WorldWideScience

Sample records for r-gma based grid

  1. Performance of R-GMA based grid job monitoring system for CMS data production

    Byrom, Robert; Fisher, Steve M; Grandi, Claudio; Hobson, Peter R; Kyberd, Paul; MacEvoy, Barry; Nebrensky, Jindrich Josef; Tallini, Hugh; Traylen, Stephen

    2004-01-01

    High Energy Physics experiments, such as the Compact Muon Solenoid (CMS) at the CERN laboratory in Geneva, have large-scale data processing requirements, with stored data accumulating at a rate of 1 Gbyte/s. This load comfortably exceeds any previous processing requirements and we believe it may be most efficiently satisfied through Grid computing. Management of large Monte Carlo productions (~3000 jobs) or data analyses and the quality assurance of the results requires careful monitoring and bookkeeping, and an important requirement when using the Grid is the ability to monitor transparently the large number of jobs that are being executed simultaneously at multiple remote sites. R-GMA is a monitoring and information management service for distributed resources based on the Grid Monitoring Architecture of the Global Grid Forum. We have previously developed a system allowing us to test its performance under a heavy load while using few real Grid resources. We present the latest results on this system and comp...

  2. Scalability tests of R-GMA based Grid job monitoring system for CMS Monte Carlo data production

    Bonacorsi, D; Field, L; Fisher, S; Grandi, C; Hobson, P R; Kyberd, P; MacEvoy, B; Nebrensky, J J; Tallini, H; Traylen, S

    2004-01-01

    High Energy Physics experiments such as CMS (Compact Muon Solenoid) at the Large Hadron Collider have unprecedented, large-scale data processing computing requirements, with data accumulating at around 1 Gbyte/s. The Grid distributed computing paradigm has been chosen as the solution to provide the requisite computing power. The demanding nature of CMS software and computing requirements, such as the production of large quantities of Monte Carlo simulated data, makes them an ideal test case for the Grid and a major driver for the development of Grid technologies. One important challenge when using the Grid for large-scale data analysis is the ability to monitor the large numbers of jobs that are being executed simultaneously at multiple remote sites. R-GMA is a monitoring and information management service for distributed resources based on the Grid Monitoring Architecture of the Global Grid Forum. In this paper we report on the first measurements of R-GMA as part of a monitoring architecture to be used for b...

  3. Building a robust distributed system: some lessons from R-GMA

    Bhatti, P; Duncan, A; Fisher, S M; Jiang, M; Kuseju, A O; Paventhan, A; Wilson, A J

    2008-01-01

    R-GMA, as deployed by LCG, is a large distributed system. We are currently addressing some design issues to make it highly reliable, and fault tolerant. In validating the new design, there were two classes of problems to consider: one related to the flow of data and the other to the loss of control messages. R-GMA streams data from one place to another; there is a need to consider the behaviour when data is being inserted more rapidly into the system than taken out and more generally how to deal with bottlenecks. In the original R-GMA design the system tried hard to deliver all control messages; those messages that were not delivered quickly were queued for retry later. Badly configured firewalls, network problems or very slow machines could all lead to long queues of messages; many of the messages on the queue should have been replaced by later ones. In the new design no individual control message is critical; the system just needs to know if each message was received successfully. The system should also avoid single points of failure. However this can require complex code resulting in a system that is actually less reliable. We describe how we have dealt with bottlenecks in the flow of data, loss of control messages and the elimination of single points of failure to produce a robust R-GMA design. The work presented, though in the context of R-GMA, is applicable to any large distributed system

  4. Ecosystem Based Business Model of Smart Grid

    Lundgaard, Morten Raahauge; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    This paper tries to investigate the ecosystem based business model in a smart grid infrastructure and the potential of value capture in the highly complex macro infrastructure such as smart grid. This paper proposes an alternative perspective to study the smart grid business ecosystem to support the infrastructural challenges, such as the interoperability of business components for smart grid. So far little research has explored the business ecosystem in the smart grid concept. The study on t...

  5. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  6. Ecosystem Based Business Model of Smart Grid

    Lundgaard, Morten Raahauge; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    This paper tries to investigate the ecosystem based business model in a smart grid infrastructure and the potential of value capture in the highly complex macro infrastructure such as smart grid. This paper proposes an alternative perspective to study the smart grid business ecosystem to support...... the infrastructural challenges, such as the interoperability of business components for smart grid. So far little research has explored the business ecosystem in the smart grid concept. The study on the smart grid with the theory of business ecosystem may open opportunities to understand market catalysts. This study...... contributes an understanding of business ecosystem applicable for smart grid. Smart grid infrastructure is an intricate business ecosystem, which have several intentions to deliver the value proposition and what it should be. The findings help to identify and capture value from markets....

  7. MrGrid: a portable grid based molecular replacement pipeline.

    Jason W Schmidberger

    Full Text Available BACKGROUND: The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. METHODOLOGY/PRINCIPAL FINDINGS: MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. CONCLUSIONS: MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success.

  8. Grid based calibration of SWAT hydrological models

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  9. Grid portal-based data management for lattice QCD data

    Andronico, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania, via S. Sofia 64, 95123 Catania (Italy)]. E-mail: giuseppe.andronico@ct.infn.it; Barbera, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania, via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia dell' Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); Falzone, A. [NICE SRL, via Marchesi di Roero 1, 14020 Cortanze (Italy)

    2004-11-21

    We describe here a case of the European Union DataGrid Project data management services by a Lattice Quantum ChromoDynamics (LQCD) application to share the large amount of configurations generated and based on a solution developed from the International Lattice Data Grid Project using a XML dialect called QCDML. In order to allow the user to store, search and browse the lattice configurations described by QCDML in an uniform and transparent way, we have exploited the functionalities of the GENIUS Grid portal, jointly developed by INFN and NICE srl in the context of the Italian INFN Grid and EU DataGrid Projects.

  10. Grid portal-based data management for lattice QCD data

    Andronico, G.; Barbera, R.; Falzone, A.

    2004-01-01

    We describe here a case of the European Union DataGrid Project data management services by a Lattice Quantum ChromoDynamics (LQCD) application to share the large amount of configurations generated and based on a solution developed from the International Lattice Data Grid Project using a XML dialect called QCDML. In order to allow the user to store, search and browse the lattice configurations described by QCDML in an uniform and transparent way, we have exploited the functionalities of the GENIUS Grid portal, jointly developed by INFN and NICE srl in the context of the Italian INFN Grid and EU DataGrid Projects

  11. H1 Grid production tool for large scale Monte Carlo simulation

    Lobodzinski, B; Wissing, Ch [DESY, Hamburg (Germany); Bystritskaya, E; Vorobiew, M [ITEP, Moscow (Russian Federation); Karbach, T M [University of Dortmund (Germany); Mitsyn, S [JINR, Moscow (Russian Federation); Mudrinic, M, E-mail: bogdan.lobodzinski@desy.d [VINS, Belgrad (Serbia)

    2010-04-01

    The H1 Collaboration at HERA has entered the period of high precision analyses based on the final data sample. These analyses require a massive production of simulated Monte Carlo (MC) events. The H1 MC framework (H1MC) is a software for mass MC production on the LCG Grid infrastructure and on a local batch system created by H1 Collaboration. The aim of the tool is a full automatisation of the MC production workflow including management of the MC jobs on the Grid down to copying of the resulting files from the Grid to the H1 mass storage tape device. The H1 MC framework has modular structure, delegating a specific task to each module, including task specific to the H1 experiment: Automatic building of steer and input files, simulation of the H1 detector, reconstruction of particle tracks and post processing calculation. Each module provides data or functionality needed by other modules via a local database. The Grid jobs created for detector simulation and reconstruction from generated MC input files are fully independent and fault-tolerant for 32 and 64-bit LCG Grid architecture and in Grid running state they can be continuously monitored using Relational Grid Monitoring Architecture (R-GMA) service. To monitor the full production chain and detect potential problems, regular checks of the job state are performed using the local database and the Service Availability Monitoring (SAM) framework. The improved stability of the system has resulted in a dramatic increase in the production rate, which exceeded two billion MC events in 2008.

  12. Feature combination analysis in smart grid based using SOM for Sudan national grid

    Bohari, Z. H.; Yusof, M. A. M.; Jali, M. H.; Sulaima, M. F.; Nasir, M. N. M.

    2015-12-01

    In the investigation of power grid security, the cascading failure in multicontingency situations has been a test because of its topological unpredictability and computational expense. Both system investigations and burden positioning routines have their limits. In this project, in view of sorting toward Self Organizing Maps (SOM), incorporated methodology consolidating spatial feature (distance)-based grouping with electrical attributes (load) to evaluate the vulnerability and cascading impact of various part sets in the force lattice. Utilizing the grouping result from SOM, sets of overwhelming stacked beginning victimized people to perform assault conspires and asses the consequent falling impact of their failures, and this SOM-based approach viably distinguishes the more powerless sets of substations than those from the conventional burden positioning and other bunching strategies. The robustness of power grids is a central topic in the design of the so called "smart grid". In this paper, to analyze the measures of importance of the nodes in a power grid under cascading failure. With these efforts, we can distinguish the most vulnerable nodes and protect them, improving the safety of the power grid. Also we can measure if a structure is proper for power grids.

  13. Context-Aware Usage-Based Grid Authorization Framework

    CUI Yongquan; HONG Fan; FU Cai

    2006-01-01

    Due to inherent heterogeneity, multi-domain characteristic and highly dynamic nature, authorization is a critical concern in grid computing. This paper proposes a general authorization and access control architecture, grid usage control (GUCON), for grid computing. It's based on the next generation access control mechanism usage control (UCON) model. The GUCON Framework dynamic grants and adapts permission to the subject based on a set of contextual information collected from the system environments; while retaining the authorization by evaluating access requests based on subject attributes, object attributes and requests. In general, GUCON model provides very flexible approaches to adapt the dynamically security request. GUCON model is being implemented in our experiment prototype.

  14. GENECODIS-Grid: An online grid-based tool to predict functional information in gene lists

    Nogales, R.; Mejia, E.; Vicente, C.; Montes, E.; Delgado, A.; Perez Griffo, F. J.; Tirado, F.; Pascual-Montano, A.

    2007-01-01

    In this work we introduce GeneCodis-Grid, a grid-based alternative to a bioinformatics tool named Genecodis that integrates different sources of biological information to search for biological features (annotations) that frequently co-occur in a set of genes and rank them by statistical significance. GeneCodis-Grid is a web-based application that takes advantage of two independent grid networks and a computer cluster managed by a meta-scheduler and a web server that host the application. The mining of concurrent biological annotations provides significant information for the functional analysis of gene list obtained by high throughput experiments in biology. Due to the large popularity of this tool, that has registered more than 13000 visits since its publication in January 2007, there is a strong need to facilitate users from different sites to access the system simultaneously. In addition, the complexity of some of the statistical tests used in this approach has made this technique a good candidate for its implementation in a Grid opportunistic environment. (Author)

  15. Grid-based electronic structure calculations: The tensor decomposition approach

    Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)

    2016-05-01

    We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  16. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based on Impedance Based Harmonic Analysis

    Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth

    2014-01-01

    This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...

  17. The more the merrier: grid based modelling of Kepler dwarfs with 5-dimensional stellar grids

    Serenelli Aldo

    2017-01-01

    Full Text Available We present preliminary results of our grid based modelling (GBM of the dwarf/subgiant sample of stars observed with Kepler including global asteroseismic parameters. GBM analysis in this work is based on a large grid of stellar models that is characterized by five independent parameters: model mass and age, initial metallicity (Zini, initial helium (Yini, and mixing length parameter (αMLT. Using this grid relaxes assumptions used in all previous GBM work where the initial composition is determined by a single parameter and that αMLT is fixed to a solar-calibrated value. The new grid allows us to study, for example, the impact of different galactic chemical enrichment models on the determination of stellar parameters such as mass radius and age. Also, it allows to include new results from stellar atmosphere models on αMLT in the GBM analysis in a simple manner. Alternatively, it can be tested if global asteroseismology is a useful tool to constraint our ignorance on quantities such as Yini and αMLT. Initial findings show that mass determination is robust with respect to freedom in the latter quantities, with a 4.4% maximum deviation for extreme assumptions regarding prior information on Yini – Zini relations and aMLT. On the other hand, tests carried out so far seem to indicate that global seismology does not have much power to constrain Yini – Zni relations of αMLT values without resourcing to additional information.

  18. Deploying web-based visual exploration tools on the grid

    Jankun-Kelly, T.J.; Kreylos, Oliver; Shalf, John; Ma, Kwan-Liu; Hamann, Bernd; Joy, Kenneth; Bethel, E. Wes

    2002-02-01

    We discuss a web-based portal for the exploration, encapsulation, and dissemination of visualization results over the Grid. This portal integrates three components: an interface client for structured visualization exploration, a visualization web application to manage the generation and capture of the visualization results, and a centralized portal application server to access and manage grid resources. We demonstrate the usefulness of the developed system using an example for Adaptive Mesh Refinement (AMR) data visualization.

  19. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K.

    2013-01-01

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N par . One of the main goals of the present paper is to determine how large N par can be, while still maintaining reasonable computational efficiency; we find that N par = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme

  20. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K., E-mail: kristin.mikkelsen@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2013-11-10

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.

  1. Grist: Grid-based Data Mining for Astronomy

    Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.

    2005-12-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  2. Grist : grid-based data mining for astronomy

    Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden; hide

    2004-01-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  3. Adaptive Micro-Grid Operation Based on IEC 61850

    Wei Deng

    2015-05-01

    Full Text Available Automatically identifying the new equipment after its integration and adjusting operation strategy to realize “plug and play” functionality are becoming essential for micro-grid operations. In order to improve and perfect the micro-grid “plug and play” function with the increased amount of equipment with different information protocols and more diverse system applications, this paper presents a solution for adaptive micro-grid operation based on IEC 61850, and proposes the design and specific implementation methods of micro-grid “plug and play” function and system operation mode conversion in detail, by using the established IEC 61850 information model of a micro-grid. Actual operation tests based on the developed IED and micro-grid test platform are performed to verify the feasibility and validity of the proposed solution. The tests results show that the solution can automatically identify the IEC 61850 information model of equipment after its integration, intelligently adjust the operation strategies to adapt to new system states and achieves a reliable system operation mode conversion.

  4. Real Time Load Optimisation of Cable Based Transmission Grids

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdottir, Unnur Stella

    2011-01-01

    Energinet.dk has launched an investigation of dynamic current ratings of cable based transmission grids, where both internal and external parameters are variables. The first topic was to investigate state of the art within calculating the current carrying capacity (ampacity or loadability......) of cables embedded in larger cable systems. Some recently published research has been concerned with dynamic loadability, but such researches are based on many assumptions. It is shown in the paper, that only limited research has been concerned with larger cable grids, and no remarkable work could been...

  5. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of

  6. Software-Based Challenges of Developing the Future Distribution Grid

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

  7. The extended RBAC model based on grid computing

    CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan

    2006-01-01

    This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.

  8. Deployment of a Grid-based Medical Imaging Application

    Amendolia, S R; Frate, C; Gálvez, J; Hassan, W; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T; Warren, R

    2005-01-01

    The MammoGrid project has deployed its Service-Oriented Architecture (SOA)-based Grid application in a real environment comprising actual participating hospitals. The resultant setup is currently being exploited to conduct rigorous in-house tests in the first phase before handing over the setup to the actual clinicians to get their feedback. This paper elaborates the deployment details and the experiences acquired during this phase of the project. Finally the strategy regarding migration to an upcoming middleware from EGEE project will be described. This paper concludes by highlighting some of the potential areas of future work.

  9. The Geographic Information Grid System Based on Mobile Agent

    2006-01-01

    We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographic Information service (GIS). We construct the distributed GIS on grid platform. Considering the flexibility and efficiency, we integrate the mobile agent technology into the system. We propose a new prototype system, the Geographic Information Grid System (GIGS) based on mobile agent. This system has flexible services and high performance, and improves the sharing of distributed resources. The service strategy of the system and the examples are also presented.

  10. Dynamically Authorized Role-Based Access Control for Grid Applications

    YAO Hanbing; HU Heping; LU Zhengding; LI Ruixuan

    2006-01-01

    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations". The heterogeneous, dynamic and multi-domain nature of these environments makes challenging security issues that demand new technical approaches. Despite the recent advances in access control approaches applicable to Grid computing, there remain issues that impede the development of effective access control models for Grid applications. Among them there are the lack of context-based models for access control, and reliance on identity or capability-based access control schemes. An access control scheme that resolve these issues is presented, and a dynamically authorized role-based access control (D-RBAC) model extending the RBAC with context constraints is proposed. The D-RABC mechanisms dynamically grant permissions to users based on a set of contextual information collected from the system and user's environments, while retaining the advantages of RBAC model. The implementation architecture of D-RBAC for the Grid application is also described.

  11. Grid-based Simulation of Industrial Thin Film Production

    Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Gorbachev, Y.E.

    2005-01-01

    In this article, the authors introduce a Grid-based virtual reactor, a High Level Architecture (HLA)-supported problem-solving environment that allows for detailed numerical study of industrial thin-film production in plasma-enhanced chemical vapor deposition (PECVD) reactors. They briefly describe

  12. Thyristor based short circuit current injection in isolated grids

    Hoff, Bjarte; Sharma, Pawan; Østrem, Trond

    2017-01-01

    This paper proposes a thyristor based short circuit current injector for providing short circuit current in isolated and weak grids, where sufficient fault current to trigger circuit breakers may not be available. This will allow the use of conventional miniature circuit breakers, which requires high fault current for instantaneous tripping. The method has been validated through experiments.

  13. A data grid for imaging-based clinical trials

    Zhou, Zheng; Chao, Sander S.; Lee, Jasper; Liu, Brent; Documet, Jorge; Huang, H. K.

    2007-03-01

    Clinical trials play a crucial role in testing new drugs or devices in modern medicine. Medical imaging has also become an important tool in clinical trials because images provide a unique and fast diagnosis with visual observation and quantitative assessment. A typical imaging-based clinical trial consists of: 1) A well-defined rigorous clinical trial protocol, 2) a radiology core that has a quality control mechanism, a biostatistics component, and a server for storing and distributing data and analysis results; and 3) many field sites that generate and send image studies to the radiology core. As the number of clinical trials increases, it becomes a challenge for a radiology core servicing multiple trials to have a server robust enough to administrate and quickly distribute information to participating radiologists/clinicians worldwide. The Data Grid can satisfy the aforementioned requirements of imaging based clinical trials. In this paper, we present a Data Grid architecture for imaging-based clinical trials. A Data Grid prototype has been implemented in the Image Processing and Informatics (IPI) Laboratory at the University of Southern California to test and evaluate performance in storing trial images and analysis results for a clinical trial. The implementation methodology and evaluation protocol of the Data Grid are presented.

  14. Electrothermal Coordination in Cable Based Transmission Grids

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Gudmundsdottir, Unnur Stella

    2013-01-01

    behavior of the components. The dynamic temperature calculations of power cables are suggested to be based on thermoelectric equivalents (TEEs). It is shown that the thermal behavior can be built into widely used load flow software, creating a strong ETC tool. ETC is, through two case scenarios, proven...... to be beneficial for both operator and system planner. It is shown how the thermal behavior can be monitored in real-time during normal dynamic load and during emergencies. In that way, ETC enables cables to be loaded above their normal rating, while maintaining high reliability of the system, which potentially...

  15. Soil Erosion Estimation Using Grid-based Computation

    Josef Vlasák

    2005-06-01

    Full Text Available Soil erosion estimation is an important part of a land consolidation process. Universal soil loss equation (USLE was presented by Wischmeier and Smith. USLE computation uses several factors, namely R – rainfall factor, K – soil erodability, L – slope length factor, S – slope gradient factor, C – cropping management factor, and P – erosion control management factor. L and S factors are usually combined to one LS factor – Topographic factor. The single factors are determined from several sources, such as DTM (Digital Terrain Model, BPEJ – soil type map, aerial and satellite images, etc. A conventional approach to the USLE computation, which is widely used in the Czech Republic, is based on the selection of characteristic profiles for which all above-mentioned factors must be determined. The result (G – annual soil loss of such computation is then applied for a whole area (slope of interest. Another approach to the USLE computation uses grids as a main data-structure. A prerequisite for a grid-based USLE computation is that each of the above-mentioned factors exists as a separate grid layer. The crucial step in this computation is a selection of appropriate grid resolution (grid cell size. A large cell size can cause an undesirable precision degradation. Too small cell size can noticeably slow down the whole computation. Provided that the cell size is derived from the source’s precision, the appropriate cell size for the Czech Republic varies from 30m to 50m. In some cases, especially when new surveying was done, grid computations can be performed with higher accuracy, i.e. with a smaller grid cell size. In such case, we have proposed a new method using the two-step computation. The first step computation uses a bigger cell size and is designed to identify higher erosion spots. The second step then uses a smaller cell size but it make the computation only the area identified in the previous step. This decomposition allows a

  16. The biometric-based module of smart grid system

    Engel, E.; Kovalev, I. V.; Ermoshkina, A.

    2015-10-01

    Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.

  17. Wind power integration in island-based smart grid projects : A comparative study between Jeju Smart Grid Test-bed and Smart Grid Gotland

    Piehl, Hampus

    2014-01-01

    Smart grids seem to be the solution to use energy from renewable and intermittent energy sources in an efficient manner. There are many research projects around the world and two of them are Jeju Smart Grid Test-bed and Smart Grid Gotland. They have in common that they are both island-based projects and connected to the Powergrid on the mainland by HVDC-link. The purpose of this thesis is to compare the two projects and find out what challenges and strategies they have related to wind power i...

  18. Development of a Cartesian grid based CFD solver (CARBS)

    Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2013-12-01

    Formulation for 3D transient incompressible CFD solver is developed. The solution of variable property, laminar/turbulent, steady/unsteady, single/multi specie, incompressible with heat transfer in complex geometry will be obtained. The formulation can handle a flow system in which any number of arbitrarily shaped solid and fluid regions are present. The solver is based on the use of Cartesian grids. A method is proposed to handle complex shaped objects and boundaries on Cartesian grids. Implementation of multi-material, different types of boundary conditions, thermo physical properties is also considered. The proposed method is validated by solving two test cases. 1 st test case is that of lid driven flow in inclined cavity. 2 nd test case is the flow over cylinder. The 1 st test case involved steady internal flow subjected to WALL boundaries. The 2 nd test case involved unsteady external flow subjected to INLET, OUTLET and FREE-SLIP boundary types. In both the test cases, non-orthogonal geometry was involved. It was found that, under such a wide conditions, the Cartesian grid based code was found to give results which were matching well with benchmark data. Convergence characteristics are excellent. In all cases, the mass residue was converged to 1E-8. Based on this, development of 3D general purpose code based on the proposed approach can be taken up. (author)

  19. Grid-based virtual clinic for medical diagnosis tutoring | Yatchou ...

    La réalisation visée est un outil collaboratif d\\'enseignement pour les médecins du terrain et les étudiants en médecine au sein d\\'une organisation virtuelle. The emerging grid-based technologies are increasingly adopted to enhance education and provide better learning services. This is characterized all over the world, ...

  20. Silicon-based metallic micro grid for electron field emission

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-01-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm 2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)

  1. Smart homes as a base for smart grids; Smart Home als Basis fuer Smart Grid

    Segbusch, Klaus von [ABB AG, Mannheim (Germany). Team Business Development Smart Grids; Struwe, Christian [Busch-Jaeger Elektro GmbH, Luedenscheid (Germany)

    2010-09-15

    Integration of renewable energy sources requires more intelligent distribution systems, i.e. so-called smart grids. For this, it is necessary to integrate the end customers in grid operation, giving them financial incentives, information in near real time from the utility, and means for automatic control of their consumption. (orig.)

  2. Sustainable Power Supply Solutions for Off-Grid Base Stations

    Asma Mohamad Aris

    2015-09-01

    Full Text Available The telecommunication sector plays a significant role in shaping the global economy and the way people share information and knowledge. At present, the telecommunication sector is liable for its energy consumption and the amount of emissions it emits in the environment. In the context of off-grid telecommunication applications, off-grid base stations (BSs are commonly used due to their ability to provide radio coverage over a wide geographic area. However, in the past, the off-grid BSs usually relied on emission-intensive power supply solutions such as diesel generators. In this review paper, various types of solutions (including, in particular, the sustainable solutions for powering BSs are discussed. The key aspects in designing an ideal power supply solution are reviewed, and these mainly include the pre-feasibility study and the thermal management of BSs, which comprise heating and cooling of the BS shelter/cabinets and BS electronic equipment and power supply components. The sizing and optimization approaches used to design the BSs’ power supply systems as well as the operational and control strategies adopted to manage the power supply systems are also reviewed in this paper.

  3. Disaster Monitoring using Grid Based Data Fusion Algorithms

    Cătălin NAE

    2010-12-01

    Full Text Available This is a study of the application of Grid technology and high performance parallelcomputing to a candidate algorithm for jointly accomplishing data fusion from different sensors. Thisincludes applications for both image analysis and/or data processing for simultaneously trackingmultiple targets in real-time. The emphasis is on comparing the architectures of the serial andparallel algorithms, and characterizing the performance benefits achieved by the parallel algorithmwith both on-ground and in-space hardware implementations. The improved performance levelsachieved by the use of Grid technology (middleware for Parallel Data Fusion are presented for themain metrics of interest in near real-time applications, namely latency, total computation load, andtotal sustainable throughput. The objective of this analysis is, therefore, to demonstrate animplementation of multi-sensor data fusion and/or multi-target tracking functions within an integratedmulti-node portable HPC architecture based on emerging Grid technology. The key metrics to bedetermined in support of ongoing system analyses includes: required computational throughput inMFLOPS; latency between receipt of input data and resulting outputs; and scalability, processorutilization and memory requirements. Furthermore, the standard MPI functions are considered to beused for inter-node communications in order to promote code portability across multiple HPCcomputer platforms, both in space and on-ground.

  4. Neighboring Structure Visualization on a Grid-based Layout.

    Marcou, G; Horvath, D; Varnek, A

    2017-10-01

    Here, we describe an algorithm to visualize chemical structures on a grid-based layout in such a way that similar structures are neighboring. It is based on structure reordering with the help of the Hilbert Schmidt Independence Criterion, representing an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator. The method can be applied to any layout of bi- or three-dimensional shape. The approach is demonstrated on a set of dopamine D5 ligands visualized on squared, disk and spherical layouts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. SHOP: scaffold hopping by GRID-based similarity searches

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  6. The Knowledge Base Interface for Parametric Grid Information

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-01-01

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary

  7. Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models

    Xu, Shiming

    2015-04-01

    We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.

  8. Research and development of fusion grid infrastructure based on atomic energy grid infrastructure (AEGIS)

    Suzuki, Y.; Nakajima, K.; Kushida, N.; Kino, C.; Aoyagi, T.; Nakajima, N.; Iba, K.; Hayashi, N.; Ozeki, T.; Totsuka, T.; Nakanishi, H.; Nagayama, Y.

    2008-01-01

    In collaboration with the Naka Fusion Institute of Japan Atomic Energy Agency (NFI/JAEA) and the National Institute for Fusion Science of National Institute of Natural Science (NIFS/NINS), Center for Computational Science and E-systems of Japan Atomic Energy Agency (CCSE/JAEA) aims at establishing an integrated framework for experiments and analyses in nuclear fusion research based on the atomic energy grid infrastructure (AEGIS). AEGIS has been being developed by CCSE/JAEA aiming at providing the infrastructure that enables atomic energy researchers in remote locations to carry out R and D efficiently and collaboratively through the Internet. Toward establishing the integrated framework, we have been applying AEGIS to pre-existing three systems: experiment system, remote data acquisition system, and integrated analysis system. For the experiment system, the secure remote experiment system with JT-60 has been successfully accomplished. For the remote data acquisition system, it will be possible to equivalently operate experimental data obtained from LHD data acquisition and management system (LABCOM system) and JT-60 Data System. The integrated analysis system has been extended to the system executable in heterogeneous computers among institutes

  9. Trusted data management for Grid-based medical applications

    van 't Noordende, G.J.; Olabarriaga, S.D.; Koot, M.R.; de Laat, C.T.A.M.; Udoh, E.

    2011-01-01

    Existing Grid technology has been foremost designed with performance and scalability in mind. When using Grid infrastructure for medical applications, privacy and security considerations become paramount. Privacy aspects require a re-thinking of the design and implementation of common Grid

  10. Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology

    Mutule, Anna; Obushevs, Artjoms; Lvov, Aleksandr

    2013-01-01

    The paper presents the main goals and achievements of the Smart Grids ERA-NET project named “Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology (SmartGen)” during the second stage of project implementation. A description of Smart Grid Technology (S......) models developed within the framework of the project is given. The performed study cases where the SGT-models were implemented to analyze the impact of the electrical grid are discussed....

  11. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  12. Improving mobile robot localization: grid-based approach

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  13. Grid-based platform for training in Earth Observation

    Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor

    2010-05-01

    GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in

  14. Hybrid method based on embedded coupled simulation of vortex particles in grid based solution

    Kornev, Nikolai

    2017-09-01

    The paper presents a novel hybrid approach developed to improve the resolution of concentrated vortices in computational fluid mechanics. The method is based on combination of a grid based and the grid free computational vortex (CVM) methods. The large scale flow structures are simulated on the grid whereas the concentrated structures are modeled using CVM. Due to this combination the advantages of both methods are strengthened whereas the disadvantages are diminished. The procedure of the separation of small concentrated vortices from the large scale ones is based on LES filtering idea. The flow dynamics is governed by two coupled transport equations taking two-way interaction between large and fine structures into account. The fine structures are mapped back to the grid if their size grows due to diffusion. Algorithmic aspects of the hybrid method are discussed. Advantages of the new approach are illustrated on some simple two dimensional canonical flows containing concentrated vortices.

  15. GSIMF: a web service based software and database management system for the next generation grids

    Wang, N; Ananthan, B; Gieraltowski, G; May, E; Vaniachine, A

    2008-01-01

    To process the vast amount of data from high energy physics experiments, physicists rely on Computational and Data Grids; yet, the distribution, installation, and updating of a myriad of different versions of different programs over the Grid environment is complicated, time-consuming, and error-prone. Our Grid Software Installation Management Framework (GSIMF) is a set of Grid Services that has been developed for managing versioned and interdependent software applications and file-based databases over the Grid infrastructure. This set of Grid services provide a mechanism to install software packages on distributed Grid computing elements, thus automating the software and database installation management process on behalf of the users. This enables users to remotely install programs and tap into the computing power provided by Grids

  16. Grid regulation services for energy storage devices based on grid frequency

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  17. Grid regulation services for energy storage devices based on grid frequency

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  18. GPU based contouring method on grid DEM data

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  19. Transaction-Based Controls for Building-Grid Integration: VOLTTRON™

    Akyol, Bora A.; Haack, Jereme N.; Hernandez, George; Katipamula, Srinivas; Widergren, Steven E.

    2015-07-01

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of a “transactional network” concept that supports energy, operational, and financial transactions between building systems (e.g., rooftop units -- RTUs), and the electric power grid using applications, or 'agents', that reside either on the equipment, on local building controllers, or in the Cloud. The transactional network vision is delivered using a real-time, scalable reference platform called VOLTTRON that supports the needs of the changing energy system. VOLTTRON is an agent execution and an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions.

  20. Algorithm for Wireless Sensor Networks Based on Grid Management

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  1. On-line grid impedance estimation based on harmonic injection for grid-connected PV inverter

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2007-01-01

    two different signal processing algorithms. The DFT technique is used for the single harmonic injection and the statistic technique is used for the double harmonic injection. The grid impedance estimation is used for compliance with the anti-islanding requirements of the German standard (VDE0126...

  2. Wind Farm Grid Integration Using VSC Based HVDC Transmission - An Overview

    Chaudhary, Sanjay Kumar; Teodorescu, Remus; Rodriguez, Pedro

    2008-01-01

    The paper gives an overview of HVAC and HVDC connection of wind farm to the grid, with an emphasis on Voltage Source Converter (VSC)-based HVDC for large wind farms requiring long distance cable connection. Flexible control capabilities of a VSC-based HVDC system enables smooth integration of wind...... farm into the power grid network while meeting the Grid Code Requirements (GCR). Operation of a wind farm with VSC-based HVDC connection is described....

  3. Camera Coverage Estimation Based on Multistage Grid Subdivision

    Meizhen Wang

    2017-04-01

    Full Text Available Visual coverage is one of the most important quality indexes for depicting the usability of an individual camera or camera network. It is the basis for camera network deployment, placement, coverage-enhancement, planning, etc. Precision and efficiency are critical influences on applications, especially those involving several cameras. This paper proposes a new method to efficiently estimate superior camera coverage. First, the geographic area that is covered by the camera and its minimum bounding rectangle (MBR without considering obstacles is computed using the camera parameters. Second, the MBR is divided into grids using the initial grid size. The status of the four corners of each grid is estimated by a line of sight (LOS algorithm. If the camera, considering obstacles, covers a corner, the status is represented by 1, otherwise by 0. Consequently, the status of a grid can be represented by a code that is a combination of 0s or 1s. If the code is not homogeneous (not four 0s or four 1s, the grid will be divided into four sub-grids until the sub-grids are divided into a specific maximum level or their codes are homogeneous. Finally, after performing the process above, total camera coverage is estimated according to the size and status of all grids. Experimental results illustrate that the proposed method’s accuracy is determined by the method that divided the coverage area into the smallest grids at the maximum level, while its efficacy is closer to the method that divided the coverage area into the initial grids. It considers both efficiency and accuracy. The initial grid size and maximum level are two critical influences on the proposed method, which can be determined by weighing efficiency and accuracy.

  4. Fast Grid Frequency Support from Distributed Inverter-Based Resources

    Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-04

    This presentation summarizes power hardware-in-the-loop testing performed to evaluate the ability of distributed inverter-coupled generation to support grid frequency on the fastest time scales. The research found that distributed PV inverters and other DERs can effectively support the grid on sub-second time scales.

  5. The Construction of an Ontology-Based Ubiquitous Learning Grid

    Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David

    2009-01-01

    The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…

  6. Environmental applications based on GIS and GRID technologies

    Demontis, R.; Lorrai, E.; Marrone, V. A.; Muscas, L.; Spanu, V.; Vacca, A.; Valera, P.

    2009-04-01

    In the last decades, the collection and use of environmental data has enormously increased in a wide range of applications. Simultaneously, the explosive development of information technology and its ever wider data accessibility have made it possible to store and manipulate huge quantities of data. In this context, the GRID approach is emerging worldwide as a tool allowing to provision a computational task with administratively-distant resources. The aim of this paper is to present three environmental applications (Land Suitability, Desertification Risk Assessment, Georesources and Environmental Geochemistry) foreseen within the AGISGRID (Access and query of a distributed GIS/Database within the GRID infrastructure, http://grida3.crs4.it/enginframe/agisgrid/index.xml) activities of the GRIDA3 (Administrator of sharing resources for data analysis and environmental applications, http://grida3.crs4.it) project. This project, co-funded by the Italian Ministry of research, is based on the use of shared environmental data through GRID technologies and accessible by a WEB interface, aimed at public and private users in the field of environmental management and land use planning. The technologies used for AGISGRID include: - the client-server-middleware iRODS™ (Integrated Rule-Oriented Data System) (https://irods.org); - the EnginFrame system (http://www.nice-italy.com/main/index.php?id=32), the grid portal that supplies a frame to make available, via Intranet/Internet, the developed GRID applications; - the software GIS GRASS (Geographic Resources Analysis Support System) (http://grass.itc.it); - the relational database PostgreSQL (http://www.posgresql.org) and the spatial database extension PostGis; - the open source multiplatform Mapserver (http://mapserver.gis.umn.edu), used to represent the geospatial data through typical WEB GIS functionalities. Three GRID nodes are directly involved in the applications: the application workflow is implemented at the CRS4 (Pula

  7. Mini-grid based off-grid electrification to enhance electricity access in developing countries: What policies may be required?

    Bhattacharyya, Subhes C.; Palit, Debajit

    2016-01-01

    With 1.2 billion people still lacking electricity access by 2013, electricity access remains a major global challenge. Although mini-grid based electrification has received attention in recent times, their full exploitation requires policy support covering a range of areas. Distilling the experience from a five year research project, OASYS South Asia, this paper presents the summary of research findings and shares the experience from four demonstration activities. It suggests that cost-effective universal electricity service remains a challenge and reaching the universal electrification target by 2030 will remain a challenge for the less developed countries. The financial, organisational and governance weaknesses hinder successful implementation of projects in many countries. The paper then provides 10 policy recommendations to promote mini-grids as a complementary route to grid extension to promote electricity access for successful outcomes. - Highlights: •The academic and action research activities undertaken through OASYS South Asia Project are reported. •Evidence produced through a multi-dimensional participatory framework supplemented by four demonstration projects. •Funding and regulatory challenges militate against universal electrification objectives by 2030. •Innovative business approaches linking local mini-grids and livelihood opportunities exist. •Enabling policies are suggested to exploit such options.

  8. Improved delayed signal cancellation-based SRF-PLL for unbalanced grid

    Messo, Tuomas; Sihvo, Jussi; Yang, Dongsheng

    2017-01-01

    Problems with power quality in the grid have gained a lot of attention recently due to rapid increase in the amount of grid-connected power converters. The converter should produce sinusoidal currents also during abnormal conditions, such as unbalanced grid voltages. Several methods, like...... the delayed signal cancellation-based method (DSC), have been proposed to alleviate the detrimental effect of unbalance. This paper proposes an improvement to a delayed signal cancellation based synchronization algorithm for unbalanced grids. The proposed PLL structure employs only half of the delay required...

  9. State-space-based harmonic stability analysis for paralleled grid-connected inverters

    Wang, Yanbo; Wang, Xiongfei; Chen, Zhe

    2016-01-01

    This paper addresses a state-space-based harmonic stability analysis of paralleled grid-connected inverters system. A small signal model of individual inverter is developed, where LCL filter, the equivalent delay of control system, and current controller are modeled. Then, the overall small signal...... model of paralleled grid-connected inverters is built. Finally, the state space-based stability analysis approach is developed to explain the harmonic resonance phenomenon. The eigenvalue traces associated with time delay and coupled grid impedance are obtained, which accounts for how the unstable...... inverter produces the harmonic resonance and leads to the instability of whole paralleled system. The proposed approach reveals the contributions of the grid impedance as well as the coupled effect on other grid-connected inverters under different grid conditions. Simulation and experimental results...

  10. SQoS based Planning using 4-regular Grid for Optical Fiber Metworks

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun

    optical fiber based network infrastructures. In the first step of SQoS based planning, this paper describes how 4-regular Grid structures can be implemented in the physical level of optical fiber network infrastructures. A systematic approach for implementing the Grid structure is presented. We used...

  11. SQoS based Planning using 4-regular Grid for Optical Fiber Networks

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    optical fiber based network infrastructures. In the first step of SQoS based planning, this paper describes how 4-regular Grid structures can be implemented in the physical level of optical fiber network infrastructures. A systematic approach for implementing the Grid structure is presented. We used...

  12. Optimal scheduling of micro grids based on single objective programming

    Chen, Yue

    2018-04-01

    Faced with the growing demand for electricity and the shortage of fossil fuels, how to optimally optimize the micro-grid has become an important research topic to maximize the economic, technological and environmental benefits of the micro-grid. This paper considers the role of the battery and the micro-grid and power grid to allow the exchange of power not exceeding 150kW preconditions, the main study of the economy to load for the goal is to minimize the electricity cost (abandonment of wind), to establish an optimization model, and to solve the problem by genetic algorithm. The optimal scheduling scheme is obtained and the utilization of renewable energy and the impact of the battery involved in regulation are analyzed.

  13. Utility-based Reinforcement Learning for Reactive Grids

    Perez , Julien; Germain-Renaud , Cécile; Kégl , Balázs; Loomis , C.

    2008-01-01

    International audience; Large scale production grids are an important case for autonomic computing. They follow a mutualization paradigm: decision-making (human or automatic) is distributed and largely independent, and, at the same time, it must implement the highlevel goals of the grid management. This paper deals with the scheduling problem with two partially conflicting goals: fairshare and Quality of Service (QoS). Fair sharing is a wellknown issue motivated by return on investment for pa...

  14. Project Scheduling Heuristics-Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid

    Chen, Ruey-Maw; Wang, Chuin-Mu

    2011-01-01

    The task scheduling problem has been widely studied for assigning resources to tasks in heterogeneous grid environment. Effective task scheduling is an important issue for the performance of grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this investigation introduces a named “standard“ particle swarm optimization (PSO) metaheuristic approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising heuristics based on multimo...

  15. A novel grid-based mesoscopic model for evacuation dynamics

    Shi, Meng; Lee, Eric Wai Ming; Ma, Yi

    2018-05-01

    This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.

  16. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  17. OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid

    Sadi, Mohammad A. H. [University of Memphis; Dasgupta, Dipankar [ORNL; Ali, Mohammad Hassan [University of Memphis; Abercrombie, Robert K [ORNL

    2015-01-01

    The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.

  18. A Grid storage accounting system based on DGAS and HLRmon

    Cristofori, A; Fattibene, E; Veronesi, P; Gaido, L; Guarise, A

    2012-01-01

    Accounting in a production-level Grid infrastructure is of paramount importance in order to measure the utilization of the available resources. While several CPU accounting systems are deployed within the European Grid Infrastructure (EGI), storage accounting systems, stable enough to be adopted in a production environment are not yet available. As a consequence, there is a growing interest in storage accounting and work on this is being carried out in the Open Grid Forum (OGF) where a Usage Record (UR) definition suitable for storage resources has been proposed for standardization. In this paper we present a storage accounting system which is composed of three parts: a sensor layer, a data repository with a transport layer (Distributed Grid Accounting System - DGAS) and a web portal providing graphical and tabular reports (HLRmon). The sensor layer is responsible for the creation of URs according to the schema (described in this paper) that is currently being discussed within OGF. DGAS is one of the CPU accounting systems used within EGI, in particular by the Italian Grid Infrastructure (IGI) and some other National Grid Initiatives (NGIs) and projects. DGAS architecture is evolving in order to collect Usage Records for different types of resources. This improvement allows DGAS to be used as a ‘general’ data repository and transport layer. HLRmon is the web portal acting as an interface to DGAS. It has been improved to retrieve storage accounting data from the DGAS repository and create reports in an easy way. This is very useful not only for the Grid users and administrators but also for the stakeholders.

  19. Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter

    Hassaine, L.; Mraoui, A.

    2017-02-01

    Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control

  20. Towards Agent-Based Model Specification in Smart Grid: A Cognitive Agent-based Computing Approach

    Akram, Waseem; Niazi, Muaz A.; Iantovics, Laszlo Barna

    2017-01-01

    A smart grid can be considered as a complex network where each node represents a generation unit or a consumer. Whereas links can be used to represent transmission lines. One way to study complex systems is by using the agent-based modeling (ABM) paradigm. An ABM is a way of representing a complex system of autonomous agents interacting with each other. Previously, a number of studies have been presented in the smart grid domain making use of the ABM paradigm. However, to the best of our know...

  1. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  2. Task-and-role-based access-control model for computational grid

    LONG Tao; HONG Fan; WU Chi; SUN Ling-li

    2007-01-01

    Access control in a grid environment is a challenging issue because the heterogeneous nature and independent administration of geographically dispersed resources in grid require access control to use fine-grained policies. We established a task-and-role-based access-control model for computational grid (CG-TRBAC model), integrating the concepts of role-based access control (RBAC) and task-based access control (TBAC). In this model, condition restrictions are defined and concepts specifically tailored to Workflow Management System are simplified or omitted so that role assignment and security administration fit computational grid better than traditional models; permissions are mutable with the task status and system variables, and can be dynamically controlled. The CG-TRBAC model is proved flexible and extendible. It can implement different control policies. It embodies the security principle of least privilege and executes active dynamic authorization. A task attribute can be extended to satisfy different requirements in a real grid system.

  3. Developing a Grid-based search and categorization tool

    Haya, Glenn; Vigen, Jens

    2003-01-01

    Grid technology has the potential to improve the accessibility of digital libraries. The participants in Project GRACE (Grid Search And Categorization Engine) are in the process of developing a search engine that will allow users to search through heterogeneous resources stored in geographically distributed digital collections. What differentiates this project from current search tools is that GRACE will be run on the European Data Grid, a large distributed network, and will not have a single centralized index as current web search engines do. In some cases, the distributed approach offers advantages over the centralized approach since it is more scalable, can be used on otherwise inaccessible material, and can provide advanced search options customized for each data source.

  4. HLRmon: a role-based grid accounting report web tool

    Pra, S D; Fattibene, E; Misurelli, G; Pescarmona, F; Gaido, L

    2008-01-01

    Both Grid users and Grid operators need ways to get CPU usage statistics about jobs executed in a given time period at various different levels, depending on their specific Grid's role and rights. While a Grid user is interested in reports about its own jobs and should not get access to other's data, Site or Virtual Organization (VO) or Regional Operation Centre (ROC) manager would also like to see how resources are used through the Grid in a per Site or per VO basis, or both. The whole set of different reports turns out to be quite large, and various existing tools made to create them tend to better satisfy a single user's category, eventually despite of another. HLRmon results from our efforts to generate suitable reports for all existing categories and has been designed to serve them within a unified layout. Thanks to its ability to authenticate clients through certificate and related authorization rights, it can a-priori restrict the selectable items range offered to the web user, so that sensitive information can only be provided to specifically enabled people. Information are gathered by HLRmon from a Home Location Register (HLR) which stores complete accounting data in a per job basis. Depending on the kind of reports that are to be generated, it directly queries the HLR server using an ad-hoc Distributed Grid Accounting System (DGAS) query tool (tipically user's level detail info), or a local RDBMS table with daily aggregate information in a per Day, Site, VO basis, thus saving connection delay time and needless load on the HLR server

  5. Impedance Analysis of SOGI-FLL-Based Grid Synchronization

    Yi, Hao; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The latest research has pointed out that the Phase-Locked Loop (PLL) plays an important role in shaping the impedance of grid-connected converters, yet most of the works so far merely focus on the synchronous reference-frame PLL. Alternatively, this letter presents the impedance analysis...

  6. Mini-Grids for the Base of the Pyramid Market: A Critical Review

    Subhes C. Bhattacharyya

    2018-04-01

    Full Text Available The lack of access to electricity of more than 1.1 billion people around the world remains a major developmental challenge and Goal 7 of the Sustainable Development Goals (SDG as well as Sustainable Energy for All (SE4ALL have set a target of universal electrification by 2030. Various studies have identified mini-grid-based electrification as a possible solution. There is a growing body of literature available now that has explored the feasibility, practical application and policy interventions required to support mini-grids. Through a review of available literature, this paper explores whether mini-grids can be a solution for the base of the pyramid (BoP market and the challenges faced in deploying mini-grids in such markets. Interventions to support the mini-grid deployment are also discussed. The paper finds that the mini-grids are targeting the BoP market but the business is not attractive in profitability terms and requires financial support. Lack of regulatory clarity and non-coordinated policies affect the financial viability of projects, which requires careful support. Mini-grid electrification has hardly been embedded in rural development agenda and hence they have not contributed significantly to livelihood generation. Careful realignment of policies, regulatory frameworks and support systems can better support mini-grid deployment in developing countries.

  7. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  8. dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter

    Altin, Necmi; Sefa, İbrahim

    2012-01-01

    Highlights: ► We propose a dSPACE based neuro-fuzzy controlled grid interactive inverter. ► The membership functions and rule base of fuzzy logic controller by using ANFIS. ► A LCL output filter is designed. ► A high performance controller is designed. - Abstract: In this study, design, simulation and implementation of a dSPACE based grid interactive voltage source inverter are proposed. This inverter has adaptive neuro-fuzzy controller and capable of importing electrical energy, generated from renewable energy sources such as the wind, the solar and the fuel cells to the grid. A line frequency transformer and a LCL filter are used at the output of the grid interactive inverter which is designed as current controlled to decrease the susceptibility to phase errors. Membership functions and rule base of the fuzzy logic controller, which control the inverter output current, are determined by using artificial neural networks. Both simulation and experimental results show that, the grid interactive inverter operates synchronously with the grid. The inverter output current which is imported to the grid is in sinusoidal waveform and the harmonic level of it meets the international standards (4.3 < 5.0%). In addition, simulation and experimental results of the neuro-fuzzy and the PI controlled inverter are given together and compared in detail. Simulation and experimental results show that the proposed inverter has faster response to the reference variations and lower steady state error than PI controller.

  9. Integration of distributed energy resources into low voltage grid: A market-based multiperiod optimization model

    Mashhour, Elahe; Moghaddas-Tafreshi, S.M. [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyd Khandan, P.O. Box 16315-1355, Shariati, Tehran (Iran)

    2010-04-15

    This paper develops a multiperiod optimization model for an interconnected micro grid with hierarchical control that participates in wholesale energy market to maximize its benefit (i.e. revenues-costs). In addition to the operational constraints of distributed energy resources (DER) including both inter-temporal and non-inter-temporal types, the adequacy and steady-state security constraints of micro grid and its power losses are incorporated in the optimization model. In the presented model, DER are integrated into low voltage grid considering both technical and economical aspects. This integration as a micro grid can participate in wholesale energy market as an entity with dual role including producer and consumer based on the direction of exchanged power. The developed model is evaluated by testing on a micro grid considering different cases and the results are analyzed. (author)

  10. Design of Energy Storage Management System Based on FPGA in Micro-Grid

    Liang, Yafeng; Wang, Yanping; Han, Dexiao

    2018-01-01

    Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.

  11. Development and verification of remote research environment based on 'Fusion research grid'

    Iba, Katsuyuki; Ozeki, Takahisa; Totsuka, Toshiyuki; Suzuki, Yoshio; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; Suzuki, Mitsuhiro; Hamamatsu, Kiyotaka; Kiyono, Kimihiro

    2008-01-01

    'Fusion research grid' is a concept that unites scientists and let them collaborate effectively against their difference in time zone and location in a nuclear fusion research. Fundamental technologies of 'Fusion research grid' have been developed at JAEA in the VizGrid project under the e-Japan project at the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are conscious of needs to create new systems that assist researchers with their research activities because remote collaborations have been increasing in international projects. Therefore we have developed prototype remote research environments for experiments, diagnostics, analyses and communications based on 'Fusion research grid'. All users can access these environments from anywhere because 'Fusion research grid' does not require a closed network like Super SINET to maintain security. The prototype systems were verified in experiments at JT-60U and their availability was confirmed

  12. Grid Based Integration Technologies of Virtual Measurement System

    Zhang, D P; He, L S; Yang, H

    2006-01-01

    This paper presents a novel integrated architecture of measurement system for the new requirements of measurement collaboration, measurement resource interconnection and transparent access etc in the wide-area and across organization in the context of a grid. The complexity of integration on a grid arises from the scale, dynamism, autonomy, and distribution of the measurement resources. The main argument of this paper is that these complexities should be made transparent to the collaborative measurement, via flexible reconfigurable mechanisms and dynamic virtualization services. The paper is started by discussing the integration-oriented measurement architecture which provides collaborative measurement services to distributed measurement resources and then the measurement mechanisms are discussed which implements the transparent access and collaboration of measurement resources by providing protocols, measurement schedule and global data driven model

  13. Hierarchical Controlled Grid-Connected Microgrid based on a Novel Autonomous Current Sharing Controller

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    In this paper, a hierarchical control system based on a novel autonomous current sharing controller for grid-connected microgrids (MGs) is presented. A three-level hierarchical control system is implemented to guarantee the power sharing performance among voltage controlled parallel inverters......, while providing the required active and reactive power to the utility grid. A communication link is used to transmit the control signal from the tertiary and secondary control levels to the primary control. Simulation results from a MG based on two grid-connected parallel inverters are shown in order...

  14. Fast and accurate grid representations for atom-based docking with partner flexibility.

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Active Distribution Grid Management based on Robust AC Optimal Power Flow

    Soares, Tiago; Bessa, Richard J.; Pinson, Pierre

    2017-01-01

    Further integration of distributed renewable energy sources in distribution systems requires a paradigm change in grid management by the distribution system operators (DSO). DSOs are currently moving to an operational planning approach based on activating flexibility from distributed energy resou...

  16. Indonesia - Green Prosperity: Community-Based Off-Grid Renewable Energy Grant Portfolio

    Millennium Challenge Corporation — Taken as a whole, this evaluation aims, to the extent possible, to validate the program logic underlying the portfolio of community-based off-grid renewable energy...

  17. Disturbance estimator based predictive current control of grid-connected inverters

    Al-Khafaji, Ahmed Samawi Ghthwan

    2013-01-01

    ABSTRACT: The work presented in my thesis considers one of the modern discrete-time control approaches based on digital signal processing methods, that have been developed to improve the performance control of grid-connected three-phase inverters. Disturbance estimator based predictive current control of grid-connected inverters is proposed. For inverter modeling with respect to the design of current controllers, we choose the d-q synchronous reference frame to make it easier to understand an...

  18. Reinforcement Learning Based Novel Adaptive Learning Framework for Smart Grid Prediction

    Tian Li

    2017-01-01

    Full Text Available Smart grid is a potential infrastructure to supply electricity demand for end users in a safe and reliable manner. With the rapid increase of the share of renewable energy and controllable loads in smart grid, the operation uncertainty of smart grid has increased briskly during recent years. The forecast is responsible for the safety and economic operation of the smart grid. However, most existing forecast methods cannot account for the smart grid due to the disabilities to adapt to the varying operational conditions. In this paper, reinforcement learning is firstly exploited to develop an online learning framework for the smart grid. With the capability of multitime scale resolution, wavelet neural network has been adopted in the online learning framework to yield reinforcement learning and wavelet neural network (RLWNN based adaptive learning scheme. The simulations on two typical prediction problems in smart grid, including wind power prediction and load forecast, validate the effectiveness and the scalability of the proposed RLWNN based learning framework and algorithm.

  19. Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation

    Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.

    2016-05-01

    In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.

  20. Agent based approach for engineering and control of micro-grids

    Basso, Gillian

    2013-01-01

    Energy management is, nowadays, a subject of uttermost importance. Indeed, we are facing growing concerns such as petroleum reserve depletion, earth global warming or power quality (e.g. avoiding blackouts during peak times). Smart grids is an attempt to solve such problems, by adding to power grids bidirectional communications and ICT capabilities in order to provide an intelligent autonomic management for the grid. This thesis focuses on the management of micro-grids thanks to multi-agent systems (MAS). Micro-grids are low-power networks, composed of small and decentralized energy producers (possibly renewable) and consumers. These networks can be connected to the main grid or islanded, this make them more complex. Due to their complexity and their geographical distribution, smart grids and micro-grids can not be easily managed by a centralized system. Distributed artificial intelligences especially MAS appear to be a solution to resolve problems related to smart grids. Firstly we defined an approach implementing feedback loops. These feedback loops exist in complex systems which can be defined with several abstraction levels. Two levels are interacting. The micro-level contains a set of agents owning behaviours that can be combined. The result of the combination impact the state of the system. The macro-level processes these influences to define a new state of the system which will impact the agents behaviours at the micro-level. This feedback loop separates behaviours on several levels. This approach is used to defined a demand and supply matching problem in micro-grid. This problem afford to manage a set of goals which currently are independently processed. Finally, an application is developed using MAS that ensures grid stability thanks to storage systems. This application was thought to be integrated to the approach detailed above. Secondly, a grid simulator id developed. This simulator allows dynamic control of devices. It is based on three main principles

  1. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  2. Grid impedance estimation based hybrid islanding detection method for AC microgrids

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem

    2017-01-01

    This paper focuses on a hybrid islanding detection algorithm for parallel-inverters-based microgrids. The proposed algorithm is implemented on the unit ensuring the control of the intelligent bypass switch connecting or disconnecting the microgrid from the utility. This method employs a grid...... to avoid interactions with other units. The selected inverter will be the one closest to the controllable distributed generation system or to a healthy grid side in case of meshed microgrid with multiple-grid connections. The detection algorithm is applied to quickly detect the resonance phenomena, so...

  3. Intelligent Control of Micro Grid: A Big Data-Based Control Center

    Liu, Lu; Wang, Yanping; Liu, Li; Wang, Zhiseng

    2018-01-01

    In this paper, a structure of micro grid system with big data-based control center is introduced. Energy data from distributed generation, storage and load are analized through the control center, and from the results new trends will be predicted and applied as a feedback to optimize the control. Therefore, each step proceeded in micro grid can be adjusted and orgnized in a form of comprehensive management. A framework of real-time data collection, data processing and data analysis will be proposed by employing big data technology. Consequently, a integrated distributed generation and a optimized energy storage and transmission process can be implemented in the micro grid system.

  4. An Efficient Topology-Based Algorithm for Transient Analysis of Power Grid

    Yang, Lan

    2015-08-10

    In the design flow of integrated circuits, chip-level verification is an important step that sanity checks the performance is as expected. Power grid verification is one of the most expensive and time-consuming steps of chip-level verification, due to its extremely large size. Efficient power grid analysis technology is highly demanded as it saves computing resources and enables faster iteration. In this paper, a topology-base power grid transient analysis algorithm is proposed. Nodal analysis is adopted to analyze the topology which is mathematically equivalent to iteratively solving a positive semi-definite linear equation. The convergence of the method is proved.

  5. Impedance Based Analysis and Design of Harmonic Resonant Controller for a Wide Range of Grid Impedance

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...... in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed...

  6. Grid-enabled SEE++, A Grid-Based Medical Decision Support System for Eye Muscle Surgery Conference

    Schreiner, W.; Buchberger, M.; Kaltofen, T.

    2006-01-01

    JKU/RISC currently develops in cooperation with Upper Austrian Research (UAR) the SEE-GRID software system. SEE-GRID is based on the SEE++ software for the biomechanical 3D simulation of the human eye and its muscles. SEE++ simulates the common eye muscle surgery techniques in a graphic interactive way that is familiar to an experienced surgeon. SEE++ is world-wide the most advanced software for this purpose; it is used by various hospitals and medical doctors for surgery training and planning, SEE++ deals with the support of diagnosis and treatment of strabismus, which is the common name given to usually persistent or regularly occuring misalignment of the eyes. Strabismus is a visual defect in which eyes point in different directions. A person suffering from it may see double images due to misaligned eyes. SEE++ is able to simulate the result of the Hess-Lancaster test, from which the pathological reason of strabismus can be estimated. The outcome of such an examination is two gaze patterns of blue points a...

  7. Research and design of smart grid monitoring control via terminal based on iOS system

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  8. A Costing Analysis for Decision Making Grid Model in Failure-Based Maintenance

    Burhanuddin M. A.

    2011-01-01

    Full Text Available Background. In current economic downturn, industries have to set good control on production cost, to maintain their profit margin. Maintenance department as an imperative unit in industries should attain all maintenance data, process information instantaneously, and subsequently transform it into a useful decision. Then act on the alternative to reduce production cost. Decision Making Grid model is used to identify strategies for maintenance decision. However, the model has limitation as it consider two factors only, that is, downtime and frequency of failures. We consider third factor, cost, in this study for failure-based maintenance. The objective of this paper is to introduce the formulae to estimate maintenance cost. Methods. Fish bone analysis conducted with Ishikawa model and Decision Making Grid methods are used in this study to reveal some underlying risk factors that delay failure-based maintenance. The goal of the study is to estimate the risk factor that is, repair cost to fit in the Decision Making Grid model. Decision Making grid model consider two variables, frequency of failure and downtime in the analysis. This paper introduces third variable, repair cost for Decision Making Grid model. This approaches give better result to categorize the machines, reduce cost, and boost the earning for the manufacturing plant. Results. We collected data from one of the food processing factories in Malaysia. From our empirical result, Machine C, Machine D, Machine F, and Machine I must be in the Decision Making Grid model even though their frequency of failures and downtime are less than Machine B and Machine N, based on the costing analysis. The case study and experimental results show that the cost analysis in Decision Making Grid model gives more promising strategies in failure-based maintenance. Conclusions. The improvement of Decision Making Grid model for decision analysis with costing analysis is our contribution in this paper for

  9. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We pr...

  10. Influencing Factors and Development Trend Analysis of China Electric Grid Investment Demand Based on a Panel Co-Integration Model

    Jinchao Li; Lin Chen; Yuwei Xiang; Jinying Li; Dong Peng

    2018-01-01

    Electric grid investment demand analysis is significant to reasonably arranging construction funds for the electric grid and reduce costs. This paper used the panel data of electric grid investment from 23 provinces of China between 2004 and 2016 as samples to analyze the influence between electric grid investment demand and GDP, population scale, social electricity consumption, installed electrical capacity, and peak load based on co-integration tests. We find that GDP and peak load have pos...

  11. Operational flash flood forecasting platform based on grid technology

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important

  12. Developing Information Power Grid Based Algorithms and Software

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  13. Croatia's rural areas - renewable energy based electricity generation for isolated grids

    Protic Sonja Maria

    2014-01-01

    Full Text Available Several Western Balkan states face the consequences of the Yugoslavian war, which left hometowns with dilapidated electricity grid connections, a high average age of power plant capacities and low integration of renewable energy sources, grid bottlenecks and a lack of competition. In order to supply all households with electricity, UNDP Croatia did a research on decentralized supply systems based on renewable energy sources. Decentralized supply systems offer cheaper electricity connections and provide faster support to rural development. This paper proposes a developed methodology to financially compare isolated grid solutions that primarily use renewable energies to an extension of the public electricity network to small regions in Croatia. Isolated grid supply proves to be very often a preferable option. Furthermore, it points out the lack of a reliable evaluation of non-monetizable aspects and promotes a new interdisciplinary approach.

  14. Grid connection of active stall wind farms using a VSC based DC transmission system

    Iov, F.; Sørensen, Poul Ejnar; Hansen, A.D.

    2005-01-01

    Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern...... wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements...... are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid have less control capabilities. These wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection...

  15. Modeling and Control of VSC based DC Connection for Active Stall Wind Farms to Grid

    Iov, Florin; Sorensen, Poul; Hansen, Anca-Daniela

    2005-01-01

    Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Therefore the power system becomes more vulnerable and dependent on the wind energy production. At the same time requirements that focus on the influence of the farms on the grid stability and power...... quality, and on the control capabilities of wind farms have already been established. The main trends of modem wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics...... the control capabilities of these wind turbines/farms are extended and thus the grid requirements are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid does not have such control capabilities. They produce maximum possible power...

  16. Modelling and Control of VSC based DC Connection for Active Stall Wind Farms to Grid

    Iov, Florin; Sørensen, Poul; Hansen, Anca Daniela

    2006-01-01

    Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Therefore the power system becomes more vulnerable and dependent on the wind energy production. At the same time requirements that focus on the influence of the farms on the grid stability and power...... quality, and on the control capabilities of wind farms have already been established. The main trends of modern wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics...... the control capabilities of these wind turbines/farms are extended and thus the grid requirements are fulfilled.  However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid does not have such control capabilities. They produce maximum possible power...

  17. H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

    Wang, Yun; Wu, Qiuwei; Gong, Wenming

    2016-01-01

    This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...... distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions...... are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated...

  18. Agent-based Decentralization of Applications in Distributed Smart Grid Systems

    Kienesberger, Georg; Xypolytou, Evangelia; Marchgraber, Jurgen

    2015-01-01

    systems (DMACS) and aims to give an overview on the different requirements and challenges on the way from current centralized control systems to DMACS. Therefore, different ICT scenarios and MAS topologies are employed to discuss the decentralization of three exemplary smart grid applications: voltage......Smart grid technology promises to prepare today’s power systems for the challenges of the future by extensive integration of information and communication technology (ICT). One key aspect is the control paradigm which will have to be shifted from completely centralized control systems to more...... dezentralized concepts in order to adapt to the distributed nature of smart grids. Multi-agent systems (MAS) are a very promising approach for designing distributed, decentralized systems, naturally also in the field of smart grids. This work introduces the notion of decentralized multi-agent-based control...

  19. Active Power Quality Improvement Strategy for Grid-connected Microgrid Based on Hierarchical Control

    Wei, Feng; Sun, Kai; Guan, Yajuan

    2018-01-01

    proposes an active, unbalanced, and harmonic GCC suppression strategy based on hierarchical theory. The voltage error between the bus of the DCGC-MG and the grid’s PCC was transformed to the dq frame. On the basis of the grid, an additional compensator, which consists of multiple resonant voltage......When connected to a distorted grid utility, droop-controlled grid-connected microgrids (DCGC-MG) exhibit low equivalent impedance. The harmonic and unbalanced voltage at the point of common coupling (PCC) deteriorates the power quality of the grid-connected current (GCC) of DCGC-MG. This work...... regulators, was then added to the original secondary control to generate the negative fundamental and unbalanced harmonic voltage reference. Proportional integral and multiple resonant controllers were adopted as voltage controller at the original primary level to improve the voltage tracking performance...

  20. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    Jongbin Ko

    2014-01-01

    Full Text Available A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  1. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  2. Combining Market-Based Control with Distribution Grid Constraints when Coordinating Electric Vehicle Charging

    Geert Deconinck

    2015-12-01

    Full Text Available The charging of electric vehicles (EVs impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid (e.g., under-voltage, phase unbalances; for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with event-driven control at the operational level. Different case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.

  3. Instability of Wind Turbine Converters during Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth

    2014-01-01

    In recent grid codes for wind power integration, wind turbines are required to stay connected during grid faults even when the grid voltage drops down to zero; and also to inject reactive current in proportion to the voltage drop. However, a physical fact, instability of grid-connected converters...... during current injection to very low (close to zero) voltage faults, has been omitted, i.e., failed to be noticed in the previous wind power studies and grid code revisions. In this paper, the instability of grid side converters of wind turbines defined as loss of synchronism (LOS), where the wind...... turbines lose synchronism with the grid fundamental frequency (e.g., 50 Hz) during very deep voltage sags, is explored with its theory, analyzed and a novel stability solution based on PLL frequency is proposed; and both are verified with power system simulations and by experiments on a grid...

  4. New 2D adaptive mesh refinement algorithm based on conservative finite-differences with staggered grid

    Gerya, T.; Duretz, T.; May, D. A.

    2012-04-01

    We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same

  5. Controlled protein adsorption on PMOXA/PAA based coatings by thermally induced immobilization

    Mumtaz, Fatima; Chen, Chaoshi; Zhu, Haikun; Pan, Chao; Wang, Yanmei

    2018-05-01

    In this work, poly(2-methyl-2-oxazoline-random-glycidyl methacrylate) (PMOXA-r-GMA) and poly(acrylic acid)-block-poly(glycidyl methacrylate) (PAA-b-PGMA) copolymers were synthesized via cationic ring-opening polymerization (CROP) of 2-methyl-2-oxazoline (MOXA) and reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylic acid (AA) followed by their random and block copolymerization with glycidyl methacrylate (GMA), respectively, and then characterized carefully. PMOXA/PAA based coatings were then prepared by simply spin coating the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions onto silicon/glass substrates followed by annealing at 110 °C. The coatings were rigorously characterized by using X-ray photoelectron spectroscopy (XPS), the static water contact angle (WCA) test, ellipsometry and atomic force microscopy (AFM). The results demonstrated that the coating based mixed PMOXA/PAA brushes with desired surface composition could be attained by simply maintaining their percentage in the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions. Finally, the switchable behavior of PMOXA/PAA based coatings toward bovine serum albumin (BSA) adsorption was investigated by fluorescein isothiocyanate-labelled BSA (FITC-BSA) assay and quartz crystal microbalance with dissipation monitoring (QCM-D), which indicated that the coating based mixed PMOXA/PAA brushes could control BSA adsorption/desorption from very low to high amount (>90% desorption) through adjusting the composition of PMOXA-r-GMA and PAA-b-PGMA solution used in preparing PMOXA/PAA based coatings upon pH and ionic strength change. Furthermore, PMOXA/PAA based coatings displayed efficient repeatability of reversible BSA adsorption/desorption cycles.

  6. AMP: a science-driven web-based application for the TeraGrid

    Woitaszek, M.; Metcalfe, T.; Shorrock, I.

    The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.

  7. Grid-friendly wind power systems based on the synchronverter technology

    Zhong, Qing-Chang; Ma, Zhenyu; Ming, Wen-Long; Konstantopoulos, George C.

    2015-01-01

    Highlights: • A grid-friendly wind power system that uses the synchronverter technology is proposed. • Both the rotor-side and the grid-side converters act as synchronverters. • The complete generator–motor–generator system improves the performance under grid faults. • Real-time digital simulation results verify the effectiveness of the proposed method. - Abstract: Back-to-back PWM converters are becoming a realistic alternative to conventional converters in high-power wind power applications. In this paper, a control strategy based on the synchronverter technology is proposed for back-to-back PWM converters. Both converters are run as synchronverters, which are mathematically equivalent to the conventional synchronous generators. The rotor-side converter is responsible for maintaining the DC link voltage and the grid-side converter is responsible for the maximum power point tracking (MPPT). As the two converters are operated using the synchronverter technology, the formed wind power system becomes more friendly to the grid. Extensive real-time digital simulation results are presented to verify the effectiveness of the proposed method under normal operation and grid-fault scenarios

  8. Applying GRID Technologies to XML Based OLAP Cube Construction

    Niemi, Tapio Petteri; Nummenmaa, J; Thanisch, P

    2002-01-01

    On-Line Analytical Processing (OLAP) is a powerful method for analysing large data warehouse data. Typically, the data for an OLAP database is collected from a set of data repositories such as e.g. operational databases. This data set is often huge, and it may not be known in advance what data is required and when to perform the desired data analysis tasks. Sometimes it may happen that some parts of the data are only needed occasionally. Therefore, storing all data to the OLAP database and keeping this database constantly up-to-date is not only a highly demanding task but it also may be overkill in practice. This suggests that in some applications it would be more feasible to form the OLAP cubes only when they are actually needed. However, the OLAP cube construction can be a slow process. Thus, we present a system that applies Grid technologies to distribute the computation. As the data sources may well be heterogeneous, we propose an XML language for data collection. The user's definition for a OLAP new cube...

  9. Frequency scanning-based stability analysis method for grid-connected inverter system

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion with conside......This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion...... with consideration of the inverter nonlinearities. Small current disturbance is injected into grid-connected inverter system in a particular frequency range, and the impedance is computed according to the harmonic-frequency response using Fourier analysis, and then the stability is predicted on the basis...... of the impedance stability criterion. The stability issues of grid-connected inverters with grid-current feedback and the converter-current feedback are addressed using the proposed method. The results obtained from simulation and experiments validate the effectiveness of the method. The frequency scanning...

  10. Simulation-Based Approach for Studying the Balancing of Local Smart Grids with Electric Vehicle Batteries

    Juhani Latvakoski

    2015-07-01

    Full Text Available Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2 emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid– and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV

  11. A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.

    Pakdel, Majid; Jalilzadeh, Saeid

    2017-09-29

    In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.

  12. Adaptation of Powerline Communications-Based Smart Metering Deployments to the Requirements of Smart Grids

    Alberto Sendin

    2015-11-01

    Full Text Available Powerline communications (PLC-based smart meter deployments are now a reality in many regions of the world. Although PLC elements are generally incorporated in smart meters and data concentrators, the underlying PLC network allows the integration of other smart grid services directly over it. The remote control capabilities that automation programs need and are today deployed over their medium voltage (MV grid, can be extended to the low voltage (LV grid through these existing PLC networks. This paper demonstrates the capabilities of narrowband high data rate (NB HDR PLC technologies deployed over LV grids for smart metering purposes to support internet protocol internet protocol (IP communications in the LV grid. The paper demonstrates these possibilities with the presentation of the simulation and laboratory results of IP communications over international telecommunication union: ITU-T G.9904 PLC technology, and the definition of a PLC Network Management System based on a simple network management protocol (SNMP management information base (MIB definition and applicable use cases.

  13. A multi-agent based distributed energy management scheme for smart grid applications

    Radhakrishnan, Bharat Menon; Srinivasan, Dipti

    2016-01-01

    A multi-agent system based distributed EMS (energy management system) is proposed in this paper to perform optimal energy allocation and management for grids comprising of renewables, storage and distributed generation. The reliable and efficient operation of smart grids is slackened due to the presence of intermittent renewables. As the load demand and renewables are uncertain throughout the day, an energy management system is essential to ensure grid stability and achieve reductions in operation costs and CO_2 emissions. The main objectives of the proposed algorithm is to maintain power balance in the system and to ensure long cycle life for storage units by controlling their SOC (state of charge). The proposed EMS scheme is tested and validated on a practical test system, which replicates a small-scale smart grid with a variety of distributed sources, storage devices, loads, power electronic converters, and SCADA (supervisory control and data acquisition) system. This system is also connected to the utility grid and the power exchange is controlled with the help of a battery system through a fuzzy based decision-making framework. The proposed algorithm is also extensively verified and tested using a series of sensitivity analyses and benchmarking with existing algorithms. - Highlights: • An agent-based decentralized algorithm is proposed to perform energy management. • The multi-agent system approach eliminates the possibility of single point failures. • Adaptive fuzzy systems make the decision making more reliable, flexible and robust. • The algorithm is extensively tested and validated using sensitivity and verification analyses.

  14. Operation of an InGrid based X-ray detector at the CAST experiment

    Krieger Christoph

    2018-01-01

    During operation at the experiment, background rates in the order of 10−5 keV−1 cm−2 s−1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.

  15. A novel approach for UI charge reduction using AMI based load prioritization in smart grid

    Avani Pujara

    2017-09-01

    Full Text Available System frequency is vital part for power system balance. As per India Electricity Grid code frequency should be in the range of 49.5 Hz–50.5 Hz. Deviation from above mentioned range is charged as Unscheduled Interchange (UI charge. This paper proposes a new method for load and frequency control based on control of third parameter of three-part Availability Based Tariff (ABT i.e. Unscheduled Interchange charges. New circuit is designed considering prioritization of load and using Advanced Metering Infrastructure (AMI under Smart Grid environment.

  16. Modular Multilevel Converters Based Variable Speed Wind Turbines for Grid Faults

    Deng, Fujin; Liu, Dong; Wang, Yanbo

    2016-01-01

    in the dc-link of the power converter to improve system performance, but also ensure the grid-side current balancing to increase the generated power of the wind turbine under the unbalanced grid fault, in comparison with the conventional VSWT based on BTB three-level NPC converters. The simulation studies......The modular multilevel converter (MMC) becomes attractive in the medium- and high-power application with high modularity. In this paper, the MMC is proposed to be applied in the variable speed wind turbine (VSWT) based on the full-scale back-to-back (BTB) power converter, where the generator...

  17. An adaptive multi-agent-based approach to smart grids control and optimization

    Carvalho, Marco [Florida Institute of Technology, Melbourne, FL (United States); Perez, Carlos; Granados, Adrian [Institute for Human and Machine Cognition, Ocala, FL (United States)

    2012-03-15

    In this paper, we describe a reinforcement learning-based approach to power management in smart grids. The scenarios we consider are smart grid settings where renewable power sources (e.g. Photovoltaic panels) have unpredictable variations in power output due, for example, to weather or cloud transient effects. Our approach builds on a multi-agent system (MAS)-based infrastructure for the monitoring and coordination of smart grid environments with renewable power sources and configurable energy storage devices (battery banks). Software agents are responsible for tracking and reporting power flow variations at different points in the grid, and to optimally coordinate the engagement of battery banks (i.e. charge/idle/discharge modes) to maintain energy requirements to end-users. Agents are able to share information and coordinate control actions through a parallel communications infrastructure, and are also capable of learning, from experience, how to improve their response strategies for different operational conditions. In this paper we describe our approach and address some of the challenges associated with the communications infrastructure for distributed coordination. We also present some preliminary results of our first simulations using the GridLAB-D simulation environment, created by the US Department of Energy (DoE) at Pacific Northwest National Laboratory (PNNL). (orig.)

  18. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F

    2012-01-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...

  19. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  20. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  1. A methodology toward manufacturing grid-based virtual enterprise operation platform

    Tan, Wenan; Xu, Yicheng; Xu, Wei; Xu, Lida; Zhao, Xianhua; Wang, Li; Fu, Liuliu

    2010-08-01

    Virtual enterprises (VEs) have become one of main types of organisations in the manufacturing sector through which the consortium companies organise their manufacturing activities. To be competitive, a VE relies on the complementary core competences among members through resource sharing and agile manufacturing capacity. Manufacturing grid (M-Grid) is a platform in which the production resources can be shared. In this article, an M-Grid-based VE operation platform (MGVEOP) is presented as it enables the sharing of production resources among geographically distributed enterprises. The performance management system of the MGVEOP is based on the balanced scorecard and has the capacity of self-learning. The study shows that a MGVEOP can make a semi-automated process possible for a VE, and the proposed MGVEOP is efficient and agile.

  2. A Data Transmission Algorithm Based on Dynamic Grid Division for Coal Goaf Temperature Monitoring

    Qingsong Hu

    2014-01-01

    Full Text Available WSN (wireless sensor network is a perfect tool of temperature monitoring in coal goaf. Based on the three-zone theory of goaf, the GtmWSN model is proposed, and its dynamic features are analyzed. Accordingly, a data transmission scheme, named DTDGD, is worked out. Firstly, sink nodes conduct dynamic grid division on the GtmWSN according to virtual semicircle. Secondly, each node will confirm to which grid it belongs based on grid number. Finally, data will be delivered to sink nodes with greedy forward and hole avoidance. Simulation results and field data showed that the GtmWSN and DTDGD satisfied the lifetime need of goaf temperature monitoring.

  3. Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid

    Farhan Beg

    2015-01-01

    Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.

  4. A composite passive damping method of the LLCL-filter based grid-tied inverter

    Wu, Weimin; Huang, Min; Sun, Yunjie

    2012-01-01

    This paper investigates the maximum and the minimum gain of the proportional resonant based grid current controller for a grid-tied inverter with a passive damped high-order power filter. It is found that the choice of the controller gain is limited to the local maximum amplitude determined by Q......-factor around the characteristic frequency of the filter and grid impedance. To obtain the Q-factor of a high-order system, an equivalent circuit analysis method is proposed and illustrated through several classical passive damped LCL- and LLCL-filters. It is shown that both the RC parallel damper...... that is in parallel with the capacitor of the LCL-filter or with the Lf-Cf resonant circuit of the LLCL-filter, and the RL series damper in series with the grid-side inductor have their own application limits. Thus, a composite passive damped LLCL-filter for the grid-tied inverter is proposed, which can effectively...

  5. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    Liping Zhang

    Full Text Available In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  6. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  7. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  8. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    Jakeman, J.D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation

  9. Commutative discrete filtering on unstructured grids based on least-squares techniques

    Haselbacher, Andreas; Vasilyev, Oleg V.

    2003-01-01

    The present work is concerned with the development of commutative discrete filters for unstructured grids and contains two main contributions. First, building on the work of Marsden et al. [J. Comp. Phys. 175 (2002) 584], a new commutative discrete filter based on least-squares techniques is constructed. Second, a new analysis of the discrete commutation error is carried out. The analysis indicates that the discrete commutation error is not only dependent on the number of vanishing moments of the filter weights, but also on the order of accuracy of the discrete gradient operator. The results of the analysis are confirmed by grid-refinement studies

  10. Modelling security properties in a grid-based operating system with anti-goals

    Arenas, A.; Aziz, Benjamin; Bicarregui, J.; Matthews, B.; Yang, E.

    2008-01-01

    In this paper, we discuss the use of formal requirements-engineering techniques in capturing security requirements for a Grid-based operating system. We use KAOS goal model to represent two security goals for Grid systems, namely authorisation and single-sign on authentication. We apply goal-refinement to derive security requirements for these two security goals and we develop a model of antigoals and show how system vulnerabilities and threats to the security goals can arise from such anti-m...

  11. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895

  12. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    John Hassard

    2008-06-01

    Full Text Available In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  13. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  14. Air Pollution Monitoring and Mining Based on Sensor Grid in London.

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-06-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  15. Degenerate Quadtree Latitude/Longitude Grid Based on WGS-84 Ellipsoidal Facet

    HU Bailin

    2016-12-01

    Full Text Available For the needs of digital earth development and solving many global problems, a new discrete global grid system-DQLLG (degenerate quadtree latitude/longitude grid was put forward, which was based on WGS-84 ellipsoidal facet. The hierarchical subdivision method, characteristics and grid column/row coordinate system were detailed. The Latitude/Longitude coordinate, area and side length of multi-resolution meshes on different subdivision levels were calculated. Then the changes of mesh areas and side lengths were analyzed and compared that with spherical DQLLG. The research indicates that the DQLLG had many excellent features:uniformity, hierarchy, consistency of direction, extensive data compatibility and so on. It has certain practicality for Global GIS in the future.

  16. Passivity Enhancement in Renewable Energy Source Based Power Plant With Paralleled Grid-Connected VSIs

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Harmonic instability is threatening the operation of renewable energy based power plants where multiple gridconnected VSIs are connected in parallel. To analyze and improve the stability of the grid-connected VSIs, the real part of the output admittance of the VSIs is first investigated......-connected VSIs can improve the stability of the renewable power plant....

  17. Cognitive radio based sensor network in smart grid: Architectures, applications and communication technologies

    Ogbodo, EU

    2017-09-01

    Full Text Available The cognitive radio-based sensor network (CRSN) is envisioned as a strong driver in the development of modern power system smart grids (SGs). This can address the spectrum limitation in the sensor nodes due to interference cause by other wireless...

  18. A game theory strategy to integrate distributed agent-based functions in smart grids

    Nguyen, P.H.; Kling, W.L.; Ribeiro, P.F.

    2013-01-01

    The increasing incorporation of renewable energy sources and the emergence of new forms and patterns of electricity consumption are contributing to the upsurge in the complexity of power grids. A bottom-up-agent-based approach is able to handle the new environment, such that the system reliability

  19. Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Passive damping is the most adopted method to guarantee the stability of LCL-filter-based grid converters. The method is simple and, if the switching and sampling frequencies are sufficiently high, the damping losses are negligible. This letter proposes the tuning of different passive damping...

  20. Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters

    Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.

    A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory

  1. Proportional derivative based stabilizing control of paralleled grid converters with cables in renewable power plants

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    consisting in LCL filters and cables. Both grid and converter current controls are analyzed. The frequency region, within which the system may be destabilized, is identified by means of the impedance-based stability analysis and frequency-domain passivity theory. A proportional derivative control strategy...

  2. Arogyasree: An Enhanced Grid-Based Approach to Mobile Telemedicine

    Sriram Kailasam

    2010-01-01

    Full Text Available A typical telemedicine system involves a small set of hospitals providing remote healthcare services to a small section of the society using dedicated nodal centers. However, in developing nations like India where majority live in rural areas that lack specialist care, we envision the need for much larger Internet-based telemedicine systems that would enable a large pool of doctors and hospitals to collectively provide healthcare services to entire populations. We propose a scalable, Internet-based P2P architecture for telemedicine integrating multiple hospitals, mobile medical specialists, and rural mobile units. This system, based on the store and forward model, features a distributed context-aware scheduler for providing timely and location-aware telemedicine services. Other features like zone-based overlay structure and persistent object space abstraction make the system efficient and easy to use. Lastly, the system uses the existing internet infrastructure and supports mobility at doctor and patient ends.

  3. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  4. Operation of an InGrid based X-ray detector at the CAST experiment

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the

  5. Grid Based Technologies for in silico Screening and Drug Design.

    Potemkin, Vladimir; Grishina, Maria

    2018-03-08

    Various techniques for rational drug design are presented in the paper. The methods are based on a substitution of antipharmacophore atoms of the molecules of training dataset by new atoms and/or group of atoms increasing the atomic bioactivity increments obtained at a SAR study. Furthermore, a design methodology based on the genetic algorithm DesPot for discrete optimization and generation of new drug candidate structures is described. Additionally, wide spectra of SAR approaches (3D/4D QSAR interior and exterior-based methods - BiS, CiS, ConGO, CoMIn, high-quality docking method - ReDock) using MERA force field and/or AlteQ quantum chemical method for correct prognosis of bioactivity and bioactive probability is described. The design methods are implemented now at www.chemosophia.com web-site for online computational services. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. A framework supporting the development of a Grid portal for analysis based on ROI.

    Ichikawa, K; Date, S; Kaishima, T; Shimojo, S

    2005-01-01

    In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements. We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance. The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment. The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.

  7. Grid occupancy estimation for environment perception based on belief functions and PCR6

    Moras, Julien; Dezert, Jean; Pannetier, Benjamin

    2015-05-01

    In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.

  8. Influencing Factors and Development Trend Analysis of China Electric Grid Investment Demand Based on a Panel Co-Integration Model

    Jinchao Li

    2018-01-01

    Full Text Available Electric grid investment demand analysis is significant to reasonably arranging construction funds for the electric grid and reduce costs. This paper used the panel data of electric grid investment from 23 provinces of China between 2004 and 2016 as samples to analyze the influence between electric grid investment demand and GDP, population scale, social electricity consumption, installed electrical capacity, and peak load based on co-integration tests. We find that GDP and peak load have positive influences on electric grid investment demand, but the impact of population scale, social electricity consumption, and installed electrical capacity on electric grid investment is not remarkable. We divide different regions in China into the eastern region, central region, and western region to analyze influence factors of electric grid investment, finally obtaining key factors in the eastern, central, and western regions. In the end, according to the analysis of key factors, we make a prediction about China’s electric grid investment for 2020 in different scenarios. The results offer a certain understanding for the development trend of China’s electric grid investment and contribute to the future development of electric grid investment.

  9. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  10. [Analysis on difference of richness of traditional Chinese medicine resources in Chongqing based on grid technology].

    Zhang, Xiao-Bo; Qu, Xian-You; Li, Meng; Wang, Hui; Jing, Zhi-Xian; Liu, Xiang; Zhang, Zhi-Wei; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    After the end of the national and local medicine resources census work, a large number of Chinese medicine resources and distribution of data will be summarized. The species richness between the regions is a valid indicator for objective reflection of inter-regional resources of Chinese medicine. Due to the large difference in the size of the county area, the assessment of the intercropping of the resources of the traditional Chinese medicine by the county as a statistical unit will lead to the deviation of the regional abundance statistics. Based on the rule grid or grid statistical methods, the size of the statistical unit due to different can be reduced, the differences in the richness of traditional Chinese medicine resources are caused. Taking Chongqing as an example, based on the existing survey data, the difference of richness of traditional Chinese medicine resources under different grid scale were compared and analyzed. The results showed that the 30 km grid could be selected and the richness of Chinese medicine resources in Chongqing could reflect the objective situation of intercropping resources richness in traditional Chinese medicine better. Copyright© by the Chinese Pharmaceutical Association.

  11. Model Penilaian Risiko Kebakaran Perkotaan dengan Sistem Pakar berbasis GIS Grid-Based

    Sabrillah Taridala

    2017-12-01

    Full Text Available Abstrak Kota Kendari merupakan suatu kawasan perkotaan dengan luas wilayah terkecil dan jumlah penduduk terpadat di Provinsi Sulawesi Tenggara. Bencana kebakaran di Kota Kendari sering terjadi dan telah menimbulkan kerugian yang cukup banyak, hingga menelan korban jiwa. Penelitian ini bertujuan untuk melakukan penilaian terhadap tingkat risiko bencana kebakaran di Kota Kendari dengan menggunakan pendekatan Sistem Pakar (Expert System berbasis Sistem Informasi Geografis (SIG. Hasil penelitian menujukkan bahwa tingkat risiko kebakaran di Kota Kendari terklasifikasi dalam empat kelas, yaitu tingkat risiko kebakaran sangat tinggi sebanyak 206 grid, tingkat risiko kebakaran tinggi sebanyak 6.815 grid, tingkat risiko kebakaran rendah sebanyak 46.175 grid, dan tingkat risiko kebakaran sangat rendah sebanyak 54.640 grid. Tingkat risiko kebakaran sangat tinggi di Kota Kendari merupakan kawasan terbangun yang berpenduduk padat dengan dominasi jenis material bangunan kayu dan campuran, terletak pada daerah dengan morfologi berbukit, dan aksesibilitas hanya dilalui oleh jalan umum yang memiliki lebar jalur lalu lintas <4 meter. Wilayah dengan tingkat risiko sangat rendah merupakan kawasan non-terbangun yang didominasi oleh badan air (sungai dan rawa, hutan dan sebagian kawasan pertanian (kebun. Kawasan tersebut bermorfologi datar, berbukit dan bergunung. Abstract Kendari city is an urban area with the smallest area and the densest population in Southeast Sulawesi Province. Fire disaster in the city of Kendari often occurs and has caused considerable losses, to claim casualties. This study aims to assess the risk degree of fire disaster in Kendari City using Expert System Approach based on Geographic Information System (GIS. The results showed that the degrees of fire risk in Kendari City were classified into four classes, ie very high fire risk degree, 206 grid, high fire risk degree, 6,815 grid, low fire risk degree, 46.175 grid, and very low fire risk, as

  12. Comprehensive analysis of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions

    Alsmadi, Yazan M.; Xu, Longya; Blaabjerg, Frede

    2015-01-01

    ) capability of wind turbines during grid faults is one of the core requirements to ensure stability in the power grid during transients. The doubly-fed induction generators (DFIGs) offer several advantages when utilized in wind turbines, but discussions about their LVRT capabilities are limited. This paper...... presents a comprehensive study of the LVRT of grid-connected DFIG-based wind turbines. It provides a detailed investigation of the transient characteristics and the dynamic behavior of DFIGs during symmetrical and asymmetrical grid voltage sags. A detailed theoretical study supported by computer......Power generation and grid stability have become key issues in the last decade. The high penetration of large capacity wind generation into the electric power grid has led to serious concerns about their influence on the dynamic behavior of power systems. The Low-Voltage Ride-Through (LVRT...

  13. A Novel Grid Impedance Estimation Technique based on Adaptive Virtual Resistance Control Loop Applied to Distributed Generation Inverters

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem

    2013-01-01

    and to take the decision of either keep the DG connected, or disconnect it from the utility grid. The proposed method is based on a fast and easy grid fault detection method. A virtual damping resistance is used to drive the system to the resonance in order to extract the grid impedance parameters, both...... the power quality and even damage some sensitive loads connected at the point of the common coupling (PCC). This paper presents detection-estimation method of the grid impedance variation. This estimation tehnique aims to improve the dynamic of the distributed generation (DG) interfacing inverter control...

  14. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  15. Gridded sunshine duration climate data record for Germany based on combined satellite and in situ observations

    Walawender, Jakub; Kothe, Steffen; Trentmann, Jörg; Pfeifroth, Uwe; Cremer, Roswitha

    2017-04-01

    The purpose of this study is to create a 1 km2 gridded daily sunshine duration data record for Germany covering the period from 1983 to 2015 (33 years) based on satellite estimates of direct normalised surface solar radiation and in situ sunshine duration observations using a geostatistical approach. The CM SAF SARAH direct normalized irradiance (DNI) satellite climate data record and in situ observations of sunshine duration from 121 weather stations operated by DWD are used as input datasets. The selected period of 33 years is associated with the availability of satellite data. The number of ground stations is limited to 121 as there are only time series with less than 10% of missing observations over the selected period included to keep the long-term consistency of the output sunshine duration data record. In the first step, DNI data record is used to derive sunshine hours by applying WMO threshold of 120 W/m2 (SDU = DNI ≥ 120 W/m2) and weighting of sunny slots to correct the sunshine length between two instantaneous image data due to cloud movement. In the second step, linear regression between SDU and in situ sunshine duration is calculated to adjust the satellite product to the ground observations and the output regression coefficients are applied to create a regression grid. In the last step regression residuals are interpolated with ordinary kriging and added to the regression grid. A comprehensive accuracy assessment of the gridded sunshine duration data record is performed by calculating prediction errors (cross-validation routine). "R" is used for data processing. A short analysis of the spatial distribution and temporal variability of sunshine duration over Germany based on the created dataset will be presented. The gridded sunshine duration data are useful for applications in various climate-related studies, agriculture and solar energy potential calculations.

  16. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  17. A Novel Quad Harmony Search Algorithm for Grid-Based Path Finding

    Saso Koceski

    2014-09-01

    Full Text Available A novel approach to the problem of grid-based path finding has been introduced. The method is a block-based search algorithm, founded on the bases of two algorithms, namely the quad-tree algorithm, which offered a great opportunity for decreasing the time needed to compute the solution, and the harmony search (HS algorithm, a meta-heuristic algorithm used to obtain the optimal solution. This quad HS algorithm uses the quad-tree decomposition of free space in the grid to mark the free areas and treat them as a single node, which greatly improves the execution. The results of the quad HS algorithm have been compared to other meta-heuristic algorithms, i.e., ant colony, genetic algorithm, particle swarm optimization and simulated annealing, and it was proved to obtain the best results in terms of time and giving the optimal path.

  18. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  19. Project Scheduling Heuristics-Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid

    Ruey-Maw Chen

    2011-01-01

    Full Text Available The task scheduling problem has been widely studied for assigning resources to tasks in heterogeneous grid environment. Effective task scheduling is an important issue for the performance of grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this investigation introduces a named “standard“ particle swarm optimization (PSO metaheuristic approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising heuristics based on multimode project scheduling are proposed to help in solving interesting scheduling problems. They are the best performance resource heuristic and the latest finish time heuristic. These two heuristics applied to the PSO scheme are for speeding up the search of the particle and improving the capability of finding a sound schedule. Moreover, both global communication topology and local ring communication topology are also investigated for efficient study of proposed scheme. Simulation results demonstrate that the proposed approach in this investigation can successfully solve the task-resource assignment problems in grid computing and similar scheduling problems.

  20. Evaluation of Harmonic Content from a Tap Transformer Based Grid Connection System for Wind Power

    S. Apelfröjd

    2013-01-01

    Full Text Available Simulations done in MATLAB/Simulink together with experiments conducted at the Ångströms laboratory are used to evaluate and discuss the total harmonic distortion (THD and total demand distortion (TDD of a tap transformer based grid connection system. The grid connection topology can be used with different turbine and generator topologies and is here applied on a vertical axis wind turbine (VAWT with a permanent magnet synchronous generator (PMSG and its operational scheme. The full variable-speed wind conversion system consists of a diode rectifier, DC link, IGBT inverter, LCL-filter, and tap transformer. The full variable-speed operation is enabled by the use of the different step-up ratios of the tap transformer. In the laboratory study, a full experimental setup of the system was used, a clone of the on-site PMSG driven by a motor was used, and the grid was replaced with a resistive load. With a resistive load, grid harmonics and possible unbalances are removed. The results show a TDD and THD below 5% for the full operating range and harmonic values within the limits set up by IEEE-519. Furthermore, a change in tap, going to a lower step-up ratio, results in a reduction in both THD and TDD for the same output power.

  1. Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities

    Kalpeshkumar Patil

    2017-10-01

    Full Text Available Shunt Active Power Filters (SAPF have been effectively used to compensate the harmonics generated by the non-linear loads. The SAPF’s performance depends on the accurate generation of reference current, which is dependent greatly on the template of supply voltage. When the grid voltage (or its template is characterized by different abnormalities like presence of harmonics, imbalance, dc-offset etc., some of the conventional techniques of frequency estimation may fail to correctly estimate the frequency. This ultimately affects the reference current generation and hence, the SAPF operation, ultimately leading to high distortion of the grid currents. The paper presents modified dual second-order generalized integrator (MDSOGI based SAPF to ensure effective compensation of harmonics, even when the grid voltage is characterized by all the abnormalities mentioned above. It is highlighted with one case that when the sensed voltage is having dc-offset, DSOGI-SAPF results into the source current with THD, dc-offset and harmonic with values 5.82%, 0.8% and 4.5%, respectively. For the same case, the proposed technique yields grid current which is free of dc-offset and 2nd harmonic and has THD = 3.57%. The dynamic performance of the MDSOGI-SAPF is validated and its superior performance over DSOGI-SAPF is illustrated even with experimental results.

  2. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  3. Microgrid energy management in grid-connected and islanding modes based on SVC

    Gabbar, Hossam A.; Abdelsalam, Abdelazeem A.

    2014-01-01

    Highlights: • SVC is used to enhance the performance of a microgrid (MG). • MG performance is measured by some key performance indicators (KPIs). • KPIs comprise power loss, voltage deviation, power factor, THD and v/f deviation. • The microgrid is simulated in grid-connected and islanded modes. • Results show SVC stabilizes voltage, reduce losses and THD and enhance power factor. - Abstract: Microgrids are small scale energy grids that can provide adequate energy supply to cover regional demand by integrating renewable energy generation and storage technologies. This paper develops a high performance dynamic model of a microgrid system comprising a wind turbine, a PV, a fuel cell, a micro gas turbine generator, an energy storage, electric loads with variable load profile and flexible AC transmission system (FACTS) devices. The FACTS devices based on static VAR compensators have been employed as a supervisory controller. Key performance indicators such as microgrid power losses, buses voltage deviations, buses power factor, buses voltage total harmonic distortion and voltage-frequency deviation are used to evaluate the performance of this microgrid in grid-connected and islanding modes. The results obtained from the Matlab/Simulink environment show that the proposed microgrid design with SVC has the ability to meet its special requirements such as bus voltages stabilization, reduction of feeder losses, power factor enhancement and mitigation of total harmonic distortion using SVC in grid-connected and islanding modes

  4. An Analysis of Delay-based and Integrator-based Sequence Detectors for Grid-Connected Converters

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    -signal cancellation operators are the main members of the delay-based sequence detectors. The aim of this paper is to provide a theoretical and experimental comparative study between integrator and delay based sequence detectors. The theoretical analysis is conducted based on the small-signal modelling......Detecting and separating positive and negative sequence components of the grid voltage or current is of vital importance in the control of grid-connected power converters, HVDC systems, etc. To this end, several techniques have been proposed in recent years. These techniques can be broadly...... classified into two main classes: The integrator-based techniques and Delay-based techniques. The complex-coefficient filter-based technique, dual second-order generalized integrator-based method, multiple reference frame approach are the main members of the integrator-based sequence detector and the delay...

  5. An Enhanced LVRT Scheme for DFIG-based WECSs under Both Balanced and Unbalanced Grid Voltage Sags

    Mohammadi, Jafar; Afsharnia, Saeed; Ebrahimzadeh, Esmaeil

    2017-01-01

    reactive power into the grid. The passive compensator is based on a three-phase stator damping resistor (SDR) located in series with the stator windings. The proposed scheme decreases the negative effects of grid voltage sags in the DFIG system including the rotor over-currents, electromagnetic torque...

  6. Design and Tuning of a Modified Power-Based PLL for Single-Phase Grid-Connected Power Conditioning Systems

    Golestan, Saeed; Monfared, Mohammad; D. Freijedo, Francisco

    2012-01-01

    One of the most important aspects for the proper operation of the single-phase grid-tied power-conditioning systems is the synchronization with the utility grid. Among various synchronization techniques, phase locked loop (PLL) based algorithms have found a lot of interest for the advantages...

  7. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    G. Rohini

    2016-01-01

    Full Text Available This work aims at improving the dynamic performance of the available photovoltaic (PV system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  8. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  9. A comprehensive WSN-based approach to efficiently manage a Smart Grid.

    Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David

    2014-10-10

    The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators-mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices-making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach.

  10. WebGIS based on semantic grid model and web services

    Zhang, WangFei; Yue, CaiRong; Gao, JianGuo

    2009-10-01

    ontology based on Grid technology and Web Services.

  11. Geo-spatial Cognition on Human's Social Activity Space Based on Multi-scale Grids

    ZHAI Weixin

    2016-12-01

    Full Text Available Widely applied location aware devices, including mobile phones and GPS receivers, have provided great convenience for collecting large volume individuals' geographical information. The researches on the human's society behavior space has attracts an increasingly number of researchers. In our research, based on location-based Flickr data From 2004 to May, 2014 in China, we choose five levels of spatial grids to form the multi-scale frame for investigate the correlation between the scale and the geo-spatial cognition on human's social activity space. The HT-index is selected as the fractal inspired by Alexander to estimate the maturity of the society activity on different scales. The results indicate that that the scale characteristics are related to the spatial cognition to a certain extent. It is favorable to use the spatial grid as a tool to control scales for geo-spatial cognition on human's social activity space.

  12. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  13. Grid-based modeling for land use planning and environmental resource mapping.

    Kuiper, J. A.

    1999-08-04

    Geographic Information System (GIS) technology is used by land managers and natural resource planners for examining resource distribution and conducting project planning, often by visually interpreting spatial data representing environmental or regulatory variables. Frequently, many variables influence the decision-making process, and modeling can improve results with even a small investment of time and effort. Presented are several grid-based GIS modeling projects, including: (1) land use optimization under environmental and regulatory constraints; (2) identification of suitable wetland mitigation sites; and (3) predictive mapping of prehistoric cultural resource sites. As different as the applications are, each follows a similar process of problem conceptualization, implementation of a practical grid-based GIS model, and evaluation of results.

  14. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  15. Energy efficiency analysis for flexible-grid OFDM-based optical networks

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible......-grid network based on Orthogonal Frequency Division Multiplexing (OFDM) with that of conventional fixed-grid Wavelength Division Multiplexing (WDM) networks with a Single Line Rate (SLR) and with a Mixed Line Rate (MLR) operation. The power consumption values of the network elements are introduced. Energy......-aware heuristic algorithms are proposed for the resource allocation both in static (offline) and dynamic (online) scenarios with time-varying demands for the Elastic-bandwidth OFDM-based network and the WDM networks (with SLR and MLR). The energy efficiency performance of the two network technologies under...

  16. Hybrid islanding detection method by using grid impedance estimation in parallel-inverters-based microgrid

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem

    2014-01-01

    This paper presents a hybrid islanding detection algorithm integrated on the distributed generation unit more close to the point of common coupling of a Microgrid based on parallel inverters where one of them is responsible to control the system. The method is based on resonance excitation under...... parameters, both resistive and inductive parts, from the injected resonance frequency determination. Finally, the inverter will disconnect the microgrid from the faulty grid and reconnect the parallel inverter system to the controllable distributed system in order to ensure high power quality. This paper...... shows that grid impedance variation detection estimation can be an efficient method for islanding detection in microgrid systems. Theoretical analysis and simulation results are presented to validate the proposed method....

  17. Nationwide impact and vehicle to grid application of electric vehicles mobility using an activity based model

    Álvaro, Roberto; González, Jairo; Fraile Ardanuy, José Jesús; Knapen, Luk; Janssens, Davy

    2013-01-01

    This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From t...

  18. Applying an activity based model to explore the potential of electrical vehicles in the smart grid

    De Ridder, Fjo; D'Hulst, Reinhilde; KNAPEN, Luk; JANSSENS, Davy

    2013-01-01

    We have explored to what extent charging electrical vehicles (EVs) can be exploited to stabilize smart grids. Firstly, we discuss the transition to a future with a lot of renewable energy resources. Next, a decentralized coordinated charging schedule for EVs is proposed, taking into account the comfort settings of the consumers and local and temporal flexibility. Based on the vehicle behavior information (trajectories, parking places and duration, etc.) the algorithm assures that all vehicles...

  19. Coding Model and Mapping Method of Spherical Diamond Discrete Grids Based on Icosahedron

    LIN Bingxian

    2016-12-01

    Full Text Available Discrete Global Grid(DGG provides a fundamental environment for global-scale spatial data's organization and management. DGG's encoding scheme, which blocks coordinate transformation between different coordination reference frames and reduces the complexity of spatial analysis, contributes a lot to the multi-scale expression and unified modeling of spatial data. Compared with other kinds of DGGs, Diamond Discrete Global Grid(DDGG based on icosahedron is beneficial to the spherical spatial data's integration and expression for much better geometric properties. However, its structure seems more complicated than DDGG on octahedron due to its initial diamond's edges cannot fit meridian and parallel. New challenges are posed when it comes to the construction of hierarchical encoding system and mapping relationship with geographic coordinates. On this issue, this paper presents a DDGG's coding system based on the Hilbert curve and designs conversion methods between codes and geographical coordinates. The study results indicate that this encoding system based on the Hilbert curve can express space scale and location information implicitly with the similarity between DDG and planar grid put into practice, and balances efficiency and accuracy of conversion between codes and geographical coordinates in order to support global massive spatial data's modeling, integrated management and all kinds of spatial analysis.

  20. A new service-oriented grid-based method for AIoT application and implementation

    Zou, Yiqin; Quan, Li

    2017-07-01

    The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.

  1. Automatic building extraction from LiDAR data fusion of point and grid-based features

    Du, Shouji; Zhang, Yunsheng; Zou, Zhengrong; Xu, Shenghua; He, Xue; Chen, Siyang

    2017-08-01

    This paper proposes a method for extracting buildings from LiDAR point cloud data by combining point-based and grid-based features. To accurately discriminate buildings from vegetation, a point feature based on the variance of normal vectors is proposed. For a robust building extraction, a graph cuts algorithm is employed to combine the used features and consider the neighbor contexture information. As grid feature computing and a graph cuts algorithm are performed on a grid structure, a feature-retained DSM interpolation method is proposed in this paper. The proposed method is validated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction and compared to the state-art-of-the methods. The evaluation shows that the proposed method can obtain a promising result both at area-level and at object-level. The method is further applied to the entire ISPRS dataset and to a real dataset of the Wuhan City. The results show a completeness of 94.9% and a correctness of 92.2% at the per-area level for the former dataset and a completeness of 94.4% and a correctness of 95.8% for the latter one. The proposed method has a good potential for large-size LiDAR data.

  2. A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds

    Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang

    2017-04-01

    3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.

  3. Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation

    Khoromskaia, Venera; Khoromskij, Boris N.

    2014-12-01

    Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.

  4. Design and implementation of a web-based data grid management system for enterprise PACS backup and disaster recovery

    Zhou, Zheng; Ma, Kevin; Talini, Elisa; Documet, Jorge; Lee, Jasper; Liu, Brent

    2007-03-01

    A cross-continental Data Grid infrastructure has been developed at the Image Processing and Informatics (IPI) research laboratory as a fault-tolerant image data backup and disaster recovery solution for Enterprise PACS. The Data Grid stores multiple copies of the imaging studies as well as the metadata, such as patient and study information, in geographically distributed computers and storage devices involving three different continents: America, Asia and Europe. This effectively prevents loss of image data and accelerates data recovery in the case of disaster. However, the lack of centralized management system makes the administration of the current Data Grid difficult. Three major challenges exist in current Data Grid management: 1. No single user interface to access and administrate each geographically separate component; 2. No graphical user interface available, resulting in command-line-based administration; 3. No single sign-on access to the Data Grid; administrators have to log into every Grid component with different corresponding user names/passwords. In this paper we are presenting a prototype of a unique web-based access interface for both Data Grid administrators and users. The interface has been designed to be user-friendly; it provides necessary instruments to constantly monitor the current status of the Data Grid components and their contents from any locations, contributing to longer system up-time.

  5. Novel grid-based optical Braille conversion: from scanning to wording

    Yoosefi Babadi, Majid; Jafari, Shahram

    2011-12-01

    Grid-based optical Braille conversion (GOBCO) is explained in this article. The grid-fitting technique involves processing scanned images taken from old hard-copy Braille manuscripts, recognising and converting them into English ASCII text documents inside a computer. The resulted words are verified using the relevant dictionary to provide the final output. The algorithms employed in this article can be easily modified to be implemented on other visual pattern recognition systems and text extraction applications. This technique has several advantages including: simplicity of the algorithm, high speed of execution, ability to help visually impaired persons and blind people to work with fax machines and the like, and the ability to help sighted people with no prior knowledge of Braille to understand hard-copy Braille manuscripts.

  6. Health risk assessment based on injection of upgraded biogas in natural gas grid

    Leroux, C.; Modelon, H.; Rousselle, C.; Zdanevitch, I.; Evanno, S.

    2010-01-01

    This document presents the opinion of the French Agency for Environmental and Occupational Health Safety (AFSSET). Results are based on a collective expertise conducted to assess health risks associated with the injection of biogas in the natural gas grid. The complete assessment is published and available on the web site of the Agency; only the major results are presented in this document. Following recommendations issued by AFSSET in 2008, a new study has been initiated to collect and analyze data on the composition of biogas from sewage sludge. The French National Institute for Industrial Environment and Risks (INERIS) is in charge of this project. The data will be used to assess the accidental risks (resulting from the upgrading of biogas, transport by pipeline and utilization for energy purposes) and health risks for users (resulting from the injection in the natural gas grid). (authors)

  7. Project GRACE A grid based search tool for the global digital library

    Scholze, Frank; Vigen, Jens; Prazak, Petra; The Seventh International Conference on Electronic Theses and Dissertations

    2004-01-01

    The paper will report on the progress of an ongoing EU project called GRACE - Grid Search and Categorization Engine (http://www.grace-ist.org). The project participants are CERN, Sheffield Hallam University, Stockholm University, Stuttgart University, GL 2006 and Telecom Italia. The project started in 2002 and will finish in 2005, resulting in a Grid based search engine that will search across a variety of content sources including a number of electronic thesis and dissertation repositories. The Open Archives Initiative (OAI) is expanding and is clearly an interesting movement for a community advocating open access to ETD. However, the OAI approach alone may not be sufficiently scalable to achieve a truly global ETD Digital Library. Many universities simply offer their collections to the world via their local web services without being part of any federated system for archiving and even those dissertations that are provided with OAI compliant metadata will not necessarily be picked up by a centralized OAI Ser...

  8. Dual-loop control strategy for DFIG-based Wind turbines under grid voltage disturbances

    Zhu, Rongwu; Chen, Zhe; Tang, Yi

    2016-01-01

    , but also decay the stator transient flux, and avoid the accumulation of the stator transient flux. Moreover, the proposed strategy can obtain nearly constant stator active power and electromagnetic torque, which may prolong the lifetime of the drive train. A case study on a typical 2-MW DFIG-based wind......For a multimegawatts doubly-fed induction generator (DFIG), the grid voltage disturbances may affect the stator flux and induce the transient stator flux, due to the direct connection of the stator and the grid. The accumulation of the transient stator flux caused by the variations of the stator...... turbine demonstrating the effectiveness of the proposed control methods is verified with simulations in MATLAB/Simulink. The proposed control methods are also experimentally validated using a scaled-down 7.5-kW DFIG. The simulation and experimental results clearly validate the effectiveness...

  9. Microgrid Restraining Strategy Based on Improved DC Grid Connected DFIG Torque Ripple

    Fei, Xia; Yang, Zhixiong; Zongze, Xia

    2017-05-01

    Aiming to the voltage of the stator side is generated by the modulation of the SSC in the improved topology, especially under the circumstance with the asymmTeric fault of stator side, DFIG’s electromagnTeic torque, amplifies ripple of grid-connected power for the grid side. The novel control mTehod suitable to stator side converter and rotor side converter based on reduced-order resonant controller (RORC) is proposed in this thesis, DFIG’s torque and output power performance are improved. Under the RORC control conditions the transfer functions of stator current and torque control system are established, the amplitude characteristic and the system stability of RORC control are analysed. The simulation results in Matlab/Simulink verify the correctness and validity of the proposed mTehod.

  10. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  11. Price-based Energy Control for V2G Networks in the Industrial Smart Grid

    Rong Yu

    2015-08-01

    Full Text Available The energy crisis and global warming call for a new industrial revolution in production and distribution of renewable energy. Distributed power generation will be well developed in the new smart electricity distribution grid, in which robust power distribution will be the key technology. In this paper, we present a new vehicle-to-grid (V2G network for energy transfer, in which distributed renewable energy helps the power grid balance demand and supply. Plug-in hybrid electric vehicles (PHEVs will act as transporters of electricity for distributed renewable energy dispatching. We formulate and analyze the V2G network within the theoretical framework of complex network. We also employ the generalized synchronization method to study the dynamic behavior of V2G networks. Furthermore, we develop a new price-based energy control method to stimulate the PHEV's behavior of charging and discharging. Simulation results indicate that the V2G network can achieve synchronization and each region is able to balance energy supply and demand through price-based control.

  12. Remote Power Control Injection of Grid-Connected Power Converters Based on Virtual Flux

    Nurul Fazlin Roslan

    2018-02-01

    Full Text Available Renewable Energy Source (RES-based power plants need to control the active and reactive power at the Point of Common Connection (PCC with the grid, in order to comply with the requirements of the Transmission System Operators (TSOs. This point is normally far away from the power converter station, and the cables and step-up transformers have a non-neglectable influence on the delivered power. In order to overcome this drawback, this paper presents a control algorithm that permits one to control remotely the power injected at the PCC, by adjusting the local controller of the Voltage Source Converters (VSCs. In this work, the synchronization with the grid is done based on the Virtual Flux (VF concept. The results reveals that the VF estimation is able to produce a reliable estimation of the grid voltage in any point of the network, and makes it possible to calculate the necessary current reference for injecting a desired active and reactive power at a point that can be some kilometres away. In this paper the main principle for this remote power control is presented. Likewise, the simulation and experimental results will be shown in order to analyse the effectiveness of the proposed system.

  13. Geospatial Information Service System Based on GeoSOT Grid & Encoding

    LI Shizhong

    2016-12-01

    Full Text Available With the rapid development of the space and earth observation technology, it is important to establish a multi-source, multi-scale and unified cross-platform reference for global data. In practice, the production and maintenance of geospatial data are scattered in different units, and the standard of the data grid varies between departments and systems. All these bring out the disunity of standards among different historical periods or orgnizations. Aiming at geospatial information security library for the national high resolution earth observation, there are some demands for global display, associated retrieval and template applications and other integrated services for geospatial data. Based on GeoSOT grid and encoding theory system, "geospatial information security library information of globally unified grid encoding management" data subdivision organization solutions have been proposed; system-level analyses, researches and designs have been carried out. The experimental results show that the data organization and management method based on GeoSOT can significantly improve the overall efficiency of the geospatial information security service system.

  14. Evaluation of a Positive Youth Development Program Based on the Repertory Grid Test

    Daniel T. L. Shek

    2012-01-01

    Full Text Available The repertory grid test, based on personal construct psychology, was used to evaluate the effectiveness of Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes in Hong Kong. One hundred and four program participants (n=104 were randomly invited to complete a repertory grid based on personal construct theory in order to provide both quantitative and qualitative data for measuring self-identity changes after joining the program. Findings generally showed that the participants perceived that they understood themselves better and had stronger resilience after joining the program. Participants also saw themselves as closer to their ideal selves and other positive role figures (but farther away from a loser after joining the program. This study provides additional support for the effectiveness of the Tier 1 Program of Project P.A.T.H.S. in the Chinese context. This study also shows that the repertory grid test is a useful evaluation method to measure self-identity changes in participants in positive youth development programs.

  15. PV-Powered CoMP-Based Green Cellular Networks with a Standby Grid Supply

    Abu Jahid

    2017-01-01

    Full Text Available This paper proposes a novel framework for PV-powered cellular networks with a standby grid supply and an essential energy management technique for achieving envisaged green networks. The proposal considers an emerging cellular network architecture employing two types of coordinated multipoint (CoMP transmission techniques for serving the subscribers. Under the proposed framework, each base station (BS is powered by an individual PV solar energy module having an independent storage device. BSs are also connected to the conventional grid supply for meeting additional energy demand. We also propose a dynamic inter-BS solar energy sharing policy through a transmission line for further greening the proposed network by minimizing the consumption from the grid supply. An extensive simulation-based study in the downlink of a Long-Term Evolution (LTE cellular system is carried out for evaluating the energy efficiency performance of the proposed framework. System performance is also investigated for identifying the impact of various system parameters including storage factor, storage capacity, solar generation capacity, transmission line loss, and different CoMP techniques.

  16. Research on the Method of Urban Waterlogging Flood Routing Based on Hexagonal Grid

    LAI Guangling

    2016-12-01

    Full Text Available An evolution of the urban waterlogging flood routing was studied in this paper based on the method of hexagonal grid modeling. Using the method of discrete grid, established an urban geometry model on account of the regular multi-scale discrete grid. With the fusion of 3D topographic survey data and 2D building vector data, formed a regular network model of surface. This model took multi special block into account, such as urban terrain and buildings. On this basis, a method of reverse flow deduction was proposed, which was an inverse computation from the state of flood to the evolution process. That is, based on the water depth of flood, made use of the connectivity with the outfall to calculate the range of water logging, and then implemented the urban waterlogging flood simulation deduction. The test indicated that, this method can implement the evolution of urban waterlogging scenario deduction effectively. And the correlational research could provide scientific basis for urban disaster prevention and emergency decision-making.

  17. The Application of Stationary VOC-PR with PLL for Grid side Converter-based Wind Power Generation System

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2010-01-01

    Voltage oriented control PR is combined with space vector modulation and phase locked loop to control the grid side converter in wind power generation system in this paper. First the mathematical models of grid side converter and LCL filter as well as grid are given. Then the control strategy...... of grid side converter-based wind power generation system is given in detail. Finally the simulation model consisting of the grid side converter wind power generation system is set up. The simulation results have verified that the control strategy is feasible to be used for control of gird currents......, active power, reactive power and DC-link voltage in wind power generation system. It has laid a good basis for the real system development....

  18. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids

  19. SoilGrids1km--global soil information based on automated mapping.

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  20. A threshold auto-adjustment algorithm of feature points extraction based on grid

    Yao, Zili; Li, Jun; Dong, Gaojie

    2018-02-01

    When dealing with high-resolution digital images, detection of feature points is usually the very first important step. Valid feature points depend on the threshold. If the threshold is too low, plenty of feature points will be detected, and they may be aggregated in the rich texture regions, which consequently not only affects the speed of feature description, but also aggravates the burden of following processing; if the threshold is set high, the feature points in poor texture area will lack. To solve these problems, this paper proposes a threshold auto-adjustment method of feature extraction based on grid. By dividing the image into numbers of grid, threshold is set in every local grid for extracting the feature points. When the number of feature points does not meet the threshold requirement, the threshold will be adjusted automatically to change the final number of feature points The experimental results show that feature points produced by our method is more uniform and representative, which avoids the aggregation of feature points and greatly reduces the complexity of following work.

  1. Shapley Value-Based Payment Calculation for Energy Exchange between Micro- and Utility Grids

    Robin Pilling

    2017-10-01

    Full Text Available In recent years, microgrids have developed as important parts of power systems and have provided affordable, reliable, and sustainable supplies of electricity. Each microgrid is managed as a single controllable entity with respect to the existing power system but demands for joint operation and sharing the benefits between a microgrid and its hosting utility. This paper is focused on the joint operation of a microgrid and its hosting utility, which cooperatively minimize daily generation costs through energy exchange, and presents a payment calculation scheme for power transactions based on a fair allocation of reduced generation costs. To fairly compensate for energy exchange between the micro- and utility grids, we adopt the cooperative game theoretic solution concept of Shapley value. We design a case study for a fictitious interconnection model between the Mueller microgrid in Austin, Texas and the utility grid in Taiwan. Our case study shows that when compared to standalone generations, both the micro- and utility grids are better off when they collaborate in power exchange regardless of their individual contributions to the power exchange coalition.

  2. New current control based MPPT technique for single stage grid connected PV systems

    Jain, Sachin; Agarwal, Vivek

    2007-01-01

    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  3. Transactive-Market-Based Operation of Distributed Electrical Energy Storage with Grid Constraints

    M. Nazif Faqiry

    2017-11-01

    Full Text Available In a transactive energy market, distributed energy resources (DERs such as dispatchable distributed generators (DGs, electrical energy storages (EESs, distribution-scale load aggregators (LAs, and renewable energy sources (RESs have to earn their share of supply or demand through a bidding process. In such a market, the distribution system operator (DSO may optimally schedule these resources, first in a forward market, i.e., day-ahead, and in a real-time market later on, while maintaining a reliable and economic distribution grid. In this paper, an efficient day-ahead scheduling of these resources, in the presence of interaction with wholesale market at the locational marginal price (LMP, is studied. Due to inclusion of EES units with integer constraints, a detailed mixed integer linear programming (MILP formulation that incorporates simplified DistFlow equations to account for grid constraints is proposed. Convex quadratic line and transformer apparent power flow constraints have been linearized using an outer approximation. The proposed model schedules DERs based on distribution locational marginal price (DLMP, which is obtained as the Lagrange multiplier of the real power balance constraint at each distribution bus while maintaining physical grid constraints such as line limits, transformer limits, and bus voltage magnitudes. Case studies are performed on a modified IEEE 13-bus system with high DER penetration. Simulation results show the validity and efficiency of the proposed model.

  4. Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution

    Ahmed Al Ameri

    2017-04-01

    Full Text Available The growth of electrical demand increases the need of renewable energy sources, such as wind energy, to meet that need. Electrical power losses are an important factor when wind farm location and size are selected. The capitalized cost of constant power losses during the life of a wind farm will continue to high levels. During the operation period, a method to determine if the losses meet the requirements of the design is significantly needed. This article presents a Simulink simulation of wind farm integration into the grid; the aim is to achieve a better understanding of wind variation impact on grid losses. The real power losses are set as a function of the annual variation, considering a Weibull distribution. An analytical method has been used to select the size and placement of a wind farm, taking into account active power loss reduction. It proposes a fast linear model estimation to find the optimal capacity of a wind farm based on DC power flow and graph theory. The results show that the analytical approach is capable of predicting the optimal size and location of wind turbines. Furthermore, it revealed that the annual variation of wind speed could have a strong effect on real power loss calculations. In addition to helping to improve utility efficiency, the proposed method can develop specific designs to speeding up integration of wind farms into grids.

  5. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    T. Ajith Bosco Raj

    2014-01-01

    Full Text Available The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level inverter for a grid-connected photovoltaic system. The primary goal of these systems is to increase the energy injected to the grid by keeping track of the maximum power point of the panel, by reducing the switching frequency, and by providing high reliability. The maximum power has been tracked experimentally. It is compared with parallel boost converter. Also this model is based on mathematical equations and is described through an equivalent circuit including a PV source with MPPT, a diode, a series resistor, a shunt resistor, and dual boost converter with active snubber circuit. This model can extract PV power and boost by using dual boost converter with active snubber. By using this method the overall system efficiency is improved thereby reducing the switching losses and cost.

  6. Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine

    Abdeddaim, Sabrina; Betka, Achour; Drid, Said; Becherif, Mohamed

    2014-01-01

    Highlights: • Set-up of an experimental test emulating a wind turbine, driving a grid-connected conventional DFIG. • An optimal operation below rated speed is achieved by means of an appropriate maximum power-point tracking algorithm. • Design and implementation of an adaptive model reference controller (MRAC) of the active and reactive power regulation. - Abstract: This paper presents the design and the implementation of a model reference adaptive control of the active and reactive power regulation of a grid connected wind turbine based on a doubly fed induction generator. This regulation is achieved below the synchronous speed, by means of a maximum power-point tracking algorithm. The experiment was conducted on a 1 kW didactic wound rotor induction machine in association with a wind turbine emulator. This implementation is realized using a dSPACE 1104 single-board control and acquisition interface. The obtained results show a permanent track of the available maximum wind power, under a chosen wind speed profile. Furthermore the proposed controller exhibits a smooth regulation of the stator active and reactive power amounts exchanged between the machine and the grid

  7. Single-Phase LLCL-Filter-based Grid-Tied Inverter with Low-Pass Filter Based Capacitor Current Feedback Active damper

    Liu, Yuan; Wu, Weimin; Li, Yun

    2016-01-01

    The capacitor-current-feedback active damping method is attractive for high-order-filter-based high power grid-tied inverter when the grid impedance varies within a wide range. In order to improve the system control bandwidth and attenuate the high order grid background harmonics by using the quasi....... In this paper, a low pass filter is proposed to be inserted in the capacitor current feedback loop op LLCL-filter based grid-tied inverter together with a digital proportional and differential compensator. The detailed theoretical analysis is given. For verification, simulations on a 2kW/220V/10kHz LLCL...

  8. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  9. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform.

    Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-09-22

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  10. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    Shahid, Kamal; Petersen, Lennart; Olsen, Rasmus Løvenstein

    2018-01-01

    as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders i.e. wind turbines and PV....... However, here, the results are validated through a real-time Hardware-In-The-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants...

  11. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  12. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  13. Incentive-compatible demand-side management for smart grids based on review strategies

    Xu, Jie; van der Schaar, Mihaela

    2015-12-01

    Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system's as well as the users' performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.

  14. Secure grid-based computing with social-network based trust management in the semantic web

    Špánek, Roman; Tůma, Miroslav

    2006-01-01

    Roč. 16, č. 6 (2006), s. 475-488 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300419; GA MŠk 1M0554 Institutional research plan: CEZ:AV0Z10300504 Keywords : semantic web * grid computing * trust management * reconfigurable networks * security * hypergraph model * hypergraph algorithms Subject RIV: IN - Informatics, Computer Science

  15. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  16. Doubly fed induction generator based wind turbine systems subject to recurring grid faults

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the Doubly Fed Induction Generator wind turbine system under recurring grid faults is analyzed. The stator natural flux produced by the voltage recovery after the first grid fault...... may be superposed on the stator natural flux produced by the second grid fault, and it may result in large current and voltage transient. The damping of the stator natural flux can be accelerated with a rotor natural current in its opposite direction after voltage recovery, but larger torque....... The performance of DFIG under recurring grid faults is verified by the simulation and experiments....

  17. Single-Phase Boost Inverter-Based Electric Vehicle Charger With Integrated Vehicle to Grid Reactive Power Compensation

    Wickramasinghe Abeywardana, Damith Buddika; Acuna, Pablo; Hredzak, Branislav

    2018-01-01

    Vehicle to grid (V2G) reactive power compensation using electric vehicle (EV) onboard chargers helps to ensure grid power quality by achieving unity power factor operation. However, the use of EVs for V2G reactive power compensation increases the second-order harmonic ripple current component...... from the grid, exposes the EV battery to these undesirable ripple current components for a longer period and discharges the battery due to power conversion losses. This paper presents a way to provide V2G reactive power compensation through a boost inverter-based single stage EV charger and a DC...

  18. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM)

    Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi

    2018-05-01

    The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.

  19. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  20. Z-Source-Inverter-Based Flexible Distributed Generation System Solution for Grid Power Quality Improvement

    Blaabjerg, Frede; Vilathgamuwa, D. M.; Loh, Poh Chiang

    2009-01-01

    Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time......-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using...

  1. The power grid AGC frequency bias coefficient online identification method based on wide area information

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  2. LLCL-Filter Based Single-Phase Grid-Tied Aalborg Inverter

    Wu, Weimin; Feng, Shuangshuang; Ji, Junhao

    2014-01-01

    The Aalborg Inverter is a new type of high efficient DC/AC grid-tied inverter, where the input DC voltage can vary in a wide range. Compared with the LCL-filter, the LLCL-filter can save the total inductance for the conventional voltage source inverter. In this paper, an LLCL-filter based Aalborg...... Inverter is proposed and its character is illustrated through the small signal analysis in both “Buck” and “Buck-Boost” mode. From the modeling, it can be seen that the resonant inductor in the capacitor loop has not brought extra control difficulties, whereas more inductance in the power loop can be saved...

  3. Real-Time Pricing-Based Scheduling Strategy in Smart Grids: A Hierarchical Game Approach

    Jie Yang

    2014-01-01

    Full Text Available This paper proposes a scheduling strategy based on real-time pricing in smart grids. A hierarchical game is employed to analyze the decision-making process of generators and consumers. We prove the existence and uniqueness of Nash equilibrium and utilize a backward induction method to obtain the generation and consumption strategies. Then, we propose two dynamic algorithms for the generators and consumers to search for the equilibrium in a distributed fashion. Simulation results demonstrate that the proposed scheduling strategy can match supply with demand and shift load away from peak time.

  4. Agent-Based Smart Grid Market Simulation with Connection to Real Infrastructures

    Santos, Gabriel; Pinto, Tiago; Gomes, Luis

    2015-01-01

    The consensus behind Smart Grids (SG) as one of the most promising solutions for the massive integration of renewable energy sources in power systems has led to the practical implementation of several prototypes and pilots that aim at testing and validating SG methodologies. The urgent need...... to accommodate such resources of distributed and intermittent nature and the impact that a deficient management of energy sources has on the global population require that alternative solutions are experimented. This paper presents a multi-agent based SG simulation platform that is connected to physical...

  5. Risk management of smart grids based on managed charging of PHEVs and vehicle-to-grid strategy using Monte Carlo simulation

    Hashemi-Dezaki, Hamed; Hamzeh, Mohsen; Askarian-Abyaneh, Hossein; Haeri-Khiavi, Homayoun

    2015-01-01

    Highlights: • Actual distribution system is used to analyze the proposed methodology. • A novel charging management method for PHEVs has been introduced. • The well-being criteria have been provided in addition to reliability indices. • The uncertainty of results is analyzed in addition to expected average results. • System effects due to charging and penetration level of PHEVs are analyzed. - Abstract: The unmanaged charging of plug-in-hybrid-electric vehicles (PHEVs) may adversely affect electric grid reliability because a large amount of additional electrical energy is required to charge the PHEVs. In this paper, a comprehensive method to evaluate the system reliability concerning the stochastic modeling of PHEVs, renewable resources, availability of devices, etc. is proposed. In addition, a novel risk management method in order to reduce the negative PHEVs effects is introduced. This method, which consists of managed charging and vehicle-to-grid (V2G) scenarios, can be practically implemented in smart grids because the bidirectional-power-conversion technologies and two-way of both the power and data are applicable. The introduced method was applied to a real 20 kV network of the Hormozgan Regional Electric Company (HREC) of Iran which is considered as a pilot system for upgrading to smart distribution grid. The results showed that the smart grid’s adequacy was jeopardized by using the PHEVs without any managed charging schedule. The sensitivity analyses results illustrated that by using the risk management scenarios, not only did the PHEVs not compromise the system reliability, but also in the V2G scenario acted as storage systems and improved the well-being criteria and adequacy indices. The comparison between the results based on the proposed method and the other conventional approaches in addition to study of various parameters uncertainty emphasized the advantages of the proposed method

  6. The grid

    Morrad, Annie; McArthur, Ian

    2018-01-01

    Project Anywhere Project title: The Grid   Artists: Annie Morrad: Artist/Senior Lecturer, University of Lincoln, School of Film and Media, Lincoln, UK   Dr Ian McArthur: Hybrid Practitioner/Senior Lecturer, UNSW Art & Design, UNSW Australia, Sydney, Australia   Annie Morrad is a London-based artist and musician and senior lecturer at the University of Lincoln, UK. Dr Ian McArthur is a Sydney-based hybrid practitione...

  7. Bayesian grid matching

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  8. Evaluation of high grid strip densities based on the moiré artifact analysis for quality assurance: Simulation and experiment

    Je, U. K.; Park, C. K.; Lim, H. W.; Cho, H. S.; Lee, D. Y.; Lee, H. W.; Kim, K. S.; Park, S. Y.; Kim, G. A.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.

    2017-09-01

    We have recently developed precise x-ray grids having strip densities in the range of 100 - 250 lines/inch by adopting the precision sawing process and carbon interspace material for the demands of specific x-ray imaging techniques. However, quality assurance in the grid manufacturing has not yet satisfactorily conducted because grid strips of a high strip density are often invisible through an x-ray nondestructive testing with a flat-panel detector of an ordinary pixel resolution (>100 μm). In this work, we propose a useful method to evaluate actual grid strip densities over the Nyquist sampling rate based on the moiré artifact analysis. We performed a systematic simulation and experiment with several sample grids and a detector having a 143- μm pixel resolution to verify the proposed quality assurance method. According to our results, the relative differences between the nominal and the evaluated grid strip densities were within 0.2% and 1.8% in the simulation and experiment, respectively, which demonstrates that the proposed method is viable with an ordinary detector having a moderate pixel resolution for quality assurance in grid manufacturing.

  9. Efficient fault-ride-through control strategy of DFIG-based wind turbines during the grid faults

    Mohammadi, J.; Afsharnia, S.; Vaez-Zadeh, S.

    2014-01-01

    Highlights: • A comparative review of DFIGs fault-ride-through improvement approaches is presented. • An efficient control strategy is proposed to improve the FRT capability of DFIG. • The rotor overcurrent, DC-link overvoltage and torque oscillations are decreased. • The RSC, DC-link capacitor and mechanical parts are kept safe during the grid faults. • The DFIG remains connected to the grid during the symmetrical and asymmetrical faults. - Abstract: As the penetration of wind power in electrical power system increases, it is necessary that wind turbines remain connected to the grid and contribute to the system stability during and after the grid faults. This paper proposes an efficient control strategy to improve the fault ride through (FRT) capability of doubly fed induction generator (DFIG) during the symmetrical and asymmetrical grid faults. The proposed scheme consists of active and passive FRT compensators. The active compensator is carried out by determining the rotor current references to reduce the rotor over voltages. The passive compensator is based on rotor current limiter (RCL) that considerably reduces the rotor inrush currents at the instants of occurring and clearing the grid faults with deep sags. By applying the proposed strategy, negative effects of the grid faults in the DFIG system including the rotor over currents, electromagnetic torque oscillations and DC-link over voltage are decreased. The system simulation results confirm the effectiveness of the proposed control strategy

  10. Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system

    García-Triviño, Pablo; Gil-Mena, Antonio José; Llorens-Iborra, Francisco; García-Vázquez, Carlos Andrés; Fernández-Ramírez, Luis M.; Jurado, Francisco

    2015-01-01

    Highlights: • Three PSO-based PI controllers for a grid-connected inverter were presented. • Two online PSO-based PI controllers were compared with an offline PSO-tuned PI. • The HRES and the inverter were evaluated under power changes and grid voltage sags. • Online ITAE-based PSO reduced ITAE (current THD) by 15.24% (5.32%) versus offline one. - Abstract: This paper is focused on the study of particle swarm optimization (PSO)-based PI controllers for the power control of a grid-connected inverter supplied from a hybrid renewable energy system. It is composed of two renewable energy sources (wind turbine and photovoltaic – PV – solar panels) and two energy storage systems (battery and hydrogen system, integrated by fuel cell and electrolyzer). Three PSO-based PI controllers are implemented: (1) conventional PI controller with offline tuning by PSO algorithm based on the integral time absolute error (ITAE) index; (2) PI controllers with online self-tuning by PSO algorithm based on the error; and (3) PI controllers with online self-tuning by PSO algorithm based on the ITAE index. To evaluate and compare the three controllers, the hybrid renewable energy system and the grid-connected inverter are simulated under changes in the active and reactive power values, as well as under a grid voltage sag. The results show that the online PSO-based PI controllers that optimize the ITAE index achieves the best response

  11. Simulation of single grid-based phase-contrast x-ray imaging (g-PCXI)

    Lim, H.W.; Lee, H.W. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Je, U.K.; Park, C.K.; Kim, K.S.; Kim, G.A.; Park, S.Y.; Lee, D.Y.; Park, Y.O.; Woo, T.H. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Lee, S.H.; Chung, W.H.; Kim, J.W.; Kim, J.G. [R& D Center, JPI Healthcare Co., Ltd., Ansan 425-833 (Korea, Republic of)

    2017-04-01

    Single grid-based phase-contrast x-ray imaging (g-PCXI) technique, which was recently proposed by Wen et al. to retrieve absorption, scattering, and phase-gradient images from the raw image of the examined object, seems a practical method for phase-contrast imaging with great simplicity and minimal requirements on the setup alignment. In this work, we developed a useful simulation platform for g-PCXI and performed a simulation to demonstrate its viability. We also established a table-top setup for g-PCXI which consists of a focused-linear grid (200-lines/in strip density), an x-ray tube (100-μm focal spot size), and a flat-panel detector (48-μm pixel size) and performed a preliminary experiment with some samples to show the performance of the simulation platform. We successfully obtained phase-contrast x-ray images of much enhanced contrast from both the simulation and experiment and the simulated contract seemed similar to the experimental contrast, which shows the performance of the developed simulation platform. We expect that the simulation platform will be useful for designing an optimal g-PCXI system. - Highlights: • It is proposed for the single grid-based phase-contrast x-ray imaging (g-PCXI) technique. • We implemented for a numerical simulation code. • The preliminary experiment with several samples to compare is performed. • It is expected to be useful to design an optimal g-PCXI system.

  12. CSP electricity cost evolution and grid parities based on the IEA roadmaps

    Hernández-Moro, J.; Martínez-Duart, J.M.

    2012-01-01

    The main object of this paper consists in the development of a mathematical closed-form expression for the evaluation, in the period 2010–2050, of the levelized costs of energy (LCOE) of concentrating solar power (CSP) electricity. For this purpose, the LCOE is calculated using a life-cycle cost method, based on the net present value, the discounted cash flow technique and the technology learning curve approach. By this procedure, the LCOE corresponding to CSP electricity is calculated as a function of ten independent variables. Among these parameters, special attention has been put on the evaluation of the available solar resource, the analysis of the IEA predicted values for the cumulative installed capacity, the initial (2010) cost of the system, the discount and learning rates, etc. One significant contribution of our work is that the predicted evolution of the LCOEs strongly depend, not only on the particular values of the cumulative installed capacity function in the targeted years, but mainly on the specific curved time-paths which are followed by this function. The results obtained in this work are shown both graphically and numerically. Finally, the implications that the results could have in energy planning policies and grid parity calculations are discussed. - Highlights: ► A mathematical closed expression has been developed for calculating the evolution of CSP electricity costs. ► Our technique for the prediction of CSP electricity costs and grid parities is based on IEA Roadmaps. ► The time-table (2010–2050) of cumulative installed CSP capacity is key to electricity cost predictions. ► CSP grid parities can occur within next decade for sites with proper solar resources.

  13. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-01

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced. PMID:29315250

  14. gLibrary/DRI: A grid-based platform to host multiple repositories for digital content

    Calanducci, A.; Gonzalez Martin, J. M.; Ramos Pollan, R.; Rubio del Solar, M.; Tcaci, S.

    2007-01-01

    In this work we present the gLibrary/DRI (Digital Repositories Infrastructure) platform. gLibrary/DRI extends gLibrary, a system with a easy-to-use web front-end designed to save and organize multimedia assets on Grid-based storage resources. The main goal of the extended platform is to reduce the cost in terms of time and effort that a repository provider spends to get its repository deployed. This is achieved by providing a common infrastructure and a set of mechanisms (APIs and specifications) that the repository providers use to define the data model, the access to the content (by navigation trees and filters) and the storage model. DRI offers a generic way to provide all this functionality; nevertheless the providers can add specific behaviours to the default functions for their repositories. The architecture is Grid based (VO system, data federation and distribution, computing power, etc). A working example based on a mammograms repository is also presented. (Author)

  15. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids.

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-09

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.

  16. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids

    Claudia Pop

    2018-01-01

    Full Text Available In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.. In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.

  17. Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant

    Al-Shetwi, Ali Q.; Sujod, Muhamad Zahim; Blaabjerg, Frede

    2018-01-01

    to enhance the LVRT capability based on the Malaysian standards and modern grid codes connection requirements. The proposed control overcomes the problems of dc-link over-voltage and ac over-current that may cause disconnection or damage to the inverter. For this purpose, dc-chopper brake controller...... to improve the capability of ride-through fault safely and keep the inverter connected, but also to provide grid support through active and reactive power control at different type of faults....

  18. Off-grid community electrification projects based on wind and solar energies: A case study in Nicaragua

    Ranaboldo, Matteo; Domenech, Bruno; Reyes, Gustavo Alberto; Ferrer Martí, Laia; Pastor Moreno, Rafael; García Villoria, Alberto

    2015-01-01

    Despite various institutional efforts, about 22% of the total Nicaraguan population still do not have access to electricity. Due to the dispersed nature of many rural inhabitants, off-grid electrification systems that use renewable energy sources are a reliable and sustainable option to provide electricity to isolated communities. In this study, the design of an off-grid electrification project based on hybrid wind-photovoltaic systems in a rural community of Nicaragua is developed. Firstly t...

  19. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.

    Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A

    2017-01-01

    In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum

  20. Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler

    You, Rui; Barahona, Braulio; Chai, Jianyun

    2017-01-01

    . Additional power should be generated in response to a grid frequency drop in order to improve the dynamic characteristic of the grid frequency. In this paper, a novel control strategy for WT-EMC to improve the dynamic characteristic of grid frequency is proposed. The principle is to detect active power...... torque to stabilize the rotor speed, therefore directly improving the grid frequency. The proposed control strategy effectiveness is firstly tested through simulations and then validated on a specially built experimental platform....

  1. Integration operators for generating RDF/OWL-based user defined mediator views in a grid environment

    Tawil, Abdel-Rahman H.; Taweel, Adel; Naeem, Usman; Montebello, Matthew; Bashroush, Rabih; Al-Nemrat, Ameer

    2014-01-01

    Research and development activities relating to the grid have generally focused on applications where data is stored in files. However, many scientific and commercial applications are highly dependent on Information Servers (ISs) for storage and organization of their data. A data-information system that supports operations on multiple information servers in a grid environment is referred to as an interoperable grid system. Different perceptions by end-users of interoperable systems in a grid ...

  2. Flexible DWDM Grid Manipulation Using Four Wave Mixing-based Time Lenses

    Røge, Kasper Meldgaard; Guan, Pengyu; Mulvad, Hans Christian Hansen

    2014-01-01

    An experimental demonstration of dense wavelength-division multiplexing (DWDM) grid manipulation is carried out using two time lenses. A DWDM spectrum is compressed from a 100-GHz to a 28-GHz grid with error-free performance.......An experimental demonstration of dense wavelength-division multiplexing (DWDM) grid manipulation is carried out using two time lenses. A DWDM spectrum is compressed from a 100-GHz to a 28-GHz grid with error-free performance....

  3. Benchmarking of Phase Locked Loop based Synchronization Techniques for Grid-Connected Inverter Systems

    Yang, Yongheng; Hadjidemetriou, Lenos; Blaabjerg, Frede

    2015-01-01

    Grid-connected renewables are increasingly developed in recent years, e.g. wind turbine systems and photovoltaic systems. Synchronization of the injected current with the grid is mandatory. However, grid disturbances like voltage sags, harmonics, and frequency deviations may occur during operatio...

  4. A policy-based hierarchical approach for management of grids and networks

    Fioreze, Tiago; Neisse, R.; Granville, L.; Almeida, M.J.; Pras, Aiko

    2006-01-01

    Grids are distributed infrastructures that have been used as an important and powerful resource for distributed computing. Since the nodes of a grid can potentially be located in different administrative domains, the underlying network infrastructure that supports grid communications has to be

  5. A laboratory grid simulator based on three-phase four-leg inverter

    Li, Fei; Wang, Xiongfei; Chen, Zhe

    2011-01-01

    This paper presents the design and implementation of a laboratory grid simulator which is used to test the grid-connected devices according to the strict standards. Three-phase four-leg inverter with direct voltage control in Natural Frame is adopted in this grid simulator, which significantly...

  6. Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators

    Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.

    2003-01-01

    blind” test allowed us to evaluate the influence of expertise and experience in calculating density estimates in comparison to simply using default values in programs CAPTURE and DISTANCE. While the rodent sample sizes were considerably smaller than the recommended minimum for good model results, we found that several models performed well empirically, including the web-based uniform and half-normal models in program DISTANCE, and the grid-based models Mb and Mbh in program CAPTURE (with AÌ‚ adjusted by species-specific full mean maximum distance moved (MMDM) values). These models produced accurate DÌ‚ values (with 95% confidence intervals that included the true D values) and exhibited acceptable bias but poor precision. However, in linear regression analyses comparing each model's DÌ‚ values to the true D values over the range of observed test densities, only the web-based uniform model exhibited a regression slope near 1.0; all other models showed substantial slope deviations, indicating biased estimates at higher or lower density values. In addition, the grid-based DÌ‚ analyses using full MMDM values for WÌ‚ area adjustments required a number of theoretical assumptions of uncertain validity, and we therefore viewed their empirical successes with caution. Finally, density estimates from the independent analysts were highly variable, but estimates from web-based approaches had smaller mean square errors and better achieved confidence-interval coverage of D than did grid-based approaches. Our results support the contention that web-based approaches for density estimation of small-mammal populations are both theoretically and empirically superior to grid-based approaches, even when sample size is far less than often recommended. In view of the increasing need for standardized environmental measures for comparisons among ecosystems and through time, analytical models based on distance sampling appear to offer accurate density estimation approaches for research

  7. A grid-based tropospheric product for China using a GNSS network

    Zhang, Hongxing; Yuan, Yunbin; Li, Wei; Zhang, Baocheng; Ou, Jikun

    2017-11-01

    Tropospheric delay accounts for one source of error in global navigation satellite systems (GNSS). To better characterize the tropospheric delays in the temporal and spatial domain and facilitate the safety-critical use of GNSS across China, a method is proposed to generate a grid-based tropospheric product (GTP) using the GNSS network with an empirical tropospheric model, known as IGGtrop. The prototype system generates the GTPs in post-processing and real-time modes and is based on the undifferenced and uncombined precise point positioning (UU-PPP) technique. GTPs are constructed for a grid form (2.0{°}× 2.5{°} latitude-longitude) over China with a time resolution of 5 min. The real-time GTP messages are encoded in a self-defined RTCM3 format and broadcast to users using NTRIP (networked transport of RTCM via internet protocol), which enables efficient and safe transmission to real-time users. Our approach for GTP generation consists of three sequential steps. In the first step, GNSS-derived zenith tropospheric delays (ZTDs) for a network of GNSS stations are estimated using UU-PPP. In the second step, vertical adjustments for the GNSS-derived ZTDs are applied to address the height differences between the GNSS stations and grid points. The ZTD height corrections are provided by the IGGtrop model. Finally, an inverse distance weighting method is used to interpolate the GNSS-derived ZTDs from the surrounding GNSS stations to the location of the grid point. A total of 210 global positioning system (GPS) stations from the crustal movement observation network of China are used to generate the GTPs in both post-processing and real-time modes. The accuracies of the GTPs are assessed against with ERA-Interim-derived ZTDs and the GPS-derived ZTDs at 12 test GPS stations, respectively. The results show that the post-processing and real-time GTPs can provide the ZTDs with accuracies of 1.4 and 1.8 cm, respectively. We also apply the GTPs in real-time kinematic GPS PPP

  8. Time-domain analysis of planar microstrip devices using a generalized Yee-algorithm based on unstructured grids

    Gedney, Stephen D.; Lansing, Faiza

    1993-01-01

    The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.

  9. Three-D Google Earth bases geospatial visualization tool for the smart grid distribution

    Kumar, K. [Enterprise Horizons, Fremont, CA (United States)

    2009-07-01

    Smart grids can be used to liberalize markets, ensure reliability and reduce the environmental footprint of electric utilities. This presentation discussed a geo-spatial visualization tool for smart grid distribution. The visualization tool can be used to visualize transmission lines, substations, and is capable of viewing millions of topographical components. The tool was designed to track and monitor the health of assets and to increase awareness of vulnerabilities, vegetation, and regional demographics. The tool is also capable of identifying potential issues before a rolling blackout situation as well as anticipating islanding spike events. The visualization tool can be segmented by population and industrial belts, and is able to provide diagnostics on power factor turbulence for congestion bottlenecks. When used for transmission line and substation siting, the tool can provide terrain feasibility analyses and environmental impact analyses. Weather-based demand forecasting can be used to determine critical customers impacted by potential outages. CAD drawings can be used to visualize assets in virtual reality and can be linked to consumer indexing and smart metering initiatives. It was concluded that the web-based tool can also be used for workforce and dispatch management. tabs., figs.

  10. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.

    Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.

  11. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems

    Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  12. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    Kamal Shahid

    2018-05-01

    Full Text Available This paper aims to validate the capability of renewable generation (ReGen plants to provide online voltage control coordination ancillary service to the system operators in smart grids. Simulation studies about online coordination concepts from ReGen plants have already been identified in previous publications. However, here, the results are validated through a real-time Hardware-In-the-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders, i.e., wind turbine and photo-voltaic system manufacturers and system operators, regarding the existing boundaries for current technologies and requirements for accommodating the new ancillary services in industrial application.

  13. Multi-hop localization algorithm based on grid-scanning for wireless sensor networks.

    Wan, Jiangwen; Guo, Xiaolei; Yu, Ning; Wu, Yinfeng; Feng, Renjian

    2011-01-01

    For large-scale wireless sensor networks (WSNs) with a minority of anchor nodes, multi-hop localization is a popular scheme for determining the geographical positions of the normal nodes. However, in practice existing multi-hop localization methods suffer from various kinds of problems, such as poor adaptability to irregular topology, high computational complexity, low positioning accuracy, etc. To address these issues in this paper, we propose a novel Multi-hop Localization algorithm based on Grid-Scanning (MLGS). First, the factors that influence the multi-hop distance estimation are studied and a more realistic multi-hop localization model is constructed. Then, the feasible regions of the normal nodes are determined according to the intersection of bounding square rings. Finally, a verifiably good approximation scheme based on grid-scanning is developed to estimate the coordinates of the normal nodes. Additionally, the positioning accuracy of the normal nodes can be improved through neighbors' collaboration. Extensive simulations are performed in isotropic and anisotropic networks. The comparisons with some typical algorithms of node localization confirm the effectiveness and efficiency of our algorithm.

  14. The research on multi-projection correction based on color coding grid array

    Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu

    2017-10-01

    There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.

  15. Grid generation methods

    Liseikin, Vladimir D

    2010-01-01

    This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...

  16. Model atmospheres for M (sub)dwarf stars. 1: The base model grid

    Allard, France; Hauschildt, Peter H.

    1995-01-01

    We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.

  17. Optimal economic dispatch of FC-CHP based heat and power micro-grids

    Nazari-Heris, Morteza; Abapour, Saeed; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • The multi objective economic/environmental heat and power MG dispatch is solved. • The heat and power MG include FC, CHP, boiler, storage system, and heat buffer tank. • Multi objective scheduling of heat and power MG is solved using ε-constraint method. • DR program is employed in the stochastic programming of heat and power MG dispatch. • The uncertainties for load demand and price signals are taken into account. - Abstract: Micro-grids (MGs) are introduced as a solution for distributed energy resource (DER) units and energy storage systems (ESSs) to participate in providing the required electricity demand of controllable and non-controllable loads. In this paper, the authors study the short-term scheduling of grid-connected industrial heat and power MG which contains a fuel cell (FC) unit, combined heat and power (CHP) generation units, power-only unit, boiler, battery storage system, and heat buffer tank. The paper is aimed to solve the multi-objective MG dispatch problem containing cost and emission minimization with the considerations of demand response program and uncertainties. A probabilistic framework based on a scenario method, which is considered for load demand and price signals, is employed to overcome the uncertainties in the optimal energy management of the MG. In order to reduce operational cost, time-of-use rates of demand response programs have been modeled, and the effects of such programs on the load profile have been discussed. To solve the multi-objective optimization problem, the ε-constraint method is used and a fuzzy satisfying approach has been employed to select the best compromise solution. Three cases are studied in this research to confirm the performance of the proposed method: islanded mode, grid-connected mode, and the impact of time of the use-demand response program on MG scheduling.

  18. A brief comparison between grid based real space algorithms and spectrum algorithms for electronic structure calculations

    Wang, Lin-Wang

    2006-01-01

    Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N 3 ) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the

  19. Internal-Model-Principle-Based Specific Harmonics Repetitive Controller for Grid-Connected PWM Inverters

    Wenzhou Lu

    2016-01-01

    Full Text Available This paper analyzes the general properties of IMP-based controller and presents an internal-model-principle-based (IMP-based specific harmonics repetitive control (SHRC scheme. The proposed SHRC is effective for specific nk±m order harmonics, with n>m≥0 and k=0,1,2,…. Using the properties of exponential function, SHRC can also be rewritten into the format of multiple resonant controllers in parallel, where the control gain of SHRC is n/2 multiple of that of conventional RC (CRC. Therefore, including SHRC in a stable closed-loop feedback control system, asymptotic disturbance eliminating, or reference tracking for any periodic signal only including these specific harmonic components at n/2 times faster error convergence rate compared with CRC can be achieved. Application examples of SHRC controlled three-phase/single-phase grid-connected PWM inverters demonstrate the effectiveness and advantages of the proposed SHRC scheme.

  20. Improved Control Strategy for DFIG-based Wind Energy Conversion System during Grid Voltage Disturbances

    Zhu, Rongwu

    electromagnetic torque during grid faults. Therefore, the virtual damping flux based strategy not only can help the DFIG achieve the LVRT requirement, but also can reduce the mechanical stress on the drive train. On the other hand, on the basis of the decaying characteristic of the stator flux, the passive...... flux based active damping strategy and the stator series resistance based passive damping strategy can help the DFIG to fulfill the LVRT requirement, and improve the DFIG performances. Besides the previous active and passive damping strategies, the modified power converter and DFIG configurations...... of the stator voltage can cause the transient stator flux, and then the transient stator flux may be enlarged due to the effects of the initial value. The amplitude of the transient flux is determined by both the instant and depth of stator voltage variation, and the decaying characteristic of the transient...

  1. Stability Analysis and Active Damping for LLCL-filter-Based Grid-Connected Inverters

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    to use either passive or active damping methods. This paper analyzes the stability of the LLCL-filter based grid-connected inverter and identifies a critical resonant frequency for the LLCL-filter when sampling and transport delays are considered. In a high resonant frequency region the active damping...... is not required but in a low resonant frequency region the active damping is necessary. The basic LLCL resonance damping properties of different feedback states based on a notch filter concept are also studied. Then an active damping method which is using the capacitor current feedback for LLCL......-filter is introduced. Based on this active damping method, a design procedure for the controller is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  2. A 2-layer and P2P-based architecture on resource location in future grid environment

    Pei Erming; Sun Gongxin; Zhang Weiyi; Pang Yangguang; Gu Ming; Ma Nan

    2004-01-01

    Grid and Peer-to-Peer computing are two distributed resource sharing environments developing rapidly in recent years. The final objective of Grid, as well as that of P2P technology, is to pool large sets of resources effectively to be used in a more convenient, fast and transparent way. We can speculate that, though many difference exists, Grid and P2P environments will converge into a large scale resource sharing environment that combines the characteristics of the two environments: large diversity, high heterogeneity (of resources), dynamism, and lack of central control. Resource discovery in this future Grid environment is a basic however, important problem. In this article. We propose a two-layer and P2P-based architecture for resource discovery and design a detailed algorithm for resource request propagation in the computing environment discussed above. (authors)

  3. Feasibility and its characteristics of CO2 laser micromachining-based PMMA anti-scattering grid estimated by MCNP code simulation.

    Bae, Jun Woo; Kim, Hee Reyoung

    2018-01-01

    Anti-scattering grid has been used to improve the image quality. However, applying a commonly used linear or parallel grid would cause image distortion, and focusing grid also requires a precise fabrication technology, which is expensive. To investigate and analyze whether using CO2 laser micromachining-based PMMA anti-scattering grid can improve the performance of the grid at a lower cost. Thus, improvement of grid performance would result in improvement of image quality. The cross-sectional shape of CO2 laser machined PMMA is similar to alphabet 'V'. The performance was characterized by contrast improvement factor (CIF) and Bucky. Four types of grid were tested, which include thin parallel, thick parallel, 'V'-type and 'inverse V'-type of grid. For a Bucky factor of 2.1, the CIF of the grid with both the "V" and inverse "V" had a value of 1.53, while the thick and thick parallel types had values of 1.43 and 1.65, respectively. The 'V' shape grid manufacture by CO2 laser micromachining showed higher CIF than parallel one, which had same shielding material channel width. It was thought that the 'V' shape grid would be replacement to the conventional parallel grid if it is hard to fabricate the high-aspect-ratio grid.

  4. Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models

    Jackson, Jerry

    2010-01-01

    Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid programs prompted, in large part, by recent state and federal mandates and financial incentives. It is increasingly difficult to separate electricity use impacts of individual utility programs from the impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, appliance manufacturer efficiency improvements, energy program interactions and other factors. This study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid programs and presents an agent-based end-use modeling approach that resolves many of the shortcomings of traditional approaches. Data for a representative sample of utility customers in a Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency and smart grid program scenarios provides peak hour reductions one-third greater than the most stringent smart grid program suggesting that reductions in peak demand requirements are more feasible when both efficiency and smart grid programs are considered together. Suggestions on transitioning from traditional end-use models to agent-based end-use models are provided.

  5. 3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia

    Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.

    2012-12-01

    In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward

  6. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators.

    Manonmani, N; Subbiah, V; Sivakumar, L

    2015-01-01

    The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

  7. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators

    N. Manonmani

    2015-01-01

    Full Text Available The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs. The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

  8. Power system voltage stability and agent based distribution automation in smart grid

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  9. An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions

    Dan Wang

    2016-04-01

    Full Text Available In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetrical grid fault conditions, an optimal integrated control scheme for the grid-side voltage-source converter (VSC of direct-driven permanent magnet synchronous generator (PMSG-based wind turbine systems is proposed in this paper. The optimal control strategy includes a main controller and an additional controller. In the main controller, a double-loop controller based on differential flatness-based theory is designed for grid-side VSC. Two parts are involved in the design process of the flatness-based controller: the reference trajectories generation of flatness output and the implementation of the controller. In the additional control aspect, an auxiliary second harmonic compensation control loop based on an improved calculation method for grid-side instantaneous transmission power is designed by the quasi proportional resonant (Quasi-PR control principle, which is able to simultaneously restrain the second harmonic components in active power and reactive power injected into the grid without the respective calculation for current control references. Moreover, to reduce the DC-link overvoltage during grid faults, the mathematical model of DC-link voltage is analyzed and a feedforward modified control factor is added to the traditional DC voltage control loop in grid-side VSC. The effectiveness of the optimal control scheme is verified in PSCAD/EMTDC simulation software.

  10. Power Management Based Grid Routing Protocol for IEEE 802.11 Based MANET

    XU Li; ZHENG Bao-yu; YANG Zhen

    2004-01-01

    MANET ( Mobile Ad Hoc Network ) is a collection of wireless mobile nodes forming a temporary communication network without the aid of any established infrastructure or centralized administration. The lifetime of a MANET depends on the battery resources of the mobile nodes. So energy consumption may one of important design criterions for MANET. With changing the idle model to sleep model in the grid environment, this paper proposes a new energy-aware routing protocol. Performance simulation results show that the proposed strategy can dynamic balance the traffic load inside the whole network, extend the lifetime of a MANET, and without decreasing the throughput ratio.

  11. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    Kwangsoo Kim

    2015-05-01

    Full Text Available A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  12. Grid-cell-based crop water accounting for the famine early warning system

    Verdin, James; Klaver, Robert

    2002-06-01

    Rainfall monitoring is a regular activity of food security analysts for sub-Saharan Africa due to the potentially disastrous impact of drought. Crop water accounting schemes are used to track rainfall timing and amounts relative to phenological requirements, to infer water limitation impacts on yield. Unfortunately, many rain gauge reports are available only after significant delays, and the gauge locations leave large gaps in coverage. As an alternative, a grid-cell-based formulation for the water requirement satisfaction index (WRSI) was tested for maize in Southern Africa. Grids of input variables were obtained from remote sensing estimates of rainfall, meteorological models, and digital soil maps. The spatial WRSI was computed for the 1996-97 and 1997-98 growing seasons. Maize yields were estimated by regression and compared with a limited number of reports from the field for the 1996-97 season in Zimbabwe. Agreement at a useful level (r = 0·80) was observed. This is comparable to results from traditional analysis with station data. The findings demonstrate the complementary role that remote sensing, modelling, and geospatial analysis can play in an era when field data collection in sub-Saharan Africa is suffering an unfortunate decline. Published in 2002 by John Wiley & Sons, Ltd.

  13. Performance of grid-tied PV facilities: A case study based on real data

    Díez-Mediavilla, M.; Dieste-Velasco, M.I.; Rodríguez-Amigo, M.C.; García-Calderón, T.; Alonso-Tristán, C.

    2013-01-01

    Highlights: • A new procedure to analyse the performance of PV facilities is presented. • It only requires limited amounts of data that are easily sourced. • Data sets on production were collected over two complete years. • The transformerless inverter outperforms the isolated inverter. - Abstract: A new procedure is presented to analyse the performance of grid-tied PV facilities. It needs limited amounts of data that are easily sourced and is based on knowledge of the analysed system and its mode of operation. The procedure is applied, in a case study, to compare real PV production at two 100 kW p grid-connected PV installations. Located in the same geographical region, the installation of these two facilities followed the same construction criteria – PV panels, panel support system and wiring – and the facilities were exposed to the same atmospheric temperature and solar radiation. They differ with regard to their inverter technology: one facility uses an inverter with an integrated transformer system and the other uses a transformerless inverter. The results show that the transformerless inverter system performed better than the isolated system by a factor of 1.2%, which, in economic terms, represents more than 2000 €/year

  14. Dynamic Equivalent Modeling of a Grid-Tied Microgrid Based on Characteristic Model and Measurement Data

    Changchun Cai

    2017-11-01

    Full Text Available Microgrids can significantly improve the utilization of distributed generation (DG and the reliability of the power supply. However, in the grid-tied operational mode, the interaction between the microgrid and the distribution network cannot be ignored. The paper proposes an equivalent modeling method for the microgrid under grid-tied mode based on a characteristic model. It can simplify the microgrid model in the numerical simulation of the distribution network. The proposed equivalent model can present the dynamic response of a microgrid but not miss any of its primary characteristics. The characteristic model is represented by a low-order time-varying differential equation with the same characteristics of the original microgrid system. During the modeling process, the voltage and the power exchanged between the microgrid and distribution network are collected as the training data for the identification of model parameters. A recursive damped least squares algorithm (RDLS is used for the parameter identification. A microgrid system containing different DGs is built to test the proposed modeling method in DIgSILENT, and the results show that the proposed dynamic equivalent modeling method is effective and the characteristic model can present the dynamic behaviors of the detailed model of a microgrid.

  15. Branch-based centralized data collection for smart grids using wireless sensor networks.

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  16. Multivariate Empirical Mode Decomposition Based Signal Analysis and Efficient-Storage in Smart Grid

    Liu, Lu [University of Tennessee, Knoxville (UTK); Albright, Austin P [ORNL; Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Guo, Jiandong [University of Tennessee, Knoxville (UTK); Qi, Hairong [University of Tennessee, Knoxville (UTK); Liu, Yilu [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)

    2017-01-01

    Wide-area-measurement systems (WAMSs) are used in smart grid systems to enable the efficient monitoring of grid dynamics. However, the overwhelming amount of data and the severe contamination from noise often impede the effective and efficient data analysis and storage of WAMS generated measurements. To solve this problem, we propose a novel framework that takes advantage of Multivariate Empirical Mode Decomposition (MEMD), a fully data-driven approach to analyzing non-stationary signals, dubbed MEMD based Signal Analysis (MSA). The frequency measurements are considered as a linear superposition of different oscillatory components and noise. The low-frequency components, corresponding to the long-term trend and inter-area oscillations, are grouped and compressed by MSA using the mean shift clustering algorithm. Whereas, higher-frequency components, mostly noise and potentially part of high-frequency inter-area oscillations, are analyzed using Hilbert spectral analysis and they are delineated by statistical behavior. By conducting experiments on both synthetic and real-world data, we show that the proposed framework can capture the characteristics, such as trends and inter-area oscillation, while reducing the data storage requirements

  17. Analyzing the uncertainty of ensemble-based gridded observations in land surface simulations and drought assessment

    Ahmadalipour, Ali; Moradkhani, Hamid

    2017-12-01

    Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought early warning systems. Several sources of uncertainty in hydrologic modeling have been addressed in the literature. However, few studies have assessed the uncertainty of gridded observation datasets from a drought monitoring perspective. This study provides a hydrologic modeling oriented analysis of the gridded observation data uncertainties over the Pacific Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8° spatial resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a deterministic observation. Meteorological and hydrological droughts are studied at multiple timescales over the basin, and seasonal long-term trends and variations of drought extent is investigated for each case. Results reveal large uncertainty of observed datasets at monthly timescale, with systematic differences for temperature records, mainly due to different lapse rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an increasing trend is found for winter drought extent across the PNW. Furthermore, a ∼3% decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region being more susceptible to SWE variations of the northern Rockies than the western Cascades. The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as a result of precipitation decline, which implies higher appeal for anthropogenic water storage and irrigation systems.

  18. Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties

    Xiaojing WU

    2018-05-01

    Full Text Available The uncertainties can generate fluctuations with aerodynamic characteristics. Uncertainty Quantification (UQ is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty to aerodynamic characteristics should be computed by uncertainty sensitivity analysis. Non-Intrusive Polynomial Chaos (NIPC has been successfully applied to uncertainty quantification and uncertainty sensitivity analysis. However, the non-intrusive polynomial chaos method becomes inefficient as the number of random variables adopted to describe uncertainties increases. This deficiency becomes significant in stochastic aerodynamic analysis considering the geometric uncertainty because the description of geometric uncertainty generally needs many parameters. To solve the deficiency, a Sparse Grid-based Polynomial Chaos (SGPC expansion is used to do uncertainty quantification and sensitivity analysis for stochastic aerodynamic analysis considering geometric and operational uncertainties. It is proved that the method is more efficient than non-intrusive polynomial chaos and Monte Carlo Simulation (MSC method for the stochastic aerodynamic analysis. By uncertainty quantification, it can be learnt that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region. The uncertainty sensitivity analysis reveals the individual and coupled effects among the uncertainty parameters. Keywords: Non-intrusive polynomial chaos, Sparse grid, Stochastic aerodynamic analysis, Uncertainty sensitivity analysis, Uncertainty quantification

  19. Coordinated control of micro-grid based on distributed moving horizon control.

    Ma, Miaomiao; Shao, Liyang; Liu, Xiangjie

    2018-05-01

    This paper proposed the distributed moving horizon coordinated control scheme for the power balance and economic dispatch problems of micro-grid based on distributed generation. We design the power coordinated controller for each subsystem via moving horizon control by minimizing a suitable objective function. The objective function of distributed moving horizon coordinated controller is chosen based on the principle that wind power subsystem has the priority to generate electricity while photovoltaic power generation coordinates with wind power subsystem and the battery is only activated to meet the load demand when necessary. The simulation results illustrate that the proposed distributed moving horizon coordinated controller can allocate the output power of two generation subsystems reasonably under varying environment conditions, which not only can satisfy the load demand but also limit excessive fluctuations of output power to protect the power generation equipment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A Reputation-based Distributed District Scheduling Algorithm for Smart Grids

    D. Borra

    2015-05-01

    Full Text Available In this paper we develop and test a distributed algorithm providing Energy Consumption Schedules (ECS in smart grids for a residential district. The goal is to achieve a given aggregate load prole. The NP-hard constrained optimization problem reduces to a distributed unconstrained formulation by means of Lagrangian Relaxation technique, and a meta-heuristic algorithm based on a Quantum inspired Particle Swarm with Levy flights. A centralized iterative reputation-reward mechanism is proposed for end-users to cooperate to avoid power peaks and reduce global overload, based on random distributions simulating human behaviors and penalties on the eective ECS diering from the suggested ECS. Numerical results show the protocols eectiveness.

  1. Online model-based fault detection for grid connected PV systems monitoring

    Harrou, Fouzi

    2017-12-14

    This paper presents an efficient fault detection approach to monitor the direct current (DC) side of photovoltaic (PV) systems. The key contribution of this work is combining both single diode model (SDM) flexibility and the cumulative sum (CUSUM) chart efficiency to detect incipient faults. In fact, unknown electrical parameters of SDM are firstly identified using an efficient heuristic algorithm, named Artificial Bee Colony algorithm. Then, based on the identified parameters, a simulation model is built and validated using a co-simulation between Matlab/Simulink and PSIM. Next, the peak power (Pmpp) residuals of the entire PV array are generated based on both real measured and simulated Pmpp values. Residuals are used as the input for the CUSUM scheme to detect potential faults. We validate the effectiveness of this approach using practical data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  2. Online model-based fault detection for grid connected PV systems monitoring

    Harrou, Fouzi; Sun, Ying; Saidi, Ahmed

    2017-01-01

    This paper presents an efficient fault detection approach to monitor the direct current (DC) side of photovoltaic (PV) systems. The key contribution of this work is combining both single diode model (SDM) flexibility and the cumulative sum (CUSUM) chart efficiency to detect incipient faults. In fact, unknown electrical parameters of SDM are firstly identified using an efficient heuristic algorithm, named Artificial Bee Colony algorithm. Then, based on the identified parameters, a simulation model is built and validated using a co-simulation between Matlab/Simulink and PSIM. Next, the peak power (Pmpp) residuals of the entire PV array are generated based on both real measured and simulated Pmpp values. Residuals are used as the input for the CUSUM scheme to detect potential faults. We validate the effectiveness of this approach using practical data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  3. MEDUSA - An overset grid flow solver for network-based parallel computer systems

    Smith, Merritt H.; Pallis, Jani M.

    1993-01-01

    Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.

  4. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  5. Smart grid

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  6. A novel approach to optimize workflow in grid-based teleradiology applications.

    Yılmaz, Ayhan Ozan; Baykal, Nazife

    2016-01-01

    This study proposes an infrastructure with a reporting workflow optimization algorithm (RWOA) in order to interconnect facilities, reporting units and radiologists on a single access interface, to increase the efficiency of the reporting process by decreasing the medical report turnaround time and to increase the quality of medical reports by determining the optimum match between the inspection and radiologist in terms of subspecialty, workload and response time. Workflow centric network architecture with an enhanced caching, querying and retrieving mechanism is implemented by seamlessly integrating Grid Agent and Grid Manager to conventional digital radiology systems. The inspection and radiologist attributes are modelled using a hierarchical ontology structure. Attribute preferences rated by radiologists and technical experts are formed into reciprocal matrixes and weights for entities are calculated utilizing Analytic Hierarchy Process (AHP). The assignment alternatives are processed by relation-based semantic matching (RBSM) and Integer Linear Programming (ILP). The results are evaluated based on both real case applications and simulated process data in terms of subspecialty, response time and workload success rates. Results obtained using simulated data are compared with the outcomes obtained by applying Round Robin, Shortest Queue and Random distribution policies. The proposed algorithm is also applied to a real case teleradiology application process data where medical reporting workflow was performed based on manual assignments by the chief radiologist for 6225 inspections. RBSM gives the highest subspecialty success rate and integrating ILP with RBSM ratings as RWOA provides a better response time and workload distribution success rate. RWOA based image delivery also prevents bandwidth, storage or hardware related stuck and latencies. When compared with a real case teleradiology application where inspection assignments were performed manually, the proposed

  7. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions.

    Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu

    2017-07-03

    The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.

  8. Informatic infrastructure for Climatological and Oceanographic data based on THREDDS technology in a Grid environment

    Tronconi, C.; Forneris, V.; Santoleri, R.

    2009-04-01

    CNR-ISAC-GOS is responsible for the Mediterranean Sea satellite operational system in the framework of MOON Patnership. This Observing System acquires satellite data and produces Near Real Time, Delayed Time and Re-analysis of Ocean Colour and Sea Surface Temperature products covering the Mediterranean and the Black Seas and regional basins. In the framework of several projects (MERSEA, PRIMI, Adricosm Star, SeaDataNet, MyOcean, ECOOP), GOS is producing Climatological/Satellite datasets based on optimal interpolation and specific Regional algorithm for chlorophyll, updated in Near Real Time and in Delayed mode. GOS has built • an informatic infrastructure data repository and delivery based on THREDDS technology The datasets are generated in NETCDF format, compliant with both the CF convention and the international satellite-oceanographic specification, as prescribed by GHRSST (for SST). All data produced, are made available to the users through a THREDDS server catalog. • A LAS has been installed in order to exploit the potential of NETCDF data and the OPENDAP URL. It provides flexible access to geo-referenced scientific data • a Grid Environment based on Globus Technologies (GT4) connecting more than one Institute; in particular exploiting CNR and ESA clusters makes possible to reprocess 12 years of Chlorophyll data in less than one month.(estimated processing time on a single core PC: 9months). In the poster we will give an overview of: • the features of the THREDDS catalogs, pointing out the powerful characteristics of this new middleware that has replaced the "old" OPENDAP Server; • the importance of adopting a common format (as NETCDF) for data exchange; • the tools (e.g. LAS) connected with THREDDS and NETCDF format use. • the Grid infrastructure on ISAC We will present also specific basin-scale High Resolution products and Ultra High Resolution regional/coastal products available on these catalogs.

  9. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  10. An Extended Design of the "Grid-Enabled SEE++ System" Based on Globus Toolkit 4 and gLite Conference

    Schreiner, W.; Buchberger, M.; Kaltofen, T.

    2006-01-01

    "Grid-Enabled SEE++" based on the SEE++ software system for the biomechanical 3D simulation of the human eye and its muscles. SEE++ simulates the common eye muscle surgery techniques in a graphic interactive way that is familiar to an experienced surgeon. The goal of "Grid-Enabled SEE++" is to adapt and to extend SEE++ in several steps and to develop an efficient grid-based tool for "Evidence Based Medicine", which supports the surgeons in choosing optimal surgery techniques for the treatments of different syndromes of strabismus. In our previous work, we combined the SEE++ software with the Globus (pre-Web Service) middleware and developed a parallel version of the simulation of the "Hess-Lancaster test" (typical medical examination). By this, we demonstrated how a noticeable speedup can be achieved in SEE++ by the exploitation of the computational power of the Grid. Furthermore, we reported the prototype implementation of a medical database component for "Grid-Enabled SEE++". Finally, we designed a so calle...

  11. Modeling and simulation of grid connected permanent magnet generator based small wind energy conversion systems

    Arifujjaman, Md.

    2011-07-01

    In order to recover the maximum energy from small scale wind turbine systems many parameters have to be controlled. The aim of this paper is to propose a control strategy for the grid connected PMG-based small wind turbine systems. A mathematical model of small wind turbine systems was developed and the system simulated. Results show demonstrated that the control strategy is highly efficient. Sure enough it reduces the dependence on system variables, diminishes the system complexity, its furling and maximum power point controllers are efficient and it provides a stable operation for multiple wind speeds. This study developed a modeling and control strategy which was proved to be feasible by simulation results.

  12. Research of trust model base on P2P and grid system

    Jiang Zhuoming; Wu Huan; Xu Rongsheng

    2009-01-01

    Orienting to the characteristic of P2P and Grid system in architecture and service, a trust management model (PG-TM) based on cluster partition is presented. In this model, the protocol is described that trustworthiness is computed before service interaction, and recommendation values will be fed back after interaction. About the trustworthiness, some arithmetic is compared and geometric mean is brought up for the non-linear trust principle. In addition, it is also considered that the trustworthiness is adjusted by the produce contribution rate,network stability and history accumulation. Finally, the factors of maintaining management server and cluster are discussed. PG-TM model can ensure the security and availability in computation and storage of high energy physics experiments. (authors)

  13. Grid-connected vehicles as the core of future land-based transport systems

    Gilbert, Richard; Perl, Anthony

    2007-01-01

    Grid-connected vehicles (GCVs)-e.g., electric trains, metros, trams, and trolley buses-are propelled by electric motors directly connected to remote power sources. Their low at-vehicle energy consumption and ability to use a wide range of renewable energy sources make them strong contenders for urban and interurban transport systems in an era of energy constraints that favours use of renewable fuels, which may lie ahead. Needs for autonomous motorised mobility could be acceptably met in large measure by deployment of personal GCVs, also known as personal rapid transit (PRT). Alternatives, including fuel-cell vehicles and dual-drive vehicles fuelled with ethanol, will be less feasible. The 'car of the future' may not be an automobile so much as a PRT element of a comprehensive GCV-based system that offers at least as much utility and convenience as today's transport systems

  14. Enhanced ID-Based Authentication Scheme Using OTP in Smart Grid AMI Environment

    Sang-Soo Yeo

    2014-01-01

    Full Text Available This paper presents the vulnerabilities analyses of KL scheme which is an ID-based authentication scheme for AMI network attached SCADA in smart grid and proposes a security-enhanced authentication scheme which satisfies forward secrecy as well as security requirements introduced in KL scheme and also other existing schemes. The proposed scheme uses MDMS which is the supervising system located in an electrical company as a time-synchronizing server in order to synchronize smart devices at home and conducts authentication between smart meter and smart devices using a new secret value generated by an OTP generator every session. The proposed scheme has forward secrecy, so it increases overall security, but its communication and computation overhead reduce its performance slightly, comparing the existing schemes. Nonetheless, hardware specification and communication bandwidth of smart devices will have better conditions continuously, so the proposed scheme would be a good choice for secure AMI environment.

  15. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    Shahid, Kamal; Petersen, Lennart; Olsen, Rasmus Løvenstein

    2018-01-01

    . However, here, the results are validated through a real-time Hardware-In-The-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants...... is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well......This paper aims to validate the capability of renewable generation (ReGen) plants to provide online voltage control coordination ancillary service to the system operators. Simulation studies on online coordination concepts from ReGen plants have already been identified in previous publications...

  16. Stability analysis and active damping for LLCL-filter based grid-connected inverters

    Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A higher order passive power filter (LLCL-filter) for the grid-tied inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known stability problems of the LLCL-filter it is requested to use...... either passive or active damping methods. This paper analyzes the stability when damping is required and when damping is not necessary considering sampling and transport delay. Basic LLCL resonance damping properties of different feedback states are also studied. Then an active damping method which...... is using the capacitor current feedback for LLCL-filter is introduced. Based on this method, a design procedure for the control method is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  17. Passivity-Based Stability Assessment of Grid-Connected VSCs - An Overview

    Harnefors, Lennart; Wang, Xiongfei; Yepes, Alejandro G.

    2016-01-01

    The interconnection stability of a grid-connected voltage-source converter (VSC) can be assessed by the passivity properties of the VSC input admittance. If critical grid resonances fall within regions where the input admittance acts passively, i.e., has nonnegative real part, then their destabil......The interconnection stability of a grid-connected voltage-source converter (VSC) can be assessed by the passivity properties of the VSC input admittance. If critical grid resonances fall within regions where the input admittance acts passively, i.e., has nonnegative real part...

  18. Rainfall Characteristics and Regionalization in Peninsular Malaysia Based on a High Resolution Gridded Data Set

    Chee Loong Wong

    2016-11-01

    Full Text Available Daily gridded rainfall data over Peninsular Malaysia are delineated using an objective clustering algorithm, with the objective of classifying rainfall grids into groups of homogeneous regions based on the similarity of the rainfall annual cycles. It has been demonstrated that Peninsular Malaysia can be statistically delineated into eight distinct rainfall regions. This delineation is closely associated with the topographic and geographic characteristics. The variation of rainfall over the Peninsula is generally characterized by bimodal variations with two peaks, i.e., a primary peak occurring during the autumn transitional period and a secondary peak during the spring transitional period. The east coast zones, however, showed a single peak during the northeast monsoon (NEM. The influence of NEM is stronger compared to the southwest monsoon (SWM. Significantly increasing rainfall trends at 95% confidence level are not observed in all regions during the NEM, with exception of northwest zone (R1 and coastal band of west coast interior region (R3. During SWM, most areas have become drier over the last three decades. The study identifies higher variation of mean monthly rainfall over the east coast regions, but spatially, the rainfall is uniformly distributed. For the southwestern coast and west coast regions, a larger range of coefficients of variation is mostly obtained during the NEM, and to a smaller extent during the SWM. The inland region received least rainfall in February, but showed the largest spatial variation. The relationship between rainfall and the El Niño Southern Oscillation (ENSO was examined based on the Multivariate ENSO Index (MEI. Although the concurrent relationships between rainfall in the different regions and ENSO are generally weak with negative correlations, the rainfall shows stronger positive correlation with preceding ENSO signals with a time lag of four to eight months.

  19. A wolf pack hunting strategy based virtual tribes control for automatic generation control of smart grid

    Xi, Lei; Yu, Tao; Yang, Bo; Zhang, Xiaoshun; Qiu, Xuanyu

    2016-01-01

    Highlights: • A novel distributed autonomous virtual tribes control system is proposed. • WPH-VTC strategy is designed to solve the distributed virtual tribes control. • Stochastic consensus game on mixed homogeneous and heterogeneous multi-agent are resolved. • The optimal total power reference and its dispatch are resolved simultaneously in a dynamic way. • The utilization rate of renewable energy is increased with a reduced carbon emissions. - Abstract: This paper proposes a novel electric power autonomy to satisfy the requirement of power generation optimization of smart grid and decentralized energy management system. A decentralized virtual tribes control (VTC) is developed which can effectively coordinate the regional dispatch centre and the distributed energy. Then a wolf pack hunting (WPH) strategy based VTC (WPH-VTC) is designed through combining the multi-agent system stochastic game and multi-agent system collaborative consensus, which is called the multi-agent system stochastic consensus game, to achieve the coordination and optimization of the decentralized VTC, such that different types of renewable energy can be effectively integrated into the electric power autonomy. The proposed scheme is implemented on a flexible and dynamic multi-agent stochastic game-based VTC simulation platform, which control performance is evaluated on a typical two-area load–frequency control power system and a practical Guangdong power grid model in southern China. Simulation results verify that it can improve the closed-loop system performances, increase the utilization rate of the renewable energy, reduce the carbon emissions, and achieve a fast convergence rate with significant robustness compared with those of existing schemes.

  20. Damping Methods for Resonances Caused by LCL-Filter-Based Current-Controlled Grid-Tied Power Inverters

    Wu, Weimin; Liu, Yuan; He, Yuanbin

    2017-01-01

    Grid-tied voltage source inverters using LCL filter have been widely adopted in distributed power generation systems (DPGSs). As high-order LCL filters contain multiple resonant frequencies, switching harmonics generated by the inverter and current harmonics generated by the active/passive loads...... innovative damping methods have been proposed. A comprehensive overview on those contributions and their classification on the inverter- and grid-side damping measures are presented. Based on the concept of the impedance-based stability analysis, all damping methods can ensure the system stability...

  1. Method for Assessing Grid Frequency Deviation Due to Wind Power Fluctuation Based on “Time-Frequency Transformation”

    Jin, Lin; Yuan-zhang, Sun; Sørensen, Poul Ejnar

    2012-01-01

    published studies are based entirely on deterministic methodology. This paper presents a novel assessment method based on Time-Frequency Transformation to overcome shortcomings of existing methods. The main contribution of the paper is to propose a stochastic process simulation model which is a better...... alternative of the existing dynamic frequency deviation simulation model. In this way, the method takes the stochastic wind power fluctuation into full account so as to give a quantitative risk assessment of grid frequency deviation to grid operators, even without using any dynamic simulation tool. The case...

  2. Near-Body Grid Adaption for Overset Grids

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  3. Resource management and scheduling policy based on grid for AIoT

    Zou, Yiqin; Quan, Li

    2017-07-01

    This paper has a research on resource management and scheduling policy based on grid technology for Agricultural Internet of Things (AIoT). Facing the situation of a variety of complex and heterogeneous agricultural resources in AIoT, it is difficult to represent them in a unified way. But from an abstract perspective, there are some common models which can express their characteristics and features. Based on this, we proposed a high-level model called Agricultural Resource Hierarchy Model (ARHM), which can be used for modeling various resources. It introduces the agricultural resource modeling method based on this model. Compared with traditional application-oriented three-layer model, ARHM can hide the differences of different applications and make all applications have a unified interface layer and be implemented without distinction. Furthermore, it proposes a Web Service Resource Framework (WSRF)-based resource management method and the encapsulation structure for it. Finally, it focuses on the discussion of multi-agent-based AG resource scheduler, which is a collaborative service provider pattern in multiple agricultural production domains.

  4. DC Grids for Smart LED-Based Lighting: The EDISON Solution

    Steffen Thielemans

    2017-09-01

    Full Text Available This paper highlights the benefits and possible drawbacks of a DC-based lighting infrastructure for powering Light Emitting Diode (LED-lamps. It also evaluates the efforts needed for integrating the so called smart lighting and other sensor/actuator based control systems, and compares existing and emerging solutions. It reviews and discusses published work in this field with special focus on the intelligent DC-based infrastructure named EDISON that is primarily dedicated to lighting, but is applicable to building automation in general. The EDISON “PowerLAN” consists of a DC-based infrastructure that offers telecommunication abilities and can be applied to lighting retrofitting scenarios for buildings. Its infrastructure allows simple and efficient powering of DC-oriented devices like LED lamps, sensors and microcontrollers, while offering a wired communication channel. This paper motivates the design choices for organizing DC lighting grids and their associated communication possibilities. It also shows how the EDISON based smart lighting solution is evolving today to include new communication technologies and to further integrate other parts of building management solutions through the OneM2M (Machine to Machine service bus.

  5. Decisions on Energy Demand Response Option Contracts in Smart Grids Based on Activity-Based Costing and Stochastic Programming

    Alfred J. Hildreth

    2013-01-01

    Full Text Available Smart grids enable a two-way energy demand response capability through which a utility company offers its industrial customers various call options for energy load curtailment. If a customer has the capability to accurately determine whether to accept an offer or not, then in the case of accepting an offer, the customer can earn both an option premium to participate, and a strike price for load curtailments if requested. However, today most manufacturing companies lack the capability to make the correct contract decisions for given offers. This paper proposes a novel decision model based on activity-based costing (ABC and stochastic programming, developed to accurately evaluate the impact of load curtailments and determine as to whether or not to accept an energy load curtailment offer. The proposed model specifically targets state-transition flexible and Quality-of-Service (QoS flexible energy use activities to reduce the peak energy demand rate. An illustrative example with the proposed decision model under a call-option based energy demand response scenario is presented. As shown from the example results, the proposed decision model can be used with emerging smart grid opportunities to provide a competitive advantage to the manufacturing industry.

  6. New Generation GridPix: Development and characterisation of pixelated gaseous detectors based on the Timepix3 chip

    AUTHOR|(CDS)2082958; Hessey, Nigel

    Due to the increasing demands of high energy physics experiments there is a need for particle detectors which enable high precision measurements. In this regard, the GridPix detector is a novel detector concept which combines the benefits of a pixel chip with an integrated gas amplification structure. The resulting unit is a detector sensitive to single electrons with a great potential for particle tracking and energy loss measurements. This thesis is focusing on the development of a new generation of GridPix detectors based on the Timepix3 chip, which implements a high resolution Time to Digital Converter (TDC) in each pixel. After an introductory chapter describing the motivation behind GridPix, the manuscript presents the physics of gaseous detectors in chapter 2 along with the gaseous detectors used for particle tracking in chapter 3. Chapters 4 and 5 are focusing on the tracking performance of GridPix detectors. Chapter 4 presents results obtained with a GridPix detector based on a small scale prototy...

  7. An evaluation method of power quality about electrified railways connected to power grid based on PSCAD/EMTDC

    Liang, Weibin; Ouyang, Sen; Huang, Xiang; Su, Weijian

    2017-05-01

    The existing modeling process of power quality about electrified railways connected to power grid is complicated and the simulation scene is incomplete, so this paper puts forward a novel evaluation method of power quality based on PSCAD/ETMDC. Firstly, a model of power quality about electrified railways connected to power grid is established, which is based on testing report or measured data. The equivalent model of electrified locomotive contains power characteristic and harmonic characteristic, which are substituted by load and harmonic source. Secondly, in order to make evaluation more complete, an analysis scheme has been put forward. The scheme uses a combination of three-dimensions of electrified locomotive, which contains types, working conditions and quantity. At last, Shenmao Railway is taken as example to evaluate the power quality at different scenes, and the result shows electrified railways connected to power grid have significant effect on power quality.

  8. Low carbon mini grids 'Identifying the gaps; building the evidence base', Support Study for DFID - Final Report

    2013-11-01

    This report represents the final report on the support study on 'Identifying the gaps and building the evidence base on low carbon mini-grids'. The review forms part of a preliminary initiative of DFID to promote Green Mini-Grids (GMG) in Africa under the International Climate Fund (ICF) with the objective of providing guidance and recommendations for DFID intervention and program implementation. The support study started in November 2012 and ended in September 2013. The report is based on activities which have included kick-off meetings, development of the methodological framework, literature and web review of documents relevant to the state-of-the-art practices for mini-grids, collation of relevant international experience, and a field visit in 2 targeted African countries (Kenya and Mozambique) to conduct interviews with key stakeholders and to collect field data. The report is structured in 8 chapters as per the requirements of the TOR, with a 'Highlights' section: 1- International Review of Mini-Grids and Data Collection, overview of the technologies, and of implementation schemes. The reality of the target countries is that while there are a number of diesel based mini-grids run either by private operators with low service and high cost, outside any regulated framework, and some run through various forms of Public Private Partnerships, there are extremely few Green Mini-Grids. Some Renewable Energy Power Generation operations are found to be for self-consumption or feeding into the grid, but very seldom for powering a Mini-Grid isolated from the interconnected network. 2 - Relevance of Mini-Grid Solutions, proposes an approach to help the planner identify whether in a given country/region, Mini-Grids - and further Green Mini-Grids are a viable option for access to electricity services. These mini-grid areas are those which will remain out reach of the interconnected grid for a few years to come, and yet where there is sufficient load density to ensure the

  9. High density grids

    Cohen, Aina E.; Baxter, Elizabeth L.

    2018-01-16

    An X-ray data collection grid device is provided that includes a magnetic base that is compatible with robotic sample mounting systems used at synchrotron beamlines, a grid element fixedly attached to the magnetic base, where the grid element includes at least one sealable sample window disposed through a planar synchrotron-compatible material, where the planar synchrotron-compatible material includes at least one automated X-ray positioning and fluid handling robot fiducial mark.

  10. Business Case Analysis of the Marine Corps Base Pendleton Virtual Smart Grid

    2017-06-01

    is searching for answers in energy-efficient technology . This study discusses the benefits of using power-modeling software to manage Advanced ...under NIST. 7 Figure 3. A History of NIST and the Smart Grid. Source: NIST (2014). The extension of smart grid technology to include...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. BUSINESS CASE

  11. Multi-Agent Model-Based Optimization for Future Electrical Grids

    Bajracharya, G.

    2014-01-01

    The electricity grid is one of the most complex systems created by human beings. It consists of an intricate network of components such as generators, transmission and distribution lines, transformers, breakers, various controllers, and various measurement and monitoring systems. The grid has been

  12. Control of STATCOM in wind power plants based on induction generators during asymmetrical grid faults

    Rodriguez, Pedro; Luna, Alvaro; Medeiros, G.

    2010-01-01

    This paper explores different strategies to set the reference current of a STATCOM under unbalanced grid voltage conditions. The aim of the proposed control strategies is to provide a set of reactive current references to be injected by the STATCOM under unbalanced grid faults. Their performance,...

  13. Passivity Enhancement in RES Based Power Plant with Paralleled Grid-Connected Inverters

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    Harmonic instability is threatening the operation of power plants with multiple grid connected converters in parallel. To analyze and improve the stability of the grid connected converters, the passivity of the output admittance converters is first analyzed in this paper. It is shown that the non-passivity...

  14. DGSim : comparing grid resource management architectures through trace-based simulation

    Iosup, A.; Sonmez, O.O.; Epema, D.H.J.; Luque, E.; Margalef, T.; Benítez, D.

    2008-01-01

    Many advances in grid resource management are still required to realize the grid computing vision of the integration of a world-wide computing infrastructure for scientific use. The pressure for advances is increased by the fast evolution of single, large clusters, which are the primary

  15. Adapting a commercial power system simulator for smart grid based system study and vulnerability assessment

    Navaratne, Uditha Sudheera

    The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.

  16. ANALYSIS AND VALIDATION OF GRID DEM GENERATION BASED ON GAUSSIAN MARKOV RANDOM FIELD

    F. J. Aguilar

    2016-06-01

    Full Text Available Digital Elevation Models (DEMs are considered as one of the most relevant geospatial data to carry out land-cover and land-use classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field (GMRF to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a set of LiDAR data (0.87 points/m2 provided by the Spanish Government (PNOA Programme over a complex working area mainly covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the original points (from 10% to up to 99% of points removed. In every case, the remaining points (scattered observed points were used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM whose accuracy was assessed by means of the set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known Triangulation with Linear Interpolation (TLI. Finally, the GMRF method was applied to a real-world case consisting of filling the LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM. Regarding accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the DEM uncertainty and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.

  17. An objective decision model of power grid environmental protection based on environmental influence index and energy-saving and emission-reducing index

    Feng, Jun-shu; Jin, Yan-ming; Hao, Wei-hua

    2017-01-01

    Based on modelling the environmental influence index of power transmission and transformation project and energy-saving and emission-reducing index of source-grid-load of power system, this paper establishes an objective decision model of power grid environmental protection, with constraints of power grid environmental protection objectives being legal and economical, and considering both positive and negative influences of grid on the environmental in all-life grid cycle. This model can be used to guide the programming work of power grid environmental protection. A numerical simulation of Jiangsu province’s power grid environmental protection objective decision model has been operated, and the results shows that the maximum goal of energy-saving and emission-reducing benefits would be reached firstly as investment increasing, and then the minimum goal of environmental influence.

  18. Advanced fault ride-through control of DFIG based wind turbines including grid connection via VSC-HVDC

    Feltes, Christian

    2012-07-01

    With the growing renewable energy share in the power generation mix it becomes inevitable that also these new generation technologies participate on the provision of grid services to guarantee stable operation of the grid, especially when one considers the decreasing number of conventional power plants in operation as a result of the expansion of wind based generation plants. These so-called ancillary services include frequency / active power control, voltage / reactive power control and fault ride-through (FRT) with fast voltage control and are stipulated in modern grid codes. In the context of this thesis advanced control algorithms have been developed for wind turbines based on doubly-fed induction generator (DFIG) to allow safe FRT during symmetrical and unsymmetrical faults. This covers the control for conventional AC grid connection as well as for the connection through voltage source converter (VSC) based high voltage direct current transmission (HVDC). Currently, the DFIG is the most used generator technology in modem wind turbines, since it combines a relatively simple slip-ring induction machine with a frequency converter rated to only approx. 30% of the total power. This makes the DFIG a cost-effective concept, which offers a variable speed range and a high degree of flexibility in control. However, due to the direct coupling of the generator stator circuit to the grid, grid faults are a special challenge for the frequency converter, its protection circuits and control algorithms. As base for the detailed evaluation of the impact of grid faults to the DFIG, this thesis contains the analytical derivation of the DFIG short circuit currents under consideration of frequency converter control. The DFIG concept presented in this thesis makes use of a DC chopper in the frequency converter, which allows safe FRT with grid voltage support through both converter sides. The developed control contains a new algorithm for a clear separation and control of positive

  19. An Efficient and Robust Hybrid Damper for LCL- or LLCL-Based Grid-Tied Inverter With Strong Grid-Side Harmonic Voltage Effect Rejection

    Liu, Yuan; Wu, Weimin; He, Yuanbin

    2016-01-01

    to resist the effect of the BHV, a feedforward voltage compensator and a proportional resonant regulator with harmonic compensation are often adopted. However, they still have their own limitations, particularly when there are higher order BHVs at the point of common coupling and when the equivalent grid......A high-order (LCL or LLCL) power filter with a small grid-side inductor is becoming more preferred for a grid-tied inverter due to less total inductance and reduced costs. In a microgrid, the background harmonic voltage (BHV) may distort the injected currents of the grid-tied inverters. In order...

  20. Load Frequency Control in Isolated Micro-Grids with Electrical Vehicles Based on Multivariable Generalized Predictive Theory

    Jun Yang

    2015-03-01

    Full Text Available In power systems, although the inertia energy in power sources can partly cover power unbalances caused by load disturbance or renewable energy fluctuation, it is still hard to maintain the frequency deviation within acceptable ranges. However, with the vehicle-to-grid (V2G technique, electric vehicles (EVs can act as mobile energy storage units, which could be a solution for load frequency control (LFC in an isolated grid. In this paper, a LFC model of an isolated micro-grid with EVs, distributed generations and their constraints is developed. In addition, a controller based on multivariable generalized predictive control (MGPC theory is proposed for LFC in the isolated micro-grid, where EVs and diesel generator (DG are coordinated to achieve a satisfied performance on load frequency. A benchmark isolated micro-grid with EVs, DG, and wind farm is modeled in the Matlab/Simulink environment to demonstrate the effectiveness of the proposed method. Simulation results demonstrate that with MGPC, the energy stored in EVs can be managed intelligently according to LFC requirement. This improves the system frequency stability with complex operation situations including the random renewable energy resource and the continuous load disturbances.

  1. Safe Grid

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  2. Coordinated control of a DFIG-based wind-power generation system with SGSC under distorted grid voltage conditions

    Yao, Jun; Li, Qing; Chen, Zhe

    2013-01-01

    in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...

  3. Design of current controller of grid-connected voltage source converter based internal model control in wind power

    Zhang Xianping; Guo Jindong; Xu Honghua [Inst. of Electrical Engineering, Chinese Academy of Sciences, BJ (China)

    2008-07-01

    Grid-connected voltage source converter (VSC) is important for variable speed turbines with doubly fed induction generator (DFIG), and bad performance of current loop of VSC may cause VSC inject much low and high order harmonics into grid. Therefore, design of current controller of VSC is very important. PI regulator is often used to regulate current error in dq rotating coordinate to obtain zero steady error. However, it is complex to design PI parameters, and researchers need many trial-and-error steps. Therefore, a novel and simple design method of PI regulator for grid-connected VSC, which is based internal model control (IMC), has been presented in this paper. The parameters of PI regulator can be expressed directly with certain L-type line filter parameters and the desired closed-loop bandwidth. At last, The simulation has been done and result shows that the method in this paper is easy and useful to regulate PI parameters. (orig.)

  4. A control strategy for grid-side converter of DFIG under unbalanced condition based on Dig SILENT/Power Factory

    Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan

    2018-01-01

    The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.

  5. Dynamic modeling of wind turbine based axial flux permanent magnetic synchronous generator connected to the grid with switch reduced converter

    Ali Reza Dehghanzadeh

    2018-03-01

    Full Text Available This paper studies the power electronic converters for grid connection of axial flux permanent magnetic synchronous generators (AFPMSG based variable speed wind turbine. In this paper, a new variable speed wind turbine with AFPMSG and Z-source inverter is proposed to improve number of switches and topology reliability. Besides, dynamic modeling of AFPMSG is presented to analyze grid connection of the proposed topology. The Z-source inverter controls maximum power point tracking (MPPT and delivering power to the grid. Therefore other DC–DC chopper is not required to control the rectified output voltage of generator in view of MPPT. As a result, the proposed topology requires less power electronic switches and the suggested system is more reliable against short circuit. The ability of proposed energy conversion system with AFPMSG is validated with simulation results and experimental results using PCI-1716 data acquisition system.

  6. Balance control of grid currents for UPQC under unbalanced loads based on matching-ratio compensation algorithm

    Zhao, Xiaojun; Zhang, Chunjiang; Chai, Xiuhui

    2018-01-01

    In three-phase four-wire systems, unbalanced loads can cause grid currents to be unbalanced, and this may cause the neutral point potential on the grid side to shift. The neutral point potential shift will worsen the control precision as well as the performance of the threephase four-wire unified...... fluctuations, and elaborates the interaction between unbalanced grid currents and DC bus voltage fluctuations; two control strategies of UPQC under three-phase stationary coordinate based on the MCA are given, and finally, the feasibility and effectiveness of the proposed control strategy are verified...... power quality conditioner (UPQC), and it also leads to unbalanced three-phase output voltage, even causing damage to electric equipment. To deal with unbalanced loads, this paper proposes a matching-ratio compensation algorithm (MCA) for the fundamental active component of load currents...

  7. Formulation of Low Peclet Number Based Grid Expansion Factor for the Solution of the Convection Diffusion Equation

    A. Abdullah

    2018-04-01

    Full Text Available Convection-diffusion problems, due to its fundamental nature, are found in various science and engineering applications. In this research, the importance of the relationship between grid structure and flow parameters in such problems is emphasized. In particular, we propose a systematic technique in the selection of the grid expansion factor based on its logarithmic relationship with low Peclet number. Such linear mathematical connection between the two non-dimensional parameters serves as a guideline for more structured decision-making and improves the heuristic process in the determination of the computational domain grid for the numerical solution of convection-diffusion equations especially in the prediction of the concentration of the scalar. Results confirm the effectiveness of the new approach.

  8. Adaptive Parameter Optimization of a Grid-based Conceptual Hydrological Model

    Samaniego, L.; Kumar, R.; Attinger, S.

    2007-12-01

    Any spatially explicit hydrological model at the mesoscale is a conceptual approximation of the hydrological cycle and its dominant process occurring at this scale. Manual-expert calibration of this type of models may become quite tedious---if not impossible---taking into account the enormous amount of data required by these kind of models and the intrinsic uncertainty of both the data (input-output) and the model structure. Additionally, the model should be able to reproduce well several process which are accounted by a number of predefined objectives. As a consequence, some degree of automatic calibration would be required to find "good" solutions, each one constituting a trade-off among all calibration criteria. In other words, it is very likely that a number of parameter sets fulfil the optimization criteria and thus can be considered a model solution. In this study, we dealt with two research questions: 1) How to assess the adequate level of model complexity so that model overparameterization is avoided? And, 2) How to find a good solution with a relatively low computational burden? In the present study, a grid-based conceptual hydrological model denoted as HBV-UFZ based on some of the original HBV concepts was employed. This model was driven by 12~h precipitation, temperature, and PET grids which are acquired either from satellite products or from data of meteorological stations. In the latter case, the data was interpolated with external drift Kriging. The first research question was addressed in this study with the implementation of nonlinear transfer functions that regionalize most model parameters as a function of other spatially distributed observables such as land cover (time dependent) and other time independent basin characteristics such as soil type, slope, aspect, geological formations among others. The second question was addressed with an adaptive constrained optimization algorithm based on a parallel implementation of simulated annealing (SA

  9. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  10. Development of Smart Grid for Community and Cyber based Landslide Hazard Monitoring and Early Warning System

    Karnawati, D.; Wilopo, W.; Fathani, T. F.; Fukuoka, H.; Andayani, B.

    2012-12-01

    A Smart Grid is a cyber-based tool to facilitate a network of sensors for monitoring and communicating the landslide hazard and providing the early warning. The sensor is designed as an electronic sensor installed in the existing monitoring and early warning instruments, and also as the human sensors which comprise selected committed-people at the local community, such as the local surveyor, local observer, member of the local task force for disaster risk reduction, and any person at the local community who has been registered to dedicate their commitments for sending reports related to the landslide symptoms observed at their living environment. This tool is designed to be capable to receive up to thousands of reports/information at the same time through the electronic sensors, text message (mobile phone), the on-line participatory web as well as various social media such as Twitter and Face book. The information that should be recorded/ reported by the sensors is related to the parameters of landslide symptoms, for example the progress of cracks occurrence, ground subsidence or ground deformation. Within 10 minutes, this tool will be able to automatically elaborate and analyse the reported symptoms to predict the landslide hazard and risk levels. The predicted level of hazard/ risk can be sent back to the network of electronic and human sensors as the early warning information. The key parameters indicating the symptoms of landslide hazard were recorded/ monitored by the electrical and the human sensors. Those parameters were identified based on the investigation on geological and geotechnical conditions, supported with the laboratory analysis. The cause and triggering mechanism of landslide in the study area was also analysed in order to define the critical condition to launch the early warning. However, not only the technical but also social system were developed to raise community awareness and commitments to serve the mission as the human sensors, which will

  11. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.

  12. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance......Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...

  13. Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid

    Nadeem Javaid

    2017-10-01

    Full Text Available In a smart grid, several optimization techniques have been developed to schedule load in the residential area. Most of these techniques aim at minimizing the energy consumption cost and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak energy consumption. In this regard, we implement and analyse the performance of a traditional dynamic programming (DP technique and two heuristic optimization techniques: genetic algorithm (GA and binary particle swarm optimization (BPSO for residential load management. Based on these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as to optimize the desired objective function. In order to alleviate the complexity of the problem, the multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and analysed to develop a relationship between power consumption, electricity cost, and user discomfort. The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover, results also show a phenomenal reduction in peak power consumption.

  14. Study of tensions on network- and grid-based energies during the winter consumption peak

    Lemaignan, Benoit; Wilmotte, Jean-Yves; Gault, Nicolas

    2014-01-01

    This document first proposes an analysis of an historical example of a consumption peak (8 February 2012) and of its impacts. It indicates temperatures and consumptions, discusses the level of supply safety on that day (shares of different available energy sources), outlines some peculiarities of a grid-based (electricity) or network-based (gas) energy system and issues related to supply safety, and describes how energy demand varies during the day and with respect to the season. The second part addresses the issue of thermal sensitivity, i.e. an analysis of the relationship between the energy system and the temperature: usages depend on the outdoor temperature; as far as heating is concerned, this sensitivity depends on thermal characteristics of heated buildings; housing heating with fixed equipment represents less than a half of this electrical thermal-sensitivity; electricity demand peak increased of several GW while the share of thermal sensitivity of housing heating decreased; thermal sensitivity of gas increased during the last four years. The third part addresses heating modes, outlines the challenges in terms of CO_2 emissions, notices the benefits of the present energy mix in terms of hydrocarbon use, trade balance and emissions, outlines that households using electric heating do not pay more and are less represented in households suffering of energy poverty

  15. Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach

    Imtiaz Parvez

    2016-08-01

    Full Text Available In smart cities, advanced metering infrastructure (AMI of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP. Localization of the meter is proposed by a method based on received signal strength (RSS using the maximum likelihood estimator (MLE. The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.

  16. Zero-Axis Virtual Synchronous Coordinate Based Current Control Strategy for Grid-Connected Inverter

    Longyue Yang

    2018-05-01

    Full Text Available Unbalanced power has a great influence on the safe and stable operation of the distribution network system. The static power compensator, which is essentially a grid-connected inverter, is an effective solution to the three-phase power imbalance problem. In order to solve the tracking error problem of zero-sequence AC current signals, a novel control strategy based on zero-axis virtual synchronous coordinates is proposed in this paper. By configuring the operation of filter transmission matrices, a specific orthogonal signal is obtained for zero-axis reconstruction. In addition, a controller design scheme based on this method is proposed. Compared with the traditional zero-axis direct control, this control strategy is equivalent to adding a frequency tuning module by the orthogonal signal generator. The control gain of an open loop system can be equivalently promoted through linear transformation. With its clear mathematical meaning, zero- sequence current control can be controlled with only a first-order linear controller. Through reasonable parameter design, zero steady-state error, fast response and strong stability can be achieved. Finally, the performance of the proposed control strategy is verified by both simulations and experiments.

  17. Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids

    Antonio Camacho

    2017-12-01

    Full Text Available Several control schemes specifically designed to operate inverter-based industrial microgrids during voltage sags have been recently proposed. This paper first classifies these control schemes in three categories and then performs a comparative analysis of them. Representative control schemes of each category are selected, described and used to identify the main features and performance of the considered category. The comparison is based on the evaluation of several indexes, which measure the power quality of the installation and utility grid during voltage sags, including voltage regulation, reactive current injection and transient response. The paper includes selected simulation results from a 500 kVA industrial microgrid to validate the expected features of the considered control schemes. Finally, in view of the obtained results, the paper proposes an alternative solution to cope with voltage sags, which includes the use of a static compensator in parallel with the microgrid. The novelty of this proposal is the suitable selection of the control schemes for both the microgrid and the static compensator. The superior performance of the proposal is confirmed by the analysis of the quality indexes. Its practical limitations are also revealed, showing that the topic studied in this paper is still open for further research.

  18. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid.

    Kwon, Ojin; Kim, Pilkee; Yoon, Yong-Jin

    2016-12-26

    Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs). When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC) operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved.

  19. Reliability-Based Topology Optimization Using Stochastic Response Surface Method with Sparse Grid Design

    Qinghai Zhao

    2015-01-01

    Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.

  20. A hybrid damping method for LLCL-filter based grid-tied inverter with a digital filter and an RC parallel passive damper

    Wu, Weimin; Lin, Zhe; Sun, Yunjie

    2013-01-01

    Grid-tied inverters have been widely used to inject the renewable energies into the distributed power generation systems. However, a large variation of the grid impedance challenges the stability of the high-order power filter based grid-tied inverter. Many passive and active damping methods have...... been proposed to overcome this issue. Recently, a composite passive damping method for a high-order power filter based grid-tied inverter with an RC parallel damper and an RL series damper was presented to eliminate this problem, but at the cost of more material and power losses. In this paper...

  1. Research on the Automatic Fusion Strategy of Fixed Value Boundary Based on the Weak Coupling Condition of Grid Partition

    Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.

    2018-03-01

    With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.

  2. Converter controls and flicker study of PMSG-based grid connected wind turbines

    Ali H. Kasem Alaboudy

    2013-03-01

    Full Text Available With the increased penetration of wind power, the influence of wind turbine generators on the grid power quality stipulates careful investigation and analysis. Direct driven permanent magnet synchronous generator (PMSG with a back-to-back converter set is one of the promising technologies in wind power generation schemes. In this paper, comprehensive models of wind turbine are used to analyze power and voltage fluctuations. The short time flicker index is used to assess the voltage fluctuation emitted. The control scheme of the grid-side converter is supported with a voltage regulation loop to reduce flicker emission. The effects of grid and site parameters on voltage fluctuation are investigated. Simulation results show that reduced flicker emissions are given when the developed voltage regulation loop is activated. Reasonable values of grid and site parameters contribute in the minimization of voltage fluctuation and flicker emission levels.

  3. Research on a Micro-Grid Frequency Modulation Strategy Based on Optimal Utilization of Air Conditioners

    Qingzhu Wan

    2016-12-01

    Full Text Available With the proportion of air conditioners increasing gradually, they can provide a certain amount of frequency-controlled reserves for a micro-grid. Optimizing utilization of air conditioners and considering load response characteristics and customer comfort, the frequency adjustment model is a quadratic function model between the trigger temperature of the air conditioner compressor, and frequency variation is provided, which can be used to regulate the trigger temperature of the air conditioner when the micro-grid frequency rises and falls. This frequency adjustment model combines a primary frequency modulation method and a secondary frequency modulation method of the energy storage system, in order to optimize the frequency of a micro-grid. The simulation results show that the frequency modulation strategy for air conditioners can effectively improve the frequency modulation ability of air conditioners and frequency modulation effects of a micro-grid in coordination with an energy storage system.

  4. Research on control strategy based on fuzzy PR for grid-connected inverter

    Zhang, Qian; Guan, Weiguo; Miao, Wen

    2018-04-01

    In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.

  5. Design and Development of Fire Gridding Platform Based on Internet of Things

    Wei San-Xi

    2016-01-01

    Full Text Available This article describes the construction background about fire gridding platform, reviews the research and progress in fire Internet of Things and fire gridding. The platform includes perception / execution layer, field control layer, network layer, center platform layer and application layer, which provide a good bonding about site control and remote monitoring. This article supplies a detail design for the main functions of application and task flow of fire hazard investigation. At the same time, a digital management platform was developed.

  6. Uncertainty Analysis of Power Grid Investment Capacity Based on Monte Carlo

    Qin, Junsong; Liu, Bingyi; Niu, Dongxiao

    By analyzing the influence factors of the investment capacity of power grid, to depreciation cost, sales price and sales quantity, net profit, financing and GDP of the second industry as the dependent variable to build the investment capacity analysis model. After carrying out Kolmogorov-Smirnov test, get the probability distribution of each influence factor. Finally, obtained the grid investment capacity uncertainty of analysis results by Monte Carlo simulation.

  7. StoRMon: an event log analyzer for Grid Storage Element based on StoRM

    Zappi, Riccardo; Dal Pra, Stefano; Dibenedetto, Michele; Ronchieri, Elisabetta

    2011-01-01

    Managing a collaborative production Grid infrastructure requires to identify and handle every issue, which might arise, in a timely manner. Currently, the most complex problem of the data Grid infrastructure relates to the data management because of its distributed nature. To ensure that problems are quickly addressed and solved, each site should contribute to the solution providing any useful information about services that run in its administrative domain. Often Grid sites' administrators to be effective must collect, organize and examine the scattered logs events that are produced from every service and component of the Storage Element. This paper focuses on the problem of gathering the events logs on a Grid Storage Element and describes the design of a new service, called StoRMon. StoRMon will be able to collect, archive, analyze and report on events logs produced by each service of Storage Element during the execution of its tasks. The data and the processed information will be available to the site administrators by using a single contact-point to easily identify security incidents, fraudulent activity, and the operational issues mainly. The new service is applied to a Grid Storage Element characterized by StoRM, GridFTP and YAMSS, and collects the usage data of StoRM, transferring and hierarchical storage services.

  8. Forecasting of Power Grid Investment in China Based on Support Vector Machine Optimized by Differential Evolution Algorithm and Grey Wolf Optimization Algorithm

    Shuyu Dai

    2018-04-01

    Full Text Available In recent years, the construction of China’s power grid has experienced rapid development, and its scale has leaped into the first place in the world. Accurate and effective prediction of power grid investment can not only help pool funds and rationally arrange investment in power grid construction, but also reduce capital costs and economic risks, which plays a crucial role in promoting power grid investment planning and construction process. In order to forecast the power grid investment of China accurately, firstly on the basis of analyzing the influencing factors of power grid investment, the influencing factors system for China’s power grid investment forecasting is constructed in this article. The method of grey relational analysis is used for screening the main influencing factors as the prediction model input. Then, a novel power grid investment prediction model based on DE-GWO-SVM (support vector machine optimized by differential evolution and grey wolf optimization algorithm is proposed. Next, two cases are taken for empirical analysis to prove that the DE-GWO-SVM model has strong generalization capacity and has achieved a good prediction effect for power grid investment forecasting in China. Finally, the DE-GWO-SVM model is adopted to forecast power grid investment in China from 2018 to 2022.

  9. Long range Debye-Hückel correction for computation of grid-based electrostatic forces between biomacromolecules

    Mereghetti, Paolo; Martinez, Michael; Wade, Rebecca C

    2014-01-01

    Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials

  10. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable. PMID:22399959

  11. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies

    Xiaohuan Yang

    2009-02-01

    Full Text Available The spatial distribution of population is closely related to land use and land cover (LULC patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B data integrated with a Pattern Decomposition Method (PDM and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM. The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  12. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer

  13. The Grid

    Klotz, Wolf-Dieter

    2005-01-01

    Grid technology is widely emerging. Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple, robust yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. This talk will give a short history how, out of lessons learned from the Internet, the vision of Grids was born. Then the extensible anatomy of a Grid architecture will be discussed. The talk will end by presenting a selection of major Grid projects in Europe and US and if time permits a short on-line demonstration.

  14. Game-Theory-Based Approach for Energy Routing in a Smart Grid Network

    June S. Hong

    2016-01-01

    Full Text Available Small power plants and buildings with renewable power generation capability have recently been added to traditional central power plants. Through these facilities, prosumers appear to have a concurrent role in both energy production and consumption. Based on bidirectional power transfers by large numbers of prosumers, a smart microgrid has become an important factor in efficiently controlling the microgrids used in power markets and in conducting effective power trades among grids. In this paper, we present an approach utilizing the game theory for effective and efficient energy routing, which is a novel and challenging procedure for a smart microgrid network. First, we propose strategies for choosing the desired transaction price for both electricity surpluses and shortages to maximize profits through energy transactions. An optimization scheme is utilized to search for an energy route with minimum cost using the solving method used in a traditional transportation problem by treating the sale and purchase quantities as transportation supply and demand, respectively. To evaluate the effect of the proposed decision strategies, we simulated our mechanism, and the results proved that our mechanism yields results pursued by each strategy. Our proposed strategies will contribute to spreading a smart microgrid for enhancing the utilization of microgrids.

  15. An Efficient Mesh Generation Method for Fractured Network System Based on Dynamic Grid Deformation

    Shuli Sun

    2013-01-01

    Full Text Available Meshing quality of the discrete model influences the accuracy, convergence, and efficiency of the solution for fractured network system in geological problem. However, modeling and meshing of such a fractured network system are usually tedious and difficult due to geometric complexity of the computational domain induced by existence and extension of fractures. The traditional meshing method to deal with fractures usually involves boundary recovery operation based on topological transformation, which relies on many complicated techniques and skills. This paper presents an alternative and efficient approach for meshing fractured network system. The method firstly presets points on fractures and then performs Delaunay triangulation to obtain preliminary mesh by point-by-point centroid insertion algorithm. Then the fractures are exactly recovered by local correction with revised dynamic grid deformation approach. Smoothing algorithm is finally applied to improve the quality of mesh. The proposed approach is efficient, easy to implement, and applicable to the cases of initial existing fractures and extension of fractures. The method is successfully applied to modeling of two- and three-dimensional discrete fractured network (DFN system in geological problems to demonstrate its effectiveness and high efficiency.

  16. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    I-Hsien Lin

    2010-08-01

    Full Text Available Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.

  17. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling.

    Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P

    2018-05-15

    Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.

  18. FEMAN: Fuzzy-Based Energy Management System for Green Houses Using Hybrid Grid Solar Power

    Abdellah Chehri

    2013-01-01

    Full Text Available The United Nations has designated the year 2012 as the international year of sustainable energy. Today, we are seeing a rise in global awareness of energy consumption and environmental problems. Many nations have launched different programs to reduce the energy consumption in residential and commercial buildings to seek lower-carbon energy solutions. We are talking about the future green and smart houses. The subject of smart/green houses is not one of “why,” but rather “how,” specifically: “how making the future house more energy efficient.” The use of the renewable energy, the technology and the services could help us to answer this question. Intelligent home energy management is an approach to build centralized systems that deliver application functionality as services to end-consumer applications. The objective of this work is to develop a smart and robust controller for house energy consumption with maximizing the use of solar energy and reducing the impact on the power grid while satisfying the energy demand of house appliances. We proposed a fuzzy-based energy management controller in order to reduce the consumed energy of the building while respecting a fixed comfort.

  19. Optimal RTP Based Power Scheduling for Residential Load in Smart Grid

    Joshi, Hemant I.; Pandya, Vivek J.

    2015-12-01

    To match supply and demand, shifting of load from peak period to off-peak period is one of the effective solutions. Presently flat rate tariff is used in major part of the world. This type of tariff doesn't give incentives to the customers if they use electrical energy during off-peak period. If real time pricing (RTP) tariff is used, consumers can be encouraged to use energy during off-peak period. Due to advancement in information and communication technology, two-way communications is possible between consumers and utility. To implement this technique in smart grid, home energy controller (HEC), smart meters, home area network (HAN) and communication link between consumers and utility are required. HEC interacts automatically by running an algorithm to find optimal energy consumption schedule for each consumer. However, all the consumers are not allowed to shift their load simultaneously during off-peak period to avoid rebound peak condition. Peak to average ratio (PAR) is considered while carrying out minimization problem. Linear programming problem (LPP) method is used for minimization. The simulation results of this work show the effectiveness of the minimization method adopted. The hardware work is in progress and the program based on the method described here will be made to solve real problem.

  20. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  1. Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage, and Access

    Hipp, James R.; Moore, Susan G.; Myers, Stephen C.; Schultz, Craig A.; Shepherd, Ellen; Young, Christopher J.

    1999-01-01

    The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation

  2. The play grid

    Fogh, Rune; Johansen, Asger

    2013-01-01

    In this paper we propose The Play Grid, a model for systemizing different play types. The approach is psychological by nature and the actual Play Grid is based, therefore, on two pairs of fundamental and widely acknowledged distinguishing characteristics of the ego, namely: extraversion vs. intro...

  3. Landslide triggering thresholds for Switzerland based on a new gridded precipitation dataset

    Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.

    2017-04-01

    In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, ca. 520 M Euros) as reported in Hilker et al. (2009) for the period 1972-2007. The prediction of landslide occurrence is particularly challenging because of their wide distribution in space and the complex interdependence of predisposing and triggering factors. The overall goal of our research is to develop an Early Warning System for landsliding in Switzerland based on hydrological modelling and rainfall forecasts. In order to achieve this, we first analyzed rainfall triggering thresholds for landslides from a new gridded daily precipitation dataset (RhiresD, MeteoSwiss) for Switzerland combined with landslide events recorded in the Swiss Damage Database (Hilker et al.,2009). The high-resolution gridded precipitation dataset allows us to collocate rainfall and landslides accurately in space, which is an advantage over many previous studies. Each of the 2272 landslides in the database in the period 1972-2012 was assigned to the corresponding 2x2 km precipitation cell. For each of these cells, precipitation events were defined as series of consecutive rainy days and the following event parameters were computed: duration (day), maximum and mean daily intensity (mm/day), total rainfall depth (mm) and maximum daily intensity divided by Mean Daily Precipitation (MDP). The events were classified as triggering or non-triggering depending on whether a landslide was recorded in the cell during the event. This classification of observations was compared to predictions based on a threshold for each of the parameters. The predictive power of each parameter and the best threshold value were quantified by ROC analysis and statistics such as AUC and the True Skill Statistic (TSS). Event parameters based on rainfall intensity were found to have similarly high predictive power (TSS=0.54-0.59, AUC=0.85-0.86), while rainfall duration had a

  4. Allegheny County Map Index Grid

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid...

  5. Modelling and analysis of transient state during improved coupling procedure with the grid for DFIG based wind turbine generator

    Kammoun, Soulaymen; Sallem, Souhir; Ben Ali Kammoun, Mohamed

    2017-11-01

    The aim of this study is to enhance DFIG based Wind Energy Conversion Systems (WECS) dynamics during grid coupling. In this paper, a system modelling and a starting/coupling procedure for this generator to the grid are proposed. The proposed non-linear system is a variable structure system (VSS) and has two different states, before and after coupling. So, two different state models are given to the system to analyse transient stability during the coupling. The given model represents well the transient state of the machine, through which, a behaviour assessment of the generator before, during and after connection is given based on simulation results. For this, a 300 kW DFIG based wind generation system model was simulated on the Matlab/SIMULINK environment. We judge the proposed procedure to be practical, smooth and stability improved.

  6. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications

    Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi

    2017-01-01

    Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.

  7. On-grid and Off-grid Operation of Multi-Input Single-Output DC/DC Converter based Fuel Cell Generation System

    Noroozian

    2009-06-01

    Full Text Available This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.

  8. Global Population Density Grid Time Series Estimates

    National Aeronautics and Space Administration — Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's...

  9. A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows

    Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert

    1996-01-01

    The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.

  10. Urban micro-grids

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  11. A measurement method for micro 3D shape based on grids-processing and stereovision technology

    Li, Chuanwei; Xie, Huimin; Liu, Zhanwei

    2013-01-01

    An integrated measurement method for micro 3D surface shape by a combination of stereovision technology in a scanning electron microscope (SEM) and grids-processing methodology is proposed. The principle of the proposed method is introduced in detail. By capturing two images of the tested specimen with grids on the surface at different tilt angles in an SEM, the 3D surface shape of the specimen can be obtained. Numerical simulation is applied to analyze the feasibility of the proposed method. A validation experiment is performed here. The surface shape of the metal-wire/polymer-membrane structures with thermal deformation is reconstructed. By processing the surface grids of the specimen, the out-of-plane displacement field of the specimen surface is also obtained. Compared with the measurement results obtained by a 3D digital microscope, the experimental error of the proposed method is discussed (paper)

  12. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  13. Global renewable energy-based electricity generation and smart grid system for energy security.

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  14. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  15. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  16. Performance and Feasibility Analysis of a Grid Interactive Large Scale Wind/PV Hybrid System based on Smart Grid Methodology Case Study South Part – Jordan

    Qais H. Alsafasfeh

    2015-02-01

    Full Text Available Most recent research on renewable energy resources main one goal to make Jordan less dependent on imported energy with locally developed and produced solar power, this paper discussed the efficient system of Wind/ PV Hybrid System to be than main power sources for south part of Jordan, the proposed hybrid system design based on Smart Grid Methodology,  the solar energy will be installed on top roof of  electricity subscribers across the Governorate of Maan, Tafila, Karak and Aqaba and the wind energy will set in one site by this way the capital cost for project will be reduced also the  simulation result show   the feasibility  is a very competitive and feasible cost . Economics analysis of a proposed renewable energy system was made using HOMER simulation and evaluation was completed with the cost per kilowatt of EDCO company, the net present cost is $2,551,676,416, the cost of energy is 0.07kWhr with a renewable fraction of 86.6 %.

  17. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  18. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    Kwangsoo Kim; Seong-il Jin

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network co...

  19. Interaction Admittance Based Modeling of Multi-Paralleled Grid-Connected Inverter with LCL-Filter

    Lu, Minghui; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    This paper investigates the mutual interaction and stability issues of multi-parallel LCL-filtered inverters. The stability and power quality of multiple grid-tied inverters are gaining more and more research attention as the penetration of renewables increases. In this paper, interactions...... and coupling effects among the multi-paralleled inverters and power grid are explicitly revealed. An Interaction Admittance concept is introduced to express and model the interaction through the physical admittances of the network. Compared to the existing modeling methods, the proposed analysis provides...

  20. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    Bosco Raj, T. Ajith; Ramesh, R.; Maglin, J. R.; Vaigundamoorthi, M.; William Christopher, I.; Gopinath, C.; Yaashuwanth, C.

    2014-01-01

    The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level) inverter for a grid-connected photovoltaic system. The primary g...

  1. Modeling and Control of a DFIG-Based Wind Turbine During a Grid Voltage Drop

    M. Shahabi

    2011-10-01

    Full Text Available Doubly-fed induction generators (DFIG are widely used in wind energy generation systems. During a grid voltage drop, performance is degraded with rotor over current deteriorating the fault-ride through (FRT capability of the DFIG wind-energy generation system. In this paper, a complete mathematical DFIG model is proposed. The rotor is considered fed by a voltage source converter whereas the stator is connected to the grid directly. Output power and electromagnetic torque are controlled using field-oriented control (FOC. Simulation results show the efficiency of the controller in exploiting the maximum power of wind.

  2. ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids

    Kamal Shahid

    2018-05-01

    Full Text Available The increased penetration of Renewable Energy Generation (ReGen plants in future power systems poses several challenges to the stability of the entire system. In future green energy rich power systems, the responsibility for providing ancillary services will be shifted from conventional power plants towards ReGen plants, such as wind and photovoltaic power plants. Frequency control support from the Wind Power Plants (WPPs is one of the crucial ancillary services in order to preserve operational stability in case of grid disturbances. Among other requirements, the ability to provide fast frequency control support from ReGen plants will highly depend on the underlying communication infrastructure that allows an exchange of information between different ReGen plants and the control centers. This paper, therefore, focuses on the evaluation of the impact of communication and the related aspects to provide online frequency control support from ReGen (with special focus on WPP. The performance evaluation is based on an aggregated WPP model that is integrated into a generic power system model. This generic power system model is specifically designed to assess the ancillary services in a relatively simple yet relevant environment. Several case studies with different wind speeds at a particular wind-power penetration level and communication scenarios are considered to evaluate the performance of power system frequency response. The article provides the Transmission System Operator (TSO and other communication engineers insights into the importance and various aspects of communication infrastructure for general service coordination between WPPs and specifically primary frequency control coordination from WPPs in future power systems.

  3. A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism

    Zheng, Peng; Li, Ming; van der A, Dominic A.; van der Zanden, Joep; Wolf, Judith; Chen, Xueen; Wang, Caixia

    2017-08-01

    A new three-dimensional nearshore hydrodynamic model system is developed based on the unstructured-grid version of the third generation spectral wave model SWAN (Un-SWAN) coupled with the three-dimensional ocean circulation model FVCOM to enable the full representation of the wave-current interaction in the nearshore region. A new wave-current coupling scheme is developed by adopting the vortex-force (VF) scheme to represent the wave-current interaction. The GLS turbulence model is also modified to better reproduce wave-breaking enhanced turbulence, together with a roller transport model to account for the effect of surface wave roller. This new model system is validated first against a theoretical case of obliquely incident waves on a planar beach, and then applied to three test cases: a laboratory scale experiment of normal waves on a beach with a fixed breaker bar, a field experiment of oblique incident waves on a natural, sandy barred beach (Duck'94 experiment), and a laboratory study of normal-incident waves propagating around a shore-parallel breakwater. Overall, the model predictions agree well with the available measurements in these tests, illustrating the robustness and efficiency of the present model for very different spatial scales and hydrodynamic conditions. Sensitivity tests indicate the importance of roller effects and wave energy dissipation on the mean flow (undertow) profile over the depth. These tests further suggest to adopt a spatially varying value for roller effects across the beach. In addition, the parameter values in the GLS turbulence model should be spatially inhomogeneous, which leads to better prediction of the turbulent kinetic energy and an improved prediction of the undertow velocity profile.

  4. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    Azmy, Yousry; Wang, Yaqi

    2013-01-01

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code's numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory's Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  5. Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming

    Shaban Boloukat, Mohammad Hadi; Akbari Foroud, Asghar

    2016-01-01

    This paper represents a stochastic approach for long-term optimal resource expansion planning of a grid-connected microgrid (MG) containing different technologies as intermittent renewable energy resources, energy storage systems and thermal resources. Maximizing profit and reliability, along with minimizing investment and operation costs, are major objectives which have been considered in this model. Also, the impacts of intermittency and uncertainty in renewable energy resources were investigated. The interval linear programming (ILP) was applied for modelling inherent stochastic nature of the renewable energy resources. ILP presents some superiority in modelling of uncertainties in MG planning. The problem was formulated as a mixed-integer linear programming. It has been demonstrated previously that the benders decomposition (BD) served as an effective tool for solving such problems. BD divides the original problem into a master (investment) problem and operation and reliability subproblems. In this paper a multiperiod MG planning is presented, considering life time, maximum penetration limit of each technology, interest rate, capital recovery factor and investment fund. Real-time energy exchange with the utility is covered, with a consideration of variable tariffs at different load blocks. The presented approach can help MG planners to adopt best decision under various uncertainty levels based on their budgetary policies. - Highlights: • Considering uncertain nature of the renewable resources with applying ILP. • Considering the effect of intermittency of renewable in MG planning. • Multiobjective MG planning problem which covers cost, profit and reliability. • Multiperiod approach for MG planning considering life time and MPL of technologies. • Presenting real-time energy exchange with the utility considering variable tariffs.

  6. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset

    Czernecki, Bartosz; Nowosad, Jakub; Jabłońska, Katarzyna

    2018-04-01

    Changes in the timing of plant phenological phases are important proxies in contemporary climate research. However, most of the commonly used traditional phenological observations do not give any coherent spatial information. While consistent spatial data can be obtained from airborne sensors and preprocessed gridded meteorological data, not many studies robustly benefit from these data sources. Therefore, the main aim of this study is to create and evaluate different statistical models for reconstructing, predicting, and improving quality of phenological phases monitoring with the use of satellite and meteorological products. A quality-controlled dataset of the 13 BBCH plant phenophases in Poland was collected for the period 2007-2014. For each phenophase, statistical models were built using the most commonly applied regression-based machine learning techniques, such as multiple linear regression, lasso, principal component regression, generalized boosted models, and random forest. The quality of the models was estimated using a k-fold cross-validation. The obtained results showed varying potential for coupling meteorological derived indices with remote sensing products in terms of phenological modeling; however, application of both data sources improves models' accuracy from 0.6 to 4.6 day in terms of obtained RMSE. It is shown that a robust prediction of early phenological phases is mostly related to meteorological indices, whereas for autumn phenophases, there is a stronger information signal provided by satellite-derived vegetation metrics. Choosing a specific set of predictors and applying a robust preprocessing procedures is more important for final results than the selection of a particular statistical model. The average RMSE for the best models of all phenophases is 6.3, while the individual RMSE vary seasonally from 3.5 to 10 days. Models give reliable proxy for ground observations with RMSE below 5 days for early spring and late spring phenophases. For

  7. Negative Sequence Droop Method based Hierarchical Control for Low Voltage Ride-Through in Grid-Interactive Microgrids

    Zhao, Xin; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez

    2015-01-01

    . In this paper, a voltage support strategy based on negative sequence droop control, which regulate the positive/negative sequence active and reactive power flow by means of sending proper voltage reference to the inner control loop, is proposed for the grid connected MGs to ride through voltage sags under...... complex line impedance conditions. In this case, the MGs should inject a certain amount of positive and negative sequence power to the grid so that the voltage quality at load side can be maintained at a satisfied level. A two layer hierarchical control strategy is proposed in this paper. The primary...... control loop consists of voltage and current inner loops, conventional droop control and virtual impedance loop while the secondary control loop is based on positive/negative sequence droop control which can achieve power injection under voltage sags. Experimental results with asymmetrical voltage sags...

  8. Real-Time Pricing Strategy Based on the Stability of Smart Grid for Green Internet of Things

    Huwei Chen

    2017-01-01

    Full Text Available The ever increasing demand of energy efficiency and the strong awareness of environment have led to the enhanced interests in green Internet of things (IoTs. How to efficiently deliver power, especially, with the smart grid based on the stability of network becomes a challenge for green IoTs. Therefore, in this paper we present a novel real-time pricing strategy based on the network stability in the green IoTs enabled smart grid. Firstly, the outage is analyzed by considering the imbalance of power supply and demand as well as the load uncertainty. Secondly, the problem of power supply with multiple-retailers is formulated as a Stackelberg game, where the optimal price can be obtained with the maximal profit for retailers and users. Thirdly, the stability of price is analyzed under the constraints. In addition, simulation results show the efficiency of the proposed strategy.

  9. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  10. A Fuzzy Logic Based Three phase Inverter with Single DC Source for Grid Connected PV System Employing Three Phase Transformer

    Mani, venkatesan; Ramachandran, Rajeswari; N, Deverajan

    2016-01-01

    A fuzzy based three phase inverter with single DC source for grid connected photo voltaic (PV) system employing three phase transformer is presented in this paper. Space Vector Pulse Width Modulation (SVPWM) control scheme is effectively used to generate the appropriate switching sequences to the inverter switches. The intend of the fuzzy logic approach is to meet high quality output, fast response and high robustness. Finally Total Harmonics Distortion (THD) generated by the inverter is comp...

  11. A testing procedure for wind turbine generators based on the power grid statistical model

    Farajzadehbibalan, Saber; Ramezani, Mohammad Hossein; Nielsen, Peter

    2017-01-01

    In this study, a comprehensive test procedure is developed to test wind turbine generators with a hardware-in-loop setup. The procedure employs the statistical model of the power grid considering the restrictions of the test facility and system dynamics. Given the model in the latent space...

  12. An Efficient Topology-Based Algorithm for Transient Analysis of Power Grid

    Yang, Lan; Wang, Jingbin; Azevedo, Lorenzo; Wang, Jim Jing-Yan

    2015-01-01

    In the design flow of integrated circuits, chip-level verification is an important step that sanity checks the performance is as expected. Power grid verification is one of the most expensive and time-consuming steps of chip-level verification, due

  13. Robust Active Damping Control of LCL Filtered Grid Connected Converter Based Active Disturbance Rejection Control

    Abdeldjabar, Benrabah; Xu, Dianguo; Wang, Xiongfei

    2016-01-01

    This paper deals with the problem of LCL filter resonance in grid connected inverter control. The system equations are reformulated to allow the application of the active disturbance rejection control (ADRC). The resonance, assumed unknown, is treated as a disturbance, then estimated and mitigated...

  14. Smart grid and smart building inter-operation using agent-based particle swarm optimization

    Hurtado Munoz, L.A.; Nguyen, P.H.; Kling, W.L.

    2015-01-01

    Future power systems require a change from a "vertical" to a "horizontal" structure, in which the customer plays a central role. As buildings represent a substantial aggregation of energy consumption, the intertwined operation of the future power grid and the built environment is crucial to achieve

  15. Agent-based control for building energy management in the smart grid framework

    Hurtado Munoz, L.A.; Nguyen, P.H.; Kling, W.L.

    2014-01-01

    Within the smart cities concept, smart buildings and smart grids have emerged as crucial solutions to increase energy efficiency, without jeopardizing the main objectives of such systems. As the power system go through the transition from a "centralized" and "vertical" structure, to a

  16. Computational fluid dynamics for propulsion technology: Geometric grid visualization in CFD-based propulsion technology research

    Ziebarth, John P.; Meyer, Doug

    1992-01-01

    The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.

  17. Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure

    Tarek A. Youssef

    2016-03-01

    Full Text Available This paper presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discovery feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS.

  18. Integrated agent-based home energy management systems for smart grid applications

    Asare-Bediako, B.; Kling, W.L.; Ribeiro, P.F.

    2013-01-01

    The participation of residential consumers is vital for a successful implementation of the smart grid vision. The installation of smart meters is envisioned to increase residential consumers' involvement in the electric energy sector. The installations of local energy generations (photovoltaic, and

  19. Towards a European renewable-based energy system enabled by smart grid: status and prospects

    Ding, Yi; Østergaard, Jacob; Wu, Qiuwei

    2011-01-01

    Renewable energy plays an important role in the future energy framework of the European Union. The European Union will reach a 20% share of renewable energy in total energy consumption and increase energy efficiency by 20% by 2020. Smart grids will be the backbone of the future electricity networ...

  20. Synchrophasor Sensing and Processing based Smart Grid Security Assessment for Renewable Energy Integration

    Jiang, Huaiguang

    With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach

  1. Operation and Control of a Direct-Driven PMSG-Based Wind Turbine System with an Auxiliary Parallel Grid-Side Converter

    Jiawei Chu

    2013-07-01

    Full Text Available In this paper, based on the similarity, in structure and principle, between a grid-connected converter for a direct-driven permanent magnet synchronous generator (D-PMSG and an active power filter (APF, a new D-PMSG-based wind turbine (WT system configuration that includes not only an auxiliary converter in parallel with the grid-side converter, but also a coordinated control strategy, is proposed to enhance the low voltage ride through (LVRT capability and improve power quality. During normal operation, the main grid-side converter maintains the DC-link voltage constant, whereas the auxiliary grid-side converter functions as an APF with harmonic suppression and reactive power compensation to improve the power quality. During grid faults, a hierarchical coordinated control scheme for the generator-side converter, main grid-side converter and auxiliary grid-side converter, depending on the grid voltage sags, is presented to enhance the LVRT capability of the direct-driven PMSG WT. The feasibility and the effectiveness of the proposed system’s topology and hierarchical coordinated control strategy were verified using MATLAB/Simulink simulations.

  2. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the

  3. PWM Regulation of Grid-Tied PV System on the Base of Photovoltaic-Fed Diode-Clamped Inverters

    Oleschuk V.I.

    2015-12-01

    Full Text Available Investigation of grid-tied photovoltaic system on the base of two diode-clamped inverters, controlled by specific algorithms of pulse-width modulation (PWM, has been done. This system includes two strings of photovoltaic panels feeding two diode-clamped inverters. The outputs of inverters are connected with the corresponding windings on the primary side of three-phase transformer, connected with a grid. In order to reduce phase voltage distortion and to increase efficiency of operation of the system, special scheme of control and modulation of inverters has been used, providing minimization of common-mode voltages and voltage waveforms symmetries under different operating conditions. Detailed simulation of processes in this photovoltaic-fed power conversion system has been executed. The results of simulations verify good performance of photovoltaic system regulated in accordance with specific strategy of control and modulation.

  4. Design of Current-Controller with PR-regulator for LCL-Filter Based Grid-Connected Converter

    Zeng, Guohong; Rasmussen, Tonny Wederberg

    2010-01-01

    In the application of LCL-filter based converters, the structure and parameters of current-controller is very important for the system stability and output current quality. This paper presents a filter-capacitor current feedback control scheme for grid-connected converter. The controller...... is consisted of a proportional-resonance regulator and a proportional regulator. Unlike the existing control strategy with unit capacitor current feedback, the proposed method applies the proportional regulator to the feedback path, which can decouple these two regulators, and simplify the tuning process...... of the control strategy and the proposed current controller design method are verified by the simulation results of a 50kVA grid-connected inverter....

  5. The modeling and simulation of thermal based modified solid oxide fuel cell (SOFC for grid-connected systems

    Ayetül Gelen

    2015-05-01

    Full Text Available This paper presents a thermal based modified dynamic model of a Solid Oxide Fuel Cell (SOFC for grid-connected systems. The proposed fuel cell model involves ohmic, activation and concentration voltage losses, thermal dynamics, methanol reformer, fuel utilization factor and power limiting module. A power conditioning unit (PCU, which consists of a DC-DC boost converter and a DC-AC voltage-source inverter (VSI, their controller, transformer and filter, is designed for grid-connected systems. The voltage-source inverter with six Insulated Gate Bipolar Transistor (IGBT switches inverts the DC voltage that comes from the converter into a sinusoidal voltage synchronized with the grid. The simulations and modeling of the system are developed on Matlab/Simulink environment. The performance of SOFC with converter is examined under step and random load conditions. The simulation results show that the designed boost converter for the proposed thermal based modified SOFC model has fairly followed different DC load variations. Finally, the AC bus of 400 Volt and 50 Hz is connected to a single-machine infinite bus (SMIB through a transmission line. The real and reactive power managements of the inverter are analyzed by an infinite bus system. Thus, the desired nominal values are properly obtained by means of the inverter controller.

  6. A Cognitive Radio-Based Energy-Efficient System for Power Transmission Line Monitoring in Smart Grids

    Saeed Ahmed

    2017-01-01

    Full Text Available The research in industry and academia on smart grids is predominantly focused on the regulation of generated power and management of its consumption. Because transmission of bulk-generated power to the consumer is immensely reliant on secure and efficient transmission grids, comprising huge electrical and mechanical assets spanning a vast geographic area, there is an impending need to focus on the transmission grids as well. Despite the challenges in wireless technologies for SGs, cognitive radio networks are considered promising for provisioning of communications services to SGs. In this paper, first, we present an IEEE 802.22 wireless regional area network cognitive radio-based network model for smart monitoring of transmission lines. Then, for a prolonged lifetime of battery finite monitoring network, we formulate the spectrum resource allocation problem as an energy efficiency maximization problem, which is a nonlinear integer programming problem. To solve this problem in an easier way, we propose an energy-efficient resource-assignment scheme based on the Hungarian method. Performance analysis shows that, compared to a pure opportunistic assignment scheme with a throughput maximization objective and compared to a random scheme, the proposed scheme results in an enhanced lifetime while consuming less battery energy without compromising throughput performance.

  7. The LHCb Grid Simulation

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  8. Stability Augmentation of a Grid-Connected Wind Farm by Fuzzy-Logic-Controlled DFIG-Based Wind Turbines

    Md. Rifat Hazari

    2017-12-01

    Full Text Available Wind farm (WF grid codes require wind generators to have low voltage ride through (LVRT capability, which means that normal power production should be resumed quickly once the nominal grid voltage has been recovered. However, WFs with fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs have failed to fulfill the LVRT requirement, which has a significant impact on power system stability. On the other hand, variable-speed wind turbines with doubly fed induction generators (VSWT-DFIGs have sufficient LVRT augmentation capability and can control the active and reactive power delivered to the grid. However, the DFIG is more expensive than the SCIG due to its AC/DC/AC converter. Therefore, the combined use of SCIGs and DFIGs in a WF could be an effective solution. The design of the rotor-side converter (RSC controller is crucial because the RSC controller contributes to the system stability. The cascaded control strategy based on four conventional PI controllers is widely used to control the RSC of the DFIG, which can inject only a small amount of reactive power during fault conditions. Therefore, the conventional strategy can stabilize the lower rating of the SCIG. In the present paper, a new control strategy based on fuzzy logic is proposed in the RSC controller of the DFIG in order to enhance the LVRT capability of the SCIG in a WF. The proposed fuzzy logic controller (FLC is used to control the reactive power delivered to the grid during fault conditions. Moreover, reactive power injection can be increased in the proposed control strategy. Extensive simulations executed in the PSCAD/EMTDC environment for both the proposed and conventional PI controllers of the RSC of the DFIG reveal that the proposed control strategy can stabilize the higher rating of the SCIG.

  9. Expanding access to off-grid rural electrification in Africa: An analysis of community-based micro-grids in Kenya

    Kirubi, Charles Gathu

    Community micro-grids have played a central role in increasing access to off-grid rural electrification (RE) in many regions of the developing world, notably South Asia. However, the promise of community micro-grids in sub-Sahara Africa remains largely unexplored. My study explores the potential and limits of community micro-grids as options for increasing access to off-grid RE in sub-Sahara Africa. Contextualized in five community micro-grids in rural Kenya, my study is framed through theories of collective action and combines qualitative and quantitative methods, including household surveys, electronic data logging and regression analysis. The main contribution of my research is demonstrating the circumstances under which community micro-grids can contribute to rural development and the conditions under which individuals are likely to initiate and participate in such projects collectively. With regard to rural development, I demonstrate that access to electricity enables the use of electric equipment and tools by small and micro-enterprises, resulting in significant improvement in productivity per worker (100--200% depending on the task at hand) and a corresponding growth in income levels in the order of 20--70%, depending on the product made. Access to electricity simultaneously enables and improves delivery of social and business services from a wide range of village-level infrastructure (e.g. schools, markets, water pumps) while improving the productivity of agricultural activities. Moreover, when local electricity users have an ability to charge and enforce cost-reflective tariffs and electricity consumption is closely linked to productive uses that generate incomes, cost recovery is feasible. By their nature---a new technology delivering highly valued services by the elites and other members, limited local experience and expertise, high capital costs---community micro-grids are good candidates for elite-domination. Even so, elite control does not necessarily

  10. A New GPS-based Digital Protection System for Smart Grids in Loop Structure

    X. Liu

    2014-12-01

    Full Text Available This paper presents a new digital protection system to solve the protection challenges in future smart grids, i.e., fast protection and fault isolation in a loop-structured system with limited magnitude of fault current. The new system combines two protection algorithms, i.e., a differential protection as the primary algorithm and an overcurrent protection as the backup one. The new system uses real-time Ethernet and digital data acquisition techniques to overcome the restriction on data transmission over large grids. The current measurements at different locations are time-synchronized by GPS clocks, and then transmitted to a central computer via the Ethernet. As opposed to digital relays which often contain PMU functionality nowadays, this approach uses time stamps on the instantaneous current values. We build a prototype of the new system on a test-bed. The results from simulations and experiments have demonstrated that the protection system achieves fast and accurate protection.

  11. Model predictive control of PMSG-based wind turbines for frequency regulation in an isolated grid

    Wang, Haixin; Yang, Junyou; Ma, Yiming

    2017-01-01

    This paper proposes a frequency regulation strategy applied to wind turbine generators (WTGs) in an isolated grid. In order to complement active power shortage caused by sudden load or wind speed change, an improved deloading method is proposed to solve inconsistent regulation capabilities...... in different speed regions and provide WTGs a certain capacity of power reserves. Considering the torque compensation may bring about power oscillation, speed reference of conventional pitch control system should be reset. Moreover, to suppress disturbances of load and wind speed as well as overcome dependence...... on system parameters, a model predictive controller (MPC) of wind farm is designed to generate torque compensation for each deloaded WTG. The key feature of this strategy is that each WTG reacts to grid disturbances in different ways, which depends on generator speeds. Hardware-in-the-loop simulation...

  12. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  13. Market-based Demand Response via Residential Plug-in Electric Vehicles in Smart Grids

    Rassaei, Farshad; Soh, Wee-Seng; Chua, Kee-Chaing

    2015-01-01

    Flexibility in power demand, diverse usage patterns and storage capability of plug-in electric vehicles (PEVs) grow the elasticity of residential electricity demand remarkably. This elasticity can be utilized to form the daily aggregated demand profile and/or alter instantaneous demand of a system wherein a large number of residential PEVs share one electricity retailer or an aggregator. In this paper, we propose a demand response (DR) technique to manage vehicle-to-grid (V2G) enabled PEVs' e...

  14. Joint path and resource selection for OBS grids with adaptive offset based QOS mechanism

    Köseoğlu, Mehmet

    2007-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2007. Thesis (Master's) -- Bilkent University, 2007. Includes bibliographical references leaves 71-76 It is predicted that grid computing will be available for consumers performing their daily computational needs with the deployment of high bandwidth optical networks. Optical burst switching is a suitable switching technology for this kind of...

  15. A Costing Analysis for Decision Making Grid Model in Failure-Based Maintenance

    M. A., Burhanuddin; Halawani, Sami M.; Ahmad, A. R.

    2011-01-01

    Background. In current economic downturn, industries have to set good control on production cost, to maintain their profit margin. Maintenance department as an imperative unit in industries should attain all maintenance data, process information instantaneously, and subsequently transform it into a useful decision. Then act on the alternative to reduce production cost. Decision Making Grid model is used to identify strategies for maintenance decision. However, the model has limitation as it c...

  16. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for fu...

  17. SOGI-based capacitor voltage feedback active damping in LCL-filtered grid converters

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    The capacitor voltage feedback active damping control is an attractive way to suppress LCL-filter resonance especially for the systems where the capacitor voltage is used for grid synchronization, since no extra sensors are added. The derivative is the core of the capacitor voltage feedback active...... derivative is more suited for capacitor voltage feedback active damping control. Experimental results validate the effectiveness of the proposed method....

  18. Performance Evaluations of Four MAF-Based PLL Algorithms for Grid-Synchronization of Three-Phase Grid-Connected PWM Inverters and DGs

    Han, Yang; Luo, Mingyu; Chen, Changqing

    2016-01-01

    The moving average filter (MAF) is widely utilized to improve the disturbance rejection capability of the phase-locked loops (PLLs), which is of vital significance for the grid-integration and stable operation of power electronic converters to the electric power systems. However, the open-loop ba...

  19. A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor

    Yan-Qing Lu

    2011-02-01

    Full Text Available A transflective nano-wire grid polarizer is fabricated on a single mode fiber tip by focused ion beam machining. In contrast to conventional absorptive in-line polarizers, the wire grids reflect TE-mode, while transmitting TM-mode light so that no light power is discarded. A reflection contrast of 13.7 dB and a transmission contrast of 4.9 dB are achieved in the 1,550 nm telecom band using a 200-nm wire grid fiber polarizer. With the help of an optic circulator, the polarization states of both the transmissive and reflective lights in the fiber may be monitored simultaneously. A kind of robust fiber optic sensor is thus proposed that could withstand light power variations. To verify the idea, a fiber pressure sensor with the sensitivity of 0.24 rad/N is demonstrated. The corresponding stress-optic coefficient of the fiber is measured. In addition to pressure sensing, this technology could be applied in detecting any polarization state change induced by magnetic fields, electric currents and so on.

  20. Battery charging and discharging research based on the interactive technology of smart grid and electric vehicle

    Zhang, Mingyang

    2018-06-01

    To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.

  1. A GPU-based incompressible Navier-Stokes solver on moving overset grids

    Chandar, Dominic D. J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.

    2013-07-01

    In pursuit of obtaining high fidelity solutions to the fluid flow equations in a short span of time, graphics processing units (GPUs) which were originally intended for gaming applications are currently being used to accelerate computational fluid dynamics (CFD) codes. With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favourable for many high-resolution computations. One such computation that involves a lot of number crunching is computing time accurate flow solutions past moving bodies. The aim of the present paper is thus to discuss the development of a flow solver on unstructured and overset grids and its implementation on GPUs. In its present form, the flow solver solves the incompressible fluid flow equations on unstructured/hybrid/overset grids using a fully implicit projection method. The resulting discretised equations are solved using a matrix-free Krylov solver using several GPU kernels such as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations are implemented using the CU++: An Object Oriented Framework for Computational Fluid Dynamics Applications using Graphics Processing Units, Journal of Supercomputing, 2013, doi:10.1007/s11227-013-0985-9 approach where GPU kernels are automatically generated at compile time. Results are presented for two- and three-dimensional computations on static and moving grids.

  2. An ILP based Algorithm for Optimal Customer Selection for Demand Response in SmartGrids

    Kuppannagari, Sanmukh R. [Univ. of Southern California, Los Angeles, CA (United States); Kannan, Rajgopal [Louisiana State Univ., Baton Rouge, LA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)

    2015-12-07

    Demand Response (DR) events are initiated by utilities during peak demand periods to curtail consumption. They ensure system reliability and minimize the utility’s expenditure. Selection of the right customers and strategies is critical for a DR event. An effective DR scheduling algorithm minimizes the curtailment error which is the absolute difference between the achieved curtailment value and the target. State-of-the-art heuristics exist for customer selection, however their curtailment errors are unbounded and can be as high as 70%. In this work, we develop an Integer Linear Programming (ILP) formulation for optimally selecting customers and curtailment strategies that minimize the curtailment error during DR events in SmartGrids. We perform experiments on real world data obtained from the University of Southern California’s SmartGrid and show that our algorithm achieves near exact curtailment values with errors in the range of 10-7 to 10-5, which are within the range of numerical errors. We compare our results against the state-of-the-art heuristic being deployed in practice in the USC SmartGrid. We show that for the same set of available customer strategy pairs our algorithm performs 103 to 107 times better in terms of the curtailment errors incurred.

  3. Influence of Egyptian electrical grid and nuclear power plants under disturbances based on PSS/E

    Shaat, M. K.; Kotb, S. A.; Mahmoud, H. M.

    2012-12-01

    The capacity of the electrical power system in Egypt will increase rapidly in the coming twenty years. In year 2018, power generation will be connecting to the Egyptian electrical grid. Consequently, the interaction of nuclear power plants and other systems become a very important issue, and a detailed nuclear power model for the medium-term and long-term power system stability should be developed. However, there is no nuclear unit model that can describe the detailed characteristics of the nuclear unit in the available commercial power system simulation software. In this paper, a detailed pressurized water reactor (PWR) nuclear unit model for medium-term and long-term power system transient stability is proposed. The model is implemented by a user defined program in PSS/E through PSS/E Mat lab Seamanlike interface. Also this paper proposes a design of power plant rector controller for the nuclear power plant. This model can be used to analyze the difference influences between the Egyptian electrical grid and nuclear power plants for examples transient fault on electrical grid and outage of nuclear power plant. The simulation results show that the proposed model is valid. (Author)

  4. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  5. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids

    Purvins, Arturs; Papaioannou, Ioulia T.; Debarberis, Luigi

    2013-01-01

    Highlights: ► Battery system application in demand smoothening in distribution grids is analysed. ► Five European countries are studied with and without high photovoltaic deployment. ► A sensitivity analysis for different battery system parameters is performed. ► A simple battery system management is sufficient for low demand smoothening. ► More elaborate management is required for high demand smoothening. - Abstract: This article analyses in technical terms the application of battery-based storage systems for household-demand smoothening in electricity-distribution grids. The analysis includes case studies of Denmark, Portugal, Greece, France and Italy. A high penetration of photovoltaic systems in distribution grids is considered as an additional scenario. A sensitivity analysis is performed in order to examine the smoothening effect of daily demand profiles for different configurations of the battery system. In general, battery-storage systems with low rated power and low battery capacity can smooth the demand sufficiently with the aid of a simple management process. For example, with 1 kW of peak demand, a 30–45% decrease in the variability of the daily demand profile can be achieved with a battery system of 0.1 kW rated power and up to 0.6 kW h battery capacity. However, further smoothening requires higher battery-system capacity and power. In this case, more elaborate management is also needed to use the battery system efficiently.

  6. Rural Electrification Efforts Based on Off-Grid Photovoltaic Systems in the Andean Region: Comparative Assessment of Their Sustainability

    Sarah Feron

    2017-10-01

    Full Text Available In this paper, we comparatively assess the sustainability of rural electrification efforts based on off-grid solutions in Chile, Ecuador, and Peru. Our assessment considers four dimensions of sustainability (institutional, economic, environmental, and socio-cultural. We found that Ecuador and Chile have consistently failed to ensure mechanisms for the operation and maintenance of the deployed off-grid systems, which has made these solutions in poor Chilean and Ecuadorian communities inevitably unsustainable. Although Peru has adopted a cross-tariff scheme, the Peruvian case shows that ensuring the funding of off-grid PV solutions is not enough. Peruvian officials appear to be unaware of the importance of local participation (local values and lifestyles are constantly disregarded and most of the projects have been designed without the participation and engagement of the communities, which has often led to project failures and payment defaults. However, although each country has its particular challenges, we found that the three Andean countries have consistently neglected the importance of strong formal institutions with a flexible and decentralized structure, which in turn significantly compromised the rural electrification effort in these countries.

  7. Protection of Multi-Terminal VSC-HVDC Grids Based on the Response of the First Carrier Frequency Harmonic Current

    Ashouri, Mani; Khazraj, Hesam; Silva, Filipe Miguel Faria da

    This paper investigates the response of first carrier frequency harmonic (FCFH) current for designing a protection algorithm for multi-terminal Voltage source converter-based HVDC (VSC-MTDC) transmission grids. This transient harmonic current has been used before, to discriminate external AC faults...... various kinds of faults with different locations and resistances. This paper will also consider half-bridge MMC instead of two-level VSCs to test the sensitivity of the FCFH based algorithm for lower harmonic values. A modified meshed version of CIGRE DC model has been used in PSCAD and the signal...

  8. Uncertainty Analysis Based on Sparse Grid Collocation and Quasi-Monte Carlo Sampling with Application in Groundwater Modeling

    Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.

    2011-12-01

    Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently

  9. Development policy for non-grid-connected wind power in China: An analysis based on institutional change

    Fang Yong; Li Jing; Wang Mingming

    2012-01-01

    Government policy continues to play a crucial role in the development of wind power industry in China. The 2005 “Renewable Energy Law” and related policies have driven the rapid increase in wind power installed capacity in China over the past half-decade, with capacity doubling annually since 2005. However, a large number of wind farms generate electricity well below their installed capacity, resulting in considerable wastage of resources. Non-grid-connected wind power theory proposes that large-scale wind power output does not necessarily have to be fed into the grid, but can be used directly in industrial production. Thus, the use of the theory can promote the sustainable development of the wind power industry by obviating the need for power grid. In this paper we analyze the influence of government policy on wind power industry from the perspective of institutional change, by employing the basic theories of new institutional economics. A development model for non-grid-connected wind power is proposed in order to implement institutional change in accordance with the specific characteristics of wind power industry in China. This model requires the government to play an active role in institutional development by increasing economic efficiency in order to promote the sustainable development of wind power. - Highlights: ► New institutional economics-based analysis paradigm for wind power policy proposed. ► Policies for China's wind power industry analyzed according to the paradigm. ► Hybrid development mode of institutional change is the best pathway for wind power. ► Potential development policy for China's wind power industry recommended.

  10. Biomass and bio-fuel based poly-generation for off-grid and grid-connected operation. Final technical report

    2012-07-01

    The overall objective of this project was to design and build a combined heat and power plant based on an updraft gasifier and a 35 kW electrical output Stirling engine and further to test the flexibility of the plant with regards to fuel and application. In the project a containerized combined heat and power plant including a 200 kW updraft gasifier and a 35 kW electrical output Stirling engine was designed, the specified components were procured, the plant was installed in the three containers and the plant was erected at Amagerforbraendingen ready for the COP15 in November 2009. The potential of operating the Stirling engine in island-mode (without grid connection) was investigated by mathematical modelling. Using an absorption cooling plant connected to the Stirling CHP plant was also investigated. A technical feasibility study was undertaken and it was concluded that from the two available technologies (water/LiBr and Ammonia/water) the appropriate choice is depending on the required cooling temperature. Test runs focussed on investigating the fuel flexibility of two different configurations of Stirling engine CHP plants were carried out - respectively the updraft gasifier plant (the containerized plant and the DTU plant) and the pyrolysis plant (the plant situated at Barritskov). In order to perform these test runs a stable operation is required. On both the containerized plant and the pyrolysis plant this proved to be more challenging than expected and therefore the number of fuels tested was limited to willow chips at the containerized plant and dry wood residues, wood pellets and straw pellets on the pyrolysis plant. For all tested fuels it was possible to operate the plants, however different issues mainly related to the quality of the fuels were encountered. And so it can be concluded that the quality of the fuel is critical for the operation of both the updraft gasifier plant and the pyrolysis plant. A comprehensive desktop evaluation of the feasibility

  11. Grid Security

    CERN. Geneva

    2004-01-01

    The aim of Grid computing is to enable the easy and open sharing of resources between large and highly distributed communities of scientists and institutes across many independent administrative domains. Convincing site security officers and computer centre managers to allow this to happen in view of today's ever-increasing Internet security problems is a major challenge. Convincing users and application developers to take security seriously is equally difficult. This paper will describe the main Grid security issues, both in terms of technology and policy, that have been tackled over recent years in LCG and related Grid projects. Achievements to date will be described and opportunities for future improvements will be addressed.

  12. Infant and dyadic assessment in early community-based screening for autism spectrum disorder with the PREAUT grid

    Crespin, Graciela; Laznik, Marie-Christine; Cherif Idrissi El Ganouni, Oussama; Sarradet, Jean-Louis; Bauby, Colette; Dandres, Anne-Marie; Ruiz, Emeline; Bursztejn, Claude; Xavier, Jean; Falissard, Bruno; Bodeau, Nicolas; Cohen, David; Saint-Georges, Catherine

    2017-01-01

    Background The need for early treatment of autism spectrum disorders (ASD) necessitates early screening. Very few tools have been prospectively tested with infants of less than 12 months of age. The PREAUT grid is based on dyadic assessment through interaction and shared emotion and showed good metrics for predicting ASD in very-high-risk infants with West syndrome. Methods We assessed the ability of the PREAUT grid to predict ASD in low-risk individuals by prospectively following and screening 12,179 infants with the PREAUT grid at four (PREAUT-4) and nine (PREAUT-9) months of age. A sample of 4,835 toddlers completed the Checklist for Autism in Toddlers (CHAT) at 24 months (CHAT-24) of age. Children who were positive at one screening (N = 100) were proposed a clinical assessment (including the Children Autism Rating Scale, a Developmental Quotient, and an ICD-10-based clinical diagnosis if appropriate) in the third year of life. A randomly selected sample of 1,100 individuals who were negative at all screenings was followed by the PMI team from three to five years of age to identify prospective false negative cases. The clinical outcome was available for 45% (N = 45) of positive children and 52.6% (N = 579) of negative children. Results Of the 100 children who screened positive, 45 received a diagnosis at follow-up. Among those receiving a diagnosis, 22 were healthy, 10 were diagnosed with ASD, seven with intellectual disability (ID), and six had another developmental disorder. Thus, 50% of infants positive at one screening subsequently received a neurodevelopmental diagnosis. The PREAUT grid scores were significantly associated with medium and high ASD risk status on the CHAT at 24 months (odds ratio of 12.1 (95%CI: 3.0–36.8), p screening instruments increased the Se but not PPV estimates [PREAUT and CHAT combined: Se = 67.9 to 77.7%, PPV = 19.0 to 28.0%]. Conclusions The PREAUT grid can contribute to very early detection of ASD and its combination with the

  13. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  14. A Wavelet-Based Unified Power Quality Conditioner to Eliminate Wind Turbine Non-Ideality Consequences on Grid-Connected Photovoltaic Systems

    Bijan Rahmani

    2016-05-01

    Full Text Available The integration of renewable power sources with power grids presents many challenges, such as synchronization with the grid, power quality problems and so on. The shunt active power filter (SAPF can be a solution to address the issue while suppressing the grid-end current harmonics and distortions. Nonetheless, available SAPFs work somewhat unpredictably in practice. This is attributed to the dependency of the SAPF controller on nonlinear complicated equations and two distorted variables, such as load current and voltage, to produce the current reference. This condition will worsen when the plant includes wind turbines which inherently produce 3rd, 5th, 7th and 11th voltage harmonics. Moreover, the inability of the typical phase locked loop (PLL used to synchronize the SAPF reference with the power grid also disrupts SAPF operation. This paper proposes an improved synchronous reference frame (SRF which is equipped with a wavelet-based PLL to control the SAPF, using one variable such as load current. Firstly the fundamental positive sequence of the source voltage, obtained using a wavelet, is used as the input signal of the PLL through an orthogonal signal generator process. Then, the generated orthogonal signals are applied through the SRF-based compensation algorithm to synchronize the SAPF’s reference with power grid. To further force the remained uncompensated grid current harmonics to pass through the SAPF, an improved series filter (SF equipped with a current harmonic suppression loop is proposed. Concurrent operation of the improved SAPF and SF is coordinated through a unified power quality conditioner (UPQC. The DC-link capacitor of the proposed UPQC, used to interconnect a photovoltaic (PV system to the power grid, is regulated by an adaptive controller. Matlab/Simulink results confirm that the proposed wavelet-based UPQC results in purely sinusoidal grid-end currents with total harmonic distortion (THD = 1.29%, which leads to high

  15. Grid Computing

    A computing grid interconnects resources such as high performancecomputers, scientific databases, and computercontrolledscientific instruments of cooperating organizationseach of which is autonomous. It precedes and is quitedifferent from cloud computing, which provides computingresources by vendors to customers ...

  16. Grid Computing

    IAS Admin

    emergence of supercomputers led to the use of computer simula- tion as an .... Scientific and engineering applications (e.g., Tera grid secure gate way). Collaborative ... Encryption, privacy, protection from malicious software. Physical Layer.

  17. Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid

    Hagspiel, Simeon; Papaemannouil, Antonis; Schmid, Matthias; Andersson, Göran

    2012-01-01

    Highlights: ► We model stochastic wind power using copula theory. ► Stochastic wind power is integrated in a European system adequacy evaluation. ► The Swiss power grid is put at risk by further integrating wind power in Europe. ► System elements located at or close to Swiss borders are affected the most. ► A criticality indicator allows prioritizing expansion plans on a probabilistic basis. -- Abstract: Large scale integration of wind energy poses new challenges to the European power system due to its stochastic nature and often remote location. In this paper a multivariate uncertainty analysis problem is formulated for the integration of stochastic wind energy in the European grid. By applying copula theory a synthetic set of data is generated from scarce wind speed reanalysis data in order to achieve the increased sample size for the subsequent Monte Carlo simulation. In the presented case study, European wind power samples are generated from the modeled stochastic process. Under the precondition of a modeled perfect market environment, wind power impacts dispatch decisions and therefore leads to alterations in power balances. Stochastic power balances are implemented in a detailed model of the European electricity network, based on the generated samples. Finally, a Monte Carlo method is used to determine power flows and contingencies in the system. An indicator is elaborated in order to analyze risk of overloading and to prioritize necessary grid reinforcements. Implications for the Swiss power grid are investigated in detail, revealing that the current system is significantly put at risk in certain areas by the further integration of wind power in Europe. It is the first time that the results of a probabilistic model for wind energy are further deployed within a power system analysis of the interconnected European grid. The method presented in this paper allows to account for stochastic wind energy in a load flow analysis and to evaluate

  18. Improved Control Strategies for a DFIG-Based Wind-Power Generation System with SGSC under Unbalanced and Distorted Grid Voltage Conditions

    Yao, Jun; Yu, Mengting; Hu, Weihao

    2016-01-01

    This paper investigates an improved control strategy for a doubly-fed induction generator (DFIG) based wind-power generation system with series grid-side converter (SGSC) under network unbalance and harmonic grid voltage distortion conditions. The integrated mathematical modeling of the DFIG system...... with SGSC is established by taking both the negative-sequence and harmonic components of the grid voltages into consideration with multiple synchronous rotating reference frames. Under network unbalance and harmonic distortion situations, stator voltage can be kept symmetrical and sinusoidal by the control...

  19. Wireless Communications in Smart Grid

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  20. Simulation-based Validation of Smart Grids - Status Quo and Future Research Trends

    Steinbrink, C.; Lehnhoff, S.; Rohjans, S.

    2017-01-01

    Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize...... such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages...

  1. Assessment of transient stability of cable based transmission grids with reactive power compensation

    Foo, Yii; Dall, Laurids; Silva, Filipe Miguel Faria da

    2017-01-01

    Underground transmission cables are gaining popularity due to its applications near cities and aesthetic purpose. For example in Denmark, the transmission power grid is changing significantly as many conventional overhead lines (OHL) are replaced by cables and more is expected over the coming years...... through a series of sensitivity analysis with respect to the cables compensation degree. A separate case of disconnecting the SRs of the faulted line is also carried out. The tendencies are initially observed and explained for smaller systems, Single-Machine Infinite Bus (SMIB) and 9-bus system...

  2. Secure and robust authentication for DC MicroGrids based on power talk communication

    Angjelichinoski, Marko; Danzi, Pietro; Stefanovic, Cedomir

    2017-01-01

    We propose a novel framework for secure and reliable authentication of Distributed Energy Resources to the centralized secondary/tertiary control system of a DC MicroGrid (MG), networked using the IEEE 802.11 wireless interface. The key idea is to perform the authentication using power talk...... - a powerline communication technique executed by the primary control loops of the power electronic converters. In addition, the scheme also promotes direct and active participation of the control system in the authentication process, a feature not commonly encountered in current networked control systems...

  3. Network Condition Based Adaptive Control and its Application to Power Balancing in Electrical Grids

    Pedersen, Rasmus; Findrik, Mislav; Sloth, Christoffer

    2017-01-01

    To maintain a reliable and stable power grid there must be balance between consumption and production. To achieve power balance in a system with high penetration of distributed renewable resources and flexible assets, these individual system can be coordinated through a control unit to become part...... of the power balancing effort. Such control strategies require communication networks for exchange of control loop information. In this work, we show how a congested communication network can have a dramatic impact on the control performance of such a power balancing controller. To alleviate potential...

  4. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  5. Micro grids toward the smart grid

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  6. Residential Customer Enrollment in Time-based Rate and Enabling Technology Programs: Smart Grid Investment Grant Consumer Behavior Study Analysis

    Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappers, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-05-01

    The U.S. Department of Energy’s (DOE’s) Smart Grid Investment Grant (SGIG) program is working with a subset of the 99 SGIG projects undertaking Consumer Behavior Studies (CBS), which examine the response of mass market consumers (i.e., residential and small commercial customers) to time-varying electricity prices (referred to herein as time-based rate programs) in conjunction with the deployment of advanced metering infrastructure (AMI) and associated technologies. The effort presents an opportunity to advance the electric industry’s understanding of consumer behavior.

  7. A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids with High PV Penetration

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Yang, Guangya

    2014-01-01

    In this paper a new method is proposed to determine the minimum energy storage required to be installed at different locations of a low voltage (LV) grid in order to prevent the overvoltage due to high residential photovoltaic (PV) penetration. The method is based on the voltage sensitivity...... with different occurrence probabilities without involving the time-series studies problems. The proposed method is capable of modeling output power of PV panels with different orientations as well as different electric vehicle (EV) charging patterns....

  8. Accurate and Less-Disturbing Active Anti-Islanding Method based on PLL for Grid-Connected PV Inverters

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2008-01-01

    Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) system in order to meet stringent standard requirements for interconnection with the electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also...... extracted from the voltage at PCC moves outside of a preset threshold value. This new active anti-islanding method meets both standard requirements IEEE 929-2000, IEEE 1547.1 and VDE 0126.1.1. The disturbance used by this method is small compared to other active anti-islanding methods, such as active...

  9. SU-F-T-508: A Collimator-Based 3-Dimensional Grid Therapy Technique in a Small Animal Radiation Research Platform

    Jin, J; Kong, V; Zhang, H

    2016-01-01

    Purpose: Three dimensional (3D) Grid Therapy using MLC-based inverse-planning has been proposed to achieve the features of both conformal radiotherapy and spatially fractionated radiotherapy, which may deliver very high dose in a single fraction to portions of a large tumor with relatively low normal tissue dose. However, the technique requires relatively long delivery time. This study aims to develop a collimator-based 3D grid therapy technique. Here we report the development of the technique in a small animal radiation research platform. Methods: Similar as in the MLC-based technique, 9 non-coplanar beams in special channeling directions were used for the 3D grid therapy technique. Two specially designed grid collimators were fabricated, and one of them was selectively used to match the corresponding gantry/couch angles so that the grid opening of all 9 beams are met in the 3D space in the target. A stack of EBT3 films were used as 3D dosimetry to demonstrate the 3D grid-like dose distribution in the target. Three 1-mm beams were delivered to the stack of films in the area outside the target for alignment when all the films were scanned to reconstruct the 3D dosimtric image. Results: 3D film dosimetry showed a lattice-like dose distribution in the 3D target as well as in the axial, sagittal and coronal planes. The dose outside the target also showed a grid like dose distribution, and the average dose gradually decreased with the distance to the target. The peak to valley ratio was approximately 5:1. The delivery time was 7 minutes for 18 Gy peak dose, comparing to 6 minutes to deliver a 18-Gy 3D conformal plan. Conclusion: We have demonstrated the feasibility of the collimator-based 3D grid therapy technique which can significantly reduce delivery time comparing to MLC-based inverse planning technique.

  10. SU-F-T-508: A Collimator-Based 3-Dimensional Grid Therapy Technique in a Small Animal Radiation Research Platform

    Jin, J; Kong, V; Zhang, H [Georgia Regents University, Augusta, GA (Georgia)

    2016-06-15

    Purpose: Three dimensional (3D) Grid Therapy using MLC-based inverse-planning has been proposed to achieve the features of both conformal radiotherapy and spatially fractionated radiotherapy, which may deliver very high dose in a single fraction to portions of a large tumor with relatively low normal tissue dose. However, the technique requires relatively long delivery time. This study aims to develop a collimator-based 3D grid therapy technique. Here we report the development of the technique in a small animal radiation research platform. Methods: Similar as in the MLC-based technique, 9 non-coplanar beams in special channeling directions were used for the 3D grid therapy technique. Two specially designed grid collimators were fabricated, and one of them was selectively used to match the corresponding gantry/couch angles so that the grid opening of all 9 beams are met in the 3D space in the target. A stack of EBT3 films were used as 3D dosimetry to demonstrate the 3D grid-like dose distribution in the target. Three 1-mm beams were delivered to the stack of films in the area outside the target for alignment when all the films were scanned to reconstruct the 3D dosimtric image. Results: 3D film dosimetry showed a lattice-like dose distribution in the 3D target as well as in the axial, sagittal and coronal planes. The dose outside the target also showed a grid like dose distribution, and the average dose gradually decreased with the distance to the target. The peak to valley ratio was approximately 5:1. The delivery time was 7 minutes for 18 Gy peak dose, comparing to 6 minutes to deliver a 18-Gy 3D conformal plan. Conclusion: We have demonstrated the feasibility of the collimator-based 3D grid therapy technique which can significantly reduce delivery time comparing to MLC-based inverse planning technique.

  11. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  12. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  13. A Price-Based Demand Response Scheme for Discrete Manufacturing in Smart Grids

    Zhe Luo

    2016-08-01

    Full Text Available Demand response (DR is a key technique in smart grid (SG technologies for reducing energy costs and maintaining the stability of electrical grids. Since manufacturing is one of the major consumers of electrical energy, implementing DR in factory energy management systems (FEMSs provides an effective way to manage energy in manufacturing processes. Although previous studies have investigated DR applications in process manufacturing, they were not conducted for discrete manufacturing. In this study, the state-task network (STN model is implemented to represent a discrete manufacturing system. On this basis, a DR scheme with a specific DR algorithm is applied to a typical discrete manufacturing—automobile manufacturing—and operational scenarios are established for the stamping process of the automobile production line. The DR scheme determines the optimal operating points for the stamping process using mixed integer linear programming (MILP. The results show that parts of the electricity demand can be shifted from peak to off-peak periods, reducing a significant overall energy costs without degrading production processes.

  14. Minimizing the negative effects of device mobility in cell-based ad-hoc wireless computational grids

    Mudali, P

    2006-09-01

    Full Text Available This paper provides an outline of research being conducted to minimize the disruptive effects of device mobility in wireless computational grid networks. The proposed wireless grid framework uses the existing GSM cellular architecture, with emphasis...

  15. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    Du, Z C; Lv, C F; Hong, M S

    2006-01-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'

  16. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  17. Analysis of an aggregation-based algebraic two-grid method for a rotated anisotropic diffusion problem

    Chen, Meng-Huo; Greenbaum, Anne

    2015-01-01

    Summary: A two-grid convergence analysis based on the paper [Algebraic analysis of aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. © 2015 John Wiley & Sons, Ltd.

  18. Analysis of an aggregation-based algebraic two-grid method for a rotated anisotropic diffusion problem

    Chen, Meng-Huo

    2015-03-18

    Summary: A two-grid convergence analysis based on the paper [Algebraic analysis of aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. © 2015 John Wiley & Sons, Ltd.

  19. Beyond grid security

    Hoeft, B; Epting, U; Koenig, T

    2008-01-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls

  20. Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs

    Pouria Sheikhahmadi

    2018-03-01

    Full Text Available The operation problem of a micro-grid (MG in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand response programs (DRPs to pay an incentive to the consumers to change their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable energy resources (RERs and models their uncertainties in its problem. In this paper, the operation problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model the uncertainties of RERs, two-stage stochastic programming is considered and conditional value at risk (CVaR index is used to manage the MGO’s risk-level. Moreover, the non-linear economic models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO. Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is carried out.

  1. A Comprehensive Strategy for Accurate Reactive Power Distribution, Stability Improvement, and Harmonic Suppression of Multi-Inverter-Based Micro-Grid

    Henan Dong

    2018-03-01

    Full Text Available Among the issues of accurate power distribution, stability improvement, and harmonic suppression in micro-grid, each has been well studied as an individual, and most of the strategies about these issues aim at one inverter-based micro-grid, hence there is a need to establish a model to achieve these functions as a whole, aiming at a multi-inverter-based micro-grid. This paper proposes a comprehensive strategy which achieves this goal successfully; since the output voltage and frequency of micro-grid all consist of fundamental and harmonic components, the strategy contains two parts accordingly. On one hand, a fundamental control strategy is proposed upon the conventional droop control. The virtual impedance is introduced to solve the problem of accurate allocation of reactive power between inverters. Meanwhile, a secondary power balance controller is added to improve the stability of voltage and frequency while considering the aggravating problem of stability because of introducing virtual impedance. On the other hand, the fractional frequency harmonic control strategy is proposed. It can solve the influence of nonlinear loads, micro-grid inverters, and the distribution network on output voltage of inverters, which is focused on eliminating specific harmonics caused by the nonlinear loads, micro-grid converters, and the distribution network so that the power quality of micro-grid can be improved effectively. Finally, small signal analysis is used to analyze the stability of the multi-converter parallel system after introducing the whole control strategy. The simulation results show that the strategy proposed in this paper has a great performance on distributing reactive power, regulating and stabilizing output voltage of inverters and frequency, eliminating harmonic components, and improving the power quality of multi-inverter-based micro-grid.

  2. A Data-Driven Modeling Strategy for Smart Grid Power Quality Coupling Assessment Based on Time Series Pattern Matching

    Hao Yu

    2018-01-01

    Full Text Available This study introduces a data-driven modeling strategy for smart grid power quality (PQ coupling assessment based on time series pattern matching to quantify the influence of single and integrated disturbance among nodes in different pollution patterns. Periodic and random PQ patterns are constructed by using multidimensional frequency-domain decomposition for all disturbances. A multidimensional piecewise linear representation based on local extreme points is proposed to extract the patterns features of single and integrated disturbance in consideration of disturbance variation trend and severity. A feature distance of pattern (FDP is developed to implement pattern matching on univariate PQ time series (UPQTS and multivariate PQ time series (MPQTS to quantify the influence of single and integrated disturbance among nodes in the pollution patterns. Case studies on a 14-bus distribution system are performed and analyzed; the accuracy and applicability of the FDP in the smart grid PQ coupling assessment are verified by comparing with other time series pattern matching methods.

  3. Decision making based on data analysis and optimization algorithm applied for cogeneration systems integration into a grid

    Asmar, Joseph Al; Lahoud, Chawki; Brouche, Marwan

    2018-05-01

    Cogeneration and trigeneration systems can contribute to the reduction of primary energy consumption and greenhouse gas emissions in residential and tertiary sectors, by reducing fossil fuels demand and grid losses with respect to conventional systems. The cogeneration systems are characterized by a very high energy efficiency (80 to 90%) as well as a less polluting aspect compared to the conventional energy production. The integration of these systems into the energy network must simultaneously take into account their economic and environmental challenges. In this paper, a decision-making strategy will be introduced and is divided into two parts. The first one is a strategy based on a multi-objective optimization tool with data analysis and the second part is based on an optimization algorithm. The power dispatching of the Lebanese electricity grid is then simulated and considered as a case study in order to prove the compatibility of the cogeneration power calculated by our decision-making technique. In addition, the thermal energy produced by the cogeneration systems which capacity is selected by our technique shows compatibility with the thermal demand for district heating.

  4. Observer based Model Identification of Heat Pumps in a Smart Grid

    Andersen, Palle; Pedersen, Tom S.; Nielsen, Kirsten M.

    2012-01-01

    The extensive growth of installed wind energy plants in Denmark leads to increasing balancing problems in the power grid due to the nature of wind fields and variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction....... A part of a solution can be to take advantage of floor heat capacity in single-family houses using heat pumps.This large heat capacity makes it possible to move consumption without compromising the comfort of house residents. In a Danish research project a virtual power plant using centralized control...... of a large number of houses with heat pumps is established. In order to make the control algorithm a vital part is a dynamic model of each house. The model predicts the house indoor temperature when heat pump power and outdoor temperature is known. The model must be able to describe a large variety of heat...

  5. Regional study on investment for transmission infrastructure in China based on the State Grid data

    Wei, Wendong; Wu, Xudong; Wu, Xiaofang; Xi, Qiangmin; Ji, Xi; Li, Guoping

    2017-03-01

    Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infrastructure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substations are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.

  6. Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code

    Klasky, S.; Ethier, S.; Lin, Z.; Martins, K.; McCune, D.; Samtaney, R.

    2003-01-01

    We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory

  7. Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island

    Woo-Kyu Chae

    2015-08-01

    Full Text Available In this paper, we present the results of an economic feasibility study and propose a system structure to test and maintain electrical stability. In addition, we present real operation results after constructing a remote microgrid on an island in South Korea. To perform the economic feasibility study, a commercial tool called HOMER was used. The developed remote microgrid consists of a 400 kW wind turbine (WT generator, 314 kW photovoltaic (PV generator, 500 kVA × 2 grid forming inverter, 3 MWh lithium ion battery, and an energy management system (EMS. The predicted renewable energy fraction was 91% and real operation result was 82%. The frequency maintaining rate of the diesel power plants was 57% but the remote microgrid was 100%. To improve the operating efficiency of the remote microgrid, we investigated the output range of a diesel generator.

  8. ICT based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids

    Shahid, Kamal; Altin, Müfit; Mikkelsen, Lars Møller

    2018-01-01

    frequency control support from ReGen plants will highly depend on the underlying communication infrastructure that allows an exchange of information between different ReGen plants and the control centers. This paper, therefore, focuses on the impact of communication and the related aspects to provide online...... plants towards ReGen plants, such as wind and photovoltaic power plants. Frequency control support from the Wind Power Plants (WPPs) is one of the crucial ancillary services in order to preserve operational stability in case of grid disturbances. Among other requirements, the ability to provide fast...... wind speeds at a particular wind-power penetration level and communication scenarios are considered to evaluate the performance of power system frequency response. The article provides the Transmission System Operator (TSO) and other communication engineers insights into the importance and various...

  9. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    Bat-erdene Byambasuren

    2016-02-01

    Full Text Available Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  10. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  11. Demand-Side Energy Management Based on Nonconvex Optimization in Smart Grid

    Kai Ma

    2017-10-01

    Full Text Available Demand-side energy management is used for regulating the consumers’ energy usage in smart grid. With the guidance of the grid’s price policy, the consumers can change their energy consumption in response. The objective of this study is jointly optimizing the load status and electric supply, in order to make a tradeoff between the electric cost and the thermal comfort. The problem is formulated into a nonconvex optimization model. The multiplier method is used to solve the constrained optimization, and the objective function is transformed to the augmented Lagrangian function without constraints. Hence, the Powell direction acceleration method with advance and retreat is applied to solve the unconstrained optimization. Numerical results show that the proposed algorithm can achieve the balance between the electric supply and demand, and the optimization variables converge to the optimum.

  12. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-01-01

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described

  13. ICT based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids

    Shahid, Kamal; Altin, Müfit; Mikkelsen, Lars Møller

    2018-01-01

    frequency control support from ReGen (with special focus on WPP). The study is conducted with an aggregated WPP model, integrated into a generic power system model, specifically designed to assess the ancillary services in a relatively simple yet relevant environment. Various case studies with different...... plants towards ReGen plants, such as wind and photovoltaic power plants. Frequency control support from the Wind Power Plants (WPPs) is one of the crucial ancillary services in order to preserve operational stability in case of grid disturbances. Among other requirements, the ability to provide fast...... frequency control support from ReGen plants will highly depend on the underlying communication infrastructure that allows an exchange of information between different ReGen plants and the control centers. This paper, therefore, focuses on the impact of communication and the related aspects to provide online...

  14. A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    Motl, Patrick M. [Indiana University Kokomo, School of Sciences, P.O. Box 9003, Kokomo, IN 46903-9004 (United States); Frank, Juhan; Clayton, Geoffrey C.; Tohline, Joel E. [Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Staff, Jan [College of Science and Math, University of Virgin Islands, St. Thomas, United States Virgin Islands 00802 (United States); Fryer, Christopher L.; Even, Wesley [Center for Theoretical Astrophysics/CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Diehl, Steven, E-mail: pmotl@iuk.edu [TLT-Turbo GmbH, Gleiwitzstrasse 7, 66482 Zweibrücken (Germany)

    2017-04-01

    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n  = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.

  15. Wind Power Fluctuation Smoothing Controller Based on Risk Assessment of Grid Frequency Deviation in an Isolated System

    Lin, Jin; Sun, Yuanzhang; Song, Yonghua

    2013-01-01

    a smoothing controller to suppress the power fluctuation from doubly-fed induction generator (DFIG)-based wind farm. This controller consists of threemain functionality components: risk assessmentmodel, wind turbine rotor speed optimizer, and rotor speed upper limiter. In order to avoid unnecessary energy...... curve with reduced output so that a trade-off between fluctuation smoothing and energy loss is achieved. Subsequently, the controller limits the maximum rotor speed to shift down the power curve of wind power plant based on the optimal wind turbine rotor speed. Therefore, the power fluctuation......Wind power fluctuation raises the security concern of grid frequency deviation, especially for an isolated power system. Thus, better control methodology needs to be developed to smooth the fluctuation without excessive spillage. Based on an actual industrial power system, this paper proposes...

  16. Low-voltage ride-through of a droop-based three-phase four-wire grid-connected microgrid

    Sadeghkhani, Iman; Golshan, Mohamad Esmail Hamedani; Mehrizi-Sani, Ali

    2018-01-01

    system operations during abnormal grid conditions. The objective of this paper is to propose an LVRT scheme that improves the power quality of the entire microgrid. The developed method is implemented as the controller of the interface voltage-sourced converter (VSC) of a distributed energy resource...... control of each phase and does not require calculation of symmetrical components. Moreover, it can be employed in the VSC control systems with various reference frames and is effective for droop-based grid-connected microgrids with both single-phase and three-phase four-wire configurations. The proposed......The ability of riding through the grid disturbances can increase the integration of microgrids into the distribution system. Consequently, a grid-connected microgrid should provide ancillary services such as low voltage ride-through (LVRT) capability and reactive power support to sustain the power...

  17. Research and Application of Auxiliary Optimization Technology of Power Grid Accident Processing Based on the Mode of Regulation and Control Integration

    Cui Houzhen

    2015-01-01

    Full Text Available Accident processing is the most important link of the scheduling of daily monitoring. The improvement of intelligent level is of great significance for improving the efficiency of accident processing scheduling, shortening the time of accident processing and preventing further deterioration of accidents. According to features of accident processing scheduling, this paper puts forward an integrated framework of aid decision-making of online accident processing based on large power grid, and carries out a study from five aspects, namely integrated information support platform, risk perception in advance, online fault diagnosis, aid decision-making afterwards and visual display, so as to conduct real-time tracking on operating state of power grid, eliminate potential safety hazards of power grid and upgrade power grid from “manual analysis” scheduling to “intelligent analysis” scheduling.

  18. Towards risk-based management of critical infrastructures : enabling insights and analysis methodologies from a focused study of the bulk power grid.

    Richardson, Bryan T.; LaViolette, Randall A.; Cook, Benjamin Koger

    2008-02-01

    This report summarizes research on a holistic analysis framework to assess and manage risks in complex infrastructures, with a specific focus on the bulk electric power grid (grid). A comprehensive model of the grid is described that can approximate the coupled dynamics of its physical, control, and market components. New realism is achieved in a power simulator extended to include relevant control features such as relays. The simulator was applied to understand failure mechanisms in the grid. Results suggest that the implementation of simple controls might significantly alter the distribution of cascade failures in power systems. The absence of cascade failures in our results raises questions about the underlying failure mechanisms responsible for widespread outages, and specifically whether these outages are due to a system effect or large-scale component degradation. Finally, a new agent-based market model for bilateral trades in the short-term bulk power market is presented and compared against industry observations.

  19. A Stackelberg Game Approach for Energy Outage-Aware Power Distribution of an Off-Grid Base Station over Multiple Retailers

    Seung Hyun Jeon

    2018-03-01

    Full Text Available This paper investigates the problem of power distribution for an off-grid base station (BS that operates sustainably without an electrical grid. We consider that multiple retailers with heterogeneous renewable energy sources (RESs compete to maximize their revenues by individually setting the unit power price. Energy outages (EOs, which cause the power supply to fall below that which is sufficient for ensuring the traffic arrival rate required for the off-grid BS, critically affect the users’ service quality. To minimize EOs and operational expenditure (OPEX, the off-grid BS manages the power supply by reacting to the retailers’ pricing decisions. We analyze the economic benefits of power distribution to the off-grid BS from the perspective of the retailers’ pricing competition, by designing a hierarchical decision-making scheme as a multi-leader single-follower Stackelberg game. We derive a closed form expression for the optimal behavior of the off-grid BS and retailers, based on well-designed utility functions. Finally, numerical results demonstrate the proposed solution with its practical convergence time.

  20. An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation

    Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Narimani, Mohammad Rasoul

    2012-01-01

    Highlights: ► Proposes a stochastic model for optimal energy management. ► Consider uncertainties related to the forecasted values for load demand. ► Consider uncertainties of forecasted values of output power of wind and photovoltaic units. ► Consider uncertainties of forecasted values of market price. ► Present an improved multi-objective teaching–learning-based optimization. -- Abstract: This paper proposes a stochastic model for optimal energy management with the goal of cost and emission minimization. In this model, the uncertainties related to the forecasted values for load demand, available output power of wind and photovoltaic units and market price are modeled by a scenario-based stochastic programming. In the presented method, scenarios are generated by a roulette wheel mechanism based on probability distribution functions of the input random variables. Through this method, the inherent stochastic nature of the proposed problem is released and the problem is decomposed into a deterministic problem. An improved multi-objective teaching–learning-based optimization is implemented to yield the best expected Pareto optimal front. In the proposed stochastic optimization method, a novel self adaptive probabilistic modification strategy is offered to improve the performance of the presented algorithm. Also, a set of non-dominated solutions are stored in a repository during the simulation process. Meanwhile, the size of the repository is controlled by usage of a fuzzy-based clustering technique. The best expected compromise solution stored in the repository is selected via the niching mechanism in a way that solutions are encouraged to seek the lesser explored regions. The proposed framework is applied in a typical grid-connected micro grid in order to verify its efficiency and feasibility.