS)

    Thoren, S.

    1996-08-01

    Decommissioning of the 233-S Plutonium Concentration Facility (REDOX) is a proposed expedited response action that is regulated by the Comprehensive Environmental Response Compensation and Liability Act of 1980 and the Hanford Federal Facility Agreement and Consent Order. Due to progressive physical deterioration of this facility, a decontamination and decommissioning plan is being considered for the immediate future. This safety analysis describes the proposed actions involved in this D ampersand D effort; identifies the radioactive material inventories involved; reviews site specific environmental characteristics and postulates an accident scenario that is evaluated to identify resultant effects

  8. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ''Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  9. [Existence, Absence and Power of Madness: A Critical Review of Michel Foucault's Writings on the History and Philosophy of Madness].

    Science.gov (United States)

    Brückner, Burkhart; Iwer, Lukas; Thoma, Samuel

    2017-03-01

    This article discusses Michel Foucault's main writings on "madness and psychiatry" from his early works up to the 1970s. On the one hand, we reconstruct the overall theoretical and methodological development of his positions over the course of the different periods in his oeuvre. On the other hand, we also take a closer look at Foucault's philosophical considerations regarding the subjects of his investigations. After an initial introduction of our conceptual approach, we draw on the most recent research on Foucault to show to what extent the phenomenological description of the topic at hand and the historical-critical perspective that are reflected in his early writings of 1954 (the Introduction to Binswanger's Dream and Existence and Mental Illness and Personality) laid the ground for his later work. Moving on to Foucault's work during the 1960s, we look at the core features and methodological bases of his 1961 classic Folie et déraison (History of Madness). His propositions regarding the "absence of madness" in modernity are conceptualized as an inherently contradictory attempt to liberate the topic under study from the common assumptions at that time. We then situate his 1973/74 lectures on Psychiatric Power in the context of his shift towards analyzing the dynamics of power and highlight the renewed shift of focus in his statements on the "productivity" of madness as an effect of power. Finally, we sum up our critique by taking into account the history of the reception of Foucault's writings and ask about their potential significance for the contemporary philosophy and history of psychiatry.

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Smith, J. L.

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS)

  12. Errata Sheet for Closure Report for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Errata Sheet--The survey map referenced on Page F-10 is a draft. This errata sheet replaces the map with a final version. All recipients of this errata sheet shall replace Page F-10 with the attached map

  13. Relationship with BSE (Mad Cow Disease)

    Science.gov (United States)

    ... Disease (CWD) Prion Diseases Relationship with BSE (Mad Cow Disease) Evidence Recommend on Facebook Tweet Share Compartir ... macaque monkeys inoculated with brain tissue obtained from cattle with BSE had clinical and neuropathological features strikingly ...

  14. Radioactivity decontamination efficiency of ceramic filter in an incineration volume reduction system of radioactive waste

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Yoshiki, Sinya; Sema, Toru; Koyama, Hiroaki; Ono, Tetsuo; Nagae, Madoka; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    The small pilot facility of a cyclone type suspension incineration system of radioactive waste was set up in order to evaluate the decontamination efficiency of a high efficiency ceramic filter. The evaluation was made by use of 54 Mn, 59 Fe, 60 Co, 65 Zn and 137 Cs. 1. The decontamination factor by one line of ceramic filter for every species were over 10 5 . 2. The decontamination factor increased by one oder when water vapor exists in off-gas. The same tendency was also observed when iron dioxide existed at the incineration of cation exchange resin. (author)

  15. Engineering study: Fast Flux Test Facility fuel reprocessing

    International Nuclear Information System (INIS)

    Beary, M.M.; Raab, G.J.; Reynolds, W.R. Jr.; Yoder, R.A.

    1974-01-01

    Several alternatives were studied for reprocessing FFTF fuels at Hanford. Alternative I would be to decontaminate and trim the fuel at T Plant and electrolytically dissolve the fuel at Purex. Alternative II would be to decontaminate and shear leach the fuels in a new facility near Purex. Alternative III would be to decontaminate and store fuel elements indefinitely at T Plant for subsequent offsite shipment. Alternative I, 8 to 10 M$ and 13 quarter-years; for Alternative II, 24 to 28 M$ and 20 quarter-years; for Alternative III, 3 to 4 M$ and 8 quarter-years. Unless there is considerable slippage in the FFTF shipping schedule, it would not be possible to build a new facility as described in Alternative II in time without building temporary storage facilities at T Plant, as described in Alternative III

  16. Subcontracting strategy for the decontamination and decommissioning of Savannah River Site's First Tritium Extraction Facility, 232-F

    International Nuclear Information System (INIS)

    Smith, C.W. Jr.; Dowd, A.S. Jr.; Hinds, S.S.; Johnson, S.V.

    1994-01-01

    The Savannah River Site (SRS) has been actively proceeding with the decontamination and decommissioning (D and D) of various facilities and structures which were instrumental in the success of past missions at the site. The most ambitious of these efforts involves the subcontracting of the complete D and D of the first SRS Tritium Extraction Facility, identified as building 232-F. This facility operated in the mid 1950's and discontinued operations permanently in 1958. The approach utilized for this effort attempts to invoke the novel principle of open-quotes As Commercial As Reasonably Achievableclose quotes or open-quotes ACARAclose quotes. This concept of ACARA applies only the minimum essential requirements necessary to successfully perform the D and D task. Integral to this approach is the subcontractor provision for maximum flexibility in the identification of and adherence to the requirements of applicable DOE Orders, federal, state and local laws and regulations, as well as site specific procedures without violating the site contractual requirements. The technical specification prepared for this effort provides the basis for a competitively bid contract to perform the entire D and D evolution, including initial facility characterization, waste stream characterization and certification, D and D and waste disposal. Preparation and development of this specification and the subsequent Request For Proposal (RFP) was a successful team oriented endeavor. The schedule for this fast-track undertaking took three months to complete. Successful initiation of this task will be the first D and D of a facility containing both radioactive and hazardous material at an operating site within the DOE Weapons Complex. The strategy for preparing the D and D subcontract for the 232-F structure was facilitated by applying the ACARA principle. This approach resulted in the accelerated development of the specification and RFP documents, as well as minimized the complexities of

  17. Development of complex electrokinetic decontamination method for soil contaminated with uranium

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Hye-Min; Kim, Wan-Suk; Moon, Jei-Kwon; Hyeon, Jay-Hyeok

    2012-01-01

    520L complex electrokinetic soil decontamination equipment was manufactured to clean up uranium contaminated soils from Korean nuclear facilities. To remove uranium at more than 95% from the radioactive soil through soil washing and electrokinetic technology, decontamination experiments were carried out. To reduce the generation of large quantities of metal oxides in cathode, a pH controller is used to control the pH of the electrolyte waste solution between 0.5 and 1 for the formation of UO 2+ . More than 80% metal oxides were removed through pre-washing, an electrolyte waste solution was circulated by a pump, and a metal oxide separator filtered the metal oxide particles. 80–85% of the uranium was removed from the soil by soil washing as part of the pre-treatment. When the initial uranium concentration of the soil was 21.7 Bq/g, the required electrokinetic decontamination time was 25 days. When the initial concentration of 238 U in the soil was higher, a longer decontamination time was needed, but the removal rate of 238 U from the soil was higher.

  18. Basic study on decontamination of TRU wastes with cerium mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Ishii, Junichi; Kobayashi, Fuyumi; Uchida, Shoji; Sumiya, Masato; Kida, Takashi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

    2010-03-01

    At Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), the cerium mediated electrolytic oxidation method which is a decontamination technique to decrease the radioactivity of TRU wastes to the clearance-level has been developed for the effective reduction of TRU wastes generated from the decommissioning of a nuclear fuel reprocessing facility and so on. This method corrodes the oxide layer and the surface of metallic TRU metal wastes by the strong oxidation power of Ce 4+ in nitric acid. In this study, parameter tests were conducted to optimize the solution condition of Ce 3+ initial concentrations and nitric acid concentrations. The target corrosion rate of metallic TRU wastes set to be 2 - 4 μm/h for the practical use of this method. Under the optimized solution condition, a dissolution test of stainless steel simulating wastes was carried out. From the result of the dissolution test, the average corrosion rate was 3.3 μm/h during the test time of 90 hours. Based on the supposition that the corrosion depth of metallic TRU wastes was 20 μm enough to achieve the clearance-level, the treatment time for the decontamination was about 6 hours. It was confirmed from the result that the decontamination could be performed within one day and the decontamination solution could repeatedly reuse 15 times. (author)

  19. Lessons Learned from Decontamination Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  20. The International Atomic Energy Agency's program on decontamination and decommissioning

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1989-01-01

    The International Atomic energy Agency (IAEA) is developing an integrated information base that will systematically cover the technical, regulatory, radiation protection, planning, and economic aspects related to the decontamination and decommissioning (D/D) of nuclear facilities. The object of this program is to assist member states in developing the required expertise, equipment, and programs so that they can decommission their nuclear facilities in a safe, timely, and cost-effective manner. In addition to providing information, the IAEA encourages research and provides technical assistance in the form of expert missions, equipment design and procurement, etc., to assist member states in implementing their D/D programs. The technology contained in some recent IAEA reports is reviewed, including the decontamination, segmentation, and demolition of concrete and steel; the recycle/reuse of components from decommissioning; and the reduction of occupational exposures in D/D and the regulatory process in decommissioning. The IAEA's future program is briefly reviewed

  1. Decontamination of body surface

    International Nuclear Information System (INIS)

    Harase, Chieko.

    1989-01-01

    There are two important points for an effective application of decontamination procedures. One is the organizing method of responsible decontamination teams. The team should be directed by medical doctor with the knowledge of decontamination of radionuclides. The other point is the place of application of the decontamination. Hospitals and clinics, especially with a department of nuclear medicine, or specialized units such as an emergency medical center are preferable. Before decontamination procedures are initiated, adequate monitoring of the body surface should be undertaken by a competent person in order to demarcate the areas which are contaminated. There are fundamental principles which are applicable to all decontamination procedures. (1) Precautions must always be taken to prevent further spread of contamination during decontamination operations. (2) Mild decontamination methods should be tried before resorting to treatment which can damage the body surface. The specific feature of each contamination varies widely in radionuclides involved, place and area of the contamination, condition of the contaminated skin such as whether the skin is wounded or not, and others. Soap and water are usually good detergents in most cases. If they fail, orange oil cream (SUPERDECONCREAM, available from Tokyo Engineering Co.) specially prepared for decontamination of radionuclides of most fission and corrosion products may be used. Contaminated hair should be washed several times with an efficient shampoo. (author)

  2. Comparison of thorough decontamination techniques on dismantled pieces of a PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Rahier, A.; Mandoki, R.; Ponnet, M.

    1998-01-01

    The decontamination experience gained during the BR3 dismantling project is developed. This started with the full system decontamination of the primary loop and was followed by R and D on thorough decontamination projects. First, a wet abrasive installation has been installed and is now in operation for the thorough cleaning of metallic pieces of simple geometry. Afterwards, the chemical cerium process has been developed. The results of the regeneration with ozone and with electrochemistry are presented in detail. The ozone regeneration process has been selected for the industrial installation of which the construction is foreseen in 1998. (author)

  3. The regulation of MADS-box gene expression during ripening of banana and their regulatory interation with ethylene

    Science.gov (United States)

    MADS-box genes (MaMADS1-6), potential components of the developmental control of ripening have been cloned from Grand Nain banana cultivar. Similarity of these genes to tomato LeRIN is very low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns...

  4. Dry decontamination for tritiated wastes

    International Nuclear Information System (INIS)

    Shi Zhengkun; Wu Tao; Dan Guiping; Xie Yun

    2009-01-01

    To aim at decontamination of tritiated wastes, we have developed and fabricated a dry tritium decontamination system, which is designed to reduce tritium surface contamination of various alloy by UV, ozone and heating. The result indicates that the elevation of temperature can obviously improve decontamination effect. With 3 h irradiation by 365 nm UV at 220 degree C, it has a decontamination rate of 99% to stainless steel surface. Ozone can more obviously improve decontamination effect when metal was heated. Ozone has a decontamination effect beyond 95% to stainless steel, aluminum and brass at 220 degree C. Tritium surface concentration of metal has a little increase after decontamination. (authors)

  5. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Chemical decontamination of process equipment using recyclable chelating solvent Phase I. Final report, September 1993--June 1995

    International Nuclear Information System (INIS)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment

  7. Gross decontamination experiment report

    International Nuclear Information System (INIS)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment

  8. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  9. The vocabulary of madness from Homer to Hippocrates. Part 1: the verbal group of mualphaiotanuomicronmualphaiota.

    Science.gov (United States)

    Perdicoyianni-Paléologou, Hélène

    2009-09-01

    In Part 1 of this two-part paper, I examine the evolution of the concept of madness expressed by the various forms--verbal and nominal, simple and compound--of the verbal group of mualphaiotanuomicronmualphaiota in the archaic and classical periods. I point out how the divine madness is contrasted to pathological madness considered as a psychic and mental disease and foreseeable by doctors as well as curable by medications. This new procedure highlights rational knowledge of the Greeks about the cause and the medical care of madness.

  10. Toshiba's decontamination technologies for the decommissioning

    International Nuclear Information System (INIS)

    Inoue, Yuki; Yaita, Yumi; Sakai, Hitoshi

    2011-01-01

    For the decommissioning, two types of decontamination process are necessary, 1) system decontamination before dismantling and 2) decontamination of dismantling waste. Toshiba has been developing the decontamination technologies for the both purposes from the viewpoint of minimizing the secondary waste. For the system decontamination before dismantling, chemical decontamination process, such as T-OZON, can be applicable for stainless steel or carbon steel piping. For the decontamination of dismantling waste, several types of process have been developed to apply variety of shapes and materials. For the simple shape materials, physical decontamination process, such as blast decontamination, is effective. We have developed new blast decontamination process with highly durable zirconia particle. It can be used repeatedly and secondary waste can be reduced compared with conventional blast particle. For the complex shape materials, chemical decontamination process can be applied that formic acid decontamination process for carbon steel and electrolytic reduction decontamination process with organic acid for stainless steel. These chemicals can be decomposed to carbon dioxide and water and amount of secondary waste can be small. (author)

  11. Cost/risk/benefit analysis report on the decontamination and decommissioning of Z-plant

    International Nuclear Information System (INIS)

    Melvin, J.P.; Sexton, R.A.; Fort, M.L.; Nunn, S.E.

    1979-01-01

    This study was performed to estimate the cost of decontaminating and decommissioning Z-Plant. All of the buildings in the Z-Plant exclusion area except Building 2736-Z, the plutonium storage vault, are included in the study. The study also excludes all underground facilities within the exclusion area which are not contained within a building and all Z-Plant related facilities outside the perimeter fence. The contamination in Z-Plant is primarily 239 Pu which has a half-life of 24,360 years. Because of the long half-life of 239 Pu, it is not practical to consider the isolation of the facility to await reduction of the contamination level by natural decay. Therefore, this study analyzes the costs, risk and benefit of decontaminating Z-Plant to four different levels of residual contamination. The three principle criteria used in the analysis are cost, the risk of offsite dose to the public, and the occupational exposure to onsite personnel

  12. Cost/risk/benefit analysis report on the decontamination and decommissioning of Z-plant

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, J. P.; Sexton, R. A.; Fort, M. L.; Nunn, S. E.

    1979-09-28

    This study was performed to estimate the cost of decontaminating and decommissioning Z-Plant. All of the buildings in the Z-Plant exclusion area except Building 2736-Z, the plutonium storage vault, are included in the study. The study also excludes all underground facilities within the exclusion area which are not contained within a building and all Z-Plant related facilities outside the perimeter fence. The contamination in Z-Plant is primarily /sup 239/Pu which has a half-life of 24,360 years. Because of the long half-life of /sup 239/Pu, it is not practical to consider the isolation of the facility to await reduction of the contamination level by natural decay. Therefore, this study analyzes the costs, risk and benefit of decontaminating Z-Plant to four different levels of residual contamination. The three principle criteria used in the analysis are cost, the risk of offsite dose to the public, and the occupational exposure to onsite personnel.

  13. Skin contamination - prevention and decontaminating

    International Nuclear Information System (INIS)

    Henning, K.

    2001-01-01

    A detailed examination is made of the structure of human skin. Measures were drawn up to prevent skin contamination in nuclear installations as well as contaminated skin was decontaminated from the personnel. By systematically applying these measures a significant level of success was achieved in preventing contamination in nuclear installations. Cases where more far-reaching chemical methods had to be used were kept to a minimum. (R.P.)

  14. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  15. Development of decontamination methods

    International Nuclear Information System (INIS)

    Kunze, S.; Dippel, T.; Hentschel, D.

    1976-01-01

    PVC floorings, fabricated by mixing of the basic components, showed no relation between content of fillers and decontamination results. Decontamination results are partly poorer, if the flooring contains a high concentration of the filler, especially if the latter consists mainly of hydrophilic materials. The coloring of the floorings seems to have no influence on the decontamination. Rubber floorings, fabricated by chemical reactions between polymers, vulcanization materials and fillers, show decontamination results depending definitely from the proper choice of the filler. Flooring types, containing lampblack, graphite, kaoline, barium sulfate and titanium oxide are easy to decontaminate. Increasing contents of hydrophilic filler cause a fall off in the decontamination results. The decontamination effectiveness and the homogenity of cleaning pastes based on hydrochloric acid, nitric acid, titanium oxide and polyethylene powders is strongly depended on the content of hydrochloric acid. Reduction of the content of this component to less than 2 w/O remains the effectiveness unchanged only if the titanium oxide-polyethylene powder mixture is substituted by a high density, highly surface active powder material. This type of paste containing no hydrochloric acid shows nearly the same decontamination effectiveness as standard pickling pastes containing about 30% hydrochlorid acid. Properly prepared salt powder turn out to be easily and successfully applied to metal surfaces by a flame spray technique. The thin layer of molten salts is a very effective decontamination to samples contaminated in the primary loop of a PWR. (orig.) [de

  16. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Decontamination Pond Facility. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes

  17. Lasers and high-energy light as a decontamination tool for nuclear applications

    International Nuclear Information System (INIS)

    Flesher, D.J.

    1993-12-01

    Light-aided decontamination (LAD) removal of paint and concrete layers is competitive with sand blasting rates. Remote operations, up to 137 m (450 ft), and lower waste volumes can provide cost, safety, and environmental advantages for nuclear facilities

  18. Federal and state regulatory requirements for decontamination and decommissioning at US Department of Energy Oak Ridge Operations Facilities

    International Nuclear Information System (INIS)

    Etnier, E.L.; Houlberg, L.M.; Bock, R.E.

    1994-06-01

    The purpose of this report is to address regulatory requirements for decontamination and decommissioning (D and D) activities at the Oak Ridge Reservation and Paducah Gaseous Diffusion Plant. This report is a summary of potential federal and state regulatory requirements applicable to general D and D activities. Excerpts are presented in the text and tables from the complete set of regulatory requirements. This report should be used as a guide to the major regulatory issues related to D and D. Compliance with other federal, state, and local regulations not addressed here may be required and should be addressed carefully by project management on a site-specific basis. The report summarizes the major acts and implementing regulations (e.g., Resource and Conservation Recovery Act, Clean Air Act, and Toxic Substances Control Act) only with regard to D and D activities. Additional regulatory drivers for D and D activities may be established through negotiated agreements, such as the Federal Facility Agreement and the US Environmental Protection Agency Mixed Waste Federal Facility Compliance Agreement; these are discussed in this report. The DOE orders and Energy Systems procedures also are summarized briefly in instances where they directly apply to D and D

  19. Madness in Sartre's "The Room"

    NARCIS (Netherlands)

    Jongeneel, E.C.S.

    2009-01-01

    In "The Room," part of his short story collection, The Wall (1938), Jean-Paul Sartre investigates madness as an alternative way of bourgeois life and thus takes a stand in the contemporary debate on the existential status of mental illness. "The Room" is a case-study of a "limit situation," as well

  20. Decontamination method

    International Nuclear Information System (INIS)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki; Onuki, Toyomitsu; Toyota, Seiichi

    1998-01-01

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  1. Decontamination method

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki [Hitachi Ltd., Tokyo (Japan); Onuki, Toyomitsu; Toyota, Seiichi

    1998-10-27

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  2. Generating QCD amplitudes in the color-flow basis with MadGraph

    International Nuclear Information System (INIS)

    Hagiwara, Kaoru; Takaesu, Yoshitaro

    2011-01-01

    We propose to make use of the off-shell recursive relations with the color-flow decomposition in the calculation of QCD amplitudes on MadGraph. We introduce colored quarks and their interactions with nine gluons in the color-flow basis plus an Abelian gluon on MadGraph, such that it generates helicity amplitudes in the color-flow basis with off-shell recursive formulae for multi-gluon sub-amplitudes. We demonstrate calculations of up to 5-jet processes such as gg→5g, u anti u→5g and uu→uuggg. Although our demonstration is limited, it paves the way to evaluate amplitudes with more quark lines and gluons with MadGraph. (orig.)

  3. Analysis of recently enacted national energy legislation and the Clean Air Act Amendments of 1990 as related to Decontamination and Decommissioning at Federal, State, and private facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This report is a summary of an analysis of recently enacted national energy legislation and the Clean Air Act Amendments of 1990 as related to Decontamination and Decommissioning (D ampersand D) at Federal, State and private facilities. It is submitted pursuant to Appendix A of subcontract 9-X62-0785E-1, dated July 27, 1992, between the Regents of the University of California and Van Ness, Feldman ampersand Curtis

  4. Decontamination solution development studies

    International Nuclear Information System (INIS)

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement

  5. Use of urethane foam in preparing for decontamination and decommissioning of radioactive facilities

    International Nuclear Information System (INIS)

    1981-01-01

    Portable urethane foam generating equipment has been in use for 15 to 20 years for a large number of applications, such as roof systems, tank insulation, and building insulation. Still another industrial application is its use in the decontamination and decommissioning of radioactive facilities at Mound Facility. The major problems encountered with urethane foams were with the packaging and stabilization procedures. The operation for spraying the foam on interior surfaces and equipment involved getting the gun inside without opening up the interior to the outside environment. A Gusmer FF proportioner and Model D spray gun was used for this operation. The gun was modified so that the trigger could be remotely located to facilitate its entry through a glovebox gloveport opening. The Model D gun has an air cap to blow foam off the tip of the gun. This cap was used to hold a plastic bag in place around the gun. The plastic bag is then put on a glove port and fastened securely. Urethane spray is applied on all exposed surfaces. This assures that all residual material is fixed for shipment. This simplifies cleaning operations as there is no need to remove the last trace of plutonium and results in a considerable shortening of the time required to prepare the gloveboxes. With the interior foamed, the gloveboxes are moved to the loading and packaging areas. Urethane foams are used to fill in the voids in our final shipping container. Radioactive waste materials are segregated according to the level of radioactive material present. One category is low level or low specific activity (LSA) and the other high level or Transuranic (TRU). Foam is used in TRU packages as packaging material to stabilize the loads and to help cushion against shock in transit on truck or railcar

  6. Decontamination device for pipeline

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    Pipelines to be decontaminated are parts of pipelines contaminated with radioactive materials, and they are connected to a fluid transfer means (for example, a bladeless pump) and a ball collector by way of a connector. The fluid of a mixture of chemical decontaminating liquid and spheres is sent into pipelines to be decontaminated. The spheres are, for example, heat resistant porous hard or soft rubber spheres. The fluid discharged from the pipelines to be decontaminated are circulated by way of bypassing means. The inner surface of the pipelines is decontaminated by the circulation of the fluid. When the bypass means is closed, the fluid discharged from the pipelines to be decontaminated is sent to the ball collector, and the spheres are captured by a hopper. Further, the liquid is sent to the filtrating means to filter the chemical contaminating liquid, and sludges contained in the liquid are captured. (I.N.)

  7. Full system chemical decontamination used in nuclear decommissioning

    International Nuclear Information System (INIS)

    Elder, George; Rottner, Bernard; Braehler, Georg

    2012-01-01

    The decommissioning of nuclear power stations at the end of the operational period of electricity generation offers technical challenges in the safe dismantling of the facility and the minimization of radioactive waste arising from the decommissioning activities. These challenges have been successfully overcome as demonstrated by decommissioning of the first generation of nuclear power plants. One of the techniques used in decommissioning is that of chemical decontamination which has a number of functions and advantages as given here: 1. Removal of contamination from metal surfaces in the reactors cooling systems. 2. Reduction of radioactive exposure to decommissioning workers 3. Minimization of metal waste by decontamination and recycling of metal components 4. Control of contamination when dismantling reactor and waste systems 5. Reduction in costs due to lower radiation fields, lower contamination levels and minimal metal waste volume for disposal. One such chemical decontamination technology was developed for the Electric Power Research Institute (EPRI) by Bradtec (Bradtec is an ONET Technologies subsidiary) and is known as the EPRI DFD system. This paper gives a description of the EPRI DFD system, and highlights the experience using the system. (orig.)

  8. An overview of plutonium-238 decontamination and decommissioning (D and D) projects at Mound

    International Nuclear Information System (INIS)

    Bond, W.H.; Davis, W.P.; Draper, D.G.; Geichman, J.R.; Harris, J.C.; Jaeger, R.R.; Sohn, R.L.

    1987-01-01

    Mound is currently decontaminating for restricted reuse and/or decommissioning for conditional release four major plutonium-238 contaminated facilities that contained 1700 linear feet of gloveboxes and associated equipment and services. Several thousand linear feet of external underground piping, associated tanks, and contaminated soil are being removed. Two of the facilities contain ongoing operations and will be reused for both radioactive and nonradioactive programs. Two others will be completely demolished and the land area will become available for future DOE building sites. An overview of the successful techniques and equipment used in the decontamination and decommissioning of individual pieces of equipment, gloveboxes, services, laboratories, sections of buildings, entire buildings, and external underground piping, tanks, and soil in a highly populated residential area is described and pictorially presented

  9. Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.

    Science.gov (United States)

    Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D

    2014-06-01

    Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    Science.gov (United States)

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.g. decontamination removal from skin, physical removal by sponge swabbing and activation of degradation mechanisms. The efficacy of each decontamination product was evaluated 5 or 30 min after dermal application of VX (neat or diluted to 20% in water). The RSDL-lotion was superior in reducing the penetration of VX through human skin, both when exposed as neat agent and when diluted to 20% in water. Swabbing with the RSDL-sponge during 2 min revealed decreased efficacy compared to applying the RSDL-lotion directly on the skin for 30 min. Decontamination with Fuller's Earth and alldecontMED significantly reduced the penetration of neat concentration of VX through human skin. PS104-powder was insufficient for decontamination of VX at both time-points, independently of the skin contact time of PS104. The PS104-slurry (a mixture of PS104-powder and water), slightly improved the decontamination efficacy. Comparing the time-points for initiated decontamination revealed less penetrated VX for RSDL and Fuller's Earth when decontamination was initiated after 5 min compared to 30 min post-exposure, while alldecontMED displayed similar efficacy at both time-points. Decontamination by washing with water only resulted in a significant reduction of penetrated VX when washing was performed 5 min after exposure, but not when decontamination was delayed to 30 min post-exposure of neat VX. In conclusion, early initiated decontamination with the

  11. Decontamination of radioactive isotopes

    International Nuclear Information System (INIS)

    Despotovic, R.; Music, S.; Subotic, B.; Wolf, R.H.H.

    1979-01-01

    Removal of radioactive isotopes under controlled conditions is determined by a number of physical and chemical properties considered radiocontaminating and by the characteristics of the contaminated object. Determination of quantitative and qualitative factors for equilibrium in a contamination-decontamination system provides the basis for rational and successful decontamination. The decontamination of various ''solid/liquid'' systems is interesting from the scientific and technological point of view. These systems are of great importance in radiation protection (decontamination of various surfaces, liquids, drinking water, fixation or collection of radiocontaminants). Different types of decontamination systems are discussed. The dependence of rate and efficiency of the preparation conditions and on the ageing of the scavenger is described. The influence of coagulating electrolyte on radioactive isotope fixation efficiency was also determined. The fixation of fission radionuclide on oxide scavengers has been studied. The connection between fundamental investigations and practical decontamination of the ''solid/liquid'' systems is discussed. (author)

  12. [The representation of madness in William Shakespeare's characters].

    Science.gov (United States)

    Stompe, Thomas; Ritter, Kristina; Friedmann, Alexander

    2006-08-01

    Shakespeare is one of the great creators of human characters of the 16(th) century. Like for many of his contemporaries madness was a central topic of his work. The first part of this paper discusses the sociocultural environment and the semantic field of madness in the Elizabethan age, which forms the background for Shakespeare's characters. In the second part we try to analyze the clinical pictures of the fictive characters of Othello, Hamlet, Lear and Macbeth. While we find melancholy, delusions and hallucinations, other diseases such as schizophrenia are missing entirely. Schizophrenia only appears in the literature more than two hundred years later, in the beginning of modern age.

  13. Decontamination and decommissioning of the JANUS reactor at the Argonne National Laboratory-East site

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Garlock, G.A.

    1997-05-01

    Argonne National Laboratory has begun the decontamination and decommissioning (D ampersand D) of the JANUS Reactor Facility. The project is managed by the Technology Development Division's D ampersand D Program personnel. D ampersand D procedures are performed by sub-contractor personnel. Specific activities involving the removal, size reduction, and packaging of radioactive components and facilities are discussed

  14. Emotional and deliberative reactions to a public crisis: Mad Cow disease in France.

    Science.gov (United States)

    Sinaceur, Marwan; Heath, Chip; Cole, Steve

    2005-03-01

    Although most theories of choice are cognitive, recent research has emphasized the role of emotions. We used a novel context--the Mad Cow crisis in France--to investigate how emotions alter choice even when consequences are held constant. A field study showed that individuals reduced beef consumption in months after many newspaper articles featured the emotional label "Mad Cow," but beef consumption was unaffected after articles featured scientific labels for the same disease. The reverse pattern held for the disease-related actions of a government bureaucracy. A lab study showed that the Mad Cow label induces people to make choices based solely on emotional reactions, whereas scientific labels induce people to consider their own probability judgments. Although the Mad Cow label produces less rational behavior than scientific labels, it is two to four times more common in the environment.

  15. Trans meets cis in MADS science

    NARCIS (Netherlands)

    Folter, de S.; Angenent, G.C.

    2006-01-01

    The interaction between a transcription factor and its binding site at the DNA is an integral part of transcriptional regulatory networks, which is fundamental for an understanding of biological processes. An example is the family of MADS domain transcription factors, which represent key regulators

  16. PND fuel handling decontamination program: specialized techniques and results

    International Nuclear Information System (INIS)

    Pan, R.; Hobbs, K.; Minnis, M.; Graham, K.

    1995-01-01

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at the Pickering Nuclear Station, an eight unit CANDU station located about 30 km east of Toronto. This paper presents an overview of the set up and techniques used for cleaning in the PND Fuel Handling Maintenance Facility, and the results achieved. (author)

  17. Decontamination and decommission of a radiochemical laboratory building complex

    International Nuclear Information System (INIS)

    Zoubek, Norbert

    2008-01-01

    Full text: Handling of unsealed radioactive substances for research and development purposes in chemical or pharmaceutical industries or research centres as well as production of radioactive substances (e.g. for applications in nuclear medicine or industry) requires operation of special radiochemical laboratories. In general, operation of radiochemical laboratories is strongly regulated by the government and national authorities. The operator needs a permit related to radiological protection. In general, technical requirements for such facilities are very high. To ensure high safety standards with respect to the employees and the environment, several radiological protection measures have to be taken. These measures (for example special shielding or ventilation and waste water systems) depend on various factors, e.g. activity in use, kind of nuclides, chemical properties and volatility of substances. In order to close-down such radiochemical laboratories some radiological protection measures have to be maintained to ensure protection of both humans and the environment induced by possible residual contaminations within the facility including technical inventory. However, a later reuse of the facility as a non-radioactive facility requires removal of all radioactive contamination with respect to national regulation. Resulting radioactive wastes have to be disposed of under control of competent authorities. Based on the experience of a decontamination and decommission project for a former radiochemical laboratory complex, the main steps necessary to release such a facility are discussed. Analytical aspects of initial conditions, necessary organisational structures within the project, resources needed estimation and exploration of the radiological situation in the laboratory, elaboration of a measuring strategy and decontamination methods as well as different waste disposal routes in relation to different waste types are reported. (author)

  18. Evaluation of decontamination during dismantling of plutonium-contaminated glove boxes

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Taguchi, Seigi; Ohzeki, Satoru; Inoue, Yoshiaki; Kashima, Sadamitsu

    1981-01-01

    The dismantling work of plutonium-contaminated glove boxes was carried out. These glove boxes had been used for the R and D of plutonium-uranium mixed oxide fuel for 15 years. The work was carried out in a pressure-controlled greenhouse, and the contamination of air in the greenhouse was monitored continuously. In order to reduce the contamination of air during dismantling, the decontamination and fixation of loose contaminants on the surfaces of glove boxes were very important. The correlation between decontamination and the contamination of air regarding dismantling is reported in this paper. The surface contamination density of the glove boxes was measured utilizing the smear method before and after the decontamination, and the decontamination effects were estimated. The contamination of air during dismantling was continuously measured with a plutonium dust monitor. It was found that loose contamination exponentially decreased by the decontamination process. When the so-called wet glove boxes, which contained wet recovery and waste disposal apparatus, were dismantled, the contamination of air did not exceed 500 (MPC) a. However, the contamination of air exceeded 500 (MPC) a several times in the present work of dismantling the so-called dry glove boxes which had been used for the fabrication of plutonium-uranium mixed oxide pellets. (Kato, T.)

  19. Mobile worksystems for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-01-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D ampersand D

  20. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF 6 gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF 6 -handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D ampersand D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D ampersand D, as will the other UF 6 -handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF 6 . These reagents include ClF 3 , F 2 , and other compounds. The scope of D ampersand D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs

  1. Bioinspired Surface Treatments for Improved Decontamination: Handling andDecontamination Considerations

    Science.gov (United States)

    2018-03-16

    and Decontamination Considerations Brandy J. White Martin H. Moore Brian J. Melde Laboratory for the Study of Molecular Interfacial Interactions...Decontamination Considerations Brandy J. White, Martin H. Moore, Brian J. Melde, Anthony P. Malanoksi, and Chanté Campbell1 Center for Bio/Molecular

  2. What can be done with SPring-8. Features of the facility

    International Nuclear Information System (INIS)

    Hara, Masahiro

    2006-01-01

    SPring-8 is the world's largest third-generation synchrotron radiation facility. The definition, features, facility (SPring-8), applications and examples of researches with SR (synchrotron radiation) are explained. SR is characterized by brightness, high directionality and variable polarization. History of facilities of SR is stated. Outline of SPring-8, resources of SR, the specifications, beam line map, brightness of SPring-8 are shown. The examples of researches with SPring-8 contained the refraction-contrast imaging, soft X-ray microscope, XAFS, X-ray topography, photoelectron emission microscopy, atomic structure analysis of protein, MAD method, X-ray fluorescence spectroscopy, lithography and thin film analysis. Operation conditions of the SPring-8 storage ring, interaction between X-ray and materials, the principle of refraction-contrast, measurement of XAFS, Bragg's conditions of X-ray scattering, BL02B2 (beam-line of powder diffraction), BL04B1 and SPEED1500, concept of protein analysis beam-line and MAD method, and spectra of trace analysis of arsenious acid are illustrated. (S.Y.)

  3. Portsmouth Gaseous Diffusion Plant Decontamination and Decommissioning Program surveillance and maintenance plan, FY 1993--2002

    International Nuclear Information System (INIS)

    Schloesslin, W.

    1992-11-01

    The Decontamination and Decommissioning (D ampersand D) Program at the Portsmouth Gaseous Diffusion Plant (PORTS) is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide PORTS the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER Program. The D ampersand D Program provides collective management of the sites within the plant which require decontamination and decommissioning, prioritizes those areas in terms of health, safety and environmental concerns, and implements the appropriate level of remedial action. The D ampersand D Program provides support to facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each inactive facility has been prepared. This report provides this documentation for the PORTS facilities currently included in the D ampersand D Program and includes projected resource requirements for the planning period of FY 1993 through FY 2002

  4. United States Department of Energy, Office of Environmental Management, Uranium Enrichment Decontamination and Decomissioning Fund financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Energy Policy Act of 1992 (Act) established the Uranium Enrichment Decontamination and Decommissioning Fund (D and D Fund, or Fund) to pay the costs for decontamination and decommissioning three gaseous diffusion facilities located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio (diffusion facilities). The Act also authorized the Fund to pay remedial action costs associated with the Government`s operation of the facilities and to reimburse uranium and thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government. The report presents the results of the independent certified public accountants` audit of the D and D Fund financial statements as of September 30, 1996. The auditors have expressed an unqualified opinion on the 1996 statement of financial position and the related statements of operations and changes in net position and cash flows.

  5. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  6. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2013-10-04

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

  7. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    International Nuclear Information System (INIS)

    Hitomi, Toshiaki; Habu, Toshiyuki; Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H.; Osafune, Kenji; Taura, Daisuke; Sone, Masakatsu; Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko; Hashikata, Hirokuni; Takagi, Yasushi; Morito, Daisuke; Miyamoto, Susumu; Nakao, Kazuwa; Koizumi, Akio

    2013-01-01

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability

  8. JAEA key facilities for global advanced fuel cycle R and D

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shigeo; Yamamoto, Ryuichi [Nuclear Fuel Cycle Engineering Labos, JAEA, 4-33 Tokai-mura, Ibaraki, 319-1194 (Japan)

    2008-07-01

    Advanced fuel cycle will be realized with the mid and long term R and D during the long-term transition period from LWR cycle to advanced reactor fuel cycle. Most of JAEA facilities have been utilized to establish the current LWR and FBR (Fast Breeder Reactor) fuel cycle by implementing evolutionary R and D. An assessment of today's state experimental facilities concerning the following research issues: reprocessing, Mox fuel fabrication, irradiation and post-irradiation examination, waste management and nuclear data measurement, is made. The revolutionary R and D requests new issues to be studied: the TRU multi-recycling, minor actinide recycling, the assessment of proliferation resistance and the assessment of cost reduction. To implement the revolutionary R and D for advanced fuel cycle, however, these facilities should be refurbished to install new machines and process equipment to provide more flexible testing parameters.

  9. Decommissioning of nuclear facilities involving operations with uranium and thorium

    International Nuclear Information System (INIS)

    Shum, E.Y.; Neuder, S.M.

    1990-01-01

    When a licensed nuclear facility ceases operation, the U.S. Nuclear Regulatory Commission (NRC) ensures that the facility and its site are decontaminated to acceptable levels so they may safely be released for unrestricted public use. Because specific environmental standards or broad federal guidelines governing release of residual radioactive contamination have not been issued, NRC has developed ad hoc cleanup criteria for decommissioning nuclear facilities that involved uranium and thorium. Cleanup criteria include decontamination of buildings, equipment, and land. We will address cleanup criteria and their rationale; procedures for decommissioning uranium/thorium facilities; radiological survey designs and procedures; radiological monitoring and measurement; and cost-effectiveness to demonstrate compliance

  10. Radiological characterization of the TAN-IET facility

    Energy Technology Data Exchange (ETDEWEB)

    Koeppen, L.D.; Rodriguez, S.V.; Wheeler, O.A.; Cadwell, E.D.; Simpson, O.D.

    1982-06-01

    The Initial Engine Test (IET) facility is located on the Idaho National Engineering Laboratory (INEL) site at the north end of Test Area North (TAN). The IET facility was constructed and used for the Aircraft Nuclear Propulsion Program during the 1950's and was later used for two other programs: the Space Nuclear Auxiliary Power Transient (SNAP-TRAN) and the Hallam Decontamination and Decommissioning Project. The facility is no longer in use, therefore, a complete radiological characterization was conducted at the IET site. The characterization included measurements of beta-gamma dose rates; beta-gamma and alpha surface contamination; concentrations of selected radionuclides in subsurface storage tanks, surface soil, the exhaust duct, stack and test pad; and a walk-over surface survey of the entire facility. The information contained in this report will be of great value as the IET facility goes through the decommissioning and decontamination process.

  11. Technology needs for decommissioning and decontamination

    International Nuclear Information System (INIS)

    Bundy, R.D.; Kennerly, J.M.

    1993-12-01

    This report summarizes the current view of the most important decontamination and decommissioning (D ampersand D) technology needs for the US Department of Energy facilities for which the D ampersand D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D ampersand D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D ampersand D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D ampersand D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R ampersand D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D ampersand D

  12. Decontamination of alpha-bearing solid wastes and plutonium recovery

    International Nuclear Information System (INIS)

    Koehly, G.; Madic, C.; Lecomte, M.; Bourges, J.; Saulze, J.L.; Broudic, J.C.

    1993-01-01

    Nuclear activities in the Radiochemistry building of Fontenay-aux-Roses Nuclear Research Center concern principally the study of fuel reprocessing and the production of transuranium isotopes. During these activities solid wastes are produced. In order to improve the management of these wastes, it has been decided to build new facilities: a group of three glove-boxes named ELISE for the treatment of α active solid waste and a hot-cell, PROLIXE, for the treatment of solid wastes. Leaching processes were developed in order to: decontaminate these wastes and recover actinide elements, particularly the highly valuable plutonium, from the leachates. The processes developed are sufficiently flexible to be able to accommodate solid wastes produced in other facilities. Laboratory studies were conducted to develop the leaching process based on the use of electrogenerated Ag(II) species which is particularly suitable to provoke the dissolution of PuO 2 . Successful exhaustive Pu decontaminations with DF(Pu) higher than 10 4 were achieved for the first time during the treatment of stainless steel PuO 2 cans (future MELOX plant) by electrogenerated Ag (II) in nitric acid medium

  13. Madness in Shakespeare's Characters

    Directory of Open Access Journals (Sweden)

    Nuno Borja-Santos

    2014-10-01

    Full Text Available This paper begins with an introduction where the aims are explained: a psychopathological analysis of a Shakespearean character - Othello – followed by the discussion of the English dramatist’s importance in helping us understand madness in the emergent world of Renaissance. The main characteristics of Othello’s personality, which allowed the development of his jealousy delusion, are described. Finally, the conclusions underline the overlap of the symptoms developed by the character with the DSM-IV classification.

  14. A study on decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Lee, H. S.; Lee, E. P.

    2000-09-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, The experiments in PIEF have been completed. It is supposed to dismantle and decontaminate the installed equipment by the end of year 2000. Since all of DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must br performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. Firstly, This report describes the basic plan for dismantlement/decontamination of the characterization equipment(power and sintered fuel). And methods of measurement/packing/ transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order

  15. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-06-01

    Nuclear fuels have been handled and examined after irradiation by physical and chemical techniques, and radiotherapy sources, mainly 60 Co, have been produced at Risoe National Laboratory since 1964. The aims of decommissioning (during 1990-94, at IAEA Stage 2 level for reactors) were to obtain safe conditions for the remaining parts of the facility and to produce clean space areas for new projects. The facility comprises 6 concrete cells, several lead-shielded steel cells, glove boxes, shielded storage for waste, a remotely operated optical microscope, a frogman area for personnel access to the concrete cells, a decontamination facility, workshops and safety installations. All steel cells, glove boxes and the microscope were emptied and removed. The concrete cells were emptied of fissile material, scientific equipment, general tools and scrap. Decontamination should facilitate waste packing and reduce amount of waste to be stored temporarily at the Risoe waste treatment facility together with highly active waste. The concrete cells were cleaned remotely by wiping, hot spot removal, by mechanical means and vacuum cleaning. The interiors of 2 cells were decontaminated by high pressure water jetting. All master-slave manipulators and part of the contaminated ventilation system at the cells were removed. The cells are left in a non-ventilated state, connected to the atmosphere by an absolute filter. The main contaminants measured before cell closure were 60 Co, 137 Cs and alpha-emitters. Dismantling, decontamination waste disposal and received doses are described. Simple techniques involving low doses were found to be very effective. (AB)

  16. Systematic chemical decontamination using IF7 gas - 59036

    International Nuclear Information System (INIS)

    Hata, Haruhi; Yokoyama, Kaoru; Sugitsue, Noritake

    2012-01-01

    Since 1979, Uranium enrichment technology has been researched through the gas centrifuge method, at Ningyo-toge Environmental Engineering Center of Japan Atomic Energy Agency (JAEA). In addition, the Demonstration Plant, that is final stage test facilities, was operating continuously from 1988 to 2001. As a result, a lot of residues accumulated in the plant. Most of this accumulation was found be uranium intermediate fluoride. The basic decommission policy of JAEA is that equipments of gas centrifuge will be decontaminated by sulfuric acid immersion method for clearance and reuse. In our plan, approximately 90% of metals will be cleared and reused, and then the remaining 10% will be disposed of radioactive waste. We propose a combination of sulfuric acid immersion method and the systematic chemical decontamination as an efficient method for decontamination of uranium enrichment facilities. This paper focuses on the method and performance of systematic chemical decontamination using IF 7 gas. The following (Figure 1) shows our decommission policy and position of systematic chemical decontamination by IF 7 gas for uranium enrichment plant. The IF 7 treatment technique belongs to the systematic decontamination technology. It has the high performance decontamination technique for the plant that accumulates the uranium intermediate fluoride, such as UF 4 , UF 5 , U 2 F 9 , and U 4 F 17 , which exist in the uranium enrichment plant through the Gas Centrifuge, called GCF. The one of characteristics of the IF 7 treatment, the secondary waste is just an IF 5 and little residues. In addition, this IF 5 can be reused as materials for making new IF 7 gas. The IF 7 treatment can also be performed in the room temperature and very low pressure like a 10-45 hPa. Furthermore, the IF 7 treatment is a simple method using chemical reaction. For this reason, we hardly need to care about secondary reaction with the exception of the reaction with IF 7 gasand the uranium intermediate

  17. Glovebox decontamination technology comparison

    International Nuclear Information System (INIS)

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-01-01

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented

  18. Cultural Mediators Seduced by Mad Men:

    DEFF Research Database (Denmark)

    Kristensen, Nete Nørgaard; Hellman, Heikki; Riegert, Kristina

    2017-01-01

    Based on theories about the role of cultural mediators in cultural production and using the TV series Mad Men as a case, this article investigates how cultural journalists in the Nordic countries have contributed to legitimizing “quality TV series” as a worthy field of aesthetic consumption. Key...

  19. Metallic surfaces decontamination by using laser light

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Lecardonnel, Xavier

    2013-01-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  20. Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-box gene, MdMADS1

    Directory of Open Access Journals (Sweden)

    Xinxin Feng

    2016-11-01

    Full Text Available Skin color is a key quality attribute of fruits and how to improve fruit coloration has long been a major concern. 5-Aminolevulinic acid (ALA, a natural plant growth regulator, can significantly increase anthocyanin accumulation in fruit skin and therefore effectively improve coloration of many fruits, including apple. However, the molecular mechanism how ALA stimulates anthocyanin accumulation in fruit skin remains unknown. Here, we investigated the impact of ALA on apple skin at the protein and mRNA levels. A total of 85 differentially expressed proteins in apple skins between ALA and water treatment (control were identified by complementary gel-based and gel-freeseparation techniques. Most of these differentially expressed proteins were up-regulated by ALA. Function analysis suggested that 87.06% of the ALA-responsive proteins were associated with fruit ripening. To further screen ALA-responsive regulators, we constructed a subtracted cDNA library (tester: ALA treatment; driver: control and obtained 104 differentially expressed unigenes, of which 38 unigenes were indicators for the fruit ripening-related gene. The differentially changed proteins and transcripts did not correspond well at an individual level, but showed similar regulated direction in function at the pathway level. Among the identified fruit ripening-related genes, the expression of MdMADS1, a developmental transcription regulator of fruit ripening, was positively correlated with expression of anthocyanin biosynthetic genes (MdCHS, MdDFR, MdLDOX and MdUFGT in apple skin under ALA treatment. Moreover, overexpression of MdMADS1 enhanced anthocyanin content in transformed apple calli, which was further enhanced by ALA. The anthocyanin content in MdMADS1-silenced calli was less than that in the control with ALA treatment, but higher than that without ALA treatment. These results indicated that MdMADS1 is involved in ALA-induced anthocyanin accumulation. In addition, anthocyanin

  1. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Matsubara, Sachito; Murayama, Kazunari; Yoshida, Hirohisa; Igei, Shigemitsu; Izumida, Tatsuo

    2013-01-01

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  2. Decommissioning and decontamination (burial ground stabilization) studies

    International Nuclear Information System (INIS)

    Cline, J.F.

    1980-01-01

    The decommissioning and decontamination of retired Hanford facilities and the future use of surrounding landscapes require isolation of contaminated wastes from the biosphere. Burial ground stabilization studies were conducted to determine the effectiveness of physical barriers for isolating contaminated wastes in shallow-land burial sites from plants and animals. This study was undertaken to determine the effectiveness of using a layer of loose rock between the waste and the surface soil covering to prevent both plant root and animal penetrations

  3. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; McCoy, M.W.

    1981-01-01

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  4. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  5. Dismantling and decontamination of Piver prototype vitrification plant

    International Nuclear Information System (INIS)

    Jouan, A.; Roudil, S.; Thomas, F.

    1991-01-01

    The PIVER prototype was targeted for dismantling in order to install a new pilot facility for the french continuous vitrification process. Most of the work involved the vitrification cell containing the process equipments, which had to be cleared out and thoroughly decontaminated; this implied disassembling, cutting up, conditioning and removing all the equipment installed in the cell. Remote manipulation, handling and cutting devices were used and some prior modifications were implemented in the cell environment. The dismantling procedure was conducted under a detailed programme defining the methodology for each operation. After equipment items and active zones were identified, the waste materials were removed, and several liquid decontamination operations were implemented. Removed activity, levels of irradiation in the cell and doses integrated by personnel were monitored to control progress and to adapt procedures to the conditions encountered. At the end of December 1989, the PIVER cleanup programme was at 87% complete and the total activity removed was 2.11 X 10 14 Bq (5712 Ci). The objective now is to obtain suitable working conditions in order to allow operators to enter the cell to remove items that are inaccessible or which cannot be dismantled by remote manipulators and to complete the decontamination procedure

  6. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  7. The dissolution of metal decontamination sludges stored in tanks and their management

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, R.A.; Phillips, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  8. The dissolution of metal decontamination sludges stored in tanks and their management

    International Nuclear Information System (INIS)

    Prokopowicz, R.A.; Phillips, B.

    2011-01-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  9. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  10. Decontamination and decommissioning waste characterization and cost estimates from historical records

    International Nuclear Information System (INIS)

    Hootman, H.E.

    1994-01-01

    There are more than 600 facilities at the Savannah River Site (SRS) that are contaminated with either radioactivity, hazardous chemicals, or asbestos. The more significant facilities can be separated into broad categories for decontamination and decommissioning (D ampersand D) planning such as plutonium facilities, waste tanks, chemical separations canyons, and nuclear reactors. Uncertainties exist in the timing, extent of stabilization, and D ampersand D required for these production facilities. Detailed analyses of the risk, costs, and engineering feasibility are needed to define production facility end states to ensure expected reduction in health and environmental risk. In the meantime, scoping projections are required to satisfy Department of Energy (DOE) requirements for 30 year plans, and to indicate where detailed analysis should be funded

  11. Environmental Assessment for decontamination and dismantlement, Pinellas Plant

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  12. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  13. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  14. Decontamination and provenance tracking. The key to acceptable recycle of nuclear materials

    International Nuclear Information System (INIS)

    Bradbury, D.; Elder, G.R.; Wood, C.J.

    2002-01-01

    Decommissioning of nuclear plants and components demands the proper management of the process, both for economic reasons and for retaining public confidence in the continued use of nuclear power. Surface decontamination has an important role to play in decommissioning. A new development, the EPRI DFDX process, produces secondary waste from decontamination in the form of powdered metal rather than ion exchange resin, thereby reducing the volume of secondary waste for storage and eventual disposal. The process has been patented and licensed and is due to be field-tested on a number of sites starting in 2002. Although the purpose of the process is to clean materials sufficiently to achieve unrestricted release, in practice there is some public unease at the prospect of formerly contaminated materials passing into unrestricted use. Greater public support for recycle can be achieved by recording the provenance of decontaminated materials and recycling them back into restricted uses in the nuclear industry. Because the materials have first been decontaminated to below free release levels, there is no objection to using non-radioactive facilities for the recycling and manufacturing activities, provided that the materials are properly tracked to prevent their uncontrolled release. (author)

  15. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  16. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  17. Live and let die - the B(sister MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Xuelian Yang

    Full Text Available B(sister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that B(sister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of B(sister genes in eudicots is masked by redundancy with other genes and little is known about the function of B(sister genes in monocots, and about the evolution of B(sister gene functions. Here we characterize OsMADS29, one of three MADS-box B(sister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of B(sister genes.

  18. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  19. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  20. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  1. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  2. Music, madness and the body: symptom and cure.

    Science.gov (United States)

    MacKinnon, Dolly

    2006-03-01

    Building on Sander L. Gilman's exemplary work on images of madness and the body, this article examines images of music, madness and the body by discussing the persistent cultural beliefs stemming from Classical Antiquity that underpin music as medicinal. These images reflect the body engaged in therapeutic musical activities, as well as musical sounds forming part of the evidence of the mental diagnostic state of a patient in case records. The historiography of music as medicinal has been overlooked in the history of psychiatry. This article provides a brief background to the cultural beliefs that underlie examples of music as both symptom and cure in 19th- and 20th-century asylum records in Australia, Britain, Europe and North America.

  3. Gentilly 1: decontamination program

    International Nuclear Information System (INIS)

    Le, H.; Denault, P.

    1985-01-01

    The Gentilly 1 station, a 250-MW(e) light-water-cooled and heavy-water-moderated nuclear reactor, is being decommissioned to a static state (variant of stage 1) condition by Atomic Energy of Canada Limited (AECL). The scope of the decontamination program at the Gentilly 1 site includes the fuel pool and associated systems, the decontamination center, the laundry, the feedwater pumps and piping systems, the service building ventilation and drainage systems, and miscellaneous floor and wall areas. After an extensive literature review for acceptable decontamination methods, it was decided that the decontamination equipment used at Gentilly 1 during the program would include a hydrolaser, a scarifier, chipping hammers, a steam cleaner, an ultrasonic bath, and cutting tools. In addition, various foams, acids, detergents, surfactants, and abrasives are used alone and in tandem with the above equipment. This paper highlights the result of these decontaminations, their effectiveness, and the recommendation for future application. The methodology in performing these operations are also presented

  4. Mad, terroir og tv: Smag på Danmark!

    Directory of Open Access Journals (Sweden)

    Dorthe Refslund Christensen

    2008-09-01

    Full Text Available Mad fylder mere i medierne, men hvordan underholder fx et madprogram på tv? Med afsæt i de 13 afsnit af Claus Meyer-serien Smag på Danmark! undersøger vi, hvordan serien er konstrueret og fortalt. Især ser vi på, hvilken rolle de 13 forskellige steder, som serien foregår på, har. Vi diskuterer begreber som terroir og mytologisering. Serien etablerer dobbeltheder og relationer, og i tråd med dette forlenes sted som terroir både med al og med ingen betydning. Mad knyttes som et tegn, med Barthes in mente, til stedet, men på en måde, der leverer rum for seerens eget forestillingsarbejde. Serien demonstrerer for seerne, hvordan smagsdomme kan foregå med Meyer som seerens stedfortræder i et ferie- og fritidsunivers. Den nydelse, som serien konstant etablerer, demonstrerer og anticiperer, kan seeren deltage i med sit eget fantasiarbejde: Det er god underholdning, fordi så meget er overladt til seernes forestillingsarbejde. Food, Terroir, and Television: Taste Denmark! Food has become more dominant in the media landscape, but how does a food programme on television entertain us? We analyse how the 13 episodes of the Claus Meyer series Smag på Danmark (Taste Denmark!are constructed and narrated. We pay particular attention to the different locations of the episodes and discuss the terms terroir and mythologization. The series establishes ambiguities and relations, and in this connection the location understood as terroir means everything – and at the same time means nothing at all. With reference to Barthes, the series links food as a sign to location, but in such a way that room is left for the viewer’s own imagination. The series demonstrates to the viewers how judgements of taste can be made in a time of leisure and a universe of holidays, with Meyer acting as the viewer’s proxy. The series is constantly establishing, demonstrating and anticipating a pleasure in which the viewer can participate in his or her own imagination

  5. Safety assessment of the Area 6 Decontamination Pad and Laundry

    International Nuclear Information System (INIS)

    Chilton, M.W.; Orcutt, J.A.

    1984-10-01

    The Safety Assessment of the Area 6 Decontamination Pad and Laundry, prepared in accordance with DOE Order 5481.1A, identifies and evaluates potential radiation and chemical hazards to personnel, and impacts on the environment. Site and facility characteristics, as well as routine and nonroutine operations are discussed. Hypothetical incidents and accidents are described and evaluated. 3 figures, 1 table

  6. Recommendations for skin decontamination

    International Nuclear Information System (INIS)

    1989-01-01

    Further to the reecommendations for determining the surface contamination of the skin and estimating the radiation exposure of the skin after contamination (SAAS-Mitt--89-16), measures for skin decontamination are recommended. They are necessary if (1) after simple decontamination by means of water, soap and brush without damaging the skin the surface contamination limits are exceeded and the radiation exposure to be expected for the undamaged healthy skin is estimated as to high, and if (2) a wound is contaminated. To remove skin contaminations, in general universally applicable, non-aggressive decontamination means and methods are sufficient. In special cases, nuclide-specific decontamination is required taking into account the properties of the radioactive substance

  7. Decontamination of TRIGA Mark II reactor, Indonesia

    International Nuclear Information System (INIS)

    Suseno, H.; Daryoko, M.; Goeritno, A.

    2002-01-01

    The TRIGA Mark II Reactor in the Centre for Research and Development Nuclear Technique Bandung has been partially decommissioned as part of an upgrading project. The upgrading project was carried out from 1995 to 2000 and is being commissioned in 2001. The decommissioning portion of the project included disassembly of some components of the reactor core, producing contaminated material. This contaminated material (grid plate, reflector, thermal column, heat exchanger and pipe) will be sent to the Decontamination Facility at the Radioactive Waste Management Development Centre. (author)

  8. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions. This dataset is associated with the following...

  9. Technical report on natural evaporation system for radioactive liquid waste treatment arising from TRIGA research reactors' decontamination and decommissioning activities

    International Nuclear Information System (INIS)

    Moon, J. S.; Jung, K. J.; Baek, S. T.; Jung, U. S.; Park, S. K.; Jung, K. H.

    1999-01-01

    This technical report described that radioactive liquid waste treatment for dismantling/decontamination of TRIGA Mark research reactor in Seoul. That is, we try safety treatment of operation radioactive liquid waste during of operating TRIGA Mark research reactor and dismantling radioactive liquid waste during R and D of research reactor hereafter, and by utilizing of new natural evaporation facility with describing design criteria of new natural evaporation facility. Therefore, this technical report described the quantity of present radioactive liquid waste and dismantling radioactive liquid waste hereafter, analysis the status of radial-rays/radioactivity, and also treatment method of this radioactive liquid waste. Also, we derived the method that the safeguard of outskirts environment and the cost down of radioactive liquid waste treatment by minimize of the radioactive liquid waste quantities, through-out design/operation of new natural evaporation facility for treatment of operation radioactive liquid waste and dismantling radioactive liquid waste. (author). 6 refs., 12 tabs., 5 figs

  10. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  11. Welcome to the home page of the Decontamination and Decommissioning Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the details of the Argonne National Laboratory Home Page. Topics discussed include decontamination and decommissioning of the following: hot cells; remedial action; Experimental Boiling Water Reactor; glove boxes; the Chicago Pile No. 5 Research Reactor Facility; the Janus Reactor; Building 310 Retention Tanks; Zero Power Reactors 6 and 9; Argonne Thermal Source Reactor; cyclotron facility; and Juggernaut reactor

  12. Concrete decontamination and demolition methods

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1980-01-01

    The US Department of Energy (DOE), Division of Environmental Control Technology, requested Nuclear Energy Services to prepare a handbook for the decontamination and decommissioning (D and D) of DOE-owned and commercially-owned radioactive facilities. the objective of the handbook is to provide the nuclear industry with guidance on the state-of-the-art methods and equipment available for decommissioning and to provide the means to estimate decommissioning costs and environmental impact. The methods available for concrete decontamination and demolition are summarized to provide an overview of some of the state-of-the-art techniques to be discussed at this workshop. The pertinent information on each method will include the selection factors such as the rate of performance in terms of concrete removal per unit time (cubic yards per day), manpower required by craft, unit cost (dollars per cubic yard) and the advantages and disadvantages. The methods included in this overview are those that have been routinely used in nuclear and nonnuclear applications or demonstrated in field tests. These methods include controlled blasting, wrecking ball or slab, backhoe mounted ram, flame torch, thermic lance, rock splitter, demolition compound, sawing, core stitch drilling, explosive cutting, paving breaker and power chisel, drill and spall, scarifying, water cannon and grinding

  13. User's guide to program MAD: a computer program for the organization and manipulation of magnetic tape directories

    International Nuclear Information System (INIS)

    Gray, W.H.

    1979-05-01

    MAD is a computer program for the organization and manipulation of the information contained in magnetic tape directories. Program MAD creates, updates, and interrogates a set of four random access files collectively called the MAD unified data base. Although program MAD was originally intended as an information compression mechanism, it has evolved into an organization system with the added feature of an approximately 60% reduction in the space required to store the data. This program is easy to use, relatively fast, efficient in its use of disk space, and available to all users of the Fusion Energy Division DECsystem-10

  14. Number 13 / Part I. Music. 3. Mad Scenes: A Warning against Overwhelming Passions

    Directory of Open Access Journals (Sweden)

    Marisi Rossella

    2017-03-01

    Full Text Available This study focuses on mad scenes in poetry and musical theatre, stressing that, according to Aristotle’s theory on catharsis and the Affektenlehre, they had a pedagogical role on the audience. Some mad scenes by J.S. Bach, Handel and Mozart are briefly analyzed, highlighting their most relevant textual and musical characteristics.

  15. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE DECOMMISSIONG AND DECONTAMINATION OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-01

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place

  16. Properties and solidification of decontamination wastes

    International Nuclear Information System (INIS)

    Davis, M.S.; Piciulo, P.L.; Bowerman, B.S.; Adams, J.W.; Milian, L.

    1983-01-01

    LWRs will require one or more chemical decontaminations to achieve their designed lifetimes. Primary system decontamination is designed to lower radiation fields in areas where plant maintenance personnel must work. Chemical decontamination methods are either hard (concentrated chemicals, approximately 5 to 25 weight percent) or soft (dilute chemicals less than 1 percent by weight). These methods may have different chemical reagents, some tailor-made to the crud composition and many methods are and will be proprietary. One factor common to most commercially available processes is the presence of organic acids and chelates. These types of organic reagents are known to enhance the migration of radionuclides after disposal in a shallow land burial site. The NRC sponsors two programs at Brookhaven National Laboratory that are concerned with the management of decontamination wastes which will be generated by the full system decontamination of LWRs. These two programs focus on potential methods for degrading or converting decontamination wastes to more acceptable forms prior to disposal and the impact of disposing of solidified decontamination wastes. The results of the solidification of simulated decontamination resin wastes will be presented. Recent results on combustion of simulated decontamintion wastes will be described and procedures for evaluating the release of decontamination reagents from solidified wastes will be summarized

  17. Some remarks about decontamination

    International Nuclear Information System (INIS)

    Bertini, A.

    1990-01-01

    Decontamination in itself is not the elimination of a problem, but corresponds to move that problem from one place to another. It is beneficial only if the contamination is less of a nuisance when moved to the ''other place''. Therefore any prospective decontamination process is to be considered essentially in terms of cost-benefit, and in particular in terms of reducing the burden on the waste management systems. The paper is not intended to deal with and to review critically the technical aspects of the various decontamination processes which are currently available. Its aim is to call the attention of those who may be faced with the problem of large-scale decontamination, so that this operation is carried out after all practical aspects have been examined. (author)

  18. Bovine Spongiform Encephalopathy (BSE), or Mad Cow Disease

    Science.gov (United States)

    ... the CDC Bovine Spongiform Encephalopathy (BSE), or Mad Cow Disease Note: Javascript is disabled or is not ... spongiform encephalopathy) is a progressive neurological disorder of cattle that results from infection by an unusual transmissible ...

  19. Advanced technologies for decontamination and conversion of scrap metals

    International Nuclear Information System (INIS)

    Muth, T.R.; Moore, J.; Olson, D.; Mishra, B.

    1994-01-01

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC's vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC's rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines

  20. Mobile worksystems for decontamination and dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bares, L.C.; Thompson, B.R. [RedZone Robotics, Inc., Pittsburgh, PA (United States)

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  1. The results of decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Lee, E. P. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, the experiments in PIEF have been completed. Since all DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must be performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. This report describes the basic plan for dismantlement/decontamination of the characterization equipment (power and sintered fuel). And methods of measurement/packing/transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order. 7 refs., 42 figs., 10 tabs. (Author)

  2. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  3. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    Science.gov (United States)

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  4. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  5. Extensions of MAD Version 8 to Include Beam Acceleration

    International Nuclear Information System (INIS)

    Raubenheimer, Tor O

    2000-01-01

    In this paper, the authors describe modifications to MAD version 8.23 to include linear accelerator cavities and beam acceleration. An additional energy variable has been added which is modified as the beam passes through LCAV elements (linear accelerator cavities) and can be used as a constraint in matching commands. The calculation of the beta functions and phase advance is consistent with that in other codes that treat acceleration such as TRANSPORT or DIMAD. These modifications allow this version of MAD to be used for the design and modeling of linacs and the authors present examples from the Next Linear Collider design as well as a muon acceleration complex. The code is available from CERN or SLAC

  6. Don, Betty and Jackie Kennedy: On Mad Men and Periodisation

    Directory of Open Access Journals (Sweden)

    Prudence Black

    2012-09-01

    Full Text Available Why is it that we watch Mad Men and think it represents a period? Flashes of patterned wallpaper, whiskey neat, babies born that are never mentioned, contact lining for kitchen drawers, Ayn Rand, polaroids, skinny ties, Hilton hotels, Walter Cronkite, and a time when Don Draper can ask ‘What do women want?’ and dry old Roger Sterling can reply ‘Who Cares?’ This essay explores the embrace of period detail in Mad Men finding it to be both loving and fetishistic, and belonging, like all period film, to the politics of the present.

  7. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  8. Decontamination manual of RI handling laboratory

    International Nuclear Information System (INIS)

    Wadachi, Yoshiki

    2004-01-01

    Based on experiences in Japan Atomic Energy Research Institute (JAERI), the essential and practical knowledge of radioactive contamination and its decontamination, and the method and procedure of floor decontamination are described for researcher and managing person in charge of handling radioisotopes (RI) in RI handling laboratories. Essential knowledge concerns the uniqueness of solid surface contamination derived from RI half lives and quantities, surface contamination density limit, and mode/mechanism of contamination. The principle of decontamination is a single conduct with recognition of chemical form of the RI under use. As the practical knowledge, there are physical and chemical methods of solid surface decontamination. The latter involves use of inorganic acids, chelaters and surfactants. Removal and replacement of contaminated solid like floor material are often effective. Distribution mapping of surface contamination can be done by measuring the radioactivity in possibly contaminated areas, and is useful for planning of effective decontamination. Floor surface decontamination is for the partial and spread areas of the floor. It is essential to conduct the decontamination with reagent from the highly to less contaminated areas. Skin decontamination with either neutral detergent or titanium oxide is also described. (N.I.)

  9. Evaluation of a process for the decontamination of radioactive hotspots due to activated stellite particles

    International Nuclear Information System (INIS)

    Subramanian, V.; Chandramohan, P.; Srinivasan, M.P.; Rangarajan, S.; Velmurugan, S.; Narasimhan, S.V.; Khandelwal, R.C.

    2010-01-01

    Some of the Indian PHWRs which used stellite balls in the ball and screw mechanism of the adjustor rod drive mechanism in the moderator circuit encountered high radiation field in moderator system due to 60 Co. Release of particulate stellite was responsible for the hotspots besides the general uniform contamination of internal surfaces with 60 Co. Extensive laboratory studies have shown that it is possible to dissolve these stellite particles by adopting a three step redox process with permanganic acid as the oxidizing agent. These investigations with inactive stellite in powder form helped to optimize the process conditions. Permanganic acid was found to have the highest dissolution efficiency as compared to alkaline and nitric acid permanganate. The concentration of the permanganate was also found to be an important factor in deciding the efficiency of the dissolution of stellite. The efficiency of dissolution as a function of permanganic acid concentration showed a maximum. This process was evaluated for its effectiveness on components from nuclear power plants. Component decontamination was carried out on adjustor rod drive assemblies which had 60 Co activity due to stellite particles with the radiation field ranging from 3 R/h to 20 R/h. They were subjected to decontamination with permanganic acid as oxidizing agent, followed by citric acid and a solution containing EDTA, ascorbic acid and citric acid in 4:3:3 ratio by weight (EAC) as reducing formulations. A test rig was fabricated for this purpose. In the first trial, one adjustor rod drive mechanism was subjected to decontamination. After two cycles of treatment, an average decontamination factor (DF) of 6.8, with a maximum DF of 11.7 was achieved. The same process but one cycle was repeated on eight more adjustor rod drive mechanisms. 60 Co activity in the range of 13 - 93 mCi was removed from these adjustor rods. Loose contamination of the order of 30000 - 40000 dpm/cm 2 observed before decontamination

  10. Application of a novel decontamination process using gaseous ozone

    Energy Technology Data Exchange (ETDEWEB)

    Moat, J.; Shone, J.; Upton, M. [Manchester Univ., School of Medecine, Manchester (United Kingdom). Medical Microbiology, Translation Medicine; Cargill, J. [Old Medical School, Leeds (United Kingdom). Dept. of Microbiology

    2009-08-15

    Hospital surfaces that are touched regularly by staff carry bacterial spores and pathogens. Environmental disinfection of health care facilities is an important aspect of infection control. This paper presented a recent innovation aimed at improving hospital hygiene and decontamination of laboratory equipment. The vapour- and gas-based treatment was developed to penetrate rooms or soft furnishings and reach places inaccessible by conventional approaches. Surfaces seeded with a range of vegetative cells and spores of bacteria of clinical relevance were decontaminated using the ozone-based treatment. The efficiency of the approach for room sanitization was also evaluated. A quenching agent was used to rapidly reduce ozone concentrations to safe levels allowing treatment times of less than 1 h for most of the organisms tested. Bacteria was seeded onto agar plates and solid surfaces. Reductions in bacterial load of greater than 3 log values were then recorded for a number of organisms including Escherichia coli and methicillin-resistant Staphylococcus aureus. Application of the process in a 30 m{sup 3} room showed similar reductions in viable counts for these organisms and for Clostridium difficile spores. It was concluded that ozone-based decontamination of healthcare environments could prove to be a highly cost-effective intervention. 35 refs., 1 tab., 3 figs.

  11. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  12. Decommissioning of nuclear facilities: COGEMA expertise devoted to UP1 reprocessing plant dismantling programme

    International Nuclear Information System (INIS)

    Gay, A.

    2001-01-01

    Over the last past decades, the French nuclear industry has acquired a great experience and know-how in the field of dismantling. Today this experience amounts to more than 200,000 hours. The fundamental aims within dismantling strategy are the same as for all nuclear facilities: minimising doses received by workers, minimising waste volume and adapting waste management to radioactivity levels, minimising costs. French experience is based on technologies which are currently used in nuclear maintenance facilities. Dismantling is a dynamic process especially in the field of decontamination (chemical and mechanical), cleaning, robotics and remote control operations. The strategy for the dismantling of former UP1 reprocessing plant is based on the feedback of experience gained through the dismantling of other facilities such as the AT1 workshop at La Hague. This workshop, a pilot plant for reprocessing of fast-breeder reactor fuels (Rapsodie and Phenix) has to be dismantled to IAEA level 3 (unrestricted site use), excluding civil works structures. Currently conducted by trained shifts, this dismantling project should end in 1999. The experience already acquired proves that chemical rinsings with the use of specific reagents is sufficient to decontaminate the hot cells and that the use of remote operations or robotics is not as important as previously envisaged. The UP1 reprocessing plant of Marcoule operated from 1958 to 1997. End of the operation was pronounced on the 31st of December 1997. 20,000 tons of spent fuels were reprocessed at UP1. The cleaning and dismantling operations at the Marcoule site depend upon the CEA, EDF and COGEMA. The Defence and Industry Ministries asked for a specific structure to be set up. An economic interest group called CODEM was created in May 1996. CODEM decides, finances and supervises dismantling operations, while respecting the constraints of nuclear safety, environmental protection and cost-effectiveness. The cleaning operations of

  13. Chemical decontamination: an overview

    International Nuclear Information System (INIS)

    Shaw, R.A.; Wood, C.J.

    1985-01-01

    The source of radioactive contamination in various types of power reactors is discussed. The methods of chemical decontamination vary with the manner in which the radioactive contaminants are deposited on the surface. Two types of dilute decontamination systems are available. One system uses organic acids and chelating agents, which are mildly reducing in nature. In this process, the oxide contaminants are removed by simple acidic dissolution and reductive dissolution. The second type of decontamination process is based on low oxidation state metal ions, which are more strongly reducing and do not require a corrosion inhibitor. All processes commercially available for decontamination of power reactors are not detailed here, but a few key issues to be considered in the selection of a process are highlighted. 2 figures, 2 tables

  14. A rare case of Kounis syndrome provoked by mad honey poisoning

    Directory of Open Access Journals (Sweden)

    Yakup Alsancak

    2016-06-01

    Full Text Available Kounis syndrome, resulting in acute coronary syndromes, as a result of allergic or hypersensitivity reaction is triggered by several factors. Vasospasm which is mediated by mediators released after mast cell activation, is the responsible mechanism for comprising of type 2-myocardial infarction. Mad honey containing grayanotoxin is previously shown to be associated with gastrointestinal, neurological and cardiac disorders. In this case report, we presented a Kounis syndrome that has occurred after the mad honey intake and treated successfully, previously not mentioned in the literature.

  15. Technology development for nuclear fuel cycle waste treatment - Decontamination, decommissioning and environmental restoration (1)

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Won, Hui Jun; Yoon, Ji Sup and others

    1997-12-01

    Through the project of D econtamination, decommissioning and environmental restoration technology development , the following were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Environmental remediation technology development. (author). 95 refs., 45 tabs., 163 figs

  16. Situations of decontamination promotion activities. Efforts by Tokyo Electric Power Company, Fukushima Revitalization Headquarters, Decontamination Promotion Office

    International Nuclear Information System (INIS)

    Takano, Takahiko; Ito, Kei; Takizawa, Koichi

    2015-01-01

    As for the decontamination of the soil contaminated with radioactive materials, decontamination is on the way in compliance with the 'Act on Special Measures Concerning the Handling of Environmental Pollution by Radioactive Materials by the NPS Accident Associated with the Tohoku District - Off the Pacific Ocean' (hereinafter, the Act on Special Measures). Tokyo Electric Power Company (TEPCO), as the party concerned to the accident, is cooperating with decontamination activities conducted by countries and municipalities under the Act on Special Measures. Total number of people cooperated by the Decontamination Promotion Office amounts to about 120,000 people. The cooperation to the decontamination by countries and municipalities covers the following fields: provision of knowledge of radiation, training of site management and supervisors, and proposal such as the decontamination method suitable for the site. As cooperation to various monitoring, there is a traveling monitoring that performs radiation measurement from the vehicles. As cooperation in the farming and industrial resumption toward the reconstruction, the group has implemented support for the distribution promotion of the holdup that was stuck in distribution due to contamination with radioactive substances. As decontamination related technology, the following are performed: (1) preparation of radiation understanding promotion tool, (2) development of precise individual dose measurement technology, and (3) development and utilization of decontamination effect analysis program. In the future, this group will perform the follow-up for decontamination, and measures toward the lifting of evacuation order. It will install the basis to perform various technical analyses on decontamination, and will further intensify technical cooperation. (A.O.)

  17. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    International Nuclear Information System (INIS)

    Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel; Peake, Tom; Hayes, Colin

    2013-01-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri R ArcGIS R scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus R -MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel R 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  18. Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building.

    Science.gov (United States)

    Lemieux, P; Wood, J; Drake, J; Minamyer, S; Silvestri, E; Yund, C; Nichols, T; Ierardi, M; Amidan, B

    2016-01-01

    The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test

  19. Hemorrhagic tendency following whole-body irradiation of conventional and decontaminated rats

    International Nuclear Information System (INIS)

    Hiemeyer, V.; Hohage, R.

    1974-01-01

    Female SIV 50 rats were irradiated with 700 r, and the blood platelets were counted in blood obtained by aortal puncture. A significant decrease could be observed already after a few days. The ADP-induced platelet aggregation showed only a little increase of the aggregation amplitude and a prolongation of the desaggregation time in irradiated animals. The increase of the collagen-induced platelet aggregation might be due to a reduced release of endogenic ADP rather than to reduced sensitivity to ADP. In order to examine the question whether the haemorrhagic tendency of decontaminated animals is reduced after irradiation, female rats were orally given Bacitracin, Neomycin, and Streptomycin over a period of 10 days. Increasing anaemia could be observed from the 7th day p.t. on. In decontaminated animals, anaemia occurrence was not as high as in conventional ones. The erythrocyte count of the lymph in the conventional animals was remarkably higher than in decontaminated animals, which as also the case in the haemoglobin content in the lymph notes. This proves definitely that rats kept conventionally have a stronger tendency to bleeding than decontaminated rats. (MG) [de

  20. Decontamination of Hetron Tank from Decominissioning of Phosphate Acid Purification Instalation

    International Nuclear Information System (INIS)

    Sutoto

    2008-01-01

    To decreasing quantity of the contaminated equipment from the nuclear installation decommissioning activity, it can be done by decontamination. Its process must be done by considering of radiation safety so that not dangerous to worker and environment. Effectively method must be chosen so that not generate high of secondary wastes. To primary decontamination of HETRON tank with a chemical method is not effectively to used because its a reinforcement thermoplastic materials. These material has high resistance for chemical compound. Therefore selected methods of physical-mechanical decontamination, that is can to removal of contaminants from the surface by scrubbing and swabbing with used of wet cloth have been tried and effective to decreasing of β/γ radiation rate until about (0.04 - 0.06 mR/h), its value is equal to background rate and the level of α/β radiation activity contamination is about (1.07 - 2.03 Bq/cm 2 ), so that it can be out grouping as radioactive waste. For the equipment of which cannot decontaminated, it grouped as solid radioactive waste and together with secondary waste will be sent to PTLR-BATAN. (author)

  1. 303-K Storage Facility: Report on FY98 closure activities

    International Nuclear Information System (INIS)

    Adler, J.G.

    1998-01-01

    This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy

  2. Decontamination and Decommissioning Experience at a Sellafield Uranium Purification Plant

    International Nuclear Information System (INIS)

    Prosser, J.L.

    2006-01-01

    Built in the 1950's, this plant was originally designed to purify depleted uranyl nitrate solution arising from reprocessing operations at the Primary Separation and Head End Plant (Fig. 1). The facility was used for various purposes throughout its life cycle such as research, development and trial based processes. Test rigs were operated in the building from the 1970's until 1984 to support development of the process and equipment now used at Sellafield's Thermal Oxide Reprocessing Plant (THORP). The extensive decommissioning program for this facility began over 15 years ago. Many challenges have been overcome throughout this program such as decommissioning the four main process cells, which were very highly alpha contaminated. The cells contained vessels and pipeline systems that were contaminated to such levels that workers had to use pressurized suits to enter the cells. Since decommissioning at Sellafield was in its infancy, this project has trialed various decontamination/decommissioning methods and techniques in order to progress the project, and this has provided valuable learning for other decommissioning projects. The project has included characterization, decontamination, dismantling, waste handling, and is now ready for demolition during late 2005, early 2006. This will be the first major facility within the historic Separation Area at Sellafield to be demolished down to base slab level. The lessons learnt from this project will directly benefit numerous decommissioning projects as the cleanup at Sellafield continues. (authors)

  3. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    Science.gov (United States)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  4. Chemical decontamination process and device therefor

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi

    1998-01-01

    The present invention provides a process and a device for chemical decontamination, which can suppress corrosion of low corrosion resistant materials, keep decontamination properties substantially as same as before and further, reduce the volume of secondary wastes. In a step of reductively melting oxide membranes on an objective material to be decontaminated, a mixture of oxalic acid and a salt thereof is used as a reducing agent, and the reductive melting is conducted while suppressing hydrogen ion concentration of an aqueous liquid system. In order to enhance the reducibility of the oxalic acid ions, it is desirable to add a cyclic hetero compound thereto. The device of the present invention comprises, a decontamination loop including a member to be decontaminated, a heater and a pH meter, a medical injection pump for injecting a reducing agent to the decontamination loop, a metal ion recovering loop including an ion exchange resin tower, a reducing agent decomposing loop including an electrolytic vessel and/or a UV ray irradiation cell, a circulation pump for circulating the decontamination liquid to each of the loops and a plurality of opening/closing valves for switching the loop in which the decontamination liquid is circulated. (T.M.)

  5. 76 FR 18261 - University of Wisconsin; Notice of Issuance of Renewed Facility License No. R-74

    Science.gov (United States)

    2011-04-01

    ... of Issuance of Renewed Facility License No. R-74 The U.S. Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility License No. R-74, held by the University of Wisconsin (the licensee... to 1.4% [Delta]k/k. The renewed Facility License No. R-74 will expire at midnight 20 years from its...

  6. Fighting Ebola through Novel Spore Decontamination Technologies for the Military

    Directory of Open Access Journals (Sweden)

    Christopher J. Doona

    2015-08-01

    Full Text Available AbstractRecently, global public health organizations such as Doctors without Borders (MSF, the World Health Organization (WHO, Public Health Canada, National Institutes of Health (NIH, and the U.S. government developed and deployed Field Decontamination Kits (FDKs, a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned. The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2 produced from a patented invention developed by researchers at the US Army – Natick Soldier RD&E Center (NSRDEC and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established nonthermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers

  7. PWR decontamination feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silliman, P.L.

    1978-12-18

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations.

  8. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    Silliman, P.L.

    1978-01-01

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  9. Stainless steel decontamination manipulators

    International Nuclear Information System (INIS)

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions)

  10. Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment

    Directory of Open Access Journals (Sweden)

    Michael B. Sherman

    2015-05-01

    Full Text Available A unique biological safety level (BSL-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2 decontamination cycles.

  11. Disposition of TA-33-21, a plutonium contaminated experimental facility

    International Nuclear Information System (INIS)

    Cox, E.J.; Garde, R.; Valentine, A.M.

    1975-01-01

    The report discusses the decontamination, demolition and disposal of a plutonium contaminated experimental physics facility which housed physics experiments with plutonium from 1951 until 1960. The results of preliminary decontamination efforts in 1960 are reported along with health physics, waste management, and environmental aspects of final disposition work accomplished during 1974 and 1975. (auth)

  12. Dilute chemical decontamination program review

    International Nuclear Information System (INIS)

    Anstine, L.D.; Blomgren, J.C.; Pettit, P.J.

    1980-01-01

    The objective of the Dilute Chemical Decontamination Program is to develop and evaluate a process which utilizes reagents in dilute concentrations for the decontamination of BWR primary systems and for the maintenance of dose rates on the out-of-core surfaces at acceptable levels. A discussion is presented of the process concept, solvent development, advantages and disadvantages of reagent systems, and VNC loop tests. Based on the work completed to date it is concluded that (1) rapid decontamination of BWRs using dilute reagents is feasible; (2) reasonable reagent conditions for rapid chemical decontamination are: 0.01M oxalic acid + 0.005M citric acid, pH3.0, 90/degree/C, 0.5 to 1.0 ppm dissolved oxygen; (3) control of dissolved oxygen concentration is important, since high levels suppress the rate of decontamination and low levels allow precipitation of ferrous oxalate. 4 refs

  13. Study on LOMI decontamination technology

    International Nuclear Information System (INIS)

    Huang Fuduan; Yu Degui; Lu Jingju; Xie Yinyan

    1993-10-01

    The results of decontamination technique of Low-Oxidation-State Metal-Ion (LOMI) reagents developed from 1986 to 1991 in the laboratory are introduced. The experiments included preparation of LOMI reagents, de-filming efficiency, corrosion behavior of typical alloys, decontamination factors of reagents for contaminated materials and components have proved that the NP/LOMI decontamination method and treatment technique of waste water are feasible and have some advantages. The preparation of LOMI reagent with low concentration of formic acid by reduced pressure distilling technique and the utilization ratio of vanadium reached to 95% by second electrolysis are the main contributions of the study to the decontamination technique

  14. Selection criteria and requirements for floors in nuclear facilities

    International Nuclear Information System (INIS)

    Kunze, S.

    1988-01-01

    As a surface protection of floors in nuclear facilities coatings, rubber and PVC coverings, respectively, are normally used, whereas stoneware tiles are still provided in rare cases only. All floor materials must be well decontaminable according to the German standard DIN 25415, Part 1. The general requirement is that low-porous, smooth products with little filler content, made of chemically resistant material, are very well decontaminable. Further investigations will be necessary for heavily loaded floor coatings. They include above all examinations for decontaminability after radiation and for wear and resistance to chemicals. These requirements have been compiled in DIN 55991. The examination of about 212 industrial products has revealed that the decontaminability of covering materials is frequently poor. Investigations have shown that the decontaminability is always deteriorated by additions of hygroscopic fillers. Additions of non-hygroscopic fillers and pigments may result in an excellent to poor decontaminability. The pore-free bonding of the covering materials by welding or jointing is of great importance with respect to the decontaminability of these floors. Care should be taken that the jointing compounds are as well decontaminable as the rubber coverings and stonewares. (orig.) [de

  15. Decontamination tests on cotton materials; Essais de decontamination sur tissus de coton

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P; Pelletier, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    It is shown that versene gives the best decontamination results on cotton materials soiled by a mixture of fission products. (author) [French] On a montre que le versene donne les meilleurs resultats de decontamination sur des tissus de coton souilles par un melange de produits de fission. (auteur)

  16. Environmental restoration and decontamination and decommissioning safety documentation

    International Nuclear Information System (INIS)

    Hansen, J.L.; Frauenholz, L.H.; Kerr, N.R.

    1993-01-01

    This document presents recommendations of a working group designated by the Environmental Restoration and Remediation (ER) and Decontamination and Decommissioning (D ampersand D) subcommittees of the Westinghouse M ampersand O (Management and Operation) Nuclear Facility Safety Committee. A commonalty of approach to safety documentation specific to ER and D ampersand D activities was developed and is summarized below. Allowance for interpretative tolerance and documentation flexibility appropriate to the activity, graded for hazard category, duration, and complexity, was a primary consideration in development of this guidance

  17. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-01-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D ampersand D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE's cleanup of contaminated sites and facilities

  18. Effect of the ODS-4 surfactant and its components on the efficiency of decontamination of solid surfaces

    International Nuclear Information System (INIS)

    Dvorak, J.; Duris, P.

    1994-01-01

    The efficiency was examined of the desorption of carrier-free traces of 147 Pm adsorbed from an acid aqueous solution at pH 2.6 in static conditions on a paint routinely applied to military facilities. The desorption was performed by using the ODS-4 decontamination and deactivation mixture and its components at various concentrations. It is concluded that the surfactant is not very well suited to the decontamination of solid surfaces contaminated with radionuclides which form the water-soluble component of radioactive contamination (in dependence on pH). This is due to the composition and the associated high alkalinity of the ODS-4 agent, which, however, is necessary if detoxication of toxic agents is required. In practice, however, the efficiency of decontamination will be appreciably higher because the military decontamination procedures involve dynamic (mechanical) treatment of the surfaces using brushes with flowing liquid, pressure application of the surfactant and water, moving baths, etc. (P.A.). 7 tabs., 2 figs., 10 refs

  19. The effect of ionizing radiation on microbiological decontamination of medical herbs and biologically active compounds

    Science.gov (United States)

    Migdal, W.; Owczarczyk, B.; Kedzia, B.; Holderna-Kedzia, E.; Segiet-Kujawa, E.

    1998-06-01

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.

  20. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that ∼5,500 m 3 of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste