WorldWideScience

Sample records for quorum-sensing signal molecules

  1. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes.

    Science.gov (United States)

    Rajput, Akanksha; Kaur, Karambir; Kumar, Manoj

    2016-01-04

    Quorum sensing is a widespread phenomenon in prokaryotes that helps them to communicate among themselves and with eukaryotes. It is driven through quorum sensing signaling molecules (QSSMs) in a density dependent manner that assists in numerous biological functions like biofilm formation, virulence factors secretion, swarming motility, bioluminescence, etc. Despite immense implications, dedicated resources of QSSMs are lacking. Therefore, we have developed SigMol (http://bioinfo.imtech.res.in/manojk/sigmol), a specialized repository of these molecules in prokaryotes. SigMol harbors information on QSSMs pertaining to different quorum sensing signaling systems namely acylated homoserine lactones (AHLs), diketopiperazines (DKPs), 4-hydroxy-2-alkylquinolines (HAQs), diffusible signal factors (DSFs), autoinducer-2 (AI-2) and others. Database contains 1382: entries of 182: unique signaling molecules from 215: organisms. It encompasses biological as well as chemical aspects of signaling molecules. Biological information includes genes, preliminary bioassays, identification assays and applications, while chemical detail comprises of IUPAC name, SMILES and structure. We have provided user-friendly browsing and searching facilities for easy data retrieval and comparison. We have gleaned information of diverse QSSMs reported in literature at a single platform 'SigMol'. This comprehensive resource will assist the scientific community in understanding intraspecies, interspecies or interkingdom networking and further help to unfold different facets of quorum sensing and related therapeutics.

  2. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes

    Science.gov (United States)

    Rajput, Akanksha; Kaur, Karambir; Kumar, Manoj

    2016-01-01

    Quorum sensing is a widespread phenomenon in prokaryotes that helps them to communicate among themselves and with eukaryotes. It is driven through quorum sensing signaling molecules (QSSMs) in a density dependent manner that assists in numerous biological functions like biofilm formation, virulence factors secretion, swarming motility, bioluminescence, etc. Despite immense implications, dedicated resources of QSSMs are lacking. Therefore, we have developed SigMol (http://bioinfo.imtech.res.in/manojk/sigmol), a specialized repository of these molecules in prokaryotes. SigMol harbors information on QSSMs pertaining to different quorum sensing signaling systems namely acylated homoserine lactones (AHLs), diketopiperazines (DKPs), 4-hydroxy-2-alkylquinolines (HAQs), diffusible signal factors (DSFs), autoinducer-2 (AI-2) and others. Database contains 1382 entries of 182 unique signaling molecules from 215 organisms. It encompasses biological as well as chemical aspects of signaling molecules. Biological information includes genes, preliminary bioassays, identification assays and applications, while chemical detail comprises of IUPAC name, SMILES and structure. We have provided user-friendly browsing and searching facilities for easy data retrieval and comparison. We have gleaned information of diverse QSSMs reported in literature at a single platform ‘SigMol’. This comprehensive resource will assist the scientific community in understanding intraspecies, interspecies or interkingdom networking and further help to unfold different facets of quorum sensing and related therapeutics. PMID:26490957

  3. Identification of quorum sensing signal molecules and oligolignols associated with watermark disease in willow (Salix sp.).

    Science.gov (United States)

    Huvenne, Hanneke; Goeminne, Geert; Maes, Martine; Messens, Eric

    2008-09-01

    The bacterium Brenneria salicis is the causal agent of watermark disease in willow. This work shows the importance of in situ studies and high-resolution separation of biological samples with ultrahigh performance liquid chromatography combined with ion trap mass spectrometry to unambiguously identify molecular compounds associated with this disease. Approximately 40 oligolignols accumulated in wood sap of watermark diseased willow, and are indicative for degradation of the xylem cell wall, of which 15 were structurally assigned based on an earlier study. Many bacteria are known to produce and release quorum sensing signal molecules that switch on the expression of specific, sometimes pathogenic functions. Two quorum sensing signal molecules, N-(3-oxohexanoyl)-l-homoserine lactone and N-(hexanoyl)-l-homoserine lactone, were present in 4/1 ratios in diseased wood and in high-density in vitro cultures of B. salicis at 0.13-1.2 microM concentrations, and absent in healthy wood and in low-density in vitro cultures of B. salicis. Although it is not a proof, it can be an indication for involvement of quorum sensing in B. salicis pathogenesis. Cyclic dipeptides were present at high concentrations in high-density in vitro cultures of B. salicis, but not in situ, and were found not to be involved in quorum sensing signaling, therefore, the attribution of quorum signal properties to cyclic dipeptides isolated from in vitro cultures of pathogenic bacteria should be reconsidered.

  4. Detection of Quorum Sensing Signal Molecules in Edwardsiella ictaluri Ei-151.

    Science.gov (United States)

    Yang, Qian; Han, Yin; Tinh, Nguyen Thi Ngoc; Hien, Nguyen Thi; Bossier, Peter

    2012-12-01

    Edwardsiella ictaluri is a Gram-negative pathogenic bacterium in the family Enterobacteriaceae that causes enteric septicemia of catfish, which has become a significant problem in the aquaculture of striped catfish (Pangasianodon hypophthalmus) in Vietnam. In this study, a bacterium designated as Ei-151 was isolated from diseased striped catfish and proved to be virulent. Based on 16S rDNA sequencing and phenotypic tests, the pathogenic bacterium was identified as Edw. ictaluri. The presence of quorum sensing signal molecules in Edw. ictaluri Ei-151 was detected with different biosensor strains. The results showed that Ei-151 produced at least three kinds of acylated homoserine lactone (AHL) signal molecules as detected with the biosensor Agrobacterium tumefaciens KYC55, and the AHLs fingerprint was similar to that of Edw. tarda. During its entire growth, the levels of AHLs and autoinducer-2 produced by Ei-151 peaked at the stationary phase (OD600 1.8), which suggested that both of them may function at the stationary phase. No Cholerae autoinducer-1-like activity (including Edw. ictaluri LMG7860(T)) was detected.

  5. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    Directory of Open Access Journals (Sweden)

    Cheng-Siang Wong

    2013-09-01

    Full Text Available Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.

  6. Production of quorum-sensing-related signal molecules by epiphytic bacteria inhabiting wheat heads.

    Science.gov (United States)

    Yoshida, Shigenobu; Kinkel, Linda L; Shinohara, Hirosuke; Numajiri, Nobutaka; Hiradate, Syuntaro; Koitabashi, Motoo; Suyama, Kazuo; Negishi, Hiromitsu; Tsushima, Seiya

    2006-05-01

    The production of quorum-sensing-related signal molecules (QSRMs) among culturable bacteria comprising the community on wheat heads was investigated. The taxonomic position of 186 bacterial isolates obtained from ten heads was inferred based on 16S rRNA gene sequences, and their QSRM production was determined using two bioreporter strains of N-acylhomoserine lactones. Approximately 33% of isolates produced QSRMs, though the proportion of QSRM-producing isolates on a wheat head was significantly negatively correlated with population size. Most of the producing isolates were Pantoea species, most commonly Pantoea ananatis. Furthermore, the proportion of Pantoea ananatis that produced QSRMs was significantly negatively correlated with the number of bacterial genera (community richness) on each head. Finally, community richness was positively correlated with population size. Qualitative analysis using thin-layer-chromatography revealed that the QSRMs of Pantoea isolates were composed of at least two compounds. This is the first report indicating that Pantoea ananatis isolates inhabiting wheat heads are capable of producing QSRMs. QSRM production by Pantoea spp. may contribute to the predominance of this genus on wheat heads, particularly at relatively low population densities and community diversity.

  7. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  8. Quorum sensing and bacterial pathogenicity: From molecules to disease

    Directory of Open Access Journals (Sweden)

    Antariksh Deep

    2011-01-01

    Full Text Available Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum and communicate with them. The "language" used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteria a mechanism to minimize host immune responses by delaying the production of tissue-damaging virulence factors until sufficient bacteria have amassed and are prepared to overwhelm host defense mechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation.

  9. Identification of Quorum-Sensing Signal Molecules and a Biosynthetic Gene in Alicycliphilus sp. Isolated from Activated Sludge

    Directory of Open Access Journals (Sweden)

    Tomohiro Morohoshi

    2016-08-01

    Full Text Available Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl-l-homoserine lactone and N-(3-hydroxydodecanoyl-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge.

  10. Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron.

    Science.gov (United States)

    Werner, Kristen M; Perez, Lark J; Ghosh, Rajarshi; Semmelhack, Martin F; Bassler, Bonnie L

    2014-09-19

    In a process known as quorum sensing, bacteria use chemicals called autoinducers for cell-cell communication. Population-wide detection of autoinducers enables bacteria to orchestrate collective behaviors. In the animal kingdom detection of chemicals is vital for success in locating food, finding hosts, and avoiding predators. This behavior, termed chemotaxis, is especially well studied in the nematode Caenorhabditis elegans. Here we demonstrate that the Vibrio cholerae autoinducer (S)-3-hydroxytridecan-4-one, termed CAI-1, influences chemotaxis in C. elegans. C. elegans prefers V. cholerae that produces CAI-1 over a V. cholerae mutant defective for CAI-1 production. The position of the CAI-1 ketone moiety is the key feature driving CAI-1-directed nematode behavior. CAI-1 is detected by the C. elegans amphid sensory neuron AWC(ON). Laser ablation of the AWC(ON) cell, but not other amphid sensory neurons, abolished chemoattraction to CAI-1. These analyses define the structural features of a bacterial-produced signal and the nematode chemosensory neuron that permit cross-kingdom interaction.

  11. Detection of the quorum sensing signal molecule N-Dodecanoyl-DL-homoserine lactone below 1 nanomolarconcentrations using surface enhanced Raman spectroscopy

    DEFF Research Database (Denmark)

    Claussen, Anetta; Abdali, Salim; Berg, Rolf W.;

    2013-01-01

    To the best of our knowledge we here for the first time demonstrate surface enhanced Raman spectroscopy (SERS) to detect a quorum sensing (QS) signal molecule below 1 nM concentration in both ultrapure water and under physiological conditions. Based on our results, SERS shows promise as a highly...

  12. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge.

    Science.gov (United States)

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-02-04

    The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs). In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling.

  13. Isolation and Molecular Characterization of Biofouling Bacteria and Profiling of Quorum Sensing Signal Molecules from Membrane Bioreactor Activated Sludge

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2014-02-01

    Full Text Available The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs. In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling.

  14. Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Science.gov (United States)

    Crépin, Alexandre; Barbey, Corinne; Beury-Cirou, Amélie; Hélias, Valérie; Taupin, Laure; Reverchon, Sylvie; Nasser, William; Faure, Denis; Dufour, Alain; Orange, Nicole; Feuilloley, Marc; Heurlier, Karin; Burini, Jean-François; Latour, Xavier

    2012-01-01

    Background Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. Methodology/Principal Findings Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. Conclusions/Significance Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the

  15. Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp..

    Directory of Open Access Journals (Sweden)

    Alexandre Crépin

    Full Text Available BACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also

  16. Detection and quantification of quinolone signalling molecule: a third quorum sensing molecule of Pseudomonas aeruginosa by high performance-thin layer chromatography.

    Science.gov (United States)

    Bala, Anju; Gupta, Ravi Kumar; Chhibber, Sanjay; Harjai, Kusum

    2013-07-01

    Sophisticated network of quorum sensing involves the production of chemical signals which regulate the combined expression of virulence genes and biofilm formation in Pseudomonas aeruginosa. Two well-characterized acyl homoserine lactone based las and rhl systems together with alkyl quinolone based Pseudomonas quinolone signalling (PQS) are fundamental components of this network. Third signalling molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS) is of paramount importance because of its interconnecting role in quorum sensing hierarchy in P. aeruginosa. Accurate detection of PQS molecule is very important to understand the involvement of this system in infection process of P. aeruginosa. In this study, high performance-thin layer chromatography (HP-TLC) method was developed for detection as well as quantification of PQS signal molecules in P. aeruginosa, which combines conventional method like TLC with sophisticated instrumentation. This method was validated using parameters like linearity, accuracy, precision, reproducibility and sensitivity. Intra- and inter-day accuracy and precision values were determined which were found to be within acceptable level and hence showed reproducibility. Measurement of PQS in the range of 0.01nmol indicated excellent sensitivity of this approach for quantifying PQS molecule. Automated sampling, rapid and simultaneous analysis of large number of samples and minimal errors make this method more suitable for analysis of PQS signalling molecules. Production of PQS was found to be strain dependent since variation in amount of PQS was observed among different P. aeruginosa isolates. Further, PQS production was also dependent on growth phase of P. aeruginosa with maximum production in late stationary phase.

  17. Interaction of a P. aeruginosa Quorum Sensing Signal with Lipid Membranes

    Science.gov (United States)

    Morrison, Rebecca; Hall, Amelia; Hutchison, Ellen; Nguyen, Thuc; Cooley, Benjamin; Gordon, Vernita

    2011-03-01

    Bacteria use a signaling and regulatory system called ``quorum sensing'' to alter their gene expressions in response to the concentration of neighboring bacteria and to environmental conditions that make collective activity favorable for bacteria. P. aeruginosa is an opportunistic human pathogen that uses quorum sensing to govern processes such as virulence and biofilm formation. This organism's two main quorum sensing circuits use two different signaling molecules that are amphiphilic and differ primarily in the length of their hydrocarbon side chain and thus in their hydrophobic physical chemistry. How these physical chemistries govern the propagation and spatial localization of signals and thus of quorum sensing is not known. We present preliminary results showing that signals preferentially sequester to amphiphilic lipid membranes, which can act as reservoirs for signal. This is promising for future characterization of how the quorum sensing signals of many bacteria and yeast partition to spatially-differentiated amphiphilic environments, in a host or biofilm.

  18. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo

    Science.gov (United States)

    Verbeke, Frederick; De Craemer, Severine; Debunne, Nathan; Janssens, Yorick; Wynendaele, Evelien; Van de Wiele, Christophe; De Spiegeleer, Bart

    2017-01-01

    The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans. PMID:28446863

  19. Quorum sensing signal-response systems in Gram-negative bacteria.

    Science.gov (United States)

    Papenfort, Kai; Bassler, Bonnie L

    2016-08-11

    Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.

  20. Pseudomonas aeruginosa quorum-sensing molecule homoserine lactone modulates inflammatory signaling through PERK and eI-F2α.

    Science.gov (United States)

    Grabiner, Mark A; Fu, Zhu; Wu, Tara; Barry, Kevin C; Schwarzer, Christian; Machen, Terry E

    2014-08-01

    Pseudomonas aeruginosa secrete N-(3-oxododecanoyl)-homoserine lactone (HSL-C12) as a quorum-sensing molecule to regulate bacterial gene expression. Because HSL-C12 is membrane permeant, multiple cell types in P. aeruginosa-infected airways may be exposed to HSL-C12, especially adjacent to biofilms where local (HSL-C12) may be high. Previous reports showed that HSL-C12 causes both pro- and anti-inflammatory effects. To characterize HSL-C12's pro- and anti-inflammatory effects in host cells, we measured protein synthesis, NF-κB activation, and KC (mouse IL-8) and IL-6 mRNA and protein secretion in wild-type mouse embryonic fibroblasts (MEF). To test the role of the endoplasmic reticulum stress inducer, PERK we compared these responses in PERK(-/-) and PERK-corrected PERK(-/-) MEF. During 4-h treatments of wild-type MEF, HSL-C12 potentially activated NF-κB p65 by preventing the resynthesis of IκB and increased transcription of KC and IL-6 genes (quantitative PCR). HSL-C12 also inhibited secretion of KC and/or IL-6 into the media (ELISA) both in control conditions and also during stimulation by TNF-α. HSL-C12 also activated PERK (as shown by increased phosphorylation of eI-F2α) and inhibited protein synthesis (as measured by incorporation of [(35)S]methionine by MEF). Comparisons of PERK(-/-) and PERK-corrected MEF showed that HSL-C12's effects were explained in part by activation of PERK→phosphorylation of eI-F2α→inhibition of protein synthesis→reduced IκBα production→activation of NF-κB→increased transcription of the KC gene but reduced translation and secretion of KC. HSL-C12 may be an important modulator of early (up to 4 h) inflammatory signaling in P. aeruginosa infections.

  1. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection.

    Science.gov (United States)

    Chen, Fang; Gao, Yuxin; Chen, Xiaoyi; Yu, Zhimin; Li, Xianzhen

    2013-08-26

    With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases.

  2. Quorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection

    Directory of Open Access Journals (Sweden)

    Xianzhen Li

    2013-08-01

    Full Text Available With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases.

  3. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens

    Science.gov (United States)

    2014-01-01

    Background Extensive use of antibiotics has fostered the emergence of superbugs that are resistant to multidrugs, which becomes a great healthcare and public concern. Previous studies showed that quorum sensing signal DSF (diffusible signal factor) not only modulates bacterial antibiotic resistance through intraspecies signaling, but also affects bacterial antibiotic tolerance through interspecies communication. These findings motivate us to exploit the possibility of using DSF and its structurally related molecules as adjuvants to influence antibiotic susceptibility of bacterial pathogens. Results In this study, we have demonstrated that DSF signal and its structurally related molecules could be used to induce bacterial antibiotic susceptibility. Exogenous addition of DSF signal (cis-11-methyl-2-dodecenoic acid) and its structural analogues could significantly increase the antibiotic susceptibility of Bacillus cereus, possibly through reducing drug-resistant activity, biofilm formation and bacterial fitness. The synergistic effect of DSF and its structurally related molecules with antibiotics on B. cereus is dosage-dependent. Combination of DSF with gentamicin showed an obviously synergistic effect on B. cereus pathogenicity in an in vitro model. We also found that DSF could increase the antibiotic susceptibility of other bacterial species, including Bacillus thuringiensis, Staphylococcus aureus, Mycobacterium smegmatis, Neisseria subflava and Pseudomonas aeruginosa. Conclusion The results indicate a promising potential of using DSF and its structurally related molecules as novel adjuvants to conventional antibiotics for treatment of infectious diseases caused by bacterial pathogens. PMID:24575808

  4. Autocrine Signaling and Quorum Sensing: Extreme Ends of a Common Spectrum.

    Science.gov (United States)

    Doğaner, Berkalp A; Yan, Lawrence K Q; Youk, Hyun

    2016-04-01

    'Secrete-and-sense cells' can communicate by secreting a signaling molecule while also producing a receptor that detects the molecule. The cell can potentially 'talk' to itself ('self-communication') or talk to neighboring cells with the same receptor ('neighbor communication'). The predominant forms of secrete-and-sense cells are self-communicating 'autocrine cells', which are largely found in animals, and neighbor-communicating 'quorum sensing cells', which are mostly associated with bacteria. While assumed to function independently of one another, recent studies have discovered quorum-sensing organs and autocrine-signaling microbes. Moreover, similar types of genetic circuit control many autocrine and quorum-sensing cells. Here, we outline these recent findings and explain how autocrine and quorum sensing are two sides of a many-sided 'dice' created by the versatile secrete-and-sense cell.

  5. Death and Survival in Streptococcus mutans: Differing Outcomes of a Quorum-Sensing Signalling Peptide

    Directory of Open Access Journals (Sweden)

    Vincent eLeung

    2015-10-01

    Full Text Available Bacteria are considered ‘social’ organisms able to communicate with one another using small hormone-like molecules (pheromones in a process called quorum-sensing. These signalling molecules increase in concentration as a function of bacterial cell density. For most human pathogens, quorum-sensing is critical for virulence and biofilm formation, and the opportunity to interfere with bacterial quorum-sensing could provide a sophisticated means for manipulating the composition of pathogenic biofilms, and possibly eradicating the infection. Streptococcus mutans is a well-characterized resident of the dental plaque biofilm, and is the major pathogen of dental caries (tooth decay. In S. mutans, its CSP quorum-sensing signalling peptide does not act as a classical quorum-sensing signal by accumulating passively in proportion to cell density. In fact, particular stresses such as those encountered in the oral cavity, induces the production of the CSP pheromone, suggesting that the pheromone most probably functions as a stress-inducible alarmone by triggering the signalling to the bacterial population to initiate an adaptive response that results in different phenotypic outcomes. This mini-review discusses two different CSP-induced phenotypes, bacterial ‘suicide’ and dormancy, and the underlying mechanisms by which S. mutans utilizes the same quorum-sensing signalling peptide to regulate two opposite phenotypes.

  6. Interspecies Quorum Sensing as a Stress-Anticipation Signal in E. coli

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin

    Abstract Uncovering how bacteria perceive environmental signals and how they interpret these, in order to constantly adapt to changes in their environment, is important for understanding not only microbial ecology but also bacterial pathogenesis. Furthermore, it provides cues as to how we might...... interfere with these systems, in order to prevent undesirable bacterial behavior. In a process known as quorum sensing, bacteria emit and detect small diffusible molecules, which upon reaching a certain extracellular concentration, activate cellular quorum sensing receptors and thereby turn on group...... behavior genes. Quorum sensing controls important bacterial behaviors, including bioluminescence, biofilm formation, and virulence. Inter- and intraspecies quorum sensing signals enable bacteria to estimate the abundance and species complexity of a microbial community. A long standing question...

  7. Bacterial quorum sensing and biofilm formation

    Science.gov (United States)

    Quorum sensing is a cell density-dependent signaling system by which bacteria can regulate gene expression through the production, secretion, and subsequent detection of extracellular signaling molecules called autoinducers. Bacteria use quorum sensing to regulate various physiological activities, ...

  8. Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway

    Science.gov (United States)

    Simon, Sylvia; Schell, Ursula; Heuer, Natalie; Hager, Dominik; Albers, Michael F.; Matthias, Jan; Fahrnbauer, Felix; Trauner, Dirk; Eichinger, Ludwig; Hedberg, Christian; Hilbi, Hubert

    2015-01-01

    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9. PMID:26633832

  9. Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway.

    Directory of Open Access Journals (Sweden)

    Sylvia Simon

    2015-12-01

    Full Text Available Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s. Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9.

  10. Experimental and Theoretical Investigation of Signaling in Quorum Sensing of Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Claussen, Anetta

    Quorum sensing (QS) is an intercellular communication system by which some bacterial cells are capable of indirectly monitoring their own population density through exchange of signal molecules. The expression of virulence factors is kept low until the population density (signal molecule...... concentration) reaches a threshold value, after which the host system is surprised by a stealth attack. The focus of this study is on the Quorum Sensing regulatory system of Pseudomonas aeruginosa called the Las system. In this thesis, two distinct methods to obtain information about the system are considered...

  11. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts.

    Science.gov (United States)

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi

    2015-01-01

    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  12. Interspecies Quorum Sensing as a Stress-Anticipation Signal in E. coli

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin

    behavior genes. Quorum sensing controls important bacterial behaviors, including bioluminescence, biofilm formation, and virulence. Inter- and intraspecies quorum sensing signals enable bacteria to estimate the abundance and species complexity of a microbial community. A long standing question...

  13. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Camila, E-mail: camilaquinetti@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakagami, Gojiro, E-mail: gojiron-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Minematsu, Takeo, E-mail: tminematsu-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagase, Takashi, E-mail: tnagase@fb3.so-net.ne.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Huang, Lijuan, E-mail: koureikenhlj@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sari, Yunita, E-mail: yunita-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sanada, Hiromi, E-mail: hsanada-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration

  14. Kinetic Model for Signal Binding to the Quorum Sensing Regulator LasR

    DEFF Research Database (Denmark)

    Claussen, Anetta; Jakobsen, Tim Holm; Bjarnsholt, Thomas;

    2013-01-01

    of the active LasR quorum-sensing regulator was studied in an Escherichia coli background as a function of signal molecule concentration. The functional activity of the regulator was monitored via a GFP reporter fusion to lasB expressed from the native lasB promoter. The new data shows that the active form...

  15. The classification and detection of Quorum-sensing signaling molecules%细菌群体感应系统信号分子的分类及检测

    Institute of Scientific and Technical Information of China (English)

    张彩凤

    2011-01-01

    Quorum-sensing is a regulatory mechanism,with which the bacteria will release a number of specific signaling molecules,which regulate the group behavior of the specie or other species in the same environment.When the signaling molecules density reaches a critical threshold,bacteria can alter the gene expression to suit the change of environment.This review focuses on the classification of Quorum-sensing,and describes the forecast of application.%细菌的群体感应系统(Quorum-sensing,QS)作为一种细胞的信号转导机制,是细菌通过特定的信号分子浓度来监测周围环境中本身或其它细菌的数量变化,当信号分子达到浓度阈值时,能够启动菌体中相关的基因表达来适应环境变化的一种调控机制。笔者综述了细菌群体感应系统的分类,并对其应用前景进行了展望。

  16. The fitness burden imposed by synthesising quorum sensing signals.

    Science.gov (United States)

    Ruparell, A; Dubern, J F; Ortori, C A; Harrison, F; Halliday, N M; Emtage, A; Ashawesh, M M; Laughton, C A; Diggle, S P; Williams, P; Barrett, D A; Hardie, K R

    2016-09-12

    It is now well established that bacterial populations utilize cell-to-cell signaling (quorum-sensing, QS) to control the production of public goods and other co-operative behaviours. Evolutionary theory predicts that both the cost of signal production and the response to signals should incur fitness costs for producing cells. Although costs imposed by the downstream consequences of QS have been shown, the cost of QS signal molecule (QSSM) production and its impact on fitness has not been examined. We measured the fitness cost to cells of synthesising QSSMs by quantifying metabolite levels in the presence of QSSM synthases. We found that: (i) bacteria making certain QSSMs have a growth defect that exerts an evolutionary cost, (ii) production of QSSMs negatively correlates with intracellular concentrations of QSSM precursors, (iii) the production of heterologous QSSMs negatively impacts the production of a native QSSM that shares common substrates, and (iv) supplementation with exogenously added metabolites partially rescued growth defects imposed by QSSM synthesis. These data identify the sources of the fitness costs incurred by QSSM producer cells, and indicate that there may be metabolic trade-offs associated with QS signaling that could exert selection on how signaling evolves.

  17. Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria.

    Science.gov (United States)

    Stöckli, Martina; Lin, Chia-Wei; Sieber, Ramon; Plaza, David F; Ohm, Robin A; Künzler, Markus

    2017-05-01

    Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-β-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Vibrio campbellii quorum sensing signals have a different impact on virulence of the bacterium towards different crustacean hosts.

    Science.gov (United States)

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Sorgeloos, Patrick; Bossier, Peter; Defoirdt, Tom

    2013-12-27

    Pathogenic bacteria communicate with small signal molecules in a process called quorum sensing, and they often use different signal molecules to regulate virulence gene expression. Vibrio campbellii, one of the major pathogens of aquatic organisms, regulates virulence gene expression by a three channel quorum sensing system. Here we show that although they use a common signal transduction cascade, the signal molecules have a different impact on the virulence of the bacterium towards different hosts, i.e. the brine shrimp Artemia franciscana and the commercially important giant freshwater prawn Macrobrachium rosenbergii. These results suggest that the use of multiple types of signal molecules to regulate virulence gene expression is one of the features that allow bacteria to infect different hosts. Our findings emphasize that it is highly important to study the efficacy of quorum sensing inhibitors as novel biocontrol agents under conditions that are as close as possible to the clinical situation.

  19. Detection of Quorum Sensing Signals in Gram-Negative Bacteria by Using Reporter Strain CV026

    Directory of Open Access Journals (Sweden)

    Ahmad Humayan KABIR

    2010-12-01

    Full Text Available Quorum sensing signals are referred to as acylated homoserine lactones (AHL that are mainly found in Gram-negative bacteria. It implies the ability of certain bacteria of producing different AHL molecules. The bacteria Pseudomonas aureofaciens and Xenorhabdus nematophila were cultured in Luria-Bertani (LB10 media and CV026 was used as a reporter strain to detect the presence of AHLs produced by the cultured bacteria. In this study, the reporter strain has revealed the quorum sensing ability of P. aureofaciens and X. nematophila by producing the purple pigment violacein in the supply of external AHLs molecules. Thin layer chromatography (TLC bioassay having four controls was conducted to detect specific AHL molecule supplied by P. aureofaciens and X. nematophila. The specific AHL molecule was observed to be migrated according to their polarity on the TLC plate.

  20. AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    NARCIS (Netherlands)

    Holmes, K.; Tavender, T.J.; Winzer, K.; Wells, J.; Hardie, K.

    2009-01-01

    Background - Campylobacter jejuni contains a homologue of the luxS gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) in Vibrio harveyi and Vibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal co

  1. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    Science.gov (United States)

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.

  2. Airway Epithelial Cell Integrity Protects from Cytotoxicity of Pseudomonas aeruginosa Quorum-Sensing Signals.

    Science.gov (United States)

    Losa, Davide; Köhler, Thilo; Bacchetta, Marc; Saab, Joanna Bou; Frieden, Maud; van Delden, Christian; Chanson, Marc

    2015-08-01

    Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.

  3. Is there a role for quorum sensing signals in bacterial biofilms?

    DEFF Research Database (Denmark)

    Kjelleberg, S.; Molin, Søren

    2002-01-01

    Bacteria form multicellular biofilm communities on most surfaces. Genetic analysis of biofilm formation has led to the proposal that extracellular signals and quorum-sensing regulatory systems are essential for differentiated biofilms. Although such a model fits the concept of density-driven cell...... adaptation during the different stages of biofilm formation. Hence, differentiated biofilms may also be the net result of many independent interactions, rather than being determined by a particular global quorum sensing system....

  4. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    Directory of Open Access Journals (Sweden)

    Nina Yusrina Muhamad Yunos

    2014-06-01

    Full Text Available Quorum sensing (QS is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs. We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL and N-decanoyl-l-homoserine lactone (C10-HSL. To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.

  5. Quantifying the integration of quorum-sensing signals with single-cell resolution.

    Directory of Open Access Journals (Sweden)

    Tao Long

    2009-03-01

    Full Text Available Cell-to-cell communication in bacteria is a process known as quorum sensing that relies on the production, detection, and response to the extracellular accumulation of signaling molecules called autoinducers. Often, bacteria use multiple autoinducers to obtain information about the vicinal cell density. However, how cells integrate and interpret the information contained within multiple autoinducers remains a mystery. Using single-cell fluorescence microscopy, we quantified the signaling responses to and analyzed the integration of multiple autoinducers by the model quorum-sensing bacterium Vibrio harveyi. Our results revealed that signals from two distinct autoinducers, AI-1 and AI-2, are combined strictly additively in a shared phosphorelay pathway, with each autoinducer contributing nearly equally to the total response. We found a coherent response across the population with little cell-to-cell variation, indicating that the entire population of cells can reliably distinguish several distinct conditions of external autoinducer concentration. We speculate that the use of multiple autoinducers allows a growing population of cells to synchronize gene expression during a series of distinct developmental stages.

  6. Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri

    Science.gov (United States)

    Pérez, Pablo Delfino; Hagen, Stephen J.

    2010-01-01

    The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V.fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V.fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell. PMID:21103327

  7. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms.

    Science.gov (United States)

    Wang, Jinfeng; Ding, Lili; Li, Kan; Huang, Hui; Hu, Haidong; Geng, Jinju; Xu, Ke; Ren, Hongqiang

    2017-08-28

    Quorum sensing (QS) signaling, plays a significant role in regulating formation of biofilms in the nature; however, little information about the occurrence and distribution of quorum sensing molecular in the biofilm of carriers has been reported. In this study, distribution of QS signaling molecules (the acylated homoserine lactones-AHLs, and AI-2), extracellular polymeric substances (EPS) and the mechanical properties in sequencing batch biofilm reactor (SBBR) biofilms have been investigated. Using increased centrifugal force, the biofilms were detached into different fractions. The AHLs ranged from 5.2ng/g to 98.3ng/g in different fractions of biofilms, and N-decanoyl-dl-homoserine lactone (C10-HSL) and N-dodecanoyl-dl-homoserine lactone (C12-HSL) in the biofilms obtained at various centrifugal forces displayed significant differences (pbiofilms ranged from 79.2ng/g to 98.3ng/g. Soluble EPS and loosely bound EPS content in the different fractions of biofilms displayed significant positive relationship with the distribution of C12-HSL (r=0.86, pbiofilms were positively related with AHLs with 22.76% was significantly positively (pBiofilm adhesion and compliance was the strongest in the tightly-bound biofilm, the weakest in the supernatant/surface biofilm, which was in accordance with the distribution of C12 HSL(r=0.77, pbiofilm application. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci

    Directory of Open Access Journals (Sweden)

    Tian XiaoLin

    2009-06-01

    Full Text Available Abstract Many species of streptococci secrete and use a competence-stimulating peptide (CSP to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci.

  9. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    Science.gov (United States)

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  10. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    Directory of Open Access Journals (Sweden)

    Wai-Leung Ng

    Full Text Available Quorum sensing (QS is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

  11. Kinetic Model for Signal Binding to the Quorum Sensing Regulator LasR

    Directory of Open Access Journals (Sweden)

    Jesper Ferkinghoff-Borg

    2013-06-01

    Full Text Available We propose a kinetic model for the activation of the las regulon in the opportunistic pathogen Pseudomonas aeruginosa. The model is based on in vitro data and accounts for the LasR dimerization and consecutive activation by binding of two OdDHL signal molecules. Experimentally, the production of the active LasR quorum-sensing regulator was studied in an Escherichia coli background as a function of signal molecule concentration. The functional activity of the regulator was monitored via a GFP reporter fusion to lasB expressed from the native lasB promoter. The new data shows that the active form of the LasR dimer binds two signal molecules cooperatively and that the timescale for reaching saturation is independent of the signal molecule concentration. This favors a picture where the dimerized regulator is protected against proteases and remains protected as it is activated through binding of two successive signal molecules. In absence of signal molecules, the dimerized regulator can dissociate and degrade through proteolytic turnover of the monomer. This resolves the apparent contradiction between our data and recent reports that the fully protected dimer is able to “degrade” when the induction of LasR ceases.

  12. A model for signal transduction during quorum sensing in Vibrio harveyi

    Science.gov (United States)

    Banik, Suman K.; Fenley, Andrew T.; Kulkarni, Rahul V.

    2009-12-01

    We present a framework for analyzing luminescence regulation during quorum sensing in the bioluminescent bacterium Vibrio harveyi. Using a simplified model for signal transduction in the quorum sensing pathway, we identify key dimensionless parameters that control the system's response. These parameters are estimated using experimental data on luminescence phenotypes for different mutant strains. The corresponding model predictions are consistent with results from other experiments which did not serve as input for determining model parameters. Furthermore, the proposed framework leads to novel testable predictions for luminescence phenotypes and for responses of the network to different perturbations.

  13. Identification of poultry meat-derived fatty acids functioning as quorum sensing signal inhibitors of autoinducer-2 (AI-2)

    Science.gov (United States)

    Autoinducer-2 (AI-2) is a compound that plays a key role in bacterial cell-to-cell communication (quorum sensing). Previous research has shown certain food matrices inhibit this signaling compound. Using the reporter strain, Vibrio harveyi BB170, quorum sensing inhibitors contained in poultry meat...

  14. Establishing a quantitative definition of quorum sensing provides insight into the information content of the autoinducer signals in Vibrio harveyi and Escherichia coli.

    Science.gov (United States)

    Gooding, Jessica R; May, Amanda L; Hilliard, Kathryn R; Campagna, Shawn R

    2010-07-13

    Extracellular autoinducer concentrations in cultures of Vibrio harveyi and Escherichia coli were monitored by liquid chromatography-tandem mass spectrometry to test whether a quantitative definition of quorum sensing could help decipher the information content of these signals. Although V. harveyi was able to keep the autoinducer-2 to cell number ratio constant, the ratio of signal to cell number for V. harveyi autoinducer-1 and E. coli autoinducer-2 varied as the cultures grew. These data indicate that V. harveyi uses autoinducer-2 for quorum sensing, while the other molecules may be used to transmit different information or are influenced by metabolic noise.

  15. Size of quorum sensing communities

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Sams, Thomas

    2014-01-01

    Ensembles of bacteria are able to coordinate their phenotypic behavior in accordance with the size, density, and growth state of the ensemble. This is achieved through production and exchange of diffusible signal molecules in a cell–cell regulatory system termed quorum sensing. In the generic...

  16. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    Directory of Open Access Journals (Sweden)

    Yok-Ai Que

    Full Text Available Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA, a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.

  17. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    Science.gov (United States)

    Que, Yok-Ai; Hazan, Ronen; Strobel, Benjamin; Maura, Damien; He, Jianxin; Kesarwani, Meenu; Panopoulos, Panagiotis; Tsurumi, Amy; Giddey, Marlyse; Wilhelmy, Julie; Mindrinos, Michael N; Rahme, Laurence G

    2013-01-01

    Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.

  18. Discovery of a quorum sensing modulator pharmacophore by 3D small-molecule microarray screening

    DEFF Research Database (Denmark)

    Marsden, David M; Nicholson, Rebecca L; Skindersoe, Mette E

    2010-01-01

    ligand-binding domains of the LuxR homolog CarR from Erwinia carotovora subsp. carotovora. The 3D microarray platform was used to discover the biologically active chloro-pyridine pharmacophore, which was validated using a fluorometric ligand binding assay and ITC. Analogs containing the chloro......The screening of large arrays of drug-like small-molecules was traditionally a time consuming and resource intensive task. New methodology developed within our laboratories provides an attractive low cost, 3D microarray-assisted screening platform that could be used to rapidly assay thousands...... of compounds. As a proof-of-principle the platform was exploited to screen a number of quorum sensing analogs. Quorum sensing is used by bacterium to initiate and spread infection; in this context its modulation may have significant clinical value. 3D microarray slides were probed with fluorescently labeled...

  19. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    Science.gov (United States)

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó.; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-07-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

  20. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    Science.gov (United States)

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-01-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen. PMID:27427496

  1. Modulation of Staphylococcus aureus Response to Antimicrobials by the Candida albicans Quorum Sensing Molecule Farnesol.

    Science.gov (United States)

    Kong, Eric F; Tsui, Christina; Kucharíková, Sona; Van Dijck, Patrick; Jabra-Rizk, Mary Ann

    2017-09-11

    In microbial biofilms, microorganisms utilize secreted signaling chemical molecules to coordinate their collective behavior. Farnesol is a quorum-sensing molecule secreted by the fungal species Candida albicans, shown to play a central physiological role during fungal biofilm growth. Our pervious in vitro and in vivo studies characterized an intricate interaction between C. albicans and the bacterial pathogen Staphylococcus aureus, as these species co-exist in biofilm. In this study, we aimed to investigate the impact of farnesol on S. aureus survival, biofilm formation and response to antimicrobials. Results demonstrated that in the presence of exogenously supplemented farnesol, or farnesol secreted by C. albicans in biofilm, S. aureus exhibited significantly enhanced tolerance to antimicrobials. Using gene expression studies, S. aureus mutant strains and chemical inhibitors, the mechanism for the enhanced tolerance was attributed to upregulation of drug efflux pumps. Importantly, we showed that sequential exposure of S. aureus to farnesol generated a phenotype with high resistance to antimicrobials. Based on presence of intracellular reactive oxygen species upon farnesol exposure, we hypothesize that antimicrobial tolerance in S. aureus may be mediated by farnesol-induced oxidative stress triggering the upregulation of efflux pumps, as part of a general stress response system. Hence, in mixed biofilms, C. albicans may influence the pathogenicity of S. aureus through acquisition of a drug tolerant phenotype, with important therapeutic implications. Understanding inter-species signaling in polymicrobial biofilms and the specific drug resistance responses to secreted molecules, may lead to the identification of novel targets for drug development. Copyright © 2017 American Society for Microbiology.

  2. Novel linear polymers able to inhibit bacterial quorum sensing.

    Science.gov (United States)

    Cavaleiro, Eliana; Duarte, Ana Sofia; Esteves, Ana Cristina; Correia, António; Whitcombe, Michael J; Piletska, Elena V; Piletsky, Sergey A; Chianella, Iva

    2015-05-01

    Bacterial phenotypes, such as biofilm formation, antibiotic resistance and virulence expression, are associated with quorum sensing. Quorum sensing is a density-dependent regulatory system of gene expression controlled by specific signal molecules, such as N-acyl homoserine lactones (AHLs), produced and released by bacteria. This study reports the development of linear polymers capable to attenuate quorum sensing by adsorption of AHLs. Linear polymers were synthesized using MMA as backbone monomer and methacrylic acid and itaconic acid as functional monomers. Two different quorum sensing-controlled phenotypes, Vibrio fischeri bioluminescence and Aeromonas hydrophila biofilm formation, were evaluated to test the polymers' efficiency. Results showed that both phenotypes were significantly affected by the polymers, with the itaconic acid-containing material being more effective than the methacrylic acid one. The polymer inhibitory effects were reverted by the addition of lactones, confirming attenuation of quorum sensing through sequestration of signal molecules. The polymers also showed no cytotoxicity when tested using a mammalian cell line.

  3. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    Quorum sensing (QS) systems comprise a new therapeutic target potentially substitutive or complementary to traditional antibiotic treatment of chronic diseases. One route to disrupt the previously established interrelationship between pathogenesis and QS is by blocking the dual functioning signal...

  4. Structure, Regulation, and Inhibition of the Quorum-Sensing Signal Integrator LuxO.

    Science.gov (United States)

    Boyaci, Hande; Shah, Tayyab; Hurley, Amanda; Kokona, Bashkim; Li, Zhijie; Ventocilla, Christian; Jeffrey, Philip D; Semmelhack, Martin F; Fairman, Robert; Bassler, Bonnie L; Hughson, Frederick M

    2016-05-01

    In a process called quorum sensing, bacteria communicate with chemical signal molecules called autoinducers to control collective behaviors. In pathogenic vibrios, including Vibrio cholerae, the accumulation of autoinducers triggers repression of genes responsible for virulence factor production and biofilm formation. The vibrio autoinducer molecules bind to transmembrane receptors of the two-component histidine sensor kinase family. Autoinducer binding inactivates the receptors' kinase activities, leading to dephosphorylation and inhibition of the downstream response regulator LuxO. Here, we report the X-ray structure of LuxO in its unphosphorylated, autoinhibited state. Our structure reveals that LuxO, a bacterial enhancer-binding protein of the AAA+ ATPase superfamily, is inhibited by an unprecedented mechanism in which a linker that connects the catalytic and regulatory receiver domains occupies the ATPase active site. The conformational change that accompanies receiver domain phosphorylation likely disrupts this interaction, providing a mechanistic rationale for LuxO activation. We also determined the crystal structure of the LuxO catalytic domain bound to a broad-spectrum inhibitor. The inhibitor binds in the ATPase active site and recapitulates elements of the natural regulatory mechanism. Remarkably, a single inhibitor molecule may be capable of inhibiting an entire LuxO oligomer.

  5. Structure, Regulation, and Inhibition of the Quorum-Sensing Signal Integrator LuxO.

    Directory of Open Access Journals (Sweden)

    Hande Boyaci

    2016-05-01

    Full Text Available In a process called quorum sensing, bacteria communicate with chemical signal molecules called autoinducers to control collective behaviors. In pathogenic vibrios, including Vibrio cholerae, the accumulation of autoinducers triggers repression of genes responsible for virulence factor production and biofilm formation. The vibrio autoinducer molecules bind to transmembrane receptors of the two-component histidine sensor kinase family. Autoinducer binding inactivates the receptors' kinase activities, leading to dephosphorylation and inhibition of the downstream response regulator LuxO. Here, we report the X-ray structure of LuxO in its unphosphorylated, autoinhibited state. Our structure reveals that LuxO, a bacterial enhancer-binding protein of the AAA+ ATPase superfamily, is inhibited by an unprecedented mechanism in which a linker that connects the catalytic and regulatory receiver domains occupies the ATPase active site. The conformational change that accompanies receiver domain phosphorylation likely disrupts this interaction, providing a mechanistic rationale for LuxO activation. We also determined the crystal structure of the LuxO catalytic domain bound to a broad-spectrum inhibitor. The inhibitor binds in the ATPase active site and recapitulates elements of the natural regulatory mechanism. Remarkably, a single inhibitor molecule may be capable of inhibiting an entire LuxO oligomer.

  6. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei.

    Science.gov (United States)

    Mony, Binny M; MacGregor, Paula; Ivens, Alasdair; Rojas, Federico; Cowton, Andrew; Young, Julie; Horn, David; Matthews, Keith

    2014-01-30

    The protozoan parasites Trypanosoma brucei spp. cause important human and livestock diseases in sub-Saharan Africa. In mammalian blood, two developmental forms of the parasite exist: proliferative 'slender' forms and arrested 'stumpy' forms that are responsible for transmission to tsetse flies. The slender to stumpy differentiation is a density-dependent response that resembles quorum sensing in microbial systems and is crucial for the parasite life cycle, ensuring both infection chronicity and disease transmission. This response is triggered by an elusive 'stumpy induction factor' (SIF) whose intracellular signalling pathway is also uncharacterized. Laboratory-adapted (monomorphic) trypanosome strains respond inefficiently to SIF but can generate forms with stumpy characteristics when exposed to cell-permeable cAMP and AMP analogues. Exploiting this, we have used a genome-wide RNA interference library screen to identify the signalling components driving stumpy formation. In separate screens, monomorphic parasites were exposed to 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) or 8-pCPT-2'-O-methyl-5'-AMP to select cells that were unresponsive to these signals and hence remained proliferative. Genome-wide Ion Torrent based RNAi target sequencing identified cohorts of genes implicated in each step of the signalling pathway, from purine metabolism, through signal transducers (kinases, phosphatases) to gene expression regulators. Genes at each step were independently validated in cells naturally capable of stumpy formation, confirming their role in density sensing in vivo. The putative RNA-binding protein, RBP7, was required for normal quorum sensing and promoted cell-cycle arrest and transmission competence when overexpressed. This study reveals that quorum sensing signalling in trypanosomes shares similarities to fundamental quiescence pathways in eukaryotic cells, its components providing targets for quorum-sensing interference-based therapeutics.

  7. Molecular Basis for the Recognition of Structurally Distinct Autoinducer Mimics by the Pseudomonas aeruginosa LasR Quorum-Sensing Signaling Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yaozhong; Nair, Satish K.; (UIUC)

    2010-01-12

    The human pathogen Pseudomonas aeruginosa coordinates the expression of virulence factors using quorum sensing, a signaling cascade triggered by the activation of signal receptors by small-molecule autoinducers. These homoserine lactone autoinducers stabilize their cognate receptors and activate their functions as transcription factors. Because quorum sensing regulates the progression of infection and host immune resistance, significant efforts have been devoted toward the identification of small molecules that disrupt this process. Screening efforts have identified a class of triphenyl compounds that are structurally distinct from the homoserine lactone autoinducer, yet interact specifically and potently with LasR receptor to modulate quorum sensing (Muh et al., 2006a). Here we present the high-resolution crystal structures of the ligand binding domain of LasR in complex with the autoinducer N-3-oxo-dodecanoyl homoserine lactone (1.4 {angstrom} resolution), and with the triphenyl mimics TP-1, TP-3, and TP-4 (to between 1.8 {angstrom} and 2.3 {angstrom} resolution). These crystal structures provide a molecular rationale for understanding how chemically distinct compounds can be accommodated by a highly selective receptor, and provide the framework for the development of novel quorum-sensing regulators, utilizing the triphenyl scaffold.

  8. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    OpenAIRE

    Xianzhen Li; Bo Zhu; Nuo Li; Fang Chen; Yan Han

    2010-01-01

    A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relative...

  9. Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi

    Science.gov (United States)

    Swem, Lee R.; Swem, Danielle L.; Wingreen, Ned S.; Bassler, Bonnie L.

    2008-01-01

    Summary Quorum sensing, a process of bacterial cell-cell communication, relies on production, detection, and response to autoinducer signaling molecules. Here we focus on LuxN, a nine transmembrane domain protein from Vibrio harveyi, and the founding example of membrane-bound receptors for acyl-homoserine lactone (AHL) autoinducers. Previously, nothing was known about signal recognition by membrane-bound AHL receptors. We used mutagenesis and suppressor analyses to identify the AHL-binding domain of LuxN, and discovered LuxN mutants that confer decreased and increased AHL sensitivity. Our analysis of dose-response curves of multiple LuxN mutants pins these inverse phenotypes on quantifiable opposing shifts in the free-energy bias of LuxN for its kinase and phosphatase states. To extract signaling parameters, we exploited a strong LuxN antagonist, one of fifteen small-molecule antagonists we identified. We find that quorum-sensing-mediated communication can be manipulated positively and negatively to control bacterial behavior, and that signaling parameters can be deduced from in vivo data. PMID:18692469

  10. Quorum sensing communication between bacteria and human cells: signals, targets and functions

    Directory of Open Access Journals (Sweden)

    Angelika eHolm

    2014-06-01

    Full Text Available Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g. to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P.aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL. We focus on how this conversation changes the behavior and function of neutrophils, macrophages and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria-host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future.

  11. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica.

    Science.gov (United States)

    Zhu, Junli; Zhao, Aifei; Feng, Lifang; Gao, Haichun

    2016-01-18

    In this work we investigated the specific spoilage organism (SSO) of large yellow croaker (Pseudosciaena crocea) stored at 4°C and role of quorum sensing (QS) system of SSO isolated from the spoiled fish. According to microbial count and 16S rRNA gene of the isolated pure strains, Shewanella, mainly Shewanella baltica and Shewanella putrefaciens, was predominant genera at the end of shelf-life of P. crocea. Among Shewanella isolates, S.baltica02 was demonstrated as SSO in spoilage potential characteristics by inoculation into sterile fish juice using sensory and chemical analyses. Autoinducer 2 and two cyclic dipeptides (DKPs) including cyclo-(l-Pro-l-Leu) and cyclo-(l-Pro-l-Phe), no any AHLs, were detected in cell-free S. baltica culture. Interestingly, S.baltica02 had the highest QS activity among three spoilers of S. baltica. The production of biofilm, trimethylamines (TMA) and putrescine in these spoilers significantly increased in the presence of cyclo-(l-Pro-l-Leu), rather than cyclo-(l-Pro-l-Phe) and 4,5-dihydroxy-2,3-pentanedione (the AI-2 precursor, DPD). In accordance with the effect of signal molecules on the spoilage phenotype, exposure to exogenous cyclo-(l-Pro-l-Leu) was also showed to up-regulate the transcription levels of luxR, torA and ODC, and no effect of luxS indicated that S. baltica could sense cyclo-(l-Pro-l-Leu). In the fish homogenate, exogenous cyclo-(l-Pro-l-Leu) shortened lag phase durations and enhanced growth rates of the dominant bacteria, H2S producing bacteria, under refrigerated storage, while exogenous DPD retarded growth of competing bacteria, such as Enterobacteriaceae. Meanwhile, cyclo-(l-Pro-l-Leu) also promoted the accumulation of metabolites on the spoilage process of homogenate. S.baltica02 luxS mutant preliminarily proved that AI-2 might not play a signaling role in the spoilage. The present study suggested that the spoilage potential of S. baltica in P. crocea might be regulated by DKP-based quorum sensing.

  12. Effect of small chain N acyl homoserine lactone quorum sensing signals on biofilms of food-borne pathogens.

    Science.gov (United States)

    A, Jamuna Bai; V, Ravishankar Rai

    2016-09-01

    Quorum sensing or cell to cell communication which includes inter- and intra-cellular communication has been implicated in the production of virulence factor and formation of biofilm in food-borne pathogens. In the present study, the effect of quorum sensing signals on the biofilms of food-borne pathogens has been elucidated. N-butryl homoserine lactone and N-hexanoyl homoserine lactone belonging to acyl homoserine lactone (AHL) family of signaling molecules were investigated for their effect on the biofilm formation (attachment and exopolymeric substance production) in the food-borne pathogens Escherichia coli, Salmonella enterica serovar Typhimurium and Vibrio parahemolyticus. The signaling molecules at a concentration of 1 µM were capable of increasing biofilm formation in all the tested pathogens. There was an increase in the attachment of the bacterial cells and biomass as observed by microtiter plate assay and exopolymeric substances production in the biofilms in presence of the AHLs. Further, it needs to be elucidated if the effect of AHLS on the biofilms of E. coli and S. enterica serovar Typhimurium is SdiA dependent.

  13. Quorum sensing inhibitors: how strong is the evidence?

    Science.gov (United States)

    Defoirdt, Tom; Brackman, Gilles; Coenye, Tom

    2013-12-01

    Because of its promising effect as an alternative to antibiotics, quorum sensing disruption is an intensively studied field, and there are many studies that describe the quorum sensing inhibitory activity of natural and synthetic compounds. In this opinion article, we present an overview of recent literature with respect to quorum sensing inhibitors. Most of this research is based on experiments with quorum sensing signal molecule reporter strains. However, these experiments are prone to bias due to other effects compounds may have on reporter strains. We argue that researchers should perform adequate control experiments and should carefully assess toxicity of the compounds in the bacterial species they are working with in order to confirm that what they observe really is quorum sensing inhibition.

  14. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  15. CqsA-CqsS quorum-sensing signal-receptor specificity in Photobacterium angustum.

    Science.gov (United States)

    Ke, Xiaobo; Miller, Laura C; Ng, Wai-Leung; Bassler, Bonnie L

    2014-02-01

    Quorum sensing (QS) is a process of bacterial cell-cell communication that relies on the production, detection and population-wide response to extracellular signal molecules called autoinducers. The QS system commonly found in vibrios and photobacteria consists of the CqsA synthase/CqsS receptor pair. Vibrio cholerae CqsA/S synthesizes and detects (S)-3-hydroxytridecan-4-one (C10-CAI-1), whereas Vibrio harveyi produces and detects a distinct but similar molecule, (Z)-3-aminoundec-2-en-4-one (Ea-C8-CAI-1). To understand the signalling properties of the larger family of CqsA-CqsS pairs, here, we characterize the Photobacterium angustum CqsA/S system. Many photobacterial cqsA genes harbour a conserved frameshift mutation that abolishes CAI-1 production. By contrast, their cqsS genes are intact. Correcting the P. angustum cqsA reading frame restores production of a mixture of CAI-1 moieties, including C8-CAI-1, C10-CAI-1, Ea-C8-CAI-1 and Ea-C10-CAI-1. This signal production profile matches the P. angustum CqsS receptor ligand-detection capability. The receptor exhibits a preference for molecules with 10-carbon tails, and the CqsS Ser(168) residue governs this preference. P. angustum can overcome the cqsA frameshift to produce CAI-1 under particular limiting growth conditions presumably through a ribosome slippage mechanism. Thus, we propose that P. angustum uses CAI-1 signalling for adaptation to stressful environments.

  16. The Serratia LuxR family regulator CarR 39006 activates transcription independently of cognate quorum sensing signals.

    Science.gov (United States)

    Poulter, Simon; Carlton, Timothy M; Spring, David R; Salmond, George P C

    2011-05-01

    In Gram-negative bacteria, quorum sensing control of gene expression is mediated by transcription factors of the LuxR family, whose DNA-binding affinity is modulated by diffusible N-acyl homoserine lactone (AHL) signalling molecules. In Serratia sp. ATCC 39006 and the plant pathogen Erwinia carotovora ssp. carotovora (Ecc), the biosynthesis of the β-lactam antibiotic 1-carbapen-2-em-3-carboxylic acid (Car) is under quorum sensing control. This study has revealed that, uniquely, the LuxR family transcriptional activator CarR(39006) from Serratia 39006 has no detectable affinity for cognate AHL molecules. Furthermore, CarR(39006) was shown to be naturally competent to bind to its target promoter with high affinity, activate transcription and resist cellular proteolysis, and was unaffected by AHL signals. Experiments with chimeric proteins suggest that the C-terminal DNA-binding domain of CarR(39006) may be responsible for conferring AHL independence. In contrast, we show that the homologous CarR(Ecc) protein binds to its 3O-C6-HSL ligand with high affinity, and that the highly conserved Trp-44 residue is critical for this interaction. Unlike TraR from Agrobacterium tumefaciens, CarR(Ecc) is not directly protected from cellular proteolysis by AHL binding, but via AHL-induced DNA binding. At physiological protein concentrations, AHL binding induces CarR(Ecc) to bind to its target promoter with higher affinity and activate transcription. © 2011 Blackwell Publishing Ltd.

  17. Farnesol and Candida albicans: quorum sensing or not quorum sensing?

    NARCIS (Netherlands)

    Krom, B.P.; Levy, N.; Meijler, M.M.; Jabra-Rizk, M.A.

    2016-01-01

    Quorum sensing (QS) molecules function within communities of single-cell organisms to allow concerted behavior in response to changing conditions, and certain criteria have been established to determine whether a particular molecule is quorum sensing or not. Farnesol has been identified as a secrete

  18. Quorum sensing signals are produced by Aeromonas salmonicida and quorum sensing inhibitors can reduce production of a potential virulence factor

    DEFF Research Database (Denmark)

    Rasch, Maria; Kastbjerg, Vicky Gaedt; Bruhn, Jesper Bartholin

    2007-01-01

    . Pigment production was only observed in broth under highly aerated conditions. Quorum sensing inhibitors (QSIs) are compounds that specifically block QS systems without affecting bacterial growth and 2 such compounds, sulphur-containing AHL-analogues, reduced production of protease in a typical strain...... of Aeromonas salmonicida strains. All 31 typical strains were AHL producers as were 21 of 26 atypical strains, but on a strain population basis, production of virulence factors such as protease, lipase, A-layer or pigment did not correlate with the production and accumulation of AHLs in the growth medium...... of these were completely down regulated by HepS-AHL. Hence, QSIs can curb virulence in some strains and could potentially be pursued as bacterial disease control measures in aquaculture....

  19. Quorum Sensing of Periodontal Pathogens.

    Science.gov (United States)

    Plančak, Darije; Musić, Larisa; Puhar, Ivan

    2015-09-01

    The term 'quorum sensing' describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  20. QUORUM SENSING AND ITS ROLE IN ORAL BIOFILMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Boy M. Bachtiar

    2006-04-01

    Full Text Available Quorum sensing systems has been identified as one of mechanism carried out by numerous Gram-positive and Gram-negative bacteria to coordinate virulence and biofilm development. Using quorum sensing bacterial colonies synchronize gene expression and phenotype change allowing them to protect their niche. The purpose of this review is to present a synopsis of the literature on bacterial quorum sensing and we highlight the role of specific signaling molecules that might be used as a target of inhibitor agent in dental preventive perspective.

  1. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing.

    Science.gov (United States)

    Even-Tov, Eran; Bendori, Shira Omer; Valastyan, Julie; Ke, Xiaobo; Pollak, Shaul; Bareia, Tasneem; Ben-Zion, Ishay; Bassler, Bonnie L; Eldar, Avigdor

    2016-02-01

    Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.

  2. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing.

    Directory of Open Access Journals (Sweden)

    Eran Even-Tov

    2016-02-01

    Full Text Available Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.

  3. Quorum sensing signal profile of Acinetobacter strains from nosocomial and environmental sources Perfil de sensores de quórum en cepas nosocomiales y ambientales de Acinetobacter

    Directory of Open Access Journals (Sweden)

    R. H. González

    2009-06-01

    Full Text Available A set of 43 strains corresponding to 20 classified and unclassified genomic Acinetobacter species was analyzed for the production of typical N-acyl homoserine lactone quorum sensing molecules in culture broths. A large percentage of the strains (74% displayed quorum sensing signals that could be separated into three statistically significantly different chromatographic groups (p Rf2 > Rf1. None of the three signals could be specifically assigned to a particular species in the genus; furthermore, no distinction could be made between the quorum sensing signals secreted by typical opportunistic strains of the A. calcoaceticus-A. baumannii complex, isolated from patients, with respect to the other species of the genus, except for the Rf1 signal which was present in all the QS positive strains belonging to this complex and DNA group 13 TU. In conclusion, quorum sensors in Acinetobacter are not homogenously distributed among species and one of them is present in most of the A. calcoaceticus-baumannii complex.Se analizó la producción de moléculas típicas de N-acil homoserina lactona con actividad de quorum sensing en cultivos líquidos de un grupo de 43 cepas correspondientes a 20 especies genómicas clasificadas y no clasificadas de Acinetobacter. Un porcentaje alto de las cepas (74% mostraron señales de quorum sensing que pudieron ser separadas en tres grupos cromatográficos significativamente diferentes entre sí (p Rf2 > Rf1. Ninguna de las tres señales pudo ser asignada a una especie en particular dentro del género; es más, no se encontró diferencia entre las señales producidas por las cepas típicamente oportunistas (complejo A. calcoaceticus-A. baumannii aisladas de pacientes respecto de las producidas por otras cepas del mismo género, excepto para el caso de Rf1, que se encontró presente en todos los aislamientos quorum sensing positivos del mencionado complejo y en las cepas del grupo de DNA 13TU. En conclusión, los sensores de

  4. Manipulation of the Quorum Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Jessica Ann Thompson

    2015-03-01

    Full Text Available The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing, we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2, in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.

  5. Size of quorum sensing communities

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Sams, Thomas

    2014-01-01

    Ensembles of bacteria are able to coordinate their phenotypic behavior in accordance with the size, density, and growth state of the ensemble. This is achieved through production and exchange of diffusible signal molecules in a cell–cell regulatory system termed quorum sensing. In the generic...... quorum sensor a positive feedback in the production of signal molecules defines the conditions at which the collective behavior switches on. In spite of its conceptual simplicity, a proper measure of biofilm colony ‘‘size’’ appears to be lacking. We establish that the cell density multiplied...

  6. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria

    NARCIS (Netherlands)

    Kleerebezem, Michiel; Quadri, Luis E.N.; Kuipers, Oscar P.; Vos, Willem M. de

    1997-01-01

    Cell-density-dependent gene expression appears to be widely spread in bacteria. This quorum-sensing phenomenon has been well established in Gram-negative bacteria, where N-acyl homoserine lactones are the diffusible communication molecules that modulate cell-density-dependent phenotypes. Similarly,

  7. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria

    NARCIS (Netherlands)

    Kleerebezem, Michiel; Quadri, Luis E.N.; Kuipers, Oscar P.; Vos, Willem M. de

    1997-01-01

    Cell-density-dependent gene expression appears to be widely spread in bacteria. This quorum-sensing phenomenon has been well established in Gram-negative bacteria, where N-acyl homoserine lactones are the diffusible communication molecules that modulate cell-density-dependent phenotypes. Similarly,

  8. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  9. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    Science.gov (United States)

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  10. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    Science.gov (United States)

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (pquorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  11. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  12. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment

    Science.gov (United States)

    Ma, Zhi P.; Lao, Yong M.; Jin, Hui; Lin, Guang H.; Cai, Zhong H.; Zhou, Jin

    2016-01-01

    Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health. PMID:27994584

  13. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata Rhizosphere Environment

    Directory of Open Access Journals (Sweden)

    Zhiping Ma

    2016-12-01

    Full Text Available Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS. Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e. acyl homoserine lactones (AHLs, in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3% tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes and Actinobacteria. Thin-layer chromatography (TLC separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry (UPLC-MS, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health.

  14. Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders

    Science.gov (United States)

    Tannières, Mélanie; Lang, Julien; Barnier, Claudie; Shykoff, Jacqui A.; Faure, Denis

    2017-01-01

    Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants. PMID:28054641

  15. Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders

    Science.gov (United States)

    Tannières, Mélanie; Lang, Julien; Barnier, Claudie; Shykoff, Jacqui A.; Faure, Denis

    2017-01-01

    Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants.

  16. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking.

    Science.gov (United States)

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-07-01

    Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra- or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish aquaculture.

  17. Inhibition of quorum sensing and biofilm formation in Vibrio harveyi by 4-fluoro-DPD; a novel potent inhibitor of signalling.

    Science.gov (United States)

    Kadirvel, Manikandan; Fanimarvasti, Fariba; Forbes, Sarah; McBain, Andrew; Gardiner, John M; Brown, Gavin D; Freeman, Sally

    2014-05-21

    (S)-4,5-Dihydroxypentane-2,3-dione [(S)-DPD, (1)] is a precursor for , a quorum sensing signalling molecule for inter- and intra-species bacterial communication. The synthesis of its fluoro-analogue, 4-fluoro-5-hydroxypentane-2,3-dione () is reported. An intermediate in this route also enables a new, shorter synthesis of the native (S)-DPD. 4-Fluoro-DPD (2) completely inhibited bioluminescence and bacterial growth of Vibrio harveyi BB170 strain at 12.5 μM and 100 μM, respectively.

  18. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...... and particularly higher organisms, covering a variety of functions ranging from pathogenic to symbiotic interactions. The detailed knowledge of these bacterial communication systems has opened completely new perspectives for controlling undesired microbial activities....

  19. Quorum sensing in Gram-negative bacteria

    Institute of Scientific and Technical Information of China (English)

    WU Hong; SONG Zhijun; Niels HФIBY; Michael GIVSKOV

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community,and the mechanism is referred to as quorum sensing (QS).Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal molecules.Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread.These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment and particularly higher organisms,covering a variety of functions ranging from pathogenic to symbiotic interactions.The detailed knowledge of these bacterial communication systems has opened completely new perspectives for controlling undesired microbial activities.

  20. Structural insights into a novel interkingdom signaling circuit by cartography of the ligand-binding sites of the homologous quorum sensing LuxR-family.

    Science.gov (United States)

    Covaceuszach, Sonia; Degrassi, Giuliano; Venturi, Vittorio; Lamba, Doriano

    2013-10-15

    Recent studies have identified a novel interkingdom signaling circuit, via plant signaling molecules, and a bacterial sub-family of LuxR proteins, bridging eukaryotes and prokaryotes. Indeed pivotal plant-bacteria interactions are regulated by the so called Plant Associated Bacteria (PAB) LuxR solo regulators that, although closely related to the quorum sensing (QS) LuxR family, do not bind or respond to canonical quorum sensing N-acyl homoserine lactones (AHLs), but only to specific host plant signal molecules. The large body of structural data available for several members of the QS LuxR family complexed with different classes of ligands (AHLs and other compounds), has been exploited to dissect the cartography of their regulatory domains through structure-based multiple sequence alignments, structural superimposition and a comparative analysis of the contact residues involved in ligand binding. In the absence of experimentally determined structures of members of the PAB LuxR solos subfamily, an homology model of its prototype OryR is presented, aiming to elucidate the architecture of its ligand-binding site. The obtained model, in combination with the cartography of the regulatory domains of the homologous QS LuxRs, provides novel insights into the 3D structure of its ligand-binding site and unveils the probable molecular determinants responsible for differences in selectivity towards specific host plant signal molecules, rather than to canonical QS compounds.

  1. AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    Directory of Open Access Journals (Sweden)

    Winzer Klaus

    2009-10-01

    Full Text Available Abstract Background Campylobacter jejuni contains a homologue of the luxS gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2 in Vibrio harveyi and Vibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controlling C. jejuni gene expression when it is produced at high levels during mid exponential growth phase. Results AI-2 activity was produced by the parental strain NCTC 11168 when grown in rich Mueller-Hinton broth (MHB as expected, but interestingly was not present in defined Modified Eagles Medium (MEM-α. Consistent with previous studies, the luxS mutant showed comparable growth rates to the parental strain and exhibited decreased motility halos in both MEM-α and MHB. Microarray analysis of genes differentially expressed in wild type and luxS mutant strains showed that many effects on mRNA transcript abundance were dependent on the growth medium and linked to metabolic functions including methionine metabolism. Addition of exogenously produced AI-2 to the wild type and the luxS mutant, growing exponentially in either MHB or MEM-α did not induce any transcriptional changes as analysed by microarray. Conclusion Taken together these results led us to conclude that there is no evidence for the role of AI-2 in cell-to-cell communication in C. jejuni strain NCTC 11168 under the growth conditions used, and that the effects of the luxS mutation on the transcriptome are related to the consequential loss of function in the activated methyl cycle.

  2. Development and validation of a UHPLC-MS/MS procedure for quantification of the Pseudomonas Quinolone Signal in bacterial culture after acetylation for characterization of new quorum sensing inhibitors.

    Science.gov (United States)

    Maurer, Christine K; Steinbach, Anke; Hartmann, Rolf W

    2013-12-01

    The appearance of antibiotic resistance requires novel therapeutic strategies. One approach is to selectively attenuate bacterial pathogenicity by interfering with bacterial cell-to-cell communication known as quorum sensing. The PQS quorum sensing system of Pseudomonas aeruginosa employs as signal molecule the Pseudomonas Quinolone Signal (PQS; 2-heptyl-3-hydroxy-4-(1H)-quinolone), a key contributor to virulence and biofilm formation. Thus, interference with PQS production is considered as promising approach for the development of novel anti-infectives. Therefore, in this study, we developed and validated an ultra-high performance liquid chromatographic-tandem mass spectrometric approach for reliable quantification of PQS in P. aeruginosa cultures for activity determination of new quorum sensing inhibitors. The poor chromatographic properties of PQS reported by others could be overcome by fast microwave-assisted acetylation. The validation procedure including matrix effects, recovery, process efficiency, selectivity, carry-over, accuracy and precision, stability of the processed sample, and limit of quantification demonstrated that the method fulfilled all requirements of common validation guidelines. Its applicability was successfully proven in routine testing. In addition, two-point calibration was shown to be applicable for fast and reliable PQS quantification saving time and resources. In summary, the described method provides a powerful tool for the discovery of new quorum sensing inhibitors as potential anti-infectives and illustrated the usefulness of chemical derivatization, acetylation, in liquid chromatography-mass spectrometry analysis.

  3. A metabolic regulator modulates virulence and quorum sensing signal production in Pectobacterium atrosepticum.

    Science.gov (United States)

    Cubitt, Marion F; Hedley, Peter E; Williamson, Neil R; Morris, Jenny A; Campbell, Emma; Toth, Ian K; Salmond, George P C

    2013-03-01

    Plant cell wall-degrading enzymes (PCWDE) are key virulence determinants in the pathogenesis of the potato pathogen Pectobacterium atrosepticum. In this study, we report the impact on virulence of a transposon insertion mutation in the metJ gene that codes for the repressor of the methionine biosynthesis regulon. In a mutant strain defective for the small regulatory RNA rsmB, PCWDE are not produced and virulence in potato tubers is almost totally abolished. However, when the metJ gene is disrupted in this background, the rsmB(-) phenotype is suppressed and virulence and PCWDE production are restored. Additionally, when metJ is disrupted, production of the quorum-sensing signal, N-(3-oxohexanoyl)-homoserine lactone, is increased. The metJ mutant strains showed pleiotropic transcriptional impacts affecting approximately a quarter of the genome. Genes involved in methionine biosynthesis were most highly upregulated but many virulence-associated transcripts were also upregulated. This is the first report of the impact of the MetJ repressor on virulence in bacteria.

  4. Vibrio vulnificus produces quorum sensing signals of the AHL-class.

    Science.gov (United States)

    Valiente, Esmeralda; Bruhn, Jesper Bartholin; Nielsen, Kristian Fog; Larsen, Jens Laurits; Roig, Francisco J; Gram, Lone; Amaro, Carmen

    2009-07-01

    Vibrio vulnificus is an aquatic pathogenic bacterium that can cause vibriosis in humans and fish. The species is subdivided into three biotypes with the fish-virulent strains belonging to biotype 2. The quorum sensing (QS) phenomenon mediated by furanosyl borate diester or autoinducer 2 (AI-2) has been described in human strains of biotype 1, and here we show that the luxS gene which encodes AI-2 is present in all strains of V. vulnificus regardless of origin, biotype or serovar. In this study, we also demonstrate that V. vulnificus produces QS signals of the acylated homoserine lactone (AHL) class (AI-1). AHLs were detected in strains of biotype 1 and 2 from water, fish and human wound infections but not in strains isolated from human septicaemic cases. The AHL compound was identified as N-butanoyl-homoserine-lactone (C(4)-HL) by both reporter strains and by HPLC-high-resolution MS. C(4)-HL was detected when AHL-positive strains were grown in low-nutrient medium [modified sea water yeast extract (MSWYE)] but not in rich media (tryptic soy broth or brain-heart infusion) and its production was enhanced when blood factors were added to MSWYE. C(4)-HL was detected in vivo, in eels infected with AHL-positive biotype 2 strains. No known AHL-related gene was detected by PCR or Southern blot suggesting that AHL-related genes in V. vulnificus are different from those found in other Gram-negative bacteria.

  5. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    Directory of Open Access Journals (Sweden)

    Xianzhen Li

    2010-02-01

    Full Text Available A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relatives based on the 16S rRNA gene sequence are Bacillus anthracis, Bacillus thuringiensis, and Brevibacillus brevis (syn. Bacillus brevis with the similarity of 96.5%. The DNA–DNA hybridization data indicates a low level of genomic relatedness with the relative type strains of Bacillus thuringiensis (6.1%, Bacillus anthracis (10.5% and Brevibacillus brevis (8.7%. On the basis of the phenotypic and phylogenetic data together with the genomic distinctiveness, the LQQ strain represents a novel species of the genus Bacillus, for which the name Bacillus marcorestinctum sp. nov. is proposed. The type strain is LQQT.

  6. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier.

    Science.gov (United States)

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called 'quorum sensing'. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.

  7. Detection of Quorum Sensing N-acylhomoserine lactones Signal Molecules%细菌群体感应信号分子——酰基高丝氨酸内酯的检测

    Institute of Scientific and Technical Information of China (English)

    宋水山; 黄媛媛

    2007-01-01

    革兰氏阴性菌根据信号分子N-酰基高丝氨酸内酯(AHLs)的浓度可以监测周围环境中自身或其他细菌的数量变化,当信号分子达到一定浓度阈值时,能启动相关基因的表达来适应环境的变化,这一调控系统被称为细菌的群体感应(quorum sensing,QS)系统.快速简便而有效地检测细菌是否以及产生何种信号分子成为深入研究和了解细菌群体感应的重要手段.现对信号分子AHLs敏感的用于检测不同的信号分子AHLs的微生物传感菌进行综述,并对其检测能力进行了讨论.

  8. Identification of poultry meat-derived fatty acids functioning as quorum sensing signal inhibitors to autoinducer-2 (AI-2).

    Science.gov (United States)

    Widmer, K W; Soni, K A; Hume, M E; Beier, R C; Jesudhasan, P; Pillai, S D

    2007-11-01

    Autoinducer-2 (AI-2) is a compound that plays a key role in bacterial cell-to-cell communication (quorum sensing). Previous research has shown certain food matrices inhibit this signaling compound. Using the reporter strain, Vibrio harveyi BB170, quorum-sensing inhibitors contained in poultry meat wash (PMW) samples were characterized by molecular weight and hydrophobic properties using liquid chromatography systems. Most fractions that demonstrated AI-2 inhibition were 13.7 kDa or less, and had hydrophobic properties. Hexane was used to extract inhibitory compounds from a PMW preparation and the extract was further separated by gas chromatography (GC). Several fatty acids were identified and quantified. Linoleic acid, oleic acid, palmitic acid, and stearic acid were each tested for inhibition at 0.1, 1, and 10 mM concentrations. All samples expressed AI-2 inhibition (ranging from approximately 25% to 99%). Fatty acids, combined in concentrations equivalent to those determined by GC analysis, expressed inhibition at 59.5%, but higher combined concentrations (10- and 100-fold) had inhibition at 84.4% and 69.5%, respectively. The combined fatty acids (100-fold) did not demonstrate a substantial decrease in colony plate counts, despite presenting high AI-2 inhibition. These fatty acids, through modulating quorum sensing by inhibition, may offer a unique means to control foodborne pathogens and reduce microbial spoilage.

  9. In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment

    Directory of Open Access Journals (Sweden)

    Giuseppe Allegretta

    2017-05-01

    Full Text Available Pseudomonas aeruginosa is a Gram-negative bacterium, which causes opportunistic infections in immuno-compromised individuals. Due to its multiple resistances toward antibiotics, the development of new drugs is required. Interfering with Quorum Sensing (QS, a cell-to-cell communication system, has shown to be highly efficient in reducing P. aeruginosa pathogenicity. One of its QS systems employs Pseudomonas Quinolone Signal (PQS and 4-hydroxy-2-heptylquinoline (HHQ as signal molecules. Both activate the transcriptional regulator MvfR (Multiple Virulence Factor Regulator, also called PqsR, driving the production of QS molecules as well as toxins and biofilm formation. The aim of this work was to elucidate the effects of QS inhibitors (QSIs, such as MvfR antagonists and PqsBC inhibitors, on the biosynthesis of the MvfR-regulated small molecules 2′-aminoacetophenone (2-AA, dihydroxyquinoline (DHQ, HHQ, PQS, and 4-hydroxy-2-heptylquinoline-N-oxide (HQNO. The employed synthetic MvfR antagonist fully inhibited pqs small molecule formation showing expected sigmoidal dose-response curves for 2-AA, HQNO, HHQ and PQS. Surprisingly, DHQ levels were enhanced at lower antagonist concentrations followed by a full suppression at higher QSI amounts. This particular bi-phasic profile hinted at the accumulation of a biosynthetic intermediate resulting in the observed overproduction of the shunt product DHQ. Additionally, investigations on PqsBC inhibitors showed a reduction of MvfR natural ligands, while increased 2-AA, DHQ and HQNO levels compared to the untreated cells were detected. Moreover, PqsBC inhibitors did not show any significant effect in PA14 pqsC mutant demonstrating their target selectivity. As 2-AA is important for antibacterial tolerance, the QSIs were evaluated in their capability to attenuate persistence. Indeed, persister cells were reduced along with 2-AA inhibition resulting from MvfR antagonism, but not from PqsBC inhibition. In conclusion

  10. Vibrio vulnificus produces quorum sensing signals of the AHL-class

    DEFF Research Database (Denmark)

    Valiente, E.; Bruhn, Jesper Bartholin; Nielsen, Kristian Fog

    2009-01-01

    Vibrio vulnificus is an aquatic pathogenic bacterium that can cause vibriosis in humans and fish. The species is subdivided into three biotypes with the fish-virulent strains belonging to biotype 2. The quorum sensing (QS) phenomenon mediated by furanosyl borate diester or autoinducer 2 (AI-2) ha...

  11. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    Science.gov (United States)

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  12. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    Science.gov (United States)

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  13. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum.

    Science.gov (United States)

    Lindemann, Andrea; Pessi, Gabriella; Schaefer, Amy L; Mattmann, Margrith E; Christensen, Quin H; Kessler, Aline; Hennecke, Hauke; Blackwell, Helen E; Greenberg, E Peter; Harwood, Caroline S

    2011-10-01

    Many species of Proteobacteria communicate by using LuxI-LuxR-type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodulating bradyrhizobia, direct production of the aryl-HSLs p-coumaroyl-HSL and cinnamoyl-HSL, respectively. Here we report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to RpaI and BtaI and catalyzes the synthesis of isovaleryl-HSL (IV-HSL), a branched-chain fatty acyl-HSL. We show that IV-HSL induces expression of bjaI, and in this way IV-HSL functions like many other acyl-HSL quorum-sensing signals. Purified histidine-tagged BjaI was an IV-HSL synthase, which was active with isovaleryl-CoA but not detectably so with isovaleryl-ACP. This suggests that the RpaI-BtaI-BjaI subfamily of acyl-HSL synthases may use CoA- rather than ACP-linked substrates for acyl-HSL synthesis. The bjaI-linked bjaR(1) gene is involved in the response to IV-HSL, and BjaR(1) is sensitive to IV-HSL at concentrations as low as 10 pM. Low but sufficient levels of IV-HSL (about 5 nM) accumulate in B. japonicum culture fluid. The low levels of IV-HSL synthesis have likely contributed to the fact that the quorum-sensing signal from this bacterium has not been described elsewhere.

  14. Optimal census by quorum sensing

    Science.gov (United States)

    Taillefumier, Thibaud

    Bacteria regulate their gene expression in response to changes in local cell density in a process called quorum sensing. To synchronize their gene-expression programs, these bacteria need to glean as much information as possible about local density. Our study is the first to physically model the flow of information in a quorum-sensing microbial community, wherein the internal regulator of the individual's response tracks the external cell density via an endogenously generated shared signal. Combining information theory and Lagrangian optimization, we find that quorum-sensing systems can improve their information capabilities by tuning circuit feedbacks. At the population level, external feedback adjusts the dynamic range of the shared input to individuals' detection channels. At the individual level, internal feedback adjusts the regulator's response time to dynamically balance output noise reduction and signal tracking ability. Our analysis suggests that achieving information benefit via feedback requires dedicated systems to control gene expression noise, such as sRNA-based regulation.

  15. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    OpenAIRE

    Jesus Olivero-Verbel; Ana Barreto-Maya; Angela Bertel-Sevilla; Elena E. Stashenko

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolate...

  16. Synthetic quorum sensing in model microcapsule colonies.

    Science.gov (United States)

    Shum, Henry; Balazs, Anna C

    2017-08-08

    Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synthetic microcapsules that communicate by producing and releasing signaling molecules. Production of the chemicals is regulated by a biomimetic negative feedback loop, the "repressilator" network. Through theory and simulation, we show that the chemical behavior of such capsules is sensitive to both the density and number of capsules in the colony. For example, decreasing the spacing between a fixed number of capsules can trigger a transition in chemical activity from the steady, repressed state to large-amplitude oscillations in chemical production. Alternatively, for a fixed density, an increase in the number of capsules in the colony can also promote a transition into the oscillatory state. This configuration-dependent behavior of the capsule colony exemplifies quorum-sensing behavior. Using our theoretical model, we predict the transitions from the steady state to oscillatory behavior as a function of the colony size and capsule density.

  17. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish

    Science.gov (United States)

    Zhou, Shuxin; Zhang, An; Yin, Hongping; Chu, Weihua

    2016-01-01

    Quorum sensing (QS) is a cell density dependent process that enables bacteria to communicate with each other based on the production, secretion and sensing of the auto-inducer molecules and then subsequently regulate virulence associated gene expression. Interrupting quorum sensing may represent a novel alternative approach to combat bacterial pathogen. Several bacteria can produce quorum quenching (QQ) enzymes. However, the role of QQ bacteria in shaping the microbiota and the level of N-acyl-homoserine lactones (AHLs, a prevalent type of QS molecules) producing bacteria remains largely unknown. The objective of this study was to examine the presence of AHLs in the fish intestine and investigate the modulation of gut microbiota and its effect on Aeromonas hydrophila level by a QQ enzyme producing probiotic Bacillus sp. QSI-1. AHLs were found in fish gut content and were confirmed in Aeromonas species using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens AT 136 (pZLR4) as reporter strains. We demonstrated that the composition of fish gut microbiota was affected by quenching bacteria QSI-1, and the percentage of A. hydrophila was decreased significantly. Taken together, these results provide valuable insights into QQ enzyme producing probiotics can modulate the microbiota structure and decrease the percentage of AHL-producing pathogenic bacteria in the gut. These data strongly suggest that QQ probiotics may serve as non-antibiotic feed additive in aquaculture to control bacterial diseases. PMID:28018866

  18. The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae.

    Science.gov (United States)

    Natrah, F M I; Alam, Md Iftakharul; Pawar, Sushant; Harzevili, A Shiri; Nevejan, Nancy; Boon, Nico; Sorgeloos, Patrick; Bossier, Peter; Defoirdt, Tom

    2012-09-14

    In this study, the link between quorum sensing in Aeromonas spp. and its virulence towards burbot (Lota lota) was investigated. High mortality occurred in burbot juveniles challenged with Aeromonas salmonicida HN-00, but not in juveniles challenged with Aeromonas hydrophila AH-1N. Meanwhile, both A. hydrophila AH-1N and A. salmonicida HN-00 were virulent towards larvae. The effect of quorum sensing on the virulence of A. hydrophila AH-1N towards burbot larvae was further investigated using quorum sensing mutants (N-(butyryl)-L-homoserine lactone production and receptor mutants). Challenge with these mutants resulted in higher survival of burbot larvae when compared to challenge with the wild type, and the addition of the signal molecule N-butyryl-L-homoserine lactone restored the virulence of the quorum sensing production mutant. Moreover, quorum sensing inhibitors protected the burbot larvae from both Aeromonas strains. Finally, the freshwater micro-algae Chlorella saccharophila and Chlamydomonas reinhardtii, which are able to interfere with quorum sensing, also protected burbot from the pathogens. However, QS interference was unlikely to be the only mechanism. This study revealed that the virulence of Aeromonas spp. towards burbot is regulated by quorum sensing and that quorum sensing inhibitors and micro-algae are promising biocontrol agents.

  19. The effect of phosphate deficiency on quorum sensing signaling pathway of Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Najmeh Pakdaman

    2015-02-01

    Full Text Available   Introduction : Phosphorus is one of the most essential macroelements for bacterial cells. Since phosphate (PO4-3 limitation is frequently encountered in soils, bacteria developed some mechanisms in response to this sever condition. Phosphate transporter (PstS and proteins involved in quorum sensing (QS signaling pathway are affected by mediating PhoB, response regulator, following phosphate starvation. QS system of Sinorhizobium meliloti composed of at least three genes of sinI (autoinducer synthase, sinR and expR (autoinducer activated receptor which involved in its free living and symbiotic functions .   Materials and method s: The optical density (OD600 of different S. meliloti transformed strains carrying pLK004 (a pstS promoter-egfp fusion, pLK64 (a sinI promoter-egfp fusion, pLK65 (a sinR promoter-egfp fusion, pLK66 (an expR promoter-egfp fusion and control (promoterless-egfp fusion plasmids were read under different phosphate concentrations of 0.1 (phosphate deficiency, 0.5 and 2 mM (sufficient phosphate at several time points of 16, 24 and 40h. The promoter activity of different genes of pstS, sinI, sinR and expR were measured as emitted fluorescence per bacterial cell density (OD600 under different phosphate concentrations .   Results : By reducing phosphate concentration in the medium, the growth rate of transformed bacteria decreased, especially at 40h. The promoter activity of pstS, sinI and sinR, but not expR, genes was activated following phosphate starvation .   Discussion and conclusion : S. meliloti can upregulate PstS to partly compensate phosphate deficiency in the environment. The gene of sinR is also activated in a PhoB dependent manner as phosphate starvation is encountered. SinR is the activator of sinI, so the upregulation of QS pathway under phosphate deficiency may be facilitate free living and symbiotic bacterial functions .

  20. Chemical probes for competitive profiling of the quorum sensing signal synthase PqsD of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Michaela Prothiwa

    2016-12-01

    Full Text Available The human pathogen Pseudomonas aeruginosa uses the pqs quorum sensing system to coordinate the production of its broad spectrum of virulence factors to facilitate colonization and infection of its host. Hereby, the enzyme PqsD is a virulence related quorum sensing signal synthase that catalyzes the central step in the biosynthesis of the Pseudomonas quinolone signals HHQ and PQS. We developed a library of cysteine reactive chemical probes with an alkyne handle for fluorescence tagging and report the selective and highly sensitive in vitro labelling of the active site cysteine of this important enzyme. Interestingly, only one type of probe, with a reactive α-chloroacetamide was capable of covalently reacting with the active site. We demonstrated the potential of our probes in a competitive labelling platform where we screened a library of synthetic HHQ and PQS analogues with heteroatom replacements and found several inhibitors of probe binding that may represent promising scaffolds for the development of customized PqsD inhibitors as well as a chemical toolbox to investigate the activity and active site specificity of the enzyme.

  1. Quorum sensing signaling networks in bacteria and the potential application%细菌群体感应信号网络及其应用

    Institute of Scientific and Technical Information of China (English)

    徐芳; 李军; 段云飞; 刘晓光

    2014-01-01

    Quorum sensing ( QS) in bacteria is a cell-to-cell communication mechanism mediated by small diffusible signal molecules that trigger changes in a set of gene expression in a population-dependent manner to coordinate collective behavior in response to envi-ronmental challenges using sophisticated intercellular communication networks .Bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities , as well as the interactions with host .The nature of the QS chemical signals , the sig-nal relay mechanisms differ , and the target genes and phenotypes controlled by bacterial QS systems are also species -or strain-specific with diversity.Here we focused on the QS networks consisting of multiple QS circuits in the same isolate of bacteria and their interplay that globally modulate bacterial gene expression , social behavior and adaptation to changing environment , as well as their integrated in-to other regulatory systems to form complex signal transduction networks in bacteria .QS as a novel molecular target displayed great po-tential for application in the fields of agriculture , medicine and environment .%群体感应( Quorum sensing , QS)是一种细菌细胞与细胞间的通讯系统,即细菌通过分泌扩散性小分子信号感知细菌群体的密度,从而引起一组特定基因在转录水平协调表达。大量研究已表明,群体感应系统控制细菌多种生理行为和过程,以及与真核宿主(寄主)的互作。参与群体感应调控的信号分子多种多样,QS系统所调控的功能也具有多样性,甚至菌株专化性。通过聚焦同一细菌中由多个QS系统组成的信号网络,综合评述了不同QS系统之间如何相互作用全局调控基因表达,以及QS系统如何通过与其它全局调控系统整合精细调节细菌的社会行为以及环境适应性及其应用前景。

  2. [Quorum sensing involved in the regulation of secondary metabolism in streptomycetes--a review].

    Science.gov (United States)

    Liu, Ming; Li, Aiying

    2011-05-01

    Quorum sensing as an extracellular signal transduction system is distributed widely among many bacteria to coordinate their behaviors or actions by mediating gene expression, and plays key roles in many physiological processes and pathogenicity. Quorum sensing was also observed among many streptomycetes, as an important regulatory mechanism of secondary metabolite biosynthesis and/or cell differentiation, and displayed certain diversity of the autoinducer structures and action mechanisms. The participation of A-factor-driven quorum sensing systems in the secondary metabolism has been extensively studied, and triggered the identification of a major signal class featured with gamma-butyrolactone core. Additionally, PI-factor, M-factor and certain small antibiotic molecules recently found in streptomycetes clearly could play important roles in the biosynthetic pathways of some antibiotics, and might represent extracellular autoinducer classes with novel structures. Meanwhile, some specific products of streptomycetes including cholesterol oxidase and glycerol have been identified to function as cell-signaling molecules which modulate the secondary metabolic activities in streptomycetes, probably by the mode of quorum sensing. Here, we reviewed research advances on quorum sensing systems involved in the accumulation of secondary metabolites in streptomycetes, mainly focusing on the clarification of their action modes and structural diversity of autoinducers. We also prospected the research trends in this field and application of autoinducers through quorum-sensing in metabolic engineering of natural products.

  3. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review.

    Science.gov (United States)

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao

    2015-12-01

    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Flavonoids Suppress Pseudomonas aeruginosa Virulence through Allosteric Inhibition of Quorum-sensing Receptors.

    Science.gov (United States)

    Paczkowski, Jon E; Mukherjee, Sampriti; McCready, Amelia R; Cong, Jian-Ping; Aquino, Christopher J; Kim, Hahn; Henke, Brad R; Smith, Chari D; Bassler, Bonnie L

    2017-03-10

    Quorum sensing is a process of cell-cell communication that bacteria use to regulate collective behaviors. Quorum sensing depends on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. In many bacterial species, quorum sensing controls virulence factor production. Thus, disrupting quorum sensing is considered a promising strategy to combat bacterial pathogenicity. Several members of a family of naturally produced plant metabolites called flavonoids inhibit Pseudomonas aeruginosa biofilm formation by an unknown mechanism. Here, we explore this family of molecules further, and we demonstrate that flavonoids specifically inhibit quorum sensing via antagonism of the autoinducer-binding receptors, LasR and RhlR. Structure-activity relationship analyses demonstrate that the presence of two hydroxyl moieties in the flavone A-ring backbone are essential for potent inhibition of LasR/RhlR. Biochemical analyses reveal that the flavonoids function non-competitively to prevent LasR/RhlR DNA binding. Administration of the flavonoids to P. aeruginosa alters transcription of quorum sensing-controlled target promoters and suppresses virulence factor production, confirming their potential as anti-infectives that do not function by traditional bacteriocidal or bacteriostatic mechanisms. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Pandoraea sp. RB-44, A Novel Quorum Sensing Soil Bacterium

    Directory of Open Access Journals (Sweden)

    Robson Ee Han-Jen

    2013-10-01

    Full Text Available Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL. To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.

  6. Global convergence of quorum-sensing networks

    Science.gov (United States)

    Russo, Giovanni; Slotine, Jean Jacques E.

    2010-10-01

    In many natural synchronization phenomena, communication between individual elements occurs not directly but rather through the environment. One of these instances is bacterial quorum sensing, where bacteria release signaling molecules in the environment which in turn are sensed and used for population coordination. Extending this motivation to a general nonlinear dynamical system context, this paper analyzes synchronization phenomena in networks where communication and coupling between nodes are mediated by shared dynamical quantities, typically provided by the nodes’ environment. Our model includes the case when the dynamics of the shared variables themselves cannot be neglected or indeed play a central part. Applications to examples from system biology illustrate the approach.

  7. Global convergence of quorum-sensing networks

    CERN Document Server

    Russo, Giovanni

    2010-01-01

    In many natural synchronization phenomena, communication between individual elements occurs not directly, but rather through the environment. One of these instances is bacterial quorum sensing, where bacteria release signaling molecules in the environment which in turn are sensed and used for population coordination. Extending this motivation to a general non- linear dynamical system context, this paper analyzes synchronization phenomena in networks where communication and coupling between nodes are mediated by shared dynamical quan- tities, typically provided by the nodes' environment. Our model includes the case when the dynamics of the shared variables themselves cannot be neglected or indeed play a central part. Applications to examples from systems biology illustrate the approach.

  8. Quorum-sensing regulates biofilm formation in Vibrio scophthalmi

    Directory of Open Access Journals (Sweden)

    García-Aljaro Cristina

    2012-12-01

    Full Text Available Abstract Background In a previous study, we demonstrated that Vibrio scophthalmi, the most abundant Vibrio species among the marine aerobic or facultatively anaerobic bacteria inhabiting the intestinal tract of healthy cultured turbot (Scophthalmus maximus, contains at least two quorum-sensing circuits involving two types of signal molecules (a 3-hydroxy-dodecanoyl-homoserine lactone and the universal autoinducer 2 encoded by luxS. The purpose of this study was to investigate the functions regulated by these quorum sensing circuits in this vibrio by constructing mutants for the genes involved in these circuits. Results The presence of a homologue to the Vibrio harveyi luxR gene encoding a main transcriptional regulator, whose expression is modulated by quorum–sensing signal molecules in other vibrios, was detected and sequenced. The V. scophthalmi LuxR protein displayed a maximum amino acid identity of 82% with SmcR, the LuxR homologue found in Vibrio vulnificus. luxR and luxS null mutants were constructed and their phenotype analysed. Both mutants displayed reduced biofilm formation in vitro as well as differences in membrane protein expression by mass-spectrometry analysis. Additionally, a recombinant strain of V. scophthalmi carrying the lactonase AiiA from Bacillus cereus, which causes hydrolysis of acyl homoserine lactones, was included in the study. Conclusions V. scophthalmi shares two quorum sensing circuits, including the main transcriptional regulator luxR, with some pathogenic vibrios such as V. harveyi and V. anguillarum. However, contrary to these pathogenic vibrios no virulence factors (such as protease production were found to be quorum sensing regulated in this bacterium. Noteworthy, biofilm formation was altered in luxS and luxR mutants. In these mutants a different expression profile of membrane proteins were observed with respect to the wild type strain suggesting that quorum sensing could play a role in the regulation of

  9. Exploring the chemical space of quorum sensing peptides.

    Science.gov (United States)

    Wynendaele, Evelien; Gevaert, Bert; Stalmans, Sofie; Verbeke, Frederick; De Spiegeleer, Bart

    2015-09-01

    Quorum sensing peptides are signalling molecules that are produced by mainly gram-positive bacteria. These peptides can exert different effects, ranging from intra- and interspecies bacterial virulence to bacterial-host interactions. To better comprehend these functional differences, we explored their chemical space, bacterial species distribution and receptor-binding properties using multivariate data analyses, with information obtained from the Quorumpeps database. The quorum sensing peptides can be categorized into three main clusters, which, in turn, can be divided into several subclusters: the classification is based on characteristic chemical properties, including peptide size/compactness, hydrophilicity/lipophilicity, cyclization and the presence of (unnatural) S-containing and aromatic amino acids. Most of the bacterial species synthesize peptides located into one cluster. However, some Streptococcus, Stapylococcus, Clostridium, Bacillus and Lactobacillus species produce peptides that are distributed over more than one cluster, with the quorum sensing peptides of Bacillus subtilis even occupying the total peptide space. The AgrC, FsrC and LamC receptors are only activated by cyclic (thio)lacton or lactam quorum sensing peptides, while the lipophilic isoprenyl-modified peptides solely bind the ComP receptor in Bacillus species.

  10. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    Science.gov (United States)

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  11. Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives.

    Science.gov (United States)

    Boyen, F; Eeckhaut, V; Van Immerseel, F; Pasmans, F; Ducatelle, R; Haesebrouck, F

    2009-03-30

    Under certain circumstances the individuals of a bacterial population may find advantages in acting together and making "collective decisions". This phenomenon is better known as quorum sensing. When the concentration of signal molecules produced by the surrounding bacteria exceeds a certain threshold, the bacterial population acts as a single organism, collectively expressing virulence genes, biofilm forming genes, etc. Several mechanisms of quorum sensing are discussed, each with its distinct signal molecules and respective receptors. Some of these mechanisms are restricted to sensing intraspecies signalling, but interspecies and even interkingdom signalling have also been described. Several veterinary pathogens such as Staphylococcus aureus, Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Salmonella Typhimurium use quorum sensing as a means to optimize virulence gene expression and host colonization. Therefore, targeting of the QS mechanisms may provide a novel strategy for combating bacterial infections, also in veterinary medicine.

  12. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria.

    Science.gov (United States)

    Polkade, Ashish V; Mantri, Shailesh S; Patwekar, Umera J; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.

  13. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals

    Directory of Open Access Journals (Sweden)

    Anetzberger Claudia

    2012-09-01

    Full Text Available Abstract Background Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection and exoproteolytic activity (fluorescence of a promoter::gfp fusion, in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population.

  14. Chemical Composition and Disruption of Quorum Sensing Signaling in Geographically Diverse United States Propolis

    Science.gov (United States)

    Savka, Michael A.; Dailey, Lucas; Popova, Milena; Mihaylova, Ralitsa; Merritt, Benjamin; Masek, Marissa; Le, Phuong; Nor, Sharifah Radziah Mat; Ahmad, Muhammad; Hudson, André O.; Bankova, Vassya

    2015-01-01

    Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI) activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL-) dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1) rich in cinnamic acid derivatives, (2) rich in flavonoids, and (3) rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America) and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified. PMID:25960752

  15. Chemical Composition and Disruption of Quorum Sensing Signaling in Geographically Diverse United States Propolis

    Directory of Open Access Journals (Sweden)

    Michael A. Savka

    2015-01-01

    Full Text Available Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL- dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1 rich in cinnamic acid derivatives, (2 rich in flavonoids, and (3 rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified.

  16. The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Thommie Karlsson

    Full Text Available Quorum sensing (QS signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C(12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C(12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C(12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C(12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C(12-HSL with a sensor bioassay. Moreover, 3O-C(12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P. aeruginosa 3O-C(12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C(12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial--human cell communication.

  17. Pseudomonas quinolone signalling system: a component of quorum sensing cascade is a crucial player in the acute urinary tract infection caused by Pseudomonas aeruginosa.

    Science.gov (United States)

    Bala, Anju; Chhibber, Sanjay; Harjai, Kusum

    2014-11-01

    Pseudomonas aeruginosa is an opportunistic pathogen which employs quorum sensing system to regulate several genes required for its survival and pathogenicity within the host. Besides acylhomoserine lactone (AHL) mediated las and rhl systems, this organism possesses Pseudomonas quinolone signalling (PQS) system based on alkyl quinolone signal molecules. The quinolone system represents another layer of sophistication in the complex quorum sensing cascade. Therefore, in the present study, we evaluated the contribution of the PQS system in the establishment of acute urinary tract infection (UTI) in the mouse model. For this, wild-type parent strain of P. aeruginosa MPAO1 and its isogenic single transposon mutant strains pqsH and pqsA were employed to induce UTI in mice. PQS molecules in the tissue homogenates of mice were detected by high performance thin layer chromatography (HP-TLC) method. Virulence of strains was assessed in terms of bacteriological count, histopathological lesions in the renal and bladder tissue and generation of pathological index markers like reactive nitrogen intermediates and malondialdehyde. HP-TLC analysis showed presence of PQS molecules in the renal and bladder tissue of mice infected with MPAO1 while no PQS was detected in case of pqsH and pqsA mutant strains. Results indicated that MPAO1 possessing fully functional PQS biosynthetic genes was highly virulent and caused acute pyelonephritis with severe inflammation and tissue destruction. On the contrary, significant reduction in the log count, mild tissue damage and declined levels of pathological markers were observed in mice infected with mutant strains as compared to MPAO1. Further among mutants, all these parameters were maximally impaired in the pqsA mutant in which synthesis of alkyl quinolones was completely abolished due to the transposon mutation in respective gene. Virulence of the pqsH mutant strain was lesser than that of the MPAO1 but higher than pqsA mutant. In addition, the

  18. Variability of the Quorum Sensing System in Natural Isolates of Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Ines Mandic-Mulec

    2003-01-01

    Full Text Available Bacteria communicate with one another by (emitting and/or reacting to chemical signals. These communications, also known as quorum sensing, enable cells to control gene expression in response to cell density at the intra- and inter-species level. While bacteria use common signaling themes, variations in the design of the extracellular signals, the signal detection apparatus, and the biochemical mechanisms of signal relay have allowed quorum sensing systems to be adapted to diverse uses. The quorum sensing systems that govern natural genetic competence in Bacillus subtilis involve the ComX pheromones and the ComP-ComA, two-component regulator. ComX is synthesized as an inactive precursor and is then cleaved and modified by ComQ before export to the extra-cellular environment. The comQXP' loci of a set of natural Bacillus isolates have been sequenced and a striking polymorphism that correlates with specific patterns of activation of the quorum sensing response was shown. The ComX molecules representing different pherotypes were purified and characterized by mass spectroscopy. The analyses revealed that ComX variants also differ at the level of posttranslational modification of a conserved tryptophane residue, which was found to be an isoprenoid. The striking variability found in competence quorum sensing systems might be important for the survival of these bacteria in nature to escape the inappropriate induction of competence by closely related strains, playing the role of a sexual isolation mechanism.

  19. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants.

    Science.gov (United States)

    Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter

    2016-05-16

    Burkholderia thailandensis uses acyl-homoserine lactone-mediated quorum sensing systems to regulate hundreds of genes. Here we show that cell-cell contact-dependent type VI secretion (T6S) toxin-immunity systems are among those activated by quorum sensing in B. thailandensis. We also demonstrate that T6S is required to constrain proliferation of quorum sensing mutants in colony cocultures of a BtaR1 quorum-sensing signal receptor mutant and its parent. However, the BtaR1 mutant is not constrained by and outcompetes its parent in broth coculture, presumably because no cell contact occurs and there is a metabolic cost associated with quorum sensing gene activation. The increased fitness of the wild type over the BtaR1 mutant during agar surface growth is dependent on an intact T6SS-1 apparatus. Thus, quorum sensing activates B. thailandensis T6SS-1 growth inhibition and this control serves to police and constrain quorum-sensing mutants. This work defines a novel role for T6SSs in intraspecies mutant control.

  20. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy.

    Science.gov (United States)

    Mumford, Rachel; Friman, Ville-Petri

    2017-02-01

    The rapid rise of antibiotic resistance has renewed interest in phage therapy - the use of bacteria-specific viruses (phages) to treat bacterial infections. Even though phages are often pathogen-specific, little is known about the efficiency and eco-evolutionary outcomes of phage therapy in polymicrobial infections. We studied this experimentally by exposing both quorum-sensing (QS) signalling PAO1 and QS-deficient lasR Pseudomonas aeruginosa genotypes (differing in their ability to signal intraspecifically) to lytic PT7 phage in the presence and absence of two bacterial competitors: Staphylococcus aureus and Stenotrophomonas maltophilia-two bacteria commonly associated with P. aeruginosa in polymicrobial cystic fibrosis lung infections. Both the P. aeruginosa genotype and the presence of competitors had profound effects on bacteria and phage densities and bacterial resistance evolution. In general, competition reduced the P. aeruginosa frequencies leading to a lower rate of resistance evolution. This effect was clearer with QS signalling PAO1 strain due to lower bacteria and phage densities and relatively larger pleiotropic growth cost imposed by both phages and competitors. Unexpectedly, phage selection decreased the total bacterial densities in the QS-deficient lasR pathogen communities, while an increase was observed in the QS signalling PAO1 pathogen communities. Together these results suggest that bacterial competition can shape the eco-evolutionary outcomes of phage therapy.

  1. The quorum sensing volatile molecule 2-amino acetophenon modulates host immune responses in a manner that promotes life with unwanted guests.

    Directory of Open Access Journals (Sweden)

    Arunava Bandyopadhaya

    Full Text Available Increasing evidence indicates that bacterial quorum sensing (QS signals are important mediators of immunomodulation. However, whether microbes utilize these immunomodulatory signals to maintain infection remain unclear. Here, we show that the Pseudomonas aeruginosa QS-regulated molecule 2-amino acetophenone (2-AA modulates host immune responses in a manner that increases host ability to cope with this pathogen. Mice treated with 2-AA prior to infection had a 90% survival compared to 10% survival rate observed in the non-pretreated infected mice. Whilst 2-AA stimulation activates key innate immune response pathways involving mitogen-activated protein kinases (MAPKs, nuclear factor (NF-κB, and pro-inflammatory cytokines, it attenuates immune response activation upon pretreatment, most likely by upregulating anti-inflammatory cytokines. 2-AA host pretreatment is characterized by a transcriptionally regulated block of c-JUN N-terminal kinase (JNK and NF-κB activation, with relatively preserved activation of extracellular regulated kinase (ERK 1/2. These kinase changes lead to CCAAT/enhancer-binding protein-β (c/EBPβ activation and formation of the c/EBPβ-p65 complex that prevents NF-κB activation. 2-AA's aptitude for dampening the inflammatory processes while increasing host survival and pathogen persistence concurs with its ability to signal bacteria to switch to a chronic infection mode. Our results reveal a QS immunomodulatory signal that promotes original aspects of interkingdom communication. We propose that this communication facilitates pathogen persistence, while enabling host tolerance to infection.

  2. Expression of luxS gene involved in quorum sensing in Lactobacillus acidophilus NCFM after passage through an in vitro digestion model

    DEFF Research Database (Denmark)

    Moslehi Jenabian, Saloomeh; Jespersen, Lene

    Within recent years, there has been an increasing interest in discovering the beneficial effects of probiotics and the mechanisms by which probiotics interact with the host and the gut microbiota. One of the mechanisms that bacteria interact or communicate with each other is quorum sensing. Quorum...... sensing is cellto- cell signalling through the production, secretion and detection of small signal molecules called autoinducers. The aim of the present study was to investigate the transcription of the luxS gene involved in quorum sensing in probiotic strain Lactobacillus acidophilus NCFM after passage...

  3. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum.

    Science.gov (United States)

    Kwasiborski, A; Mondy, S; Chong, T-M; Barbey, C; Chan, K-G; Beury-Cirou, A; Latour, X; Faure, D

    2015-05-01

    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (atrosepticum. Among them, quantitative real-time reverse-transcriptase-PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum.

  4. Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura

    Directory of Open Access Journals (Sweden)

    Ravindra Pal Singh

    2015-03-01

    Full Text Available Epiphytic and endophytic bacteria associated with green macroalgae Ulva (U. fasciata and U. lactuca and red macroalgae Gracilaria (G. corticata and G. dura have been identified from three different seasons to evaluate the effect of quorum sensing molecules on carpospores liberation from Gracilaria dura. The bacterial isolates belonging to the orders Bacillales, Pseudomonadales, Alteromonadales and Vibrionales were present in all seasons, whereas Actinomycetales and Enterobacteriales were confined to pre-monsoon and post-monsoon seasons, respectively. Among all the Gram-negative bacteria, seven isolates were found to produce different types of N-acyl homoserine lactones (AHLs. Interestingly, Shewanella algae produced five types of AHL: C4-HSL, HC4-HSL, C6-HSL, 3-oxo-C6-HSL and 3-oxo-C12-HSL. Subsequently, the AHLs producing bacterial isolates were screened for carpospore liberation from G. dura and these isolates were found to positively induce carpospore liberation over the control. Also, observed that carpospore liberation increased significantly in C4- and C6-HSL treated cystocarps. Sodium dodecyl sulfate and native polyacrylamide gel electrophoresis of the total protein of the C4- and C6-HSL-treated cystocarps showed two specific peptide bands of different molecular weights (50 kDa and 60 kDa as compared to the control, confirming their indirect effect on carpospore liberation.

  5. Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura.

    Science.gov (United States)

    Singh, Ravindra Pal; Baghel, Ravi S; Reddy, C R K; Jha, Bhavanath

    2015-01-01

    Epiphytic and endophytic bacteria associated with green macroalgae Ulva (U. fasciata and U. lactuca) and red macroalgae Gracilaria (G. corticata and G. dura) have been identified from three different seasons to evaluate the effect of quorum sensing (QS) molecules on carpospores liberation from Gracilaria dura. The bacterial isolates belonging to the orders Bacillales, Pseudomonadales, Alteromonadales, and Vibrionales were present in all seasons, whereas Actinomycetales and Enterobacteriales were confined to pre-monsoon and post-monsoon seasons, respectively. Among all the Gram-negative bacteria, seven isolates were found to produce different types of N-acyl homoserine lactones (AHLs). Interestingly, Shewanella algae produced five types of AHL: C4-HSL, HC4-HSL, C6-HSL, 3-oxo-C6-HSL, and 3-oxo-C12-HSL. Subsequently, the AHLs producing bacterial isolates were screened for carpospore liberation from G. dura and these isolates were found to positively induce carpospore liberation over the control. Also, observed that carpospore liberation increased significantly in C4- and C6-HSL treated cystocarps. Sodium dodecyl sulfate and native polyacrylamide gel electrophoresis of the total protein of the C4- and C6-HSL treated cystocarps showed two specific peptide bands of different molecular weights (50 kDa and 60 kDa) as compared to the control, confirming their indirect effect on carpospore liberation.

  6. Stereochemical insignificance discovered in Acinetobacter baumannii quorum sensing.

    Directory of Open Access Journals (Sweden)

    Amanda L Garner

    Full Text Available Stereochemistry is a key aspect of molecular recognition for biological systems. As such, receptors and enzymes are often highly stereospecific, only recognizing one stereoisomer of a ligand. Recently, the quorum sensing signaling molecules used by the nosocomial opportunistic pathogen, Acinetobacter baumannii, were identified, and the primary signaling molecule isolated from this species was N-(3-hydroxydodecanoyl-L-homoserine lactone. A plethora of bacterial species have been demonstrated to utilize 3-hydroxy-acylhomoserine lactone autoinducers, and in virtually all cases, the (R-stereoisomer was identified as the natural ligand and exhibited greater autoinducer activity than the corresponding (S-stereoisomer. Using chemical synthesis and biochemical assays, we have uncovered a case of stereochemical insignificance in A. baumannii and provide a unique example where stereochemistry appears nonessential for acylhomoserine lactone-mediated quorum sensing signaling. Based on previously reported phylogenetic studies, we suggest that A. baumannii has evolutionarily adopted this unique, yet promiscuous quorum sensing system to ensure its survival, particularly in the presence of other proteobacteria.

  7. Interkingdom Responses to Bacterial Quorum Sensing Signals Regulate Frequency and Rate of Nodulation in Legume-Rhizobia Symbiosis.

    Science.gov (United States)

    Palmer, Andrew G; Mukherjee, Arijit; Stacy, Danielle M; Lazar, Stephen; Ané, Jean-Michel; Blackwell, Helen E

    2016-11-17

    Density-dependent phenotypic switching in bacteria, the phenomenon of quorum sensing (QS), is instrumental in many pathogenic and mutualistic behaviors. In many Gram-negative bacteria, QS is regulated by N-acylated-l-homoserine lactones (AHLs). Synthetic analogues of these AHLs hold significant promise for regulating QS at the host-symbiont interface. Regulation depends on refined temporal and spatial models of quorums under native conditions. Critical to this is an understanding of how the presence of these signals may affect a prospective host. We screened a library of AHL analogues for their ability to regulate the legume-rhizobia mutualistic symbiosis (nodulation) between Medicago truncatula and Sinorhizobium meliloti. Using an established QS-reporter line of S. meliloti and nodulation assays with wild-type bacteria, we identified compounds capable of increasing either the rate of nodule formation or total nodule number. Most importantly, we identified compounds with activity exclusive to either host or pathogen, underscoring the potential to generate QS modulators selective to bacteria with limited effects on a prospective host.

  8. Processing the Interspecies Quorum-sensing Signal Autoinducer-2 (AI-2)

    Energy Technology Data Exchange (ETDEWEB)

    J Marques; P Lamosa; C Russell; R Ventura; C Maycock; M Semmelhack; S Miller; K Xavier

    2011-12-31

    The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsible for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior.

  9. Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing

    Science.gov (United States)

    Bressloff, Paul C.

    2016-06-01

    We analyze ultrasensitivity in a model of Vibrio harveyi quorum sensing. We consider a feedforward model consisting of two biochemical networks per cell. The first represents the interchange of a signaling molecule (autoinducer) between the cell cytoplasm and an extracellular domain and the binding of intracellular autoinducer to cognate receptors. The unbound and bound receptors within each cell act as kinases and phosphotases, respectively, which then drive a second biochemical network consisting of a phosphorylation-dephosphorylation cycle. We ignore subsequent signaling pathways associated with gene regulation and the possible modification in the production rate of an autoinducer (positive feedback). We show how the resulting quorum sensing system exhibits ultrasensitivity with respect to changes in cell density. We also demonstrate how quorum sensing can protect against the noise amplification of fast environmental fluctuations in comparison to a single isolated cell.

  10. Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing.

    Science.gov (United States)

    Bressloff, Paul C

    2016-06-01

    We analyze ultrasensitivity in a model of Vibrio harveyi quorum sensing. We consider a feedforward model consisting of two biochemical networks per cell. The first represents the interchange of a signaling molecule (autoinducer) between the cell cytoplasm and an extracellular domain and the binding of intracellular autoinducer to cognate receptors. The unbound and bound receptors within each cell act as kinases and phosphotases, respectively, which then drive a second biochemical network consisting of a phosphorylation-dephosphorylation cycle. We ignore subsequent signaling pathways associated with gene regulation and the possible modification in the production rate of an autoinducer (positive feedback). We show how the resulting quorum sensing system exhibits ultrasensitivity with respect to changes in cell density. We also demonstrate how quorum sensing can protect against the noise amplification of fast environmental fluctuations in comparison to a single isolated cell.

  11. Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction.

    Directory of Open Access Journals (Sweden)

    David N Quan

    Full Text Available Bacterial cell-cell communication is mediated by small signaling molecules known as autoinducers. Importantly, autoinducer-2 (AI-2 is synthesized via the enzyme LuxS in over 80 species, some of which mediate their pathogenicity by recognizing and transducing this signal in a cell density dependent manner. AI-2 mediated phenotypes are not well understood however, as the means for signal transduction appears varied among species, while AI-2 synthesis processes appear conserved. Approaches to reveal the recognition pathways of AI-2 will shed light on pathogenicity as we believe recognition of the signal is likely as important, if not more, than the signal synthesis. LMNAST (Local Modular Network Alignment Similarity Tool uses a local similarity search heuristic to study gene order, generating homology hits for the genomic arrangement of a query gene sequence. We develop and apply this tool for the E. coli lac and LuxS regulated (Lsr systems. Lsr is of great interest as it mediates AI-2 uptake and processing. Both test searches generated results that were subsequently analyzed through a number of different lenses, each with its own level of granularity, from a binary phylogenetic representation down to trackback plots that preserve genomic organizational information. Through a survey of these results, we demonstrate the identification of orthologs, paralogs, hitchhiking genes, gene loss, gene rearrangement within an operon context, and also horizontal gene transfer (HGT. We found a variety of operon structures that are consistent with our hypothesis that the signal can be perceived and transduced by homologous protein complexes, while their regulation may be key to defining subsequent phenotypic behavior.

  12. Quorum Sensing in Marine Microbial Environments

    Science.gov (United States)

    Hmelo, Laura R.

    2017-01-01

    Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.

  13. Quorum sensing inhibitors

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    Many opportunistic pathogenic bacteria rely on quorum sensing (QS) circuits as central regulators of virulence expression. In Pseudomonas aeruginosa, QS-regulated gene expression contributes to the formation and maintenance of biofilms and their tolerance to conventional antimicrobials and the host...

  14. Quorum sensing inhibitors

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    Many opportunistic pathogenic bacteria rely on quorum sensing (QS) circuits as central regulators of virulence expression. In Pseudomonas aeruginosa, QS-regulated gene expression contributes to the formation and maintenance of biofilms and their tolerance to conventional antimicrobials and the host...

  15. Synthesis of new 3-and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, Jacob Alsbæk; Severinsen, Rune Eg; Rasmussen, Thomas Bovbjerg

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in whi...... substituents have been introduced into the 3- and 4-positions of the lactone ring. These analogues have been screened for their ability to activate and inhibit a Vibrio fischeri LuxI/LuxR-derived quorum sensing reporter system....

  16. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, J. A.; Severinsen, R.; Rasmussen, T. B.

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in whi...... substituents have been introduced into the 3- and 4-positions of the lactone ring. These analogues have been screened for their ability to activate and inhibit a Vibrio fischeri LuxI/LuxR-derived quorum sensing reporter system. © 2002 Elsevier Science Ltd. All rights reserved....

  17. Can the natural diversity of quorum sensing advance synthetic biology?

    Directory of Open Access Journals (Sweden)

    Rene Michele Davis

    2015-03-01

    Full Text Available Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over one hundred morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.

  18. Classroom Activities to Engage Students and Promote Critical Thinking about Genetic Regulation of Bacterial Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Kimberly Aebli

    2016-05-01

    Full Text Available We developed an interactive activity to mimic bacterial quorum sensing, and a classroom worksheet to promote critical thinking about genetic regulation of the lux operon. The interactive quorum sensing activity engages students and provides a direct visualization of how population density functions to influence light production in bacteria. The worksheet activity consists of practice problems that require students to apply basic knowledge of the lux operon in order to make predictions about genetic complementation experiments, and students must evaluate how genetic mutations in the lux operon affect gene expression and overall phenotype. The worksheet promotes critical thinking and problem solving skills, and emphasizes the roles of diffusible signaling molecules, regulatory proteins, and structural proteins in quorum sensing.

  19. The Effect of Magnetic Fields on the Quorum Sensing-Regulated Luminescence of Vibrio fischeri

    Science.gov (United States)

    Barron, Addie; Hagen, Steve; Son, Minjun

    2015-03-01

    Quorum sensing (QS) is a mechanism by which bacteria communicate through the secretion and detection of extracellular signaling molecules known as autoinducers. This research focuses on the quorum sensing regulated bioluminescence of Vibrio fischeri, a marine bacterium that lives in symbiosis with certain fish and squid species. Previous studies of V. harveyi, a close relative of V. fisheri, indicate that a strong magnetic field has a positive effect on V.harveyi bioluminescence. However the effect of magnetic fields on quorum sensing-regulated luminescence is in general poorly understood. We grew V. fischeri in solid and liquid growth media, subject to strong static magnetic fields, and imaged the bioluminescence over a period of forty-eight hours. Luminescence patterns were analyzed in both the spatial and time dimensions. We find no indication that a magnetic field influences Vibrio fischeri luminescence either positively or negatively. This research was funded by the Grant Number NSF DMR-1156737.

  20. Synthesis of new 3-and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, Jacob Alsbæk; Severinsen, Rune Eg; Rasmussen, Thomas Bovbjerg

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in which...

  1. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers

    DEFF Research Database (Denmark)

    Olsen, J. A.; Severinsen, R.; Rasmussen, T. B.

    2002-01-01

    The quorum sensing mechanism in Gram-negative bacteria uses small intercellular signal molecules, N-acyl-homoserine lactones (AHLs), to control transcription of specific genes in relation to population density. In this communication, we describe the parallel synthesis of new AHL analogues, in which...

  2. Ligand Binding Kinetics of the Quorum Sensing Regulator PqsR

    DEFF Research Database (Denmark)

    Welch, Martin; Hodgkinson, James T.; Gross, Jeremy;

    2013-01-01

    The Pseudomonas aeruginosa quinolone signal (PQS) is a quorum sensing molecule that plays an important role in regulating the virulence of this organism. We have purified the ligand binding domain of the receptor PqsRLBD for PQS and have used Förster resonance energy transfer fluorimetry...

  3. Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals.

    Science.gov (United States)

    Shong, Jasmine; Collins, Cynthia H

    2014-04-18

    We have constructed and characterized two synthetic AND-gate promoters that require both a quorum-sensing (QS) signal and an exogenously added inducer to turn on gene expression. The engineered promoters, LEE and TTE, contain binding sites for the QS-dependent repressor, EsaR, and either LacI or TetR, and they are induced by an acyl-homoserine lactone (AHL) signal and IPTG or aTc. Although repression of both LEE and TTE by wild-type EsaR was observed, induction of gene expression at physiologically relevant concentrations of AHL required the use of an EsaR variant with higher signal sensitivity. Gene expression from both LEE and TTE was shown to require both signal molecules, and gene expression above background levels was not observed with either signal alone. We added endogenous production of AHL to evaluate the ability of the promoters to function in a QS-dependent manner and observed that gene expression increased as a function of cell density only in the presence of exogenously added IPTG or aTc. Cell-cell communication-dependent AND-gate behaviors were demonstrated using an agar plate assay, where cells containing the engineered promoters were shown to respond to AHL produced by a second E. coli strain only in the presence of exogenously added IPTG or aTc. The promoters described in this work demonstrate that EsaR and its target DNA sequence can be used to engineer new promoters to respond to cell density or cell-cell communication. Further, the AND-gate promoters described here may serve as a template for new regulatory systems that integrate QS and the presence of key metabolites or other environmental cues to enable dynamic changes in gene expression for metabolic engineering applications.

  4. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections.

    Science.gov (United States)

    Dixon, Emily F; Hall, Rebecca A

    2015-10-01

    Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum-sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum-sensing pathways in fungi has led to the characterization of a number of interkingdom quorum-sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response.

  5. Inhibition of biofilm development and spoilage potential of Shewanella baltica by quorum sensing signal in cell-free supernatant from Pseudomonas fluorescens.

    Science.gov (United States)

    Zhao, Aifei; Zhu, Junli; Ye, Xiaofeng; Ge, Yangyang; Li, Jianrong

    2016-08-02

    The objective of this study was to in vitro evaluate the effect of a cell-free supernatant (CFS) containing quorum sensing (QS) signal of Pseudomonas fluorescens on the growth, biofilm development and spoilage potential of Shewanella baltica, and preliminarily assess the interactive influences of various chemically synthesized autoinducers on spoilage phenotypes of S. baltica. PF01 strain isolated from spoiled Pseudosciaen crocea was identified P. fluorescens. The addition of 25% and 50% CFS to S. baltica culture had no effect on the growth rate during the lag and exponential phase, however, caused cell decline during the stationary phase. The presence of CFS from P. fluorescens significantly inhibited biofilm development, and greatly decreased the production of trimethylamine (TMA) and biogenic amino in S. baltica. Various signal molecules of QS in the CFS of P. fluorescens culture were detected, including seven N-acyl-l-homoserine lactones (AHLs), autoinducer-2 (AI-2) and two diketopiperazines (DKPs). Exogenous supplement of synthesized seven AHLs containing in the CFS decreased biofilm formation and TMA production in S. baltica, while exposure to exogenous cyclo-(l-Pro-l-Leu) was showed to promote spoilage potential, which revealed that S. baltica also sense the two QS molecules. Furthermore, the stimulating effect of cyclo-(l-Pro-l-Leu) was affected when AHL was simultaneously added, suggesting that the inhibitory activity of spoilage phenotypes in S. baltica might be attributed to a competitive effect of these QS compounds in the CFS of P. fluorescens. The present studies provide a good basis for future research on the role of QS in the regulation of spoilage microbial flora.

  6. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing.

    Science.gov (United States)

    Kimura, Nobutada

    2014-04-01

    Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed.

  7. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal.

    Science.gov (United States)

    Yong, Yang-Chun; Zhong, Jian-Jiang

    2009-09-15

    N-acyl homoserine lactone (AHL) is a widely conserved quorum sensing (QS) signal of gram-negative bacteria and has received attention in fighting against human diseases and environmental pollution. However, a method for quantifying AHL is lacking although it is urgently required for diagnosis and bioprocess manipulation. This work screened out an aromatics degrader Pseudomonas aeruginosa for biosensing system development, which produced a blue-green pigment regulated by the RhlI-RhlR QS system. By taking advantage of the recognition of N-butyryl homoserine lactone (BHL, the signal molecule of RhlI-RhlR QS system and an AHL) by the product of rhlR, a new whole-cell biosensor P. aeruginosa Delta rhlIR/pYC-rhlR (rhlI(-)rhlR(++)) was developed. It was constructed through abolishing its BHL production by in-frame deletion of rhlIR and over-expressing rhlR by introducing a multi-copy plasmid pYC-rhlR into Delta rhlIR. By using the pigment production which responded to exogenous BHL as biosensor output, BHL quantification in samples was simply done spectrophotometrically. Under optimum conditions, the calibration curve had the limit of detection (LOD), the 50% activation/effect concentration, the limit of quantification (LOQ), and the quantitative detection range of 1.3 nM, 2.77+/-0.45 microM, 5.7 nM and 0.11-49.7 microM, respectively. The biosensor output was stable, culture samples could be stored 10 days under -20 degrees C, and this sensing system was resistant to interferences by toxic aromatic pollutants. It was successfully applied to environmental samples even without extraction. The new whole-cell biosensing system provided a simple, stable, toxic pollutants-tolerant, and cost-effective tool for quantitative investigation of the QS signals' role in environmental processes.

  8. Tasting Pseudomonas aeruginosa biofilms.Human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone

    Directory of Open Access Journals (Sweden)

    Susanne eMaurer

    2015-07-01

    Full Text Available Bacteria communicate with each other via specialized signalling molecules, known as quorum sensing molecules or autoinducers. The Pseudomonas aeruginosa-derived quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone (AHL-12, however, also activates mammalian cells. As shown previously, AHL-12 induced chemotaxis, up-regulated CD11b expression, and enhanced phagocytosis of polymorphonuclear neutrophils (PMN. Circumstantial evidence concurred with a receptor for AHL-12, which so far has been elusive. We investigated the bitter receptor T2R38 as a potential candidate. Although identified as a taste receptor, cells outside the gustatory system express T2R38, for example epithelial cells in the lung. We now detected T2R38 in peripheral blood neutrophils, monocytes and lymphocytes on the cell membrane, but also intracellular. In neutrophils, T2R38 was located in vesicles with characteristics of lipid droplets, and super-resolution microscopy showed a co-localisation with the lipid droplet membrane. Neutrophils take up AHL-12, and it co-localized with T2R38 as seen by laser scan microscopy. Binding of AHL-12 to T2R28 was confirmed by pull-down assays using biotin-coupled AHL-12 as bait. A commercially available antibody to T2R38 inhibited binding of AHL-12 to neutrophils, and this antibody by itself stimulated neutrophils, similarly to AHL-12. In conclusion, our data provide evidence for expression of functional T2R38 on neutrophils, and are compatible with the notion that T2R38 is the receptor for AHL-12 on neutrophils.

  9. Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies.

    Directory of Open Access Journals (Sweden)

    Mengsheng Gao

    Full Text Available BACKGROUND: Quorum sensing (QS in Sinorhizobium meliloti involves at least half a dozen different N-acyl homoserine lactone (AHL signals. These signals are produced by SinI, the sole AHL synthase in S. meliloti Rm8530. The sinI gene is regulated by two LuxR-type transcriptional regulators, SinR and ExpR. Mutations in sinI, sinR and expR abolish the production of exopolysaccharide II (EPS II. METHODOLOGY/PRINCIPAL FINDINGS: This study investigated a new type of coordinated surface spreading of Rm8530 that can be categorized as swarming. Motility assays on semi-solid surfaces revealed that both flagella and EPS II are required for this type of motility. The production of EPS II depends on AHLs produced by SinI. Of these AHLs, only C(16:1- and 3-oxo-C(16:1-homoserine lactones (HSLs stimulated swarming in an ExpR-dependent manner. These two AHLs induced the strongest response in the wggR reporter fusions. WggR is a positive regulator of the EPS II biosynthesis gene expression. The levels of the wggR activation correlated with the extent of swarming. Furthermore, swarming of S. meliloti required the presence of the high molecular weight (HMW fraction of EPS II. Within swarming colonies, a recombinase-based RIVET reporter in the wggR gene was resolved in 30% of the cells, indicating an enhanced regulation of EPS II production in the subpopulation of cells, which was sufficient to support swarming of the entire colony. CONCLUSIONS/SIGNIFICANCE: Swarming behavior of S. meliloti Rm8530 on semi-solid surfaces is found to be dependent on the functional QS regulatory cascades. Even though multiple AHL signals are produced by the bacterium, only two AHLs species, C(16:1- and 3-oxo-C(16:1-HSLs, affected swarming by up-regulating the expression of wggR. While EPS II is produced by Rm8530 as high and low molecular weight fractions, only the HMW EPS II facilitated initial stages of swarming, thus, suggesting a function for this polymer.

  10. A Strategy for Antagonizing Quorum Sensing

    Energy Technology Data Exchange (ETDEWEB)

    G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

    2011-12-31

    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

  11. Antisense RNA that Affects Rhodopseudomonas palustris Quorum-Sensing Signal Receptor Expression

    Science.gov (United States)

    2012-01-01

    terminal region of the Vibrio fischeri LuxR pro- tein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci USA 88:11115...synthesis requires exogenous p-coumarate (1). The R. palustris signal synthesis gene , rpaI, codes for a member of the large LuxI family of AHL synthases, and...the adjacent signal receptor gene , rpaR, codes for a member of the LuxR family of transcription factors. Although rpaI and rpaR are not cotran

  12. Vibrio vulnificus produces quorum sensing signals of the AHL-class

    DEFF Research Database (Denmark)

    Valiente, E.; Bruhn, Jesper Bartholin; Nielsen, Kristian Fog

    2009-01-01

    been described in human strains of biotype 1, and here we show that the luxS gene which encodes AI-2 is present in all strains of V. vulnificus regardless of origin, biotype or serovar. In this study, we also demonstrate that V. vulnificus produces QS signals of the acylated homoserine lactone (AHL...

  13. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Nielsen, Kristian Fog; Machado, Henrique;

    2014-01-01

    in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium...

  14. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Nielsen, Kristian Fog; Machado, Henrique

    2014-01-01

    homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria....

  15. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response.

    Science.gov (United States)

    Zhang, Jiangguo; Gong, Fengyun; Li, Ling; Zhao, Manzhi; Song, Jianxin

    2014-03-01

    N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL), a quorum-sensing signal molecule produced by Pseudomonas aeruginosa (P. aeruginosa), is involved in the expression of bacterial virulence factors and in the modulation of host immune responses by directly disrupting nuclear factor-κB (NF-κB) signaling and inducing cell apoptosis. The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress may suppress inflammatory responses in the later phase by blocking NF-κB activation. It was recently demonstrated that 3-oxo-C12-HSL may induce UPR in human aortic endothelial cells (HAECs). Therefore, 3-oxo-C12-HSL may also inhibit NF-κB activation and suppress inflammatory responses by activating UPR. However, the possible underlying mechanism has not been fully elucidated. Accordingly, we investigated the effects of 3-oxo-C12-HSL on cellular viability, UPR activation, lipopolysaccharide (LPS)-induced NF-κB activation and inflammatory response in the RAW264.7 mouse macrophage cell line. Treatment with 6.25 μM 3-oxo-C12-HSL was not found to affect the viability of RAW264.7 cells. However, pretreating RAW264.7 cells with 6.25 μM 3-oxo-C12-HSL effectively triggered UPR and increased the expression of UPR target genes, such as CCAAT/enhancer-binding protein β (C/EBP β) and CCAAT/enhancer-binding protein-homologous protein (CHOP). The expression of C/EBP β and CHOP was found to be inversely correlated with LPS-induced NF-κB activation. 3-Oxo-C12-HSL pretreatment was also shown to inhibit LPS-stimulated proinflammatory cytokine production. Hence, 3-oxo-C12-HSL may attenuate LPS-induced inflammation via UPR-mediated NF-κB inhibition without affecting cell viability. This may be another mechanism through which P. aeruginosa evades the host immune system and maintains a persistent infection.

  16. Identification of Pathways Critical to Quorum Sensing and Virulence Induction

    Energy Technology Data Exchange (ETDEWEB)

    Ognibene, Ted J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holtz-Morris, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-27

    Quorum sensing is a mode of intercellular communication between bacteria that allows them to collectively regulate behavior such as virulence, sporulation, motility and biofilm formation. It is mediated by bacterially synthesized, diffusible, signaling molecules (autoinducers) that increase in concentration as a bacterial population expands until a critical threshold concentration is reached. However, in most bacterial species that produce autoinducer molecules, the physiologic concentration of these molecules is unknown. Moreover, many bacterial species, including Y. pestis, produce an array of quorum sensing molecules and the physiologic concentration of each individual type of autoinducer molecule is not known. There is a need to accurately and precisely quantitate these molecules, as it may be that different types of autoinducer molecules have different effects on virulence in the bacterium. We focused our efforts on the construction of a platform to identify and quantitate autoinducer molecules using FTICR, 14C isotope labeling and accelerator mass spectrometry (AMS). Specifically, we focused on autoinducer-1 type molecules, acylhomoserine lactone (HSL), derived from S-adenosylmethionine (SAM).

  17. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors

    DEFF Research Database (Denmark)

    Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm

    2009-01-01

    Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used...... in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor Las......R, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related...

  18. Quorum-sensing in yeast and its potential in wine making.

    Science.gov (United States)

    Avbelj, Martina; Zupan, Jure; Raspor, Peter

    2016-09-01

    This mini-review synthesises the present knowledge of microbial quorum-sensing, with a specific focus on quorum-sensing in yeast, and especially in wine yeast. In vine and wine ecosystems, yeast co-interact with a large variety of microorganisms, thereby affecting the fermentation process and, consequently, the flavour of the wine. The precise connections between microbial interactions and quorum-sensing remain unclear, but we describe here how and when some species start to produce quorum-sensing molecules to synchronously adapt their collective behaviour to new conditions. In Saccharomyces cerevisiae, the quorum-sensing molecules were identified as 2-phenylethanol and tryptophol. However, it was recently shown that also a quorum-sensing molecule formerly identified only in Candida albicans, tyrosol, appears to be regulated in S. cerevisiae according to cell density. This review describes the methods for detection and quantification of those quorum-sensing molecules, their underlying mechanisms of action, and their genetic background. It also examines the external stimuli that evoke the quorum-sensing mechanism in the wine-processing environment. The review closes with insight into the biotechnological applications that are already making use of the advantages of quorum-sensing systems and indicates the important questions that still need to be addressed in future research into quorum-sensing.

  19. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters.

    Science.gov (United States)

    Wang, Meizhen; Schaefer, Amy L; Dandekar, Ajai A; Greenberg, E Peter

    2015-02-17

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.

  20. Quorum-Sensing of Bacteria and Its Application

    Institute of Scientific and Technical Information of China (English)

    JIANG Guoliang; SU Mingxia

    2009-01-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  1. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator.

    Science.gov (United States)

    Cai, Zhao; Liu, Yang; Chen, Yicai; Yam, Joey Kuok Hoong; Chew, Su Chuen; Chua, Song Lin; Wang, Ke; Givskov, Michael; Yang, Liang

    2015-11-30

    The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.

  2. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator

    Directory of Open Access Journals (Sweden)

    Zhao Cai

    2015-11-01

    Full Text Available The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa. P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.

  3. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways

    Directory of Open Access Journals (Sweden)

    Luo J

    2016-01-01

    Full Text Available Jing Luo,* Jin-liang Kong,* Bi-ying Dong, Hong Huang, Ke Wang, Li-hong Wu, Chang-chun Hou, Yue Liang, Bing Li, Yi-qiang Chen Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China *These authors contributed equally to this work Abstract: Burgeoning antibiotic resistance and unfavorable outcomes of inflammatory injury after Pseudomonas aeruginosa infection have necessitated the development of novel agents that not only target quorum sensing (QS but also combat inflammatory injury with the least risk of resistance. This study aimed to assess the anti-QS and anti-inflammatory activities of baicalein, a traditional herbal medicine that is widely used in the People’s Republic of China, against P. aeruginosa infection. We found that subminimum inhibitory concentrations of baicalein efficiently interfered with the QS-signaling pathway of P. aeruginosa via downregulation of the transcription of QS-regulated genes and the translation of QS-signaling molecules. This interference resulted in the global attenuation of QS-controlled virulence factors, such as motility and biofilm formation, and the secretion into the culture supernatant of extracellular virulence factors, including pyocyanin, LasA protease, LasB elastase, and rhamnolipids. Moreover, we examined the anti-inflammatory activity of baicalein and its mode of action via a P. aeruginosa-infected macrophage model to address its therapeutic effect. Baicalein reduced the P. aeruginosa-induced secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNFα. In addition, baicalein suppressed P. aeruginosa-induced activation of the MAPK and NFκB signal-transduction pathways in cocultured macrophages; this may be the mechanism by which baicalein inhibits the production of proinflammatory cytokines. Therefore, our study demonstrates that baicalein represents a potential treatment for P. aeruginosa infection because it

  4. Bacterial quorum sensing: functional features and potential applications in biotechnology.

    Science.gov (United States)

    Mangwani, Neelam; Dash, Hirak Ranjan; Chauhan, Ashvini; Das, Surajit

    2012-01-01

    Quorum sensing (QS) represents an exceptional pattern of cell-to-cell communication in bacteria using self-synthesized signalling molecules known as autoinducers. Various features regulated by QS in bacteria include virulence, biofilm formation, sporulation, genetic competence and bioluminescence, among others. Other than the diverse signalling properties of autoinducers, there are non-signalling properties also associated with these signalling molecules which make them potential antimicrobial agents and metal chelators. Additionally, QS signal antagonism has also been shown to be a promising alternative for blocking pathogenic diseases. Besides, QS has impressive design features useful in tissue engineering and biosensor technology. Although many aspects of QS are well understood, several other features remain largely unknown, especially in biotechnology applications. This review focuses on the functional features and potential applications of QS signalling molecules in biotechnology.

  5. Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology.

    Science.gov (United States)

    Rolland, Jean Luc; Stien, Didier; Sanchez-Ferandin, Sophie; Lami, Raphaël

    2016-12-01

    The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.

  6. Effect of low Reynolds number flow on the quorum sensing behavior of sessile bacteria

    Science.gov (United States)

    Ingremeau, Francois; Minyoung, Kevin Kim; Bassler, Bonnie; Stone, Howard; Mechanical; Aerospace Engineering, Complex fluids Group Team; Molecular Biology Lab Team

    2014-11-01

    Sessile and planktonic bacteria can be sensitive to the bacteria cell density around them through a chemical mediated communication called quorum sensing. When the quorum sensing molecules reach a certain value, the metabolism of the bacteria changes. Quorum sensing is usually studied in static conditions or in well mixed environments. However, bacteria biofilms can form in porous media or in the circulatory system of an infected body: quorum sensing in such flowing environment at low Reynolds number is not well studied. Using microfluidic devices, we observe how the flow of a pure media affects quorum sensing of bacteria attached to the wall. The biofilm formation is quantified by measuring the optical density in brightfield microscopy and the quorum sensing gene expression is observed through the fluorescence of a green fluorescent protein, which is a reporter for one of the quorum sensing genes. We measured without flow the amount of Staphylococcus aureus biofilm when the quorum sensing gene expression starts. In contrast, when the media is flowing in the microchannel, the quorum sensing expression is delayed. This effect can be understood and modelled by considering the diffusion of the quorum sensing molecules in the biofilm and their convection by the flowing media.

  7. Quorum Sensing Inhibition, Relevance to Periodontics

    OpenAIRE

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  8. Quorum sensing inhibition, relevance to periodontics.

    Science.gov (United States)

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  9. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment.

    Science.gov (United States)

    Emerenini, Blessing O; Hense, Burkhard A; Kuttler, Christina; Eberl, Hermann J

    2015-01-01

    Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony.

  10. The art of antibacterial warfare: Deception through interference with quorum sensing-mediated communication.

    Science.gov (United States)

    Rampioni, Giordano; Leoni, Livia; Williams, Paul

    2014-08-01

    Almost a century on from the discovery of penicillin, the war against bacterial infection still rages compounded by the emergence of strains resistant to virtually every clinically approved antibiotic and the dearth of new antibacterial agents entering the clinic. Consequently there is renewed interest in drugs which attenuate virulence rather than bacterial growth. Since the metaphors of warfare are often used to describe the battle between pathogen and host, we will describe in such a context, the molecular communication (quorum sensing) mechanisms used by bacteria to co-ordinate virulence at the population level. Recent progress in exploiting this information through the design of anti-virulence deception strategies that disrupt quorum sensing through signal molecule inactivation, inhibition of signal molecule biosynthesis or the blockade of signal transduction and their advantages and disadvantages are considered.

  11. Responses of the Microalga Chlorophyta sp. to Bacterial Quorum Sensing Molecules (N-Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation.

    Science.gov (United States)

    Zhou, Dandan; Zhang, Chaofan; Fu, Liang; Xu, Liang; Cui, Xiaochun; Li, Qingcheng; Crittenden, John C

    2017-03-21

    Bacteria and microalgae often coexist during the recycling of microalgal bioresources in wastewater treatment processes. Although the bacteria may compete with the microalgae for nutrients, they could also facilitate microalgal harvesting by forming algal-bacterial aggregates. However, very little is known about interspecies interactions between bacteria and microalgae. In this study, we investigated the responses of a model microalga, Chlorophyta sp., to the typical quorum sensing (QS) molecules N-acylhomoserine lactones (AHLs) extracted from activated sludge bacteria. Chlorophyta sp. self-aggregated in 200 μm bioflocs by secreting 460-1000 kDa aromatic proteins upon interacting with AHLs, and the settling efficiency of Chlorophyta sp. reached as high as 41%. However, Chlorophyta sp. cells were essentially in a free suspension in the absence of AHLs. Fluorescence intensity of the aromatic proteins had significant (P microalga. Transcriptome results further revealed up-regulation of synthesis pathways for aromatic proteins from tyrosine and phenylalanine that was assisted by anthranilate accumulation. To the best of our knowledge, this is the first study to confirm that eukaryotic microorganisms can sense and respond to prokaryotic QS molecules.

  12. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    Science.gov (United States)

    LaRock, Christopher N; Yu, Jing; Horswill, Alexander R; Parsek, Matthew R; Minion, F Chris

    2013-01-01

    The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  13. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    Directory of Open Access Journals (Sweden)

    Christopher N LaRock

    Full Text Available The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  14. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk

    Directory of Open Access Journals (Sweden)

    Maurilio L. Martins

    2014-09-01

    Full Text Available Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs, which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains.

  15. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk

    Science.gov (United States)

    Martins, Maurilio L.; Pinto, Uelinton M.; Riedel, Kathrin; Vanetti, Maria C.D.; Mantovani, Hilário C.; de Araújo, Elza F.

    2014-01-01

    Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains. PMID:25477941

  16. The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN).

    Science.gov (United States)

    Wagner, Christof; Zimmermann, Sabine; Brenner-Weiss, Gerald; Hug, Friederike; Prior, Birgit; Obst, Ursula; Hänsch, Gertrud Maria

    2007-01-01

    The P. aeruginosa quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) interacts not only with bacteria, but also with mammalian cells, among others with those of the immune defence system. We focussed on the possible interaction of 3OC12-HSL with human polymorphonuclear neutrophils (PMN), because these cells are the first to enter an infected site. We found that 3OC12-HSL attracts PMN, and up-regulates expression of receptors known to be involved in host defence, including the adhesion proteins CD11b/CD18 and the immunoglobulin receptors CD16 and CD64. Furthermore, the uptake of bacteria (phagocytosis), which is crucial for an efficient defence against infection, was enhanced. Thus, recognising and responding to 3OC12-HSL not only attracts the PMN to the site of a developing biofilm, but also reinforces their defence mechanisms, and hence could be a means to control the infection in an early stage and to prevent biofilm formation.

  17. Phosphorylation signalling through the Legionella quorum sensing histidine kinases LqsS and LqsT converges on the response regulator LqsR.

    Science.gov (United States)

    Schell, Ursula; Kessler, Aline; Hilbi, Hubert

    2014-06-01

    The environmental bacterium Legionella pneumophila is the causative agent of Legionnaires' disease, a life-threatening pneumonia. For cell-cell communication the bacteria employ the autoinducer LAI-1 (3-hydroxypentadecane-4-one), which is produced and detected by the Lqs (Legionella quorum sensing) system. The system comprises the autoinducer synthase LqsA, the putative sensor kinases LqsS and LqsT, and the prototypic response regulator LqsR. Lqs-regulated processes include L. pneumophila-phagocyte interactions, production of extracellular filaments, and natural competence. Using biochemical approaches we show here that LqsS and LqsT are autophosphorylated by [γ-(32) P]-ATP at a conserved histidine residue (H200 or H204 ) located in their cytoplasmic histidine kinase domain. Pull-down assays revealed that LqsS and LqsT are bound by LqsR or phospho-LqsR. Dependent on the conserved receiver domain aspartate (D108 ), the response regulator prevented autophosphorylation of both sensor kinases by catalysing the dephosphorylation of phospho-LqsS or phospho-LqsT. Moreover, LqsR formed dimers upon phosphorylation at D108 by either acetyl-phosphate or phospho-LqsT. Finally, upon heterologous production in Escherichia coli, LqsT (but not LqsS) was autophosphorylated by ATP, and LqsR prevented the autophosphorylation by catalysing the dephosphorylation of phospho-LqsT. In summary, these results indicate that phosphorylation signalling through the Legionella quorum sensing histidine kinases LqsS and LqsT converges on the response regulator LqsR.

  18. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors

    DEFF Research Database (Denmark)

    Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm

    2009-01-01

    Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used...... in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor Las...

  19. Production of Tyrosol by Candida albicans Biofilms and Its Role in Quorum Sensing and Biofilm Development▿

    OpenAIRE

    Alem, M.A.S.; Oteef, M.D.Y.; Flowers, T; Douglas, L J

    2006-01-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extra...

  20. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Wang, Xing-Yu; Zhou, Lian; Yang, Jun; Ji, Guang-Hai; He, Ya-Wen

    2016-03-01

    Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis.

  1. Toward development of an autonomous network of bacteria-based delivery systems (BacteriaBots): spatiotemporally high-throughput characterization of bacterial quorum-sensing response.

    Science.gov (United States)

    Sahari, Ali; Traore, Mahama A; Stevens, Ann M; Scharf, Birgit E; Behkam, Bahareh

    2014-12-02

    Characterization of bacterial innate and engineered cooperative behavior, regulated through chemical signaling in a process known as quorum sensing, is critical to development of a myriad of bacteria-enabled systems including biohybrid drug delivery systems and biohybrid mobile sensor networks. Here, we demonstrate, for the first time, that microfluidic diffusive mixers can be used for spatiotemporally high-throughput characterization of bacterial quorum-sensing response. Using this batch characterization method, the quorum-sensing response in Escherichia coli MG1655, transformed with a truncated lux operon from Vibrio fischeri, in the presence of 1-100 nM exogenous acyl-homoserine lactone molecules has been quantified. This method provides a rapid and facile tool for high-throughput characterization of the quorum-sensing response of genetically modified bacteria in the presence of a wide concentration range of signaling molecules with a precision of ±0.5 nM. Furthermore, the quorum-sensing response of BacteriaBots has been characterized to determine if the results obtained from a large bacterial population can serve as a robust predictive tool for the small bacterial population attached to each BacteriaBot.

  2. Study on the influence of quorum sensing on fish spoilage%群体感应对鱼类腐败的影响研究

    Institute of Scientific and Technical Information of China (English)

    顾清清; 王彦波

    2012-01-01

    Quorum sensing (QS) is the phenomenon in response to a certain content of the diffusible chemical signal molecules (auto inducers), which was produced by members of bacteria. Nowadays, quorum sensing has been one of the most important research fields in life sciences. Thus, this review presented the mechanisms of fish spoilage and the correlation with quorum sensing system based on kinds of signal molecules found in quorum sensing system. In addition, the influence of quorum sensing system on fish corruption was also discussed. The aim of this review is to provide a theoretical basis for the preservation and shelflife of fish and the research and development of novel preservative.%群体感应是指细菌产生可扩散的化学信号分子(自诱导物),当化学信号分子到达一定浓度时引起的感应现象,目前已经成为生命科学相关研究的热点之一.文章在综合分析群体感应系统及其信号分子的种类基础上,讨论了鱼类腐败的原因及群体感应系统对鱼类腐败的影响,旨在为鱼类贮藏保鲜,延长货架期及寻求新的防腐剂奠定一定的理论基础.

  3. An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing.

    Science.gov (United States)

    Mund, A; Kuttler, C; Pérez-Velázquez, J; Hense, B A

    2016-09-21

    Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells.

    Science.gov (United States)

    Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu

    2016-03-15

    Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.

  5. 枯草芽孢杆菌的群体感应信号系统及其在环境领域的应用前景%Quorum sensing signal system of Bacillus subtilis and its application prospect in the environment

    Institute of Scientific and Technical Information of China (English)

    陈瑞; 王大力; 林志芬; 尹大强

    2012-01-01

    The present paper would like to introduce the biological features and main applications of Bacillus subtilis in brief and elaborate its quorum sensing system in a thorough-going way. As is known, Bacillus subtilis quorum sensing tends to display its function during the growth of late logarithmic and stationary stage, in which it is possible for its sensitive molecules to get synthesized in between their cells and then would be brought out to the extracellular ones through the ATP-binding cassette. As is shown, the main signaling molecules may represent the ComX phermone and competence and sporulation factors in the process of quorum sensing in Bacillus subtilis . We have already made a review over the ways of their generation, the characteristic features and the likely roles in the regulation of quorum sensing system respectively. Since ComX pheromone is the main promoter for the development of gene' s mobility when it has accumulated to a certain extent in the extracellular structures with the increasing number of bacteria, and their function of competence and sporulation factor are closely related to their intracellular concentration. Generally speaking, the low concentration of competence and sporulation factor in the intracellular structures tend to promote the development of mobility, which in turn is likely to spore formation of high concentration due to the deterioration of nutritional conditions. And, it is for this reason, Bacillus subtilis can widely be used for degradation of pollutants in the field of environmental protection and sustainable maintenance through toxicity testing checking as strain of gram-positive bacteria in fighting against toxicity, though it has not been clear for its behavior. Quorum sensing is a very important regulatory mechanism during the growth of Bacillus subtilis, however, current studies are mainly focused on exploring the theoretical problems about the quorum sensing mechanism with scarce report on its applications. It is

  6. [Action of antibiotics as signalling molecules].

    Science.gov (United States)

    Bulgakova, V G; Vinogradova, K A; Orlova, T I; Kozhevin, P A; Polin, A N

    2014-01-01

    It was thought that antibiotics should be produced by soil microorganisms to inhibit the growth of competitors in natural habitats. Yet it has been shown that antibiotics at subinhibitory concentrations may have a role as signalling molecules providing cell-to-cell communication in bacteria in the environment. Antibiotics modulate gene transcription and regulate gene expression in microbial populations. Subinhibitory concentrations of antibiotics may cause a number of phenotypic and genotypic changes in microorganisms. These transcription changes are dependent on the interaction of antibiotics with macromolecular receptors such as ribosome or RNA-polymerase. Antibiotic signalling and quorum-sensing system are important regulatory mechanisms in bacteria. It was demonstrated that antibiotics interfered with quorum-sensing system.

  7. Draft genome sequence of Pantoea sp. strain A4, a Rafflesia-associated bacterium that produces N-acylhomoserine lactones as quorum-sensing molecules.

    Science.gov (United States)

    Hong, Kar-Wai; Gan, Han Ming; Low, Siew-Moon; Lee, Patrick Kok Yuen; Chong, Yee-Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2012-12-01

    Pantoea sp. strain A4 is a Gram-negative bacterium isolated from the Rafflesia flower. We present here, for the first time, the genome sequence of Rafflesia-associated Pantoea sp. strain A4, which exhibited quorum-sensing activity.

  8. Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer.

    Directory of Open Access Journals (Sweden)

    Beth L Zimmer

    Full Text Available Black band disease (BBD of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs and for autoinducer-2 (AI-2 activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153 of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S-4,5-dihydroxy-2,3-pentanedione (DPD, the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome.

  9. Expression of luxS gene involved in quorum sensing in Lactobacillus acidophilus NCFM after passage through an in vitro digestion model

    DEFF Research Database (Denmark)

    Moslehi Jenabian, Saloomeh; Jespersen, Lene

    sensing is cellto- cell signalling through the production, secretion and detection of small signal molecules called autoinducers. The aim of the present study was to investigate the transcription of the luxS gene involved in quorum sensing in probiotic strain Lactobacillus acidophilus NCFM after passage...

  10. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone.

    Science.gov (United States)

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-07-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL's effect on intestinal mucus barrier function.

  11. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.

    Science.gov (United States)

    Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo

    2005-10-01

    The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.

  12. Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing

    DEFF Research Database (Denmark)

    Svenningsen, Sine L; Tu, Kimberly C; Bassler, Bonnie L

    2009-01-01

    Quorum sensing is a mechanism of cell-to-cell communication that allows bacteria to coordinately regulate gene expression in response to changes in cell-population density. At the core of the Vibrio cholerae quorum-sensing signal transduction pathway reside four homologous small RNAs (sRNAs), named...

  13. Can the natural diversity of quorum-sensing advance synthetic biology?

    Science.gov (United States)

    Davis, René Michele; Muller, Ryan Yue; Haynes, Karmella Ann

    2015-01-01

    Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.

  14. The effect of burdock leaf fraction on adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa.

    Science.gov (United States)

    Lou, Z; Wang, H; Tang, Y; Chen, X

    2017-03-01

    This study aimed to evaluate the effect of a fraction of burdock (Arctium lappa L.) leaf on the initial adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa. Antibiofilm activity of the burdock leaf fraction was studied by the method of crystal violet staining. When the concentration of the burdock leaf fraction was 2·0 mg ml(-1) , the inhibition rates on biofilm formation of P. aeruginosa were 100%. The burdock leaf fraction was found to inhibit the formation of biofilm by reducing bacterial surface hydrophobicity, decreasing bacterial aggregation ability and inhibiting swarming motility. Interestingly, the burdock leaf fraction inhibited the secretion of quorum-sensing (QS) signalling molecule 3-oxo-C12-HSL and interfered quorum sensing. Moreover, the QS-regulated pyocyanin and elastase were also inhibited. Chemical composition analysis by UPLC-MS showed 11 active compounds in the burdock leaf fraction. The burdock leaf fraction significantly inhibited the formation of biofilm and quorum sensing, as well as significantly decreased the content of virulence factors. This study introduces a natural and effective bacterial biofilm inhibitor, which could also significantly decrease the content of virulence factors and the drug resistance of P. aeruginosa. © 2016 The Society for Applied Microbiology.

  15. Quorum Sensing Activity in Pandoraea pnomenusa RB38

    Directory of Open Access Journals (Sweden)

    Robson Ee

    2014-06-01

    Full Text Available Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38.

  16. Quorum Sensing Activity of Hafnia alvei Isolated from Packed Food

    Directory of Open Access Journals (Sweden)

    Jia-Yi Tan

    2014-04-01

    Full Text Available Quorum sensing (QS is a mechanism adopted by bacteria to regulate expression of genes according to population density. N-acylhomoserine lactones (AHLs are a type of QS signalling molecules commonly found in Gram-negative bacteria which have been reported to play a role in microbial spoilage of foods and pathogenesis. In this study, we isolated an AHL-producing Hafnia alvei strain (FB1 from spherical fish pastes. Analysis via high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS on extracts from the spent supernatant of H. alvei FB1 revealed the existence of two short chain AHLs: N-(3-oxohexanoyl homoserine lactone (3-oxo-C6-HSL and N-(3-oxo- octanoyl homoserine lactone (3-oxo-C8-HSL. To our knowledge, this is the first report of the production of AHLs, especially 3-oxo-C8-HSL, by H. alvei.

  17. Quorum Sensing Activity of Enterobacter asburiae Isolated from Lettuce Leaves

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2013-10-01

    Full Text Available Bacterial communication or quorum sensing (QS is achieved via sensing of QS signaling molecules consisting of oligopeptides in Gram-positive bacteria and N-acyl homoserine lactones (AHL in most Gram-negative bacteria. In this study, Enterobacteriaceae isolates from Batavia lettuce were screened for AHL production. Enterobacter asburiae, identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS was found to produce short chain AHLs. High resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS analysis of the E. asburiae spent supernatant confirmed the production of N-butanoyl homoserine lactone (C4-HSL and N–hexanoyl homoserine lactone (C6-HSL. To the best of our knowledge, this is the first report of AHL production by E. asburiae.

  18. Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade.

    Science.gov (United States)

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule.

  19. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chunjuan, E-mail: chunjuanjay@163.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Liu, Fang, E-mail: liufang830818@126.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Zhao, Qian, E-mail: zhqbluesea@163.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Jia, Zhenhua, E-mail: zhenhuaj@hotmail.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China); Song, Shuishan, E-mail: shuishans@hotmail.com [Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050051 (China); Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051 (China)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer 3OC8-HSL can change the expression of diverse proteins in Arabidopsis. Black-Right-Pointing-Pointer 3OC8-HSL responsive proteins were identified using MALDI-TOF-MS. Black-Right-Pointing-Pointer Plant could have an extensive range of functional responses to bacterial AHL. -- Abstract: N-acyl-homoserine lactones (AHLs) are a class of bacterial quorum-sensing (QS) signals that are commonly used by Gram-negative bacteria for cell-to-cell communication. Recently, it has become evident that AHLs can regulate plant root growth and trigger plant defense responses; however, little is known about the plant response mechanisms to bacterial QS signals. In this study, we used a proteomic approach to investigate the responses of Arabidopsis thaliana seedlings to N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL), a bacterial QS signal. The results revealed that the abundance of 53 protein spots was significantly altered; two thirds of these proteins were found to be up-regulated after 3OC8-HSL treatment. Thirty-four proteins were identified using MALDI-TOF-MS. These 3OC8-HSL-responsive proteins, in addition to one protein of unknown function, are implicated in a variety of physiological processes, including metabolism of carbohydrate and energy, protein biosynthesis and quality control systems, defense response and signal transduction and cytoskeleton remodeling. Our bioinformatic analysis indicated that the chloroplasts are the intracellular organelles most influenced by the exposure to 3OC8-HSL. Our data indicate that plants have an extensive range of functional responses to bacterial AHLs that may play important roles in the interaction between plants and bacteria.

  20. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement

    Science.gov (United States)

    Rein, Markus; Heinß, Nike; Schmid, Friederike; Speck, Thomas

    2016-02-01

    We study a generic model for quorum-sensing bacteria in circular confinement. Every bacterium produces signaling molecules, the local concentration of which triggers a response when a certain threshold is reached. If this response lowers the motility, then an aggregation of bacteria occurs which differs fundamentally from standard motility-induced phase separation due to the long-ranged nature of the concentration of signal molecules. We analyze this phenomenon analytically and by numerical simulations employing two different protocols leading to stationary cluster and ring morphologies, respectively.

  1. Quorum sensing en la asociación beneficiosa de las bacterias con las plantas

    Directory of Open Access Journals (Sweden)

    Marcia M. Rojas Badía

    2012-06-01

    Full Text Available Título en ingles: Quorum sensing in beneficial plant-bacteria associations ResumenSe conoce que el quorum sensing es un atributo común de muchas especies bacterianas y que puede ser un carácter universal de las bacterias. Actualmente se están describiendo a un paso más rápido nuevas señales y nuevos sistemas de regulación por quorum sensing y se han desarrollado las investigaciones acerca de la comunicación célula-célula en bacterias basada en el mecanismo de quorum sensing. En los ambientes naturales existen muchas bacterias que viven juntas y utilizan varias clases de moléculas señales. Dentro de las señales especie específicas predominan las acilhomoserín lactonas (AHLs, pero ya se han descrito una amplia diversidad de moléculas involucradas en la señalización célula-célula. Numerosos bioensayos y sistemas sensores se han desarrollado para la detección, caracterización y cuantificación de las AHLs. Se han obtenido evidencias de la acción de estas moléculas señales en la colonización de la rizosfera, el swarming, las interacciones simbióticas y la capacidad de interrumpir el proceso de señalización de otras bacterias que convivan en el mismo ambiente. Todas estas potencialidades de las bacterias que involucran el mecanismo de quorum sensing, pudieran ser utilizadas para fortalecerla acción estimuladora del crecimiento vegetal y el control biológico de patógenos en los agroecosistemas sostenibles. Palabras clave: comunicación celular; PGPB; control biológico; moléculas señal AbstractThe quorum sensing is a common attribute in some bacterial species. Currently, several signals and new regulation systems are describing and the researchers are very interested in the cell-cell communication based on quorum sensing mechanism. In the natural environments several bacteria are living together, then several types of signal molecules are using. The acylhomoserines lactones (AHLs, are predominant, but a wide range

  2. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum

    DEFF Research Database (Denmark)

    Tan, Demeng; Svenningsen, Sine Lo; Middelboe, Mathias

    2015-01-01

    of the outcome of phage-bacterial encounters in the fish pathogen Vibrio anguillarum is bacterial cell-cell communication, known as quorum sensing. Specifically, V. anguillarum PF430-3 cells locked in the low-cell-density state (ΔvanT mutant) express high levels of the phage receptor OmpK, resulting in a high...... susceptibility to phage KVP40, but achieve protection from infection by enhanced biofilm formation. By contrast, cells locked in the high-cell-density state (ΔvanΟ mutant) are almost completely unsusceptible due to quorum-sensing-mediated downregulation of OmpK expression. The phenotypes of the two quorum-sensing......-acylhomoserine lactone quorum-sensing signals in the culture medium, and (iii) survives mainly by one of these two defense mechanisms, rather than by genetic mutation to phage resistance. Taken together, our results demonstrate that V. anguillarum employs quorum-sensing information to choose between two complementary...

  3. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; van Gennip, Maria; Jakobsen, Tim Holm

    2011-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...

  4. Quorum sensing-controlled gene expression in lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1998-01-01

    Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the struc

  5. Quorum sensing-controlled gene expression in lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1998-01-01

    Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the

  6. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation

    Directory of Open Access Journals (Sweden)

    Debora Fabiola Veliz Vallejos

    2014-10-01

    Full Text Available N-acyl homoserine lactones (AHLs act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume hosts and rhizobia. We treated roots of the model legume, Medicago truncatula, with a range of AHLs either from its specific symbiont, Sinorhizobium meliloti, or from the potential pathogens, Pseudomonas aeruginosa and Agrobacterium vitis. We found increased numbers of nodules formed on root systems treated with the S. meliloti-specific AHL, 3-oxo-C14-homoserine lactone, at a concentration of 1 μM, while the other AHLs did not result in significant changes to nodule numbers. We did not find any evidence for altered nodule invasion by the rhizobia. Quantification of flavonoids that could act as nod gene inducers in S. meliloti did not show any correlation with increased nodule numbers. The effects of AHLs were specific for an increase in nodule numbers, but not lateral root numbers or root length. Increased nodule numbers following 3-oxo-C14-homoserine lactone treatment were under control of autoregulation of nodulation and were still observed in the autoregulation mutant, sunn4 (super numeric nodules4. However, increases in nodule numbers by 3-oxo-C14-homoserine lactone were not found in the ethylene-insensitive sickle mutant. A comparison between M. truncatula with M. sativa (alfalfa and Trifolium repens (white clover showed that the observed effects of AHLs on nodule numbers were specific to M. truncatula, despite M. sativa nodulating with the same symbiont. We conclude that plant perception of the S. meliloti-specific 3-oxo-C14-homoserine lactone influences nodule numbers in M. truncatula via an ethylene-dependent, but autoregulation

  7. Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system.

    Science.gov (United States)

    Barel, Victoria; Chalupowicz, Laura; Barash, Isaac; Sharabani, Galit; Reuven, Michal; Dror, Orit; Burdman, Saul; Manulis-Sasson, Shulamit

    2015-09-01

    Xanthomonas hortorum pv. pelargonii (Xhp), the causal agent of bacterial blight in pelargonium, is the most threatening bacterial disease of this ornamental worldwide. To gain an insight into the regulation of virulence in Xhp, we have disrupted the quorum sensing (QS) genes, which mediate the biosynthesis and sensing of the diffusible signal factor (DSF). Mutations in rpfF (encoding the DSF synthase) and rpfC (encoding the histidine sensor kinase of the two-component system RfpC/RpfG) and overexpression of rpfF showed a significant reduction in incidence and severity of the disease on pelargonium. Confocal laser scanning microscopy images of inoculated plants with a green fluorescent protein (GFP)-labelled wild-type strain showed that the pathogen is homogeneously dispersed in the lumen of xylem vessels, reaching the apex and invading the intercellular spaces of the leaf mesophyll tissue within 21 days. In contrast, the rpfF and rpfC knockout mutants, as well as the rpfF-overexpressing strain, remained confined to the vicinity of the inoculation site. The rpfF and rpfC mutants formed large incoherent aggregates in the xylem vessels that might interfere with upward movement of the bacterium within the plant. Both mutants also formed extended aggregates under in vitro conditions, whereas the wild-type strain formed microcolonies. Expression levels of putative virulence genes in planta were substantially reduced within 48 h after inoculation with the QS mutants when compared with the wild-type. The results presented indicate that an optimal DSF concentration is crucial for successful colonization and virulence of Xhp in pelargonium.

  8. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability.

    Science.gov (United States)

    Studer, Sarah V; Schwartzman, Julia A; Ho, Jessica S; Geske, Grant D; Blackwell, Helen E; Ruby, Edward G

    2014-08-01

    Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type N-acyl L-homoserine (AHL) quorum sensing is common in Gram-negative Proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogues can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.

  9. Identification of potential genetic components involved in the deviant quorum-sensing signaling pathways of Burkholderia glumae through a functional genomics approach

    Directory of Open Access Journals (Sweden)

    Ruoxi eChen

    2015-03-01

    Full Text Available Burkholderia glumae is the chief causal agent for bacterial panicle blight of rice. The acyl-homoserine lactone (AHL-mediated quorum-sensing (QS system dependent on a pair of luxI and luxR homologs, tofI and tofR, is the primary cell-to-cell signaling mechanism determining the virulence of this bacterium. Production of toxoflavin, a major virulence factor of B. glumae, is known to be dependent on the tofI/tofR QS system. In our previous study, however, it was observed that B. glumae mutants defective in tofI or tofR produced toxoflavin if they grew on the surface of a solid medium, suggesting that alternative signaling pathways independent of tofI or tofR are activated in that growth condition for the production of toxoflavin. In this study, potential genetic components involved in the tofI- and tofR-independent signaling pathways for toxoflavin production were sought through screening random mini-Tn5 mutants of B. glumae to better understand the intercellular signaling pathways of this pathogen. Fifteen and three genes were initially identified as the potential genetic elements of the tofI- and tofR-independent pathways, respectively. Especially, the ORF (bglu_2g06320 divergently transcribed from toxJ, which encodes an orphan LuxR protein and controls toxoflavin biosynthesis, was newly identified in this study as a gene required for the tofR-independent toxoflavin production and named as toxK. Among those genes, flhD, dgcB, and wyzB were further studied to validate their functions in the tofI-independent toxoflavin production, and similar studies were also conducted with qsmR and toxK for their functions in the tofR-independent toxoflavin production. This work provides a foundation for future comprehensive studies of the intercellular signaling systems of B. glumae and other related pathogenic bacteria.

  10. 细菌群体感应及其在食品变质中的作用%Quorum sensing of bacteria and its effect on food spoilage

    Institute of Scientific and Technical Information of China (English)

    高宗良; 谷元兴; 赵峰; 刘永生

    2012-01-01

    Food spoilage caused by the bacterial biofilm is a significant problems in food industry.It is indicated that quorum sensing of the bacteria plays a major role in biofilm formation and food spoilage.This review focuses on the recent research advances about various quorum-sensing signaling molecules produced by bacteria, the role of signaling molecules in biofilm formation and the significance of biofilms in food industry.As quorum-sensing signaling molecules are closely relate to food spoilage, it was also reviewed that quorum-sensing inhibitors can be developed to be used as novel food preservatives for enhance shelf life and food safety.%食品相关细菌引起的生物被膜形成和食品变质是食品工业中的重大问题.研究表明细菌群体感应(Quorum sensing,QS)与被膜形成、食品腐败变质密切相关.重点对细菌产生的各种QS信号分子及其在被膜形成的作用和被膜在食品工业中的重要性做了介绍.QS信号分子与食品变质密切相关,故对QS抑制剂作为新型食品防腐剂以延长储存期限及加强食品安全的前景进行了概述.

  11. The Role of the QseC Sensor Kinase in Salmonella enterica serovar Typhimurium Quorum Sensing and Swine Colonization

    Science.gov (United States)

    At least two quorum sensing molecules, autoinducer-3 (AI-3) and norepinephrine (NE), are present in the gastrointestinal tract and activate the E. coli QseBC quorum sensing system. AI-3 is produced by enteric bacteria, whereas NE is produced by the animal host, often during stress. Both 10% pre-co...

  12. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Rasmussen, T B; Manefield, M; Andersen, Jens Bo

    2000-01-01

    Halogenated furanones produced by the benthic marine macroalga Delisea pulchra inhibit swarming motility of Serratia liquefaciens MG1. This study demonstrates that exogenously added furanones control transcription of the quorum sensing regulated gene swrA in competition with the cognate signal...... molecule N:-butanoyl-L-homoserine lactone. This in turn results in reduced production of the surface-active compound serrawettin W2, which is crucial for surface translocation of the differentiated swarm cells. It is demonstrated that furanones interfere with interspecies communication during swarming...

  13. 细菌群体感应抑制剂的研究进展%Research Progress on Bacterial Quorum Sensing Inhibitors

    Institute of Scientific and Technical Information of China (English)

    孙琦; 梁经纬; 王琳; 张廷剑; 孟繁浩

    2016-01-01

    在菌群生长过程中,细菌能不断产生化学信号分子并分泌到周围环境中,当信号分子的数量达到一定阈值时,可调控菌体相关基因的表达如生物膜的形成、生物发光等,以适应环境的变化,这种现象称为细菌群体感应(quorum sensing,QS)。细菌群体感应抑制剂(quorum sensing inhibitor,QSI)以细菌的群体感应为靶点,只针对病原菌的群体感应系统起抑制作用,并不杀死体内的正常细菌或干扰其正常生命活动,为人类提供了一种新型抗菌途径。综述了细菌群体感应信号分子的调控系统和细菌群体感应抑制剂的研究进展。%Bacteria can produce chemical signal molecules and secret them into the surrounding environment during their growth processes.When the number of signal molecules reaches to a certain threshold,the related genes expression,such as biofilm formation or bioluminescent,will be regulated,in order to adapt to such envi-ronmental changes.This phenomenon is called bacterial quorum sensing(QS).Using bacterial quorum sensing as a target,bacterial quorum sensing inhibitors(QSI)make pathogens lose pathogenicity by blocking the expres-sion of harmful genes,whilst do not kill the normal bacteria or interfere with the normal physiological activity of bacteria,which providing a new antibacterial way for mankind.Research progress on signal molecules regula-tion system of bacterial quorum sensing system and bacterial quorum sensing inhibitors are reviewed in this paper.

  14. An inhibitor of bacterial quorum sensing reduces mortalities caused by vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum)

    DEFF Research Database (Denmark)

    Rasch, Maria; Buch, Christiane; Austin, B.

    2004-01-01

    The fish pathogen Vibrio anguillarum produces quorum sensing signal molecules, N-acyl homoserine lactones (AHLs), which in several Gram-negative human and plant pathogenic bacteria regulate virulence factors. Expression of these factors can be blocked using specific quorum-sensing inhibitors (QSIs......). The purpose of this study was to investigate the effect of a QSI, furanone C-30, on mortality of rainbow trout during challenge with V. anguillarum. Addition of 0.01 or 0.1 muM furanone C-30 to rainbow trout infected by cohabitation caused a significant reduction in accumulated mortality from 80...... experiments, thus avoiding selection for resistance. To elucidate the mechanism of disease control by furanone C-30, we determined its effect on the bacterial proteome, motility, and respiration. No effects were seen of furanone C-30 in any of these experiments. Although no cytotoxic effect on HeLa cells were...

  15. 铜绿假单胞菌中群体感应系统的研究进展%Research progress of quorum sensing in Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    杨帆; 张乐; 盛哈蕾; 张克斌

    2012-01-01

    Quorum sensing is a kind of signaling pathway for communication among bacteria cells. Bacteria can monitor their population density and regulate hunderds of genes expression by detecting small diffusible molecules. The P. Aeruginosa quorum sensing circuitry is comprised of two complete systems (LasR/LasI and Rhll/RhlR) and one orphan 4-quinolone signalling system. This paper reviews the regulation mechanism and it's potential application of quorum sensing systems of P. Aeruginosa.%群体感应系统(quorum sensing)是一种细菌细胞与细胞间的信号传递系统.细菌通过可扩散的小分子信号分子感知细胞群体的密度,从而引起一些特定基因在细菌群体中的协调表达.铜绿假单胞菌中的QS系统包括LasI/LasR和RhlI/RhlR两条主要的信号系统和喹诺酮信号系统.本文系统地介绍了铜绿假单胞菌中QS系统的研究现状和相关应用.

  16. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection

    DEFF Research Database (Denmark)

    Wu, H; Song, Z; Givskov, Michael

    2001-01-01

    To understand the importance of quorum sensing in chronic Pseudomonas aeruginosa lung infection, the in vivo pathogenic effects of the wild-type P. aeruginosa PAO1 and its double mutant, PAO1 lasI rhlI, in which the signal-generating parts of the quorum sensing systems are defective were compared...

  17. Herbs, Spices and Medicinal Plants Used In Hispanic Traditional Medicine Can Decrease Quorum Sensing Dependent Virulence in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    V Huerta

    2008-06-01

    Full Text Available Summary: Inhibition of quorum sensing (QS, a cell density dependent regulation of bacterial virulent gene expression by autoinducers (AI is an attractive strategy for the discovery of novel antimicrobials and overcome antibiotic resistance. Pseudomonas aeruginosa (PAO1, an opportunistic pathogen in immune compromised patients is under the regulation of the LasR-RhlR system for its QS mediated development of virulence. Natural products have recently become a promising source for deriving molecules that can potentially inhibit quorum sensing.  Herbs, Spices and Medicinal Plants (HSMP used in Hispanic cultures have been used for treating common ailments for many centuries. However, few studies have investigated its QS related antivirulent activities. Our objective was to determine the ability of 25 popular Hispanic HSMP on the expression of QS regulated virulence factors in PAO1. Effect of these extracts on QS mediated PAO1 virulent factors pyocyanin, elastase, and total proteolytic activity were quantified by standard protocols. Results indicated that several extracts reduced pyocyanin synthesis, with some extracts completely inhibiting its formation and secretion. The extracts that decreased the pyocyanin formation also decreased the expression and activity of elastase and other proteolytic enzymes important for the virulence. We observed that HSMP from Central/South American countries can inhibit QS dependent and independent virulent processes in PA-O1. Further research into the exact mechanism of action can lead to better understanding and discovery of new category of drugs and strategies for the management of PAO1 infections and antimicrobial resistance.   Industrial relevance: Quorum sensing is an important process involved in bacterial survival and infections, recent research has focused on the development of therapeutic agents which prevent or manage bacterial pathogenesis by inhibiting bacterial QS. Inhibition of quorum sensing offers an

  18. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor.

    Science.gov (United States)

    Ke, Xiaobo; Miller, Laura C; Bassler, Bonnie L

    2015-01-01

    Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: in the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN kinase on and kinase off states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, kinase off, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity.

  19. Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Dalsgaard, Inger; Nielsen, K.F.

    2005-01-01

    and plant-pathogenic bacteria. A total of 59 strains, representing 9 different fish pathogenic species, were tested against 2 AHL monitor bacteria (Agrobacterium tumefaciens NT1 [pZLR4] and Chromobacterium violaceum CV026) in a well diffusion assay and by thin-layer chromatography (TLC). Representative...

  20. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria

    Science.gov (United States)

    Nievas, Fiorela L.; Bogino, Pablo C.; Giordano, Walter

    2016-01-01

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences…

  1. Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Dalsgaard, Inger; Nielsen, K.F.

    2005-01-01

    and plant-pathogenic bacteria. A total of 59 strains, representing 9 different fish pathogenic species, were tested against 2 AHL monitor bacteria (Agrobacterium tumefaciens NT1 [pZLR4] and Chromobacterium violaceum CV026) in a well diffusion assay and by thin-layer chromatography (TLC). Representative...... salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine...... lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeii. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida...

  2. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria

    Science.gov (United States)

    Nievas, Fiorela L.; Bogino, Pablo C.; Giordano, Walter

    2016-01-01

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences…

  3. The dependence of quorum sensing in Serratia marcescens JG on the transcription of luxS gene.

    Science.gov (United States)

    Sun, Shu-Jing; Liu, Yu-Chen; Sun, Jiao; Zhu, Hu

    2015-06-01

    Bacteria communicate with one another using chemical signal molecules. This phenomenon termed quorum sensing enables the bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to cell density. Serratia marcescens JG, a quorum sensing bacterium, can secrete a furanosyl borate diester autoinducer (AI-2) in the exponential phase of growth. In this study, to further investigate the regulation of AI-2 production in S. marcescens JG, the pfs and luxS promoter fusions to an operon luxCDABE reporter were constructed in a low-copy-number vector pBR322K, which allows an examination of transcription of the genes in the pathway for signal synthesis. The results show that the luxS expression is constitutive, and the transcription of luxS is tightly correlated with AI-2 production in S. marcescens JG because the peaks of AI-2 production and transcriptional level of luxS appear at the same time point. The close relation of the profiles of luxS transcription and AI-2 production was also confirmed with real-time PCR technology. These results support the hypothesis that the quorum sensing in S. marcescens JG is luxS dependent.

  4. Synthetic polymers for simultaneous bacterial sequestration and quorum sense interference.

    Science.gov (United States)

    Xue, Xuan; Pasparakis, George; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M; Cramphorn, Christopher J; Cameron, Neil R; Gardner, Paul M; Davis, Benjamin G; Fernández-Trillo, Francisco; Alexander, Cameron

    2011-10-10

    Double agents: dual-action polymers are able to sequester rapidly the marine organism Vibrio harveyi from suspension, while at the same time quenching bacterial quorum sense (QS) signals. The potency of the polymers is assessed by cell aggregation experiments and competitive binding assays against a QS signal precursor, and their effect on bacterial behavior is shown by means of bioluminescence. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quorum sensing in human pathogens%病原菌群体感应系统的研究进展

    Institute of Scientific and Technical Information of China (English)

    钱妩燕; 江涛

    2012-01-01

    群体感应是细菌间依赖细胞密度的一种信息传递方式.细菌通过合成、分泌信号分子感知细菌群体密度,从而控制整个细菌群体行为.目前已在许多革兰阴性菌、革兰阳性菌和真菌中发现群体感应系统,对群体感应系统信号分子结构、信号传导通路进行大量研究后,发现其与细菌生物膜形成、生成分泌毒力因子密切相关.本文就以典型的铜绿假单胞菌、金黄色葡萄球菌、哈氏弧菌、白色念珠菌为例,对群体感应系统相关机制及研究进展予以综述.%Quorum sensing is a density-dependent cell-signaling m(cc)hanism,driven by secreted signaling molecules called autoinducer. Communication enables population of cells to synchronize gene expression.Thus,quorum sensing allows groups of bacteria to act in union by perception of bacterial population density.A number of quorum sensing systems have been found in gram-negative bacteria,grampositive bacteria and fungi,which are commonly associated with biofilm formation and virulence. This review focuses on the lasted mechanism of quorum sensing system based on typical pathogen,including Pseudomonas aeruginosa,Staphylococcus aureus,Vibrio harveyi and Candida albicans.

  6. Positive Autoregulation of an Acyl-Homoserine Lactone Quorum-Sensing Circuit Synchronizes the Population Response.

    Science.gov (United States)

    Scholz, Rebecca L; Greenberg, E Peter

    2017-07-25

    Many proteobacteria utilize acyl-homoserine lactone quorum-sensing signals. At low population densities, cells produce a basal level of signal, and when sufficient signal has accumulated in the surrounding environment, it binds to its receptor, and quorum-sensing-dependent genes can be activated. A common characteristic of acyl-homoserine lactone quorum sensing is that signal production is positively autoregulated. We have examined the role of positive signal autoregulation in Pseudomonas aeruginosa We compared population responses and individual cell responses in populations of wild-type P. aeruginosa to responses in a strain with the signal synthase gene controlled by an arabinose-inducible promoter so that signal was produced at a constant rate per cell regardless of cell population density. At a population level, responses of the wild type and the engineered strain were indistinguishable, but the responses of individual cells in a population of the wild type showed greater synchrony than the responses of the engineered strain. Although sufficient signal is required to activate expression of quorum-sensing-regulated genes, it is not sufficient for activation of certain genes, the late genes, and their expression is delayed until other conditions are met. We found that late gene responses were reduced in the engineered strain. We conclude that positive signal autoregulation is not a required element in acyl-homoserine lactone quorum sensing, but it functions to enhance synchrony of the responses of individuals in a population. Synchrony might be advantageous in some situations, whereas a less coordinated quorum-sensing response might allow bet hedging and be advantageous in other situations.IMPORTANCE There are many quorum-sensing systems that involve a transcriptional activator, which responds to an acyl-homoserine lactone signal. In all of the examples studied, the gene coding for signal production is positively autoregulated by the signal, and it has even

  7. Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Segelke, B; Hok, S; Lao, V; Corzett, M; Garcia, E

    2010-03-29

    The proposed research was motivated by an interest in understanding Y. pestis virulence mechanisms and bacteria cell-cell communication. It is expected that a greater understanding of virulence mechanisms will ultimately lead to biothreat countermeasures and novel therapeutics. Y. pestis is the etiological agent of plague, the most devastating disease in human history. Y. pestis infection has a high mortality rate and a short incubation before mortality. There is no widely available and effective vaccine for Y. pestis and multi-drug resistant strains are emerging. Y. pestis is a recognized biothreat agent based on the wide distribution of the bacteria in research laboratories around the world and on the knowledge that methods exist to produce and aerosolize large amounts of bacteria. We hypothesized that cell-cell communication via signaling molecules, or quorum sensing, by Y. pestis is important for the regulation of virulence factor gene expression during host invasion, though a causative link had never been established. Quorum sensing is a mode of intercellular communication which enables orchestration of gene expression for many bacteria as a function of population density and available evidence suggests there may be a link between quorum sensing and regulation of Y. pesits virulence. Several pathogenic bacteria have been shown to regulate expression of virulence factor genes, including genes encoding type III secretion, via quorum sensing. The Y. pestis genome encodes several cell-cell signaling pathways and the interaction of at least three of these are thought to be involved in one or more modes of host invasion. Furthermore, Y. pestis gene expression array studies carried out at LLNL have established a correlation between expression of known virulence factors and genes involved in processing of the AI-2 quorum sensing signal. This was a basic research project that was intended to provide new insights into bacterial intercellular communication and how it is

  8. Modulating Vibrio cholerae quorum-sensing-controlled communication using autoinducer-loaded nanoparticles.

    Science.gov (United States)

    Lu, Hoang D; Spiegel, Alina C; Hurley, Amanda; Perez, Lark J; Maisel, Katharina; Ensign, Laura M; Hanes, Justin; Bassler, Bonnie L; Semmelhack, Martin F; Prud'homme, Robert K

    2015-04-08

    The rise of bacterial antibiotic resistance has created a demand for alternatives to traditional antibiotics. Attractive possibilities include pro- and anti-quorum sensing therapies that function by modulating bacterial chemical communication circuits. We report the use of Flash NanoPrecipitation to deliver the Vibrio cholerae quorum-sensing signal CAI-1 ((S)-3-hydroxytridecan-4-one) in a water dispersible form as nanoparticles. The particles activate V. cholerae quorum-sensing responses 5 orders of magnitude higher than does the identically administered free CAI-1 and are diffusive across in vivo delivery barriers such as intestinal mucus. This work highlights the promise of combining quorum-sensing strategies with drug delivery approaches for the development of next-generation medicines.

  9. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes

    Science.gov (United States)

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric ‘bacteria sequestrants’, designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  10. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes.

    Science.gov (United States)

    Lui, Leong T; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric 'bacteria sequestrants', designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  11. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil.

    Science.gov (United States)

    Hassan, Ramadan; Shaaban, Mona I; Abdel Bar, Fatma M; El-Mahdy, Areej M; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1-V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  12. Quorum sensing inhibiting activity of Streptomyces coelicoflavus isolated from soil

    Directory of Open Access Journals (Sweden)

    Hassan eRamadan

    2016-05-01

    Full Text Available Quorum sensing (QS systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1-V6 of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR and Mass spectrometry, as behenic acid (docosanoic acid, borrelidin and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA and pqsR. Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and

  13. Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon.

    Science.gov (United States)

    Chugani, Sudha; Kim, Byoung Sik; Phattarasukol, Somsak; Brittnacher, Mitchell J; Choi, Sang Ho; Harwood, Caroline S; Greenberg, E Peter

    2012-10-09

    Quorum sensing allows bacteria to sense and respond to changes in population density. Acyl-homoserine lactones serve as quorum-sensing signals for many Proteobacteria, and acyl-homoserine lactone signaling is known to control cooperative activities. Quorum-controlled activities vary from one species to another. Quorum-sensing controls a constellation of genes in the opportunistic pathogen Pseudomonas aeruginosa, which thrives in a number of habitats ranging from soil and water to animal hosts. We hypothesized that there would be significant variation in quorum-sensing regulons among strains of P. aeruginosa isolated from different habitats and that differences in the quorum-sensing regulons might reveal insights about the ecology of P. aeruginosa. As a test of our hypothesis we used RNA-seq to identify quorum-controlled genes in seven P. aeruginosa isolates of diverse origins. Although our approach certainly overlooks some quorum-sensing-regulated genes we found a shared set of genes, i.e., a core quorum-controlled gene set, and we identified distinct, strain-variable sets of quorum-controlled genes, i.e., accessory genes. Some quorum-controlled genes in some strains were not present in the genomes of other strains. We detected a correlation between traits encoded by some genes in the strain-variable subsets of the quorum regulons and the ecology of the isolates. These findings indicate a role for quorum sensing in extension of the range of habitats in which a species can thrive. This study also provides a framework for understanding the molecular mechanisms by which quorum-sensing systems operate, the evolutionary pressures by which they are maintained, and their importance in disparate ecological contexts.

  14. Response of Salmonella Typhi to bile-generated oxidative stress: implication of quorum sensing and persister cell populations.

    Science.gov (United States)

    Walawalkar, Yogesh D; Vaidya, Yatindra; Nayak, Vijayashree

    2016-11-01

    Salmonella Typhi can chronically persist within the gallbladder of patients suffering from gallbladder diseases. This study, intended to improve our understanding of bacterial mechanisms underlying bile adaptation, revealed that bile, which is a bactericidal agent, led to the generation of reactive oxygen species in S Typhi. Salmonella Typhi in response showed a significant increase in the production of anti-oxidative enzymes, namely superoxide dismutase and catalase. The work reports that the quorum-sensing (QS) system of S Typhi regulates the level of these enzymes during oxidative stress. In support of these observations, the quorum-sensing mutant of S Typhi was found to be sensitive to bile with significantly lower levels of anti-oxidant enzymes compared to other clinical isolates. Furthermore the addition of exogenous cell-free extracts (CFEs) of S Typhi containing the quorum-sensing signalling molecule significantly increased the levels of these enzymes within the mutant. Interestingly the CFE addition did not significantly restore the biofilm-forming ability of the mutant strain when compared with the wild-type. In the presence of ciprofloxacin and ampicillin, S Typhi formed persister cells which increased >3-fold in the presence of bile. Thus the QS-system of S Typhi aids in oxidative stress management, and enhanced persister cell populations could assist chronic bacterial persistence within the gallbladder.

  15. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens.

    Science.gov (United States)

    Gutiérrez-Barranquero, José A; Reen, F Jerry; McCarthy, Ronan R; O'Gara, Fergal

    2015-04-01

    The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and clinical management of microbial infections. In particular, small molecules that can suppress microbial virulence systems independent of any impact on growth are receiving increased attention. Quorum sensing (QS) is a cell-to-cell signalling communication system that controls the virulence behaviour of a broad spectrum of bacterial pathogens. QS systems have been proposed as an effective target, particularly as they control biofilm formation in pathogens, a key driver of antibiotic ineffectiveness. In this study, we identified coumarin, a natural plant phenolic compound, as a novel QS inhibitor, with potent anti-virulence activity in a broad spectrum of pathogens. Using a range of biosensor systems, coumarin was active against short, medium and long chain N-acyl-homoserine lactones, independent of any effect on growth. To determine if this suppression was linked to anti-virulence activity, key virulence systems were studied in the nosocomial pathogen Pseudomonas aeruginosa. Consistent with suppression of QS, coumarin inhibited biofilm, the production of phenazines and swarming motility in this organism potentially linked to reduced expression of the rhlI and pqsA quorum sensing genes. Furthermore, coumarin significantly inhibited biofilm formation and protease activity in other bacterial pathogens and inhibited bioluminescence in Aliivibrio fischeri. In light of these findings, coumarin would appear to have potential as a novel quorum sensing inhibitor with a broad spectrum of action.

  16. Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing.

    Science.gov (United States)

    Pradhan, Binod B; Chatterjee, Subhadeep

    2014-05-01

    Bacteria co-ordinate their social behaviour in a density-dependent manner by production of diffusible signal molecules by a process known as quorum sensing (QS). It is generally assumed that in homogenous environments and at high cell density, QS synchronizes cells in the population to perform collective social tasks in unison which maximize the benefit at the inclusive fitness of individuals. However, evolutionary theory predicts that maintaining phenotypic heterogeneity in performing social tasks is advantageous as it can serve as a bet-hedging survival strategy. Using Pseudomonas syringae and Xanthomonas campestris as model organisms, which use two diverse classes of QS signals, we show that two distinct subpopulations of QS-responsive and non-responsive cells exist in the QS-activated population. Addition of excess exogenous QS signal does not significantly alter the distribution of QS-responsive and non-responsive cells in the population. We further show that progeny of cells derived from these subpopulations also exhibited heterogeneous distribution patterns similar to their respective parental strains. Overall, these results support the model that bacteria maintain QS-responsive and non-responsive subpopulations at high cell densities in a bet-hedging strategy to simultaneously perform functions that are both positively and negatively regulated by QS to improve their fitness in fluctuating environments.

  17. Towards Predictive Modeling of Information Processing in Microbial Ecosystems With Quorum-Sensing Interactions

    Science.gov (United States)

    Yusufaly, Tahir; Boedicker, James

    Bacteria communicate using external chemical signals in a process known as quorum sensing. However, the efficiency of this communication is reduced by both limitations on the rate of diffusion over long distances and potential interference from neighboring strains. Therefore, having a framework to quantitatively predict how spatial structure and biodiversity shape information processing in bacterial colonies is important, both for understanding the evolutionary dynamics of natural microbial ecosystems, and for the rational design of synthetic ecosystems with desired computational properties. As a first step towards these goals, we implement a reaction-diffusion model to study the dynamics of a LuxI/LuxR quorum sensing circuit in a growing bacterial population. The spatiotemporal concentration profile of acyl-homoserine lactone (AHL) signaling molecules is analyzed, and used to define a measure of physical and functional signaling network connectivity. From this, we systematically investigate how different initial distributions of bacterial populations influence the subsequent efficiency of collective long-range signal propagation in the population. We compare our results with known experimental data, and discuss limitations and extensions to our modeling framework.-/abstract-

  18. Quorum sensing Inhibitors as anti-pathogenic drugs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    Quorum-sensing (QS) signalling systems of pathogens are central regulators for the expression of virulence factors and represent highly attractive targets for the development of novel therapeutics. In Pseudomonas aeruginosa, QS systems are also involved in elevated antibiotic tolerance of biofilms...... identified. Promising QSI compounds have been shown to make biofilms more susceptible to antimicrobial treatments, and are capable of reducing mortality and virulence as well as promoting clearance of bacteria in experimental animal models of infection....

  19. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    Denis eFaure

    2014-01-01

    Full Text Available In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS. The determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI synthesizes N-acyl-homoserine lactone molecules which act as diffusible QS-signals. Beyond a threshold concentration, these molecules bind and activate the LuxR-like transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last twenty years, A. tumefaciens has stood as a prominent model in the understanding of the LuxR/LuxI type of QS systems. A number of studies also unveiled features which are unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic lifestyle of the bacteria. In this review we will present the current knowledge of QS in A. tumefaciens at both the genetic and molecular levels. We will also describe how interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what could be the advantages for the agrobacteria to use such a tightly regulated QS-system to disseminate the Ti plasmids.

  20. Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.

    Science.gov (United States)

    Dallidis, Stylianos E; Karafyllidis, Ioannis G

    2014-09-01

    To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.

  1. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    Science.gov (United States)

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses.

  2. Phenotypic and genotypic characterisation of Burkholderia cenocepacia J2315 mutants affected in homoserine lactone and diffusible signal factor-based quorum sensing systems suggests interplay between both types of systems.

    Directory of Open Access Journals (Sweden)

    Claudia Udine

    Full Text Available Many putative virulence factors of Burkholderia cenocepacia are controlled by various quorum sensing (QS circuits. These QS systems either use N-acyl homoserine lactones (AHL or cis-2-dodecenoic acid ("Burkholderia diffusible signal factor", BDSF as signalling molecules. Previous work suggested that there is little cross-talk between both types of systems. We constructed mutants in B. cenocepacia strain J2315, in which genes encoding CepI (BCAM1870, CciI (BCAM0239a and the BDSF synthase (BCAM0581 were inactivated, and also constructed double (ΔcepIΔBCAM0581, ΔcciIΔBCAM0581 and ΔcepIΔcciI mutants and a triple (ΔcepIΔcciIΔBCAM0581 mutant. Subsequently we investigated phenotypic properties (antibiotic susceptibility, biofilm formation, production of AHL and BDSF, protease activity and virulence in Caenorhabditis elegans and measured gene expression in these mutants, and this in the presence and absence of added BDSF, AHL or both. The triple mutant was significantly more affected in biofilm formation, antimicrobial susceptibility, virulence in C. elegans, and protease production than either the single or double mutants. The ΔBCAM0581 mutant and the ΔcepIΔBCAM0581 and ΔcciIΔBCAM0581 double mutants produced significantly less AHL compared to the WT strain and the ΔcepI and ΔcciI single mutant, respectively. The expression of cepI and cciI in ΔBCAM0581, was approximately 3-fold and 7-fold (p<0.05 lower than in the WT, respectively. The observed differences in AHL production, expression of cepI and cciI and QS-controlled phenotypes in the ΔBCAM0581 mutant could (at least partially be restored by addition of BDSF. Our data suggest that, in B. cenocepacia J2315, AHL and BDSF-based QS systems co-regulate the same set of genes, regulate different sets of genes that are involved in the same phenotypes and/or that the BDSF system controls the AHL-based QS system. As the expression of the gene encoding the C6-HSL synthase CciI (and to a

  3. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    Science.gov (United States)

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding.

  4. Analysis of Autoinducer-2 Quorum Sensing in Yersinia pestis

    Science.gov (United States)

    Yu, Jing; Madsen, Melissa L.; Carruthers, Michael D.; Phillips, Gregory J.; Kavanaugh, Jeffrey S.; Boyd, Jeff M.; Horswill, Alexander R.

    2013-01-01

    The autoinducer-2 (AI-2) quorum-sensing system has been linked to diverse phenotypes and regulatory changes in pathogenic bacteria. In the present study, we performed a molecular and biochemical characterization of the AI-2 system in Yersinia pestis, the causative agent of plague. In strain CO92, the AI-2 signal is produced in a luxS-dependent manner, reaching maximal levels of 2.5 μM in the late logarithmic growth phase, and both wild-type and pigmentation (pgm) mutant strains made equivalent levels of AI-2. Strain CO92 possesses a chromosomal lsr locus encoding factors involved in the binding and import of AI-2, and confirming this assignment, an lsr deletion mutant increased extracellular pools of AI-2. To assess the functional role of AI-2 sensing in Y. pestis, microarray studies were conducted by comparing Δpgm strain R88 to a Δpgm ΔluxS mutant or a quorum-sensing-null Δpgm ΔypeIR ΔyspIR ΔluxS mutant at 37°C. Our data suggest that AI-2 quorum sensing is associated with metabolic activities and oxidative stress genes that may help Y. pestis survive at the host temperature. This was confirmed by observing that the luxS mutant was more sensitive to killing by hydrogen peroxide, suggesting a potential requirement for AI-2 in evasion of oxidative damage. We also show that a large number of membrane protein genes are controlled by LuxS, suggesting a role for quorum sensing in membrane modeling. Altogether, this study provides the first global analysis of AI-2 signaling in Y. pestis and identifies potential roles for the system in controlling genes important to disease. PMID:23959719

  5. 细菌密度感应系统的信号干扰及其应用%Application of Signal Interference to Quorum Sensing

    Institute of Scientific and Technical Information of China (English)

    黄远帅; 尹一兵

    2005-01-01

    密度感应系统(quorum sensing,QS)是细菌的一种群体行为调控机制,它控制着细菌的多种生命活动,在医学、工业和农业上都有重要意义.微生物QS信号分子和信号传导机制的发现有利于研究设计出各种信号干扰方法来阻断QS信号传导从而应用于微生物感染的防治.文章综述了近年来有关QS信号干扰及其应用方面的研究进展.

  6. Simple models for quorum sensing: Nonlinear dynamical analysis

    Science.gov (United States)

    Chiang, Wei-Yin; Li, Yue-Xian; Lai, Pik-Yin

    2011-10-01

    Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response to the change in their population size or density. This behavior can be observed in chemical and biological systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on the change of dynamical behavior, in particular from quiescent to oscillatory, as the cell population changes. For instance, the silent behavior of the elements can become oscillatory as the system concentration or population increases. In this work, two simple models are constructed that can produce the essential representative properties in quorum sensing. The first is an excitable or oscillatory phase model, which is probably the simplest model one can construct to describe quorum sensing. Using the mean-field approximation, the parameter regime for quorum sensing behavior can be identified, and analytical results for the detailed dynamical properties, including the phase diagrams, are obtained and verified numerically. The second model consists of FitzHugh-Nagumo elements coupled to the signaling chemicals in the environment. Nonlinear dynamical analysis of this mean-field model exhibits rich dynamical behaviors, such as infinite period bifurcation, supercritical Hopf, fold bifurcation, and subcritical Hopf bifurcations as the population parameter changes for different coupling strengths. Analytical result is obtained for the Hopf bifurcation phase boundary. Furthermore, two elements coupled via the environment and their synchronization behavior for these two models are also investigated. For both models, it is found that the onset of oscillations is accompanied by the synchronized dynamics of the two elements. Possible applications and extension of these models are also discussed.

  7. The quorum sensing system of Pseudomonas aeruginosa: progress on studies%铜绿假单胞菌群体感应系统的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈树林; 黄彬

    2012-01-01

    Bacterial Quorum-sensing is also called autoinduce, which means the process that bacteria coordinate their group behavior through monitoring their population density via the production and detection of small signaling compounds. The level of autoinducers becomes higher with the increase of cell density. These signal molecules will bind to and activate their cognate transcriptional regulators when the level of autoinducer reaches a threshold concentration, then induce or inhibit several genes' expression. Three quorum sensing systems, the LasR-LasI system, RhlR-RhlI system and Pseudomonas quinolone signal system have been identified in Pseudomonas aeruginosa. Quorum-sensing system utilizes the diffusion of one or several signal molecules, embedded in a complex network of global regulation, influence bacterial group behavior. In addition, Quorum-sensing system participate the pathogenesis of Pseudomonas aeruginosa infections by regulating the production of virulence factors. With the increase of multi-drug resistant bacteria, many researchers focus on interfering with the bacterial quorum-sensing system to prevent infections by drug-resistant pathogens as a new antibiotic strategy. This review is about the research progress of Pseudomonas aeruginosa quorum-sensing system and the relationship with hosts.%细菌的群体感应也称自身诱导,是指细菌通过产生和感应信号分子浓度的变化来监测其群体密度,协调群体行为的过程.自身诱导物随着细菌密度增高而增高,当自身诱导物达到某一阈值后,会与一些转录调节子结合,从而诱导或抑制多种基因的表达.群体感应系统内由多种信号分子和效应蛋白组成复杂的调节网络,调控包括细菌毒力因子产生与释放、生物膜形成、接合反应等,从而影响细菌的致病过程.本文主要对铜绿假单胞菌的群体感应系统及其与宿主关系、群体感应抑制剂等方面的研究进展进行综述.

  8. Quorum Sensing in Some Representative Species of Halomonadaceae

    Directory of Open Access Journals (Sweden)

    Inmaculada Llamas

    2013-03-01

    Full Text Available Cell-to-cell communication, or quorum-sensing (QS, systems are employed by bacteria for promoting collective behaviour within a population. An analysis to detect QS signal molecules in 43 species of the Halomonadaceae family revealed that they produced N-acyl homoserine lactones (AHLs, which suggests that the QS system is widespread throughout this group of bacteria. Thin-layer chromatography (TLC analysis of crude AHL extracts, using Agrobacterium tumefaciens NTL4 (pZLR4 as biosensor strain, resulted in different profiles, which were not related to the various habitats of the species in question. To confirm AHL production in the Halomonadaceae species, PCR and DNA sequencing approaches were used to study the distribution of the luxI-type synthase gene. Phylogenetic analysis using sequence data revealed that 29 of the species studied contained a LuxI homolog. Phylogenetic analysis showed that sequences from Halomonadaceae species grouped together and were distinct from other members of the Gammaproteobacteria and also from species belonging to the Alphaproteobacteria and Betaproteobacteria.

  9. Local and global consequences of flow on bacterial quorum sensing.

    Science.gov (United States)

    Kim, Minyoung Kevin; Ingremeau, François; Zhao, Aishan; Bassler, Bonnie L; Stone, Howard A

    2016-01-11

    Bacteria use a chemical communication process called quorum sensing (QS) to control collective behaviours such as pathogenesis and biofilm formation(1,2). QS relies on the production, release and group-wide detection of signal molecules called autoinducers. To date, studies of bacterial pathogenesis in well-mixed cultures have revealed virulence factors and the regulatory circuits controlling them, including the overarching role of QS(3). Although flow is ubiquitous to nearly all living systems(4), much less explored is how QS influences pathogenic traits in scenarios that mimic host environments, for example, under fluid flow and in complex geometries. Previous studies(5-7) have shown that sufficiently strong flow represses QS. Nonetheless, it is not known how QS functions under constant or intermittent flow, how it varies within biofilms or as a function of position along a confined flow, or how surface topography (grooves, crevices, pores) influence QS-mediated communication. We explore these questions using two common pathogens, Staphylococcus aureus and Vibrio cholerae. We identify conditions where flow represses QS and other conditions where QS is activated despite flow, including characterizing geometric and topographic features that influence the QS response. Our studies highlight that, under flow, genetically identical cells do not exhibit phenotypic uniformity with respect to QS in space and time, leading to complex patterns of pathogenesis and colonization. Understanding the ramifications of spatially and temporally non-uniform QS responses in realistic environments will be crucial for successful deployment of synthetic pro- and anti-QS strategies.

  10. A quorum-sensing factor in vegetative Dictyostelium discoideum cells revealed by quantitative migration analysis.

    Directory of Open Access Journals (Sweden)

    Laurent Golé

    Full Text Available BACKGROUND: Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS. In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. METHODS AND FINDINGS: To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (t ≤ 5 min, but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. CONCLUSION: This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growth phase.

  11. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    Directory of Open Access Journals (Sweden)

    Jesus Olivero-Verbel

    2014-09-01

    Full Text Available Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs as signal molecules for quorum sensing (QS. This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  12. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers

    Science.gov (United States)

    Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin

    2017-01-01

    Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470

  13. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba.

    Science.gov (United States)

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  14. Quorum-Sensing Kinetics in Saccharomyces cerevisiae: A Symphony of ARO Genes and Aromatic Alcohols.

    Science.gov (United States)

    Avbelj, Martina; Zupan, Jure; Kranjc, Luka; Raspor, Peter

    2015-09-30

    The kinetics of quorum sensing in Saccharomyces cerevisiae were studied using a mini-fermentation platform. The quorum-sensing molecules were monitored using our previous HPLC approach that is here supported by quantitative real-time PCR analysis of the quorum-sensing genes. We thus initially confirm correlations between peak production rates of the monitored quorum-sensing molecules 2-phenylethanol, tryptophol, and tyrosol and peak expression of the genes responsible for their synthesis: ARO8, ARO9, and ARO10. This confirms the accuracy of our previously implemented kinetic model, thus favoring its use in further studies in this field. We also show that the quorum-sensing kinetics are precisely dependent on the population growth phase and that tyrosol production is also regulated by cell concentration, which has not been reported previously. Additionally, we show that during wine fermentation, ethanol stress reduces the production of 2-phenylethanol, tryptophol, and tyrosol, which opens new challenges in the control of wine fermentation.

  15. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    Science.gov (United States)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  16. Iron- and Quorum-sensing Signals Converge on Small Quorum-regulatory RNAs for Coordinated Regulation of Virulence Factors in Vibrio vulnificus.

    Science.gov (United States)

    Wen, Yancheng; Kim, In Hwang; Kim, Kun-Soo

    2016-07-01

    Vibrio vulnificus is a marine bacterium that causes human infections resulting in high mortality. This pathogen harbors five quorum-regulatory RNAs (Qrr1-5) that affect the expression of pathogenicity genes by modulating the expression of the master regulator SmcR. The qrr genes are activated by phosphorylated LuxO to different degrees; qrr2 is strongly activated; qrr3 and qrr5 are moderately activated, and qrr1 and qrr4 are marginally activated and are the only two that do not respond to cell density-dependent regulation. Qrrs function redundantly to inhibit SmcR at low cell density and fully repress when all five are activated. In this study, we found that iron inhibits qrr expression in three distinct ways. First, the iron-ferric uptake regulator (Fur) complex directly binds to qrr promoter regions, inhibiting LuxO activation by competing with LuxO for cis-acting DNA elements. Second, qrr transcription is repressed by iron independently of Fur. Third, LuxO expression is repressed by iron independently of Fur. We also found that, under iron-limiting conditions, the five Qrrs functioned additively, not redundantly, to repress SmcR, suggesting that cells lacking iron enter a high cell density mode earlier and could thereby modulate expression of virulence factors sooner. This study suggests that iron and quorum sensing, along with their cognate regulatory circuits, are linked together in the coordinated expression of virulence factors.

  17. Impact of quorum sensing on the quality of fermented foods

    DEFF Research Database (Denmark)

    Johansen, Pernille; Jespersen, Lene

    2017-01-01

    The quality of fermented food highly dependents on the microorganisms involved, their metabolic activities and interactions. Recently, focus has been on quorum sensing (QS) being a cell density-dependent mechanism allowing adaptive responses. Specific QS molecules in prokaryotes and eukaryotes......, respectively, mediate the transcriptional changes. For food-borne microorganisms QS regulated traits include biofilm formation, acid stress tolerance, bacteriocin production, competence, adhesion, morphological switches and oriented growth. QS has been reported for microorganisms involved in the production...... of a number of different fermented foods such as fermented vegetables, sourdough, dairy products, wine, and so on suggesting that QS plays a role in the fermentation of these fermented foods....

  18. Quorum Sensing Regulation in Aeromonas hydrophila

    DEFF Research Database (Denmark)

    Garde, Christian; Bjarnsholt, Thomas; Givskov, Michael;

    2010-01-01

    We present detailed results on the C4-HSL-mediated quorum sensing (QS) regulatory system of the opportunistic Gram-negative bacterium Aeromonas hydrophila. This bacterium contains a particularly simple QS system that allows for a detailed modeling of kinetics. In a model system (i...

  19. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup

    2013-01-01

    alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  20. Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios.

    Science.gov (United States)

    Ayrapetyan, Mesrop; Williams, Tiffany C; Oliver, James D

    2014-04-01

    Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health.

  1. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Labbate, M.; Queek, S.Y.; Koh, K.S.

    2004-01-01

    Serratia liquefaciens MG1 contains an N-acylhomoserine lactone-mediated quorum-sensing system that is known to regulate swarming motility colonization. In this study, we describe for S. liquefaciens MG1 the development of a novel biofilm consisting of cell aggregates and differentiated cell types......, such as cell chains and long filamentous cells. Furthermore, quorum sensing is shown to be crucial for normal biofilm development and for elaborate differentiation. A mutant of S. liquefaciens MG1 that was incapable of synthesizing extracellular signal formed a thin and nonmature biofilm lacking cell...... aggregates and differentiated cell chains. Signal-based complementation of this mutant resulted in a biofilm with the wild-type architecture. Two quorum-sensing-regulated genes (bsmA and bsmB) involved in biofilm development were identified, and we propose that these genes are engaged in fine...

  2. Facultative cheating supports the coexistence of diverse quorum-sensing alleles.

    Science.gov (United States)

    Pollak, Shaul; Omer-Bendori, Shira; Even-Tov, Eran; Lipsman, Valeria; Bareia, Tasneem; Ben-Zion, Ishay; Eldar, Avigdor

    2016-02-23

    Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.

  3. 群体感应系统的合成生物学研究进展%Research Progress of Synthetic Biology in Quorum-Sensing System

    Institute of Scientific and Technical Information of China (English)

    胡译丹; 王兆守; 吴忻; 方柏山

    2013-01-01

    群体感应系统通过释放到环境中的信号分子来进行交流,进而协调群体行为,因其结构简单、机理清晰而广泛应用于合成生物学的研究.简要介绍合成生物学的概念,着重阐述基于群体感应系统的合成生物学研究及其在细胞浓度控制、生物被膜信号通路和生物化工领域的应用.最后,探讨群体感应系统研究的不足,并做进一步展望.%Quorum-sensing system coordinates bacterium behaviour via the secretion of specific signaling molecules in a population density-dependent manner. This system is widely used in synthetic biology because of its simple structure and clear mechanism. In this article, the concept of synthetic biology is introduced briefly. This article mainly focuses on synthetic biology basing on quorum-sensing system and its applications in fields of cell density control, biofilm signal pathways and biochemical industry. Finally, limition of study on quorum-sensing system is discussed. And the prospect of future development is presented.

  4. Mechanistic insights into the LsrK kinase required for autoinducer-2 quorum sensing activation

    OpenAIRE

    Zhu, Jie; Hixon, Mark S.; Globisch, Daniel; Kaufmann, Gunnar F.; Janda, Kim D.

    2013-01-01

    In enteric bacteria, the kinase LsrK catalyzes the phosphorylation of the C5-hydroxyl group in the linear form of 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). This phosphorylation is required for AI-2 sequestration in the cytoplasm and subsequent derepression of AI-2 related genes necessary for quorum development. While LsrK is a critical enzyme within the DPD quorum sensing relay system, kinetic details of this kinase have yet t...

  5. Quasisynchronization in Quorum Sensing Systems with Parameter Mismatches

    Directory of Open Access Journals (Sweden)

    Jianbao Zhang

    2014-01-01

    Full Text Available The paper investigates quasisynchronization in a communication system, which consists of cells communicating through quorum sensing. With the help of Lyapunov function method and Lur’e system approach, some sufficient conditions for quasisynchronization are presented, and a bound on the synchronization errors is derived. The obtained theoretical results show that the synchronization quality is influenced by two parameters detrimentally: the error bound depends almost linearly on the mismatches between cells and depends sensitively on the diffusion rates of the signals inward the cell membrane. Numerical experiments are carried out to verify the theoretical results.

  6. Dynamical quorum-sensing in oscillators coupled through an external medium

    Science.gov (United States)

    Schwab, David J.; Baetica, Ania; Mehta, Pankaj

    2012-11-01

    Many biological and physical systems exhibit population-density-dependent transitions to synchronized oscillations in a process often termed “dynamical quorum sensing”. Synchronization frequently arises through chemical communication via signaling molecules distributed through an external medium. We study a simple theoretical model for dynamical quorum sensing: a heterogenous population of limit-cycle oscillators diffusively coupled through a common medium. We show that this model exhibits a rich phase diagram with four qualitatively distinct physical mechanisms that can lead to a loss of coherent population-level oscillations, including a novel mechanism arising from effective time-delays introduced by the external medium. We derive a single pair of analytic equations that allow us to calculate phase boundaries as a function of population density and show that the model reproduces many of the qualitative features of recent experiments on Belousov-Zhabotinsky catalytic particles as well as synthetically engineered bacteria.

  7. Biofouling control by quorum sensing inhibition and its dependence on membrane surface.

    Science.gov (United States)

    Kim, Mijin; Lee, Sangyoup; Park, Hee-Deung; Choi, Suing-Il; Hong, Seungkwan

    2012-01-01

    Biofouling control by quorum sensing (QS) inhibition and the influence of membrane surface characteristics on biofilm formation and QS inhibition were investigated. Pseudomonas putida isolated from the bio-fouled reverse osmosis (RO) membranes in a real plant was used. Acylase was chosen as a model QS inhibitor. Bacteria on the membrane coupons were quantified with the heterotrophic plate count method. Cell distribution was imaged by a confocal laser scanning microscope. Results showed that biofilm formation on the membrane was reduced by acylase as it inhibits the activity of N-acylhomoserine lactone (AHL) which is a signal molecule of QS. It was also shown that membrane surface characteristics were influential factors affecting bacterial adhesion, biofilm formation, and QS inhibition.

  8. Quorum sensing inhibitory potential and molecular docking studies of sesquiterpene lactones from Vernonia blumeoides.

    Science.gov (United States)

    Aliyu, Abubakar Babando; Koorbanally, Neil Anthony; Moodley, Brenda; Singh, Parvesh; Chenia, Hafizah Yousuf

    2016-06-01

    The increasing incidence of multidrug-resistant Gram-negative bacterial pathogens has focused research on the suppression of bacterial virulence via quorum sensing inhibition strategies, rather than the conventional antimicrobial approach. The anti-virulence potential of eudesmanolide sesquiterpene lactones previously isolated from Vernonia blumeoides was assessed by inhibition of quorum sensing and in silico molecular docking. Inhibition of quorum sensing-controlled violacein production in Chromobacterium violaceum was quantified using violacein inhibition assays. Qualitative modulation of quorum sensing activity and signal synthesis was investigated using agar diffusion double ring assays and C. violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of violacein production was concentration-dependent, with ⩾90% inhibition being obtained with ⩾2.4 mg ml(-1) of crude extracts. Violacein inhibition was significant for the ethyl acetate extract with decreasing inhibition being observed with dichloromethane, hexane and methanol extracts. Violacein inhibition ⩾80% was obtained with 0.071 mg ml(-1) of blumeoidolide B in comparison with ⩾3.6 mg ml(-1) of blumeoidolide A. Agar diffusion double ring assays indicated that only the activity of the LuxI synthase homologue, CviI, was modulated by blumeoidolides A and B, and V. blumeoides crude extracts, suggesting that quorum sensing signal synthesis was down-regulated or competitively inhibited. Finally, molecular docking was conducted to explore the binding conformations of sesquiterpene lactones into the binding sites of quorum sensing regulator proteins, CviR and CviR'. The computed binding energy data suggested that the blumeoidolides have a tendency to inhibit both CviR and CviR' with varying binding affinities. Vernonia eudesmanolide sesquiterpene lactones have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria

  9. Type 2 quorum sensing monitoring, inhibition and biofilm formation in marine microrganisms.

    Science.gov (United States)

    Liaqat, Iram; Bachmann, Robert Thomas; Edyvean, Robert G J

    2014-03-01

    The quorum sensing (QS) dependent behaviour of micro-organisms, in particular expression of virulence genes, biofilm formation and dispersal, have provided impetus for investigating practical approaches to interfere with microbial QS. This study tests Halomonas pacifica and Marinobacter hydrocarbonoclasticus, two halophilic marine micro-organism, for their AI-2 dependent QS signalling and the effect of two well-known quorum-sensing inhibitors (QSIs), patulin and penicillic acid, on biofilm formation. We report, for the first time, the successful amplification of a putative luxS gene in H. pacifica using degenerated primers and AI-2 dependent QS as well as inhibition using QSIs. Penicillic acid had a strong inhibitory effect on AI-2 induction of H. pacifica at non-growth inhibitory concentrations, while patulin has an adverse effect only at the highest concentration (25 μM). QSIs effect on biofilm forming capability was isolate specific, with maximum inhibition at 25 μM of patulin in H. pacifica. In M. hydrocarbonoclasticus, no adverse effects were noted at any tested concentration of either QSIs. Detection of bioluminescence and the presence of a putative luxS gene provide biochemical and genetic evidence for the production of a signalling molecule(s) which is the essential first step in characterizing H. pacifica QS. This study highlights the importance of AI-2 dependent QS in a marine setting, not previously reported. It further suggests that QSI compounds must be selected in the specific system in which they are to function, and they cannot easily be transferred from one QS system to another.

  10. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases.

    Science.gov (United States)

    Christensen, Quin H; Grove, Tyler L; Booker, Squire J; Greenberg, E Peter

    2013-08-20

    Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti-quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach.

  11. A broad range quorum sensing inhibitor working through sRNA inhibition

    DEFF Research Database (Denmark)

    Jakobsen, Tim H.; Warming, Anders N.; Vejborg, Rebecca M.

    2017-01-01

    For the last decade, chemical control of bacterial virulence has received considerable attention. Ajoene, a sulfur-rich molecule from garlic has been shown to reduce expression of key quorum sensing regulated virulence factors in the opportunistic pathogen Pseudomonas aeruginosa. Here we show tha...

  12. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    Science.gov (United States)

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals

  13. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.

    Science.gov (United States)

    Alem, Mohammed A S; Oteef, Mohammed D Y; Flowers, T Hugh; Douglas, L Julia

    2006-10-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extracellular tyrosol during growth at 37 degrees C. There was a correlation between tyrosol production and biomass for both cell types. However, biofilm cells secreted at least 50% more tyrosol than did planktonic cells when tyrosol production was related to cell dry weight. The addition of exogenous farnesol to a wild-type strain inhibited biofilm formation by up to 33% after 48 h. Exogenous tyrosol appeared to have no effect, but scanning electron microscopy revealed that tyrosol stimulated hypha production during the early stages (1 to 6 h) of biofilm development. Experiments involving the simultaneous addition of tyrosol and farnesol at different concentrations suggested that the action of farnesol was dominant, and 48-h biofilms formed in the presence of both compounds consisted almost entirely of yeast cells. When biofilm supernatants were tested for their abilities to inhibit or enhance germ tube formation by planktonic cells, the results indicated that tyrosol activity exceeds that of farnesol after 14 h, but not after 24 h, and that farnesol activity increases significantly during the later stages (48 to 72 h) of biofilm development. Overall, our results support the conclusion that tyrosol acts as a quorum-sensing molecule for biofilms as well as for planktonic cells and that its action is most significant during the early and intermediate stages of biofilm formation.

  14. Quorum sensing and microbial drug resistance%群体感应与微生物耐药性

    Institute of Scientific and Technical Information of China (English)

    陈昱帆; 刘诗胤; 梁志彬; 吕明发; 周佳暖; 张炼辉

    2016-01-01

    微生物耐药性已成为全球关注的严重问题,其演化机制和调控机理也已成为研究热点。近年来的研究发现,一些微生物耐药性机制受到群体感应系统的调控。群体感应是一种在微生物界广泛存在并与菌体密度关联的细胞-细胞间的通讯系统。高密度的菌落群体能够产生足够数量的小分子信号,激活下游包括致病毒力和耐药性机制在内的多种细胞进程,耐受抗生素并且危害寄主。本文结合国内外最新的研究进展,对微生物群体感应系统的研究现状进行了概括性介绍,重点阐述了群体感应系统对微生物耐药性机制的调控作用,如微生物生物被膜形成和药物外排泵调控等方面的作用,并探讨了利用群体淬灭控制微生物耐药性的新策略。%Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  15. MicroBQs: a centralized database for use in studying bacterial biofilms and quorum sensing

    Science.gov (United States)

    Biofilm formation in many bacterial species may be negatively or positively regulated by cell-to-cell signaling systems referred to as quorum sensing (QS). To assist in understanding research related to biofilms, QS, and the role of QS in biofilm formation, a comprehensive, centralized database, kn...

  16. Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Gao, Qingguo; Chen, Wanying;

    2013-01-01

    that the Pseudomonas aeruginosa catabolite repression control protein regulates the Pseudomonas quinolone signal quorum sensing, which further controls synthesis of virulence factor pyocyanin, biofilm formation and survival during infection models. Our study suggests that deregulation of the catabolite repression by P...

  17. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium

    Directory of Open Access Journals (Sweden)

    Yin Yin Lau

    2014-07-01

    Full Text Available Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII and the whole genome sequence was verified by using optical genome mapping (OpGen technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.

  18. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation.

    Science.gov (United States)

    O'Loughlin, Colleen T; Miller, Laura C; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F; Bassler, Bonnie L

    2013-10-29

    Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo.

  19. 铜绿假单胞菌密度感应信号分子OdDHL对小鼠肥大细胞作用观察%Effects of Pseudomonas aeruginosa quorum sensing molecule OdDHL on murine mast cells

    Institute of Scientific and Technical Information of China (English)

    李洪涛; 王丽丽; 叶露; 毛艳; 谢旭华; 宋建新

    2009-01-01

    Objective To investigate the biological effects of Pseudomonas aeruginosa quorum sensing molecule OdDHL on murine mast cells. Methods The molecule structure and purity of synthesized OdDHL were confirmed by mass spectrum or proton nuclear magnetic resonance (NMR) and high-performance liquid chromatography, respectively. Its biological activity was checked using a quorum sensing sensor bacterial strain. The viability, apoptosis and intracellular calcium changes of P815 cell line in response to different concentration of OdDHL were determined. Results The biological active OdDHL was synthesized successfully. OdDHL inhibited proliferation of P815 cells in a dose, and time dependent manner. It also induced apoptasis and intracellular calcium release in P815 cells. Conclusion Psendomonas aeruginosa quorum sensing molecule OdDHL induces apoptosis and intracellular calcium release in murine mast cell line P815.%目的 通过化学合成铜绿假单胞菌密度感应(quorum sensing,QS)信号分子OdDHL,并观察该分子对小鼠肥大细胞生物学作用.方法 通过化学方法 合成OdDHL分子,经质谱、磁共振和高效液相色谱确定其结构和纯度,并采用OdDHL分子感应菌株检测其生物活性.以不同浓度OdDHL分子作用于小鼠肥大细胞系P815,观察不同时间点细胞活力改变、凋亡现象以及胞内钙离子变化.结果 成功合成具有生物活性的OdDHL分子,该分子能以时间、剂量依赖方式抑制细胞活力,并能诱导细胞凋亡,同时可上调胞内钙离子浓度.结论 铜绿假单胞菌OdDHL分子可诱导P815细胞凋亡并上调胞内钙离子浓度.

  20. Flavones as Quorum Sensing Inhibitors Identified by a Newly Optimized Screening Platform Using Chromobacterium violaceum as Reporter Bacteria.

    Science.gov (United States)

    Skogman, Malena E; Kanerva, Sonja; Manner, Suvi; Vuorela, Pia M; Fallarero, Adyary

    2016-09-10

    Quorum sensing (QS) is the process by which bacteria produce and detect signal molecules to coordinate their collective behavior. This intercellular communication is a relevant target for anti-biofilm therapies. Here we have optimized a screening-applicable assay to search for new quorum sensing inhibitors from natural compound libraries. In this system, QS is correlated with the production of violacein, which is directly controlled by the LuxI/LuxR system in Chromobacterium violaceum ATCC 31532. The parallel use of C. violaceum Tn5-mutant CV026, which depends on auto-inducer addition, allows simultaneous discrimination of compounds that act as quenchers of the AHL signal (quorum quenchers). The incorporation of a redox stain into the platform allowed further distinction between QS inhibitors, quorum quenchers and antibacterial compounds. A pilot screening was performed with 465 natural and synthetic flavonoids. All the most active compounds were flavones and they displayed potencies (IC50) in the range of 3.69 to 23.35 μM. These leads were particularly promising as they inhibited the transition from microcolonies into mature biofilms from Escherichia coli and Pseudomonas aeruginosa strains. This approach can be very effective in identifying new antimicrobials posing lesser risks of resistance.

  1. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon

    Directory of Open Access Journals (Sweden)

    Schuster Martin

    2007-08-01

    Full Text Available Abstract Background Quorum-sensing regulation of gene expression in Pseudomonas aeruginosa is complex. Two interconnected acyl-homoserine lactone (acyl-HSL signal-receptor pairs, 3-oxo-dodecanoyl-HSL-LasR and butanoyl-HSL-RhlR, regulate more than 300 genes. The induction of most of the genes is delayed during growth of P. aeruginosa in complex medium, cannot be advanced by addition of exogenous signal, and requires additional regulatory components. Many of these late genes can be induced by addition of signals early by using specific media conditions. While several factors super-regulate the quorum receptors, others may co-regulate target promoters or may affect expression posttranscriptionally. Results To better understand the contributions of super-regulation and co-regulation to quorum-sensing gene expression, and to better understand the general structure of the quorum sensing network, we ectopically expressed the two receptors (in the presence of their cognate signals and another component that affects quorum sensing, the stationary phase sigma factor RpoS, early in growth. We determined the effect on target gene expression by microarray and real-time PCR analysis. Our results show that many target genes (e.g. lasB and hcnABC are directly responsive to receptor protein levels. Most genes (e.g. lasA, lecA, and phnAB, however, are not significantly affected, although at least some of these genes are directly regulated by quorum sensing. The majority of promoters advanced by RhlR appeared to be regulated directly, which allowed us to build a RhlR consensus sequence. Conclusion The direct responsiveness of many quorum sensing target genes to receptor protein levels early in growth confirms the role of super-regulation in quorum sensing gene expression. The observation that the induction of most target genes is not affected by signal or receptor protein levels indicates that either target promoters are co-regulated by other transcription factors

  2. Interference of quorum sensing in Pseudomonas syringae by bacterial epiphytes that limit iron availability.

    Science.gov (United States)

    Dulla, Glenn F J; Krasileva, Ksenia V; Lindow, Steven E

    2010-06-01

    Leaf surfaces harbour bacterial epiphytes that are capable of influencing the quorum sensing (QS) system, density determination through detection of diffusible signal molecules, of the plant-pathogen Pseudomonas syringae pv. syringae (Pss) which controls expression of extracellular polysaccharide production, motility and other factors contributing to virulence to plants. Approximately 11% of the bacterial epiphytes recovered from a variety of plants produced a diffusible factor capable of inhibiting the QS system of Pss as indicated by suppression of ahlI. Blockage of QS by these interfering strains correlated strongly with their ability to limit iron availability to Pss. A direct relationship between the ability of isogenic Escherichia coli strains to sequester iron via their production of different siderophores and their ability to suppress QS in Pss was also observed. Quorum sensing induction was inversely related to iron availability in culture media supplemented with iron chelators or with FeCl(3). Co-inoculation of interfering strains with Pss onto leaves increased the number of resultant disease lesions over twofold compared with that on plants inoculated with Pss alone. Transposon-generated mutants of interfering strains in which QS inhibition was blocked did not increase disease when co-inoculated with Pss. Increased disease incidence was also not observed when a non-motile mutant of Pss was co-inoculated onto plants with QS interfering bacteria suggesting that these strains enhanced the motility of Pss in an iron-dependent manner, leading to an apparent increase in virulence of this pathogen. Considerable cross-talk mediated by iron scavenging apparently occurs on plants, thereby altering the behaviour of bacteria such as Pss that exhibit important QS-dependent traits in this habitat.

  3. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections.

    Science.gov (United States)

    Abraham, Wolf-Rainer

    2016-01-09

    Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future.

  4. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Wolf-Rainer Abraham

    2016-01-01

    Full Text Available Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future.

  5. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    Science.gov (United States)

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  6. Quorum Sensing Enhances the Stress Response in Vibrio cholerae▿

    OpenAIRE

    Joelsson, Adam; Kan, Biao; Zhu, Jun

    2007-01-01

    Vibrio cholerae lives in aquatic environments and causes cholera. Here, we show that quorum sensing enhances V. cholerae viability under certain stress conditions by upregulating the expression of RpoS, and this regulation acts through HapR, suggesting that a quorum-sensing-enhanced stress response plays a role in V. cholerae environmental survival.

  7. Quorum sensing inhibitors disable bacterial biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    It is now evident that bacteria assume the biofilm mode of growth during chronic infections. The important hallmarks of biofilm infections are development of local inflammations, extreme tolerance to the action of conventional antimicrobial agents and an almost infinite capacity to evade the host...... defence systems in particular innate immunity. In the biofilm mode, bacteria use cell to cell communication termed quorum-sensing (QS) to coordinate expression of virulence, tolerance towards a number of antimicrobial agents and shielding against the host defence system. Chemical biology approaches may...

  8. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis.

    Science.gov (United States)

    Trosko, James E

    2016-06-15

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis.

  9. Acyl-homoserine lactone quorum sensing: from evolution to application.

    Science.gov (United States)

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  10. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering

    Science.gov (United States)

    Bodelón, Gustavo; Montes-García, Verónica; López-Puente, Vanesa; Hill, Eric H.; Hamon, Cyrille; Sanz-Ortiz, Marta N.; Rodal-Cedeira, Sergio; Costas, Celina; Celiksoy, Sirin; Pérez-Juste, Ignacio; Scarabelli, Leonardo; La Porta, Andrea; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M.

    2016-11-01

    Most bacteria in nature exist as biofilms, which support intercellular signalling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. As QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in situ, label-free detection of a QS signalling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.

  11. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors

    DEFF Research Database (Denmark)

    Hentzer, Morten; Wu, H.; Andersen, Jens Bo

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has...... of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip((R)) microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing...... systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune...

  12. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors

    DEFF Research Database (Denmark)

    Hentzer, Morten; Wu, Hong; Andersen, Jens Bo

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has...... of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems...... and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response....

  13. Research progress of bacterial quorum sensing—signal molecule%密度感应系统——细菌信号分子研究进展

    Institute of Scientific and Technical Information of China (English)

    周雯; 刘岚

    2012-01-01

    The process, termed quorum sensing system, regulates bacterial communication by the production of diffusible intercellular signal molecules. The molecules are produced during bacteria basal levels and accumulated during the growth process. Once the concentration level reached, the molecules can activate or repress the expressing of target genes, then these genes regulate the production of virulence factor, biofilm formation and so on. As the antibiotic resistance and multidrug resistance increase seriously, researchers hope to make the mechanism of quorum sensing much clearer, find some medicine which can inhibit quorum sensing system, and get a new choice for antibacterial treatment. But quorum sensing is much more complex than expected. Quorum sensing system of different bacteria or even different types of the same bacteria may be different. One bacterium may include more than one quorum sensing system. So this review summarizes several different common bacteria and gives focus on quorum sensing and the signal molecules.%细菌利用散在的细胞间信号分子产物介导细胞间通讯的这个整个过程被叫做密度感应系统.这些信号分子在细菌基础水平时产生,生长过程积累.当细菌密度达到阈值时信号分子则激活或抑制相关系列基因表达,从而影响毒力因子、生物膜等的产生.在抗生素耐药及多重耐药不断增加的背景下,研究者们希望明确此系统作用机制,了解可否寻找抑制它的物质并将其应用于临床协同抗生素治疗.但密度感应系统远比预想的复杂,不同细菌甚至是同种细菌不同分型可能有差异,同一细菌也可能有不同密度感应系统.故本文综述了目前研究较多的多种细菌的密度感应系统及其信号分子作用机制.

  14. A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Abbas El Sahili

    2015-08-01

    Full Text Available Periplasmic binding proteins (PBPs in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3'-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the

  15. A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens.

    Science.gov (United States)

    El Sahili, Abbas; Li, Si-Zhe; Lang, Julien; Virus, Cornelia; Planamente, Sara; Ahmar, Mohammed; Guimaraes, Beatriz G; Aumont-Nicaise, Magali; Vigouroux, Armelle; Soulère, Laurent; Reader, John; Queneau, Yves; Faure, Denis; Moréra, Solange

    2015-08-01

    Periplasmic binding proteins (PBPs) in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3'-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the rational design of

  16. Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing.

    Science.gov (United States)

    Fray, Rupert G

    2002-03-01

    Many bacteria regulate diverse physiological processes in concert with their population size. Bacterial cell-to-cell communication utilizes small diffusible signal molecules, which the bacteria both produce and perceive. The bacteria couple gene expression to cell density by eliciting a response only when the signalling molecules reach a critical threshold (a point at which the population is said to be 'quorate'). The population as a whole is thus able to modify its behaviour as a single unit. Amongst Gram-negative bacteria, the quorum sensing signals most commonly used are N-acylhomoserine lactones (AHLs). It is now apparent that AHLs are used for regulating diverse behaviours in epiphytic, rhizosphere-inhabiting and plant pathogenic bacteria and that plants may produce their own metabolites that interfere with this signalling. Transgenic plants that produce high levels of AHLs or which can degrade bacterial-produced AHLs have been made. These plants have dramatically altered susceptibilities to infection by pathogenic Erwinia species. In addition, such plants will prove useful tools in determining the roles of AHL-regulated density-dependent behaviour in growth promoting, biological control and pathogenic plant-associated bacterial species.

  17. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.

    Science.gov (United States)

    Perchat, Stéphane; Talagas, Antoine; Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-08-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.

  18. Effect of solid retention time on membrane fouling in membrane bioreactor: from the perspective of quorum sensing and quorum quenching.

    Science.gov (United States)

    Yu, Huarong; Xu, Guoren; Qu, Fangshu; Li, Guibai; Liang, Heng

    2016-09-01

    Solid retention time (SRT) is one of the most important operational parameters in membrane bioreactor (MBR), which significantly influences membrane fouling. It is widely recognized that SRT mainly changes biomass characteristics, and then, influences membrane fouling. Effect of SRT on quorum sensing (QS) in MBR, which could also influence fouling by coordinating biofilm formation, has not been reported. In this study, fouling, QS, soluble microbial products (SMP), and extracellular polymer substances (EPS) in MBRs operated under SRTs of 4, 10, and 40 days were investigated. The results showed that as SRT increased, the abundance of quorum quenching (QQ) bacteria increased, the quorum signal degradation activity of activated sludge increased, the concentrations of signal molecules in MBR decreased, the excretion of SMP and EPS decreased, and thus membrane biofouling was alleviated. Therefore, besides altering the biomass physiochemical properties, SRT also changed the balance between QS and QQ in MBR, and in this way, influenced membrane biofouling.

  19. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    Science.gov (United States)

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation.

  20. Quorum sensing in Acinetobacter: with special emphasis on antibiotic resistance, biofilm formation and quorum quenching

    Directory of Open Access Journals (Sweden)

    Bindu Subhadra

    2016-02-01

    Full Text Available Acinetobacter is an important nosocomial, opportunistic human pathogen that is gradually gaining more attention as a major health threat worldwide. Quorum sensing (QS is a cell-cell communication system in which specific signaling molecules called autoinducers accumulate in the medium as the population density grows and control various physiological processes including production of virulence factors, biofilm and development of antibiotic resistance. The complex QS machinery in Acinetobacter is mediated by a two-component system which is homologous to the typical LuxI/LuxR system found in Gram-negative bacteria. This cell signaling system comprises of a sensor protein that functions as autoinducer synthase and a receptor protein which binds to the signal molecules, acyl homoserine lactones inducing a cascade of reactions. Lately, disruption of QS has emerged as an anti-virulence strategy with great therapeutic potential. Here, we depict the current understanding of the existing QS network in Acinetobacter and describe important anti-virulent strategies developed in order to effectively tackle this pathogen. In addition, the prospects of quorum quenching to control Acinetobacter infections is also been discussed.

  1. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system.

    Science.gov (United States)

    Bertini, Elisa V; Nieto Peñalver, Carlos G; Leguina, Ana C; Irazusta, Verónica P; de Figueroa, Lucía I C

    2014-09-01

    The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.

  2. Chemical probes of quorum sensing: from compound development to biological discovery.

    Science.gov (United States)

    Welsh, Michael A; Blackwell, Helen E

    2016-09-01

    Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues.

  3. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena; Zeuthen, Louise; Pedersen, Susanne Brix

    2009-01-01

    a decreased ability to induce T-cell proliferation in vitro. Collectively, this suggests that OdDHL and PQS change the maturation pattern of stimulated DCs away from a proinflammatory T-helper type I directing response, thereby decreasing the antibacterial activity of the adaptive immune defence. Od...

  4. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates.

    Science.gov (United States)

    Kaplan, Fatma; Badri, Dayakar V; Zachariah, Cherian; Ajredini, Ramadan; Sandoval, Francisco J; Roje, Sanja; Levine, Lanfang H; Zhang, Fengli; Robinette, Steven L; Alborn, Hans T; Zhao, Wei; Stadler, Michael; Nimalendran, Rathika; Dossey, Aaron T; Brüschweiler, Rafael; Vivanco, Jorge M; Edison, Arthur S

    2009-08-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.

  5. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    Directory of Open Access Journals (Sweden)

    Olivier Lesouhaitier

    2009-09-01

    Full Text Available Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction

  6. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Peter Ø; Bjarnsholt, Thomas; Phipps, Richard Kerry

    2007-01-01

    Quorum sensing (QS) denotes a density-dependent mode of inter-bacterial communication based on signal transmitter molecules. Active QS is present during chronic infections with the opportunistic pathogen Pseudomonas aeruginosa in immunocompromised patients. The authors have previously demonstrated...... a QS-regulated tolerance of biofilm bacteria to the antimicrobial properties of polymorphonuclear leukocytes (PMNs). The precise QS-regulated effect on the PMNs is, however, unknown. Incubation of human PMNs with supernatants from dense P. aeruginosa cultures showed that the QS-competent P. aeruginosa...... induced rapid necrosis of the PMNs. This mechanism was also observed in mouse lungs infected with P. aeruginosa, and in sputum obtained from P.-aeruginosa-infected patients with cystic fibrosis. Evidence is presented that the necrotic effect was caused by rhamnolipids, production of which is QS controlled...

  7. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway.

    Science.gov (United States)

    Yong, Yang-Chun; Zhong, Jian-Jiang

    2013-05-01

    The mechanism for quorum sensing (QS) regulation on aromatics degradation was investigated. Deletion of rhl QS system resulted in a significant decrease in aromatics biodegradation as well as the activity of catechol 2,3-dioxygenase (C23O, key enzyme for catechol meta-cleavage pathway) in Pseudomonas aeruginosa CGMCC1.860. Interestingly, this repression could be relieved by N-butyryl homoserine lactone (the signaling molecule of rhl QS system) addition. In accordance, the transcription level of nahH (the gene encoding C23O) and nahR (transcriptional activator) also responded to rhl perturbation in a similar way. The results indicated that rhl QS system positively controlled the catechol meta-cleavage pathway, and hence improved aromatics biodegradation. It suggested manipulation of QS system could be a promising strategy to tune the catechol cleavage pathway and to control aromatics biodegradation.

  8. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Kumar Saurav

    2017-02-01

    Full Text Available Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS. QS inhibitors (QSIs present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae, animals (sponges, cnidarians, and bryozoans, and microorganisms (bacteria, fungi, and cyanobacteria. The compounds found and the methods used for their isolation are the emphasis of this review.

  9. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors

    Science.gov (United States)

    Saurav, Kumar; Costantino, Valeria; Venturi, Vittorio; Steindler, Laura

    2017-01-01

    Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review. PMID:28241461

  10. Potato signal molecules that activate pectate lyase synthesis in Pectobacterium atrosepticum SCRI1043.

    Science.gov (United States)

    Tarasova, Nadezhda; Gorshkov, Vladimir; Petrova, Olga; Gogolev, Yuri

    2013-07-01

    A new type of plant-derived signal molecules that activate extracellular pectate lyase activity in phytopathogenic bacterium Pectobacterium atrosepticum SCRI1043 was revealed. These compounds were characterized and partially purified by means of several approaches including RT-PCR analysis, luminescence bioassay and HPLC fractionation. They were smaller than 1 kDa, thermoresistant, nonproteinaceous, hydrophilic, and slightly negatively charged molecules. Using gene expression analysis and bacterial biosensor assay the mode of activity of revealed compounds was studied. The possibility of their action through quorum sensing- and KdgR-mediated pathways was analyzed.

  11. Repellent and Anti-quorum Sensing Activity of Six Aromatic Plants Occurring in Colombia.

    Science.gov (United States)

    Cervantes-Ceballos, Leonor; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2015-10-01

    Essential oils (EOs) are widely used as biopesticides and to control bacterial infections. This study describes the ability of six EOs isolated from plants cultivated in Colombia to perform as repellents against Ulomoides dermestoides and as quorum sensing (QS) inhibitors. EOs from Aloysia triphylla, Cymbopogon nardus, Lippia origanoides, Hyptis suaveolens, Swinglea glutinosa and Eucalyptus globulus were repellents classified as Class IV, IV, IV, III, II, and II, respectively, whereas the commercial repellent IR3535 only reached Class II after 2 h exposure. All EOs presented small, but significant inhibitory properties against the QS system in Escherichia coli (pJBA132) at 25 μg/mL after 4 h exposure. These data suggest evaluated EOs from Colombia are sustainable, promising new sources of natural repellents and could be important as anti-quorum sensing molecules.

  12. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.

  13. Spatial dispersal of bacterial colonies induces a dynamical transition from local to global quorum sensing

    Science.gov (United States)

    Yusufaly, Tahir I.; Boedicker, James Q.

    2016-12-01

    Bacteria communicate using external chemical signals called autoinducers (AI) in a process known as quorum sensing (QS). QS efficiency is reduced by both limitations of AI diffusion and potential interference from neighboring strains. There is thus a need for predictive theories of how spatial community structure shapes information processing in complex microbial ecosystems. As a step in this direction, we apply a reaction-diffusion model to study autoinducer signaling dynamics in a single-species community as a function of the spatial distribution of colonies in the system. We predict a dynamical transition between a local quorum sensing (LQS) regime, with the AI signaling dynamics primarily controlled by the local population densities of individual colonies, and a global quorum sensing (GQS) regime, with the dynamics being dependent on collective intercolony diffusive interactions. The crossover between LQS to GQS is intimately connected to a trade-off between the signaling network's latency, or speed of activation, and its throughput, or the total spatial range over which all the components of the system communicate.

  14. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii

    DEFF Research Database (Denmark)

    Gori, Klaus; Knudsen, Peter Boldsen; Nielsen, Kristian Fog

    2011-01-01

    The yeast Debaryomyces hansenii was investigated for its production of alcohol-based quorum sensing (QS) molecules including the aromatic alcohols phenylethanol, tyrosol, tryptophol and the aliphatic alcohol farnesol. Debaryomyces hansenii produced phenylethanol and tyrosol, which were primarily ....... © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved....

  15. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants

    Directory of Open Access Journals (Sweden)

    Hitendra K. Patel

    2013-11-01

    Full Text Available A future challenge will be understanding the extensive communication that most likely takes place in bacterial interspecies and interkingdom signaling between plants and bacteria. A major bacterial inter-cellular signaling system in Gram-negative bacteria is LuxI/R quorum sensing (QS based on the production (via the LuxI-family proteins and detection (via the LuxR-family proteins of N-acyl homoserine lactones (AHLs signaling molecules. LuxR proteins which have the same modular structure of QS LuxRs but are devoid of a cognate LuxI AHL synthase are called solos. LuxR solos have been shown to be responsible to respond to exogenous AHLs produced by neighboring cells as well endogenously produced AHLs. It is now also evident that some LuxR proteins have evolved from the ability to binding AHLs and respond to other molecules/signals. For example, recent research has shown that a sub-family of LuxR solos responds to small molecules produced by plants. This indicates the presence of a uni-directional interkingdom signaling system occurring from plants to bacteria. In addition LuxR solos have now been also implicated to respond to endogenously produced signals which are not AHLs. In this Mini Review article we will discuss current trends and implications of the role of LuxR solos in bacterial responses to other signals using proteins related to AHL quorum sensing systems.

  16. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    Science.gov (United States)

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  17. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  18. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Science.gov (United States)

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  19. Mapping quorum sensing onto neural networks to understand collective decision making in heterogeneous microbial communities

    Science.gov (United States)

    Yusufaly, Tahir I.; Boedicker, James Q.

    2017-08-01

    Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating gene expression. However, the biology of QS remains incompletely understood in heterogeneous communities, where variant bacterial strains possess distinct QS systems that produce chemically unique AIs. AI molecules bind to ‘cognate’ receptors, but also to ‘non-cognate’ receptors found in other strains, resulting in inter-strain crosstalk. Understanding these interactions is a prerequisite for deciphering the consequences of crosstalk in real ecosystems, where multiple AIs are regularly present in the same environment. As a step towards this goal, we map crosstalk in a heterogeneous community of variant QS strains onto an artificial neural network model. This formulation allows us to systematically analyze how crosstalk regulates the community’s capacity for flexible decision making, as quantified by the Boltzmann entropy of all QS gene expression states of the system. In a mean-field limit of complete cross-inhibition between variant strains, the model is exactly solvable, allowing for an analytical formula for the number of variants that maximize capacity as a function of signal kinetics and activation parameters. An analysis of previous experimental results on the Staphylococcus aureus two-component Agr system indicates that the observed combination of variant numbers, gene expression rates and threshold concentrations lies near this critical regime of parameter space where capacity peaks. The results are suggestive of a potential evolutionary driving force for diversification in certain QS systems.

  20. Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance

    Science.gov (United States)

    Sully, Erin K.; Malachowa, Natalia; Elmore, Bradley O.; Alexander, Susan M.; Femling, Jon K.; Gray, Brian M.; DeLeo, Frank R.; Otto, Michael; Cheung, Ambrose L.; Edwards, Bruce S.; Sklar, Larry A.; Horswill, Alexander R.; Hall, Pamela R.; Gresham, Hattie D.

    2014-01-01

    Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in

  1. 细菌生物膜群体感应系统研究进展%Research Progress on Quorum Sensing System of Bacterial Biofilm

    Institute of Scientific and Technical Information of China (English)

    张曙梅; 徐向荣; 徐浩

    2016-01-01

    The quorum sensing system of bacterial biofilm is the one that the bacteria secrete signaling molecules and sense their concentration of the surrounding environment so that to regulate the expressions of certain specific genes,and to change some physiological functions and life habits of bacteria. It is one of the main regulatory mechanisms in bacteria. Based on the research of the bacterial biofilm’s quorum sensing,we can understand its internal mechanism and features,and find the best way to inhibit harmful effects of biofilms. This review focus on bacterial biofilm’s quorum sensing,such as the types,the characteristics and the related applications.%细菌生物膜群体感应系统是指细菌通过分泌信号分子并通过感知其在周围环境中的浓度,调控某些基因的特异性表达及生理功能和生活习性的系统,是细菌生命活动的主要调控机制之一。通过对细菌生物膜群体感应的研究,可以了解其内部机理和特性,从而找到抑制生物膜有害作用的最好方法。对细菌生物膜群体感应系统的种类、特征和相关应用的研究进行综述。

  2. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems

    Science.gov (United States)

    Talagrand-Reboul, Emilie; Jumas-Bilak, Estelle; Lamy, Brigitte

    2017-01-01

    Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges. PMID:28163702

  3. QUORUM SENSING SYSTEMS OF MARINE VIBRIOS AND THEIR SIGNAL INTERFERENCE%几种海洋弧菌的密度感应系统及其信号干扰

    Institute of Scientific and Technical Information of China (English)

    白方方; 张晓华; 韩茵; 陈吉祥

    2007-01-01

    @@ 密度感应(quorum sensing,QS)是细菌通过感受种群密度的变化而控制特定基因表达的一种机制(Miller et al.,2001).密度感应细菌可以产生和释放特定的化学信号分子,称为自诱导分子(autoinducer,AI),其浓度随着细菌密度的增加而增加.

  4. Synthetic Quorum Sensing and Induced Aggregation in Model Microcapsule Colonies with Repressilator Feedback

    Science.gov (United States)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    We model a system of synthetic microcapsules that communicate chemically by releasing nanoparticles or signaling molecules. These signaling species bind to receptors on the shells of capsules and modulate the target shell's permeability, thereby controlling nanoparticle release from the target capsule. Using the repressilator regulatory network motif, whereby three species suppress the production of the next in a cyclic fashion, we show that large amplitude oscillations in nanoparticle release can emerge when many capsules are close together. This exemplifies quorum sensing, which is the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. We present a physically realizable model in which the oscillations exhibited in crowded populations induce aggregation of the microcapsules, mimicking complex biological behavior of the slime mold Dictyostelium discoideum with only simple, synthetic components. We also show that the clusters can be dispersed and reformed repeatedly and controllably by addition of chemical stimuli, demonstrating possible applications in creating reconfigurable or programmable materials.

  5. A cell-based model for quorum sensing in heterogeneous bacterial colonies.

    Science.gov (United States)

    Melke, Pontus; Sahlin, Patrik; Levchenko, Andre; Jönsson, Henrik

    2010-06-17

    Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior, highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing mechanism depends on different model parameters. Specifically, we show that the switching capability of the network leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The cell-based type of model presented here together with high-resolution experiments will play an integral role in a more explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution.

  6. Initial detection of the quorum sensing autoinducer activity in the rumen of goats in vivo andin vitro

    Institute of Scientific and Technical Information of China (English)

    RAN Tao; ZHOU Chuan-she; XU Li-wei; GENG Mei-mei; TAN Zhi-liang; TANG Shao-xun; WANG Min; HAN Xue-feng; KANG Jin-he

    2016-01-01

    Quorum sensing (QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cel-cel signaling is likely to occur in an anaerobic rumen environment, which is a complex microbial ecosystem. In this study, using six ruminaly ifs-tulated Liuyang black goats as experimental animals, we aimed to detect the activity of quorum sensing autoinducers (AI) bothin vivo andin vitroand to clone theluxS gene that encoded autoinducer-2 (AI-2) synthase of microbial samples that were colected from the rumen of goats. Neutral detergent ifber (NDF) and soluble starch were the two types of substrates that were used forin vitro fermentation. The fermented lfuid samples were colected at 0, 2, 4, 6, 8, 12, 24, 36, and 48 h of incubation. The acyl-homoserine lactones (AHLs) activity was determined using gas chromatography-mass spectrometer (GC-MS) analysis. However, none of the rumen lfuid extracts that were colected from the goat rumen showed the same or similar fragmentation pattern to AHLs standards. Meanwhile, the AI-2 activity, assayed using aVibrio harveyi BB170 bioassay, was negative in al samples that were colected from the goat rumen and fromin vitro fermentation lfuids. Our results indicated that the activities of AHLs and AI-2 were not detected in the ruminal contents from six goats and in ruminal lfuids obtained fromin vitro fermentation at different sampling time-points. However, the homologues ofluxS in Prevotela ruminicola were cloned fromin vivo and in vitroruminal lfuids. We concluded that AHLs and AI-2 could not be detected in in vivo andin vitro ruminal lfuids of goats using the current detection techniques under current dietary conditions. However, the microbes that inhabited the goat rumen had the potential ability to secrete AI-2 signaling molecules and to communicate with each othervia AI-2-mediated QS because of the presence ofluxS.

  7. Role of quorum sensing in bacterial infections

    Science.gov (United States)

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  8. Rule-based regulatory and metabolic model for Quorum sensing in P. aeruginosa.

    Science.gov (United States)

    Schaadt, Nadine S; Steinbach, Anke; Hartmann, Rolf W; Helms, Volkhard

    2013-08-21

    In the pathogen P. aeruginosa, the formation of virulence factors is regulated via Quorum sensing signaling pathways. Due to the increasing number of strains that are resistant to antibiotics, there is a high interest to develop novel antiinfectives. In the combat of resistant bacteria, selective blockade of the bacterial cell-to-cell communication (Quorum sensing) has gained special interest as anti-virulence strategy. Here, we modeled the las, rhl, and pqs Quorum sensing systems by a multi-level logical approach to analyze how enzyme inhibitors and receptor antagonists effect the formation of autoinducers and virulence factors. Our rule-based simulations fulfill the behavior expected from literature considering the external level of autoinducers. In the presence of PqsBCD inhibitors, the external HHQ and PQS levels are indeed clearly reduced. The magnitude of this effect strongly depends on the inhibition level. However, it seems that the pyocyanin pathway is incomplete. To match experimental observations we suggest a modified network topology in which PqsE and PqsR acts as receptors and an autoinducer as ligand that up-regulate pyocyanin in a concerted manner. While the PQS biosynthesis is more appropriate as target to inhibit the HHQ and PQS formation, blocking the receptor PqsR that regulates the biosynthesis reduces the pyocyanin level stronger.

  9. The metabolic flux regulation of Klebsiella pneumoniae based on quorum sensing system

    Science.gov (United States)

    Sun, Shujing; Zhang, Haiyang; Lu, Shuyi; Lai, Chunfen; Liu, Huijun; Zhu, Hu

    2016-01-01

    Quorum-sensing (QS) systems exist universally in bacteria to regulate multiple biological functions. Klebsiella pneumoniae, an industrially important bacterium that produces bio-based chemicals such as 2,3-butanediol and acetoin, can secrete a furanosyl borate diester (AI-2) as the signalling molecule mediating a QS system, which plays a key regulatory role in the biosynthesis of secondary metabolites. In this study, the molecular regulation and metabolic functions of a QS system in K. pneumoniae were investigated. The results showed that after the disruption of AI-2-mediated QS by the knockout of luxS, the production of acetoin, ethanol and acetic acid were relatively lower in the K. pneumoniae mutant than in the wild type bacteria. However, 2,3-butanediol production was increased by 23.8% and reached 54.93 g/L. The observed enhancement may be attributed to the improvement of the catalytic activity of 2,3-butanediol dehydrogenase (BDH) in transforming acetoin to 2,3-butanediol. This possibility is consistent with the RT-PCR-verified increase in the transcriptional level of budC, which encodes BDH. These results also demonstrated that the physiological metabolism of K. pneumoniae was adversely affected by a QS system. This effect was reversed through the addition of synthetic AI-2. This study provides the basis for a QS-modulated metabolic engineering study of K. pneumoniae. PMID:27924940

  10. AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19.

    Science.gov (United States)

    Jiang, Jing; Wu, Suisui; Wang, Jieru; Feng, Yongjun

    2015-05-01

    Pantoea agglomerans YS19, an endophytic diazotrophic bacterium isolated from rice, is characterized by the formation of multicellular aggregate structure called symplasmata, which not only bestow the strong stress-resistance of the bacterium, but also contribute to the specific adaptation in the endophyte-host association. Acyl-homoserine lactones (AHLs), as the important signal molecule in the quorum sensing (QS) system of gram-negative bacteria, were demonstrated to regulate motility, cell-aggregation, and other bacterial behaviors. Here, the production of AHL by P. agglomerans YS19 and its regulation on the symplasmata formation were studied. It was revealed that the production of AHL by YS19 was initiated at the exponential growth stage and from then on, reached the peak values at the stationary growth stage in LB medium. The AHL was identified as N-3-oxooctanoyl-L-homoserine lactone (OOHL) by MALDI-TOF-MS analysis. The AHL synthesis gene pagI and receptor gene pagR in YS19 were cloned and phylogenetic analysis showed that they were high conservative among strains in species of P. agglomerans. It was revealed that AHL promoted the bacterial growth and symplasmata formation of YS19. Meanwhile, the colonization ability and growth-promoting effect of YS19 on the host plant were also enhanced by AHL. These results strongly suggest the pleiotropic effects of the AHL-type QS system in endophytic life of the strain.

  11. ω-Hydroxyemodin Limits Staphylococcus aureus Quorum Sensing-Mediated Pathogenesis and Inflammation

    Science.gov (United States)

    Daly, Seth M.; Elmore, Bradley O.; Kavanaugh, Jeffrey S.; Triplett, Kathleen D.; Figueroa, Mario; Raja, Huzefa A.; El-Elimat, Tamam; Crosby, Heidi A.; Femling, Jon K.; Cech, Nadja B.; Horswill, Alexander R.; Oberlies, Nicholas H.

    2015-01-01

    Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. PMID:25645827

  12. Evidence for Autoinduction and Quorum Sensing in White Band Disease-Causing Microbes on Acropora cervicornis

    Science.gov (United States)

    Certner, Rebecca H.; Vollmer, Steven V.

    2015-06-01

    Coral reefs have entered a state of global decline party due to an increasing incidence of coral disease. However, the diversity and complexity of coral-associated bacterial communities has made identifying the mechanisms underlying disease transmission and progression extremely difficult. This study explores the effects of coral cell-free culture fluid (CFCF) and autoinducer (a quorum sensing signaling molecule) on coral-associated bacterial growth and on coral tissue loss respectively. All experiments were conducted using the endangered Caribbean coral Acropora cervicornis. Coral-associated microbes were grown on selective media infused with CFCF derived from healthy and white band disease-infected A. cervicornis. Exposure to diseased CFCF increased proliferation of Cytophaga-Flavobacterium spp. while exposure to healthy CFCF inhibited growth of this group. Exposure to either CFCF did not significantly affect Vibrio spp. growth. In order to test whether disease symptoms can be induced in healthy corals, A. cervicornis was exposed to bacterial assemblages supplemented with exogenous, purified autoinducer. Incubation with autoinducer resulted in complete tissue loss in all corals tested in less than one week. These findings indicate that white band disease in A. cervicornis may be caused by opportunistic pathogenesis of resident microbes.

  13. 牙周致病菌密度感应信号系统luxS基因的检测%Detection of luxS gene of quorum sensing signal system in periodontal pathogen

    Institute of Scientific and Technical Information of China (English)

    雷朝锋; 杨禾; 孙昌娟; 苗棣; 徐屹

    2009-01-01

    目的 检测牙周可疑致病菌密度感应信号系统luxS基因,了解其在牙周致病菌中的分布.方法 选取牙龈卟啉单胞菌、伴放线放线杆菌、具核梭杆菌的模式株、参考株及临床分离株作为研究对象,提取DNA,通过聚合酶链反应(PCR)、电泳鉴定和DNA测序,并利用GenBank数据库的Blast检测以上细菌luxS基因的存在情况.结果 电泳鉴定存在目的 条带,测序和Blast检测表明牙龈卟啉单胞菌PCR产物与目的 基因有高度一致性(均为99%以上),具核梭杆菌测序结果 与GenBank数据库的基因相同,伴放线放线杆菌电泳鉴定结果 显示存在目的 条带(750 bp),与参考条带大小一致.结论 本实验引物设计合理,能较好地扩增出牙龈卟啉单胞菌、具核梭杆菌、伴放线放线杆菌各实验菌株的luxS基因,为进一步研究luxS基因的功能奠定了基础.%Objective To detect the presence and distribution of luxS gene in quorum sensing signal system in the periodontal pathogens.Methods The total DNA of Porphyromonas gingivalis(Pg),Fusobacterium nucleatum(Fn),Actinobacillus acitinomycetimcomtans(Aa)were extracted.The presence of luxS was detected by polymerase chain reaction(PCR).The products of PCR were detected by electrophoresis.sequenced and identified by a Blast search of the GenBank database. Results Electrophoresis,sequencing and Blast searching indicated that the PCR products of Pg were highly consistent with the luxS gene in GenBank.The sequencing result of Fn was also identified with the target gene.The PCR product of Aa was the same as reference through electrophoresis.Conclusions Pg,Fn,Aa contain luxS gene.Further studies may be required to investigate the functions of luxS in the periodontal pathogens.

  14. RND efflux pump and its interrelationship with quorum sensing system%RND家族外排泵及其与微生物群体感应系统的相互关系

    Institute of Scientific and Technical Information of China (English)

    梁志彬; 陈豫梅; 陈昱帆; 程莹莹; 张炼辉

    2016-01-01

    抗生素耐药性一直是细菌病害防治的难题,药物外排泵过量表达是细菌耐药性形成的重要机制之一。在革兰氏阴性细菌中,RND(Resistance-nodulation-cell division)家族外排泵在耐药性中发挥着重要作用,近年来的研究表明,依赖于小分子信号物质进行调控的群体感应系统与RND外排泵家族之间存在紧密的相互作用关系。本文在介绍RND家族外排泵的结构、转运机理和群体感应系统的类型及调控方式的基础上,剖析了群体感应系统对RND外排泵的调控机理以及RND外排泵对群体感应系统信号分子转运的影响。深入研究RND家族外排泵与群体感应系统之间的相互依赖、相互制约关系有利于阐明RND家族外排泵的调控机理,并有可能为克服微生物耐药性问题提供新的思路。%Antibiotic resistance has become a serious concern in treatment of bacterial infections. Overexpression of efflux pump is one of the important mechanisms in antibiotic resistance. In Gram negative bacteria, RND (Resistance-nodulation-cell division) superfamily efflux pump plays a vital important role in antibiotics resistance. Recent research progress unveils an intriguing interrelationship between RND efflux pump and the bacterial quorum sensing system, whose regulation is dependent on small signal molecules. This article reviews the latest findings on the structure and transport mechanism of RND efflux pump, as well as the general features and regulatory mechanisms of quorum sensing, with a special focus on the role and mechanism of quorum sensing system in regulation of RND efflux pump, and the influence of efflux pump on quorum sensing signal transportation. Further investigation of the interrelationship between RND efflux pumps and the bacterial quorum sensing systems is critical for elucidation of the regulatory mechanisms that govern the expression of the RND efflux pumps genes, and may also provide useful

  15. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    Science.gov (United States)

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  16. Proteomics of the bacterial cross-talk by quorum sensing.

    Science.gov (United States)

    Di Cagno, Raffaella; De Angelis, Maria; Calasso, Maria; Gobbetti, Marco

    2011-01-01

    Words such as language and behavior are frequently used to depict "quorum sensing" (QS) in the literature. Simplifying the concept, language and cross-talk between bacteria, and between bacteria and animal or plants hosts determine the behavior (e.g., beneficial or pathogenic effects). Genomics and transcriptomics were the principal approaches used to study the multiple mechanisms of QS. Nevertheless, sequencing of genomes paved the way for another approach which consists on comparative and functional proteomics. This review aims at describing how the proteomic dictionary translates: (i) the languages (N-acyl-L-homoserine lactones, AHL; autoinducing peptide, AIP; autoinducer-2, AI-2) used by bacteria to communicate; (ii) signals of QS which induce various phenotypes (e.g., virulence, biofilm maturation); (iii) cross-talk between lactic acid bacteria within various food ecosystems (e.g. sourdough and fermented milk); (iv) probiotic messages at intra- and inter-species and interkingdom levels; and (v) words for quorum quenching (QQ). Proteomics is an indispensible discipline to elucidate the mechanisms of regulation of the multitude of language signals which diffuse through different microbial communities.

  17. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  18. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Thomas Bjarnsholt

    Full Text Available Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity (alginate overproduction and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS. To elucidate the dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to be lost was the one encoded by las system 12 years (median value after the onset of the lung infection with subsequent loss of the rhl encoded system after 17 years (median value shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR. Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.

  19. Resilience of bacterial quorum sensing against fluid flow

    Science.gov (United States)

    Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola

    2016-09-01

    Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems.

  20. The Fsr Quorum-Sensing System of Enterococcus faecalisModulates Surface Display of the Collagen-Binding MSCRAMM Ace through Regulation of gelE▿

    Science.gov (United States)

    Pinkston, Kenneth L.; Gao, Peng; Diaz-Garcia, Daniel; Sillanpää, Jouko; Nallapareddy, Sreedhar R.; Murray, Barbara E.; Harvey, Barrett R.

    2011-01-01

    Ace, a known virulence factor and the first identified microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Enterococcus faecalisis associated with host cell adherence and endocarditis. The Fsr quorum-sensing system of E. faecalis, a two-component signal transduction system, has also been repeatedly linked to virulence in E. faecalis, due in part to the transcriptional induction of an extracellular metalloprotease, gelatinase (GelE). In this study, we discovered that disruption of the Fsr pathway significantly increased the levels of Ace on the cell surface in the latter phases of growth. Furthermore, we observed that, in addition to fsrBmutants, other strains identified as deficient in GelE activity also demonstrated a similar phenotype. Additional experiments demonstrated the GelE-dependent cleavage of Ace from the surface of E. faecalis, confirming that GelE specifically reduces Ace cell surface display. In addition, disruption of the Fsr system or GelE expression significantly improved the ability of E. faecalisto adhere to collagen, which is consistent with higher levels of Ace on the E. faecalissurface. These results demonstrate that the display of Ace is mediated by quorum sensing through the action of GelE, providing insight into the complicated world of Gram-positive pathogen adhesion and colonization. PMID:21705589

  1. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    Science.gov (United States)

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  2. Inhibition of Lux quorum-sensing system by synthetic N-acyl-L-homoserine lactone analogous

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present study, we investigated the inhibition of the Lux quorum-sensing system by N-acyi cyclopentylamine (Cn-CPA). The Lux quorum-sensing system regulates luminescence gene expression in Vibriofischeri. We have already reported on the synthesis of Cn-CPA and their abilities as inhibitors of the quorum-sensing systems in Pseudomonas aeruginosa and Serratia marcescens. In the case of Pseudomonas aeruginosa (Las and Rhl quorum-sensing system) and Serratia marcescens (Spn quorum-sensing system), specific Cn-CPA with a particular acyi chain length showed the strongest inhibitory effect. In the case of the Lux quorum-sensing system, it was found that several kinds of Cn-CPA with a range from C5 to C10 showed similar strong inhibitory effects. Moreover, the inhibitory effect of Cn-CPA on the Lux quorum-sensing system was stronger than that of halogenated furanone, a natural quorum-sensing inhibitor.

  3. Inhibition of Lux quorum-sensing system by synthetic N-acyl-L-homoserine lactone analogous.

    Science.gov (United States)

    Wang, Wenzhao; Morohoshi, Tomohiro; Ikeda, Tsukasa; Chen, Liang

    2008-12-01

    In the present study, we investigated the inhibition of the Lux quorum-sensing system by N-acyl cyclopentylamine (Cn-CPA). The Lux quorum-sensing system regulates luminescence gene expression in Vibrio fischeri. We have already reported on the synthesis of Cn-CPA and their abilities as inhibitors of the quorum-sensing systems in Pseudomonas aeruginosa and Serratia marcescens. In the case of Pseudomonas aeruginosa (Las and Rhl quorum-sensing system) and Serratia marcescens (Spn quorum-sensing system), specific Cn-CPA with a particular acyl chain length showed the strongest inhibitory effect. In the case of the Lux quorum-sensing system, it was found that several kinds of Cn-CPA with a range from C5 to C10 showed similar strong inhibitory effects. Moreover, the inhibitory effect of Cn-CPA on the Lux quorum-sensing system was stronger than that of halogenated furanone, a natural quorum-sensing inhibitor.

  4. Quorum sensing of pathogenic bacteria and quorum-sensing inhibitors%病原菌的群体感应及其抑制剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    程古月; 郝海红; 戴梦红; 刘振利; 袁宗辉

    2012-01-01

    The emergence of antibiotic-resistant and especially multidrug-resistant pathogenic bacteria intensifies the need to screen new drug targets and develop new antibacterial drugs. Bacteria coordinate their virulent behaviors in a cell density-dependent manner known as quorum sensing (QS). In this process, pathogenic bacteria exchange autoinducers (AIs) to regulate the expression of genes involved in processes such as virulence, adhesion, and biofilm formation. Different types of AIs mediate different QS systems. Preventing the accumulation of AIs or blocking their recognition by signal receptors can reduce the pathogenic processes under QS control. Therefore, quorum-sensing inhibitors (QSIs) may be an effective way to treat bacterial infections, especially those caused by antibiotic-resistant strains. QSIs can be categorized into three classes: nonpeptide small molecules, peptides, and proteins (including quorum-quenching enzymes and antibodies). In addition, competing bacteria and animal hosts can scavenge AIs, thus playing the role of QSIs. QSIs can be screened by natural QSI indicator strains, engineered bacteria, or computer simulation. The continuing study of QS-mediated pathogenic mechanisms will provide new targets for QSIs. The combined use of QSIs and traditional antimicrobials is expected to improve treatment and help prevent the further development of drug resistance.%随着病原菌耐药性特别是多重耐药性的日益严重,抗菌药作用新靶点的发现和新型抗菌药物的研发显得尤为重要.病原菌的致病作用常受到与其群体密度相关的群体感应(quorum-sensing,QS)系统的调控.细菌通过释放和交换自诱导信号分子(autoinducers,AIs)以调控致病相关基因的表达,从而影响细菌的毒力、黏附和生物膜的形成等.不同种类的AIs介导不同的QS系统,阻止AIs的积累或其与受体的识别和结合就可以抑制QS调控的致病基因的表达.因此,QS抑制剂(quorum-sensing

  5. RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing.

    Science.gov (United States)

    Kim, Sunyoung; Park, Jungwook; Kim, Ji Hyeon; Lee, Jongyun; Bang, Bongjun; Hwang, Ingyu; Seo, Young-Su

    2013-09-01

    Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::Ω) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::Ω). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.

  6. The evolution of quorum sensing in bacterial biofilms.

    Science.gov (United States)

    Nadell, Carey D; Xavier, Joao B; Levin, Simon A; Foster, Kevin R

    2008-01-01

    Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum-sensing systems that detect the density of other bacteria around them. A key example of such group behavior is biofilm formation, in which communities of cells attach to a surface and envelope themselves in secreted polymers. Curiously, after reaching high cell density, some bacterial species activate polymer secretion, whereas others terminate polymer secretion. Here, we investigate this striking variation in the first evolutionary model of quorum sensing in biofilms. We use detailed individual-based simulations to investigate evolutionary competitions between strains that differ in their polymer production and quorum-sensing phenotypes. The benefit of activating polymer secretion at high cell density is relatively straightforward: secretion starts upon biofilm formation, allowing strains to push their lineages into nutrient-rich areas and suffocate neighboring cells. But why use quorum sensing to terminate polymer secretion at high cell density? We find that deactivating polymer production in biofilms can yield an advantage by redirecting resources into growth, but that this advantage occurs only in a limited time window. We predict, therefore, that down-regulation of polymer secretion at high cell density will evolve when it can coincide with dispersal events, but it will be disfavored in long-lived (chronic) biofilms with sustained competition among strains. Our model suggests that the observed variation in quorum-sensing behavior can be linked to the differing requirements of bacteria in chronic versus acute biofilm infections. This is well illustrated by the case of Vibrio cholerae, which competes within biofilms by polymer secretion, terminates polymer secretion at high cell density, and induces an acute disease course that ends with mass dispersal from the host. More generally, this work shows that the balance of competition within and among

  7. Biomimicry of quorum sensing using bacterial lifecycle model.

    Science.gov (United States)

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms

  8. Current topics in signal transduction in bacteria

    NARCIS (Netherlands)

    Hellingwerf, K.J.; Crielaard, W.; Teixeira de mattos, M.J.; Hoff, W.D.; Kort, R.; Verhamme, D.T.; Avignone-Rossa, C

    1998-01-01

    Among the signal transfer systems in bacteria two types predominate: two-component regulatory systems and quorum sensing systems. Both types of system can mediate signal transfer across the bacterial cell envelope; however, the signalling molecule typically is not taken up into the cells in the

  9. The Evolution of Quorum Sensing as a Mechanism to Infer Kinship.

    Science.gov (United States)

    Schluter, Jonas; Schoech, Armin P; Foster, Kevin R; Mitri, Sara

    2016-04-01

    Bacteria regulate many phenotypes via quorum sensing systems. Quorum sensing is typically thought to evolve because the regulated cooperative phenotypes are only beneficial at certain cell densities. However, quorum sensing systems are also threatened by non-cooperative "cheaters" that may exploit quorum-sensing regulated cooperation, which begs the question of how quorum sensing systems are maintained in nature. Here we study the evolution of quorum sensing using an individual-based model that captures the natural ecology and population structuring of microbial communities. We first recapitulate the two existing observations on quorum sensing evolution: density-dependent benefits favor quorum sensing but competition and cheating will destabilize it. We then model quorum sensing in a dense community like a biofilm, which reveals a novel benefit to quorum sensing that is intrinsically evolutionarily stable. In these communities, competing microbial genotypes gradually segregate over time leading to positive correlation between density and genetic similarity between neighboring cells (relatedness). This enables quorum sensing to track genetic relatedness and ensures that costly cooperative traits are only activated once a cell is safely surrounded by clonemates. We hypothesize that under similar natural conditions, the benefits of quorum sensing will not result from an assessment of density but from the ability to infer kinship.

  10. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional

    DEFF Research Database (Denmark)

    Shrout, J.D.; Chopp, D.L.; Just, C.L.

    2006-01-01

    The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development...

  11. Fremmedlegemeinfektioner--nyt om biofilm og quorum sensing

    DEFF Research Database (Denmark)

    Høiby, Niels; Johansen, Helle Krogh; Ciofu, Oana

    2007-01-01

    Biofilms are structured consortia of bacteria embedded in self-produced polymer matrix. Biofilms are resistant to antibiotics, disinfectives and phagocytosis. The persistence of foreign body infections is due to biofilms. Chronic P. aeruginosa lung infection in cystic fibrosis patients is a biofilm....... Bacteria in biofilms communicate by means of quorum sensing which activates genes for virulence factors. Biofilms can be prevented by antibiotic prophylaxis or early therapy or by quorum sensing inhibitors which make them susceptible to antibiotics and phagocytosis. Udgivelsesdato: 2007-Nov-26...

  12. Where are signal molecules likely to be located in anaerobic granular sludge?

    Science.gov (United States)

    Feng, Huajun; Ding, Yangcheng; Wang, Meizhen; Zhou, Guanglan; Zheng, Xin; He, Hongzhen; Zhang, Xueqin; Shen, Dongsheng; Shentu, Jiali

    2014-03-01

    Quorum sensing is a concentration-sensing mechanism that plays a vital role in sludge granulation. In this study, the regularities of distribution of different signal molecules, including intra- and interspecific signal molecules (diffusible signal factor, DSF), interspecific signal molecules (autoinducter-2, AI-2) and intraspecific signal molecules (acyl-homoserine lactones, AHLs), from three types of anaerobic granular sludge were investigated. The results showed that 70-90% of DSF was distributed in sludge, while AI-2 in the Water phase accounted for over 80% of the total content. Interestingly, there was a positive correlation between DSF and AI-2, which played opposite roles in granulation. Moreover, more than 55% of short and medium acyl chain AHLs tended to spread in aqueous water, while the long acyl chain AHLs were closer to granular sludge than the short and medium acyl chain AHLs. With the exception of one type of sludge, the percentage of long acyl chain AHLs in the sludge phase was greater than 70%. The different distributions of signal molecules were primarily determined based on their physicochemical properties, including molecular weight and solubility in water or organic solutions. In addition, the basic properties of sludge, such as the granular level or the production of EPS, were closely related to the diversity, distribution and concentration of signal molecules. As a medium in granulation, extracellular polymeric substances production was regulated by different signal molecules from different parts of anaerobic granular sludge. This study provides a foundation for investigation of quorum sensing in the system of anaerobic granular sludge.

  13. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator.

    Science.gov (United States)

    Nguyen, Y; Nguyen, Nam X; Rogers, Jamie L; Liao, Jun; MacMillan, John B; Jiang, Youxing; Sperandio, Vanessa

    2015-03-31

    Bacteria engage in chemical signaling, termed quorum sensing (QS), to mediate intercellular communication, mimicking multicellular organisms. The LuxR family of QS transcription factors regulates gene expression, coordinating population behavior by sensing endogenous acyl homoserine lactones (AHLs). However, some bacteria (such as Escherichia coli) do not produce AHLs. These LuxR orphans sense exogenous AHLs but also regulate transcription in the absence of AHLs. Importantly, this AHL-independent regulatory mechanism is still largely unknown. Here we present several structures of one such orphan LuxR-type protein, SdiA, from enterohemorrhagic E. coli (EHEC), in the presence and absence of AHL. SdiA is actually not in an apo state without AHL but is regulated by a previously unknown endogenous ligand, 1-octanoyl-rac-glycerol (OCL), which is ubiquitously found throughout the tree of life and serves as an energy source, signaling molecule, and substrate for membrane biogenesis. While exogenous AHL renders to SdiA higher stability and DNA binding affinity, OCL may function as a chemical chaperone placeholder that stabilizes SdiA, allowing for basal activity. Structural comparison between SdiA-AHL and SdiA-OCL complexes provides crucial mechanistic insights into the ligand regulation of AHL-dependent and -independent function of LuxR-type proteins. Importantly, in addition to its contribution to basic science, this work has implications for public health, inasmuch as the SdiA signaling system aids the deadly human pathogen EHEC to adapt to a commensal lifestyle in the gastrointestinal (GI) tract of cattle, its main reservoir. These studies open exciting and novel avenues to control shedding of this human pathogen in the environment. Quorum sensing refers to bacterial chemical signaling. The QS acyl homoserine lactone (AHL) signals are recognized by LuxR-type receptors that regulate gene transcription. However, some bacteria have orphan LuxR-type receptors and do not

  14. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Fohad Mabood Husain

    2015-05-01

    Full Text Available Bacterial quorum sensing (QS is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Mentha piperita oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil at sub-MICs strongly interfered with acyl homoserine lactone (AHL regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the quorum sensing inhibitory activity exhibited by peppermint oil to menthol. Assessment of ability of menthol to interfere with quorum sensing systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors and biofilm formation indicating broad-spectrum anti-QS activity. Using two E. coli biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs quorum sensing systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum quorum sensing inhibitor.

  15. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors

    DEFF Research Database (Denmark)

    Hentzer, Morten; Wu, H.; Andersen, Jens Bo

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has...

  16. QsrO a novel regulator of quorum-sensing and virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Thilo Köhler

    Full Text Available In Pseudomonas aeruginosa, the production of many secreted virulence factors is controlled by a quorum-sensing (QS circuit, constituted of transcriptional activators (LasR, RhlR, PqsR and their cognate signaling molecules (3-oxo-C12-HSL, C4-HSL, PQS. QS is a cooperative behavior that is beneficial to a population but can be exploited by "QS-cheaters", individuals which do not respond to the QS-signal, but can use public goods produced by QS-cooperators. In order to identify QS-deficient clones we designed a genetic screening based on a lasB-lacZ fusion. We isolated one clone (PT1617 deficient in QS-dependent gene expression and virulence factor production despite wild type lasR, rhlR and pqsR alleles. Whole genome sequencing of PT1617 revealed a 3,552 bp deletion encompassing ORFs PA2228-PA2229-PA2230 and the pslA gene. However, complementation of PT1617 by plasmid-encoded copies of these ORFs, did not restore QS. Unexpectedly, gene expression levels of ORFs PA2228, PA2227 (vqsM and PA2222, located adjacent to the deletion, were 10 to 100 fold higher in mutant PT1617 than in PAO1. When expressed from a constitutive promoter on a plasmid, PA2226, alone was found to be sufficient to confer a QS-negative phenotype on PAO1 as well as on PA14. Co-expression of PA2226 and PA2225 in PAO1 further prevented induction of the type III secretion system. In summary, we have identified a novel genetic locus including ORF2226 termed qsrO (QS-repressing ORF, capable of down-regulating all three known QS-systems in P. aeruginosa.

  17. Non-social adaptation defers a tragedy of the commons in Pseudomonas aeruginosa quorum sensing.

    Science.gov (United States)

    Asfahl, Kyle L; Walsh, Jessica; Gilbert, Kerrigan; Schuster, Martin

    2015-08-01

    In a process termed quorum sensing (QS), the opportunistic bacterial pathogen Pseudomonas aeruginosa uses diffusible signaling molecules to regulate the expression of numerous secreted factors or public goods that are shared within the population. But not all cells respond to QS signals. These social cheaters typically harbor a mutation in the QS receptor gene lasR and exploit the public goods produced by cooperators. Here we show that non-social adaptation under growth conditions that require QS-dependent public goods increases tolerance to cheating and defers a tragedy of the commons. The underlying mutation is in the transcriptional repressor gene psdR. This mutation has no effect on public goods expression but instead increases individual fitness by derepressing growth-limiting intracellular metabolism. Even though psdR mutant populations remain susceptible to invasion by isogenic psdR lasR cheaters, they bear a lower cheater load than do wild-type populations, and they are completely resistant to invasion by lasR cheaters with functional psdR. Mutations in psdR also sustain growth near wild-type levels when paired with certain partial loss-of-function lasR mutations. Targeted sequencing of multiple evolved isolates revealed that mutations in psdR arise before mutations in lasR, and rapidly sweep through the population. Our results indicate that a QS-favoring environment can lead to adaptations in non-social, intracellular traits that increase the fitness of cooperating individuals and thereby contribute to population-wide maintenance of QS and associated cooperative behaviors.

  18. Pseudomonas aeruginosa Quorum-Sensing Systems May Control Virulence Factor Expression in the Lungs of Patients with Cystic Fibrosis

    OpenAIRE

    Erickson, David L.; Endersby, Ryan; Kirkham, Amanda; Stuber, Kent; Vollman, Dolina D.; Rabin, Harvey R; Mitchell, Ian; Storey, Douglas G.

    2002-01-01

    Individuals with cystic fibrosis (CF) are commonly colonized with Pseudomonas aeruginosa. The chronic infections caused by P. aeruginosa are punctuated by acute exacerbations of the lung disease, which lead to significant morbidity and mortality. As regulators of virulence determinants, P. aeruginosa quorum-sensing systems may be active in the chronic lung infections associated with CF. We have examined the levels of autoinducer molecules and transcript accumulation from the bacterial populat...

  19. Negative regulation of bacterial quorum sensing tunes public goods cooperation.

    Science.gov (United States)

    Gupta, Rashmi; Schuster, Martin

    2013-11-01

    Bacterial quorum sensing (QS) often coordinates the expression of other, generally more costly public goods involved in virulence and nutrient acquisition. In many Proteobacteria, the basic QS circuitry consists of a synthase that produces a diffusible acyl-homoserine lactone and a cognate receptor that activates public goods expression. In some species, the circuitry also contains negative regulators that have the potential to modulate the timing and magnitude of activation. In this study, we experimentally investigated the contribution of this regulatory function to the evolutionary stability of public goods cooperation in the opportunistic pathogen Pseudomonas aeruginosa. We compared fitness and public goods expression rates of strains lacking either qteE or qscR, each encoding a distinct negative regulator, with those of the wild-type parent and a signal-blind receptor mutant under defined growth conditions. We found that (1) qteE and qscR mutations behave virtually identically and have a stronger effect on the magnitude than on the timing of expression, (2) high expression in qteE and qscR mutants imposes a metabolic burden under nutrient conditions that advance induction and (3) high expression in qteE and qscR mutants increases population growth when QS is required, but also permits invasion by both wild-type and receptor mutant strains. Our data indicate that negative regulation of QS balances the costs and benefits of public goods by attenuating expression after transition to the induced state. As the cells cannot accurately assess the amount of cooperation needed, such bet-hedging would be advantageous in changing parasitic and nonparasitic environments.

  20. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host.

    Science.gov (United States)

    Lupp, Claudia; Urbanowski, Mark; Greenberg, E Peter; Ruby, Edward G

    2003-10-01

    Bacterial quorum sensing using acyl-homoserine lactones (acyl-HSLs) as cell-density dependent signalling molecules is important for the transcriptional regulation of many genes essential in the establishment and the maintenance of bacteria-host associations. Vibrio fischeri, the symbiotic partner of the Hawaiian bobtail squid Euprymna scolopes, possesses two distinct acyl-HSL synthase proteins, LuxI and AinS. Whereas the cell density-dependent regulation of luminescence by the LuxI-produced signal is a well-described phenomenon, and its role in light organ symbiosis has been defined, little is known about the ain system. We have investigated the impact of the V. fischeri acyl-HSL synthase AinS on both luminescence and symbiotic colonization. Through phenotypic studies of V. fischeri mutants we have found that the AinS-signal is the predominant inducer of luminescence expression in culture, whereas the impact of the LuxI-signal is apparent only at the high cell densities occurring in symbiosis. Furthermore, our studies revealed that ainS regulates activities essential for successful colonization of E. scolopes, i.e. the V. fischeri ainS mutant failed to persist in the squid light organ. Mutational inactivation of the transcriptional regulator protein LuxO in the ainS mutant partially or completely reversed all the observed phenotypes, demonstrating that the AinS-signal regulates expression of downstream genes through the inactivation of LuxO. Taken together, our results suggest that the two quorum-sensing systems in V. fischeri, ain and lux, sequentially induce the expression of luminescence genes and possibly other colonization factors.

  1. Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

    Directory of Open Access Journals (Sweden)

    Xavier Latour

    2013-12-01

    Full Text Available Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

  2. Sodium houttuyfonate affects production of N-acyl homoserine lactone and quorum sensing-regulated genes expression in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Daqiang eWu

    2014-11-01

    Full Text Available Quorum sensing (QS is a means of cell-to-cell communication that uses diffusible signaling molecules that are sensed by the population to determine population density, thus allowing co-ordinate gene regulation in response to population density. In Pseudomonas aeruginosa, production of the QS signaling molecule, N-acyl homoserine lactone (AHL, co-ordinates expression of key factors of pathogenesis, including biofilm formation and toxin secretion. It is predicted that the inhibition of AHL sensing would provide an effective clinical treatment to reduce the expression of virulence factors and increase the effectiveness of antimicrobial agents. We previously demonstrated that sodium houttuyfonate (SH, commonly used in traditional Chinese medicine to treat infectious diseases, can effectively inhibit QS-regulated processes, including biofilm formation. Here, using a model system, we demonstrate that SH causes the dose-dependent inhibition of AHL production, through down-regulation of the AHL biosynthesis gene, lasI. Addition of SH also resulted in down-regulation of expression of the AHL sensor and transcriptional regulator, LasR, and inhibited the production of the QS-regulated virulence factors, pyocyanin and LasA. These results suggest that the antimicrobial activity of SH may be due to its ability to disrupt QS in P. aeruginosa.

  3. 群感效应与链霉菌次生代谢调控%Quorum sensing involved in the regulation of secondary metabolism in streptomycetes-A review

    Institute of Scientific and Technical Information of China (English)

    刘明; 李爱英

    2011-01-01

    群感效应是细菌协调群体行为的一种外界信号传递机制,在细菌中普遍存在,参与细胞的多种生理过程.链霉菌中也存在群感效应,在抗生素等次生代谢产物的生物合成中起重要的调控作用;从自诱导信号分子的结构到信号传递机制都存在一定多样性,其中以A-因子为代表的γ-丁酸内酯类信号分子的作用机制研究最为深入.近几年在链霉菌中发现的PI-因子、M-因子以及一些特定的代谢产物则代表几类结构较新颖的信号分子,通过群感效应机制调控次生代谢过程;链霉菌中还发现胆固醇氧化酶、甘油等分子具有信号分子特征,不排除是通过群感效应来参与抗生素生物合成调控.本文主要就参与链霉菌次生代谢调控的几类群感效应系统的研究状况进行综述,重点阐述各类群感信号分子的结构和信号传递机制的不同,并对链霉菌群感效应的研究趋势以及在抗生素高产菌遗传育种中的应用前景进行了展望.%Quorum sensing as an extracellular signal transduction system is distributed widely among many bacteria to coordinate their behaviors or actions by mediating gene expression, and plays key roles in many physiological processes and pathogenicity.Quorum sensing was also observed among many streptomycetes, as an important regulatory mechanism of secondary metabolite biosynthesis and/or cell differentiation, and displayed certain diversity of the autoinducer structures and action mechanisms.The participation of A-factor-driven quorum sensing systems in the secondary metabolism has been extensively studied, and triggered the identification of a major signal class featured with γ-butyrolactone core.Additionally, Pi-factor, M-factor and certain small antibiotic molecules recently found in streptomycetes clearly could play important roles in the biosynthetic pathways of some antibiotics, and might represent extracellular autoinducer classes with novel

  4. Drosophila host model reveals new enterococcus faecalis quorum-sensing associated virulence factors.

    Science.gov (United States)

    Teixeira, Neuza; Varahan, Sriram; Gorman, Matthew J; Palmer, Kelli L; Zaidman-Remy, Anna; Yokohata, Ryoji; Nakayama, Jiro; Hancock, Lynn E; Jacinto, António; Gilmore, Michael S; de Fátima Silva Lopes, Maria

    2013-01-01

    Enterococcus faecalis V583 is a vancomycin-resistant clinical isolate which belongs to the hospital-adapted clade, CC2. This strain harbours several factors that have been associated with virulence, including the fsr quorum-sensing regulatory system that is known to control the expression of GelE and SprE proteases. To discriminate between genes directly regulated by Fsr, and those indirectly regulated as the result of protease expression or activity, we compared gene expression in isogenic mutants of V583 variously defective in either Fsr quorum sensing or protease expression. Quorum sensing was artificially induced by addition of the quorum signal, GBAP, exogenously in a controlled manner. The Fsr regulon was found to be restricted to five genes, gelE, sprE, ef1097, ef1351 and ef1352. Twelve additional genes were found to be dependent on the presence of GBAP-induced proteases. Induction of GelE and SprE by GBAP via Fsr resulted in accumulation of mRNA encoding lrgAB, and this induction was found to be lytRS dependent. Drosophila infection was used to discern varying levels of toxicity stemming from mutations in the fsr quorum regulatory system and the genes that it regulates, highlighting the contribution of LrgAB and bacteriocin EF1097 to infection toxicity. A contribution of SprE to infection toxicity was also detected. This work brought to light new players in E. faecalis success as a pathogen and paves the way for future studies on host tolerance mechanisms to infections caused by this important nosocomial pathogen.

  5. Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum-sensing inhibitors on protease production

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Kristian Fog; Dalsgaard, Inger

    2007-01-01

    To profile the quorum-sensing (QS) signals in Yersinia ruckeri and to examine the possible regulatory link between QS signals and a typical QS-regulated virulence phenotype, a protease. Methods and Results: Liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) showed that Y. ruckeri...

  6. A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity

    Science.gov (United States)

    Sun, Shiwei; Dai, Xiaoyun; Sun, Jiao; Bu, Xiangguo; Weng, Caihong; Li, Hui; Zhu, Hu

    2016-01-01

    An ethyl acetate (EtOAc) extract isolated from the marine bacterium, Rheinheimera aquimaris QSI02, was found to exhibit anti-quorum sensing (anti-QS) activity. A subsequent bioassay-guided isolation protocol led to the detection of an active diketopiperazine factor, cyclo(Trp-Ser). Biosensor assay data showed that the minimum inhibitory concentration (MIC) of cyclo(Trp-Ser) ranged from 3.2 mg/ml to 6.4 mg/m for several microorganisms, including Escherichia coli, Chromobacterium violaceum CV026, Pseudomonas aeruginosa PA01, Staphylococcus aureus, and Candida albicans. Additionally, sub-MICs of cyclo(Trp-Ser) decreased the QS-regulated violacein production in C. violaceum CV026 by 67%. Furthermore, cyclo(Trp-Ser) can decrease QS-regulated pyocyanin production, elastase activity and biofilm formation in P. aeruginosa PA01 by 65%, 40% and 59.9%, respectively. Molecular docking results revealed that cyclo(Trp-Ser) binds to CviR receptor more rigidly than C6HSL with lower docking energy −8.68 kcal/mol, while with higher binding energy of −8.40 kcal/mol than 3-oxo-C12HSL in LasR receptor. Molecular dynamics simulation suggested that cyclo(Trp-Ser) is more easy to bind to CviR receptor than natural signaling molecule, but opposite in LasR receptor. These results suggest that cyclo(Trp-Ser) can be used as a potential inhibitor to control QS systems of C. violaceum and P. aeruginosa and provide increased the understanding of molecular mechanism that influences QS-regulated behaviors. PMID:28000767

  7. Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in Vibrio cholerae

    Science.gov (United States)

    Hurley, Amanda

    2017-01-01

    Quorum sensing (QS) is a mechanism of chemical communication that bacteria use to monitor cell-population density and coordinate group behaviors. QS relies on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. Vibrio cholerae employs parallel QS circuits that converge into a shared signaling pathway. At high cell density, the CqsS and LuxPQ QS receptors detect the intra-genus and inter-species autoinducers CAI-1 and AI-2, respectively, to repress virulence factor production and biofilm formation. We show that positive feedback, mediated by the QS pathway, increases CqsS but not LuxQ levels during the transition into QS-mode, which amplifies the CAI-1 input into the pathway relative to the AI-2 input. Asymmetric feedback on CqsS enables responses exclusively to the CAI-1 autoinducer. Because CqsS exhibits the dominant QS signaling role in V. cholerae, agonism of CqsS with synthetic compounds could be used to control pathogenicity and host dispersal. We identify nine compounds that share no structural similarity to CAI-1, yet potently agonize CqsS via inhibition of CqsS autokinase activity. PMID:28552952

  8. PepO, a CovRS-controlled endopeptidase, disrupts Streptococcus pyogenes quorum sensing.

    Science.gov (United States)

    Wilkening, Reid V; Chang, Jennifer C; Federle, Michael J

    2016-01-01

    Group A Streptococcus (GAS, Streptococcus pyogenes) is a human-restricted pathogen with a capacity to both colonize asymptomatically and cause illnesses ranging from pharyngitis to necrotizing fasciitis. An understanding of how and when GAS switches between genetic programs governing these different lifestyles has remained an enduring mystery and likely requires carefully tuned environmental sensors to activate and silence genetic schemes when appropriate. Herein, we describe the relationship between the Control of Virulence (CovRS, CsrRS) two-component system and the Rgg2/3 quorum-sensing pathway. We demonstrate that responses of CovRS to the stress signals Mg(2+) and a fragment of the antimicrobial peptide LL-37 result in modulated activity of pheromone signaling of the Rgg2/3 pathway through a means of proteolysis of SHP peptide pheromones. This degradation is mediated by the cytoplasmic endopeptidase PepO, which is the first identified enzymatic silencer of an RRNPP-type quorum-sensing pathway. These results suggest that under conditions in which the virulence potential of GAS is elevated (i.e. enhanced virulence gene expression), cellular responses mediated by the Rgg2/3 pathway are abrogated and allow individuals to escape from group behavior. These results also indicate that Rgg2/3 signaling is instead functional during non-virulent GAS lifestyles.

  9. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1.

    Directory of Open Access Journals (Sweden)

    Francisco Pérez-Montaño

    Full Text Available Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis.

  10. Truncated Autoinducing Peptides as Antagonists of Staphylococcus lugdunensis Quorum Sensing.

    Science.gov (United States)

    Gordon, Christopher P; Olson, Shondra D; Lister, Jessica L; Kavanaugh, Jeffrey S; Horswill, Alexander R

    2016-10-13

    Competitive quorum sensing (QS) antagonism offers a novel strategy for attenuating current multidrug resistant staphylococcal infections. To this end, a series of 10 truncated analogues based on the parent autoinducing peptides (AIPs) of Staphylococcus lugdunensis (groups I and II) and Staphylococcus epidermidis (groups I-III) were sequentially assessed against a newly developed Staphylococcus lugdunensis group I QS reporter strain. The truncated analogues based upon Staphylococcus lugdunensis AIP-1 (1) and AIP-2 (2) displayed respective IC50 values of 0.2 ± 0.01 μM and 0.3 ± 0.01 μM, while the truncated analogue of the Staphylococcus epidermidis AIP-1 (3) elicited an IC50 value of 2.7 ± 0.1 μM. These findings demonstrate the potential of cognate and "crosstalk" competitive quorum sensing inhibition using truncated AIPs as a means of attenuating staphylococcal infections in species beyond Staphylococcus aureus.

  11. Quorum Sensing and Synchronization in Populations of Coupled Chemical Oscillators

    Science.gov (United States)

    Taylor, Annette F.; Tinsley, Mark R.; Showalter, Kenneth

    2013-12-01

    Experiments and simulations of populations of coupled chemical oscillators, consisting of catalytic particles suspended in solution, provide insights into density-dependent dynamics displayed by many cellular organisms. Gradual synchronization transitions, the "switching on" of activity above a threshold number of oscillators (quorum sensing) and the formation of synchronized groups (clusters) of oscillators have been characterized. Collective behavior is driven by the response of the oscillators to chemicals emitted into the surrounding solution.

  12. Initial detection of the quorum sensing autoinducer activity in the rumen of goats in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    RAN Tao; ZHOU Chuan-she; XU Li-wei; GENG Mei-mei; TAN Zhi-liang; TANG Shao-xun; WANG Min; HAN Xue-feng; KANG Jin-he

    2016-01-01

    Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell signalling is likely to occur in an anaerobic rumen environment, which is a complex microbial ecosystem. In this study, using six ruminally fistulated Liuyang black goats as experimental animals, we aimed to detect the activity of quorum sensing autoinducers(AI) both in vivo and in vitro and to clone the lux S gene that encoded autoinducer-2(AI-2) synthase of microbial samples that were collected from the rumen of goats. Neutral detergent fiber(NDF) and soluble starch were the two types of substrates that were used for in vitro fermentation. The fermented fluid samples were collected at 0, 2, 4, 6, 8, 12, 24, 36, and 48 h of incubation. The acyl-homoserine lactones(AHLs) activity was determined using gas chromatography-mass spectrometer(GC-MS) analysis. However, none of the rumen fluid extracts that were collected from the goat rumen showed the same or similar fragmentation pattern to AHLs standards. Meanwhile, the AI-2 activity, assayed using a Vibrio harveyi BB170 bioassay, was negative in all samples that were collected from the goat rumen and from in vitro fermentation fluids. Our results indicated that the activities of AHLs and AI-2 were not detected in the ruminal contents from six goats and in ruminal fluids obtained from in vitro fermentation at different sampling time-points. However, the homologues of lux S in Prevotella ruminicola were cloned from in vivo and in vitro ruminal fluids. We concluded that AHLs and AI-2 could not be detected in in vivo and in vitro ruminal fluids of goats using the current detection techniques under current dietary conditions. However, the microbes that inhabited the goat rumen had the potential ability to secrete AI-2 signaling molecules and to communicate with each other via AI-2-mediated QS because of the

  13. Quality evaluation of synthetic quorum sensing peptides used in R & D

    Institute of Scientific and Technical Information of China (English)

    Frederick Verbeke; Evelien Wynendaele; Sarah Braet; Matthias DHondt; Bart De Spiegeleer

    2015-01-01

    Peptides are becoming an important class of molecules in the pharmaceutical field. Closely related peptide-impurities in peptides are inherent to the synthesis approach and have demonstrated to potentially mask biomedical experimental results. Quorum sensing peptides are attracting high interest in R&D and therefore a representative set of quorum sensing peptides, with a requested purity of at least 95.0%, was evaluated for their purity and nature of related impurities. In-house quality control (QC) revealed a large discrepancy between the purity levels as stated on the supplier’s certificate of analysis and our QC results. By using our QC analysis flowchart, we demonstrated that only 44.0% of the peptides met the required purity. The main compound of one sample was even found to have a different structure compared to the desired peptide. We also found that the majority of the related impurities were lacking amino acid(s) in the desired peptide sequence. Relying on the certificates of analysis as provided by the supplier might have serious consequences for peptide research, and peptide-researchers should implement and maintain a thorough in-house QC.

  14. Quorum sensing activity of Serratia fonticola strain RB-25 isolated from an ex-landfill site.

    Science.gov (United States)

    Ee, Robson; Lim, Yan-Lue; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-03-12

    Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola.

  15. Quorum Sensing Activity of Serratia fonticola Strain RB-25 Isolated from an Ex-landfill Site

    Directory of Open Access Journals (Sweden)

    Robson Ee

    2014-03-01

    Full Text Available Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs. Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL, N-hexanoyl-L-homoserine lactone (C6-HSL and N-(3-oxohexanoyl homoserine-lactone (3-oxo-C6 HSL. This is the first report of the production of these AHLs in S. fonticola.

  16. Quality evaluation of synthetic quorum sensing peptides used in R&D

    Directory of Open Access Journals (Sweden)

    Frederick Verbeke

    2015-06-01

    Full Text Available Peptides are becoming an important class of molecules in the pharmaceutical field. Closely related peptide-impurities in peptides are inherent to the synthesis approach and have demonstrated to potentially mask biomedical experimental results. Quorum sensing peptides are attracting high interest in R&D and therefore a representative set of quorum sensing peptides, with a requested purity of at least 95.0%, was evaluated for their purity and nature of related impurities. In-house quality control (QC revealed a large discrepancy between the purity levels as stated on the supplier׳s certificate of analysis and our QC results. By using our QC analysis flowchart, we demonstrated that only 44.0% of the peptides met the required purity. The main compound of one sample was even found to have a different structure compared to the desired peptide. We also found that the majority of the related impurities were lacking amino acid(s in the desired peptide sequence. Relying on the certificates of analysis as provided by the supplier might have serious consequences for peptide research, and peptide-researchers should implement and maintain a thorough in-house QC.

  17. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors

    Directory of Open Access Journals (Sweden)

    Chieu Anh Kim Ta

    2015-12-01

    Full Text Available Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS. As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.

  18. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa.

    Science.gov (United States)

    Castillo-Juárez, Israel; García-Contreras, Rodolfo; Velázquez-Guadarrama, Norma; Soto-Hernández, Marcos; Martínez-Vázquez, Mariano

    2013-10-01

    Quorum sensing (QS) is a process of bacterial cell-cell communication that controls a large number of systems affecting pathogenicity. Interrupting this communication system can provide nonvirulent pathogenic bacteria. The aim of this study was to evaluate the anti-quorum sensing (anti-QS) potential of an anacardic acids mixture isolated from Amphipterygium adstringens, a medicinal plant known as "cuachalalate", to prevent the onset of bacterial infections as an alternate to antibiotics. Initially we investigated the anti-QS activity of A. adstringens hexane extract (HE) by the inhibition of violacein production in Chromobacterium violaceum. From the active HE, an anacardic acid mixture (AAM) was obtained. The anti-quorum sensing activity of AAM was investigated by the rhamnolipid and pyocyanin production constraint as well as decrease of elastase activity, all being quorum sensing-controlled virulence factors expressed in the pathogenic bacteria Pseudomonas aeruginosa. HE induced a 91.6% of inhibition of the violecin production at 55 μg/mL concentration, whereas AAM showed 94% of inhibition at 166 μg/mL. In both cases, inhibition of violacein production did not affect the viability of the bacterium. AAM inhibited pyocyanin (86% at 200 μg/mL) and rhamnolipid (91% at 500 μg/mL) production in a dose/response form and decrease the elastase (75% at 500 μg/mL) activity in P. aeruginosa without affecting its development. Because an anacardic acids mixture isolated from A. adstringens demonstrated anti-QS, it could be further exploited for novel molecules to treat the emerging infections of antibiotic-resistant bacterial pathogens. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  19. Surface polysaccharides and quorum sensing are involved in the attachment and survival of Xanthomonas albilineans on sugarcane leaves.

    Science.gov (United States)

    Mensi, Imene; Daugrois, Jean-Heinrich; Pieretti, Isabelle; Gargani, Daniel; Fleites, Laura A; Noell, Julie; Bonnot, Francois; Gabriel, Dean W; Rott, Philippe

    2016-02-01

    Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-β-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.

  20. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis.

    Science.gov (United States)

    Erickson, David L; Endersby, Ryan; Kirkham, Amanda; Stuber, Kent; Vollman, Dolina D; Rabin, Harvey R; Mitchell, Ian; Storey, Douglas G

    2002-04-01

    Individuals with cystic fibrosis (CF) are commonly colonized with Pseudomonas aeruginosa. The chronic infections caused by P. aeruginosa are punctuated by acute exacerbations of the lung disease, which lead to significant morbidity and mortality. As regulators of virulence determinants, P. aeruginosa quorum-sensing systems may be active in the chronic lung infections associated with CF. We have examined the levels of autoinducer molecules and transcript accumulation from the bacterial populations found in the lungs of patients with CF. We detected biologically active levels of N-(3-oxododecanoyl)-L-homoserine (3-oxo-C12-HSL) and N-butyryl-L-homoserine lactone (C4-HSL) in sputum from CF patients. Interestingly, it appears that C4-HSL is less frequently detected than 3-oxo-C12-HSL in the lungs of patients with CF. We also examined the transcription of the autoinducer synthase gene lasI and showed that it is frequently expressed in the lungs of patients with CF. We observed a significant correlation between the expression of lasI and four target genes of the Las quorum-sensing system. Taken together, our results indicate that quorum-sensing systems are active and may control virulence factor expression in the lungs of patients with CF.

  1. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2010-06-01

    Full Text Available Abstract Background Antibiotics are not only small molecules with therapeutic activity in killing or inhibiting microbial growth, but can also act as signaling molecules affecting gene expression in bacterial communities. A few studies have demonstrated the effect of tobramycin as a signal molecule on gene expression at the transcriptional level and its effect on bacterial physiology and virulence. These have shown that subinhibitory concentrations (SICs of tobramycin induce biofilm formation and enhance the capabilities of P. aeruginosa to colonize specific environments. Methods Environmental P. aeruginosa strain PUPa3 was grown in the presence of different concentrations of tobramycin and it was determined at which highest concentration SIC, growth, total protein levels and translation efficiency were not affected. At SIC it was then established if phenotypes related to cell-cell signaling known as quorum sensing were altered. Results In this study it was determined whether tobramycin sensing/response at SICs was affecting the two independent AHL QS systems in an environmental P. aeruginosa strain. It is reasonable to assume that P. aeruginosa encounters tobramycin in nature since it is produced by niche mate Streptomyces tenebrarius. It was established that SICs of tobramycin inhibited the RhlI/R system by reducing levels of C4-HSL production. This effect was not due to a decrease of rhlI transcription and required tobramycin-ribosome interaction. Conclusions Tobramycin signaling in P. aeruginosa occurs and different strains can have a different response. Understanding the tobramycin response by an environmental P. aeruginosa will highlight possible inter-species signalling taking place in nature and can possible also have important implications in the mode of utilization for human use of this very important antibiotic.

  2. Quorum Sensing Inhibitory Activity of Giganteone A from Myristica cinnamomea King against Escherichia coli Biosensors.

    Science.gov (United States)

    Sivasothy, Yasodha; Krishnan, Thiba; Chan, Kok-Gan; Abdul Wahab, Siti Mariam; Othman, Muhamad Aqmal; Litaudon, Marc; Awang, Khalijah

    2016-03-21

    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.

  3. Quorum Sensing Inhibitory Activity of Giganteone A from Myristica cinnamomea King against Escherichia coli Biosensors

    Directory of Open Access Journals (Sweden)

    Yasodha Sivasothy

    2016-03-01

    Full Text Available Malabaricones A–C (1–3 and giganteone A (4 were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4 as a suitable anti-quorum sensing agent was demonstrated.

  4. Spontaneous quorum sensing mutation modulates electroactivity of Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Berger, Carola; Rosenbaum, Miriam A

    2017-10-01

    Pseudomonas aeruginosa is able to interact with the anode of a bioelectrochemical system through redox active phenazines. Earlier studies showed that this interaction is strain and carbon source dependent. With a spontaneously formed ΔlasR mutant of P. aeruginosa PA14 and the wildtype, we investigated the connection between the complex quorum sensing network and current production. Depending on the carbon source, phenazine production and subsequently current generation are effected differently in these two populations. In glucose-fed cultures, the lack of the LasR regulator led to a shift in phenazine concentration, relative composition, and time profiles. In contrast, with the common fermentation product 2,3-butanediol as carbon substrate, no phenazine production was detected for the ΔlasR mutant. For the wildtype, this carbon source is known to induce phenazine synthesis and elevated current production. This work supports the earlier hypothesis of a signaling link between 2,3-butanediol and the quorum-sensing regulatory system and extends this hypothesis to predict a lasR-dependent interaction. The wildtype and mutant population were also evaluated in direct competition, showing strong initial dominance of the wildtype but a higher survival rate of the ΔlasR mutant in later stages of growth. We found no evidence for strong social interactions between these two subpopulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability.

    Science.gov (United States)

    McIntosh, Matthew; Meyer, Stefan; Becker, Anke

    2009-12-01

    The Sin quorum sensing system of Sinorhizobium meliloti depends upon at least three genes, sinR, sinI and expR, and N-acyl homoserine lactones (AHLs) as signals to regulate multiple processes in its free-living state in the rhizosphere and in the development towards symbiosis with its plant host. In this study, we have characterized novel mechanisms of transcription control through which the system regulates itself. At low AHL levels a positive feedback loop activates expression of sinI (AHL synthase), resulting in amplification of AHL levels. At high AHL levels, expression of sinI is reduced by a negative feedback loop. These feedback mechanisms are mediated by the LuxR-type regulators ExpR and SinR. Expression of sinR and expR is regulated by ExpR in the presence of AHLs. A novel ExpR binding site in the promoter of sinR is responsible for the reduction of expression of this gene. In addition, expression of sinR, upon which sinI expression is dependent, is induced by phoB during growth under phosphate-limiting conditions. This indicates that this response ensures quorum sensing in phosphate-restricted growth.

  6. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones.

    Science.gov (United States)

    McClean, K H; Winson, M K; Fish, L; Taylor, A; Chhabra, S R; Camara, M; Daykin, M; Lamb, J H; Swift, S; Bycroft, B W; Stewart, G S; Williams, P

    1997-12-01

    Quorum sensing relies upon the interaction of a diffusible signal molecule with a transcriptional activator protein to couple gene expression with cell population density. In Gram-negative bacteria, such signal molecules are usually N-acylhomoserine lactones (AHLs) which differ in the structure of their N-acyl side chains. Chromobacterium violaceum, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigment violacein. Previously the authors described a violacein-negative, mini-Tn5 mutant of C. violaceum (CV026) in which pigment production can be restored by incubation with supernatants from the wild-type strain. To develop this mutant as a general biosensor for AHLs, the natural C. violaceum AHL molecule was first chemically characterized. By using solvent extraction, HPLC and mass spectrometry, a single AHL, N-hexanoyl-L-homoserine lactone (HHL), was identified in wild-type C. violaceum culture supernatants which was absent from CV026. Since the production of violacein constitutes a simple assay for the detection of AHLs, we explored the ability of CV026 to respond to a series of synthetic AHL and N-acylhomocysteine thiolactone (AHT) analogues. In CV026, violacein is inducible by all the AHL and AHT compounds evaluated with N-acyl side chains from C4 to C8 in length, with varying degrees of sensitivity. Although AHL compounds with N-acyl side chains from C10 to C14 are unable to induce violacein production, if an activating AHL (e.g. HHL) is incorporated into the agar, these long-chain AHLs can be detected by their ability to inhibit violacein production. The versatility of CV026 in facilitating detection of AHL mixtures extracted from culture supernatants and separated by thin-layer chromatography is also demonstrated. These simple bioassays employing CV026 thus greatly extend the ability to detect a wide spectrum of AHL signal molecules.

  7. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential.

    Science.gov (United States)

    Yang, Qian; Scheie, Anne Aamdal; Benneche, Tore; Defoirdt, Tom

    2015-12-09

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10.

  8. Pseudomonas aeruginosa quorum sensing modulates immune responses: An updated review article.

    Science.gov (United States)

    Kariminik, Ashraf; Baseri-Salehi, Majid; Kheirkhah, Babak

    2017-07-08

    Pseudomonas aeruginosa is an opportunistic bacterium which induces some complications in immunocompromised patients. Pseudomonas aeruginosa is a quorum-sensing using bacterium which regulates its genes expression. The bacterium uses two famous pathways for quorum sensing entitled LasI/LasR and RhlI/RhlR systems. It has been documented that the bacteria which use quorum sensing are able to overcome immune responses. This review article aims to present recent information regarding the effects of Pseudomonas aeruginosa quorum sensing systems on the host immune responses. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Anti-quorum sensing and antimicrobial activities of some traditional Chinese medicinal plants commonly used in South-East Asia

    Directory of Open Access Journals (Sweden)

    Yeo, S.S.M

    2012-01-01

    Full Text Available Aims: Traditional Chinese medicine (TCM has been used for relief and treatment of ailments dating back thousands of years and continues to the present day, with rapidly increasing interest in evidence-based evaluation of its efficacy. Studies of TCM plants have demonstrated that several have antimicrobial properties but few have explored their anti-quorum sensing potential. Quorum sensing (QS, also known as bacterial cell-to-cell communication, is used by a number of opportunistic pathogenic bacteria in the regulation of virulence expression. Compounds that interfere with QS signals and attenuate bacterial virulence without killing them may offer an alternative therapeutic solution with less pressure of antibiotic resistance developing. This study screened TCM plants for anti-quorum sensing properties and antimicrobial activities.Methodology and Results: Twenty TCM plants commonly used in South-East Asia were screened for QS inhibitors using two biomonitor strains, Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Ten of these selected TCM plant (50% were found to have QS inhibitory properties: Angelica sinensis (Umbelliferae, Cnidium monnieri (Umbelliferae, Astragalus membranaceus (Leguminosae, Crataegus cuneata (Rosaceae, Dioscorea nipponica (Dioscoreaceae, Lilium brownii (Liliaceae, Aloe barbadensis (Liliaceae, Magnolia officinalis (Magnoliaceae, Ephedra sinica (Ephedraceae and Panax pseudoginseng (Araliaceae. Of these, six (30% also showed varying antimicrobial activity against C. violaceum and P. aeruginosa.Conclusion, significance and impact of study: The results suggest that traditional Chinese medicinal plants could be a prospective source to explore for useful compounds in the fight against bacterial infections.

  10. Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks.

    Science.gov (United States)

    Kaur, Gurmeet; Rajesh, Shrinidhi; Princy, S Adline

    2015-12-01

    Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks.

  11. Inhibition of quorum sensing-mediated biofilm formation in Pseudomonas aeruginosa by a locally isolated Bacillus cereus.

    Science.gov (United States)

    Wahman, Shaimaa; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Aboulwafa, Mohammad Mabrouk

    2015-12-01

    Quorum sensing has been shown to play a crucial role in Pseudomonas aeruginosa pathogenesis where it activates expression of myriad genes that regulate the production of important virulence factors such as biofilm formation. Antagonism of quorum sensing is an excellent target for antimicrobial therapy and represents a novel approach to combat drug resistance. In this study, Chromobacterium violaceum biosensor strain was employed as a fast, sensitive, reliable, and easy to use tool for rapid screening of soil samples for Quorum Sensing Inhibitors (QSI) and the optimal conditions for maximal QSI production were scrutinized. Screening of 127 soil isolates showed that 43 isolates were able to breakdown the HHL signal. Out of the 43 isolates, 38 isolates were able to inhibit the violet color of the biosensor and to form easily detectable zones of color inhibition around their growth. A confirmatory bioassay was carried out after concentrating the putative positive cell-free lysates. Three different isolates that belonged to Bacillus cereus group were shown to have QSI activities and their QSI activities were optimized by changing their culture conditions. Further experiments revealed that the cell-free lysates of these isolates were able to inhibit biofilm formation by P. aeruginosa clinical isolates.

  12. Comparison of seven structurally related coumarins on the inhibition of Quorum sensing of Pseudomonas aeruginosa and Chromobacterium violaceum.

    Science.gov (United States)

    D'Almeida, R E; Molina, R D I; Viola, C M; Luciardi, M C; Nieto Peñalver, C; Bardón, A; Arena, M E

    2017-08-01

    Quorum sensing (QS) is a cell-to-cell signaling communication system that controls the virulence behavior of a broad spectrum of bacterial pathogens, participating also in the development of biofilms, responsible of the antibiotic ineffectiveness in many infections. Therefore, QS system is an attractive target for antimicrobial therapy. In this study, we compare the effect of seven structurally related coumarins against bacterial growth, biofilm formation and elastase activity of Pseudomonas aeruginosa. In addition, the anti-pathogenic capacity of the seven coumarins was evaluated on the wild type and the biosensor strain of Chromobacterium violaceum. The comparative study of coumarins showed that molecules with hydroxyl groups on the aromatic ring displayed higher activity on the inhibition of biofilm formation of P. aeruginosa over coumarins with substituents in positions 3 and 4 or without the double 3,4-bond. These 3 or 4-hydroxylated positions caused a decrease in the anti-biofilm activity obtained for coumarin. However, the hydroxyl group in position 3 of the pyrone ring was important for the inhibition of C. violaceum QS and elastolytic activity of P. aeruginosa. The effects observed were active independently of any effect on growth. According to our results, coumarin and its hydroxylated derivatives represent an interesting group of compounds to use as anti-virulence agents against the human pathogen P. aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Progress in research of quorum sensing system in Vibrio cholerae%霍乱弧菌密度感应系统研究进展

    Institute of Scientific and Technical Information of China (English)

    赵璇; 阚飙; 崔志刚; 梁未丽

    2012-01-01

    密度感应( Quorum sensing,QS)系统在细菌中普遍存在,细菌细胞通过识别和密度依赖性应答其自身或周围环境中其他菌细胞分泌的一种或多种信号分子来影响一系列基因的转录表达,从而参与细菌多种生理功能的调节.革兰阴性菌的密度感应现象最早发现于海洋弧菌中,本文主要综述了烈性肠道传染病病原体-霍乱弧菌中密度感应系统的研究进展,包括系统组成、信号传递过程、调节的生理功能及与其他全局性调控因子的相互作用.%Quorum-sensing(QS) systems commonly exist in procaryote kingdom and regulate various cellular biological functions, which involves the production and sensing of one or more signal molecules secreted by the members of same species and others, regulation of target genes, expression to coordinate cell behavior in response to cell density. The Gram-negative QS systems were first discovered and extensively characterized in the marine Vibrios. This review focuses on the composition of QS networks in human pathogen Vibrio cholerae; how chemical information is integrated, processed and transduced to control gene expression and how QS interfere with other global regulators.

  14. Identification of genes in the VirR regulon of Pectobacterium atrosepticum and characterization of their roles in quorum sensing-dependent virulence.

    Science.gov (United States)

    Monson, Rita; Burr, Tom; Carlton, Timothy; Liu, Hui; Hedley, Peter; Toth, Ian; Salmond, George P C

    2013-03-01

    In the economically important phytopathogen, Pectobacterium atrosepticum, expression of plant cell wall degrading enzymes and other virulence determinants is controlled in a cell density-dependent fashion, termed quorum sensing (QS). Canonical QS systems in Gram-negative bacteria contain a LuxI-type protein, synthesizing a signalling molecule, and a LuxR-type regulator, responding to the signalling molecule above threshold concentrations. In P. atrosepticum, the central LuxR-type repressor of virulence, VirR, has been identified and its impacts on virulence characterized. Here we define the broader VirR regulon using chromatin immunoprecipitation (ChIP) and in planta microarrays. Ninety-four direct VirR targets were identified by ChIP microarrays and a consensus VirR binding site was determined. Purified VirR was used in DNA gel shift assays on target promoters and VirR : promoter binding was disrupted by exogenous addition of the signalling molecule, N-(3-oxohexanoyl)-l-homoserine lactone (OHHL). VirR autorepressed, and directly activated the transcription of rsmA in the absence of OHHL. Finally, we showed that VirR directly regulated the production of siderophores and controlled swimming motility. This is the first report characterizing the direct targets of VirR and provides clear evidence that this LuxR-type protein can act in vivo as both an activator and repressor of transcription in the absence of its cognate signalling molecule.

  15. Tandem Mass Spectrometry Detection of Quorum Sensing Activity in Multidrug Resistant Clinical Isolate Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2014-01-01

    Full Text Available Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs. These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL and N-octanoyl-homoserine lactone (C8-HSL, was detected.

  16. 群体感应在水产养殖中的应用前景%Quorum-sensing in aquaculture: application and perspective

    Institute of Scientific and Technical Information of China (English)

    宋协法; 孙颉

    2012-01-01

    群体感应,也被称为“细胞间的交流”,是细菌通过化学信号的传递进行彼此交流的一种方式。本文介绍了群体感应的机理和类型以及信号分子的检测方法,并结合实际情况,对其在水产养殖领域的应用前景进行了探讨,以期为群体感应在水产养殖中的应用提供理论依据。%Quorum-sensing, also known as "communication among cells", is a way of bacteria communicating with each other by chemical signals. By introducing quorum-sensing system and its detection methods, we drew the conclusion that the application of quorum-sensing would have great development and practical values in aquaculture. The paper mainly introduced the application trend of quorum-sensing in aquaculture.

  17. Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon.

    Science.gov (United States)

    Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard; Greenberg, E Peter

    2014-04-01

    Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei.

  18. Bacillus globigii cell size is influenced by variants of the quorum sensing peptide extracellular death factor

    NARCIS (Netherlands)

    Sijbrandij, T.; Kaman, W.E.; Ligtenberg, A.J.M.; Nazmi, K.; Veerman, E.C.I.; Bikker, F.J.

    2014-01-01

    Toxin-antitoxin modules are necessary for the mode of action of several antibiotics. One of the most studied toxin-antitoxin modules is the quorum sensing - dependent MazEF system in Escherichia coli. The quorum sensing factor in this system is called the extracellular death factor (EDF), a linear p

  19. Bacillus globigii cell size is influenced by variants of the quorum sensing peptide extracellular death factor

    NARCIS (Netherlands)

    T. Sijbrandij (T.); W.E. Kaman (Wendy); A.J.M. Ligtenberg (A. J M); K. Nazmi (Kamran); E.C.I. Veerman (Enno); F.J. Bikker (Floris)

    2014-01-01

    textabstractToxin-antitoxin modules are necessary for the mode of action of several antibiotics. One of the most studied toxin-antitoxin modules is the quorum sensing - dependent MazEF system in Escherichia coli. The quorum sensing factor in this system is called the extracellular death factor (EDF)

  20. A mathematical model of quorum sensing regulated EPS production in biofilm communities.

    Science.gov (United States)

    Frederick, Mallory R; Kuttler, Christina; Hense, Burkhard A; Eberl, Hermann J

    2011-04-10

    Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species.

  1. Dynamical quorum sensing: Population density encoded in cellular dynamics

    Science.gov (United States)

    De Monte, Silvia; d'Ovidio, Francesco; Danø, Sune; Sørensen, Preben Graae

    2007-01-01

    Mutual synchronization by exchange of chemicals is a mechanism for the emergence of collective dynamics in cellular populations. General theories exist on the transition to coherence, but no quantitative, experimental demonstration has been given. Here, we present a modeling and experimental analysis of cell-density-dependent glycolytic oscillations in yeast. We study the disappearance of oscillations at low cell density and show that this phenomenon occurs synchronously in all cells and not by desynchronization, as previously expected. This study identifies a general scenario for the emergence of collective cellular oscillations and suggests a quorum-sensing mechanism by which the cell density information is encoded in the intracellular dynamical state. PMID:18003917

  2. A quorum-sensing-induced bacteriophage defense mechanism

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin; Mærkedahl, Rasmus Baadsgaard; Svenningsen, Sine

    2013-01-01

    of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ¿ phage infection through a different receptor. IMPORTANCE To enable the successful manipulation of bacterial populations, a comprehensive...... sensing plays an important role in determining the susceptibility of E. coli to infection by bacteriophages ¿ and ¿. On the basis of our findings in the classical Escherichia coli-¿ model system, we suggest that quorum sensing may serve as a general strategy to protect bacteria specifically under...

  3. Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus

    DEFF Research Database (Denmark)

    Paulander, Wilhelm Erik Axel; Varming, Anders Nissen; Bæk, Kristoffer Torbjørn

    2012-01-01

    , agr deficiency correlates with increased duration of and mortality due to bacteremia during antibiotic treatment and with a higher frequency of glycopeptide resistance than in agr-carrying strains. Our results provide an explanation for the frequent isolation of agr-defective strains from hospital...... of glycopeptide resistance greater than those of other strains. We show here that agr-negative strains have a fitness advantage over agr-positive strains in the presence of sublethal concentrations of some antibiotics and that the fitness defect of agr-positive cells is caused by antibiotic-mediated expression......Staphylococcus aureus is a human commensal that at times turns into a serious bacterial pathogen causing life-threatening infections. For the delicate control of virulence, S. aureus employs the agr quorum-sensing system that, via the intracellular effector molecule RNAIII, regulates virulence gene...

  4. Bacterial quorum sensing: its role in virulence and possibilities for its control.

    Science.gov (United States)

    Rutherford, Steven T; Bassler, Bonnie L

    2012-11-01

    Quorum sensing is a process of cell-cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics.

  5. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional

    DEFF Research Database (Denmark)

    Shrout, J.D.; Chopp, D.L.; Just, C.L.

    2006-01-01

    The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development...... was found to depend upon the nutritional environment. Depending upon the carbon source, quorum-sensing mutant strains (lasIrhlI and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild-type strain. Quorum sensing was then shown to exert its...... nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate...

  6. Advances in the research of LuxR family protein in quorum-sensing system of gram-negative bacteria%革兰阴性菌群体感应系统中LuxR家族蛋白的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈征; 向军

    2016-01-01

    Quorum sensing (QS) is a cell-density-dependent method for information transmission among bacteria,as well as a mechanism for the bacteria to adapt to environment.LuxR family protein plays a key role in gram-negative bacterial QS system as a kind of transcription regulators and participates in a variety of biological behaviors with LuxI protein and signal molecules,such as bioluminescence,biofilm formation,virulence factors production,and so on.The advances in the research of LuxR family protein in QS system of gram-negative bacteria were summarized in this review.

  7. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-04-01

    Full Text Available In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing, others are interrupting the communication (quorum quenching, thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.

  8. Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries.

    Science.gov (United States)

    Hao, Youai; Winans, Stephen C; Glick, Bernard R; Charles, Trevor C

    2010-01-01

    Quorum sensing (QS) cell-cell communication systems are utilized by bacteria to coordinate their behaviour according to cell density. Several different types of QS signal molecules have been identified, among which acyl-homoserine lactones (AHLs) produced by Proteobacteria have been studied to the greatest extent. Although QS has been studied extensively in cultured microorganisms, little is known about the QS systems of uncultured microorganisms and the roles of these systems in microbial communities. To extend our knowledge of QS systems and to better understand the signalling that takes place in the natural environment, metagenomic libraries constructed using DNA from activated sludge and soil were screened, using an Agrobacterium biosensor strain, for novel QS synthase genes. Three cosmids (QS6-1, QS10-1 and QS10-2) that encode the production of QS signals were identified and DNA sequence analysis revealed that all three clones encode a novel luxI family AHL synthase and a luxR family transcriptional regulator. Thin layer chromatography revealed that these LuxI homologue proteins are able to synthesize multiple AHL signals. Tandem mass spectrometry analysis revealed that LuxI(QS6-1) directs the synthesis of at least three AHLs, 3-O-C14:1 HSL, 3-O-C16:1 HSL and 3-O-C14 HSL; LuxI(QS10-1) directs the synthesis of at least 3-O-C12 HSL and 3-O-C14 HSL; while LuxI(QS10-2) directs the synthesis of at least C8 HSL and C10 HSL. Two possible new AHLs, C14:3 HSL and (?)-hydroxymethyl-3-O-C14 HSL, were also found to be synthesized by LuxI(QS6-1).

  9. Quorum sensing via static coupling demonstrated by Chua's circuits

    Science.gov (United States)

    Singh, Harpartap; Parmananda, P.

    2013-10-01

    Dynamical quorum sensing, the population based phenomenon, is believed to occur when the elements of a system interact via dynamic coupling. In the present work, we demonstrate an alternate scenario, involving static coupling, that could also lead to quorum sensing behavior. These static and dynamic coupling terms have already been employed by Konishi [Int. J. Bifurcation Chaos Appl. Sci. Eng.IJBEE40218-127410.1142/S0218127407018750 17, 2781 (2007)]. In our context, the coupling is defined as static or dynamic, on the basis of the relative time scales at which the surrounding dynamics and the elements' dynamics evolve. According to this, if the variation in the surrounding dynamics happens on a much larger (fast) time scale than that at which the elements' dynamics are varying (such as seconds and μs), then the coupling is considered to be static, otherwise it is considered to be dynamic. A series of experiments have been performed starting from a system of three Chua's circuits to a system of 20 Chua's circuits to study two types of quorum transitions: the emergence and the extinction of global oscillations (period-1). The numerics involving up to 100 Chua's circuits validate the experimental observations.

  10. LuxS and quorum-sensing in Campylobacter

    Directory of Open Access Journals (Sweden)

    Paul ePlummer

    2012-03-01

    Full Text Available Several intercellular bacterial communication mechanisms have been identified in a broad range of bacterial species. These systems, collectively termed quorum-sensing systems, have been demonstrated to play significant roles in a variety of bacterial processes including motility, biofilm formation, expression of virulence genes and animal colonization. Campylobacter jejuni is known to poses a LuxS/ autoinducer-2 mediated system that has been partially characterized over the last decade. AI-2 is formed as a byproduct of the activated methyl recycling pathway, specifically by the LuxS enzyme. Previous work in our laboratory and that of others has demonstrated that this gene is involved in a variety of physiologic pathways of C. jejuni including motility, autoagglutination, CDT expression, flagellar expression, oxidative stress and animal colonization. This review article will summarize the current research associated with LuxS in C. jejuni and will provide insights into the role of this system in the metabolism and intercellular communication of this organism. Additionally, the evidence for other quorum sensing pathways in Campylobacter will be discussed.

  11. The involvement of bacterial quorum sensing in the spoilage of refrigerated Litopenaeus vannamei.

    Science.gov (United States)

    Zhu, Suqin; Wu, Haohao; Zeng, Mingyong; Liu, Zunying; Wang, Ying

    2015-01-02

    Quorum-sensing signals in refrigerated shrimp (Litopenaeus vannamei) undergoing spoilage were examined using bioreporter assays, thin-layer chromatography and gas chromatography-mass spectrometry, and the results revealed the presence of three types of autoinducers including acetylated homoserine lactones (AHLs) (i.e., N-hexanoyl-homoserine lactone, N-oxohexanoyl-homoserine lactone and N-octanoyl-homoserine lactone), autoinducer-2, and cyclic dipeptides (i.e., cyclo-(L-Pro-L-Leu), cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe)). Autoinducer-2, rather than any AHL, was detected in extracts from pure cultures of the specific spoilage organisms (SSO), i.e., Shewanella putrefaciens (SS01) and Shewanella baltica (SA02). As for the cyclic peptides, only SA02 was determined to produce cyclo-(L-Pro-L-Leu). According to the transcription levels of LuxR (the master quorum-sensing regulator) in the SSO in response to exogenous autoinducers, the SSO could sense AHLs and cyclo-(L-Leu-L-Leu), rather than autoinducer-2, cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe). In accordance with the results of LuxR expression, the production of biofilm matrixes and extracellular proteases in the SSO was regulated by exogenous AHLs and cyclo-(L-Pro-L-Leu), rather than 4,5-dihydroxy-2,3-pentanedione (the autoinducer-2 precursor), cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe). Exogenous N-hexanoyl-homoserine lactone and cyclo-(L-Pro-L-Leu) increased the growth rates and population percentages of the SSO in shrimp samples under refrigerated storage, and interestingly, exogenous 4,5-dihydroxy-2,3-pentanedione also increased the population percentages of the SSO in vivo by inhibiting the growth of the competing bacteria. However, according to the levels of TVB-N and the volatile organic components in the shrimp samples, exogenous 4,5-dihydroxy-2,3-pentanedione did not accelerate the shrimp spoilage process as N-hexanoyl-homoserine lactone and cyclo-(L-Pro-L-Leu) did. In summary, our results suggest that

  12. Anti-Quorum Sensing Activity of Substances Isolated from Wild Berry Associated Bacteria

    Science.gov (United States)

    Abudoleh, Suha M.; Mahasneh, Adel M.

    2017-01-01

    Background: Quorum Sensing (QS) is a mechanism used by bacteria to determine their physiological activities and coordinate gene expression based on cell to cell signaling. Many bacterial physiological functions are under the regulation of quorum sensing such as virulence, luminescence, motility, sporulation and biofilm formation. The aim of the present study was to isolate and characterize Quorum Sensing Inhibitory (QSI) substances from epiphytic bacteria residing on wild berries surfaces. Methods: Fifty nine bacterial isolates out of 600 screened bacteria were successfully isolated. These bacteria were obtained from berry surfaces of different plants in the wild forests of Ajloun-Jordan. Screening for QSI activity using Chromobacterium violaceum ATCC 12472 monitor strain, resulted in isolating 6 isolates exhibiting QSI activity only, 11 isolates with QSI and antibacterial activity, and 42 isolates with antibacterial activity only. Three potential isolates S 130, S 153, and S 664, were gram positive rods and spore formers, catalase positive and oxidase negative. These were chosen for further testing and characterization. Results: Different solvent extraction of the QSI substances based on polarity indicated that the activity of S 130 was in the butanol extract, S 153 activity in both chloroform and butanol; and for S 664, the activity was detected in the hexane extract. The chloroform extract of S 153 and hexane extract of S 664 were proteinaceous in nature while QSI substances of the butanol extract of S 130 and S 153 were non-proteinaceous. All the tested QSI substances showed a marked thermal stability when subjected at several time intervals to 70°C, with the highest stability observed for the butanol extract of S 153. Assessing the QSI substances using violacein quantification assay revealed varying degrees of activity depending upon the extracting solvent, type of the producer bacteria and the concentration of the substances. Conclusion: This study

  13. Dynamics and Mechanism of A Quorum Sensing Network Regulated by Small RNAs in Vibrio Harveyi

    Science.gov (United States)

    Shen, Jian-Wei

    2011-03-01

    Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that small RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and maintenance of homeostasis. According to Michaelis—Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.

  14. In silico structural analysis of quorum sensing genes in Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Mohammed Z Al-khayyat

    2015-09-01

    Full Text Available Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase family and contains an acetyltransferase domain extending from residues 24 to 110 as MOTIF predicted. LuxR, on the other hand, contains 250 amino acids and has ten α-helices and four ß-sheets. MOTIF predicted LuxR to possess functional motifs; the inducer binding site extending from amino acid residues 23 to 147 and the LuxR activator site extending between amino acids 182 and 236. The InterProScan5 server identified a winged helix-turn-helix DNA binding motif.

  15. AinS quorum sensing regulates the Vibrio fischeri acetate switch.

    Science.gov (United States)

    Studer, Sarah V; Mandel, Mark J; Ruby, Edward G

    2008-09-01

    The marine bacterium Vibrio fischeri uses two acyl-homoserine lactone (acyl-HSL) quorum-sensing systems. The earlier signal, octanoyl-HSL, produced by AinS, is required for normal colonization of the squid Euprymna scolopes and, in culture, is necessary for a normal growth yield. In examining the latter requirement, we found that during growth in a glycerol/tryptone-based medium, wild-type V. fischeri cells initially excrete acetate but, in a metabolic shift termed the acetate switch, they subsequently utilize the acetate, removing it from the medium. In contrast, an ainS mutant strain grown in this medium does not remove the excreted acetate, which accumulates to lethal levels. The acetate switch is characterized by the induction of acs, the gene encoding acetyl coenzyme A (acetyl-CoA) synthetase, leading to uptake of the excreted acetate. Wild-type cells induce an acs transcriptional reporter 25-fold, coincident with the disappearance of the extracellular acetate; in contrast, the ainS mutant did not display significant induction of the acs reporter. Supplementation of the medium of an ainS mutant with octanoyl-HSL restored normal levels of acs induction and acetate uptake. Additional mutant analyses indicated that acs regulation was accomplished through the regulator LitR but was independent of the LuxIR quorum-signaling pathway. Importantly, the acs mutant of V. fischeri has a competitive defect when colonizing the squid, indicating the importance of proper control of acetate metabolism in the light of organ symbiosis. This is the first report of quorum-sensing control of the acetate switch, and it indicates a metabolic connection between acetate utilization and cell density.

  16. Regulation of Bacteriocin Synthesis by Quorum Sensing in Lactic Acid Bacteria:A Review%群体感应系统在乳酸菌产细菌素中的作用

    Institute of Scientific and Technical Information of China (English)

    满丽莉; 孟祥晨; 王辉; 赵日红

    2011-01-01

    Several lactic acid bacteria(LAB) produce peptides with antimicrobial activity usually referred to as bacteriocins.Bacteriocins are diverse in terms of structure,mode of action,antimicrobial spectrum,and potency.Both LAB and their bacteriocins are generally regarded as safe.Bacteriocins produced by LABs have demonstrated great potential as natural preservatives Intercellular communication has emerged as the key regulatory mechanism that controls the synthesis of bacteriocins via a regulatory strategy denominated quorum sensing,which allows population-wide synchronised production of antimicrobial peptides as a function of cell density.The intercellular communication phenomenon required for sensing of the cell density is mediated by secreted signaling molecules that accumulate in the environment as the cell density increase and activate signal transduction cascades,resulting in the production of bacteriocins.This review aims at describing the types of signal molecules,signal transduction mechanism and the regulation of quorum sensing in bacteriocins synthesis of LAB and understanding the regulation mechanism of quorum sensing involved in the production of two classes of bacteriocin in LAB.%许多乳酸菌能够产生抗菌活性肽——细菌素,细菌素具有不同的结构、作用方式、抑菌谱和效价,通常认为乳酸菌和其所产的细菌素都是安全的,乳酸菌所产细菌素作为天然食品防腐剂已显示了巨大的潜能。基于群体感应的细胞间交流已成为细菌素合成的关键调控机制,群体感应作为细胞密度函数,可使细菌素产生保持同步性。群体感应需通过信号分子介导感知菌体密度,信号分子随着菌体密度增加而增加,并激活信号转导级联使菌体产生细菌素。本文通过对乳酸菌群体感应信号分子种类、信号转导机制及群体感应系统对两类细菌素合成的调控进行综述,以初步了解群体感

  17. Isolation,Identification and Quorum Sensing of a Serratia spp%一株沙雷氏菌的分离及其群体感应现象

    Institute of Scientific and Technical Information of China (English)

    张彩丽; 朱素琴; 汪映; 孙秀娇; 曾名湧

    2014-01-01

    从腐败的凡纳滨对虾中分离得到一株具有群体感应的菌株,利用16S rRNA和生理生化试验鉴定其为黏质沙雷氏菌,但不产灵红素,命名为Serratia marcescens AK1。通过生物检测方法对菌株AK1进行群体感应检测,薄层层析法鉴定该菌株的信号分子类型。结合菌株生长规律,测定不同时间段信号分子的含量。结果显示,菌株AK1能诱导紫色杆菌CV026产生紫色杆菌素,诱导根癌农杆菌A136分解X-gal产生蓝色;薄层层析检测结果显示该菌能产生两种群体感应信号分子C6-HSL和3-oxo-C6-HSL,并具有密度依赖性,信号分子含量在生长对数后期达到最大值。%One quorum sensing strain was isolated from spoilage Litopenaeus vannamei. Specie was determined by 16S rRNA gene analysis and classical tests, it can not produce red pigment on medium, named it Serratia marcescens AK1.Quorum sensing was detected by reporter strains and signal molecules types were identified by thin layer chromatography. Quantitative analysis of the signaling molecule secreted by AK1 during different growth stages. The result indicates strain AK1 can induce Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136 produce purple and blue color respectively. Thin layer chromatography showed that AK1 can produce C6-HSL and 3-oxo-C6-HSL types of signaling molecules with density-dependent. They reached the maximum in the late logarithmic phase.

  18. An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum.

    Science.gov (United States)

    Steiner, Elisabeth; Scott, Jamie; Minton, Nigel P; Winzer, Klaus

    2012-02-01

    The Gram-positive, anaerobic, endospore-forming bacterium Clostridium acetobutylicum has considerable biotechnological potential due to its ability to produce solvents as fermentation products, in particular the biofuel butanol. Its genome contains a putative agr locus, agrBDCA, known in staphylococci to constitute a cyclic peptide-based quorum sensing system. In staphylococci, agrBD is required for the generation of a peptide signal that, upon extracellular accumulation, is sensed by an agrCA-encoded two-component system. Using ClosTron technology, agrB, agrC, and agrA mutants of C. acetobutylicum ATCC 824 were generated and phenotypically characterized. Mutants and wild type displayed similar growth kinetics and no apparent differences in solvent formation under the conditions tested. However, the number of heat-resistant endospores formed by the mutants in liquid culture was reduced by about one order of magnitude. On agar-solidified medium, spore formation was more strongly affected, particularly in agrA and agrC mutants. Similarly, accumulation of the starch-like storage compound granulose was almost undetectable in colonies of agrB, agrA, and agrC mutants. Importantly, these defects could be genetically complemented, demonstrating that they were directly linked to agr inactivation. A diffusible factor produced by agrBD-expressing strains was found to restore granulose and spore formation in the agrB mutant. Furthermore, a synthetic cyclic peptide, designed on the basis of the C. acetobutylicum AgrD sequence, was also capable of complementing the defects of the agrB mutant when added exogenously to the culture. Together, these findings support the hypothesis that agr-dependent quorum sensing is involved in the regulation of sporulation and granulose formation in C. acetobutylicum.

  19. An agr Quorum Sensing System That Regulates Granulose Formation and Sporulation in Clostridium acetobutylicum

    Science.gov (United States)

    Steiner, Elisabeth; Scott, Jamie

    2012-01-01

    The Gram-positive, anaerobic, endospore-forming bacterium Clostridium acetobutylicum has considerable biotechnological potential due to its ability to produce solvents as fermentation products, in particular the biofuel butanol. Its genome contains a putative agr locus, agrBDCA, known in staphylococci to constitute a cyclic peptide-based quorum sensing system. In staphylococci, agrBD is required for the generation of a peptide signal that, upon extracellular accumulation, is sensed by an agrCA-encoded two-component system. Using ClosTron technology, agrB, agrC, and agrA mutants of C. acetobutylicum ATCC 824 were generated and phenotypically characterized. Mutants and wild type displayed similar growth kinetics and no apparent differences in solvent formation under the conditions tested. However, the number of heat-resistant endospores formed by the mutants in liquid culture was reduced by about one order of magnitude. On agar-solidified medium, spore formation was more strongly affected, particularly in agrA and agrC mutants. Similarly, accumulation of the starch-like storage compound granulose was almost undetectable in colonies of agrB, agrA, and agrC mutants. Importantly, these defects could be genetically complemented, demonstrating that they were directly linked to agr inactivation. A diffusible factor produced by agrBD-expressing strains was found to restore granulose and spore formation in the agrB mutant. Furthermore, a synthetic cyclic peptide, designed on the basis of the C. acetobutylicum AgrD sequence, was also capable of complementing the defects of the agrB mutant when added exogenously to the culture. Together, these findings support the hypothesis that agr-dependent quorum sensing is involved in the regulation of sporulation and granulose formation in C. acetobutylicum. PMID:22179241

  20. Function of fungal quorum sensing molecule tyrosol in formation of Staphylococcus epidermidis-Candida albicans mixed biofilm%真菌密度感应分子对羟基苯乙醇在白色假丝酵母菌与表皮葡萄球菌混合生物膜形成中的作用研究

    Institute of Scientific and Technical Information of China (English)

    王小燕; 汤琦; 黄云超; 赵光强; 周友全; 杨堃; 叶联华; 陈颖

    2015-01-01

    OBJECTIVE To explore the function of fungal quorum sensing molecule tyrosol in formation of Staphy‐lococcus epidermidis‐Candida albicans mixed biofilm ,so as to provide new ideas for prevention and treatment of mixed microorganism infection related to biomaterials .METHODS The strains of S .epidermidis ATCC 35984 and C .albicans ATCC10231 were co‐cultured in May 2014 to form the model of in vitro mixed biofilms which were di‐vided into the treatment group and the control group by tyrosol treatment .Biofilm mass was semi‐quantified by crystal violet semi‐quantitative adherence assay after 2 ,4 ,6 ,8 ,12 ,24 ,48 ,72 ,96 hours of incubation .XTT as‐say was performed to determine the growth kinetics at the same time .Scanning by electron microscopy was used to observe the ultrastructure of biofilms .The real‐time PCR was used to analyze the expression of icaA ,fbe ,aap , hwp1 ,als3 ,and ef g1 genes .RESULTS Crystal violet semi‐quantitative adherence assay showed that the biofilm thickness was significently larger in the treatment group than in the control group after 2 ,4 ,6 hours of incubation (P<0 .05) .XTT assay for determination of biofilm growth kinetics showed that the growth kinetics was higher in the treatment group than in the control group after 12 ,72 hours of incubation ,there was significant difference in 12 h inter‐group comparison(P< 0 .05) .The scanning by electron microscopy revealed the three‐dimensional structure of mix‐biofilm made by large amount of S .epidermidis and C .albicans spores and hypha that densely grew .The real‐time PCR showed that the expression of icaA ,fbe ,aap genes related to formation of S .epider‐midisbiofilminthetreatmentgroupwasup‐regulatedandtheexpressionofhwp1,als3,efg1genesrelatedtoC. albicans biofilm was down‐regulated .CONCLUSION With intervention of the fungal quorum sensing molecule ty‐rosol ,the biofilm in the treatment group was thicker ,which may be more closely correlated to the up

  1. Tyrosol is a quorum-sensing molecule in Candida albicans

    OpenAIRE

    Chen, Hao; Fujita, Masaki; Feng, Qinghua; Clardy, Jon; Fink, Gerald R.

    2004-01-01

    The human fungal pathogen Candida albicans shows a significant lag in growth when diluted into fresh minimal medium. This lag is abolished by the addition of conditioned medium from a high-density culture. The active component of conditioned medium is tyrosol, which is released into the medium continuously during growth. Under conditions permissive for germ-tube formation, tyrosol stimulates the formation of these filamentous protrusions. Because germ-tube formation is inhibited by farnesol, ...

  2. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    Directory of Open Access Journals (Sweden)

    Jindong Zan

    2014-01-01

    Full Text Available Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments.

  3. Crowd Synchrony and Quorum Sensing in Delay-Coupled Lasers

    Science.gov (United States)

    Zamora-Munt, Jordi; Masoller, C.; Garcia-Ojalvo, Jordi; Roy, Rajarshi

    2010-12-01

    Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large enough. Here we consider a situation in which the transmission of information between the system components and the coupling pool is not instantaneous. To that end, we model a system of semiconductor lasers optically coupled to a central laser with a delay. Our results show that, even though the lasers are nonidentical due to their distinct optical frequencies, zero-lag synchronization arises. By changing a system parameter, we can switch between two different types of synchronization transition. The dependence of the transition with respect to the delay-coupling parameters is studied.

  4. Flexible Dynamics of Two Quorum Sensing Coupled Repressilators

    CERN Document Server

    Hellen, Edward H

    2016-01-01

    Genetic oscillators play important roles in cell life regulation. The regulatory efficiency usually depends strongly on the emergence of stable collective dynamic modes, which requires designing the interactions between genetic networks. We investigate the dynamics of two identical synthetic genetic repressilators coupled by an additional plasmid which implements quorum sensing (QS) in each network thereby supporting global coupling. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, QS stimulates the transcriptional activity of chosen genes providing for competition between inhibitory and stimulatory activities localized in those genes. The "promoter strength", the Hill cooperativity coefficient of transcription repression, and the coupling strength, i.e., parameters controlling the basic rates of genetic reactions, were chosen for extensive bifurcation analysis. The results are presented as a map of dynamic regimes. We found that the remarkable multi...

  5. Synchronization and quorum sensing in a swarm of humanoid robots

    CERN Document Server

    Bechon, Patrick

    2012-01-01

    With the advent of inexpensive simple humanoid robots, new classes of robotic questions can be considered experimentally. One of these is collective behavior of groups of humanoid robots, and in particular robot synchronization and swarming. The goal of this work is to robustly synchronize a group of humanoid robots, and to demonstrate the approach experimentally on a choreography of 8 robots. We aim to be robust to network latencies, and to allow robots to join or leave the group at any time (for example a fallen robot should be able to stand up to rejoin the choreography). Contraction theory is used to allow each robot in the group to synchronize to a common virtual oscillator, and quorum sensing strategies are exploited to fit within the available bandwidth. The humanoids used are Nao's, developed by Aldebaran Robotics.

  6. Crowd synchrony and quorum sensing in delay-coupled lasers

    CERN Document Server

    Zamora-Munt, Jordi; Garcia-Ojalvo, Jordi; Roy, Rajarshi

    2010-01-01

    Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence in different fields, including chemistry, biology and civil engineering, has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large enough. Here we consider a situation in which the transmission of information between the system components and the coupling pool is not instantaneous. To that end, we model a system of semiconductor lasers optically coupled to a central laser with a delay. Our results show that, even though the lasers are non-identical due to their distinct optical frequencies, zero-lag synchronization arises. By changing a system parameter, we can switch between two different types of synchronization transition. The dependence of the transition with respect to the delay-coupling parameters is studied.

  7. The AHL- and BDSF-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111.

    Directory of Open Access Journals (Sweden)

    Nadine Schmid

    Full Text Available Quorum sensing in Burkholderia cenocepacia H111 involves two signalling systems that depend on different signal molecules, namely N-acyl homoserine lactones (AHLs and the diffusible signal factor cis-2-dodecenoic acid (BDSF. Previous studies have shown that AHLs and BDSF control similar phenotypic traits, including biofilm formation, proteolytic activity and pathogenicity. In this study we mapped the BDSF stimulon by RNA-Seq and shotgun proteomics analysis. We demonstrate that a set of the identified BDSF-regulated genes or proteins are also controlled by AHLs, suggesting that the two regulons partially overlap. The detailed analysis of two mutually regulated operons, one encoding three lectins and the other one encoding the large surface protein BapA and its type I secretion machinery, revealed that both AHLs and BDSF are required for full expression, suggesting that the two signalling systems operate in parallel. In accordance with this, we show that both AHLs and BDSF are required for biofilm formation and protease production.

  8. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9.

    Science.gov (United States)

    Jatt, Abdul Nabi; Tang, Kaihao; Liu, Jiwen; Zhang, Zenghu; Zhang, Xiao-Hua

    2015-02-01

    Marine snow is a continuous shower of organic and inorganic detritus, and plays a crucial role in transporting materials from the sea surface to the deep ocean. The aims of the current study were to identify N-acyl homoserine lactone (AHL)-based quorum sensing (QS) signaling molecules directly from marine snow particles and to investigate the possible regulatory link between QS signals and extracellular hydrolytic enzymes produced by marine snow bacteria. The marine snow samples were collected from the surface water of China marginal seas. Two AHLs, i.e. 3OC6-HSL and C8-HSL, were identified directly from marine snow particles, while six different AHL signals, i.e. C4-HSL, 3OC6-HSL, C6-HSL, C10-HSL, C12-HSL and C14-HSL were produced by Pantoea ananatis B9 inhabiting natural marine snow particles. Of the extracellular hydrolytic enzymes produced by P. ananatis B9, alkaline phosphatase activity was highly enhanced in growth medium supplemented with exogenous AHL (C10-HSL), while quorum quenching enzyme (AiiA) drastically reduced the enzyme activity. To our knowledge, this is the first report revealing six different AHL signals produced by P. ananatis B9 and AHL-based QS system enhanced the extracellular hydrolytic enzyme in P. ananatis B9. Furthermore, this study first time revealing 3OC6-HSL production by Paracoccus carotinifaciens affiliated with Alphaproteobacteria. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins

    Science.gov (United States)

    Joshi, Janak Raj; Khazanov, Netaly; Senderowitz, Hanoch; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2016-12-01

    Quorum sensing (QS) is a population density-dependent regulatory system in bacteria that couples gene expression to cell density through accumulation of diffusible signaling molecules. Pectobacteria are causal agents of soft rot disease in a range of economically important crops. They rely on QS to coordinate their main virulence factor, production of plant cell wall degrading enzymes (PCWDEs). Plants have evolved an array of antimicrobial compounds to anticipate and cope with pathogens, of which essential oils (EOs) are widely recognized. Here, volatile EOs, carvacrol and eugenol, were shown to specifically interfere with QS, the master regulator of virulence in pectobacteria, resulting in strong inhibition of QS genes, biofilm formation and PCWDEs, thereby leading to impaired infection. Accumulation of the signal molecule N-acylhomoserine lactone declined upon treatment with EOs, suggesting direct interaction of EOs with either homoserine lactone synthase (ExpI) or with the regulatory protein (ExpR). Homology models of both proteins were constructed and docking simulations were performed to test the above hypotheses. The resulting binding modes and docking scores of carvacrol and eugenol support potential binding to ExpI/ExpR, with stronger interactions than previously known inhibitors of both proteins. The results demonstrate the potential involvement of phytochemicals in the control of Pectobacterium.

  10. Research progress on quorum sensing of Aspergilus flavus%黄曲霉群体感应研究进展

    Institute of Scientific and Technical Information of China (English)

    李彩艳; 梁志宏; 黄昆仑

    2015-01-01

    曲霉属真菌(Aspergillus)如黄曲霉、寄生曲霉侵染玉米、花生等富含油脂的作物种子后产生的黄曲霉毒素(aflatoxin)具有强致癌作用,严重威胁食品安全和人类健康。群体感应(quorum sensing, QS)曾经认为只存在于细菌中,但是在真菌中也存在 QS系统,菌体的形态建成和次级代谢产物的产生都与细胞的群体密度有关。黄曲霉拥有类似群体感应的机制,菌核到分生孢子的转换受细胞密度和脂肪氧合酶调控。氧脂素作为信号分子通过密度依赖机制可抑制或促进黄曲霉的生长及黄曲霉毒素的生物合成,本文综述了黄曲霉群体感应及信号通路的研究进展,旨在从群体感应的角度抑制黄曲霉毒素的产生,为微生物与食品安全的研究提供指导。%Aspergillus spp such as A. flavus and A. parasiticus can infect oil-rich crop seeds and subsequently lead to aflatoxin contamination, which has an important impact on economic loss and health risk. Although once thought to exist only in bacteria, QS systems are now well established in fungi. Recently it has been shown that A. flavus possesses a quorum-sensing-like mechanism, where a sclerotia-to-conidia transition is governed by cell density and lipoxygenase activity. Oxylipins can inhibit or stimulate fungal development and aflatoxin production via a density-dependent mechanism as a kind of signal .This paper reviewed the research progress on quorum sensing and signaling pathways of A. flavus and was aimed to inhibit the generation of aflatoxin from the perspective of quorum sensing, providing a guidance for the research of microorganism and food safety.

  11. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.; Bolitho, M; Higgins, D; Lu, W; Ng, W; Jeffrey, P; Rabinowitz, J; Semmelhack, M; Hughson, F; Bassler, B

    2009-01-01

    Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate-dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release {ge}100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anticholera treatment.

  12. Identity and effects of quorum sensing inhibitors produced by Penicillium species

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Skindersø, Mette Elena; Bjarnsholt, Thomas;

    2005-01-01

    Quorum sensing (QS) communication systems are thought to afford bacteria with a mechanism to strategically cause disease. One example is Pseudomonas aeruginosa, which infects immunocompromised individuals such as cystic fibrosis patients. The authors have previously documented that blockage...

  13. Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Naik, D.; Bhat, C.; Tilve, S.; Tilvi, S.; DeSouza, L.

    and cat hydrogenation as the key steps and its biological studies are reported for the first time. The synthesized norbgugaine was evaluated for inhibition of quorum sensing mediated virulence factors (motility, biofilm formation, pyocyanin pigmentation...

  14. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections

    DEFF Research Database (Denmark)

    Hentzer, Morten; Givskov, Michael Christian

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum-sensing...... mechanisms and potential antipathogenic drugs that specifically target quorum-sensing systems in a manner unlikely to pose a selective pressure for the development of resistant mutants....

  15. Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes

    OpenAIRE

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Stephen M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-01-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one mean by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are thus a potential means to control bacterial population responses. Here we report how polymeric “bacteria sequestrants”, designed to bind to bacteria through e...

  16. KARAKTERISASI BAKTERI ANTI QUORUM SENSING (AQS) SEBAGAI PENGHAMBAT VIRULENSI PENYAKIT PADA IKAN LELE DUMBO (Clarias gariepinus)

    OpenAIRE

    Hessy Novita; Iman Rusmana; Munti Yuhana; Fachriyan Hasmi Pasaribu

    2015-01-01

    Penyakit bakterial adalah salah satu penyebab kerugian besar di bidang akuakultur. Faktor virulensi bakteri penyakit umumnya diekspresikan oleh gen-gen virulen yang diregulasi dengan sistem Quorum Sensing. Tujuan dari penelitian ini adalah untuk mendapatkan isolat bakteri yang memiliki potensi sebagai Anti Quorum Sensing (AQS) yang dapat menghambat faktor virulensi bakteri patogen penyebab penyakit pada ikan lele dumbo (Clarias gariepinus). Isolasi bakteri dilakukan dari sedimen, organ pencer...

  17. Plant-derived natural products as sources of anti-quorum sensing compounds.

    Science.gov (United States)

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-05-13

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms.

  18. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2013-05-01

    Full Text Available Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms.

  19. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp.

    Science.gov (United States)

    Bowden, Steven D; Eyres, Alison; Chung, Jade C S; Monson, Rita E; Thompson, Arthur; Salmond, George P C; Spring, David R; Welch, Martin

    2013-11-01

    Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.

  20. Novel Glycolipids Synthesized Using Plant Essential Oils and Their Application in Quorum Sensing Inhibition and as Antibiofilm Agents

    Directory of Open Access Journals (Sweden)

    Ruchira Mukherji

    2014-01-01

    Full Text Available Essential oils (EOs form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180 rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs was performed using thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FTIR. Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report.

  1. Novel glycolipids synthesized using plant essential oils and their application in quorum sensing inhibition and as antibiofilm agents.

    Science.gov (United States)

    Mukherji, Ruchira; Prabhune, Asmita

    2014-01-01

    Essential oils (EOs) form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180 rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs) was performed using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI) on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report.

  2. Pseudomonas aeruginosa las and rhl quorum-sensing systems are important for infection and inflammation in a rat prostatitis model.

    Science.gov (United States)

    Nelson, Lisa K; D'Amours, Genevieve H; Sproule-Willoughby, Kimberley M; Morck, Douglas W; Ceri, Howard

    2009-08-01

    Pseudomonas aeruginosa frequently acts as an opportunistic pathogen of mucosal surfaces; yet, despite causing aggressive prostatitis in some men, its role as a pathogen in the prostate has not been investigated. Consequently, we developed a Ps. aeruginosa infection model in the rat prostate by instilling wild-type (WT) Ps. aeruginosa strain PAO1 into the rat prostate. It was found that Ps. aeruginosa produced acute and chronic infections in this mucosal tissue as determined by bacterial colonization, gross morphology, tissue damage and inflammatory markers. WT strain PAO1 and its isogenic mutant PAO-JP2, in which both the lasI and rhlI quorum-sensing signal systems have been silenced, were compared during both acute and chronic prostate infections. In acute infections, bacterial numbers and inflammatory markers were comparable between WT PA01 and PAO-JP2; however, considerably less tissue damage occurred in infections with PAO-JP2. Chronic infections with PAO-JP2 resulted in reduced bacterial colonization, tissue damage and inflammation as compared to WT PAO1 infections. Therefore, the quorum-sensing lasI and rhlI genes in Ps. aeruginosa affect acute prostate infections, but play a considerably more important role in maintaining chronic infections. We have thus developed a highly reproducible model for the study of Ps. aeruginosa virulence in the prostate.

  3. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo

    Science.gov (United States)

    Scoffone, Viola C.; Chiarelli, Laurent R.; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  4. The Effects of Quorum Sensing on the Bioaugmentation%群体感应对生物强化过程影响

    Institute of Scientific and Technical Information of China (English)

    郑昕; 汪美贞; 沈东升

    2013-01-01

    群体感应是指细菌之间通过信号分子进行交流的现象。信号分子的释放量依赖于菌体的生长密度,常在对数生长期或稳定初期达到最大;此外,相较于正常培养条件,低温、酸性pH、缺氧、高渗透压、碳源及微量元素不足等胁迫环境有利于信号分子的释放并使其稳定存在,从而使菌群通过群体感应实现抵抗胁迫环境的目的。在生物强化过程中,信号分子介导的毒素释放、抗生素产生、胞外聚合物分泌、生物膜形成、质粒转移等群体感应效应可提高菌体定植效率,促进种群动态发育。对生物强化系统内信号分子释放和存在的影响因素以及菌种类型-信号分子种类-群体感应效应方式间的关系进行研究,将有利于从群体感应的角度提高生物强化系统运行的可预测性和可控制性。%Quorum sensing is a bacterial communication with one another using chemical signal molecules. There exists a dependent relationship between the releasing of auto-inducers and the density of bacteria, with a maximum of auto- inducer releasing in the log or stable phase. The stress environments including low temperature, acidic pH, deficient oxygen, high osmotic pressure, shortage of carbon sources and trace elements, while no inhibit on the growth of bacteria, can promote the releasing of auto-inducers and benefit to its existing, which would be favor to resist the environmental stress by bacterial communities. During the process of bioaugmentation, the roles induced by quorum sensing, such as toxin releasing, antibiotic producing, extra-cellular polymeric substances secreting, biofilm forming and plasmid transferring, could improve the efficiency of the bacterial colonization and promote the development of the community structure. Thus, the researches both of the effects of the environmental factors on the releasing and stabilization of auto-inducers and the relationships among the

  5. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence.

    Directory of Open Access Journals (Sweden)

    Venkadesaperumal Gopu

    Full Text Available Quorum sensing (QS plays a vital role in regulating the virulence factor of many food borne pathogens, which causes severe public health risk. Therefore, interrupting the QS signaling pathway may be an attractive strategy to combat microbial infections. In the current study QS inhibitory activity of quercetin and its anti-biofilm property was assessed against food-borne pathogens using a bio-sensor strain. In addition in-silico techniques like molecular docking and molecular dynamics simulation studies were applied to screen the quercetin's potentiality as QS inhibitor. Quercetin (80 μg/ml showed the significant reduction in QS-dependent phenotypes like violacein production, biofilm formation, exopolysaccharide (EPS production, motility and alginate production in a concentration-dependent manner. Synergistic activity of conventional antibiotics with quercetin enhanced the susceptibility of all tested pathogens. Furthermore, Molecular docking analysis revealed that quercetin binds more rigidly with LasR receptor protein than the signaling compound with docking score of -9.17 Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity of quercetin occurs through the conformational changes between the receptor and quercetin complex. Above findings suggest that quercetin can act as a competitive inhibitor for signaling compound towards LasR receptor pathway and can serve as a novel QS-based antibacterial/anti-biofilm drug to manage food-borne pathogens.

  6. Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa.

    Science.gov (United States)

    Mellbye, Brett; Schuster, Martin

    2014-03-01

    Many bacteria possess cell density-dependent quorum-sensing (QS) systems that often regulate cooperative secretions involved in host-microbe or microbe-microbe interactions. These secretions, or "public goods," are frequently coregulated by stress and starvation responses. Here we provide a physiological rationale for such regulatory complexity in the opportunistic pathogen Pseudomonas aeruginosa. Using minimal-medium batch and chemostat cultures, we comprehensively characterized specific growth rate-limiting macronutrients as key triggers for the expression of extracellular enzymes and metabolites directly controlled by the las and rhl QS systems. Expression was unrelated to cell density, depended on the secreted product's elemental composition, and was induced only when the limiting nutrient was not also a building block of the product; rhl-dependent products showed the strongest response, caused by the largely las-independent induction of the regulator RhlR and its cognate signal. In agreement with the prominent role of the rhl system, slow growth inverted the las-to-rhl signal ratio, previously considered a characteristic distinguishing between planktonic and biofilm lifestyles. Our results highlight a supply-driven, metabolically prudent regulation of public goods that minimizes production costs and thereby helps stabilize cooperative behavior. Such regulation would be beneficial for QS-dependent public goods that act broadly and nonspecifically, and whose need cannot always be accurately assessed by the producing cell. Clear differences in the capacities of the las and rhl systems to integrate starvation signals help explain the existence of multiple QS systems in one cell.

  7. Quorum sensing in class Ⅱ bacteriocin-producing lactic acid bacteria and its application - A review%产Ⅱ类细菌素乳酸菌群体感应及其应用

    Institute of Scientific and Technical Information of China (English)

    张香美; 李平兰

    2011-01-01

    群体感应( quorum sensing,QS)是微生物通过感知与细胞密度相关的信号分子的浓度来调控基因表达的一种行为.许多产Ⅱ类细菌素乳酸菌通过自诱导肽介导的QS系统调控其细菌素的合成.本文综述了乳酸菌Ⅱ类细菌素合成的QS调控现象、调控机制、QS系统组分以及QS的应用.产Ⅱ类细菌素乳酸菌QS的研究,必将为揭示发酵调控机理、调控发酵过程提供新的研究平台,为食品级基因表达系统的开发提供新的选择.%Quorum sensing ( QS) refers to the behavior of microorganisms to control gene expression through detection the concentration of certain signal molecules, which is correlated with cell density. In many class II bacteriocin-producing lactic acid bacteria ( LAB ) , bacteriocin production is regulated by peptide pheromones via a QS mechanism. We reviewed, QS regulated class II bacteriocin production in LAB and its regulation mechanism, components of the QS system, as well as the application of QS mechanism. The study of QS mechanism of class II bacteriocin-producing LAB may provide a new platform for revealing the mechanism of fermentation control and regulating fermentation process. It also offers an alternative to the exploitation of food grade gene expression system.

  8. Broad Spectrum Anti-Quorum Sensing Activity of Tannin-Rich Crude Extracts of Indian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2016-01-01

    Full Text Available Quorum sensing (QS mechanisms have been demonstrated to have significance in expression of pathogenicity in infectious bacteria. In Gram negative bacteria the autoinducer molecules that mediate QS are acyl homoserine lactones (AHL and in Gram positive bacteria they are peptides called autoinducing peptides (AIP. A screening of tannin-rich medicinal plants was attempted to identify extracts that could interrupt the QS mechanisms in both Gram positive and Gram negative bacteria over a wide range of concentrations and therefore potentially be potent agents that could act as broad spectrum QS inhibitors. Six out of the twelve Indian medicinal plant extracts that were analyzed exhibited anti-QS activity in Chromobacterium violaceum 12472 and in S. aureus strain with agr:blaZ fusion over a broad range of subinhibitory concentrations, indicating that the extracts contain high concentration of molecules that can interfere with the QS mechanisms mediated by AHL as well as AIP.

  9. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii

    DEFF Research Database (Denmark)

    Gori, Klaus; Knudsen, Peter Boldsen; Nielsen, Kristian Fog

    2011-01-01

    The yeast Debaryomyces hansenii was investigated for its production of alcohol-based quorum sensing (QS) molecules including the aromatic alcohols phenylethanol, tyrosol, tryptophol and the aliphatic alcohol farnesol. Debaryomyces hansenii produced phenylethanol and tyrosol, which were primarily...... detected from the end of exponential phase indicating that they are potential QS molecules in D. hansenii as previously shown for other yeast species. Yields of phenylethanol and tyrosol produced by D. hansenii were, however, lower than those produced by Candida albicans and Saccharomyces cerevisiae...... and sliding motility abilities, which seemed to be related to a higher hydrophobicity of the cell surface of D. hansenii (CBS767) rather than the ability to form pseudomycelium. Addition of phenylethanol, tyrosol, tryptophol and farnesol was found to influence both adhesion and sliding motility of D. hansenii...

  10. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

    Science.gov (United States)

    Yang, Jungmin; Lee, Kang-Mu; Park, Sangjun; Cho, Yoeseph; Lee, Eunju; Park, Jong-Hwan; Shin, Ok Sarah; Son, Junghyun; Yoon, Sang Sun; Yu, Je-Wook

    2017-01-01

    Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribute to the virulence of P. aeruginosa, but the molecular impact of bacterial QS on host inflammasome defense is completely unknown. Here, we present evidence that QS-related factors of the bacterial secretant (BS) from P. aeruginosa can dampen host inflammasome signaling in mouse bone marrow-derived macrophages. We found that BS from QS-defective ΔlasR/rhlR mutant, but not from wild-type (WT) P. aeruginosa, induces robust activation of the NLRC4 inflammasome. P. aeruginosa-released flagellin mediates this inflammasome activation by ΔlasR/rhlR secretant, but QS-regulated bacterial proteases in the WT BS impair extracellular flagellin to attenuate NLRC4 inflammasome activation. P. aeruginosa-secreted proteases also degrade inflammasome components in the extracellular space to inhibit the propagation of inflammasome-mediated responses. Furthermore, QS-regulated virulence factor pyocyanin and QS autoinducer 3-oxo-C12-homoserine lactone directly suppressed NLRC4- and even NLRP3-mediated inflammasome assembly and activation. Taken together, our data indicate that QS system of P. aeruginosa facilitates bacteria to evade host inflammasome-dependent sensing machinery. PMID:28396663

  11. Vfm a new quorum sensing system controls the virulence of Dickeya dadantii.

    Science.gov (United States)

    Nasser, William; Dorel, Corinne; Wawrzyniak, Julien; Van Gijsegem, Frédérique; Groleau, Marie-Christine; Déziel, Eric; Reverchon, Sylvie

    2013-03-01

    Dickeya dadantii is a plant pathogen that secretes cell wall-degrading enzymes (CWDE) that are responsible for soft-rot symptoms. Virulence genes are expressed in a concerted manner and culminate when bacterial multiplication slows. We identify a 25 kb vfm cluster required for D. dadantii CWDE production and pathogenesis. The vfm cluster encodes proteins displaying similarities both with enzymes involved in amino acid activation and with enzymes involved in fatty acid biosynthesis. These similarities suggest that the vfm genes direct the production of a metabolite. Cell-free supernatant from the D. dadantii wild-type strain restores CWDE production in vfm mutants. Collectively, our results indicate that vfm genes direct the synthesis of an extracellular signal and constitute a new quorum sensing system. Perception of the signal is achieved by the two-component system VfmH-VfmI, which activates the expression of the vfmE gene encoding an AraC regulator. VfmE then activates both the transcription of the CWDE genes and the expression of the vfm operons. The vfm gene cluster does not seem to be widespread among bacterial species but is conserved in other Dickeya species and could have been laterally transferred to Rahnella. This work highlights that entirely new families of bacterial languages remain to be discovered.

  12. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions

    Science.gov (United States)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

    2012-04-01

    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  13. Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes

    Science.gov (United States)

    Martín-Rodríguez, Alberto J.; Reyes, Fernando; Martín, Jesús; Pérez-Yépez, Juan; León-Barrios, Milagros; Couttolenc, Alan; Espinoza, César; Trigos, Ángel; Martín, Víctor S.; Norte, Manuel; Fernández, José J.

    2014-01-01

    In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profi