WorldWideScience

Sample records for quinol oxidation site

  1. Generation of proton-motive force by an archaeal terminal quinol oxidase from Sulfolobus acidocaldarius

    NARCIS (Netherlands)

    Gleissner, Michael; Elferink, Maria; Driessen, Arnold J.M.; Konings, Wilhelmus; Anemüller, Stefan; Schäfer, Günter

    1994-01-01

    The terminal quinol oxidase of the cytochrome aa3 type was isolated from the extreme thermo-acidophilic archaeon Sulfolobus acidocaldarius. In micellar solution, the enzyme oxidized various quinols and exerted the highest activity with the physiological substrate caldariella quinol. The enzyme was f

  2. Hydrogen-Bonded Networks Along and Bifurcation of the E-Pathway in Quinol: Fumarate Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Elena; Gu, Wei; Juhnke, Hanno D.; Haas, Alexander H.; Mantele, Werner; Simon, Jorg; Helms, Volkhard H.; Lancaster , C. Roy D.

    2012-09-19

    The E-pathway of transmembrane proton transfer has been demonstrated previously to be essential for catalysis by the diheme-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes. Two constituents of this pathway, Glu- C180 and heme bD ring C (bD-C-) propionate, have been validated experimentally. Here, we identify further constituents of the E-pathway by analysis of molecular dynamics simulations. The redox state of heme groups has a crucial effect on the connectivity patterns of mobile internal water molecules that can transiently support proton transfer from the bD-C-propionate to Glu-C180. The short H-bonding paths formed in the reduced states can lead to high proton conduction rates and thus provide a plausible explanation for the required opening of the E-pathway in reduced QFR. We found evidence that the bD-C-propionate group is the previously postulated branching point connecting proton transfer to the E-pathway from the quinol-oxidation site via interactions with the heme bD ligand His-C44. An essential functional role of His-C44 is supported experimentally by site-directed mutagenesis resulting in its replacement with Glu. Although the H44E variant enzyme retains both heme groups, it is unable to catalyze quinol oxidation. All results obtained are relevant to the QFR enzymes from the human pathogens Campylobacter jejuni and Helicobacter pylori.

  3. Effects of replacement of low-spin haem b by haem O on Escherichia coli cytochromes bo and bd quinol oxidases.

    Science.gov (United States)

    Mogi, Tatsushi

    2009-05-01

    Cytochromes bo and bd are terminal ubiquinol oxidases in the aerobic respiratory chain of Escherichia coli and generate proton motive force across the membrane. To probe roles of haem species in the oxidation of quinols, intramolecular electron transfer and the dioxygen reduction, we replaced b-haems with haem O by using the haem O synthase-overproducing system, which can accumulate haem O in cytoplasmic membranes. Characterizations of spectroscopic properties of cytochromes bo and bd isolated from BL21 (DE3)/pLysS and BL21 (DE3)/pLysS/pTTQ18-cyoE after 4 h of the aerobic induction of haem O synthase (CyoE) showed the specific incorporation of haem O into the low-spin haem-binding site in both oxidases. We found that the resultant haem oo- and obd-type oxidase severely reduced the ubiquinol-1 oxidase activity due to the perturbations of the quinol oxidation site. Our observations suggest that haem B is required at the low-spin haem site for the oxidation of quinols by cytochromes bo and bd.

  4. Identification of Ubiquinol Binding Motifs at the Qo-Site of the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M.; Crofts, Antony R.; Schulten, Klaus;

    2015-01-01

    for the function of the bc1 complex is the initial redox process that involves a bifurcated electron transfer in which the two electrons from a quinol substrate are passed to different electron acceptors in the bc1 complex. The electron transfer is coupled to proton transfer. The overall mechanism of quinol......Enzymes of the bc1 complex family power the biosphere through their central role in respiration and photosynthesis. These enzymes couple the oxidation of quinol molecules by cytochrome c to the transfer of protons across the membrane, to generate a proton-motive force that drives ATP synthesis. Key...... oxidation by the bc1 complex is well enough characterized to allow exploration at the atomistic level, but details are still highly controversial. The controversy stems from the uncertain binding motifs of quinol at the so-called Qo active site of the bc1 complex. Here we employ a combination of classical...

  5. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

    Directory of Open Access Journals (Sweden)

    Casey L. Quinlan

    2013-01-01

    Full Text Available Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ, with small contributions from the flavin site in complex I (site IF and the quinol oxidation site in complex III (site IIIQo. However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF was a major contributor (together with sites IF and IIIQo, and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.

  6. A Biomimetic Approach to Discrimination Between Sequential and Concerted Models for the Oxidation of Ubiquinol at the Qo­ site of the Cyt bc1 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Cape, Jonathan L.; Forquer, Isaac P.; Bowman, Michael K.; Kramer, David M.

    2005-09-26

    The cytochrome bc complexes function as quinol:cytochrome c oxidoreductases in the energy conserving membranes of nearly all organisms, where they couple the oxidation of a quinol substrate (QH2) to the pumping of protons across the bioenergetic membrane, resulting in the establishment of a proton motive force, which is used to drive the (C)F0/(C)F1 ATP synthase (Trumpower and Gennis 1994). Among the variety of biological quinols characterized, ubiquinol is the substrate used by most bc-type complexes, and its reactions are of great interest concerning diseases related to oxidative stress and the fundamentals of biological energy transduction.

  7. A p-quinol isoflavan and two new isoflavanones from Desmodium canum.

    Science.gov (United States)

    Zappia, G; Menendez, M P; Lima, C Sampaio de Andrade; Botta, B

    2009-01-01

    Three further minor isoflavonoid components (1-3) of the dichloromethane extract of Desmodium canum root have been isolated: two of them are complex isoflavanones with structures 1 and 2 biogenetically related to the previously isolated compounds 1a and 2a. The third is a complex isoflavan where the isoprenyl substituent and the aromatic A-ring yielded a p-quinol nucleus.

  8. Key role of water in proton transfer at the Q(o)-site of the cytochrome bc(1) complex predicted by atomistic molecular dynamics simulations

    DEFF Research Database (Denmark)

    Postila, P. A.; Kaszuba, K.; Sarewicz, M.

    2013-01-01

    on the simulations we are able to show the atom-level binding modes of two substrate forms: quinol (QH(2)) and quinone (Q). The QH(2) binding at the Q(o)-site involves a coordinated water arrangement that produces an exceptionally close and stable interaction between the cyt b and iron sulfur protein subunits....... In this arrangement water molecules are positioned suitably in relation to the hydroxyls of the QH(2) ring to act as the primary acceptors of protons detaching from the oxidized substrate. In contrast, water does not have a similar role in the Q binding at the Q(o)-site. Moreover, the coordinated water molecule...

  9. Efficient, scalable asymmetric synthesis of an epoxy quinol via Noyori desymmetrization of a meso diketone.

    Science.gov (United States)

    Clay, David R; Rosenberg, Ashley G; McIntosh, Matthias C

    2011-04-10

    Epoxy quinol 1a was prepared on a multi-gram scale by Noyori transfer hydrogenative desymmetrization of the readily available meso epoxy diketone 4. Although the intrinsic enantioselectivity for the desymmetrization was modest (82:18 er at 4% conversion), a highly enantiopure product (99.6:0.4 er) could be obtained in one operation in 44% yield via kinetic resolution of the minor enantiomer with long reaction times (48 h), or in 73% yield by combination with an enzymatic resolution of a 93:7 er mixture.

  10. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases.

    Science.gov (United States)

    Ruiz-Dueñas, Francisco J; Morales, María; García, Eva; Miki, Yuta; Martínez, María Jesús; Martínez, Angel T

    2009-01-01

    Versatile peroxidase (VP) is defined by its capabilities to oxidize the typical substrates of other basidiomycete peroxidases: (i) Mn(2+), the manganese peroxidase (MnP) substrate (Mn(3+) being able to oxidize phenols and initiate lipid peroxidation reactions); (ii) veratryl alcohol (VA), the typical lignin peroxidase (LiP) substrate; and (iii) simple phenols, which are the substrates of Coprinopsis cinerea peroxidase (CIP). Crystallographic, spectroscopic, directed mutagenesis, and kinetic studies showed that these 'hybrid' properties are due to the coexistence in a single protein of different catalytic sites reminiscent of those present in the other basidiomycete peroxidase families. Crystal structures of wild and recombinant VP, and kinetics of mutated variants, revealed certain differences in its Mn-oxidation site compared with MnP. These result in efficient Mn(2+) oxidation in the presence of only two of the three acidic residues forming its binding site. On the other hand, a solvent-exposed tryptophan is the catalytically-active residue in VA oxidation, initiating an electron transfer pathway to haem (two other putative pathways were discarded by mutagenesis). Formation of a tryptophanyl radical after VP activation by peroxide was detected using electron paramagnetic resonance. This was the first time that a protein radical was directly demonstrated in a ligninolytic peroxidase. In contrast with LiP, the VP catalytic tryptophan is not beta-hydroxylated under hydrogen peroxide excess. It was also shown that the tryptophan environment affected catalysis, its modification introducing some LiP properties in VP. Moreover, some phenols and dyes are oxidized by VP at the edge of the main haem access channel, as found in CIP. Finally, the biotechnological interest of VP is discussed.

  11. Respiratory system of Gluconacetobacter diazotrophicus PAL5. Evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases.

    Science.gov (United States)

    González, B; Martínez, S; Chávez, J L; Lee, S; Castro, N A; Domínguez, M A; Gómez, S; Contreras, M L; Kennedy, C; Escamilla, J E

    2006-12-01

    In highly aerobic environments, Gluconacetobacter diazotrophicus uses a respiratory protection mechanism to preserve nitrogenase activity from deleterious oxygen. Here, the respiratory system was examined in order to ascertain the nature of the respiratory components, mainly of the cyanide sensitive and resistant pathways. The membranes of G. diazotrophicus contain Q(10), Q(9) and PQQ in a 13:1:6.6 molar ratios. UV(360 nm) photoinactivation indicated that ubiquinone is the electron acceptor for the dehydrogenases of the outer and inner faces of the membrane. Strong inhibition by rotenone and capsaicin and resistance to flavone indicated that NADH-quinone oxidoreductase is a NDH-1 type enzyme. KCN-titration revealed the presence of at least two terminal oxidases that were highly sensitive and resistant to the inhibitor. Tetrachorohydroquinol was preferentially oxidized by the KCN-sensitive oxidase. Neither the quinoprotein alcohol dehydrogenase nor its associated cytochromes c were instrumental components of the cyanide resistant pathway. CO-difference spectrum and photodissociation of heme-CO compounds suggested the presence of cytochromes b-CO and a(1)-CO adducts. Air-oxidation of cytochrome b (432 nm) was arrested by concentrations of KCN lower than 25 microM while cytochrome a(1) (442 nm) was not affected. A KCN-sensitive (I(50)=5 microM) cytochrome bb and a KCN-resistant (I(50)=450 microM) cytochrome ba quinol oxidases were separated by ion exchange chromatography.

  12. Ordered Nucleation Sites for the Growth of Zinc Oxide Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Ginley, D.S.; Shaheen, S.

    2006-01-01

    Organic photovoltaics (OPVs) offer a promising route to low cost photovoltaic (PV) technology that can be inexpensively manufactured on a large scale for use in power generation and commercial products. Solar power conversion efficiencies of laboratory scale OPV devices have recently reached ~5%; however, projected efficiencies of at least 10% will be required for commercialization. An analogous approach that has arisen recently that can potentially increase efficiencies employs metal oxide semiconductors as the electron acceptor, creating a hybrid organic-inorganic device. This approach offers the advantage that the conduction band of the oxide can be tuned in a systematic way through doping, thus potentially achieving higher photovoltages in the device. Additionally, nanostructures of these materials can be easily grown from precursor solutions, providing a technique to precisely control the nanoscale geometry. This work focuses on using ZnO, which is known to have high electron mobility (>100 cm2/Vs), as the electron acceptor. Nanofibers of ZnO can be grown from precursors such as zinc acetate or zinc nitrate to form arrays of nanofibers into which a conjugated polymer can be intercalated to form a composite PV device. The morphology of the nanofiber array is critical to the performance of the device, but current methods of nanofiber growth from a flat, polycrystalline nucleation layer allow for little morphological control. To overcome this limitation, we have created ordered arrays of ZnO nucleation sites with controllable size and spacing. Toluene solutions of diblock copolymer micelles with ZnCl2 incorporated into the micellar cores were spin-coated onto glass substrates and etched with an O2 plasma to yield hexagonally ordered arrays of ZnO nanoparticles that functioned as nucleation sites. Changing the concentration of ZnCl2 and the molecular weight and ratio of the diblock copolymer resulted in systematic variation in the size and spacing of the

  13. Structural and biochemical analyses reveal insights into covalent flavinylation of the Escherichia coli Complex II homolog quinol:fumarate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Starbird, C.A.; Maklashina, Elena; Sharma, Pankaj; Qualls-Histed, Susan; Cecchini, Gary; Iverson, T.M. (VA); (UCSF); (Vanderbilt)

    2017-06-14

    The Escherichia coli Complex II homolog quinol:fumarate reductase (QFR, FrdABCD) catalyzes the interconversion of fumarate and succinate at a covalently attached FAD within the FrdA subunit. The SdhE assembly factor enhances covalent flavinylation of Complex II homologs, but the mechanisms underlying the covalent attachment of FAD remain to be fully elucidated. Here, we explored the mechanisms of covalent flavinylation of the E. coli QFR FrdA subunit. Using a ΔsdhE E. coli strain, we show that the requirement for the assembly factor depends on the cellular redox environment. We next identified residues important for the covalent attachment and selected the FrdAE245 residue, which contributes to proton shuttling during fumarate reduction, for detailed biophysical and structural characterization. We found that QFR complexes containing FrdAE245Q have a structure similar to that of the WT flavoprotein, but lack detectable substrate binding and turnover. In the context of the isolated FrdA subunit, the anticipated assembly intermediate during covalent flavinylation, FrdAE245 variants had stability similar to that of WT FrdA, contained noncovalent FAD, and displayed a reduced capacity to interact with SdhE. However, small-angle X-ray scattering (SAXS) analysis of WT FrdA cross-linked to SdhE suggested that the FrdAE245 residue is unlikely to contribute directly to the FrdA-SdhE protein-protein interface. We also found that no auxiliary factor is absolutely required for flavinylation, indicating that the covalent flavinylation is autocatalytic. We propose that multiple factors, including the SdhE assembly factor and bound dicarboxylates, stimulate covalent flavinylation by preorganizing the active site to stabilize the quinone-methide intermediate.

  14. Regulation of cytochrome c- and quinol oxidases, and piezotolerance of their activities in the deep-sea piezophile Shewanella violacea DSS12 in response to growth conditions.

    Science.gov (United States)

    Ohke, Yoshie; Sakoda, Ayaka; Kato, Chiaki; Sambongi, Yoshihiro; Kawamoto, Jun; Kurihara, Tatsuo; Tamegai, Hideyuki

    2013-01-01

    The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments.

  15. A new biomarker of protein oxidation degree and site using angiotensin as the target by MS

    Science.gov (United States)

    Tian, Yanmin; Liu, Rutao; Zong, Wansong; Sun, Feng; Wang, Meijie; Zhang, Pengjun

    2010-02-01

    Hydroxyl radicals generated from Fenton reaction were used to damage the angiotensin. The oxidative damage degree and sites of peptides were measured by HPLC-MS and MS/MS. Experimental results proved that the oxidative damage degree increased with longer reaction time. The results also showed that the side chains of phenylalanine and tyrosine in angiotension can be attacked by hydroxyl radicals to form the oxidative products. A new strategy was established to monitor the oxidative degree and sites of peptides and laid the foundation for protein oxidation. This method can be used to investigate the mechanism of protein oxidative damage caused by oxidative stress which is induced by environmental pollutants and physiological activities. There will also be a wide application in the research of pathogenesis of some disease related to oxidative stress.

  16. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene

    DEFF Research Database (Denmark)

    Luo, Birong; Whelan, Patrick Rebsdorf; Shivayogimath, Abhay

    2016-01-01

    We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes...... and amorphous carbon. These defects would serve as a pathway for the diffusion of 02 during thermal annealing, allowing oxidation of Cu to progress gradually from the nucleation center toward the growth edge. The oxidation process follows the graphene morphology closely; the shape of the oxidized area of Cu has...... a striking resemblance to that of the graphene flakes. Our work demonstrates that inferior graphene nucleation in CVD processes can compromise the oxidation resistance of a graphene-coated Cu substrate, and indirectly reveal the structure and integrity of graphene, which is of fundamental importance...

  17. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase.

    OpenAIRE

    Speck, S.H.; Dye, D.; Margoliash, E

    1984-01-01

    A single catalytic site model is proposed to account for the multiphasic kinetics of oxidation of ferrocytochrome c by cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1). This model involves nonproductive binding of substrate to sites near the catalytic site on cytochrome c oxidase for cytochrome c, decreasing the binding constant for cytochrome c at the catalytic site. This substrate inhibition results in an increase in the first-order rate constant for the dissociati...

  18. Deposition of nitrogen oxides and ozone to Danish forest sites

    DEFF Research Database (Denmark)

    Pilegaard, K.; Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    and in winter indicating a significant role of atmospheric chemistry and surface reactions. The experiment at the deciduous forest site (beech) shows the difference in deposition to the site before and after bud burst, thus describing the influence of the stomatal activity of the leaves on the uptake of gases...... and carbon dioxide. The results from the coniferous forest site (Norway spruce) show a diurnal variation in the deposition velocities and surface resistances during the growth period, which is consistent with a stomatal uptake of the gases. However, a substantial deposition is also found at night...

  19. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions

    Science.gov (United States)

    Veredas, Francisco J.; Cantón, Francisco R.; Aledo, J. Carlos

    2017-01-01

    Protein phosphorylation is one of the most prevalent and well-understood protein modifications. Oxidation of protein-bound methionine, which has been traditionally perceived as an inevitable damage derived from oxidative stress, is now emerging as another modification capable of regulating protein activity during stress conditions. However, the mechanism coupling oxidative signals to changes in protein function remains unknown. An appealing hypothesis is that methionine oxidation might serve as a rheostat to control phosphorylation. To investigate this potential crosstalk between phosphorylation and methionine oxidation, we have addressed the co-occurrence of these two types of modifications within the human proteome. Here, we show that nearly all (98%) proteins containing oxidized methionine were also phosphoproteins. Furthermore, phosphorylation sites were much closer to oxidized methionines when compared to non-oxidized methionines. This proximity between modification sites cannot be accounted for by their co-localization within unstructured clusters because it was faithfully reproduced in a smaller sample of structured proteins. We also provide evidence that the oxidation of methionine located within phosphorylation motifs is a highly selective process among stress-related proteins, which supports the hypothesis of crosstalk between methionine oxidation and phosphorylation as part of the cellular defence against oxidative stress. PMID:28079140

  20. Site-specifically Hydrolytic Cleavage of Oxidized Insulin B Chain With Cu(II) Ion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Electrospray mass spectrometry investigation shows that denatured oxidized insulin B chain can be selectively cleaved by simple Cu(II) ion and the site of cleavage is at Gly8-Ser9 bond which is second amide bond left from His 10 in the sequence of oxidized insulin B chain.

  1. Multifunctional catalyst for maximizing NOx oxidation/storage/reduction: The role of the different active sites

    OpenAIRE

    Palomares Gimeno, Antonio Eduardo; UZCATEGUI PAREDES, ALVARO; Franch Martí, Cristina; Corma Canós, Avelino

    2013-01-01

    A multifunctional catalyst/storage material has been prepared to maximize NOx removal. This material is based on mixed oxides derived from modified layered double hydrotalcites (LDH). A cobalt catalytic function oxidizes the NO to NO2. The NO2 is stored as nitrate in the basic sites of the material. The basic properties of the Co/Mg/Al mixed oxide derived from LDH were enhanced by doping with sodium, improving the storage capacity of the catalyst. Finally, the introduction of vanadium sites, ...

  2. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoshchikova, IrinaV; Hey-Mogensen, Martin

    2013-01-01

    Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing...

  3. Deposition of nitrogen oxides and ozone to Danish forest sites

    DEFF Research Database (Denmark)

    Pilegaard, K.; Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    of the influence of meteorological factors. The viscous sub-layer resistance is derived by a new theory, taking the bluff roughness elements of the forest and the dimension of the needles/leaves as well as the LAI into account. The fluxes of nitrogen dioxide and ozone are related to the fluxes of water vapour......Preliminary results of eddy correlation measurements of fluxes of NO2, and O3 made over a coniferous and a deciduous forest site in Denmark are presented. The total resistance to deposition are calculated and subdivided into aerodynamic, viscous sub-layer and surface resistance for investigation...

  4. OXIDATIVE STRESS BIOMARKERS IN MUSSELS SAMPLED FROM FOUR SITES ALONG THE MOROCCAN ATLANTIC COAST (BIG CASABLANCA

    Directory of Open Access Journals (Sweden)

    LAILA EL JOURMI

    2012-12-01

    Full Text Available Catalase (CAT activity and malondialdehyde (MDA level in whole bodies of the mussel perna perna, collected from four stations along the Moroccan Atlantic coast (Big Casablanca area, were monitored to evaluate stress effects on mussels collected from the selected sites. The oxidative stress biomarkers showed statistically significant differences at the polluted sites when compared to the control ones. In general, our data indicated that CAT activity and MDA concentration are a higher and significant (p < 0.05 in mussels collected at polluted site when compared to specimen sampled from control ones. In conclusion, the oxidative stress biomarkers response obtained for October 2010 and 2011, clearly demonstrate the potential presence of different contaminants in Site 4 and Site 3 reflecting the intensity of pollution in these areas.

  5. Dominance of Ferritrophicum populations at an AMD site with rapid iron oxidation

    Science.gov (United States)

    Grettenberger, C.; Pearce, A.; Bibby, K. J.; Burgos, W.; Jones, D. S.; Macalady, J.

    2015-12-01

    Acid mine drainage is a major environmental problem affecting watersheds across the globe. Bioremediation of AMD relies on microbial communities to oxidize and thus remove iron from the system. Iron-oxidation rates in AMD environments are highly variable across sites. At Scalp Level Run in Summerset County PA, iron-oxidation rates are five to eight times faster than other coal-associated AMD sites. We examined the microbial community at Scalp Level Run to determine whether a unique microbial community may be responsible for the observed rapid iron-oxidation rates. Using MiSeq sequence tags, 16S rRNA gene clone libraries, and fluorescence in situ hybridization, we found that Scalp Level Run sediments host microbial populations closely related to the betaproteobacterium Ferritrophicum radicicola, an iron-oxidizing species isolated from an acid mine drainage wetland in Virginia. Ferritrophicum spp. was not found at the four other coal-associated AMD sites in the study and is uncommon in the published literature. The influence of Ferritrophicum spp. populations in biogeochemical cycling, specifically their role in determining the iron-oxidation rate at Scalp Level Run is unknown. Therefore, we employed metagenomic sequencing to examine the metabolic potential of the microbial community at Scalp Level Run.

  6. Structural, thermal, morphological and biological studies of proton-transfer complexes formed from 4-aminoantipyrine with quinol and picric acid.

    Science.gov (United States)

    Adam, Abdel Majid A

    2013-03-01

    4-Aminoantipyrine (4AAP) is widely used in the pharmaceutical industry, biochemical experiments and environmental monitoring. However, residual amounts of 4AAP in the environment may pose a threat to human health. To provide basic data that can be used to extract or eliminate 4AAP from the environment, the proton-transfer complexes of 4AAP with quinol (QL) and picric acid (PA) were synthesized and spectroscopically investigated. The interactions afforded two new proton-transfer salts named 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-4-hydroxyphenolate and 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-2,4,6-trinitrophenolate for QL and PA, respectively, via a 1:1 stoichiometry. Elemental analysis (CHN), electronic absorption, spectrophotometric titration, IR, Raman, (1)H NMR and X-ray diffraction were used to characterize the new products. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). It was found that PA and 4AAP immediately formed a yellow precipitate with a remarkable sponge-like morphology and good thermal stability up to 180°C. Finally, the biological activities of the newly synthesized CT complexes were tested for their antibacterial and antifungal activities. The results indicated that the [(4AAP)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.

  7. Wide band gap tunability in complex transition metal oxides by site-specific substitution

    OpenAIRE

    Choi, Woo Seok; Chisholm, Matthew F.; Singh, David J.; Choi, Taekjib; Jellison Jr, Gerald E.; Lee, Ho Nyung

    2012-01-01

    Fabricating complex transition metal oxides with a tuneable band gap without compromising their intriguing physical properties is a longstanding challenge. Here we examine the layered ferroelectric bismuth titanate and demonstrate that, by site-specific substitution with the Mott insulator lanthanum cobaltite, its band gap can be narrowed as much as one electron volt, while remaining strongly ferroelectric. We find that when a specific site in the host material is preferentially substituted, ...

  8. Estudio químico de la especie colombiana Pentacalia abietina (Willd. ex. Wedd) Cuatr. Como nueva fuente natural de compuestos tipo kaurano y quinol

    OpenAIRE

    Santana Alba, Iván Fernando

    2010-01-01

    Investigaciones recientes indican que en distintas especies del género Pentacalia se han aislado e identificado sustancias esteroidales como el sitosterol y el ?-sitosterol, cumarinas como la escopoletina y la geranil escopoletina, kauranos y kauranoides, quinoles como la jacaranona y la metil jacaranona y glicósidos de flavonoides entre otras, con actividades biológicas antifúngicas, antibacteriales, cardiotónicas, anticancerígenas etc. En el presente trabajo se llevó a cabo el estudio de la...

  9. Effect of chromium oxide as active site over TiO2-PILC for selective catalytic oxidation of NO.

    Science.gov (United States)

    Zhang, Jingxin; Zhang, Shule; Cai, Wei; Zhong, Qin

    2013-12-01

    This study introduced TiO2-pillared clays (TiO2-PILC) as a support for the catalytic oxidation of NO and analyzed the performance of chromium oxides as the active site of the oxidation process. Cr-based catalysts were prepared by a wet impregnation method. It was found that the 10 wt.% chromium doping on the support achieved the best catalytic activity. At 350 degrees C, the NO conversion was 61% under conditions of GHSV = 23600 hr(-1). The BET data showed that the support particles had a mesoporous structure. H2-TPR showed that Cr(10)TiP (10 wt.% Cr doping on TiO2-PILC) clearly exhibited a smooth single peak. EPR and XPS were used to elucidate the oxidation process. During the NO + O2 adsorption, the intensity of evolution of superoxide ions (O2(-)) increased. The content of Cr3+ on the surface of the used catalyst was 40.37%, but when the used catalyst continued adsorbing NO, the Cr3+ increased to 50.28%. Additionally, O(alpha)/O(beta) increased markedly through the oxidation process. The NO conversion decreased when SO2 was added into the system, but when the SO2 was removed, the catalytic activity recovered almost up to the initial level. FT-IR spectra did not show a distinct characteristic peak of SO4(2-).

  10. Oxidative potential of particulate matter collected at sites with different source characteristics

    NARCIS (Netherlands)

    Janssen, Nicole A. H.; Yang, Aileen; Strak, Maciej; Steenhof, Maaike; Hellack, Bryan; Gerlofs-Nijland, Miriam E.; Kuhlbusch, Thomas; Kelly, Frank; Harrison, Roy M.; Brunekreef, Bert; Hoek, Gerard; Cassee, Flemming

    2014-01-01

    Background: The oxidative potential (OP) of particulate matter (PM) has been proposed as a more health relevant metric than PM mass. Different assays exist for measuring OP and little is known about how the different assays compare. Aim: To assess the OP of PM collected at different site types and t

  11. Oxidative stress in tissues of Nile Tilapia (Oreochromis niloticus) from a polluted site

    Energy Technology Data Exchange (ETDEWEB)

    Bainy, A.C.D. [UFSC, Florianopolis (Brazil); Carvalho, P.S.M. [CETESB, Sao Paulo (Brazil); Saito, E.; Leitao, M.A.S.; Junqueira, V.B.C. [IQUSP, Sao Paulo (Brazil)

    1995-12-31

    Pro and antioxidant parameters were compared in the erythrocytes, gill, liver and kidney of Nile Tilapia from a fish farm (Reference group) and from a polluted site at Billings Reservoir (Reservoir group). The erythrocyte oxidative stress was characterized by the increased oxygen uptake and decreased time induction (induced by t-butyl hydroperoxide, t-BHP) evidencing a higher susceptibility to oxidative damage. Moreover, a decrease in both catalase (CAT) activity and total glutathione content (GSH) in erythrocytes of Reservoir fish were observed. The higher gill cytochrome b{sub 5} levels is probably related to the enhanced oxyradical production. This fact associated to the diminished CAT and G6PDH activities establish a gill oxidative stress of Reservoir fish. The liver pro-oxidant parameters were greatly increased in the Reservoir fish. These results together with the increase in SOD activity and decrease in CAT, glutathione reductase (GR) and G6PDH activities indicate a liver oxidative stress condition. The observed increase in kidney NADH cytochrome c reductase and in both P-450 and b{sub 5} contents did not reflect in enhanced oxyradical production. The decrease in GSH observed in this tissue is probably associated to the conjugation reactions for ulterior excretion. These results furnish useful data for prospections of polluted aquatic sites in order to correlate the presence of pollutants to associated biological effects.

  12. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    Science.gov (United States)

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  13. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    Directory of Open Access Journals (Sweden)

    Paul P. Kelly

    2015-09-01

    Full Text Available Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  14. Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites

    Science.gov (United States)

    Ye, Zhuyun; Mao, Huiting; Lin, Che-Jen; Kim, Su Youn

    2016-07-01

    A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate the oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (AI; marine), Thompson Farm (TF; coastal, rural), and Pack Monadnock (PM; inland, rural, elevated). The chemical mechanism in this box model included the most up-to-date Hg and halogen chemistry. As a result, the box model was able to simulate reasonably the observed diurnal cycles of gaseous oxidized mercury (GOM) and chemical speciation bearing distinct differences between the three sites. In agreement with observations, simulated GOM diurnal cycles at AI and TF showed significant daytime peaks in the afternoon and nighttime minimums compared to flat GOM diurnal cycles at PM. Moreover, significant differences in the magnitude of GOM diurnal amplitude (AI > TF > PM) were captured in modeled results. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80-99 % of total GOM production during daytime. H2O2-initiated GEM oxidation was significant (˜ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL) atmosphere, Br and BrO became dominant GEM oxidants, with mixing ratios reaching 0.1 and 1 pptv, respectively, and contributing ˜ 70 % of the total GOM production during midday, while O3 dominated GEM oxidation (50-90 % of GOM production) over the remaining day when Br and BrO mixing ratios were diminished. The majority of HgBr produced from GEM+Br was oxidized by NO2 and HO2 to form brominated GOM species. Relative humidity and products of the CH3O2+BrO reaction possibly significantly affected the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could potentially be important in the production of GOM as well as Br and BrO at the marine site.

  15. Site Determination and Magnetism of Mn Doping in Protein Encapsulated Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pool, V.; Klem, M.; Jolley, J.; Arenholz, E.A.; Douglas, T.; Young, M.; Idzerda, Y.U.

    2010-01-11

    Soft-X-ray absorption spectroscopy, soft-X-ray magnetic circular dichroism, and alternating current magnetic susceptibility were performed on 6.7 nm iron oxide nanoparticles doped with (5-33%) Mn grown inside the horse-spleen ferritin protein cages and compared to similarly protein encapsulated pure Fe-oxide and Mn-oxide nanoparticles to determine the site of the Mn dopant and to quantify the magnetic behavior with varying Mn concentration. The Mn dopant is shown to substitute preferentially as Mn{sup +2} and prefers the octahedral site in the defected spinel structure. The Mn multiplet structure for the nanoparticles is simpler than for the bulk standards, suggesting that the nanoparticle lattices are relaxed from the distortions present in the bulk. Addition of Mn is found to alter the host Fe-oxide lattice from a defected ferrimagnetic spinel structure similar to {gamma}-Fe{sub 2}O{sub 3} to an non-ferromagnetic spinel structure with a local Fe environment similar to Fe{sub 3}O{sub 4}.

  16. Identification of potential sites for tryptophan oxidation in recombinant antibodies using tert-butylhydroperoxide and quantitative LC-MS.

    Directory of Open Access Journals (Sweden)

    Miriam Hensel

    Full Text Available Amino acid oxidation is known to affect the structure, activity, and rate of degradation of proteins. Methionine oxidation is one of the several chemical degradation pathways for recombinant antibodies. In this study, we have identified for the first time a solvent accessible tryptophan residue (Trp-32 in the complementary-determining region (CDR of a recombinant IgG1 antibody susceptible to oxidation under real-time storage and elevated temperature conditions. The degree of light chain Trp-32 oxidation was found to be higher than the oxidation level of the conserved heavy chain Met-429 and the heavy chain Met-107 of the recombinant IgG1 antibody HER2, which have already been identified as being solvent accessible and sensitive to chemical oxidation. In order to reduce the time for simultaneous identification and functional evaluation of potential methionine and tryptophan oxidation sites, a test system employing tert-butylhydroperoxide (TBHP and quantitative LC-MS was developed. The optimized oxidizing conditions allowed us to specifically oxidize the solvent accessible methionine and tryptophan residues that displayed significant oxidation in the real-time stability and elevated temperature study. The achieved degree of tryptophan oxidation was adequate to identify the functional consequence of the tryptophan oxidation by binding studies. In summary, the here presented approach of employing TBHP as oxidizing reagent combined with quantitative LC-MS and binding studies greatly facilitates the efficient identification and functional evaluation of methionine and tryptophan oxidation sites in the CDR of recombinant antibodies.

  17. Identification of dityrosine cross-linked sites in oxidized human serum albumin.

    Science.gov (United States)

    Annibal, Andrea; Colombo, Graziano; Milzani, Aldo; Dalle-Donne, Isabella; Fedorova, Maria; Hoffmann, Ralf

    2016-04-15

    Reactive oxygen species (ROS) can oxidize virtually all cellular components. In proteins cysteine, methionine, tryptophan, and tyrosine residues are most prone to oxidation and their oxidized forms are thus considered as biomarkers of oxidative protein damages. Ultraviolet radiation and some endogenous ROS can produce tyrosine radicals reacting with other tyrosine residues yielding intra- or intermolecular cross-links in proteins. These 3,3'-dityrosines can be quantified by their characteristic fluorescence, but analytical methods to identify the modification sites in proteins are still missing. Although mass spectrometry (MS) is routinely used to map other post-translational modifications, the analysis of dityrosines is challenged by simultaneous fragmentations of both cross-linked peptide chains producing complex tandem mass spectra. Additionally, the fragmentation patterns differ from linear peptides. Here, we studied the fragmentation behavior of dityrosine cross-linked peptides obtained by incubating three peptides (AAVYHHFISDGVR, TEVSSNHVLIYLDK, and LVAYYTLIGASGQR) with horseradish peroxidase in the presence of hydrogen peroxide. Homo- and hetero-dimerization via dityrosine was monitored by fluorescence spectroscopy and MS. The fragmentation characteristics of dityrosine-linked peptides were studied on an ESI-LTQ-Orbitrap-MS using collision induced dissociation, which allowed localizing the cross-linked positions and provided generic rules to identify this oxidative modification. When human serum albumin oxidized with 50-fold molar excess of HOCl in phosphate buffer saline was analyzed by nanoRPC-ESI-MS/MS, an automatic database search considering all possible (in-silico generated) tyrosine-containing peptides as dynamic modifications revealed four different types of oxidatively modified tyrosine residues including dityrosines linking ten different Tyr residues. The automatic database search was confirmed by manual interpretation of each tandem mass spectrum.

  18. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  19. Site-specific indolation of proline-based peptides via copper(II)-catalyzed oxidative coupling of tertiary amine N-oxides.

    Science.gov (United States)

    Wu, Xiaowei; Zhang, Dengyou; Zhou, Shengbin; Gao, Feng; Liu, Hong

    2015-08-14

    The first site-specific and purely chemical method for modifying proline-based peptides was developed via a convenient, copper-catalyzed oxidative coupling of tertiary amine N-oxides with indoles. This novel approach features high regioselectivity and diastereoselectivity, mild conditions, and compatibility with various functional groups. In addition, a simplified process was realized in one pot and two steps via in situ oxidative coupling of tertiary amine and indoles.

  20. Oxidative potential of particulate matter collected at sites with different source characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Nicole A.H., E-mail: Nicole.Janssen@rivm.nl [Department for Environmental Health, National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven (Netherlands); Yang, Aileen, E-mail: Aileen.Yang@rivm.nl [Department for Environmental Health, National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht (Netherlands); Strak, Maciej, E-mail: MStrak@ggd.amsterdam.nl [Department for Environmental Health, National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht (Netherlands); Steenhof, Maaike, E-mail: M.Steenhof@uu.nl [Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht (Netherlands); Hellack, Bryan, E-mail: Hellack@iuta.de [Air Quality and Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), Bliersheimer Straße 60, 47229 Duisburg (Germany); Gerlofs-Nijland, Miriam E., E-mail: Miriam.Gerlofs@rivm.nl [Department for Environmental Health, National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven (Netherlands); Kuhlbusch, Thomas, E-mail: tky@iuta.de [Air Quality and Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), Bliersheimer Straße 60, 47229 Duisburg (Germany); Kelly, Frank, E-mail: Frank.Kelly@kcl.ac.uk [MRC-PHE Centre for Environment and Health, School of Biomedical Sciences, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom); and others

    2014-02-01

    Background: The oxidative potential (OP) of particulate matter (PM) has been proposed as a more health relevant metric than PM mass. Different assays exist for measuring OP and little is known about how the different assays compare. Aim: To assess the OP of PM collected at different site types and to evaluate differences between locations, size fractions and correlation with PM mass and PM composition for different measurement methods for OP. Methods: PM{sub 2.5} and PM{sub 10} was sampled at 5 sites: an underground station, a farm, 2 traffic sites and an urban background site. Three a-cellular assays; dithiothreitol (OP{sup DTT}), electron spin resonance (OP{sup ESR}) and ascorbate depletion (OP{sup AA}) were used to characterize the OP of PM. Results: The highest OP was observed at the underground, where OP of PM{sub 10} was 30 (OP{sup DTT}) to > 600 (OP{sup ESR}) times higher compared to the urban background when expressed as OP/m{sup 3} and 2–40 times when expressed as OP/μg. For the outdoor sites, samples from the farm showed significantly lower OP{sup ESR} and OP{sup AA}, whereas samples from the continuous traffic site showed the highest OP for all assays. Contrasts in OP between sites were generally larger than for PM mass and were lower for OP{sup DTT} compared to OP{sup ESR} and OP{sup AA}. Furthermore, OP{sup DTT}/μg was significantly higher in PM{sub 2.5} compared to PM{sub 10}, whereas the reverse was the case for OP{sup ESR}. OP{sup ESR} and OP{sup AA} were highly correlated with traffic-related PM components (i.e. EC, Fe, Cu, PAHs), whereas OP{sup DTT} showed the highest correlation with PM mass and OC. Conclusions: Contrasts in OP between sites, differences in size fractions and correlation with PM composition depended on the specific OP assay used, with OP{sup ESR} and OP{sup AA} showing the most similar results. This suggests that either OP{sup ESR} or OP{sup AA} and OP{sup DTT} can complement each other in providing information regarding the

  1. A-site ordered quadruple perovskite oxides AA03B4O12

    Institute of Scientific and Technical Information of China (English)

    龙有文

    2016-01-01

    The A-site ordered perovskite oxides with chemical formula AA03B4O12 display many intriguing physical properties due to the introduction of transition metals at both A0 and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A0-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu–Fe intermetallic charge transfer (LaCu3+3 Fe3+4 O12→LaCu2+3 Fe3.75+4 O12) leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms.

  2. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China

    Science.gov (United States)

    Tong, Lei; Zhang, Huiling; Yu, Jie; He, Mengmeng; Xu, Nengbin; Zhang, Jingjing; Qian, Feizhong; Feng, Jiayong; Xiao, Hang

    2017-05-01

    Surface ozone (O3) is a harmful air pollutant that has attracted growing concern in China. In this study, the mixing ratios of O3 and nitrogen oxides (NOx) at three different sites (urban, suburban and rural) of Ningbo were continuously measured to investigate the spatiotemporal characteristics of O3 and its relationships with environmental variables. The diurnal O3 variations were characterized by afternoon maxima (38.7-53.1 ppb on annual average) and early morning minima (11.7-26.2 ppb) at all the three sites. Two seasonal peaks of O3 were observed in spring (April or May) and autumn (October) with minima being observed in winter (December). NOx levels showed generally opposite variations to that of O3 with diurnal and seasonal maxima occurring in morning/evening rush-hours and in winter, respectively. As to the inter-annual variations of air pollutants, generally decreasing and increasing trends were observed in NO and O3 levels, respectively, from 2012 to 2015 at both urban and suburban sites. O3 levels were positively correlated with temperature but negatively correlated with relative humidity and NOx levels. Significant differences in O3 levels were observed for different wind speeds and wind directions (p urban site exhibited lower O3 but higher NOx levels due to the influence of traffic emissions. Larger amplitudes of diurnal and monthly O3 variations were observed at the suburban site than those at the urban and rural sites. In general, the O3 levels at the non-urban sites were more affected by the background transport, while both the local and regional contributions played roles in urban O3 variations. The annual average O3 mixing ratios (22.7-37.7 ppb) in Ningbo were generally similar to those of other regions around the world. However, the recommended air quality standards for O3 were often exceeded during warm seasons, which could be a potential threat to both local population and plant growth.

  3. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    Science.gov (United States)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  4. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  5. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  6. Recognition of oxidatively modified bases within the biotin-binding site of avidin.

    Science.gov (United States)

    Conners, Rebecca; Hooley, Elizabeth; Clarke, Anthony R; Thomas, Siân; Brady, R Leo

    2006-03-17

    Oxidative damage of DNA results in the formation of many products, including 8-oxodeoxyguanosine, which has been used as a marker to quantify DNA damage. Earlier studies have demonstrated that avidin, a protein prevalent in egg-white and which has high affinity for the vitamin biotin, binds to 8-oxodeoxyguanosine and related bases. In this study, we have determined crystal structures of avidin in complex with 8-oxodeoxyguanosine and 8-oxodeoxyadenosine. In each case, the base is observed to bind within the biotin-binding site of avidin. However, the mode of association between the bases and the protein varies and, unlike in the avidin:biotin complex, complete ordering of the protein in this region does not accompany binding. Fluorescence studies indicate that in solution the individual bases, and a range of oligonucleotides, bind to avidin with micromolar affinity. Only one of the modes of binding observed is consistent with recognition of oxidised purines when incorporated within a DNA oligomer, and from this structure a model is proposed for the selective binding of avidin to DNA containing oxidatively damaged deoxyguanosine. These studies illustrate the molecular basis by which avidin might act as a marker of DNA damage, although the low levels of binding observed are inconsistent with the recognition of oxidised purines forming a major physiological role for avidin.

  7. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    Science.gov (United States)

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  8. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  9. Phosphorus mobilization by sulfide oxidation in carbonate sediments from seagrass and unvegetated sites in the US Virgin Islands

    DEFF Research Database (Denmark)

    Jensen, Henning; Pedersen, Ole; Koch, M. R.

    PHOSPHORUS MOBILIZATION BY SULFIDE OXIDATION IN CARBONATE SEDIMENTS FROM SEAGRASS AND UNVEGETATED SITES IN THE US VIRGIN ISLANDS Sulfide produced by sulfate reduction (SR) can be oxidized by seagrass root O2 flux in shallow carbonate sediments low in Fe. The sulfuric acid produced from sulfide...... oxidation, as well as metabolic acids from aerobic respiration, has the potential to mobilize solid phase phosphorus (P) pools in support of seagrass nutrition. Fresh sediments from four US Virgin Islands sites were modestly acidified to near-neutral pH in slurries. Following sulfuric acid amendments...... sources of nutrients compared to pristine sites. These results, along with those from our earlier studies in Florida Bay, a carbonate seagrass-dominated estuary, highlight the potential importance of P release from acid dissolution of carbonate-bound P pools. Session #:046 Date: 01-29-09 Time: 16:45...

  10. CO Oxidation over Pd/ZrO2 Catalysts: Role of Support′s Donor Sites

    Directory of Open Access Journals (Sweden)

    Aleksey A. Vedyagin

    2016-09-01

    Full Text Available A series of supported Pd/ZrO2 catalysts with Pd loading from 0.2 to 2 wt % was synthesized. The ZrO2 material prepared by a similar technique was used as a reference sample. The samples have been characterized by means of transmission electron microscopy (TEM, X-ray diffraction analysis (XRD, X-ray photoelectron spectroscopy (XPS, temperature-programmed reduction (TPR, testing reaction of ethane hydrogenolysis (HGE, N2 adsorption, and electron paramagnetic resonance (EPR spectroscopy. 1,3,5-trinitrobenzene was used as a probe molecule for the EPR spin probe method. The catalytic performance of samples was tested in the model reaction of CO oxidation. It was shown that the concentration of donor sites of support measured by EPR spin probe correlates with catalytic behavior during light-off tests. Low concentration of donor sites on a support’s surface was found to be caused by the presence of the specific surface defects that are related to existence of coordinately unsaturated structures.

  11. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    Science.gov (United States)

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism.

  12. Investigating sources of gaseous oxidized mercury in dry deposition at three sites across Florida, USA

    Directory of Open Access Journals (Sweden)

    M. Sexauer Gustin

    2012-07-01

    Full Text Available During 2009–2010, the State of Florida established a series of air quality monitoring stations to collect data for development of a statewide total maximum daily load (TMDL for mercury (Hg. At three of these sites, located near Ft. Lauderdale (DVE, Pensacola (OLF, and Tampa Bay (TPA, passive samplers for the measurement of air Hg concentrations and surrogate surfaces for measurement of Hg dry deposition were deployed. While it is known that Hg in wet deposition in Florida is high compared to the rest of the United States, there is little information on Hg dry deposition. The objectives of the work were to: (1 investigate the utility of passive sampling systems for Hg in an area with low and consistent air concentrations as measured by the Tekran® mercury measurement system, (2 estimate dry deposition of gaseous oxidized Hg, and (3 investigate potential sources. This paper focuses on Objective 3. All sites were situated within 15 km of 1000 MW electricity generating plants (EGPs and major highways. Bi-weekly dry deposition and passive sampler Hg uptake were not directly correlated with the automated Tekran® system measurements, and there was limited agreement between these systems for periods of high deposition. Using diel, biweekly, and seasonal Hg observations, and ancillary data collected at each site, the potential sources of Hg deposited to surrogate surfaces were investigated. With this information, we conclude that there are three major processes/sources contributing to Hg dry deposition in Florida, with these varying as a function of location and time of year. These include: (1 in situ oxidation of locally and regionally derived Hg facilitated by mobile source emissions, (2 indirect and direct inputs of Hg from local EGPs, and (3 direct input of Hg associated with long range transport of air from the Northeastern United States. We also suggest based on the data collected with the Tekran® and passive sampling systems that different

  13. Charge-transfer interaction of drug quinidine with quinol, picric acid and DDQ:Spectroscopic characterization and biological activity studies towards understanding the drug-receptor mechanism

    Institute of Scientific and Technical Information of China (English)

    Hala H. Eldaroti; Suad A. Gadir; Moamen S. Refat; Abdel Majid A. Adam

    2014-01-01

    Investigation of charge-transfer (CT) complexes of drugs has been recognized as an important phenomenon in understanding of the drug-receptor binding mechanism. Structural, thermal, morpholo-gical and biological behavior of CT complexes formed between drug quinidine (Qui) as a donor and quinol (QL), picric acid (PA) or dichlorodicyanobenzoquinone (DDQ) as acceptors were reported. The newly synthesized CT complexes have been spectroscopically characterized via elemental analysis;infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy; powder X-ray diffraction (PXRD);thermogravimetric (TG) analysis and scanning electron microscopy (SEM). It was found that the obtained complexes are nanoscale, semi-crystalline particles, thermally stable and spontaneous. The molecular composition of the obtained complexes was determined using spectrophotometric titration method and was found to be 1:1 ratios (donor:acceptor). Finally, the biological activities of the obtained CT complexes were tested for their antibacterial activities. The results obtained herein are satisfactory for estimation of drug Qui in the pharmaceutical form.

  14. In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms

    DEFF Research Database (Denmark)

    Appenzeller-Herzog, Christian; Ellgaard, Lars

    2008-01-01

    by the redox state of active-site cysteines found in a Cys-Xaa-Xaa-Cys motif. Progress in understanding redox regulation of the mammalian enzymes is currently hampered by the lack of reliable methods to determine quantitatively their redox state in living cells. We developed such a method based......Thiol-disulfide oxidoreductases of the human protein disulfide isomerase (PDI) family promote protein folding in the endoplasmic reticulum (ER), while also assisting the retrotranslocation of toxins and misfolded ER proteins to the cytosol. The redox activity of PDI-like proteins is determined...... on the alkylation of cysteines by methoxy polyethylene glycol 5000 maleimide. With this method, we showed for the first time that in vivo PDI is present in two semi-oxidized forms in which either the first active site (in the a domain) or the second active site (in the a' domain) is oxidized. We report a steady...

  15. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  16. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  17. Manganese-II oxidation and Copper-II resistance in endospore forming Firmicutes isolated from uncontaminated environmental sites

    Directory of Open Access Journals (Sweden)

    Cristina Dorador

    2016-04-01

    Full Text Available The accumulation of metals in natural environments is a growing concern of modern societies since they constitute persistent, non-degradable contaminants. Microorganisms are involved in redox processes and participate to the biogeochemical cycling of metals. Some endospore-forming Firmicutes (EFF are known to oxidize and reduce specific metals and have been isolated from metal-contaminated sites. However, whether EFF isolated from uncontaminated sites have the same capabilities has not been thoroughly studied. In this study, we measured manganese oxidation and copper resistance of aerobic EFF from uncontaminated sites. For the purposes of this study we have sampled 22 natural habitats and isolated 109 EFF strains. Manganese oxidation and copper resistance were evaluated by growth tests as well as by molecular biology. Overall, manganese oxidation and tolerance to over 2 mM copper was widespread among the isolates (more than 44% of the isolates exhibited Mn (II-oxidizing activity through visible Birnessite formation and 9.1% tolerate over 2 mM copper. The co-occurrence of these properties in the isolates was also studied. Manganese oxidation and tolerance to copper were not consistently found among phylogenetically related isolates. Additional analysis correlating the physicochemical parameters measured on the sampling sites and the metabolic capabilities of the isolates showed a positive correlation between in situ alkaline conditions and the ability of the strains to perform manganese oxidation. Likewise, a negative correlation between temperature in the habitat and copper tolerance of the strains was observed. Our results lead to the conclusion that metal tolerance is a wide spread phenomenon in unrelated aerobic EFF from natural uncontaminated environments.

  18. Agreement of central site measurements and land use regression modeled oxidative potential of PM2.5 with personal exposure

    NARCIS (Netherlands)

    Yang, Aileen; Hoek, Gerard; Montagne, Denise; Leseman, Daan L A C; Hellack, Bryan; Kuhlbusch, Thomas A J; Cassee, Flemming R; Brunekreef, Bert; Janssen, Nicole A H

    2015-01-01

    Oxidative potential (OP) of ambient particulate matter (PM) has been suggested as a health-relevant exposure metric. In order to use OP for exposure assessment, information is needed about how well central site OP measurements and modeled average OP at the home address reflect temporal and spatial v

  19. High-temperature Thermoelectric and Microstructural Characteristics of Ga Substituted on the Co-site in Cobalt-based Oxides

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Yanagiya, S.; Sonne, Monica;

    2011-01-01

    The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co re...

  20. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien; Seaman, John C.; Chang, Hyun-Shik; Jaffe, Peter R.; Koster van Groos, Paul; Jiang, De-Tong; Chen, Ning; Lin, Jinru; Arthur, Zachary; Pan, Yuanming; Scheckel, Kirk G.; Newville, Matthew; Lanzirotti, Antonio; Kaplan, Daniel I.

    2014-05-01

    Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH <4 and pH >8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

  1. Saccharomyces cerevisiae-based mutational analysis of the bc1 complex Qo site residue 279 to study the trade-off between atovaquone resistance and function.

    Science.gov (United States)

    Song, Zehua; Clain, Jérôme; Iorga, Bogdan I; Yi, Zhou; Fisher, Nicholas; Meunier, Brigitte

    2015-07-01

    The bc1 complex is central to mitochondrial bioenergetics and the target of the antimalarial drug atovaquone that binds in the quinol oxidation (Qo) site of the complex. Structural analysis has shown that the Qo site residue Y279 (Y268 in Plasmodium falciparum) is key for atovaquone binding. Consequently, atovaquone resistance can be acquired by mutation of that residue. In addition to the probability of amino acid substitution, the level of atovaquone resistance and the loss of bc1 complex activity that are associated with the novel amino acid would restrict the nature of resistance-driven mutations occurring on atovaquone exposure in native parasite populations. Using the yeast model, we characterized the effect of all the amino acid replacements resulting from a single nucleotide substitution at codon 279: Y279C, Y279D, Y279F, Y279H, Y279N, and Y279S (Y279C, D, F, H, N, and S). Two residue changes that required a double nucleotide substitution, Y279A and W, were added to the series. We found that mutations Y279A, C, and S conferred high atovaquone resistance but decreased the catalytic activity. Y279F had wild-type enzymatic activity and sensitivity to atovaquone, while the other substitutions caused a dramatic respiratory defect. The results obtained with the yeast model were examined in regard to atomic structure and compared to the reported data on the evolution of acquired atovaquone resistance in P. falciparum.

  2. Working conditions and health effects of ethylene oxide exposure at hospital sterilization sites.

    Science.gov (United States)

    Sobaszek, A; Hache, J C; Frimat, P; Akakpo, V; Victoire, G; Furon, D

    1999-06-01

    Ethylene oxide (EtO) is a powerful disinfectant and sterilant for heat-sensitive surgical items and instruments. Its use in hospitals constitutes an important source of occupational exposure that is sometimes underestimated, such as in cases of EtO device malfunction when the safety rules of procedure are not strictly followed or when individual or collective protective equipment is lacking. We carried out a descriptive study of the health care workers who were assigned to EtO sterilization units of the Lille University Hospital Centre in Lille, France (n = 16). Before the modification of the sterilization units in the development of a single, central sterilization site, we studied the workplaces, occupational conditions, and work procedures of the health care workers exposed to EtO. The aim was to assess the risk of EtO overexposure of the workers in order to improve workers' health and security in the future sterilization center. The study was based on a physical examination, a questionnaire covering each subject's personal and occupational history, and a complete ocular examination. For occupational conditions, the studies of each workplace were also performed by the occupational physician. Area and personal breathing air samplings were performed at each exposure site. Fourteen of the 16 operators had posterior and anterior subcapsular lens opacities, three of which seemed to be directly and primarily related to occupational exposure; the other ten seemed to be rather common and compatible with age. High levels of EtO exposure were reported in the oldest site (90 parts per million [ppm] during the changing of the gas bottle), where exposure often exceeded French threshold limits (permissible exposure limit: 1 ppm 8-hour time-weighted average (TWA) in air; short-term excursion limit: 5 ppm 15-minute TWA in air), or the current US recommended and legal exposure limits for EtO advocated by the Occupational Safety and Health Administration and the American

  3. Study of structural and optical properties of ZnAlQ{sub 5} (zinc aluminum quinolate) organic phosphor for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Nagpure, I. M., E-mail: indrajitnagpure@gmail.com; Painuly, Deepshikha [Physics, Department of Sciences and Humanities, National Institute of Technology,Uttarakhand-246174 (India); Rabanal, Maria Eugenia [Department of Materials Science and Engineering and Chemical Engineering,University Carlos III of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)

    2016-05-06

    The various composition of ZnAlQ{sub 5} such as Zn{sub 1.5}A{sub 10.5}Q{sub 5}, Zn{sub 1}Al{sub 1}Q{sub 5}, Zn{sub 0.5}Al{sub 1.5}Q{sub 5} organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ{sub 2} and AlQ{sub 3} were also prepared by similar method and their properties were compared with different composition of ZnAlQ{sub 5}. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ{sub 5},in which Zn{sub 1.5}Al{sub 0.5}Q{sub 5} shows maximum luminescence intensity at 505 nm. PL emission of ZnQ{sub 2} was observed at 515 nm, while for AlQ{sub 3} at 520 nm. The blue shift of 10 nm was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} due to modification of energy level due to presence of Zn{sup 2+} and Al{sup 3+}. The enhancement in PL intensity was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} compared to the other composition due to transfer of energy between Zn{sup 2+} and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).

  4. Anti-oxidative effect of ribonuclease inhibitor by site-directed mutagenesis and expression in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Wu Yu; Cui Xiuyun; Wang Jihong; Zhao Peng; Xu Yuefei; Zhao Baochang

    2006-01-01

    Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr-50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product Was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative efrect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.

  5. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    Science.gov (United States)

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance.

  6. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Science.gov (United States)

    Kontkanen, Jenni; Paasonen, Pauli; Aalto, Juho; Bäck, Jaana; Rantala, Pekka; Petäjä, Tuukka; Kulmala, Markku

    2016-10-01

    The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006-2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  7. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson's disease.

    Science.gov (United States)

    Miotto, Marco C; Rodriguez, Esaú E; Valiente-Gabioud, Ariel A; Torres-Monserrat, Valentina; Binolfi, Andrés; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O

    2014-05-05

    Amyloid aggregation of α-synuclein (AS) has been linked to the pathological effects associated with Parkinson's disease (PD). Cu(II) binds specifically at the N-terminus of AS and triggers its aggregation. Site-specific Cu(I)-catalyzed oxidation of AS has been proposed as a plausible mechanism for metal-enhanced AS amyloid formation. In this study, Cu(I) binding to AS was probed by NMR spectroscopy, in combination with synthetic peptide models, site-directed mutagenesis, and C-terminal-truncated protein variants. Our results demonstrate that both Met residues in the motif (1)MDVFM(5) constitute key structural determinants for the high-affinity binding of Cu(I) to the N-terminal region of AS. The replacement of one Met residue by Ile causes a dramatic decrease in the binding affinity for Cu(I), whereas the removal of both Met residues results in a complete lack of binding. Moreover, these Met residues can be oxidized rapidly after air exposure of the AS-Cu(I) complex, whereas Met-116 and Met-127 in the C-terminal region remain unaffected. Met-1 displays higher susceptibility to oxidative damage compared to Met-5 because it is directly involved in both Cu(II) and Cu(I) coordination, resulting in closer exposure to the reactive oxygen species that may be generated by the redox cycling of copper. Our findings support a mechanism where the interaction of AS with copper ions leads to site-specific metal-catalyzed oxidation in the protein under physiologically relevant conditions. In light of recent biological findings, these results support a role for AS-copper interactions in neurodegeneration in PD.

  8. Nitroxide spin labels as EPR reporters of the relaxation and magnetic properties of the heme-copper site in cytochrome bo3, E. coli.

    Science.gov (United States)

    Oganesyan, Vasily S; White, Gaye F; Field, Sarah; Marritt, Sophie; Gennis, Robert B; Yap, Lai Lai; Thomson, Andrew J

    2010-11-01

    A nitroxide spin label (SL) has been used to probe the electron spin relaxation times and the magnetic states of the oxygen-binding heme-copper dinuclear site in Escherichia coli cytochrome bo(3), a quinol oxidase (QO), in different oxidation states. The spin lattice relaxation times, T(1), of the SL are enhanced by the paramagnetic metal sites in QO and hence show a strong dependence on the oxidation state of the latter. A new, general form of equations and a computer simulation program have been developed for the calculation of relaxation enhancement by an arbitrary fast relaxing spin system of S ≥ 1/2. This has allowed us to obtain an accurate estimate of the transverse relaxation time, T (2), of the dinuclear coupled pair Fe(III)-Cu(B)(II) in the oxidized form of QO that is too short to measure directly. In the case of the F' state, the relaxation properties of the heme-copper center have been shown to be consistent with a ferryl [Fe(IV)=O] heme and Cu(B)(II) coupled by approximately 1.5-3 cm(-1) to a radical. The magnitude suggests that the coupling arises from a radical form of the covalently linked tyrosine-histidine ligand to Cu(II) with unpaired spin density primarily on the tyrosine component. This work demonstrates that nitroxide SLs are potentially valuable tools to probe both the relaxation and the magnetic properties of multinuclear high-spin paramagnetic active sites in proteins that are otherwise not accessible from direct EPR measurements.

  9. Nueva fuente de quinoles, la superficie foliar de Pentacalia ledifolia y Pentacalia corymbosa y sus propiedades antifúngicas Nova fonte de quinóides, a superficie foliar de Pentacalia lediflora e Pentacalia corymbosa e suas propriedades antifúngicas New source of quinols, the surface of Pentacalia ledifolia and Pentacalia corymbosa leaves and its antifungal activity

    Directory of Open Access Journals (Sweden)

    Julio A. Pedrozo

    2006-12-01

    Full Text Available Foi demonstrada a ação antifúngica do extrato clorofórmico e de duas substâncias isoladas da superfície foliar de Pentacalia ledifolia (H.B.K. Cuatr. e P. corymbosa (Benth Cuatr. frente aos fungos fitopatógenos Fusarium oxysporum e Botrytis cinerea, cultivados em BDA (batata-dextrose-ágar. Destes extratos foram isolados, além de cumarinas já identificadas em estudos anteriores, dois derivados quinóides: (1-hidroxi-4-oxo-2,5-ciclohexadienil acetato de metila ou jacaranona e (1-hidroxi-4-oxo-2,5-ciclohexadienil acetato de etila ou metiljacaranona. Para o (1-hidroxi-4-oxo-2,5-ciclohexadienil acetato de etila foi calculado CI50 de 650 μg/mL para os dois tipos de fungos e o (1-hidroxi-4-oxo-2,5-ciclohexadienil acetato de metila teve um CI50 de 660 μg/mL.Quinols identified in the surface waxes of Pentacalia ledifolia (H.B.K. Cuatr and P. corymbosa (Benth Cuatr. leaves, possess antifungal activity against Fusarium oxysporum and Botrytis cinerea, cultured on PDA (potato-dextrose-agar medium. These extracts were prepared by dipping fresh leaves in chloroform for 5 min, and afforded ethyl-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl acetate and methyl-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl acetate, the major surface compounds.

  10. Measurement of dimeric inhibin using a modified two-site immunoradiometric assay specific for oxidized (Met O) inhibin.

    Science.gov (United States)

    Knight, P G; Muttukrishna, S

    1994-06-01

    Several years ago we developed a novel two-site immunoradiometric assay (IRMA) for dimeric inhibin. However, relative to the purified 32 kDa bovine inhibin standard used at that time, the immunopotencies of crude inhibin-containing samples were much less than their biopotencies estimated by pituitary cell bioassay. In attempting to improve assay performance and resolve this discrepancy we recently discovered that introduction of a preassay oxidation step to the IRMA results in a dramatic increase in the immunopotencies of inhibin-containing test samples (e.g.: bovine, human, porcine follicular fluid (FF)) and of a new (purified in 1993) 32 kDa bovine inhibin standard. However, the oxidation step did not affect the immunopotency of our original standard (purified in 1987), indicating that this material had undergone spontaneous oxidation during long-term storage, thus accounting for its higher immunopotency in our original IRMA and providing an explanation for the discrepancy between immunoactivity and bioactivity referred to above. These findings, together with other observations on the behaviour of oxidized and non-oxidized samples of inhibin, related peptide fragments and inhibin-containing samples in the IRMA and alpha subunit radioimmunoassay (RIA), indicate that the anti-beta A82-114 monoclonal antibody (E4) used as tracer in the IRMA binds selectively to the oxidized (Met O89,91,108) form of the peptide. This property of the antibody can be exploited to advantage by incorporating simple modifications to existing inhibin/activin immunoassays to ensure that all samples and standards are fully oxidized before antibody addition.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Identification of oxidized methionine sites in erythrocyte membrane protein by liquid chromatography/electrospray ionization mass spectrometry peptide mapping.

    Science.gov (United States)

    Li, Chunyan; Takazaki, Shinya; Jin, Xiuri; Kang, Dongchon; Abe, Yoshito; Hamasaki, Naotaka

    2006-10-03

    In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.

  12. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.

    Science.gov (United States)

    Kubo, Takeya; Nakajima, Hidemitsu; Nakatsuji, Masatoshi; Itakura, Masanori; Kaneshige, Akihiro; Azuma, Yasu-Taka; Inui, Takashi; Takeuchi, Tadayoshi

    2016-02-29

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.

  13. Identifying the elusive sites of tyrosyl radicals in cytochrome c peroxidase: implications for oxidation of substrates bound at a site remote from the heme.

    Science.gov (United States)

    Miner, Kyle D; Pfister, Thomas D; Hosseinzadeh, Parisa; Karaduman, Nadime; Donald, Lynda J; Loewen, Peter C; Lu, Yi; Ivancich, Anabella

    2014-06-17

    The location of the Trp radical and the catalytic function of the [Fe(IV)═O Trp₁₉₁(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr₇₁(•) and Tyr₂₃₆(•) is independent of the [Fe(IV)═O Trp₁₉₁(•+)] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Å from the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632-1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr₇₁(•) as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248-255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665-11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more

  14. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    Science.gov (United States)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  15. Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts

    DEFF Research Database (Denmark)

    Verdaguer Casadevall, Arnau; Li, Christina W.; Johansson, Tobias Peter

    2015-01-01

    . Temperature-programmed desorption of CO on OD-Cu revealed the presence of surface sites with strong CO binding that are distinct from the terraces and stepped sites found on polycrystalline Cu foil. After annealing at 350 degrees C, the surface-area corrected current density for CO reduction is 44-fold lower...

  16. Empirical gas emission and oxidation measurement at cover soil of dumping site: example from Malaysia.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Basri, Hassan; Kadhum, Abdul Amir H; El-Shafie, Ahmed Hussein

    2013-06-01

    Methane (CH₄) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO₂), risking human health and the environment. Microbial CH₄ oxidation in landfill cover soils may constitute a means of controlling CH₄ emissions. The study was intended to quantify CH₄ and CO₂ emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH₄ oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH₄ to CO₂ emissions was 25.4 %, indicating higher CO₂ emissions than CH₄ emissions. Also, the average CH₄ oxidation in the landfill cover soil was 52.5 %. The CH₄ and CO₂ emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH₄ emissions and oxidation (R(2) = 0.46). It can be concluded that the variation in the CH₄ oxidation was mainly attributed to the properties of the landfill cover soil.

  17. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  18. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London.

    Directory of Open Access Journals (Sweden)

    Krystal J Godri

    Full Text Available As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP. Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OP(AA m(-3 and glutathione (OP(GSH m(-3 depletion, the highest OP per cubic metre of air was in the largest size fraction, PM(1.9-10.2. However, when expressed per unit mass of particles OP(AA µg(-1 showed no significant dependence upon particle size, while OP(GSH µg(-1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between

  19. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications.

    Science.gov (United States)

    Russell, Samantha E; González Carballo, Juan María; Orellana-Tavra, Claudia; Fairen-Jimenez, David; Morris, Russell E

    2017-03-21

    Copper-exchanged and acidic zeolites are shown to produce nitric oxide (NO) from a nitrite source in biologically active (nanomolar) concentrations. Four zeolites were studied; mordenite, ferrierite, ZSM-5 and SSZ-13, which had varying pore size, channel systems and Si/Al ratios. ZSM-5 and SSZ-13 produced the highest amounts of NO in both the copper and acid form. The high activity and regeneration of the copper active sites makes them good candidates for long-term NO production. Initial cytotoxicity tests have shown at least one of the copper zeolites (Cu-SSZ-13) to be biocompatible, highlighting the potential usage within biomedical applications.

  20. Estimation of Injected Carbon Longevity and Re-oxidation Times at Enhanced Reductive Bioremediation Sites

    Science.gov (United States)

    Tillotson, J.; Borden, R. C.

    2014-12-01

    Addition of an organic substrate to provide an electron donor and carbon source can be very effective at stimulating enhanced reductive bioremediation (ERB) of chlorinated solvents, energetics, and other groundwater contaminants. However, the quantity of electron donor added is usually based on an individual's or company's "rule of thumb" rather than considering site-specific conditions such as groundwater velocity, carbon source, and upgradient electron acceptor concentrations, potentially leading to unnecessarily large amounts of carbon injected. Mass balance estimates indicate that over 99% of electrons donated go to electron acceptors other than the primary contaminants. Thus, injecting excessive amounts of organic carbon can lead to a persistent reducing zone, releasing elevated levels of dissolved manganese, iron, methane, and sometimes arsenic. Monitoring data on carbon injections and electron acceptors were collected from 33 ERB sites. Two approaches were then used to evaluate carbon longevity and the time required to return to near-oxic conditions at an ERB site. The first method employed a simple mass balance approach, using such input parameters as groundwater velocity, upgradient electron acceptors, and amount of carbon injected. In the second approach, a combined flow, transport and geochemical model was developed using PHT3D to estimate the impact of ERB on secondary water quality impacts (SWQIs; e.g., methane production, iron mobilization and transport, etc.) The model was originally developed for use in estimating SWQIs released from petroleum sites, but has since been modified for use at ERB sites. The ERB site to be studied is a perchlorate release site in Elkton, Maryland where 840 lbs of an emulsified vegetable oil was injected. The results from the simple mass balance approach and PHT3D model will be compared and used to identify conditions where the simplified approach may be appropriate.

  1. Hydrogen Oxidation-Selective Electrocatalysis by Fine Tuning of Pt Ensemble Sites to Enhance the Durability of Automotive Fuel Cells.

    Science.gov (United States)

    Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae

    2017-02-08

    A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polar Behavior in a Magnetic Oxide Via A-Site Size Disorder

    Science.gov (United States)

    Singh, David J.; Park, Chul Hong

    2008-03-01

    Density functional calculations are used to test a new mechanism for ferroelectricity in magnetic perovskites based on A-site size disorder. Calculations of the structure and magnetic ordering of (La,Lu)MnNiO6 show that this mechanism is effective for this material, which is predicted to be both polar (ferroelectric or relaxor) and ferromagnetic, depending on the Lu concentration.

  3. Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO2.

    Science.gov (United States)

    Zhang, Yanhui; Dai, Rongying; Hu, Shirong

    2017-03-08

    In recent years, substantial efforts have been devoted to exploring reduced graphene oxide/TiO2 (RGO/TiO2) composite materials; however, there is still a paucity of reports on the construction of reduced graphene oxide/TiO2 with oxygen vacancies (RGO/TiO2-OV) via a facile two-step wet chemistry approach. In this work, we show a proof-of-concept study follow RGO introduced into TiO2 with oxygen vacancies, the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO2. The photocatalytic performance and related properties of blank-TiO2, blank-TiO2 with oxygen vacancies (blank-TiO2-OV), RGO/TiO2, and RGO/TiO2-OV were comparatively studied. It was found that due to the incorporation of RGO, RGO/TiO2 and RGO/TiO2-OV exhibit a higher photocatalytic performance under simulated solar light irradiation than their counterparts without rGO. More importantly, it was found that blank-TiO2 has a higher photocatalytic activity than blank-TiO2-OV under simulated solar light irradiation. However, RGO/TiO2 shows a lower photocatalytic activity than rGO/TiO2-OV. By a series of combined techniques, we found that the introduction of a component, such as RGO, with the matched energy band to TiO2 could lead to the formation of a long-lived electron-transfer state, thus prolonging the lifetime of the photogenerated charge carriers. Furthermore, during the photocatalytic process, RGO could tune the role of oxygen vacancies in TiO2 from recombination centers to active sites. These findings are of great significance for the design of effective photocatalytic materials in the field of solar energy conversion.

  4. Analysis of High Frequency Site-Specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland

    Science.gov (United States)

    McClellan, M. J.; Harris, E. J.; Olszewski, W.; Ono, S.; Prinn, R. G.

    2014-12-01

    Atmospheric nitrous oxide (N2O) significantly impacts Earth's climate due to its dual role as an inert potent greenhouse gas in the troposphere and as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. However, there remain significant uncertainties in the global budget of this gas. The marked spatial divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on climate. Source and sink processes of N2O lead to varying concentrations of N2O isotopologues (14N14N16O, 14N15N16O, 15N14N16O, and 14N14N18O being measured) due to preferential isotopic production and elimination in different environments. Estimation of source and sink fluxes can be improved by combining isotopically resolved N2O observations with simulations using a chemical transport model with reanalysis meteorology and treatments of isotopic signatures of specific surface sources and stratospheric intrusions. We present the first few months of site-specific nitrogen and oxygen isotopic composition data from the Stheno-TILDAS instrument (Harris et al, 2013) at Mace Head, Ireland and compare these to results from MOZART-4 (Model for Ozone and Related Chemical Tracers, version 4) chemical transport model runs including N2O isotopic fractionation processes and reanalysis meterological fields (NCEP/NCAR, MERRA, and GEOS-5). This study forms the basis for future inverse modeling experiments that will improve the accuracy of isotopically differentiated N2O emission and loss estimates. Ref: Harris, E., D. Nelson, W. Olszewski, M. Zahniser, K. Potter, B. McManus, A. Whitehill, R. Prinn, and S. Ono, Development of a spectroscopic technique for continuous online monitoring of oxygen and site-specific nitrogen isotopic composition of atmospheric nitrous oxide, Analytical Chemistry, 2013; DOI: 10.1021/ac403606u.

  5. Theoretical prediction of single-site enthalpies of surface protonation for oxides and silicates in water

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D.A.; Sahai, N. [Johns Hopkins Univ., Baltimore, MD (United States). Morton K. Blaustein Dept. of Earth and Planetary Sciences

    1998-12-01

    Surface protonation is the most fundamental adsorption process of geochemical interest. Yet remarkably little is known about protonation of mineral surfaces at temperatures greater than 25 C. Experimentally derived standard enthalpies of surface protonation, {Delta}H{degree}{sub r,1}, {Delta}H{degree}{sub r,2}, and {Delta}H{degree}{sub r,ZPC}, correspond to the reactions >SOH + H{sup +} = >SOH{sub 2}{sup +}; >SO{sup {minus}} + H{sup +} = >SOH; and >SO{sup {minus}} + 2H{sup +} = >SOH{sub 2}{sup +}, respectively, and provide a starting point for evaluating the role of surface protonation in geochemical processes at elevated temperatures. However, the experimental data for oxides do not have a theoretical explanation, and data are completely lacking for silicates other than SiO{sub 2}. In the present study, the combination of crystal chemical and Born solvation theory provides a theoretical basis for explaining the variation of the enthalpies of protonation of oxides. Experimental values of {Delta}H{degree}{sub r,1}, {Delta}H{degree}{sub r,2}, and {Delta}H{degree}{sub r,ZPC} consistent with the triple layer model can be expressed in terms of the inverse of the dielectric constant (1/{epsilon}) and the Pauling bond strength per angstrom (s/r{sub M-OH}) of each mineral. Predicted standard enthalpies of surface protonation for oxides and silicates extend over the ranges (in kcal/mole):{Delta}H{degree}{sub r,1} {approx} {minus}3 to {minus}15; {Delta}H{degree}{sub r,2} {approx} {minus}5 to {minus}18; {Delta}H{degree}{sub r,ZPC} {approx} {minus}4 to {minus}33.

  6. Photocatalytic Properties of TiO2: Evidence of the Key Role of Surface Active Sites in Water Oxidation.

    Science.gov (United States)

    Bak, Tadeusz; Li, Wenxian; Nowotny, Janusz; Atanacio, Armand J; Davis, Joel

    2015-09-10

    Photocatalytic activity of oxide semiconductors is commonly considered in terms of the effect of the band gap on the light-induced performance. The present work considers a combined effect of several key performance-related properties (KPPs) on photocatalytic activity of TiO2 (rutile), including the chemical potential of electrons (Fermi level), the concentration of surface active sites, and charge transport, in addition to the band gap. The KPPs have been modified using defect engineering. This approach led to imposition of different defect disorders and the associated KPPs, which are defect-related. This work shows, for the first time, a competitive influence of different KPPs on photocatalytic activity that was tested using oxidation of methylene blue (MB). It is shown that the increase of oxygen activity in the TiO2 lattice from 10(-12) Pa to 10(5) Pa results in (i) increase in the band gap from 2.42 to 2.91 eV (direct transitions) or 2.88 to 3 eV (indirect transitions), (ii) increase in the population of surface active sites, (iii) decrease of the Fermi level, and (iv) decrease of the charge transport. It is shown that the observed changes in the photocatalytic activity are determined by two dominant KPPs: the concentration of active surface sites and the Fermi level, while the band gap and charge transport have a minor effect on the photocatalytic performance. The effect of the defect-related properties on photoreactivity of TiO2 with water is considered in terms of a theoretical model offering molecular-level insight into the process.

  7. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  8. Optimizing Open Iron Sites in Metal-Organic Frameworks for Ethane Oxidation: A First-Principles Study.

    Science.gov (United States)

    Liao, Peilin; Getman, Rachel B; Snurr, Randall Q

    2017-04-10

    Activation of the C-H bonds in ethane to form ethanol is a highly desirable, yet challenging, reaction. Metal-organic frameworks (MOFs) with open Fe sites are promising candidates for catalyzing this reaction. One advantage of MOFs is their modular construction from inorganic nodes and organic linkers, allowing for flexible design and detailed control of properties. In this work, we studied a series of single-metal atom Fe model systems with ligands that are commonly used as MOF linkers and tried to understand how one can design an optimal Fe catalyst. We found linear relationships between the binding enthalpy of oxygen to the Fe sites and common descriptors for catalytic reactions, such as the Fe 3d energy levels in different reaction intermediates. We further analyzed the three highest-barrier steps in the ethane oxidation cycle (including desorption of the product) with the Fe 3d energy levels. Volcano relationships are revealed with peaks toward higher Fe 3d energy and stronger electron-donating group functionalization of linkers. Furthermore, we found that the Fe 3d energy levels positively correlate with the electron-donating strength of functional groups on the linkers. Finally, we validated our hypotheses on larger models of MOF-74 iron sites. Compared with MOF-74, functionalizing the MOF-74 linkers with NH2 groups lowers the enthalpic barrier for the most endothermic step in the reaction cycle. Our findings provide insight for catalyst optimization and point out directions for future experimental efforts.

  9. Nitrogen removal pathway of anaerobic ammonium oxidation in on-site aged refuse bioreactor.

    Science.gov (United States)

    Wang, Chao; Zhao, Youcai; Xie, Bing; Peng, Qing; Hassan, Muhammad; Wang, Xiaoyuan

    2014-05-01

    The nitrogen removal pathways and nitrogen-related functional genes in on-site three-stage aged refuse bioreactor (ARB) treating landfill leachate were investigated. It was found that on average 90.0% of CODCr, 97.6% of BOD5, 99.3% of NH4(+)-N, and 81.0% of TN were removed with initial CODCr, BOD5, NH4(+)-N, and TN concentrations ranging from 2323 to 2754, 277 to 362, 1237 to 1506, and 1251 to 1580 mg/L, respectively. Meanwhile, the functional genes amoA, nirS and anammox 16S rRNA gene were found to coexist in every bioreactor, and their relative proportions in each bioreactor were closely related to the pollutant removal performance of the corresponding bioreactor, which indicated the coexistence of multiple nitrogen removal pathways in the ARB. Detection of anammox expression proved the presence of the anammox nitrogen removal pathway during the process of recirculating mature leachate to the on-site ARB, which provides important information for nitrogen management in landfills.

  10. Lanthanum cobaltite perovskite supported onto mesoporous zirconium dioxide: nature of active sites of VOC oxidation.

    Science.gov (United States)

    Kustov, Alexander L; Tkachenko, Olga P; Kustov, Leonid M; Romanovsky, Boris V

    2011-08-01

    Novel catalytic nano-sized materials based on LaCoO(x) perovskite nanoparticles incapsulated in the mesoporous matrix of zirconia were prepared, characterized by physicochemical methods and tested in complete methanol oxidation. LaCoO(x) nanoparticles were prepared inside the mesopores of ZrO(2) by decomposition of bimetallic La-Co glycine precursor complexes. The catalysts have been studied by diffuse-reflectance FTIR-spectroscopy using such probe molecules as CO, CD(3)CN and CDCl(3) to test low-coordinated metal ions. At low temperatures of decomposition of complexes (up to 400°C), low-coordinated Co(3+) ions predominate in the LaCoO(x) nanoparticles, whereas basically Co(2+) ions are found upon increasing the decomposition temperature to 600°C. The novel nano-sized perovskite catalysts exhibit a very high catalytic activity in the abatement of volatile organic compounds present in air, like methanol and light hydrocarbons.

  11. Operando atomic structure and active sites of TiO2(110)-supported gold nanoparticles during carbon monoxide oxidation.

    Science.gov (United States)

    Saint-Lager, Marie-Claire; Laoufi, Issam; Bailly, Aude

    2013-01-01

    It is well known that gold nanoparticles supported on TiO2 act as a catalyst for CO oxidation, even below room temperature. Despite extensive studies, the origin of this catalytic activity remains under debate. Indeed, when the particle size decreases, many changes may occur; thus modifying the nanoparticles' electronic properties and consequently their catalytic performances. Thanks to a state-of-the-art home-developed setup, model catalysts can be prepared in ultra-high vacuum and their morphology then studied in operando conditions by Grazing Incidence Small Angle X-ray Scattering, as well as their atomic structure by Grazing Incidence X-ray Diffraction as a function of their catalytic activity. We previously reported on the existence of a catalytic activity maximum observed for three-dimensional gold nanoparticles with a diameter of 2-3 nm and a height of 6-7 atomic planes. In the present work we correlate this size dependence of the catalytic activity to the nanoparticles' atomic structure. We show that even when their size decreases below the optimum diameter, the gold nanoparticles keep the face-centered cubic structure characteristic of bulk gold. Nevertheless, for these smallest nanoparticles, the lattice parameter presents anisotropic strains with a larger contraction in the direction perpendicular to the surface. Moreover a careful analysis of the atomic-scale morphology around the catalytic activity maximum tends to evidence the role of sites with a specific geometry at the interface between the nanoparticles and the substrate. This argues for models where atoms at the interface periphery act as catalytically active sites for carbon monoxide oxidation.

  12. A Wood-Waste Cover Prevents Sulphide Oxidation and Treats Acid Effluents at the East-Sullivan Mine Site

    Science.gov (United States)

    Germain, D.; Tassé, N.; Cyr, J.

    2004-05-01

    At the East Sullivan site, wood wastes covering the abandoned mine tailings impoundment prevent sulphide oxidation by creating an anoxic environment. The addition of coarse ligneous wastes favours infiltration, resulting in a water table rise. This maintains most tailings saturated and thus provides an additional protection against sulphide oxidation. Moreover, high infiltration allows a more rapid flushing of acid prone groundwater generated prior to the cover placement. Finally, the pore-waters under the cover are characterized by a strong reducing potential and high alkalinity. These conditions favour sulphate reduction and base metal precipitation as sulphides and carbonates. The restoration strategy capitalized on the alkaline and reductive properties of the waters underlying the wood-waste cover. An original treatment of acid effluents, based on the recirculation of water discharging around the impoundment through the organic cover, was implemented in 1998. In 2003, the total volume of water treated was 725 000 m3. Data gathered near the dispersal zone show that despite dispersing acid water, the groundwater pH decreases by only one unit from 7 to 6, during the recirculation period: May to October. However, alkalinity decreases from 800 to 100 mg/L-CaCO3. But it is back up to 800 mg/L the following spring, thanks to sulphate reduction. Fe2+ concentrations near the dispersal zone are maintained below 2 mg/L. Evolution of the iron mass in the surface waters suggests that the contaminated groundwater flush is completed in the north and west sectors of the impoundment; the east and south ones are expected to be recovered within 3 to 4 years. A wood-waste cover, besides limiting sulphide oxidation, can fill the role of alkaline reducing barrier for the treatment of these acidogenic waters, until a balance between acidity and alkalinity in the effluent is reached.

  13. Electronic structures of active sites on metal oxide surfaces: Definition of the Cu/ZnO methanol synthesis catalyst by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E.I.; Jones, P.M.; May, J.A. (Stanford Univ., CA (United States). Dept. of Chemistry)

    1993-12-01

    The focus of this review is on the use of photoelectron spectroscopy (PES) to study the interaction of small molecules (particularly carbon monoxide) with metal ion sites on metal oxide surfaces. There have been numerous photoemission studies of chemisorption on metal surfaces. However, it is important to note that while metal oxides are involved in many heterogeneous catalytic processes, only a limited number of electron spectroscopic studies of chemically relevant molecules on metal oxide surfaces have appeared. The paper contains the following sections: The electronic structure of clean ZnO surfaces -- variable-energy photoelectron spectroscopy; CO chemisorption on ZnO surfaces; geometric structures for CO binding to the four chemically different surfaces of ZnO; electronic structure of the CO/ZnO surface complex; nature of copper sites on ZnO surfaces; electronic structures of CO bonding to d[sup 10] metal ion sites; relevance to catalysis; and summary and future directions. 185 refs.

  14. Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany

    Science.gov (United States)

    Crowley, J. N.; Schuster, G.; Pouvesle, N.; Parchatka, U.; Fischer, H.; Bonn, B.; Bingemer, H.; Lelieveld, J.

    2010-03-01

    A new, two-channel instrument for simultaneous NO3 and N2O5 monitoring was used to make the first comprehensive set of nocturnal NOx measurements (NO, NO2, NO3 and N2O5) at the Taunus Observatory, a rural mountain site (Kleiner Feldberg) in South-western Germany. In May 2008, NO3 and N2O5 mixing ratios were well above the instrumental detection limit (a few ppt) on all nights of the campaign and were characterised by large variability. The concentrations of NO3, N2O5 and NO2 were consistent with the equilibrium constant, K2, defining the rates of formation and thermal dissociation of N2O5. A steady-state lifetime analysis is consistent with the loss of nocturnal NOx being dominated by the reaction of NO3 with volatile organic compounds in this forested region, with N2O5 uptake to aerosols of secondary importance. Analysis of a limited dataset obtained at high relative humidity indicated that the loss of N2O5 by reaction with water vapour is less efficient (>factor 3) than derived using laboratory kinetic data. The fraction of NOx present as NO3 and N2O5 reached ~20% on some nights, with night-time losses of NOx competing with daytime losses.

  15. A Method to Site-Specifically Identify and Quantitate Carbonyl End Products of Protein Oxidation Using Oxidation-Dependent Element Coded Affinity Tags (O-ECAT) and NanoLiquid Chromatography Fourier Transform Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Young, N L; Whetstone, P A; Cheal, S M; Benner, W H; Lebrilla, C B; Meares, C F

    2005-08-25

    Protein oxidation is linked to cellular stress, aging, and disease. Protein oxidations that result in reactive species are of particular interest, since these reactive oxidation products may react with other proteins or biomolecules in an unmediated and irreversible fashion, providing a potential marker for a variety of disease mechanisms. We have developed a novel system to identify and quantitate, relative to other states, the sites of oxidation on a given protein. A specially designed Oxidation-dependent carbonyl-specific Element-Coded Affinity Mass Tag (O-ECAT), AOD, ((S)-2-(4-(2-aminooxy)-acetamido)-benzyl)-1, 4, 7, 10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid, is used to covalently tag the residues of a protein oxidized to aldehyde or keto end products. After proteolysis, the resulting AOD-tagged peptides are affinity purified, and analyzed by nanoLC-FTICR-MS, which provides high specificity in extracting co-eluting AOD mass pairs with a unique mass difference and affords relative quantitation based on isotopic ratios. Using this methodology, we have mapped the surface oxidation sites on a model protein, recombinant human serum albumin (rHSA) in its native form (as purchased) and after FeEDTA oxidation. A variety of modified amino acid residues including lysine, arginine, proline, histidine, threonine, aspartic and glutamic acids, were found to be oxidized to aldehyde and keto end products. The sensitivity of this methodology is shown by the number of peptides identified, twenty peptides on the native protein and twenty-nine after surface oxidation using FeEDTA and ascorbate. All identified peptides map to the surface of the HSA crystal structure validating this method for identifying oxidized amino acids on protein surfaces. In relative quantitation experiments between FeEDTA oxidation and native protein oxidation, identified sites showed different relative propensities towards oxidation independent of amino acid

  16. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  17. RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.

    2012-04-03

    The Defense Nuclear Facilities Safety Board (DNFSB) has recently questioned the appropriate value for tritium deposition velocity used in the MELCOR Accident Consequence Code System Ver. 2 (Chanin and Young 1998) code when estimating bounding dose (95th percentile) for safety analysis (DNFSB 2011). The purpose of this paper is to provide appropriate, defensible values of the tritium deposition velocity for use in Savannah River Site (SRS) safety analyses. To accomplish this, consideration must be given to the re-emission of tritium after deposition. Approximately 85% of the surface area of the SRS is forested. The majority of the forests are pine plantations, 68%. The remaining forest area is 6% mixed pine and hardwood and 26% swamp hardwood. Most of the path from potential release points to the site boundary is through forested land. A search of published studies indicate daylight, tritiated water (HTO) vapor deposition velocities in forest vegetation can range from 0.07 to 2.8 cm/s. Analysis of the results of studies done on an SRS pine plantation and climatological data from the SRS meteorological network indicate that the average deposition velocity during daylight periods is around 0.42 cm/s. The minimum deposition velocity was determined to be about 0.1 cm/s, which is the recommended bounding value. Deposition velocity and residence time (half-life) of HTO in vegetation are related by the leaf area and leaf water volume in the forest. For the characteristics of the pine plantation at SRS the residence time corresponding to the average, daylight deposition velocity is 0.4 hours. The residence time corresponding to the night-time deposition velocity of 0.1 cm/s is around 2 hours. A simple dispersion model which accounts for deposition and re-emission of HTO vapor was used to evaluate the impact on exposure to the maximally exposed offsite individual (MOI) at the SRS boundary (Viner 2012). Under conditions that produce the bounding, 95th percentile MOI exposure

  18. Nocturnal nitrogen oxides at a rural mountain-site in South-Western Germany

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-01-01

    Full Text Available A new, two-channel instrument for simultaneous NO3 and N2O5 monitoring was used to make the first comprehensive set of nocturnal NOx measurements (NO, NO2, NO3 and N2O5 at the Taunus Observatory, a rural mountain site (Kleiner Feldberg in South-western Germany. In May 2008, NO3 and N2O5 mixing ratios were well above the instrumental detection limit (a few ppt on all nights of the campaign and were characterised by large variability resulting from inhomogeneously distributed sinks. The concentrations of NO3, N2O5 and NO2 were consistent with the equilibrium constant, K2, defining the rates of formation and thermal dissociation of N2O5. A steady-state lifetime analysis showed that nocturnal NOx losses were generally dominated by reaction of NO3 with volatile organic compounds in this forested region, with N2O5 uptake to aerosols of secondary importance. Analysis of a limited dataset obtained at high relative humidity indicated that the loss of N2O5 by reaction with water vapour is less efficient (> factor 3 than derived using laboratory kinetic data. The fraction of NOx present as NO3 and N2O5 reached ≈20% on some nights, with night-time losses of NOx competing with daytime losses.

  19. Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-03-01

    Full Text Available A new, two-channel instrument for simultaneous NO3 and N2O5 monitoring was used to make the first comprehensive set of nocturnal NOx measurements (NO, NO2, NO3 and N2O5 at the Taunus Observatory, a rural mountain site (Kleiner Feldberg in South-western Germany. In May 2008, NO3 and N2O5 mixing ratios were well above the instrumental detection limit (a few ppt on all nights of the campaign and were characterised by large variability. The concentrations of NO3, N2O5 and NO2 were consistent with the equilibrium constant, K2, defining the rates of formation and thermal dissociation of N2O5. A steady-state lifetime analysis is consistent with the loss of nocturnal NOx being dominated by the reaction of NO3 with volatile organic compounds in this forested region, with N2O5 uptake to aerosols of secondary importance. Analysis of a limited dataset obtained at high relative humidity indicated that the loss of N2O5 by reaction with water vapour is less efficient (>factor 3 than derived using laboratory kinetic data. The fraction of NOx present as NO3 and N2O5 reached ~20% on some nights, with night-time losses of NOx competing with daytime losses.

  20. Heterocyclic quinol-type fluorophores: synthesis, X-ray crystal structures, and solid-state photophysical properties of novel 5-hydroxy-5-substituent-benzo[b]naphtho[1,2-d]furan-6-one and 3-hydroxy-3-substituent-benzo[kl]xanthen-2-one derivatives.

    Science.gov (United States)

    Ooyama, Yousuke; Okamoto, Tomohiro; Yamaguchi, Takahiro; Suzuki, Toshihisa; Hayashi, Akiko; Yoshida, Katsuhira

    2006-10-16

    Novel heterocyclic quinol-type fluorophores (4 a-c) and (5 a-c) that contain substituents (R = Me, Bu, Ph) with nonconjugated linkages to the chromophore skeleton have been synthesized and their photophysical properties have been investigated in solution and in the solid state. Considerable differences in the absorption and fluorescence spectra were observed between the two states. Quinols 4 a-c and 5 a-c exhibited almost the same absorption and fluorescence spectra in solution; however, their solid-state fluorescence excitation and emission spectra in the crystalline state were quite different. We performed X-ray crystallographic analyses to elucidate the dramatic effect of the substituents of the nonconjugated linkage on the solid-state fluorescence excitation and emission spectra. The relationships between the solid-state photophysical properties and the chemical and crystal structures of 4 a-c and 5 a-c are discussed on the basis of the X-ray crystal structures.

  1. Measurement and Modeling of Site-specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland

    Science.gov (United States)

    McClellan, M. J.; Saikawa, E.; Prinn, R. G.; Ono, S.

    2015-12-01

    Global mixing ratios of atmospheric nitrous oxide (N2O), a potent greenhouse gas, have increased nearly linearly from the beginning of the modern industrial period to today, with the current global average in excess of 325 ppb. This increase can be largely attributed to anthropogenic activity above the level of N2O emissions from natural biotic sources. The effect of N2O on Earth's climate is twofold: in the troposphere, N2O is radiatively active and chemically inert, while it serves as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. The marked altitudinal divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on Earth's climate. However, the understanding of the total impact of N2O is incomplete, as there remain significant uncertainties in the global budget of this gas. Due to unique isotopic substitutions (15N and 18O) made by different N2O sources and stratospheric chemical reactions, the measurement of N2O isotopic ratios in ambient air can help identify the distribution and magnitude of distinct source types. We present the first year of site-specific nitrogen and oxygen isotopic composition data from the MIT Stheno-tunable infrared direct absorption spectroscopy (TILDAS) instrument at Mace Head, Ireland. Aided by the Stheno preconcentration system, Stheno-TILDAS can achieve measurement precisions of 0.10‰ or greater for all isotopic ratios (δ15N and δ18O) in ambient N2O. We further compare these data to the results from Model for Ozone and Related Tracers version 4 (MOZART-4) simulations, including N2O isotopic fractionation processes and MERRA/GEOS-5 reanalysis meteorological fields. These results will form the basis of future Bayesian inverse modeling simulations that will constrain global N2O source, circulation, and sink dynamics better.

  2. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    Science.gov (United States)

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  3. Isotopic Evidence of a Sedimentary Carbon Source at the Endeavour Hydrothermal System, a Potential Site of Microbial Methane Oxidation

    Science.gov (United States)

    Proskurowski, G. K.; Lilley, M. D.; Brown, T. A.

    2002-12-01

    The hydrothermal systems on the Endeavour Segment of the Juan de Fuca Ridge have long been characterized as "bare rock hosted", as there is no sediment cover at Endeavour. However, chemical evidence in the form of anomalously high methane, ammonia and various trace metal concentrations reported in the last 10 years are consistent with a sediment source at Endeavour. Here we present a unique data set of stable and radiocarbon isotopic measurements made on CO2 from Endeavour hydrothermal vent fluids. When plotted against each other, a linear relationship between δ13CO2 and CO2 fraction modern values, suggests mixing of two CO2 sources. The data supports a mixing model between a -5.4\\permil, radiocarbon dead magmatic endmember, and a -17.8\\permil, 18,500 year old carbon source. The second endmember corresponds extremely well with stable isotopic measurements made on carbonate nodules from sediments at ODP drill sites on Middle Valley, a sedimented hydrothermal site 40km North of the Endeavour Segment. These sediments were emplaced during turbidite flows in the late Pleistocene, nominally 20,000 years ago. The mixing model suggests that about 20% of the CO2 found in Endeavour hydrothermal vent fluids is from this sedimentary endmember. We propose that the observed sedimentary signal is incorporated as heated hydrothermal fluids migrate upwards beneath the ridge axis through a zone of buried sediments. An alternative explanation is that there is a hydrologic link between Middle Valley and Endeavour, and that the sedimentary signal is imported from observed sediments at Middle Valley. Sediments provide labile sources of carbon that may be incorporated into microbial metabolic pathways. Sediments at Middle Valley exhibit strongly depleted δ13CO2 values (between -27 and -44\\permil) suggesting microbial fractionation, most likely anaerobic methane oxidation. While microbial methane oxidation is likely an active process in sediments at Middle Valley, isotopic evidence

  4. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  5. Snowpack-atmosphere gas exchanges of carbon dioxide, ozone, and nitrogen oxides at a hardwood forest site in northern Michigan

    Directory of Open Access Journals (Sweden)

    Brian Seok

    2015-03-01

    Full Text Available Abstract Snowpack-atmosphere gas exchanges of CO2, O3, and NOx (NO + NO2 were investigated at the University of Michigan Biological Station (UMBS, a mid-latitude, low elevation hardwood forest site, during the 2007–2008 winter season. An automated trace gas sampling system was used to determine trace gas concentrations in the snowpack at multiple depths continuously throughout the snow-covered period from two adjacent plots. One natural plot and one with the soil covered by a Tedlar sheet were setup for investigating whether the primary source of measured trace gases was biogenic (i.e., from the soil or non-biogenic (i.e., from the snowpack. The results were compared with the “White on Green” study conducted at the Niwot Ridge (NWT Long Term Ecological Research site in Colorado. The average winter CO2 flux ± s.e. from the soil at UMBS was 0.54 ± 0.037 µmol m-2 s-1 using the gradient diffusion method and 0.71 ± 0.012 µmol m-2 s-1 using the eddy covariance method, and in a similar range as found for NWT. Observed snowpack-O3 exchange was also similar to NWT. However, nitrogen oxides (NOx fluxes from snow at UMBS were 10 times smaller than those at NWT, and fluxes were bi-directional with the direction of the flux dependent on NOx concentrations in ambient air. The compensation point for the change in the direction of NOx flux was estimated to be 0.92 nmol mol-1. NOx in snow also showed diurnal dependency on incident radiation. These NOx dynamics in the snow at UMBS were notably different compared to NWT, and primarily determined by snow-atmosphere interactions rather than by soil NOx emissions.

  6. Demonstration test and evaluation of ultraviolet/ultraviolet catalyzed peroxide oxidation for groundwater remediation at Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In the UItraviolet/Ultraviolet Catalyzed Groundwater Remediation program, W.J. Schafer Associates, Inc. (WJSA) demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another (such as in activated carbon or air stripping). Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the TCA was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system.

  7. Direct evidence for active site-dependent formic acid electro-oxidation by topmost-surface atomic redistribution in a ternary PtPdCu electrocatalyst.

    Science.gov (United States)

    Cui, Chun-Hua; Li, Hui-Hui; Cong, Huai-Ping; Yu, Shu-Hong; Tao, Franklin Feng

    2012-12-25

    The active site-dependent electrochemical formic acid oxidation was evidenced by the increased coverage of Pt in the topmost mixed PtPd alloy layer of ternary PtPdCu upon potential cycling, which demonstrated two catalytic pathways only in one catalyst owing to surface atomic redistribution in an acidic electrolyte environment.

  8. In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation.

    Directory of Open Access Journals (Sweden)

    Yan-Jun Li

    Full Text Available Hydrogen sulfide (H2S is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1 was applied to track endogenous H2S in tomato (Solanum lycopersicum roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO, and Ca(2+ in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca(2+ accumulation and CaM1 (calmodulin 1 expression could be abolished by inhibiting H2S synthesis. Ca(2+ chelator or Ca(2+ channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca(2+ in regulating lateral root formation.

  9. Methane Oxidation on Pd-Ceria. A DFT Study of the Combustion Mechanism over Pd, PdO and Pd-ceria Sites

    Energy Technology Data Exchange (ETDEWEB)

    Mayernick, Adam D. [Pennsylvania State Univ., State College, PA (United States); Janik, Michael J. [Pennsylvania State Univ., State College, PA (United States)

    2010-12-24

    Palladium/ceria exhibits unique catalytic activity for hydrocarbon oxidation; however, the chemical and structural properties of active sites on the palladium–ceria surface are difficult to characterize. Strong interactions between palladium and the ceria support stabilize oxidized Pdδ+ species, which may contribute to the significant activity of Pd/ceria for methane oxidation. We present a density functional theory (DFT + U) investigation into methane oxidation over Pd/ceria and quantify the activity of the PdxCe1-xO2(1 1 1) mixed oxide surface in comparison with the PdO(1 0 0) and Pd(1 1 1) surfaces. The methane activation barrier is lowest over the PdxCe1-xO2(1 1 1) surface, even lower than over the Pd(1 1 1) surface or low coordinated stepped or kinked Pd sites. Subsequent reaction steps in complete oxidation, including product desorption and vacancy refilling, are considered to substantiate that methane activation remains the rate-limiting step despite the low barrier over PdxCe1-xO2(1 1 1). The low barrier over the PdxCe1-xO2(1 1 1) surface demonstrates that mixed ceria-noble metal oxides offer the potential for improved hydrocarbon oxidation performance with respect to dispersed noble metal particles on ceria.

  10. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways.

    Science.gov (United States)

    del Río, Carmen; Navarrete, Carmen; Collado, Juan A; Bellido, M Luz; Gómez-Cañas, María; Pazos, M Ruth; Fernández-Ruiz, Javier; Pollastro, Federica; Appendino, Giovanni; Calzado, Marco A; Cantarero, Irene; Muñoz, Eduardo

    2016-02-18

    Scleroderma is a group of rare diseases associated with early and transient inflammation and vascular injury, followed by fibrosis affecting the skin and multiple internal organs. Fibroblast activation is the hallmark of scleroderma, and disrupting the intracellular TGFβ signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, both PPARγ and CB2 receptors represent attractive targets for the development of cannabinoid-based therapies. We have developed a non-thiophilic and chemically stable derivative of the CBD quinol (VCE-004.8) that behaves as a dual agonist of PPARγ and CB2 receptors, VCE-004.8 inhibited TGFβ-induced Col1A2 gene transcription and collagen synthesis. Moreover, VCE-004.8 inhibited TGFβ-mediated myofibroblast differentiation and impaired wound-healing activity. The anti-fibrotic efficacy in vivo was investigated in a murine model of dermal fibrosis induced by bleomycin. VCE-004.8 reduced dermal thickness, blood vessels collagen accumulation and prevented mast cell degranulation and macrophage infiltration in the skin. These effects were impaired by the PPARγ antagonist T0070907 and the CB2 antagonist AM630. In addition, VCE-004.8 downregulated the expression of several key genes associated with fibrosis, qualifying this semi-synthetic cannabinoid as a novel compound for the management of scleroderma and, potentially, other fibrotic diseases.

  11. Cotransport of microorganisms and metallic colloids in quartz sand or iron oxide-coated sand under real site hydrogeological conditions

    Science.gov (United States)

    Yu, Tong; Wen, Yujuan; Yang, Xinyao; Yang, Yuesuo

    2017-04-01

    The need for studying the fate and transport of engineered and naturally-occurring nanoparticles is of great concern in the past decade. Wudalianchi scenic spot as a famous International Geological Park has the biggest cold spring in China, which is also one of the three biggest cold spring in the world, with a history of over 200 years using in drinking and medical purpose. Thousands of tourists all over the world travelling here each year to enjoy the high quality mineral water and take a bath in the cold spring and "mud-bath" with special medication purposes. Recreation activities gave rise to the engineered nanomaterials (ENMs) releasing into the water environment and increase the risk of contamination. Therefore, it is necessary to evaluate the effect of ENMs-exposure in natural environment and how it influences the transport of microorganisms of Wudalianchi in/without the presence of natural colloids (humic acid) under a series of ion strength. A thorough critical literature review of both work in the study site and the bio/nano-particle transport in porous media was a kick-off of the study. With support of the site investigations and sampling of groundwater, surface water and surface mud/soils, further numerical modelling of the hydrogeochemical speciation of the groundwater was carried out, indicating comprehensive water-rock interactions of this particular region. Metallic nanoparticles (MNPs), including metals, metal oxides and other metal-containing nanoparticles, are produced and ubiquitously applied to medical, cosmetic, photonics and catalysis industries, etc. TiO2, a widely used raw material for cosmetic industries (e.g., sunscreens), was used in this study to represent MNPs. The microorganisms used in this study were extracted from the soil in Wudalianchi. Humic acid (HA), a key component of dissolved organic matter (DOM) chosen as the natural colloids in this study, are ubiquitous and significant constituents in soils and water environment that

  12. Site-specific interaction between α-synuclein and membranes probed by NMR-observed methionine oxidation rates.

    Science.gov (United States)

    Maltsev, Alexander S; Chen, Jue; Levine, Rodney L; Bax, Ad

    2013-02-27

    α-Synuclein (αS) is an intrinsically disordered protein that is water-soluble but also can bind negatively charged lipid membranes while adopting an α-helical conformation. Membrane affinity is increased by post-translational N-terminal acetylation, a common modification in all eukaryotic cells. In the presence of lipid vesicles containing a small fraction of peroxidized lipids, the N-terminal Met residues in αS (Met1 and Met5) rapidly oxidize while reducing the toxic lipid hydroperoxide to a nonreactive lipid hydroxide, whereas C-terminal Met residues remain unaffected. Met oxidation can be probed conveniently and quantitatively by NMR spectroscopy. The results show that oxidation of Met1 reduces the rate of oxidation of Met5 and vice versa as a result of decreased membrane affinity of the partially oxidized protein. The effect of Met oxidation on the αS-membrane affinity extends over large distances, as in the V49M mutant, oxidation of Met1 and Met5 strongly impacts the oxidation rate of Met49 and vice versa. When not bound to membrane, oxidized Met1 and Met5 of αS are excellent substrates for methionine sulfoxide reductase (Msr), thereby providing an efficient vehicle for water-soluble Msr enzymes to protect the membrane against oxidative damage.

  13. The effects of Fe-oxidizing microorganisms on post-biostimulation permeability reduction and oxidative processes at the Rifle IFRC site

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara Sze-Yue [Univ. of Delaware, Newark, DE (United States)

    2015-07-02

    Fe oxidation and biomineral formation is important in aquifers because the highly-reactive oxides can control the mobility of nutrients (e.g. phosphate, C) and metals (e.g. arsenic, uranium). Mineral formation also has the potential to affect hydrology, depending on the volume and distribution in pore spaces. In this exploratory study, we sought to understand how microbial Fe-oxidizers and their biominerals affect, and are affected by groundwater flow. As part of work at the Rifle aquifer in Colorado, we initially hypothesized that Fe-oxidizers were contributing to aquifer clogging problems associated with enhanced bioremediation. To demonstrate the presence of Fe-oxidizers in the Rifle aquifer, we enriched FeOM from groundwater samples, and isolated two novel chemolithotrophic, microaerophilic Fe-oxidizing Betaproteobacteria, Hydrogenophaga sp. P101 and Curvibacter sp. CD03. To image cells and biominerals in the context of pores, we developed a “micro-aquifer,” a sand-filled flow-through culture chamber that allows for imaging of sediment pore space with multiphoton confocal microscopy. Fe oxide biofilms formed on sand grains, demonstrating that FeOM produce Fe oxide sand coatings. Fe coatings are common on aquifer sands, and tend to sequester contaminants; however, it has never previously been shown that microbes are responsible for their formation. In contrast to our original hypothesis, the biominerals did not clog the mini-aquifer. Instead, Fe biofilm distribution was dynamic: they grew as coatings, then periodically sloughed off sand grains, with some flocs later caught in pore throats. This has implications for physical hydrology, including pore scale architecture, and element transport. The sloughing of coatings likely prevents the biominerals from clogging wells and aquifers, at least initially. Although attached biomineral coatings sequester Fe-associated elements (e.g. P, As, C, U), when biominerals detach, these elements are transported as particles

  14. Redox reactions and the influence of natural Mn oxides on Cr oxidation in a contaminated site in northern Italy: evidence from Cr stable-isotopes and EPR spectroscopy

    Directory of Open Access Journals (Sweden)

    Marafatto F. F.

    2013-04-01

    Full Text Available Hexavalent chromium-contaminated groundwaters and sediments in northern Italy have been studied using the Cr stable-isotope systematics and electron spin resonance spectroscopy (ESR, in order to explore redox changes and soil-groundwater interactions. The isotopic data indicate a possible Cr(VI source released into the environment from an industrial plant. EPR spectra on the sediments which constitute the aquifers show a broad asymmetric absorption due to coupled Fe(III and coupled Cr(III ions and a well resolved hyperfine structure due to manganese ions, resulting from Mn(IV and Mn(II. The isotopic and EPR data support the hypothesis of Cr(III being oxidized by Mn oxides which are widespread in the aquifer, possibly related to the oscillation of the phreatic level. The obtained results highlight the usefulness of chromium stable isotopes as environmental tracers and support the observations that naturally occurring Mn oxides in soils may catalize Cr oxidation from the stable Cr(III form to the toxic Cr(VI soluble form, yielding valuable information in planning remediation interventions.

  15. INDUCTION OF NITRIC OXIDE SYNTHASE AND ASSOCIATED TOXICITY IN LIVERS OF HARDHEAD CATFISH, ARIUS FELIS, FROM CONTROL AND EPIZOOTIC SITES

    Science.gov (United States)

    Earlier work with a live channel catfish (Ictalurus punctatus) pathogen, Edwardsiella ictaluri, demonstrated the induction of nitric oxide synthase (NOS) in the head kidney, paralleling enteric septicemia (Hawke et al. 1981; Schoor and Plumb 1994). However, another study exposing...

  16. A-site substitution effect of perovskite-type cobalt and manganese oxides on two-step water splitting reaction for solar hydrogen production

    Science.gov (United States)

    Kaneko, Hiroshi; Hasegawa, Takumi; Mori, Kohei

    2017-06-01

    The perovskite type metal oxides (ABO3: A and B are metal elements) are attractive material for the two-step water splitting process to produce solar hydrogen, because the diversity of perovskite compound with substitution of metal ion makes its reducibility changeable. The perovskite-type cobalt and manganese oxides are prepared with substitution of metal ion in the A-site, and the performance of two-step water splitting reaction is investigated. The LaCoO3 and Ca0.45Sr0.4La0.15MnO3-δ, containing more trivalent metal ions in the A-site of perovskite structure, are most promising materials for solar hydrogen production. It is found that the two-step water-splitting reaction with Ca0.45Sr0.4La0.15MnO3-δ of the perovskite-type manganese oxide proceed stoichiometrically and Ca0.45Sr0.4La0.15MnO3-δ can produce much H2 gas (4cm3/g-sample) at the reduction temperature of 1400 °C.

  17. Porous polymer scaffold for on-site delivery of stem cells--Protects from oxidative stress and potentiates wound tissue repair.

    Science.gov (United States)

    Geesala, Ramasatyaveni; Bar, Nimai; Dhoke, Neha R; Basak, Pratyay; Das, Amitava

    2016-01-01

    Wound healing by cell transplantation techniques often suffer setbacks due to oxidative stress encountered at injury sites. A porous polyethyleneglycol-polyurethane (PEG-PU) scaffold that facilitates cell delivery and boosts tissue repair was developed through semi-interpenetrating polymer network approach. The key physico-chemical properties assessed confirms these polymeric matrices are highly thermostable, barostable, degrade at an acidic pH (5.8), biodegradable, cytocompatible and possess excellent porosity. Mechanism of cellular penetration into porous polymer networks was evident by a ≥6 - fold increase in gene expression of MMP-13 and MMP-2 via activation of Akt and Erk. H2O2-induced apoptosis of mouse bone marrow stem cells (BMSCs) was abrogated in presence of polymer networks indicating a protective effect from oxidative stress. Transplantation of BMSC + PEG-PU at murine excisional splint wound site depicted significant increase in fibroblast proliferation, collagen deposition, anti-oxidant enzyme activities of catalase, SOD and GPx. Furthermore it significantly decreased expression of pro-inflammatory cytokines (IL-1β, TNF-α, IL-8, etc) with a concomitant increase in anti-inflammatory cytokines (IL-10, IL-13) at an early healing period of day 7. Finally, immunostaining revealed an enhanced engraftment and vascularity indicating an accelerated wound tissue closure. This pre-clinical study demonstrates the proof-of-concept and further necessitates their clinical evaluation as potential cell delivery vehicle scaffolds.

  18. Biomimetic oxidation studies. 9. Mechanistic aspects of the oxidation of alcohols with functional,active site methane monooxygenase enzyme models in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Rabion, A. [Lawrence Berkeley National Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)]|[Groupement de Recherche de Lacq, Artix (France); Chen, S.; Wang, J.; Buchanan, R.M. [Univ. of Louisville, KY (United States); Seris, J.L. [Groupement de recherche de Lacq, Artix (France); Fish, R.H. [Lawrence Berkeley National Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1995-12-13

    The syntheses of biomimetic complexes that mimic the major structural features of the hydroxylase component of methane monooxygenase enzyme (MMO) and, more importantly, that provide similar alkane functionalization activity, in the presence of an oxidant, have been of great interest to the discipline of bioinorganic chemistry. In this communication, we will demonstrate the feasibility of conducting biomimetic oxidation studies in H{sub 2}O with soluble substrates, i.e., alcohols (cyclohexanol, benzyl alcohol), using H{sub 2}O-stable MMO mimics at pH 4.2, and the oxidant, tert-butyl hydroperoxide (TBHP). Both the Mitusunobu procedure and the mesylate displacement reaction proceeded with complete inversion of the stereo-center and provided optically pure penultimate intermediate (>99.9% ee). The synthesis was completed by reduction of the nitro group under standard conditions to deliver LY300164 in 87%. In summary, we have developed an efficient and environmentally benign synthesis of the 5H-2,3-benzodiazepine LY300164 that provides the optically pure compound in 51% overall yield. Intramolecular hydrazone alkylation led to a remarkably facile and selective formation of the benzodiazepine. Furthermore, the application of resins to whole-cell-based biotransformations should find general utility for similar reactions that are complicated by component inhibition and product isolation. 11 refs., 1 fig.

  19. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    Science.gov (United States)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  20. Active sites over CuO/CeO2 and inverse CeO2/CuO catalysts for preferential CO oxidation

    Science.gov (United States)

    Zeng, Shanghong; Wang, Yan; Ding, Suping; Sattler, Jesper J. H. B.; Borodina, Elena; Zhang, Lu; Weckhuysen, Bert M.; Su, Haiquan

    2014-06-01

    A series of CuO/CeO2 and inverse CeO2/CuO catalysts are prepared by the surfactant-templated method and characterized via XRD, HRTEM, H2-TPR, SEM, XPS, in situ XRD, in situ UV-Vis and N2 adsorption-desorption techniques. It is found that there are two kinds of surface sites in the CuO-CeO2 system, including CuO surface sites for CO chemisorption and CeO2 surface sites with oxygen vacancies for oxygen sorption. The active sites for CO oxidation are located on the contact interface of two-kind surface sites and the lattice oxygen can make a significant contribution to the CO-PROX reaction. The resistance to H2O and CO2 is related to BET surface area, the crystallite sizes of CuO and the reduction behavior of catalysts. The Ce4Cu4 and Ce4Cu1 catalysts exhibit the best resistance against H2O and CO2.

  1. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt.

    Science.gov (United States)

    Neurock, Matthew; Janik, Michael; Wieckowski, Andrzej

    2008-01-01

    First principles density functional theoretical calculations were carried out to examine and compare the reaction paths and ensembles for the electrocatalytic oxidation of methanol and formic acid in the presence of solution and applied electrochemical potential. Methanol proceeds via both direct and indirect pathways which are governed by the initial C-H and O-H bond activation, respectively. The primary path requires an ensemble size of between 3-4 Pt atoms, whereas the secondary path is much less structure sensitive, requiring only 1-2 metal atoms. The CO that forms inhibits the surface at potentials below 0.66 V NHE. The addition of Ru results in bifunctional as well as electronic effects that lower the onset potential for CO oxidation. In comparison, formic acid proceeds via direct, indirect and formate pathways. The direct path, which involves the activation of the C-H bond followed by the rapid activation of the O-H bond, was calculated to be the predominant path especially at potentials greater than 0.6 V. The activation of the O-H bond of formic acid has a very low barrier and readily proceeds to form surface formate intermediates as the first step of the indirect formate path. Adsorbed formate, however, was calculated to be very stable, and thus acts as a spectator species. At potentials below 0.6 V NHE, CO, which forms via the non-Faradaic hydrolytic splitting of the C-O bond over stepped or defect sites in the indirect path, can build up and poison the surface. The results indicate that the direct path only requires a single Pt atom whereas the indirect path requires a larger surface ensemble and stepped sites. This suggests that alloys will not have the same influence on formic acid oxidation as they do for methanol oxidation.

  2. Quantum chemical modeling of methanol oxidation mechanisms by methanol dehydrogenase enzyme: effect of substitution of calcium by barium in the active site.

    Science.gov (United States)

    Idupulapati, Nagesh B; Mainardi, Daniela S

    2010-02-04

    Previous experimental studies have shown that the activation energy for methanol oxidation by naturally occurring Ca(2+)-containing methanol dehydrogenase (MDH) enzyme is double the methanol activation energy by Ba(2+)-MDH. However, neither the reason for this difference nor the specific transition states and intermediates involved during the methanol oxidation by Ba(2+)-MDH have been clearly stated. Hence, an MDH active site model based on the well-documented X-ray crystallographic structure of Ca(2+)-MDH is selected, where the Ca(2+) is replaced by a Ba(2+) ion at the active site center, and the addition-elimination (A-E) and hydride-transfer (H-T) methanol oxidation mechanisms, already proposed in the literature for Ca(2+)-MDH, are tested for Ba(2+)-MDH at the BLYP/DNP theory level. Changes in the geometries and energy barriers for all the steps are identified, and qualitatively, similar (when compared to Ca(2+)-MDH) intermediates and transition states associated with each step of the mechanisms are found in the case of Ba(2+)-MDH. For both the A-E and H-T mechanisms, almost all the free-energy barriers associated with all of the steps are reduced in the presence of Ba(2+)-MDH, and they are kinetically feasible. The free energy barriers for methanol oxidation by Ba(2+)-MDH, particularly for the rate-limiting steps of both mechanisms, are almost half the corresponding barriers calculated for the case of Ca(2+)-MDH, which is in agreement with experimental observations.

  3. Geochemical and Microbiological Characteristics during in Situ Chemical Oxidation and in Situ Bioremediation at a Diesel Contaminated Site

    NARCIS (Netherlands)

    Sutton, N.B.; Kalisz, M.; Krupanek, J.; Marek, J.; Grotenhuis, J.T.C.; Smidt, H.; Weert, de J.; Rijnaarts, H.H.M.; Gaans, van P.; Keijzer, T.

    2014-01-01

    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the co

  4. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  5. The Crystal Structure of the Ivy delta4-16:0-ACP Desaturase Reveals Structural Details of the Oxidized Active Site and Potential Determinants of Regioselectivity

    Energy Technology Data Exchange (ETDEWEB)

    Guy,J.; Whittle, E.; Kumaran, D.; Lindqvist, Y.; Shanklin, J.

    2007-01-01

    The multifunctional acyl-acyl carrier protein (ACP) desaturase from Hedera helix (English ivy) catalyzes the {Delta}{sup 4} desaturation of 16:0-ACP and the{Delta}{sup 9} desaturation of 18:0-ACP and further desaturates{Delta}{sup 9}-16:1 or {Delta}{sup 9}-18:1 to the corresponding {Delta}{sup 4,9} dienes. The crystal structure of the enzyme has been solved to 1.95{angstrom} resolution, and both the iron-iron distance of 3.2{angstrom} and the presence of a {mu}-oxo bridge reveal this to be the only reported structure of a desaturase in the oxidized FeIII-FeIII form. Significant differences are seen between the oxidized active site and the reduced active site of the Ricinus communis (castor) desaturase; His{sup 227} coordination to Fe2 is lost, and the side chain of Glu{sup 224}, which bridges the two iron ions in the reduced structure, does not interact with either iron. Although carboxylate shifts have been observed on oxidation of other diiron proteins, this is the first example of the residue moving beyond the coordination range of both iron ions. Comparison of the ivy and castor structures reveal surface amino acids close to the annulus of the substrate-binding cavity and others lining the lower portion of the cavity that are potential determinants of their distinct substrate specificities. We propose a hypothesis that differences in side chain packing explains the apparent paradox that several residues lining the lower portion of the cavity in the ivy desaturase are bulkier than their equivalents in the castor enzyme despite the necessity for the ivy enzyme to accommodate three more carbons beyond the diiron site.

  6. Surface sites on Pt-CeO2 mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study.

    Science.gov (United States)

    Neitzel, Armin; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Mazur, Daniel; Prince, Kevin C; Matolín, Vladimír; Libuda, Jörg

    2014-12-07

    By means of synchrotron radiation photoemission spectroscopy, we have investigated Pt-CeO2 mixed oxide films prepared on CeO2(111)/Cu(111). Using CO molecules as a probe, we associate the corresponding surface species with specific surface sites. This allows us to identify the changes in the composition and morphology of Pt-CeO2 mixed oxide films caused by annealing in an ultrahigh vacuum. Specifically, two peaks in C 1s spectra at 289.4 and 291.2 eV, associated with tridentate and bidentate carbonate species, are formed on the nanostructured stoichiometric CeO2 film. The peak at 290.5-291.0 eV in the C 1s spectra indicates the onset of restructuring, i.e. coarsening, of the Pt-CeO2 film. This peak is associated with a carbonate species formed near an oxygen vacancy. The onset of cerium oxide reduction is indicated by the peak at 287.8-288.0 eV associated with carbonite species formed near Ce(3+) cations. The development of surface species on the Pt-CeO2 mixed oxides suggests that restructuring of the films occurs above 300 K irrespective of Pt loadings. We do not find any adsorbed CO species associated with Pt(4+) or Pt(2+). The onset of Pt(2+) reduction is indicated by the peak at 286.9 eV in the C 1s spectra due to CO adsorption on metallic Pt particles. The thermal stability of Pt(2+) in Pt-CeO2 mixed oxide depends on Pt loading. We find excellent stability of Pt(2+) for 12% Pt content in the CeO2 film, whereas at a Pt concentration of 25% in the CeO2 film, a large fraction of the Pt(2+) is converted into metallic Pt particles above 300 K.

  7. Synthèse et réactivité des dérivés de la quinoléine : préparation des isoxazoles et isoxazolines quinoléiques par des réactions de cycloaddition 1,3-dipolaires

    Directory of Open Access Journals (Sweden)

    N. BELLOULA

    2015-03-01

    Full Text Available The main objectif of this work is the synthesis of new five-membred heterocycles containing the quinoline moeity via a 1,3-dipolar cycloadition reaction of nitrile oxide with dipolariphiles in goal of discover a new compounds potentially actives in different domains notably in pharmacy and biology.

  8. In silico prediction of the site of oxidation by cytochrome P450 3A4 that leads to the formation of the toxic metabolites of pyrrolizidine alkaloids.

    Science.gov (United States)

    Fashe, Muluneh M; Juvonen, Risto O; Petsalo, Aleksanteri; Vepsäläinen, Jouko; Pasanen, Markku; Rahnasto-Rilla, Minna

    2015-04-20

    In humans, the metabolic bioactivation of pyrrolizidine alkaloids (PAs) is mediated mainly by cytochrome P450 3A4 (CYP3A4) via the hydroxylation of their necine bases at C3 or C8 of heliotridine- and retronecine-type PAs or at the N atom of the methyl substituent of otonecine-type PAs. However, no attempts have been made to identify which C atom is the most favorable site for hydroxylation in silico. Here, in order to determine the site of hydroxylation that eventually leads to the formation of the toxic metabolites produced from lasiocarpine, retrorsine, and senkirkin, we utilized the ligand-based electrophilic Fukui function f(-)(r) and hydrogen-bond dissociation energies (BDEs) as well as structure-based molecular docking. The ligand-based computations revealed that the C3 and C8 atoms of lasiocarpine and retrorsine and the C26 atom of senkirkin were chemically the most susceptible locations for electrophilic oxidizing reactions. Similarly, according to the predicted binding orientation in the active site of the crystal structure of human CYP3A4 (PDB code: 4I4G ), the alkaloids were positioned in such a way that the C3 atom of lasiocarpine and retrorsine and the C26 of senkirkin were closest to the catalytic heme Fe. Thus, it is concluded that the C3 atom of lasiocarpine and retrorsine and C26 of senkirkin are the most favored sites of hydroxylation that lead to the production of their toxic metabolites.

  9. Nitrite to nitrate molar ratio is inversely proportional to oxidative cell damages and granulocytic apoptosis at the wound site following cutaneous injury in rats.

    Science.gov (United States)

    Zunić, Gordana; Colić, Miodrag; Vuceljić, Marina

    2009-06-01

    Nitric oxide (NO) metabolism in response to the inflammatory cell infiltration and their apoptosis at the wound site, using a model of subcutaneously implanted sponges in Albino Oxford rats, were examined. The injured animals were sacrificed at days 1, 2 and 3 after the injury. Nitrites, nitrates (final products of NO metabolism), malondialdehyde (an indicator of oxidative cell damages), urea (product of arginase activity) and other parameters were measured both in plasma and wound fluid samples. Nitrite to nitrate molar ratio and sum of nitrites and nitrates (NO(x)) were calculated. The total cell numbers were at similar level throughout the examined period, but a gradual decrease of viable granulocytes, mainly due to the increased apoptosis, and the increase of monocyte-macrophage number occurred after the second day. A gradual increase of wound fluid nitrates, NO(x) and malondialdehyde suggested the increases of both NO and free oxygen radicals production. Interestingly, wound fluid nitrites peaked at the first day decreasing to the corresponding plasma levels thereafter. Wound fluid nitrite to nitrate molar ratio gradually decreased and negatively correlated both with the number of apoptotic cells (r= -0.752, poxidative cell damages and cell apoptosis at the wound site early after the cutaneous wound. Moreover, the obtained findings suggest that measurement of both nitrites and nitrates contribute to better insight into overall wound NO metabolism.

  10. Nitrogen oxides and ozone in Portugal: trends and ozone estimation in an urban and a rural site.

    Science.gov (United States)

    Fernández-Guisuraga, José Manuel; Castro, Amaya; Alves, Célia; Calvo, Ana; Alonso-Blanco, Elisabeth; Blanco-Alegre, Carlos; Rocha, Alfredo; Fraile, Roberto

    2016-09-01

    This study provides an analysis of the spatial distribution and trends of NO, NO2 and O3 concentrations in Portugal between 1995 and 2010. Furthermore, an estimation model for daily ozone concentrations was developed for an urban and a rural site. NO concentration showed a significant decreasing trend in most urban stations. A decreasing trend in NO2 is only observed in the stations with less influence from emissions of primary NO2. Several stations showed a significant upward trend in O3 as a result of the decrease in the NO/NO2 ratio. In the northern rural region, ozone showed a strong correlation with wind direction, highlighting the importance of long-range transport. In the urban site, most of the variance is explained by the NO2/NOX ratio. The results obtained by the ozone estimation model in the urban site fit 2013 observed data. In the rural site, the estimated ozone during extreme events agrees with observed concentration.

  11. Agreement of central site measurements and land use regression modeled oxidative potential of PM{sub 2.5} with personal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aileen, E-mail: Yang@uu.nl [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Hoek, Gerard; Montagne, Denise [Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Leseman, Daan L.A.C. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Hellack, Bryan [Air Quality & Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), e.V., Blierheimer Str. 58-60, 47229 Duisburg (Germany); Kuhlbusch, Thomas A.J. [Air Quality & Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), e.V., Blierheimer Str. 58-60, 47229 Duisburg (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Brunekreef, Bert [Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Janssen, Nicole A.H. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands)

    2015-07-15

    Oxidative potential (OP) of ambient particulate matter (PM) has been suggested as a health-relevant exposure metric. In order to use OP for exposure assessment, information is needed about how well central site OP measurements and modeled average OP at the home address reflect temporal and spatial variation of personal OP. We collected 96-hour personal, home outdoor and indoor PM{sub 2.5} samples from 15 volunteers living either at traffic, urban or regional background locations in Utrecht, the Netherlands. OP was also measured at one central reference site to account for temporal variations. OP was assessed using electron spin resonance (OP{sup ESR}) and dithiothreitol (OP{sup DTT}). Spatial variation of average OP at the home address was modeled using land use regression (LUR) models. For both OP{sup ESR} and OP{sup DTT}, temporal correlations of central site measurements with home outdoor measurements were high (R>0.75), and moderate to high (R=0.49–0.70) with personal measurements. The LUR model predictions for OP correlated significantly with the home outdoor concentrations for OP{sup DTT} and OP{sup ESR} (R=0.65 and 0.62, respectively). LUR model predictions were moderately correlated with personal OP{sup DTT} measurements (R=0.50). Adjustment for indoor sources, such as vacuum cleaning and absence of fume-hood, improved the temporal and spatial agreement with measured personal exposure for OP{sup ESR}. OP{sup DTT} was not associated with any indoor sources. Our study results support the use of central site OP for exposure assessment of epidemiological studies focusing on short-term health effects. - Highlights: • Oxidative potential (OP) of PM was proposed as a health-relevant exposure metric. • We evaluated the relationship between measured and modeled outdoor and personal OP. • Temporal correlations of central site with personal OP are moderate to high. • Adjusting for indoor sources improved the agreement with personal OP. • Our results

  12. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign.

    Science.gov (United States)

    Quintana, Raul; Serrano, Jesús; Gómez, Virginia; de Foy, Benjamin; Miranda, Javier; Garcia-Cuellar, Claudia; Vega, Elizabeth; Vázquez-López, Inés; Molina, Luisa T; Manzano-León, Natalia; Rosas, Irma; Osornio-Vargas, Alvaro R

    2011-12-01

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM(10) composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM(10) in Mexico City (T(0)) and at a suburban-receptor site (T(1)), pooled according to two observed ventilation patterns (T(0) → T(1) influence and non-influence). T(0) samples contained more Cu, Zn, and carbon whereas; T(1) samples contained more of Al, Si, P, S, and K (p < 0.05). Only SO(4)(-2) increased in T(1) during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p < 0.05) but not with biological effects. T(1) PM(10) induced greater hemolysis and T(0) PM(10) induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM(10) composition and toxicological potential, which suggests a significant involvement of local sources.

  13. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.

    Science.gov (United States)

    Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  14. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Dianne J.; Bloch, Eric D.; Mason, Jarad A.; Queen, Wendy L.; Hudson, Matthew R.; Planas, Nora; Borycz, Joshua; Dzubak, Allison L.; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G.; Gagliardi, Laura; Brown, Craig M.; Long, Jeffrey R. [UCB; (NIST); (LBNL); (UMM); (Turin)

    2014-08-19

    Enzymatic haem and non-haem high-valent iron–oxo species are known to activate strong C–H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron–oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)–oxo compounds. In particular, although nature's non-haem iron(IV)–oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal–organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal–organic framework Fe2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C–H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)–oxo species.

  15. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    Science.gov (United States)

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  16. The oxidative potential and biological effects induced by PM{sub 10} obtained in Mexico City and at a receptor site during the MILAGRO Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Raul [Instituto Nacional de Cancerologia, Mexico City (Mexico); Serrano, Jesus [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Gomez, Virginia [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Foy, Benjamin de [Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO (United States); Miranda, Javier [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Garcia-Cuellar, Claudia [Instituto Nacional de Cancerologia, Mexico City (Mexico); Vega, Elizabeth [Instituto Mexicano del Petroleo, Mexico City (Mexico); Vazquez-Lopez, Ines [Instituto Nacional de Cancerologia, Mexico City (Mexico); Molina, Luisa T. [Molina Center for Energy and the Environment, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Manzano-Leon, Natalia [Instituto Nacional de Cancerologia, Mexico City (Mexico); Rosas, Irma [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Osornio-Vargas, Alvaro R., E-mail: osornio@ualberta.ca [Instituto Nacional de Cancerologia, Mexico City (Mexico); Department of Paediatrics, University of Alberta, 1048 RTF, 8308 114 St, Edmonton, AB T6G 2V2 (Canada)

    2011-12-15

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM{sub 10} composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM{sub 10} in Mexico City (T{sub 0}) and at a suburban-receptor site (T{sub 1}), pooled according to two observed ventilation patterns (T{sub 0} {yields} T{sub 1} influence and non-influence). T{sub 0} samples contained more Cu, Zn, and carbon whereas; T{sub 1} samples contained more of Al, Si, P, S, and K (p < 0.05). Only SO{sub 4}{sup -2} increased in T{sub 1} during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p < 0.05) but not with biological effects. T{sub 1} PM{sub 10} induced greater hemolysis and T{sub 0} PM{sub 10} induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM{sub 10} composition and toxicological potential, which suggests a significant involvement of local sources. - Highlights: > Transport-related changes in PM{sub 10} composition, oxidative potential and in vitro toxicity were studied. > Cu, Zn, and carbon levels were predominant in urban PM{sub 10}; receptor site PM{sub 10} was rich in soil elements. > SO{sub 4}{sup -2} was the only component increased in PM{sub 10} from the receptor during the influence periods. > PM{sub 10} oxidative potential correlates with Cu/Zn content but not with studied biological effects. > Ventilation patterns had little effect on PM{sub 10} composition and toxicity. - Mexico City ventilation patterns had little effect on the intrinsic PM{sub 10} composition and toxicological potential, which suggests a significant involvement of local sources as opposed to downwind transport.

  17. Identification of Surface-Exposed Protein Radicals and A Substrate Oxidation Site in A-Class Dye-Decolorizing Peroxidase from Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Ruben; Chen, Xuejie; Ramyar, Kasra X.; Hayati, Zahra; Carlson, Eric A.; Bossmann, Stefan H.; Song, Likai; Geisbrecht, Brian V.; Li, Ping (FSU); (KSU)

    2016-12-12

    Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases in which a catalytic distal aspartate is involved in H2O2 activation to catalyze oxidations under acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds. On the basis of the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Blue 19 (RB19), and formation of compound II like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of the surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the cross-linking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal, possibly due to its extremely small solvent-accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding the DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.

  18. Remediation of highly contaminated soils from an industrial site by employing a combined treatment with exogeneous humic substances and oxidative biomimetic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sannino, Filomena, E-mail: fsannino@unina.it [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Spaccini, Riccardo [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Università 100, 80055 Portici (Italy); Savy, Davide [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Piccolo, Alessandro [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Università 100, 80055 Portici (Italy)

    2013-10-15

    Highlights: • Remediation of two polluted soils from a highly contaminated industrial site in Italy. • Restoration of soil quality by introducing additional carbon into polluted soil with humic matter amendments. • Detoxification of contaminants by covalent binding to humic molecules. • Prevention of environmental transport of pollutants. -- Abstract: Remediation of two polluted soils from a northern Italian industrial site heavily contaminated with organic contaminants was attempted here by subjecting soils first to addition with an exogenous humic acid (HA), and, then, to an oxidation reaction catalyzed by a water-soluble iron-porphyrin (FeP). An expected decrease of detectable organic pollutants (>50%) was already observed when soils were treated only with the H{sub 2}O{sub 2} oxidant. This reduction was substantially enhanced when oxidation was catalyzed by iron-porphyrin (FeP + H{sub 2}O{sub 2}) and the largest effect was observed for the most highly polluted soil. Even more significant was the decrease in detectable pollutants (70–90%) when soils were first amended with HA and then subjected to the FeP + H{sub 2}O{sub 2} treatment. This reduction in extractable pollutants after the combined HA + FeP + H{sub 2}O{sub 2} treatment was due to formation of covalent C-C and C-O-C bonds between soil contaminants and amended humic molecules. Moreover, the concomitant detection of condensation products in soil extracts following FeP addition confirmed the occurrence of free-radical coupling reactions catalyzed by FeP. These findings indicate that a combined technique based on the action of both humic matter and a metal-porhyrin catalyst, may become useful to quantitatively reduce the toxicity of heavily contaminated soils and prevent the environmental transport of pollutants.

  19. Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ina Wedderhoff

    Full Text Available The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress.

  20. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy

    Science.gov (United States)

    Perrone, Maria Grazia; Zhou, Jun; Malandrino, Mery; Sangiorgi, Giorgia; Rizzi, Cristiana; Ferrero, Luca; Dommen, Josef; Bolzacchini, Ezio

    2016-03-01

    Recent epidemiological evidence support the hypothesis that health effects from inhalation of air particles are governed by more than just particle mass, since specific chemical components have been identified as important contributors to mortality and hospitality admissions. We studied the chemical composition and the oxidative potential (OP) of total suspended particle (TSP) samples from Milan at two sites with different traffic loads: a site in the low emission zone (LEZ) and a traffic site (TR) outside. Two a-cellular assays; dithiothreitol (OPDTT) and 2‧,7' dichlorofluorescin (OPDCFH) were used to characterize the OP of the soluble fraction of particles. TSP samples from LEZ showed significantly lower concentrations of traffic-related chemical components compared to TR. The decrease in the concentrations from TR to LEZ was maximum for EC, with a LEZ/TR ratio of 0.64 (±0.18), and a significant reduction (p cellular assays gave complementary information on the OP of particles in Milan. The two OP assays resulted to be sensitive to different chemical properties of PM samples. OPDTT correlated positively only with Global Radiation (Spearman's rs = 0.38, p < 0.05), which could be considered as a proxy for high concentrations of secondary oxidizing organics, while OPDCFH was related to various PM chemical species, mainly correlated with total mass (rs = 0.65; p < 0.01), elements (e.g. Zn, rs = 0.67; As, rs = 0.65; p < 0.01) and the sum of sulfate and nitrate (rs = 0.63; p < 0.01), a proxy for secondary aerosol.

  1. Minimum Alveolar Concentration Needed to Block Adrenergic Response of Sevoflurane with Nitrous Oxide Varies Depending on the Stimulation Sites in Adult Surgical Patients

    Directory of Open Access Journals (Sweden)

    Tetsu Kimura

    2015-02-01

    Full Text Available Background We examined whether minimum alveolar anesthetic concentration needed to block adrenergic response (MAC-BAR of sevoflurane with nitrous oxide (N2O varies depending on body surface sites to which noxious stimuli are applied. Methods Seventy-seven ASA I adult patients, aged 18-50 years old, were anesthetized with sevoflurane and 66% N2O in O2, and their tracheas were intubated. The anesthesia was maintained with 66% N2O in O2 plus sevoflurane at predetermined end-tidal concentrations (0.8, 1.1, 1.4, 1.7, 2.0, 2.3, or 2.6%, n = 11 in each concentration for at least 15 minutes. Heart rate (HR and non-invasive blood pressure (BP was recorded at 1-minute interval automatically. As a noxious stimulus, electrical tetanic stimulation with a 15 sec burst of 50 Hz, 0.25 msec square-wave, 55 mA electric current was applied at three different sites; forehead, abdomen, or thigh. A positive cardiovascular response was defined as an increase of either mean BP or HR by more than 15% from the pre-stimulation value. Logistic regression analysis was used to determine MAC-BAR. Results MAC-BAR of sevoflurane with 66% N2O obtained by stimulating forehead, abdomen, and thigh were 2.01% (95% CI: 1.70-2.57%, 1.71% (1.13-2.74%, and 1.31% (0.77-1.66%, respectively. MAC-BAR on the forehead was significantly higher than that on the thigh. Conclusion MAC-BAR of sevoflurane with 66% N2O varied depending on the body surface sites to which noxious stimuli were applied. These findings support our clinical impression that sensitivities to pain vary among body surface sites, and that anesthetic requirement to stabilize hemodynamic variables vary among surgical sites.

  2. A Non-Electrostatic Surface Complexation Approach to Modeling Radionuclide Migration at the Nevada Test Site: I. Iron Oxides and Calcite

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Bruton, C J

    2004-12-17

    Reliable quantitative prediction of contaminant transport in subsurface environments is critical to evaluating the risks associated with radionuclide migration. As part of the Underground Test Area (UGTA) project, radionuclide transport away from various underground nuclear tests conducted in the saturated zone at the Nevada Test Site (NTS) is being examined. In the near-field environment, reactive transport simulations must account for changes in water chemistry and mineralogy as a function of time and their effect on radionuclide migration. Unlike the K{sub d} approach, surface complexation (SC) reactions, in conjunction with ion exchange and precipitation, can be used to describe radionuclide reactive transport as a function of changing environmental conditions. They provide a more robust basis for describing radionuclide retardation in geochemically dynamic environments. The interaction between several radionuclides considered relevant to the UGTA project and iron oxides and calcite are examined in this report. The interaction between these same radionuclides and aluminosilicate minerals is examined in a companion report (Zavarin and Bruton, 2004). Selection criteria for radionuclides were based on abundance, half-life, toxicity to human and environmental health, and potential mobility at NTS (Tompson et al., 1999). Both iron oxide and calcite minerals are known to be present at NTS in various locations and are likely to affect radionuclide migration from the near-field. Modeling the interaction between radionuclides and these minerals was based on surface complexation. The effectiveness of the most simplified SC model, the one-site Non-Electrostatic Model (NEM), to describe sorption under various solution conditions is evaluated in this report. NEM reactions were fit to radionuclide sorption data available in the literature, as well as sorption data recently collected for the UGTA project, and a NEM database was developed. For radionuclide-iron oxide sorption

  3. Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D.A.; Sahai, N. [Johns Hopkins Univ., Baltimore, MD (United States)

    1996-10-01

    The equilibrium constants for surface protonation of solid oxides and silicates can be estimated from theoretical considerations and known properties of the solids for use in the constant capacitance, diffuse double layer or triple layer models of surface complexation. The theoretical considerations take into account Born solvation theory for the adsorbing proton, electrostatic interactions of the adsorbing proton with a surface oxygen and an underlying metal, and an intrinsic binding of the proton to the surface. As a consequence, the equilibrium constants for the {nu}th ({nu} = 1 or 2) surface protonation reaction on the kth solid can be expressed in terms of the inverse of the dielectric constant of the solid (1/{epsilon}{sub k}) and an average Pauling bond strength per angstrom (s/r{sub M-OH}) for the solid according to log K{sub {nu}} = M{sub {nu}}(1/{epsilon}{sub k}) - B{sub {nu}}(s/r{sub M-OH}) + log K{sub ii,{nu}}{sup {double_prime}}, where the coefficients M{sub {nu}} B{sub {nu}} and K{sub ii{nu}}{sup {double_prime}} are constants characteristic of all oxides and silicates for each surface complexation model. Evaluation of these constants using experimental data for TiO{sub 2}, {gamma}-alumina, Al{sub 2}O{sub 3} FeOOH, Fe(OH){sub 3}, silica, quartz. and kaolinite permits widespread prediction of surface protonation equilibrium constants from the known bulk structure properties 1/{epsilon}{sub k} and s/r{sub M-OH}. Such predictions should replace attempts to estimate surface protonation equilibrium constants for solids from empirical correlations with aqueous equilibrium constants. Surface protonation constants should also not be estimated from correlations with only the Pauling bond strength because these neglect specific treatment of salvation. 92 refs., 14 figs., 4 tabs.

  4. Irreversible Oxidation of the Active-site Cysteine of Peroxiredoxin to Cysteine Sulfonic Acid for Enhanced Molecular Chaperone Activity*

    OpenAIRE

    2008-01-01

    The thiol (–SH) of the active cysteine residue in peroxiredoxin (Prx) is known to be reversibly hyperoxidized to cysteine sulfinic acid (–SO2H), which can be reduced back to thiol by sulfiredoxin/sestrin. However, hyperoxidized Prx of an irreversible nature has not been reported yet. Using an antibody developed against the sulfonylated (–SO3H) yeast Prx (Tsa1p) active-site peptide (AFTFVCPTEI), we observed an increase in the immunoblot intensity in proportion to the ...

  5. Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, N. Ireland (United Kingdom); Flynn, R., E-mail: r.flynn@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, N. Ireland (United Kingdom); Kammer, F. von der, E-mail: frank.von.der.kammer@univie.ac.at [Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria); Hofmann, T. [Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria)

    2011-07-15

    This study, for the first time, investigates and quantifies the influence of slight changes in solution pH and ionic strength (IS) on colloidal microsphere deposition site coverage by Suwannee River Humic Acid (SRHA) in a column matrix packed with saturated iron-oxide coated sand. Triple pulse experimental (TPE) results show adsorbed SRHA enhances microsphere mobility more at higher pH and lower IS and covers more sites than at higher IS and lower pH. Random sequential adsorption (RSA) modelling of experimental data suggests 1 {mu}g of adsorbed SRHA occupied 9.28 {+-} 0.03 x 10{sup 9} sites at pH7.6 and IS of 1.6 mMol but covered 2.75 {+-} 0.2 x 10{sup 9} sites at pH6.3 and IS of 20 mMol. Experimental responses are suspected to arise from molecular conformation changes whereby SRHA extends more at higher pH and lower ionic strength but is more compact at lower pH and higher IS. Results suggest effects of pH and IS on regulating SRHA conformation were additive. - Highlights: > We quantified the coupled role of pH and IS and humic acid on colloid deposition. > Humic acid enhances microsphere mobility more at higher pH and lower IS. > pH and IS may control the behaviour of humic acid by regulating its conformation. > The effect of pH and IS on regulating humic acid conformation is additive. - This paper quantifies the impact of pH and ionic strength on the transient deposition behaviour of colloids in porous medium in the presence of humic acid.

  6. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Directory of Open Access Journals (Sweden)

    R. E. Schwartz

    2010-02-01

    Full Text Available Submicron particles collected at Whistler, British Columbia, at 1020 masl during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR and X-ray fluorescence (XRF techniques for organic functional groups (OFG and elemental composition. Organic mass (OM ranged from less than 0.5 to 3.1μg m−3, with a project mean and standard deviation of 1.3±1.0 μg m−3 and 0.21±0.16 μg m−3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and <1% of the average organic aerosol composition, respectively. Measurements of volatile organic compounds (VOC, including isoprene and monoterpenes from biogenic VOC (BVOC emissions and their oxidation products (methyl-vinylketone/methacrolein, MVK/MACR, were made using co-located proton transfer reaction mass spectrometry (PTR-MS. We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 2% organic hydroxyl, 16% ketone, and 6% amine groups was similar to that of secondary organic aerosol (SOA reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional group composition and

  7. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Directory of Open Access Journals (Sweden)

    R. E. Schwartz

    2010-06-01

    Full Text Available Submicron particles collected at Whistler, British Columbia, at 1020 m a.s.l. during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR and X-ray fluorescence (XRF techniques for organic functional groups (OFG and elemental composition. Organic mass (OM concentrations ranged from less than 0.5 to 3.1 μg m−3, with a project mean and standard deviation of 1.3±1.0 μg m−3 and 0.21±0.16 μg m−3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and <1% of the average organic aerosol composition, respectively. Measurements of volatile organic compounds (VOC, including isoprene and monoterpenes from biogenic VOC (BVOC emissions and their oxidation products (methyl-vinylketone / methacrolein, MVK/MACR, were made using co-located proton transfer reaction mass spectrometry (PTR-MS. We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 21% organic hydroxyl, 16% ketone, and 6% amine groups was similar to that of secondary organic aerosol (SOA reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional

  8. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia

    2017-08-03

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  9. Purification and site-directed mutagenesis of linoleate 9S-dioxygenase-allene oxide synthase of Fusarium oxysporum confirms the oxygenation mechanism.

    Science.gov (United States)

    Chen, Yang; Jernerén, Fredrik; Oliw, Ernst H

    2017-07-01

    Plants and fungi form jasmonic acid from α-linolenic acid. The first two steps of biosynthesis in plants occur by sequential transformation by 13S-lipoxygenase and allene oxide synthase (AOS). The biosynthesis in fungi may follow this classical scheme, but the only fungal AOS discovered so far are cytochromes P450 (CYP) fused to 8- and 9-dioxygenases (DOX). In the present report, we purified recombinant 9S-DOX-AOS of Fusarium oxysporum from cell lysate by cobalt affinity chromatography to near homogeneity and studied key residues by site-directed mutagenesis. Sequence homology with 8R-DOX-linoleate diol synthases (8R-DOX-LDS) suggested that Tyr414 catalyzes hydrogen abstraction and that Cys1051 forms the heme thiolate ligand. Site-directed mutagenesis (Tyr414Phe; Cys1051Ser) led to loss of 9S-DOX and 9S-AOS activities, respectively, but other important residues in the CYP parts of 5,8- and 7,8-LDS or 9R-AOS were not conserved. The UV-visible spectrum of 9S-DOX-AOS showed a Soret band at 409 nm, which shifted to 413 nm in the Cys1051Ser mutant. The 9S-AOS of the Tyr414Phe mutant transformed 9S-hydroperoxides of α-linolenic and linoleic acids to allene oxides/α-ketols, but it did not transform 13-hydroperoxides. We conclude that 9S- and 8R-DOX catalyze hydrogen abstraction at C-11 and C-8, respectively, by homologous Tyr residues. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Enhancement in Ethanol Electrooxidation by SnO(x) Nanoislands Grown on Pt(111): Effect of Oxide-Metal Interface Sites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.P.; Axnanda, S.; White, M.G.; Adzic, R.R.; Hrbek, J.

    2011-08-25

    An integrated surface science and electrochemistry approach has been used to prepare and characterize SnO{sub x}/Pt(111) model catalysts and evaluate their electrochemical activity for the ethanol oxidation reaction (EOR). Nanoislands of SnO{sub x} are deposited onto the Pt(111) by reactive layer assisted deposition in which Sn metal is vapor deposited onto a Pt(111) surface precovered by NO{sub 2}. X-ray photoelectron spectroscopy (XPS) shows that the SnO{sub x} islands are highly reduced with Sn{sup 2+} being the dominant chemical species. After exposing the SnO{sub x}/Pt(111) surface to H{sub 2}O or an electrolyte solution, XPS provides evidence for a significant amount of H{sub 2}O/OH adsorbed on the reduced SnO{sub x} surfaces. Electrochemical testing reveals that the catalytic performance of Pt(111) toward ethanol electrooxidation is significantly enhanced with SnO{sub x} islands added onto the surface. The enhanced EOR activity is tentatively attributed to the efficient removal of CO{sub ads}-like poisoning species at Pt sites by oxygen-containing species that are readily formed on the SnO{sub x} nanoislands. Moreover, the strong dependence of the EOR activity on SnO{sub x} coverage provides experimental evidence for the importance of SnO{sub x}-Pt interface sites in the EOR.

  11. Signatures of Autotrophic and Heterotrophic Metabolic Activity in Enrichment Cultures from a Sulphur Oxidizing Acid Mine Site

    Science.gov (United States)

    Slater, G. F.; Bernier, L.; Cowie, B. R.; Warren, L. A.

    2006-12-01

    Delineating the role of microorganisms in geochemical processes of interest in natural environments requires the development of tools that provide the ability to distinguish amongst microbial activity associated with different metabolic guilds. The gap between phylogenetic characterization and phenotypic understanding remains, underscoring the need to consider alternative methods. Compound specific analysis of cellular components has the potential to differentiate between active metabolic processes supporting microbial communities and may be especially useful in extreme environments. The goal of this study was to determine whether the phospholipids fatty acid (PLFA) distribution and isotopic signatures associated with autotrophs and heterotrophs enriched from an acid mine drainage (AMD) system differed, and further whether natural consortial autotrophic isolates showed similar signatures to autotrophic pure strains of Acidithiobacillus ferrooxidans and A. thiooxidans. Two distinct initial enrichments with tetrathionate and CO2 yielded primarily autotrophic (95%) Acidithiobaccillus spp. sulphur oxidizing communities. The remaining microbial members of theses enrichments (subculture of the consortial isolates in a medium amended with glucose but without tetrathionate selectively resulted in their visible growth. PLFA profiles and δ13C signatures from autotrophic (1) natural enrichments, pure cultures of (2) A. ferrooxidans and (3) A. thiooxidans were similar, but collectively differed from those of the natural heterotrophic enrichment cultures. The PLFA profiles for the heterotrophic communities were made up of primarily (88-99%) C16:0 and two isomers of C18:1. In contrast, the autotrophic communities had high proportions of C16:1 (up to 18%) as well as cyclo C17 and cyclo C19 PLFA that combined comprised 18 to 58% of the observed PLFA. The δ13C signatures of the PLFA also differed strongly between the two trophic levels. The δ13C of the autotrophic PLFA, - 24 to

  12. Efficiencies of fragmentation of glycosaminoglycan chloramides of the extracellular matrix by oxidizing and reducing radicals: potential site-specific targets in inflammation?

    Science.gov (United States)

    Sibanda, Sambulelwe; Akeel, Almabrok; Martin, Stephen W; Paterson, Andrew W J; Edge, Ruth; Al-Assaf, Saphwan; Parsons, Barry J

    2013-12-01

    both HACl and HepCl, relative to the parent molecules. The carbonate radical was shown to be involved in site-specific reactions at the N-Cl groups, reacting via abstraction of Cl, to produce the same amidyl radical produced by one-electron reductants such as the hydrated electron. As for the hydrated electrons, the data support fragmentation efficiencies of 100 and 29% for reaction of carbonate radicals at N-Cl for HACl and HepCl, respectively. For the weaker oxidant, nitrogen dioxide, no fragmentation was observed, probably because of a low kinetic reactivity and low reduction potential. It seems likely therefore that the N-Cl group can direct damage to extracellular matrix glycosaminoglycan chloramides, which may be produced under inflammatory conditions. The in vivo species, the carbonate radical, is also much more likely to be site-specific in its reactions with such components of the ECM than the hydroxyl radical.

  13. Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lijuan; Qian, Yingdan; Wu, Ping; Zhang, Hui; Cai, Chenxin, E-mail: cxcai@njnu.edu.cn

    2015-04-15

    Highlights: • An approach for sensitive and selective DNA demethylase activity assay is reported. • This assay is based on the fluorescence quenching of GO and site-specific cleavage of endonuclease. • It can determine as low as 0.05 ng mL{sup −1} of MBD2 with a linear range of 0.2–300 ng mL{sup −1}. • It has an ability to recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. • It can avoid false signals, requiring no bisulfite conversion, PCR amplification, radioisotope-labeling. - Abstract: We report on the development of a sensitive and selective deoxyribonucleic acid (DNA) demethylase (using MBD2 as an example) activity assay by coupling the fluorescence quenching of graphene oxide (GO) with the site-specific cleavage of HpaII endonuclease to improve the selectivity. This approach was developed by designing a single-stranded probe (P1) that carries a binding region to facilitate the interaction with GO, which induces fluorescence quenching of the labeled fluorophore (FAM, 6-carboxyfluorescein), and a sensing region, which contains a hemi-methylated site of 5′-CmCGG-3′, to specifically recognize the target (T1, a 32-mer DNA from the promoter region of p53 gene) and hybridize with it to form a P1/T1 duplex. After demethylation with MBD2, the duplex can be specifically cleaved using HpaII, which releases the labeled FAM from the GO surface and results in the recovery of fluorescence. However, this cleavage is blocked by the hemi-methylation of this site. Thus, the magnitude of the recovered fluorescence signal is related to the MBD2 activity, which establishes the basis of the DNA demethylase activity assay. This assay can determine as low as ∼(0.05 ± 0.01) ng mL{sup −1} (at a signal/noise of 3) of MBD2 with a linear range of 0.2–300 ng mL{sup −1} and recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. The advantage of this assay is its ability to avoid false signals and no

  14. Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substrate oxidation using directed evolution and site-directed mutagenesis.

    Science.gov (United States)

    Kumar, Santosh; Liu, Hong; Halpert, James R

    2006-12-01

    CYP3A4 has been subjected to random and site-directed mutagenesis to enhance peroxide-supported metabolism of several substrates. Initially, a high-throughput screening method using whole cell suspensions was developed for H2O2-supported oxidation of 7-benzyloxyquinoline. Random mutagenesis by error-prone polymerase chain reaction and activity screening yielded several CYP3A4 mutants with enhanced activity. L216W and F228I showed a 3-fold decrease in Km, HOOH and a 2.5-fold increase in kcat/Km, HOOH compared with CYP3A4. Subsequently, T309V and T309A were created based on the observation that T309V in CYP2D6 has enhanced cumene hydroperoxide (CuOOH)-supported activity. T309V and T309A showed a > 6- and 5-fold higher kcat/Km, CuOOH than CYP3A4, respectively. Interestingly, L216W and F228I also exhibited, respectively, a > 4- and a > 3-fold higher kcat/Km, CuOOH than CYP3A4. Therefore, several multiple mutants were constructed from rationally designed and randomly isolated mutants; among them, F228I/T309A showed an 11-fold higher kcat/Km, CuOOH than CYP3A4. Addition of cytochrome b5, which is known to stimulate peroxide-supported activity, enhanced the kcat/Km, CuOOH of CYP3A4 by 4- to 7-fold. When the mutants were tested with other substrates, T309V and T433S showed enhanced kcat/Km, CuOOH with 7-benzyloxy-4-(trifluoromethyl)coumarin and testosterone, respectively, compared with CYP3A4. In addition, in the presence of cytochrome b5, T433S has the potential to produce milligram quantities of 6beta-hydroxytestosterone through peroxide-supported oxidation. In conclusion, a combination of random and site-directed mutagenesis approaches yielded CYP3A4 enzymes with enhanced peroxide-supported metabolism of several substrates.

  15. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1

    Science.gov (United States)

    Shi, Liang; Rosso, Kevin M.; Clarke, Tomas A.; Richardson, David J.; Zachara, John M.; Fredrickson, James K.

    2012-01-01

    In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III)] (oxy)(hydr)oxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III) oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 and related strains of metal-reducing Shewanella have evolved machinery (i.e., metal-reducing or Mtr pathway) for transferring electrons from the inner-membrane, through the periplasm and across the outer-membrane to the surface of extracellular Fe(III) oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC, and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt) that belongs to the NapC/NrfH family of quinol dehydrogenases. It is proposed that CymA oxidizes the quinol in the inner-membrane and transfers the released electrons to MtrA either directly or indirectly through other periplasmic proteins. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons through the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. MtrC and OmcA are the outer-membrane decaheme c-Cyts that are translocated across the outer-membrane by the bacterial type II secretion system. Functioning as terminal reductases, MtrC and OmcA can bind the surface of Fe(III) oxides and transfer electrons directly to these minerals via their solvent-exposed hemes. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III) oxides. Because of their extracellular location and broad redox potentials, MtrC and OmcA can also serve as the terminal reductases for soluble forms of Fe(III). In addition to Fe(III) oxides, Mtr pathway is also involved in reduction of

  16. Demonstration test and evaluation of Ultraviolet/Ultraviolet Catalyzed Peroxide Oxidation for Groundwater Remediation at Oak Ridge K-25 Site. Final report [March 16, 1993--March 16, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    We demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another. Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the highest concentration organic (TCA) was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system. The demonstration at K-25 included tests with (1) the commercial PSI system, (2) the new UV lamp-based system and (3) the commercial PSI and new UV lamp systems in series.

  17. Effect of chemical structure of S-nitrosothiols on nitric oxide release mediated by the copper sites of a metal organic framework based environment.

    Science.gov (United States)

    Taylor-Edinbyrd, Kiara; Li, Tanping; Kumar, Revati

    2017-05-17

    The effect of chemical structure of different biologically compatible S-nitrosothiols on the solvation environment at catalytic copper sites in a metal organic framework (MOF) suspended in a solution of ethanol is probed using computational methods. The use of a copper based MOF as a storage vehicle and catalyst (copper sites of the MOF) in the controlled and sustained release of chemically stored nitric oxide (NO) from S-nitrosocysteine has been shown to occur both experimentally and computationally [J. Am. Chem. Soc., 2012, 134, 3330-3333; Phys. Chem. Chem. Phys., 2015, 17, 23403]. Previous studies on a copper based MOF, namely HKUST-1, concluded that modifications in the R-group of s-nitrosothiols and/or organic linkers of MOFs led to a method capable of modulating NO release. In order to test the hypothesis that larger R-groups slow down NO release, four different RSNOs (R = cysteine, N-acetylcysteine, N-acetyl-d,l-penicillamine or glutathione) of varying size were investigated, which in turn required the use of a larger copper based MOF. Due to its desirable copper centers and more extensive framework, MOF-143, an analog of HKUST-1 was chosen to further explore both the effect of different RSNOs as well as MOF environments on NO release. Condensed phase classical molecular dynamics simulations are utilized to study the effect of the complex MOF environment as well as the chemical structure and size of the RSNO on the species on the catalytic reaction. The results indicate that in addition to the size of the RSNO species and the organic linkers within the MOF, the reaction rates can be modulated by the molecular structure of the RSNO and furthermore combining different RSNO species can also be used to tune the rate of NO release.

  18. Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver.

    Science.gov (United States)

    Rusyn, Ivan; Asakura, Shoji; Li, Yutai; Kosyk, Oksana; Koc, Hasan; Nakamura, Jun; Upton, Patricia B; Swenberg, James A

    2005-09-28

    Ethylene oxide (EO) is an important industrial chemical that is classified as a known human carcinogen (IARC, Group 1). It is also a metabolite of ethylene (ET), a compound that is ubiquitous in the environment and is the most used petrochemical. ET has not produced evidence of cancer in laboratory animals and is "not classifiable as to its carcinogenicity to humans" (IARC, Group 3). The mechanism of carcinogenicity of EO is not well characterized, but is thought to involve the formation of DNA adducts. EO is mutagenic in a variety of in vitro and in vivo systems, whereas ET is not. Apurinic/apyrimidinic sites (AP) that result from chemical or glycosylase-mediated depurination of EO-induced DNA adducts could be an additional mechanism leading to mutations and chromosomal aberrations. This study tested the hypothesis that EO exposure results in the accumulation of AP sites and induces changes in expression of genes for base excision DNA repair (BER). Male Fisher 344 rats were exposed to EO (100 ppm) or ET (40 or 3000 ppm) by inhalation for 1, 3 or 20 days (6h/day, 5 days a week). Animals were sacrificed 2h after exposure for 1, 3 or 20 days as well as 6, 24 and 72 h after a single-day exposure. Experiments were performed with tissues from brain and spleen, target sites for EO-induced carcinogenesis, and liver, a non-target organ. Exposure to EO resulted in time-dependent increases in N7-(2-hydroxyethyl)guanine (7-HEG) in brain, spleen, and liver and N7-(2-hydroxyethyl)valine (7-HEVal) in globin. Ethylene exposure also induced 7-HEG and 7-HEVal, but the numbers of adducts were much lower. No increase in the number of aldehydic DNA lesions, an indicator of AP sites, was detected in any of the tissues between controls and EO-, or ET-exposed animals, regardless of the duration or strength of exposure. EO exposure led to a 3-7-fold decrease in expression of 3-methyladenine-DNA glycosylase (Mpg) in brain and spleen in rats exposed to EO for 1 day. Expression of 8

  19. Active-Site Models of Bacterial Nitric Oxide Reductase Featuring Tris-Histidyl and Glutamic Acid Mimics: Influence of Carboxylate Ligand on FeB Binding and Heme Fe/FeB Redox Potential

    Science.gov (United States)

    Collman, James P.; Yan, Yi-Long; Lei, Jianping; Dinolfo, Peter H.

    2008-01-01

    Active-site models of bacterial nitric oxide reductase (NOR) featuring a heme iron and a trisimidazole and a glutaric acid-bound non-heme iron (FeB) have been synthesized. These models closely replicate the proposed active site of native NORs. Examination of these models shows that the glutamic acid mimic is required for both FeB retention in the distal binding site and proper modulation of the redox potentials of both the heme and non-heme irons. PMID:16961346

  20. Sulfur-H{sub z}(CH{sub x}){sub y}(z = 0,1) functionalized metal oxide nanostructure decorated interfaces: Evidence of Lewis base and Brönsted acid sites – Influence on chemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Laminack, William; Baker, Caitlin [Department of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Gole, James, E-mail: james.gole@physics.gatech.edu [Department of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Department of Mechanical Engineering, Georgia Tech, Atlanta, GA 30332 (United States)

    2015-06-15

    Nanostructure metal oxide decorated n-type extrinsic porous silicon (PS) semiconductor interfaces are modified through in-situ interaction with acidic ethane and butane thiols (EtSH, BuSH) and basic diethyl sulfide (Et{sub 2}S). Highly sensitive conductometric sensor evaluations and X-ray Photoelectron Spectroscopy demonstrate the effect of sulfur group functionalization modifying the acidity of the metal oxides and their interaction with NH{sub 3}. SEM micrographs demonstrate that the sulfur treated particles are less than 30 nm in size. EDAX studies confirm the chemical composition of the modified nanoparticles and suggest the surface interaction of the sulfides and thiols. The acidic thiols can form Brönsted acidic sites enhancing the acidity of the metal oxides, thus broadening the initial metal oxide acidity range. The sulfides interact to lower the Lewis acidity of nanostructured metal oxide sites. Conductometric response matrices with NH{sub 3} at room temperature, corresponding to the thiol and sulfide treated nanostructures of the metal oxides TiO{sub 2}, SnO{sub x}, Ni{sub x}O, Cu{sub x}O, and Au{sub x}O (x >> 1) are evaluated for a dominant electron transduction process forming the basis for reversible chemical sensing in the absence of chemical bond formation. Treatment with the acidic thiols enhances the metal center acidity. It is suggested that the thiols can interact to increase the Brönsted acidity of the doped metal oxide surface if they maintain SH bonds. This process may account for the shift in Lewis acidity as the Brönsted acid sites counter the decrease in Lewis acidity resulting from the interaction of S-(CH{sub x}){sub y} groups. In contrast, treatment with basic Et{sub 2}S decreases the Lewis acidity of the metal oxide sites, enhancing the basicity of the decorated interface. XPS measurements indicate a change in binding energy (BE) of the metal and oxygen centers. The observed changes in conductometric response do not represent a

  1. B-Site Metal (Pd, Pt, Ag, Cu, Zn, Ni) Promoted La1−xSrxCo1−yFeyO3–δ Perovskite Oxides as Cathodes for IT-SOFCs

    OpenAIRE

    Shaoli Guo; Hongjing Wu; Fabrizio Puleo; Leonarda F. Liotta

    2015-01-01

    Perovskite oxides La1−xSrxCo1−yFeyO3–δ (LSCF) have been extensively investigated and developed as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) due to mixed ionic–electronic conductivity and high electrooxygen reduction activity for oxygen reduction. Recent literature investigations show that cathode performances can be improved by metal surface modification or B-site substitution on LSCF. Although the specific reaction mechanism needs to be further investi...

  2. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea

    Science.gov (United States)

    Hu, Yu; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Linying; Chen, Duofu

    2015-12-01

    Cold hydrocarbon seepage is a frequently observed phenomenon along continental margins worldwide. However, little is known about the impact of seeping fluids on the geochemical cycle of redox-sensitive elements. Pore waters from four gravity cores (D-8, D-5, D-7, and D-F) collected from cold-seep sites of the northern South China Sea were analyzed for SO42-, Mg2+, Ca2+, Sr2+, dissolved inorganic carbon (DIC), δ13CDIC, dissolved Fe, Mn, and trace elements (e.g. Mo, U). The sulfate concentration-depth profiles, δ13CDIC values and (ΔDIC+ΔCa2++ΔMg2+)/ΔSO42- ratios suggest that organoclastic sulfate reduction (OSR) is the dominant process in D-8 core. Besides OSR, anaerobic oxidation of methane (AOM) is partially responsible for depletion of sulfate at D-5 and D-7 cores. The sulfate consumption at D-F core is predominantly caused by AOM. The depth of sulfate-methane interface (SMI) and methane diffusive flux of D-F core are calculated to be ~7 m and 0.035 mol m-2 yr-1, respectively. The relatively shallow SMI and high methane flux at D-F core suggest the activity of gas seepage in this region. The concentrations of dissolved uranium (U) were inferred to decrease significantly within the iron reduction zone. It seems that AOM has limited influence on the U geochemical cycling. In contrast, a good correlation between the consumption of sulfate and the removal of molybdenum (Mo) suggests that AOM has a significantly influence on the geochemical cycle of Mo at cold seeps. Accordingly, cold seep environments may serve as an important potential sink in the marine geochemical cycle of Mo.

  3. Using semi-continuous, in-situ measurements of nitrous oxide isotopic composition at a suburban site to track emission processes

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Christoph, Hüglin; Christoph, Zellweger; Béla, Tuzson; Erkan, Ibraim; Lukas, Emmenegger; Joachim, Mohn

    2017-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the strongest ozone-destroying substance emitted this century. The atmospheric N2O mole fraction has been increasing at a rate of 0.2-0.3% per year over the past decades due to anthropogenic emissions; in addition, recent results suggest that the rate of increase is rising - therefore effective mitigation of N2O emissions is a critical point for environmental policy. However, N2O sources are poorly defined and disperse, complicating the development of targeted mitigation strategies. Online isotopic measurements using preconcentration and laser spectroscopy [1,2,3] have great potential to unravel spatial and temporal variations in sources, sinks and chemistry of trace gases such as N2O. Semi-continuous, real-time measurements of N2O isotopic composition (δ18O, site preference [SP = 14N15N16O - 15N14N16O] and δ15Nbulk) were performed at the suburban site of Dübendorf, Switzerland, for 19 months between July 2014 and February 2016. The data precision reached 0.1‰ in the final months, thus the results could clearly identify nocturnal build-up of N2O, with a corresponding decrease in δ18O, SP and δ15Nbulk due to isotopically depleted anthropogenic sources. Daily mean source isotopic composition was calculated by considering the measured and the background mole fraction and isotopic composition. Delta values of the mean emission source were highest in winter, with a seasonal cycle of 12, 8 and 5‰ for δ18O, SP and δ15Nbulk respectively. The chemical and meteorological parameters controlling source isotopic composition were considered using data from the Swiss National Air Pollution Monitoring Network (NABEL) as well as a transport regime cluster analysis. A clear spatial distribution for source isotopic composition was observed for δ18O, as well as a significant relationship with the level of urban pollution, indicating δ18O may be a strong indicator of combustion/industrial vs. agricultural N2O. In contrast

  4. Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal?

    Science.gov (United States)

    Lokhmatikov, Alexey V; Voskoboynikova, Natalia; Cherepanov, Dmitry A; Skulachev, Maxim V; Steinhoff, Heinz-Jürgen; Skulachev, Vladimir P; Mulkidjanian, Armen Y

    2016-01-01

    Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane-liposomes of pure bovine heart CL-we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature.

  5. The extrinsic PsbO protein modulates the oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes.

    Science.gov (United States)

    Semin, Boris K; Podkovirina, Tatiana E; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B

    2015-08-01

    The oxidation of exogenous Mn(II) cations at the high-affinity (HA) Mn-binding site in Mn-depleted photosystem II (PSII) membranes with or without the presence of the extrinsic PsbO polypeptide was studied by EPR. The six-lines EPR spectrum of Mn(II) cation disappears in the absence of the PsbO protein in membranes under illumination, but there was no effect when PSII preparations bound the PsbO protein. Our study demonstrates that such effect is determined by significant influence of the PsbO protein on the ratio between the rates of Mn oxidation and reduction at the HA site when the membranes are illuminated.

  6. C-reactive protein and annexin A5 bind to distinct sites of negatively charged phospholipids present in oxidized low-density lipoprotein.

    NARCIS (Netherlands)

    Tits, L.J.H. van; Graaf, J. de; Toenhake, H.; Heerde, W.L. van; Stalenhoef, A.F.H.

    2005-01-01

    OBJECTIVE: To investigate binding of C-reactive protein (CRP) and annexin A5, 2 proteins with high affinity for negatively charged phospholipids, to oxidized low-density lipoprotein (LDL) and the consequences of these interactions for subsequent binding of oxidized LDL to monocyte/macrophage-like

  7. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    Science.gov (United States)

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  8. Ion-exchanged binuclear Ca2OX clusters, X = 1-4, as active sites of selective oxidation over MOR and FAU zeolites.

    Science.gov (United States)

    Larin, A V; Zhidomirov, G M; Trubnikov, D N; Vercauteren, D P

    2010-01-30

    A new series of calcium oxide clusters Ca(2)O(X) (X = 1-4) at cationic positions of mordenite (MOR) and faujasite (FAU) is studied via the isolated cluster approach. Active oxide framework fragments are represented via 8-membered window (8R) in MOR, and two 6R and 4R windows (6R+4R) possessing one common Si-O-Si moiety in FAU. Structural similarities between the Ca(2)O(X)(8R) and Ca(2)O(X)(6R+4R) moieties are considered up to X = 4. High oxidation possibilities of the Ca(2)O(2)(nR) and Ca(2)O(3)(nR) systems are demonstrated relative to CO, whose oxidation over the Ca-exchanged zeolite forms is well studied experimentally. Relevance of the oxide cluster models with respect to trapping and desorption of singlet dioxygen is discussed.

  9. Insight into PreImplantation Factor (PIF*) Mechanism for Embryo Protection and Development: Target Oxidative Stress and Protein Misfolding (PDI and HSP) through Essential RIPK Binding Site

    Science.gov (United States)

    Barnea, Eytan R.; Lubman, David M.; Liu, Yan-Hui; Absalon-Medina, Victor; Hayrabedyan, Soren; Todorova, Krassimira; Gilbert, Robert O.; Guingab, Joy; Barder, Timothy J.

    2014-01-01

    Background Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF) administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised. Methods FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control). Murine embryo (d10) lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS). In silico evaluation examined binding of PIF to critical targets, using mutation analysis. Results PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like) containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90), co-chaperone, BAG-3. Remarkably, PIF targets a common RIPK site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented. Conclusion Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF

  10. Insight into PreImplantation Factor (PIF*) mechanism for embryo protection and development: target oxidative stress and protein misfolding (PDI and HSP) through essential RIKP [corrected] binding site.

    Science.gov (United States)

    Barnea, Eytan R; Lubman, David M; Liu, Yan-Hui; Absalon-Medina, Victor; Hayrabedyan, Soren; Todorova, Krassimira; Gilbert, Robert O; Guingab, Joy; Barder, Timothy J

    2014-01-01

    Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF) administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised. FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control). Murine embryo (d10) lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS). In silico evaluation examined binding of PIF to critical targets, using mutation analysis. PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like) containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90), co-chaperone, BAG-3. Remarkably, PIF targets a common RIKP [corrected] site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented. Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF-affinity-column is a novel

  11. Insight into PreImplantation Factor (PIF* mechanism for embryo protection and development: target oxidative stress and protein misfolding (PDI and HSP through essential RIKP [corrected] binding site.

    Directory of Open Access Journals (Sweden)

    Eytan R Barnea

    Full Text Available Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised.FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control. Murine embryo (d10 lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS. In silico evaluation examined binding of PIF to critical targets, using mutation analysis.PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90, co-chaperone, BAG-3. Remarkably, PIF targets a common RIKP [corrected] site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented.Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF-affinity-column is a

  12. Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2012-08-01

    Full Text Available The water-soluble fractions of aerosol filter samples and cloud water collected during the Whistler Aerosol and Cloud Study (WACS 2010 were analyzed using an Aerodyne aerosol mass spectrometer (AMS. This is the first study to report AMS organic spectra of re-aerosolized cloud water, and to make direct comparison between the AMS spectra of cloud water and aerosol samples collected at the same location. In general, the mass spectra of aerosol were very similar to those of less volatile cloud organics. By using a photochemical reactor to oxidize both aerosol filter extracts and cloud water, we find evidence that fragmentation of water-soluble organics in aerosol increases their volatility during photochemical oxidation. By contrast, enhancement of AMS-measurable organic mass by up to 30% was observed during the initial stage of oxidation of cloud water organics, which was followed by a decline at the later stages of oxidation. These observations are in support of the general hypothesis that cloud water oxidation is a viable route for SOA formation. In particular, we propose that additional SOA material was produced by functionalizing dissolved organics via OH oxidation, where these dissolved organics are sufficiently volatile that they are not usually part of the aerosol. This work demonstrates that water-soluble organic compounds of intermediate volatility (IVOC, such as cis-pinonic acid, produced via gas-phase oxidation of monoterpenes, can be important aqueous-phase SOA precursors in a biogenic-rich environment.

  13. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes.

    Science.gov (United States)

    Shi, Liang; Squier, Thomas C; Zachara, John M; Fredrickson, James K

    2007-07-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  14. The Two-component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus

    Directory of Open Access Journals (Sweden)

    Zhaobao Wang

    2016-11-01

    Full Text Available Acidithiobacillus caldus (A. caldus is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA and tetrathionate hydrolase (TetH. In A. caldus, there is an additional two-component system called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and tetH in the genome, we suggest that the regulation of the S4I pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the S4I pathway, ΔrsrR and ΔrsrS strains were constructed in A. caldus using a newly developed markerless gene knockout method. Transcriptional analysis of the tetH cluster in the wild type and mutant strains revealed positive regulation of the S4I pathway by the RsrS-RsrR system. A 19bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT located upstream of the tetH promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs in vitro and promoter-probe vectors in vivo. In addition, ΔrsrR and ΔrsrS strains cultivated in K2S4O6- medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of rsrS or rsrR had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of tetH-doxDA was proposed to provide insights towards the understanding of sulfur metabolism in A. caldus. This study also provided a powerful genetic tool for studies in A. caldus.

  15. Measuring site occupancy

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna; Williamson, James

    2014-01-01

    Site occupancy is an extremely important aspect of quantification of protein modifications. Knowing the degree of modification of each oxidised cysteine residue is critical to understanding the biological role of these modifications. Yet modification site occupancy is very often overlooked, in part...... occupancy of the modification site. We show that, on one hand, heavily modified cysteines are not necessarily involved in the response to oxidative stress. On the other hand residues with low modification level can be dramatically affected by mild oxidative imbalance. We make use of high resolution mass...... peptides corresponding to 90 proteins. Only 6 modified peptides changed significantly under mild oxidative stress. Quantitative information allowed us to determine relative modification site occupancy of each identified modified residue and pin point heavily modified ones. The method proved to be precise...

  16. Site Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A

    2002-04-01

    The objectives, the programme, and the achievements of SCK-CEN's Site Restoration Department for 2001 are described. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and the management of spent fuel and the flow of dismantled materials and the recycling of materials from decommissioning activities based on the smelting of metallic materials in specialised foundries. The department provides consultancy and services to external organisations and performs R and D on new techniques including processes for the treatment of various waste components including the reprocessing of spent fuel, the treatment of tritium, the treatment of liquid alkali metals into cabonates through oxidation, the treatment of radioactive organic waste and the reconditioning of bituminised waste products.

  17. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013

  18. Modification and characterization of sites giving acid cracking on aluminium oxide supports; Modification et caracterisation des sites responsables du craquage acide sur des supports a base d`alumine

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, D.

    1997-10-23

    The aim of this work is to characterize the surface acid properties of {gamma} alumina, especially the nature, the amount, the strength and the environment of acid sites. The techniques that have been used are: the thermo-desorption of trimethyl-phosphine followed by {sup 31}P MAS NMR, the infrared spectroscopy, the n-heptane cracking, the modification of {gamma} alumina by the addition of chlorine, silicon and alkali (K{sup +}, Na{sup +}), alkaline-earths (Mg{sup 2+}, Ca{sup 2+}), lanthanum (La{sup 3+}) cations. The combination of these techniques has allowed to identify the surface acid properties of {gamma} alumina through the n-heptane transformation reactions under reforming conditions. We have shown that Lewis acidity is responsible for cracking reactions leading to C{sub 1}-C{sub 6} and C{sub 2}-C{sub 5} whereas the cracking of n-heptane producing C{sub 3}-C{sub 4} is due to Broensted acid sites. The isomerization and cyclization reactions both require weaker Broensted acid sites than cracking leading to C{sub 3}-C{sub 4}. The mechanisms involved in the formation of products of these reactions have been identified. Despite the complexity of surface acid properties of {gamma} alumina, this study has determined the environment of catalytically active sites, considering the presence of cation vacancies. (author) 206 refs.

  19. Single-Site VO x Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane

    KAUST Repository

    Barman, Samir

    2016-07-26

    We report here an accurate surface organometallic chemistry (SOMC) approach to propane oxidative dehydrogenation (ODH) using a μ2-oxo-bridged, bimetallic [V2O4(acac)2] (1) (acac = acetylacetonate anion) complex as a precursor. The identity and the nuclearity of the product of grafting and of the subsequent oxidative treatment have been systematically studied by means of FT-IR, Raman, solid-state (SS) NMR, UV-vis DRS, EPR and EXAFS spectroscopies. We show that the grafting of 1 on the silica surface under a rigorous SOMC protocol and the subsequent oxidative thermal treatment lead exclusively to well-defined and isolated monovanadate species. The resulting material has been tested for the oxidative dehydrogenation of propane in a moderate temperature range (400-525 °C) and compared with that of silica-supported vanadium catalysts prepared by the standard impregnation technique. The experimental results show that the catalytic activity in propane ODH is strongly upgraded by the degree of isolation of the VOx species that can be achieved by employing the SOMC protocol. © 2016 American Chemical Society.

  20. B-Site Metal (Pd, Pt, Ag, Cu, Zn, Ni Promoted La1−xSrxCo1−yFeyO3–δ Perovskite Oxides as Cathodes for IT-SOFCs

    Directory of Open Access Journals (Sweden)

    Shaoli Guo

    2015-03-01

    Full Text Available Perovskite oxides La1−xSrxCo1−yFeyO3–δ (LSCF have been extensively investigated and developed as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs due to mixed ionic–electronic conductivity and high electrooxygen reduction activity for oxygen reduction. Recent literature investigations show that cathode performances can be improved by metal surface modification or B-site substitution on LSCF. Although the specific reaction mechanism needs to be further investigated, the promoting effect of metal species in enhancing oxygen surface exchange and oxygen bulk diffusion is well recognized. To our knowledge, no previous reviews dealing with the effect of metal promotion on the cathodic performances of LSCF materials have been reported. In the present review, recent progresses on metal (Pd, Pt, Ag, Cu, Zn, Ni promotion of LSCF are discussed focusing on two main aspects, the different synthesis approaches used (infiltration, deposition, solid state reaction, one pot citrate method and the effects of metal promotion on structural properties, oxygen vacancies content and cathodic performances. The novelty of the work lies in the fact that the metal promotion at the B-site is discussed in detail, pointing at the effects produced by two different approaches, the LSCF surface modification by the metal or the metal ion substitution at the B-site of the perovskite. Moreover, for the first time in a review article, the importance of the combined effects of oxygen dissociation rate and interfacial oxygen transfer rate between the metal phase and the cathode phase is addressed for metal-promoted LSCF and compared with the un-promoted oxides. Perspectives on new research directions are shortly given in the conclusion.

  1. Characterization of the Aerobic Oxidation of cis-Dichloroethene and Vinyl Chloride in Support of Bioremediation of Chloroethene-Contaminated Sites

    Science.gov (United States)

    2004-11-05

    of soil in this later study. 100 mL of well water was placed in each sterile, 160-mL serum bottle , and the bottles were sealed with a sterile teflon...containing 72 ml of distilled water in the presence of cobalt catalyst. The oxygen peak area for the mixture from this bottle , as measured by GC, was...P. J. Bottomley, and D. J. Arp. 2001. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4. Appl. Environ. Microbiol

  2. Pyrite oxidation by microbial consortia

    Science.gov (United States)

    Bostick, B. C.; Revill, K. L.; Doyle, C.; Kendelewicz, T.; Brown, G. E.; Spormann, A. M.; Fendorf, S.

    2003-12-01

    Acid mine drainage (AMD) is formed through pyrite oxidation, which produces acidity and releases toxic metals associated with pyrite and other sulfide minerals. Microbes accelerate pyrite oxidation markedly, thereby playing a major role in the production of AMD. Here, we probe pyrite oxidation by consortia of Thiobacillus ferrooxidans and thiooxidans using surface-sensitive photoelectron spectroscopy and X-ray absorption spectroscopy and compare them with surfaces oxidized through chemical and single species cultures. Microbial oxidation resulted in the formation of distinct oxidized surface species distributed non-uniformly over the pyrite surface; consortia produced a surface both more heterogeneous and more oxidized. In contrast, chemical oxidation proceeds without the build-up of passivating oxidation products. Surface morphology was not correlated with sites of nucleation or oxidation in any obvious manner. These results demonstrate that microbial oxidation occurs through a similar mechanism to chemical oxidation, but that the presence of complex microbial communities may impact the manner by which pyrite oxidation proceeds.

  3. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO2. In these structures, isolated Pt atoms, Ptiso, remain stable through various conditions, and spectroscopic evidence suggests Ptiso species exist in homogeneous local environments. Comparing Ptiso to ∼1 nm preoxidized (Ptox) and prereduced (Ptmetal) Pt clusters on TiO2, we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Ptiso ≪ Ptmetal atoms bonded to TiO2 and that Ptiso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO2. This approach should be generally useful for studying the behavior of supported precious metal atoms.

  4. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.

    2017-06-12

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  5. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  6. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Science.gov (United States)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  7. Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway

    Energy Technology Data Exchange (ETDEWEB)

    Dayie, T. Kwaku, E-mail: dayie@umd.edu; Thakur, Chandar S. [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States)

    2010-05-15

    Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes ({sup 13}C, {sup 15}N, and/or {sup 2}H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-{sup 13}C-glycerol and {sup 15}N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, {sup 13}C-sodium formate combined with {sup 13}C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to {sup 1}J{sub C5C6} scalar coupling. However, the C2/C8 sites within purine rings and the C1'/C3'/C5' positions within the ribose rings have reduced labeling. Addition of {sup 13}C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1'/C3'/C5' positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and {sup 15}N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs.

  8. A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP

    Science.gov (United States)

    Gao, Dong; Fang, Ting; Verma, Vishal; Zeng, Linghan; Weber, Rodney J.

    2017-08-01

    An automated analytical system was developed for measuring the oxidative potential (OP) with the dithiothreitol (DTT) assay of filter extracts that include both water-soluble and water-insoluble (solid) aerosol species. Three approaches for measuring total oxidative potential were compared. These include using methanol as the solvent with (1) and without (2) filtering the extract, followed by removing the solvent and reconstituting with water, and (3) extraction in pure water and performing the OP analysis in the extraction vial with the filter. The water extraction method (the third approach, with filter remaining in the vial) generally yielded the highest DTT responses with better precision (coefficient of variation of 1-5 %) and was correlated with a greater number of other aerosol components. Because no organic solvents were used, which must be mostly eliminated prior to DTT analysis, it was easiest to automate by modifying an automated analytical system for measuring water-soluble OP developed by Fang et al. (2015). Therefore, the third method was applied to the field study for the determination of total OP. Daily 23 h filter samples were collected simultaneously at a roadside (RS) and a representative urban (Georgia Tech, GT) site for two 1-month study periods, and both water-soluble (OPWS-DTT) and total (OPTotal-DTT) OP were measured. Using PM2. 5 (aerodynamic diameter coefficient (r) of 0.71 (N = 35; p value < 0.01), compared to a ratio of 62 % and r = 0. 56 (N = 31; p value < 0.01) at the roadside site. The same DTT analyses were performed, and similar results were found using particle composition monitors (flow rate of 16.7 L min-1) with Teflon filters. Comparison of measurements between sites showed only slightly higher levels of both OPWS-DTT and OPTotal-DTT at the RS site, indicating both OPWS-DTT and OPTotal-DTT were largely spatially homogeneous. These results are consistent with roadway emissions as sources of DTT-quantified PM2. 5 OP and indicate

  9. An insight into the effects of B-site transition metals on the activity, activation effect and stability of perovskite oxygen electrodes for solid oxide electrolysis cells

    Science.gov (United States)

    Bi, Jiaxin; Yang, Shengbing; Zhong, Shaohua; Wang, Jian-Qiang; Fan, Chou; Chen, Xinbing; Liu, Yihui

    2017-09-01

    Here, effects of B-site transition metals (TMs) in the (La0.6Sr0.4)XO3-δ (X = Mn, Fe, Co) perovskite structure on the activity and stability of the oxygen electrodes during high temperature electrolysis are discussed to provide a deep understanding of the phenomena observed for different oxygen electrodes under anodic polarizations. Performance and stability of the electrodes vary significantly at 800 °C as the TMs changed from Mn to Fe and Co, which is attributed to the different ionic conductivities and surface chemistry of the materials that have a strong dependence on the valence state and electronic structure of TMs. Under an anodic current passage of 200 mA cm-2 at 800 °C, electrode polarization resistance (RE) and overpotential (η) of the (La0.6Sr0.4)MnO3-δ (LSM) electrode decrease significantly by 1.75 Ω cm2 and 101 mV during the 1200 min test, compared with the constant values of RE and η for the (La0.6Sr0.4)FeO3-δ (LSF) and (La0.6Sr0.4)CoO3-δ (LSC) electrodes, an indication of the influence of B-site TMs on the electrode performance and stability. Most serious degradation is observed at the (La0.6Sr0.4)MnO3-δ electrode due to the electrode detachment arising from the accelerated SrO surface segregation and related disintegration of LSM particles near the electrode/electrolyte interface.

  10. Oxidized amino acid residues in the vicinity of Q(A) and Pheo(D1) of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species.

    Science.gov (United States)

    Frankel, Laurie K; Sallans, Larry; Limbach, Patrick A; Bricker, Terry M

    2013-01-01

    Under a variety of stress conditions, Photosystem II produces reactive oxygen species on both the reducing and oxidizing sides of the photosystem. A number of different sites including the Mn4O5Ca cluster, P680, PheoD1, QA, QB and cytochrome b559 have been hypothesized to produce reactive oxygen species in the photosystem. In this communication using Fourier-transform ion cyclotron resonance mass spectrometry we have identified several residues on the D1 and D2 proteins from spinach which are oxidatively modified and in close proximity to QA (D1 residues (239)F, (241)Q, (242)E and the D2 residues (238)P, (239)T, (242)E and (247)M) and PheoD1 (D1 residues (130)E, (133)L and (135)F). These residues may be associated with reactive oxygen species exit pathways located on the reducing side of the photosystem, and their modification may indicate that both QA and PheoD1 are sources of reactive oxygen species on the reducing side of Photosystem II.

  11. Role of [FeOx(OH)y] surface sites on the adsorption of β-lactamic antibiotics on Al2O3 supported Fe oxide.

    Science.gov (United States)

    Pinto, Paula S; Medeiros, Tayline P V; Ardisson, José D; Lago, Rochel M

    2016-11-05

    In this work, [FeOx(OH)y]/Al2O3 composites with different Fe oxyhydroxy contents, i.e. 10, 20 and 50wt% treated at 150, 200, 300 and 450°C were investigated as adsorbents of β-lactamic antibiotics, i.e. cephalexin, ceftriaxone and especially amoxicillin, from aqueous solutions. The obtained results showed that the nature of the surface Fe(3+) species play a fundamental role on the adsorption process. The most efficient adsorption was obtained for the sample 150Fe50A (50% [FeOx(OH)y] supported in Al2O3 treated at 150°C) whereas the thermal treatment at higher temperatures caused a strong decrease on the adsorption capacity. Mössbauer, XRD, FTIR, Raman, TG-MS, SEM, CHN and BET of the composite 150Fe50A suggested an approximate composition of FeO0.65(OH)1.7 whereas at 450°C strong dehydroxylation process takes place to form FeO1.4(OH)0.21. These results combined with competitive adsorption using amoxicillin mixed with phosphate or H2O2 suggest that the antibiotic molecules adsorb by complexation on surface sites likely based on FeOx(OH)y by the replacement of the labile OH ligands.

  12. New hypotheses for the binding mode of 4- and 7-substituted indazoles in the active site of neuronal nitric oxide synthase.

    Science.gov (United States)

    Lohou, Elodie; Sopkova-de Oliveira Santos, Jana; Schumann-Bard, Pascale; Boulouard, Michel; Stiebing, Silvia; Rault, Sylvain; Collot, Valérie

    2012-09-01

    Taking into account the potency of 4- and 7-nitro and haloindazoles as nNOS inhibitors previously reported in the literature by our team, a multidisciplinary study, described in this article, has recently been carried out to elucidate their binding mode in the enzyme active site. Firstly, nitrogenous fastening points on the indazole building block have been investigated referring to molecular modeling hypotheses and thanks to the in vitro biological evaluation of N(1)- and N(2)-methyl and ethyl-4-substituted indazoles on nNOS. Secondly, we attempted to confirm the importance of the substitution in position 4 or 7 by a hydrogen bond acceptor group thanks to the synthesis and the in vitro biological evaluation of a new analogous 4-substituted derivative, the 4-cyanoindazole. Finally, by opposition to previous hypotheses describing NH function in position 1 of the indazole as a key fastening point, the present work speaks in favour of a crucial role of nitrogen in position 2.

  13. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  14. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    Science.gov (United States)

    Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.; Jensen, Bjarne; Skov, Henrik; Birmili, Wolfram; Wiedensohler, Alfred; Kristensson, Adam; Nøjgaard, Jacob K.; Massling, Andreas

    2016-09-01

    This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS), northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF) events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3) might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10-30 nm) in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those events.

  15. 生活垃圾填埋场甲烷自然减排的新途径——厌氧与好氧的共氧化作用%New Way for Natural Mitigation of Methane in Domestic Waste Landfill Sites: Co-oxidation of Anaerobic and Aerobic Oxidation

    Institute of Scientific and Technical Information of China (English)

    周海燕; 韩丹

    2011-01-01

    通过证实生活垃圾填埋场中甲烷厌氧氧化与好氧氧化的共存,提出了甲烷自然减排的新途径.分别选取暴雨过后垃圾填埋表层30~60 cm的覆土、1.5 m以下的垃圾以及底层矿化垃圾做硫酸盐还原菌阳性反应实验,结果表明:生活垃圾填埋体不同填埋层都存在不同数量级的硫酸盐还原菌,且底层矿化垃圾中的硫酸盐还原菌的数量最多,表层覆土中最少.颗粒大小比例为50%:50%的垃圾样品表现出最佳的甲烷好氧与厌氧氧化效果,且厌氧氧化在共氧化作用中的比例达到20%以上.含水率为25%时,矿化垃圾中微生物活性最大,好氧与厌氧氧化甲烷速率均达到最大;当含水率接近70%时,甲烷厌氧氧化的贡献率可达30%以上.外源甲烷的补充可以驯化甲烷氧化微生物,其中甲烷好氧氧化时间最大可缩短50%;而甲烷通入量超过2 mL后,甲烷好氧与厌氧氧化均受到抑制.%A new way for natural mitigation of methane was put forward by authenticating co-oxidation of anaerobic and aerobic oxidation of methane in domestic waste landfill sites. The soil at 30-60 cm, the waste below 1.5 m from the surface, and the aged waste at the bottom, were selected for the experiments of sulfate-reducing bacteria positive reaction. The results showed that sulfate-reducing bacteria nearly existed in all landfill layers of waste landfill bodies, and aged waste at the bottom contained most, the surface soil contained least. Waste samples with 50%: 50% of coarse and fine particle size proportion showed the best methane oxidation effect of aerobic and anaerobic oxidation, and anaerobic oxidation accounted for above 20%. Microbial activity in aged waste and its methane co-oxidation rate both reached the maximum value as moisture content was 25%. Anaerobic oxidation rate could reach more than 30% as moisture content was close to 70%. Supplement of exogenous methane could culture methane-oxidizing bacteria

  16. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  17. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  18. Monocytes harboring cytomegalovirus: interactions with endothelial cells, smooth muscle cells, and oxidized low-density lipoprotein. Possible mechanisms for activating virus delivered by monocytes to sites of vascular injury.

    Science.gov (United States)

    Guetta, E; Guetta, V; Shibutani, T; Epstein, S E

    1997-07-01

    Cytomegalovirus (CMV) infection and its periodic reactivation from latency may contribute to atherogenesis and restenosis. It is unknown how CMV is delivered to the vessel wall and is reactivated. We examined the following hypothesis: CMV, present in monocytes recruited to sites of vascular injury, is activated by endothelial cell (EC) or smooth muscle cell (SMC) contact and by oxidized low-density lipoproteins (oxLDLs). The CMV major immediate-early promoter (MIEP) controls immediate-early (IE) gene expression, and thereby viral replication. To determine whether elements of the vessel wall can activate CMV present in monocytes, we transiently transfected the promonocytic cell line HL-60 with a chloramphenicol acetyltransferase reporter gene construct driven by MIEP. MIEP activity increased 1.7 +/- 0.5-fold (P = .02) when the transfected HL-60 cells were cocultured with ECs, 4.5 +/- 1.5-fold when cocultured with SMCs (P = .03), and 2.0 +/- 0.5-fold (P = .01) when exposed to oxLDL. The combination of oxLDL and EC coculture increased MIEP activity over 7-fold. We also found that freshly isolated human monocytes, infected with endothelium-passaged CMV, were capable of transmitting infectious virus to cocultured ECs or SMCs. CMV-related progression of atherosclerosis or restenosis may, at least in part, involve monocyte delivery of the virus to the site of vascular injury, where the vascular milieu, ie, contact with ECs, SMCs, and oxLDL, can contribute to viral reactivation and/or replication by enhancing CMV IE gene expression. The virus may then infect neighboring ECs or SMCs, initiating a cascade of events predisposing to the development of atherogenesis-related processes.

  19. Site assessment

    DEFF Research Database (Denmark)

    Vesth, Allan; Gómez Arranz, Paula

    This report describes the site assessment of given position in a given site, for a wind turbine with a well-defined hub height and rotor diameter. The analysis is carried out in accordance to IEC 61400-12-1 [1], and both an obstacle assessment and a terrain assessment are performed....

  20. Site assessment

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the site assessment of given position in a given site, for a wind turbine with a well-defined hub height and rotor diameter. The analysis is carried out in accordance to IEC 61400-12-1 [1], and both an obstacle assessment and a terrain assessment are performed....

  1. Catalysis on singly dispersed bimetallic sites

    Science.gov (United States)

    Zhang, Shiran; Nguyen, Luan; Liang, Jin-Xia; Shan, Junjun; Liu, Jingyue; Frenkel, Anatoly I.; Patlolla, Anitha; Huang, Weixin; Li, Jun; Tao, Franklin

    2015-08-01

    A catalytic site typically consists of one or more atoms of a catalyst surface that arrange into a configuration offering a specific electronic structure for adsorbing or dissociating reactant molecules. The catalytic activity of adjacent bimetallic sites of metallic nanoparticles has been studied previously. An isolated bimetallic site supported on a non-metallic surface could exhibit a distinctly different catalytic performance owing to the cationic state of the singly dispersed bimetallic site and the minimized choices of binding configurations of a reactant molecule compared with continuously packed bimetallic sites. Here we report that isolated Rh1Co3 bimetallic sites exhibit a distinctly different catalytic performance in reduction of nitric oxide with carbon monoxide at low temperature, resulting from strong adsorption of two nitric oxide molecules and a nitrous oxide intermediate on Rh1Co3 sites and following a low-barrier pathway dissociation to dinitrogen and an oxygen atom. This observation suggests a method to develop catalysts with high selectivity.

  2. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed...... of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio...... modulated by EDTA. This is ascribed to metal ion-protein interactions affecting the sites of initial oxidation. Hypochlorous acid gave low concentrations of released carbonyls, but high yields of protein-bound material. The peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride...

  3. Site Practice

    DEFF Research Database (Denmark)

    Wahedi, Haseebullah

    2016-01-01

    different practices in the construction phase. The research is based on an ethnographic study of a case in Denmark. The empirical data were collected through direct observations and semi-structured interviews with site managers, contract managers, foremen and craftsmen. Findings revealed...... that the construction phase comprises several communities and practices, leading to various uses of the drawings. The results indicated that the craftsmen used drawings to position themselves in the correct location, and that the site managers and contract managers used them as management tools and legal documents...

  4. Site Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A

    2001-04-01

    The objectives, the programme, and the achievements of the Site Restoration Department of SCK-CEN in 2000 are summarised. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and activities related to the management of decommissioning projects. The department provides consultancy and services to external organisations.

  5. SITE-94. Radionuclide solubilities for SITE-94

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.; Apted, M. [QuantiSci, Denver, CO (United States)

    1996-12-01

    In this report, solubility constraints are evaluated on radioelement source-term concentrations supporting the SITE-94 performance assessment. Solubility models are based on heterogeneous-equilibrium, mass- and charge-balance constraints incorporated into the EQ3/6 geochemical software package, which is used to calculate the aqueous speciation behavior and solubilities of U, Th, Pu, Np, Am, Ni, Ra, Se, Sn, Sr, Tc and Zr in site groundwaters and near-field solutions. The chemical evolution of the near field is approximated using EQ3/6 in terms of limiting conditions at equilibrium, or steady state, in three closed systems representing fully saturated bentonite, Fe{sup o} corrosion products of the canister, and spent fuel. The calculations consider both low-temperature (15 deg C) and high-temperature (80 deg C) conditions in the near field, and the existence of either reducing or strongly oxidizing conditions in each of the bentonite, canister, and spent-fuel barriers. Heterogeneities in site characteristics are evaluated through consideration of a range of initial groundwaters and their interactions with engineered barriers. Aqueous speciation models for many radioelements are constrained by thermodynamic data that are estimated with varying degrees of accuracy. An important question, however, is how accurate do these models need to be for purposes of estimating source-term concentrations? For example, it is unrealistic to expect a high degree of accuracy in speciation models if such models predict solubilities that are below the analytical detection limit for a given radioelement. From a practical standpoint, such models are irrelevant if calculated solubilities cannot be tested by direct comparison to experimental data. In the absence of models that are both accurate and relevant for conditions of interest, the detection limit could define a pragmatic upper limit on radioelement solubility 56 refs, 25 tabs, 10 figs

  6. Molecular Underpinnings of Fe(III Oxide Reduction by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Liang eShi

    2012-02-01

    Full Text Available In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III] (oxy(hydroxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 has evolved the machinery (i.e., metal-reducing or Mtr pathway for transferring electrons across the entire cell envelope to the surface of extracellular Fe(III oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt that is proposed to oxidize the quinol in the inner-membrane and transfers the released electrons to redox proteins in the periplasm. Although the periplasmic proteins receiving electrons from CymA during Fe(III oxidation have not been identified, they are believed to relay the electrons to MtrA. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons across the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. Functioning as terminal reductases, the outer membrane and decaheme c-Cyts MtrC and OmcA can bind the surface of Fe(III oxides and transfer electrons directly to these minerals. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III oxides. MtrC and OmcA can also serve as the terminal reductases for soluble forms of Fe(III. Although our understanding of the Mtr pathway is still far from complete, it is the best characterized microbial pathway used for extracellular electron exchange. Characterizations of the Mtr pathway have made significant contributions to the molecular understanding of microbial reduction of Fe(III oxides.

  7. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.

    2015-01-01

    in diabetes resulting from the diabetic state, a dysfunction that includes increased production of hydrogen peroxide. We suggest that the intracellular RNA oxidation is compartmentalized from the traditional biomarkers in the extracellular compartment, and therefore provides independent prognostic value...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  8. 酸性氧化电位水手部与皮肤消毒的现场试验研究%On-site test of effect of acidic electrolyzed-oxidizing water on disinfection of hands and skin

    Institute of Scientific and Technical Information of China (English)

    杨丽娟; 龚梅; 孙婷婷; 曹彦芳; 陈蓉; 韩丽娜; 刘运喜; 邢玉斌

    2013-01-01

    目的 通过现场试验研究,进一步验证酸性氧化电位水(酸化水)对手和皮肤的消毒效果,为临床选择良好的手部和皮肤消毒剂提供依据.方法 选择医护人员、陪护及家属30人为受试者,采用酸化水对手和前臂皮肤进行消毒处理,作用1 min后采样,培养后进行细菌计数,计算杀灭对数值,评价处理效果;并与75%乙醇进行消毒效果比较,同时在处理过程中观察皮肤反应.结果 在手卫生消毒试验中,酸化水、75%乙醇试验组的阳性对照组菌含量对数值分别为1.95~3.83、1.85~3.62,经消毒处理后,平均杀灭对数值分别为2.50、2.65;皮肤消毒试验阳性对照组菌含量对数值为1.90~4.30,酸化水、75%乙醇消毒平均杀灭对数值分别为2.38、2.42;酸化水对手部和前臂皮肤的自然菌消毒合格;与75%乙醇比较差异无统计学意义;消毒后手部的细菌菌落总数<10CFU/cm2;酸化水未引起皮肤局部反应,而1例受试者对75%乙醇过敏.结论 酸性氧化电位水对手部和皮肤的消毒效果良好,且无不良反应发生,可在临床推广应用.%OBJECTIVE To verify the effect of acidic electrolyzed-oxidizing water (AEOW) on the disinfection of hands and skin through the on-site test so as to provide the basis for selecting good hand antiseptic agent and skin disinfectant. METHODS Totally 30 subjects were randomly selected from the health care workers, the nurses, and the patients families. Their hands and forearm ulnar skin were disinfected by acidic electrolyzed-oxidizing water, then the hands and skin were sampled 1 minute after the action and were finally cultured to count the bacterial colony counts so as to evaluate the disinfection outcomes. At the same time, the disinfection effect was compared with the 75% ethanol's, and the skin reactions were observed. RESULTS In the test of antiseptic handrubbing, the logarithm values of bacterial content of positive control

  9. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...

  10. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria.

    Science.gov (United States)

    Thierbach, Sven; Birmes, Franziska S; Letzel, Matthias C; Hennecke, Ulrich; Fetzner, Susanne

    2017-07-27

    2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(β-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.

  11. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some ... to relieve heartburn, sour stomach, or acid indigestion. Magnesium oxide also may be used as a laxative ...

  12. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.

    Science.gov (United States)

    Capitanio, Giuseppe; Martino, Pietro Luca; Capitanio, Nazzareno; De Nitto, Emanuele; Papa, Sergio

    2006-02-14

    A study is presented on the pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of purified cytochrome c oxidase (COX) from beef heart reconstituted in phospholipid vesicles (COV). Protons were shown to be released from COV both in the oxidative and reductive phases. In the oxidation by O2 of the fully reduced oxidase, the H+/COX ratio for proton release from COV (R --> O transition) decreased from approximately 2.4 at pH 6.5 to approximately 1.8 at pH 8.5. In the direct reduction of the fully oxidized enzyme (O --> R transition), the H+/COX ratio for proton release from COV increased from approximately 0.3 at pH 6.5 to approximately 1.6 at pH 8.5. Anaerobic oxidation by ferricyanide of the fully reduced oxidase, reconstituted in COV or in the soluble case, resulted in H+ release which exhibited, in both cases, an H+/COX ratio of 1.7-1.9 in the pH range 6.5-8.5. This H+ release associated with ferricyanide oxidation of the oxidase, in the absence of oxygen, originates evidently from deprotonation of acidic groups in the enzyme cooperatively linked to the redox state of the metal centers (redox Bohr protons). The additional H+ release (O2 versus ferricyanide oxidation) approaching 1 H+/COX at pH or = 8.5, this additional proton release takes place in the reductive phase of the catalytic cycle of the oxidase. The H+/COX ratio for proton release from COV in the overall catalytic cycle, oxidation by O2 of the fully reduced oxidase directly followed by re-reduction (R --> O --> R transition), exhibited a bell-shaped pH dependence approaching 4 at pH 7.2. A mechanism for the involvement in the proton pump of the oxidase of H+/e- cooperative coupling at the metal centers (redox Bohr effects) and protonmotive steps of reduction of O2 to H2O is presented.

  13. Partial Oxidation of Methane Over the Perovskite Oxides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ba0.sSr0.5Co0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Ti0.2O3-δ oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied during the reaction of methane oxidation. The pre-treatment with methane has different effect on the catalytic activities of both the oxides. The methane pre-treatment has not resulted in the change of the catalytic activity of BSCFO owing to its excellent reversibility of the perovskite structure resulting from the excellent synergistic interaction between Co and Fe in the oxide. However, the substitution with Ti on Fe-site in the lattice makes the methane pre-treatment have an obvious influence on the activity of the formed BSCTO oxide.

  14. Region 9 NPL Sites (Superfund Sites) Polygons

    Data.gov (United States)

    U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

  15. Region 9 NPL Sites (Superfund Sites 2013)

    Data.gov (United States)

    U.S. Environmental Protection Agency — NPL site POINT locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

  16. Region 9 NPL Sites (Superfund Sites)

    Data.gov (United States)

    U.S. Environmental Protection Agency — NPL site POINT locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

  17. [Nitric oxide].

    Science.gov (United States)

    Rovira, I

    1995-01-01

    Nitric oxide was identified as the relaxing factor derived from the endothelium in 1987. Nitric oxide synthesis allows the vascular system to maintain a state of vasodilation, thereby regulating arterial pressure. Nitric oxide is also found in platelets, where it inhibits adhesion and aggregation; in the immune system, where it is responsible for the cytotoxic action of macrophages; and in the nervous system, where it acts as neurotransmitter. A deficit in endogenous synthesis of nitric oxide contributes to such conditions as essential arterial hypertension, pulmonary hypertension and heart disease. An excess of nitrous oxide induced by endotoxins and cytokinins, meanwhile, is believed to be responsible for hypotension in septic shock and for hyperdynamic circulatory state in cirrhosis of the liver. Nitric oxide has also been implicated in the rejection of transplanted organs and in cell damage after reperfusion. Inhaled nitrous oxide gas reduces pulmonary hypertension without triggering systemic hypotension in both experimental and clinical conditions. It also produces selective vasodilation when used to ventilate specific pulmonary areas, thereby improving the ventilation/perfusion ratio and, hence, oxygenation. Nitric oxide inhalation is effective in pulmonary hypertension-coincident with chronic obstructive lung disease, in persistent neonatal pulmonary hypertension and in pulmonary hypertension with congenital or acquired heart disease. Likewise, it reduces intrapulmonary shunt in acute respiratory failure and improves gas exchange. Under experimental conditions nitric oxide acts as a bronchodilator, although it seems to be less effective for this purpose in clinical use.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Contaminated Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Sites contaminated by hazardous materials or wastes. These sites are those administered by the Contaminated Sites Section of Iowa DNR. Many are sites which are...

  19. Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution

    DEFF Research Database (Denmark)

    Karlsson, Rasmus K. B.; Hansen, Heine Anton; Bligaard, Thomas

    2014-01-01

    The electrocatalytic properties of the (1 1 0) surface of Ru-doped TiO2, Ti-doped RuO2 and the industrially important Dimensionally Stable Anode (DSA) composition Ru0.3Ti0.7O2 have been examined using density functional theory. It is found that the oxygen adsorption energy on a Ti site is strongl...

  20. In-Situ Chemical Oxidation

    Science.gov (United States)

    2006-08-01

    desirable in ISFO; therefore, pretreatment via acid injection or acidification of the injected H2O2 solution is common. The overall Fenton-driven...catalyzed by several substances including solid alkalis , metals, metal oxides, carbon, and moisture in the gas phase. Depending on the reactivity...biostimulation with sodium lactate, and at the other two sites, a significant increase in the post-oxidation microbial biomass , and the post-oxi- dation

  1. Catalytic selective oxidation or oxidative functionalization of methane and ethane to organic oxygenates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Selective oxidation or oxidative functionalization of methane and ethane by both homogeneous and heterogeneous catalysis is presented concerning: (1) selective oxidation of methane and ethane to organic oxygenates by hydrogen peroxide in a water medium in the presence of homogeneous osmium catalysts, (2) selective oxidation of methane to formaldehyde over highly dispersed iron and copper heterogeneous catalysts, (3) selective oxidation of ethane to acetaldehyde and formaldehyde over supported molybdenum catalysts, and (4) oxidative carbonylation of methane to methyl acetate over heterogeneous catalysts containing dual sites of rhodium and iron.

  2. A-Site Deficient (Pr0.6Sr0.4)(1-s)Fe0.8Co0.2O3-delta Perovskites as Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2009-01-01

    Five A-site deficient (Pr0.6Sr0.4)1−sFe0.8Co0.2O3− perovskites (s=0.01, 0.05, 0.10, 0.15, and 0.20) were synthesized using the glycine-nitrate process. The perovskites were characterized with powder X-ray diffraction (XRD), dilatometry, four-point dc conductivity measurements, and electrochemical...... resistance more than 3 times lower than the weakly A-site deficient (Pr0.6Sr0.4)0.99Fe0.8Co0.2O3− perovskite. ©2009 The Electrochemical Society...

  3. A Self-Consistent Model for Thermal Oxidation of Silicon at Low Oxide Thickness

    Directory of Open Access Journals (Sweden)

    Gerald Gerlach

    2016-01-01

    Full Text Available Thermal oxidation of silicon belongs to the most decisive steps in microelectronic fabrication because it allows creating electrically insulating areas which enclose electrically conductive devices and device areas, respectively. Deal and Grove developed the first model (DG-model for the thermal oxidation of silicon describing the oxide thickness versus oxidation time relationship with very good agreement for oxide thicknesses of more than 23 nm. Their approach named as general relationship is the basis of many similar investigations. However, measurement results show that the DG-model does not apply to very thin oxides in the range of a few nm. Additionally, it is inherently not self-consistent. The aim of this paper is to develop a self-consistent model that is based on the continuity equation instead of Fick’s law as the DG-model is. As literature data show, the relationship between silicon oxide thickness and oxidation time is governed—down to oxide thicknesses of just a few nm—by a power-of-time law. Given by the time-independent surface concentration of oxidants at the oxide surface, Fickian diffusion seems to be neglectable for oxidant migration. The oxidant flux has been revealed to be carried by non-Fickian flux processes depending on sites being able to lodge dopants (oxidants, the so-called DOCC-sites, as well as on the dopant jump rate.

  4. A-Site Deficient (Pr0.6Sr0.4)(1-s)Fe0.8Co0.2O3-delta Perovskites as Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2009-01-01

    Five A-site deficient (Pr0.6Sr0.4)1−sFe0.8Co0.2O3− perovskites (s=0.01, 0.05, 0.10, 0.15, and 0.20) were synthesized using the glycine-nitrate process. The perovskites were characterized with powder X-ray diffraction (XRD), dilatometry, four-point dc conductivity measurements, and electrochemical...

  5. Dopant-induced modification of active site structure and surface bonding mode for high-performance nanocatalysts: CO oxidation on capping-free (110)-oriented CeO2:Ln (Ln = La-Lu) nanowires.

    Science.gov (United States)

    Ke, Jun; Xiao, Jia-Wen; Zhu, Wei; Liu, Haichao; Si, Rui; Zhang, Ya-Wen; Yan, Chun-Hua

    2013-10-09

    Active center engineering at atomic level is a grand challenge for catalyst design and optimization in many industrial catalytic processes. Exploring new strategies to delicately tailor the structures of active centers and bonding modes of surface reactive intermediates for nanocatalysts is crucial to high-efficiency nanocatalysis that bridges heterogeneous and homogeneous catalysis. Here we demonstrate a robust approach to tune the CO oxidation activity over CeO2 nanowires (NWs) through the modulation of the local structure and surface state around Ln(Ce)' defect centers by doping other lanthanides (Ln), based on the continuous variation of the ionic radius of lanthanide dopants caused by the lanthanide contraction. Homogeneously doped (110)-oriented CeO2:Ln NWs with no residual capping agents were synthesized by controlling the redox chemistry of Ce(III)/Ce(IV) in a mild hydrothermal process. The CO oxidation reactivity over CeO2:Ln NWs was dependent on the Ln dopants, and the reactivity reached the maximum in turnover rates over Nd-doped samples. On the basis of the results obtained from combined experimentations and density functional theory simulations, the decisive factors of the modulation effect along the lanthanide dopant series were deduced as surface oxygen release capability and the bonding configuration of the surface adsorbed species (i.e., carbonates and bicarbonates) formed during catalytic process, which resulted in the existence of an optimal doping effect from the lanthanide with moderate ionic radius.

  6. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  7. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-δ for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Hou, Mingyue; Sun, Wang; Li, Pengfa; Feng, Jie; Yang, Guoquan; Qiao, Jinshuo; Wang, Zhenhua; Rooney, David; Feng, Jinsheng; Sun, Kening

    2014-12-01

    In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550 °C, and the lowest area specific resistance of 0.068 Ω cm2 at 800 °C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800 °C. Furthermore no obvious performance degradation is observed over 15 h at 750 °C with wet H2 (3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

  8. Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate

    Energy Technology Data Exchange (ETDEWEB)

    Gavva, S.R.; Harris, B.G.; Cook, P.F. (Texas Coll. of Osteopathic Medicine, Fort Worth (United States)); Weiss, P.M. (Univ. of Wisconsin, Madison (United States))

    1991-06-11

    A thiol group at the malate-binding site of the NAD-malic enzyme from Ascaris suum has been modified to thiocyanate. The modified enzyme generally exhibits slight increases in K{sub NAD} and K{sub i metal} and decreases in V{sub max} as the metal size increases from Mg{sup 2+} to Mn{sup 2+} to Cd{sup 2+}, indicative of crowding in the site. The K{sub malate} value increases 10- to 30-fold, suggesting that malate does not bind optimally to the modified enzyme. Deuterium isotope effects on V and V/K{sub malate} increase with all three metal ions compared to the native enzyme concomitant with a decrease in the {sup 13}C isotope effect, suggesting a switch in the rate limitation of the hydride transfer and decarboxylation steps with hydride transfer becoming more rate limiting. The {sup 13}C effect decreases only slightly when obtained with deuterated malate, suggestive of the presence of a secondary {sup 13}C effect in the hydride transfer step, similar to data obtained with non-nicotinamide-containing dinucleotide substrates for the native enzyme (see the preceding paper in this issue). The native enzyme is inactivated in a time-dependent manner by Cd{sup 2+}. This inactivation occurs whether the enzyme alone is present or whether the enzyme is turning over with Cd{sup 2+} as the divalent metal activator. Upon inactivation, only Cd{sup 2+} ions are bound at high stoichiometry to the enzyme, which eventually becomes denatured. Conversion of the active-site thiol to thiocyanate makes it more difficult to inactivate the enzyme by treatment with Cd{sup 2+}.

  9. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  10. Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Amonette, James E.

    2016-09-19

    Abstract: Fe oxides are common clay-sized oxide, oxyhydroxide and hydroxide soil minerals. They are compounds of Fe, O, and H that have structures based on close-packed arrays of O. The octahedral and tetrahedral cavities within these arrays are filled with either Fe3+ or Fe2+ to form Fe(O/OH)6, FeO6, or FeO4 structural units. All of the naturally occurring Fe oxide minerals usually undergo some degree of isomorphous substitution of other metal ions for Fe in their structures. Relatively simple techniques may be used to identify Fe oxides in the field based on their typical colors and magnetic properties. In the laboratory, a variety of instrumental techniques can be used to confirm phase identity and to quantify amount. Of these, X-ray diffraction, infrared spectroscopy, electron microscopy, thermal analysis, and Mössbauer spectroscopy are the most commonly used techniques. As oxides, the functional groups on their surfaces may have positive, negative, or no charge depending on pH and on the concentration and nature of other ions in the contact solution. A net positive surface charge usually is observed in soils because Fe oxides have a point-of-zero-charge in the neutral or slightly basic pHs. The functional groups on the surface form complexes with cations and anions from the aqueous phase. Their sorption and electron-buffering properties significantly affect the geochemical cycles of almost all elements having agronomic or environmental significance.

  11. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  12. Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis (δ{sup 13}C and δ{sup 2}H)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig (Germany); Geronimo, Inacrist; Paneth, Piotr [Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź (Poland); Schindelka, Janine; Schaefer, Thomas; Herrmann, Hartmut [Department of Chemistry, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig (Germany); Vogt, Carsten [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig (Germany); Richnow, Hans H., E-mail: hans.richnow@ufz.de [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig (Germany)

    2016-01-15

    OH radicals generated by the photolysis of H{sub 2}O{sub 2} can degrade aromatic contaminants by either attacking the aromatic ring to form phenolic products or oxidizing the substituent. We characterized these competing pathways by analyzing the carbon and hydrogen isotope fractionation (ε{sub C} and ε{sub H}) of various substituted benzenes. For benzene and halobenzenes that only undergo ring addition, low values of ε{sub C} (− 0.7‰ to − 1.0‰) were observed compared with theoretical values (− 7.2‰ to − 8‰), possibly owing to masking effect caused by pre-equilibrium between the substrate and OH radical preceding the rate-limiting step. In contrast, the addition of OH radicals to nitrobenzene ring showed a higher ε{sub C} (− 3.9‰), probably due to the lower reactivity. Xylene isomers, anisole, aniline, N,N-dimethylaniline, and benzonitrile yielded normal ε{sub H} values (− 2.8‰ to − 29‰) indicating the occurrence of side-chain reactions, in contrast to the inverse ε{sub H} (11.7‰ to 30‰) observed for ring addition due to an sp{sup 2} to sp{sup 3} hybridization change at the reacting carbon. Inverse ε{sub H} values for toluene (14‰) and ethylbenzene (30‰) were observed despite the formation of side-chain oxidation products, suggesting that ring addition has a larger contribution to isotope fractionation. Dual element isotope slopes (∆ δ{sup 2}H/∆δ{sup 13}C) therefore allow identification of significant degradation pathways of aromatic compounds by photochemically induced OH radicals. Issues that should be addressed in future studies include quantitative determination of the contribution of each competing pathway to the observed isotope fractionation and characterization of physical processes preceding the reaction that could affect isotope fractionation. - Highlights: • Isotope fractionation to investigate photoreaction pathways of substituted benzenes • Normal {sup 13}C AKIE and inverse {sup 2}H AKIE for

  13. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  14. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  15. The contrasting effect of the Ta/Nb ratio in (111)-layered B-site deficient hexagonal perovskite Ba5Nb4-xTaxO15 crystals on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives.

    Science.gov (United States)

    Hojamberdiev, Mirabbos; Bekheet, Maged F; Zahedi, Ehsan; Wagata, Hajime; Vequizo, Junie Jhon M; Yamakata, Akira; Yubuta, Kunio; Gurlo, Aleksander; Domen, Kazunari; Teshima, Katsuya

    2016-08-02

    The effect of the Ta/Nb ratio in the (111)-layered B-site deficient hexagonal perovskite Ba5Nb4-xTaxO15 (0 ≤ x ≤ 4) crystals grown by a KCl flux method on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives BaNb1-xTaxO2N (0 ≤ x ≤ 1) was investigated. The Rietveld refinement of X-ray data revealed that all Ba5Nb4-xTaxO15 samples were well crystallized in the space group P3[combining macron]m1 (no. 164). Phase-pure BaNb1-xTaxO2N (0 ≤ x ≤ 1) porous structures were obtained by nitridation of the flux-grown oxide crystals at 950 °C for 20, 25, 30, 35, and 40 h, respectively. The absorption edge of BaNb1-xTaxO2N (0 ≤ x ≤ 1) was slightly shifted from 720 to 690 nm with the increasing Ta/Nb ratio. The O2 evolution rate gradually progressed and reached the highest value (127.24 μmol in the first 2 h) with the Ta content up to 50 mol% but decreased at 75 and 100 mol% presumably due to the reduced specific surface area and high density of structural defects, such as grain boundaries acting as recombination centers, originated from high-temperature nitridation for prolonged periods. Transient absorption spectroscopy provided evidence for the effect of the Ta/Nb ratio on the behavior and energy states of photogenerated charge carriers, indicating a direct correlation with photocatalytic water oxidation activity of BaNb1-xTaxO2N.

  16. SITE COMPREHENSIVE LISTING (CERCLIS) (Superfund) - NPL Sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — National Priorities List (NPL) Sites - The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) (Superfund) Public Access...

  17. Superfund Site Information - Site Sampling Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes Superfund site-specific sampling information including location of samples, types of samples, and analytical chemistry characteristics of...

  18. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  19. Partial oxidation of 2-propanol on perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, R.; Viswanathan, B.; Varadarajan, T.K. [Indian Inst. of Tech., Madras (India). Dept. of Chemistry

    1998-12-31

    Partial oxidation of 2-propanol was carried out on AB{sub 1-x}B`{sub x}O{sub 3} (A=Ba, B=Pb, Ce, Ti; B`=Bi, Sb and Cu) type perovskite oxides. Acetone was the major product observed on all the catalysts. All the catalysts underwent partial reduction during the reaction depending on the composition of the reactant, nature of the B site cation and the extent of substitution at B site. The catalytic activity has been correlated with the reducibility of the perovskite oxides determined from Temperature Programmed Reduction (TPR) studies. (orig.)

  20. SCHOOL SITE STANDARDS AND SITE SELECTION.

    Science.gov (United States)

    New York State Education Dept., Albany.

    THIS REPORT PRESENTS ELEMENTARY AND SECONDARY SCHOOL SITE DEVELOPMENT DATA COMPILED BY THE DIVISION OF EDUCATIONAL FACILITIES PLANNING, NEW YORK STATE EDUCATION DEPARTMENT. ENROLLMENT FIGURES USED REPRESENT THE ULTIMATE SIZE OF THE SCHOOLS. THE STANDARDS ARE MINIMUM FOR THE STATE OF NEW YORK WITH ELEMENTARY SCHOOL SITES BASED ON THREE ACRES PLUS…

  1. TMFunction data: 2001 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available shi H, Hellwig P, Gennis RB. Biochemistry. 2007 Mar 20;46(11):3270-8. mutagenesis 0 Activity (%) UQ1H2 oxidase ... CYDA_ECOLI (P0ABJ9) Helix ... quinol; proton channel; heme; active site

  2. TMFunction data: 2007 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available oshi H, Hellwig P, Gennis RB. Biochemistry. 2007 Mar 20;46(11):3270-8. mutagenesis 0 Activity (%) UQ1H2 oxidase ... CYDA_ECOLI (P0ABJ9) Helix ... quinol; proton channel; heme; active site

  3. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  4. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition.

    Science.gov (United States)

    Binder, Andrew J; Toops, Todd J; Unocic, Raymond R; Parks, James E; Dai, Sheng

    2015-11-02

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. This catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  6. Electro-catalytic reduction of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    McLarnon, C.R.

    1989-12-01

    Nitrogen oxides have been linked to a broad range of air pollution problems including acid rain and the atmospheric production of photochemical ozone. Over twenty million tons of nitrogen oxides are emitted into the atmosphere each year as a result of the high temperature combustion of fossil fuels. Efforts to control nitrogen oxides emissions have lagged because of the generally low discharge concentrations of nitrogen oxides in combustion exhaust and because nitrogen oxides are more difficult to remove due to their lower reactivity. No catalyst has yet been found that will achieve significant reduction of nitrogen oxides in an oxidizing environment. Oxygen in the exhaust stream competes with nitrogen oxides for the active catalyst sites. Also, the dissociated oxygen atoms produced by decomposition of nitrogen oxides deactivate the surface of the catalyst. Externally applied electric fields have been used to control oxygen adsorption on metal and semi-conductor surfaces. In this investigation, a stream containing nitric oxide has been subjected to intense electric fields in the presence of catalyst materials including steel, stainless steel, and gold plated stainless steel wools and glass wool. The electric fields have been generated using DC, AC and rectified AC potentials in the range of 0--20 KV. The effect of parameters such as inlet nitric oxide concentration, oxygen and water content, gas residence time and temperature have also been studied.

  7. NPL Site Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Priorities List (NPL) is a list published by EPA of Superfund sites. A site must be added to this list before remediation can begin under Superfund. The...

  8. NPL Site Locations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Priorities List (NPL) is a list published by EPA of Superfund sites. A site must be added to this list before remediation can begin under Superfund. The...

  9. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  10. NPL Site Locations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Priorities List (NPL) is a list published by EPA of Superfund sites. A site must be added to this list before remediation can begin under Superfund. The...

  11. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  12. Drupal 7 Multilingual Sites

    CERN Document Server

    Pol, Kristen

    2012-01-01

    A practical book with plenty of screenshots to guide you through the many features of multilingual Drupal. A demo ecommerce site is provided if you want to practice on a sample site, although you can apply the techniques learnt in the book directly to your site too. Any Drupal users who know the basics of building a Drupal site and are familiar with the Drupal UI, will benefit from this book. No previous knowledge of localization or internationalization is required.

  13. The Greenland Ramsar Sites

    DEFF Research Database (Denmark)

    Egevang, C.; Boertmann, D.

    The eleven Ramsar sites in Greenland are reviewed in terms of their status as habitats for waterbirds and other fauna. Management and monitoring is proposed, as well as revisions of their boundaries. A number of potential new Ramsar sites are described......The eleven Ramsar sites in Greenland are reviewed in terms of their status as habitats for waterbirds and other fauna. Management and monitoring is proposed, as well as revisions of their boundaries. A number of potential new Ramsar sites are described...

  14. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    Science.gov (United States)

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  15. Tomography finds waste sites

    Science.gov (United States)

    Bush, Susan M.

    Geophysical diffraction tomography (GDT), a remote sensing method, is being developed for hazardous waste site characterization by researchers at Oak Ridge National Laboratory, Tenn., with the support of the U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Md.More accurate assessment of hazardous sites translates into more efficient and less costly cleanup efforts by defining parameters such as waste site boundaries, geophysical site characteristics, buried container leakage, and hazardous material migration. Remote sensing devices eliminate the potential for environmental damage, safety hazards, or high costs associated with intrusive site characterization techniques.

  16. Olkiluoto site description 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This fourth version of the Olkiluoto Site Report, produced by the OMTF (Olkiluoto Modelling Task Force), updates the Olkiluoto Site Report 2008 with the data and knowledge obtained up to December 2010. A descriptive model of the site (the Site Descriptive Model, SDM), i.e. a model describing the geological and hydrogeological structure of the site, properties of the bedrock and the groundwater and its flow, and the associated interacting processes and mechanisms. The SDM is divided into six parts: surface system, geology, rock mechanics, hydrogeology, hydrogeochemistry and transport properties.

  17. Site Environmental Report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

  18. Site Development Planning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The Handbook provides facility managers and site planners at DOE organizations responsible for planning site developments and facilities utilization a step-by-step planning checklist to ensure that planners at each site are focusing on Department-wide goals and objectives. It begins with a brief discussion of a site development-by-objectives program design to promote, recognize, and implement opportunities for improvements in site utilization through planning. Additional information is included on: assembling existing data, plans, programs, and procedures; establishing realistic objectives; identifying site problems, opportunities; and development needs; determining priorities among development needs; developing short and long-range plans; choosing the right development solutions and meeting minimum legal site restrictions; presenting the plan; implementing elements of the plan; monitoring and reporting plan status; and modifying development program plans. (MCW)

  19. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; WANGWEI-JUN

    1991-01-01

    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  20. Hanford Site Comprehensive site Compliance Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Tollefson, K.S.

    1997-08-05

    This document is the second annual submittal by WHC, ICF/KH, PNL and BHI and contains the results of inspections of the stormwater outfalls listed in the Hanford Site Storm Water Pollution Prevention Plan (SWPPP) (WHC 1993a) as required by General Permit No. WA-R-00-000F (WA-R-00-A17F): This report also describes the methods used to conduct the Storm Water Comprehensive Site Compliance Evaluation, as required in Part IV, Section D, {ampersand} C of the General Permit, summarizes the results of the compliance evaluation, and documents significant leaks and spills.

  1. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1

    Energy Technology Data Exchange (ETDEWEB)

    Beliav, Alex; Qiu, Dongru; Fredrickson, James K.; Wei, Hehong; Nealson, Kenneth H.; Xia, Ming; Zhou, Jizhong; Dai, Jingcheng; Shi, Liang; Tiedje, James M.; Romine, Margaret F.

    2016-06-01

    Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.

  2. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1.

    Science.gov (United States)

    Wei, Hehong; Dai, Jingcheng; Xia, Ming; Romine, Margaret F; Shi, Liang; Beliav, Alex; Tiedje, James M; Nealson, Kenneth H; Fredrickson, James K; Zhou, Jizhong; Qiu, Dongru

    2016-06-01

    Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.

  3. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  4. Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes.

    Science.gov (United States)

    Kent, Caleb A; Concepcion, Javier J; Dares, Christopher J; Torelli, Daniel A; Rieth, Adam J; Miller, Andrew S; Hoertz, Paul G; Meyer, Thomas J

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29,000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of ~5.

  5. CELT site testing program

    Science.gov (United States)

    Schoeck, Matthias; Erasmus, D. Andre; Djorgovski, S. George; Chanan, Gary A.; Nelson, Jerry E.

    2003-01-01

    The California Extremely Large Telescope, CELT, is a proposed 30-m telescope. Choosing the best possible site for CELT is essential in order to extract the best science from the observations and to reduce the complexity of the telescope. Site selection is therefore currently one of the most critical pacing items of the CELT project. In this paper, we first present selected results from a survey of the atmospheric transparency at optical and infrared wavelengths over the southwestern USA and northern Mexico using satellite data. Results of a similar study of South America have been reported elsewhere. These studies will serve as the pre-selection criterion of the sites at which we will perform on-site testing. We then describe the current status of on-site turbulence evaluation efforts and the future plans of the CELT site testing program.

  6. Hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Hembra, R.L

    1989-01-01

    This report has found that while most states have accomplished few or no cleanups of sites contaminated by hazardous waste, some have enacted tough cleanup laws, committed relatively large resources to the cleanup effort, and achieved considerable results. At the 17 cleanup sites analyzed, state cleanup plans were generally stringent. However, no federal standards have been set for over half of the contaminants found at these sites. For 11 sites, the states set cleanup levels without doing formal risk assessments. Also, most states reviewed did not consider the full range of alternatives EPA requires. Most states have not shown that they can effectively clean up large, hazardous waste sites. This report recommends that EPA turn sites targeted for cleanup over to the states only if there are adequate controls and oversight.

  7. PREFACE: Semiconducting oxides Semiconducting oxides

    Science.gov (United States)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for

  8. Site environmental programs

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Hanf, R.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the site environmental programs. Effluent monitoring and environmental surveillance programs monitor for impacts from operations in several areas. The first area consists of the point of possible release into the environment. The second area consists of possible contamination adjacent to DOE facilities, and the third area is the general environment both on and off the site.

  9. 1994 Site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  10. Region 9 Removal Sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of CERCLA (Superfund) Removal sites. CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act)...

  11. SITE-94. Mineralogy of the Aespoe site

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden). Technical Environmental Planning

    1996-12-01

    The water composition has several impacts on the repository. It will influence the behaviour of the engineered materials (e.g. corrosion). It may also determine the possible solubility and speciation of released radionuclides. It also acts as a transport medium for the released elements. The groundwater composition and the potential development of the composition due to the presence of the repository as well as due to external variations is thus an important issue in a safety analysis. The development of the groundwater composition is strongly dependent on reactions with the minerals present in water bearing fractures. Here equilibrium chemistry may be of importance, but also reaction kinetics is important to the long-term behaviour. Within the SITE-94 project, a safety analysis is performed for the conditions at the Aespoe site. The mineralogy of the area has been evaluated from drill cores at various places at the site. In this report a recommendation for selection of mineralogy to be used in geochemical modelling of the repository is given. Calcite and iron containing minerals dominate the fracture filling mineralogy at the Aespoe site. Some typical fracture filling mineralogies may be identified in the fractures: epidote, chlorite, calcite, hematite, some illite/smectite + quartz, fluorite, pyrite and goethite. In addition to these a number of minor minerals are found in the fractures. Uncertainties in the fracture filling data may be due to problems when taking out the drill cores. Drilling water may remove important clay minerals and sealed fractures may be reopened mechanically and treated as water conducting fractures. The problem of determining the variability of the mineralogy along the flow paths also remains. This problem will never be solved when the investigation is performed by drilling investigation holes

  12. Preliminary Site Characterization Report, Rulsion Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  13. Manganese Oxidation State Assignment for Manganese Catalase.

    Science.gov (United States)

    Beal, Nathan J; O'Malley, Patrick J

    2016-04-06

    The oxidation state assignment of the manganese ions present in the superoxidized manganese (III/IV) catalase active site is determined by comparing experimental and broken symmetry density functional theory calculated (14)N, (17)O, and (1)H hyperfine couplings. Experimental results have been interpreted to indicate that the substrate water is coordinated to the Mn(III) ion. However, by calculating hyperfine couplings for both scenarios we show that water is coordinated to the Mn(IV) ion and that the assigned oxidation states of the two manganese ions present in the site are the opposite of that previously proposed based on experimental measurements alone.

  14. Site characterization handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This Handbook discusses both management and technical elements that should be considered in developing a comprehensive site characterization program. Management elements typical of any project of a comparable magnitude and complexity are combined with a discussion of strategies specific to site characterization. Information specific to the technical elements involved in site characterization is based on guidance published by the Nuclear Regulatory Commission (NRC) with respect to licensing requirements for LLW disposal facilities. The objective of this Handbook is to provide a reference for both NRC Agreement States and non-Agreement States for use in developing a comprehensive site characterization program that meets the specific objectives of the State and/or site developer/licensee. Each site characterization program will vary depending on the objectives, licensing requirements, schedules/budgets, physical characteristics of the site, proposed facility design, and the specific concerns raised by government agencies and the public. Therefore, the Handbook is not a prescriptive guide to site characterization. 18 refs., 6 figs.

  15. Site characterization handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This Handbook discusses both management and technical elements that should be considered in developing a comprehensive site characterization program. Management elements typical of any project of a comparable magnitude and complexity are combined with a discussion of strategies specific to site characterization. Information specific to the technical elements involved in site characterization is based on guidance published by the Nuclear Regulatory Commission (NRC) with respect to licensing requirements for LLW disposal facilities. The objective of this Handbook is to provide a reference for both NRC Agreement States and non-Agreement States for use in developing a comprehensive site characterization program that meets the specific objectives of the State and/or site developer/licensee. Each site characterization program will vary depending on the objectives, licensing requirements, schedules/budgets, physical characteristics of the site, proposed facility design, and the specific concerns raised by government agencies and the public. Therefore, the Handbook is not a prescriptive guide to site characterization. 18 refs., 6 figs.

  16. The Greenland Ramsar Sites

    DEFF Research Database (Denmark)

    Egevang, C.; Boertmann, D.

    The eleven Ramsar sites in Greenland are reviewed in terms of their status as habitats for waterbirds and other fauna. Management and monitoring is proposed, as well as revisions of their boundaries. A number of potential new Ramsar sites are described...

  17. Site-Specific Innovation

    DEFF Research Database (Denmark)

    Reeh, Henrik; Hemmersam, Peter

    2015-01-01

    Currently, cities across the Northern European region are actively redeveloping their former industrial harbours. Indeed, harbours areas are essential in the long-term transition from industrial to information and experience societies; harbours are becoming sites for new businesses and residences...... question is how innovation may contribute to urban life and site-specific qualities....

  18. Site decommissioning management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  19. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  20. Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants

    Science.gov (United States)

    Cheng, J. P.; Shereef, Anas; Gray, Kimberly A.; Wu, Jinsong

    2015-03-01

    Porous cobalt oxide was successfully prepared by precipitation of cobalt hydroxide followed by low temperature thermal decomposition. The morphologies of the resultant oxides remained as the corresponding hydroxides, although the morphology of cobalt hydroxides was greatly influenced by the precursor salts. The cobalt oxides with average crystal size less than 20 nm were characterized by X-ray diffraction, scanning electron microscope, BET surface area, and XPS analysis. The photocatalytic activities of the various cobalt oxides morphologies were investigated by comparing the photo-degradation of acetaldehyde under simulated solar illumination. Relative to their low order structures and reference titania samples, the hierarchical nanostructures of cobalt oxide showed excellent abilities to rapidly degrade acetaldehyde, a model air pollutant. This was attributed to the unique nature of these hierarchical cobalt oxide nanoassemblies, which contained many catalytically active reaction sites and open pores.

  1. Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. P., E-mail: chengjp@zju.edu.cn [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering (China); Shereef, Anas; Gray, Kimberly A., E-mail: k-gray@northwestern.edu [Northwestern University, Center for Catalysis and Surface Science (United States); Wu, Jinsong [Northwestern University, Department of Materials Science and Engineering (United States)

    2015-03-15

    Porous cobalt oxide was successfully prepared by precipitation of cobalt hydroxide followed by low temperature thermal decomposition. The morphologies of the resultant oxides remained as the corresponding hydroxides, although the morphology of cobalt hydroxides was greatly influenced by the precursor salts. The cobalt oxides with average crystal size less than 20 nm were characterized by X-ray diffraction, scanning electron microscope, BET surface area, and XPS analysis. The photocatalytic activities of the various cobalt oxides morphologies were investigated by comparing the photo-degradation of acetaldehyde under simulated solar illumination. Relative to their low order structures and reference titania samples, the hierarchical nanostructures of cobalt oxide showed excellent abilities to rapidly degrade acetaldehyde, a model air pollutant. This was attributed to the unique nature of these hierarchical cobalt oxide nanoassemblies, which contained many catalytically active reaction sites and open pores.

  2. Lunar Polar Landing Sites

    Science.gov (United States)

    Kamps, Oscar; Foing, Bernard H.; Flahaut, Jessica

    2016-07-01

    An important step for a scientific mission is to assess on where the mission should be conducted. This study on landing site selection focuses on a mission to the poles of the Moon where an in-situ mission should be conducted to answer the questions with respect to volatiles and ices. The European interest for a mission to the poles of the Moon is presented in the mission concept called Heracles. This mission would be a tele-operated, sample return mission where astronauts will controlling a rover from an Orion capsule in cislunar orbit. The primary selection of landing sites was based on the scientific interest of areas near the poles. The maximum temperature map from Diviner was used to select sites where CO^2¬ should always be stable. This means that the maximum temperature is lower than 54K which is the sublimation temperature for CO^2¬ in lunar atmospheric pressure. Around these areas 14 potential regions of interest were selected. Further selection was based on the epoch of the surface in these regions of interest. It was thought that it would be of high scientific value if sites are sampled which have another epoch than already sampled by one of the Apollo or Luna missions. Only 6 sites on both North as South Pole could contain stable CO^2 ¬and were older than (Pre-)Necterian. Before a landing site and rover traverse was planned these six sites were compared on their accessibility of the areas which could contain stable CO^2. It was assumed that slope lower than 20^o is doable to rove. Eventually Amundsen and Rozhdestvenskiy West were selected as regions of interest. Assumptions for selecting landing sites was that area should have a slope lower than 5^o, a diameter of 1km, in partial illuminated area, and should not be isolated but inside an area which is in previous steps marked as accessible area to rove. By using multiple tools in ArcGIS it is possible to present the area's which were marked as potential landing sites. The closest potential landing

  3. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  4. Site Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the site calibration carried out at Østerild, during a given period. The site calibration was performed with two Windcube WLS7 (v1) lidars at ten measurements heights. The lidar is not a sensor approved by the current version of the IEC 61400-12-1 [1] and therefore the site...... calibration with lidars does not comply with the standard. However, the measurements are carried out following the guidelines of IEC 61400-12-1 where possible, but with some deviations presented in the following chapters....

  5. [Mechanism study of fluoride adsorption by hydrous metal oxides].

    Science.gov (United States)

    Guo, Hui-Chao; Li, Wen-Jun; Chang, Zhi-Dong; Wang, Huan-Ying; Zhou, Yue

    2011-08-01

    Hydrous oxides of cerium, aluminum, nickel and copper were prepared by alkaline precipitation method. Langmuir adsorption isotherm was studied and specific surface area was measured by BET method through N2 adsorption-desorption process. IR characterization of hydrous metal oxides before and after fluoride adsorption was also studied. Results show that different hydrous metal oxides have different specific surface areas and their pore size distributions also are not all the same. Adsorption capacity is not directly dependent on the specific surface area. Isotherm study indicates that the adsorption follows Langmuir model and shows the feature of monolayer adsorption. IR study before and after fluoride adsorption shows that different hydrous metal oxides have similar adsorption sites in the same IR region as well as adsorption sites in the different IR region. The comprehensive interaction of these adsorption sites with fluoride ions results in the different adsorption capacity of different hydrous metal oxides.

  6. Purification of a cytochrome bc1-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum

    OpenAIRE

    Niebisch, A.; Bott, M.

    2003-01-01

    The aerobic respiratory chain of the Gram-positive Corynebacterium glutamicum involves a bc(1) complex with a diheme cytochrome c(1) and a cytochrome aa(3) oxidase but no additional c-type cytochromes. Here we show that the two enzymes form a supercomplex, because affinity chromatography of either strep-tagged cytochrome b (QcrB) or strep-tagged subunit I (CtaD) of cytochrome aa(3) always resulted in the copurification of the subunits of the bc(1) complex (QcrA, QcrB, QcrC) and the aa(3) comp...

  7. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  8. Outdoor Recreation Sites Inventory

    Data.gov (United States)

    Vermont Center for Geographic Information — The RECSITES data layer contains a wide range of recreational sites in Vermont. This point data layer includes parks, ski areas, boat access points, and many other...

  9. Programming for SITE.

    Science.gov (United States)

    Mody, Bella

    1979-01-01

    Describes the Satellite Instructional Television Experiment (SITE) project in India during 1975-76, including programing patterns, formats, and audiences. Demonstrates that countries like India have the technical and managerial capability to design, operate, and maintain advanced communication technology. (JMF)

  10. Coal mine site reclamation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Coal mine sites can have significant effects on local environments. In addition to the physical disruption of land forms and ecosystems, mining can also leave behind a legacy of secondary detrimental effects due to leaching of acid and trace elements from discarded materials. This report looks at the remediation of both deep mine and opencast mine sites, covering reclamation methods, back-filling issues, drainage and restoration. Examples of national variations in the applicable legislation and in the definition of rehabilitation are compared. Ultimately, mine site rehabilitation should return sites to conditions where land forms, soils, hydrology, and flora and fauna are self-sustaining and compatible with surrounding land uses. Case studies are given to show what can be achieved and how some landscapes can actually be improved as a result of mining activity.

  11. Water Quality Monitoring Sites

    Data.gov (United States)

    Vermont Center for Geographic Information — Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or...

  12. Superfund Site Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes a number of individual data sets related to site-specific information for Superfund, which is governed under the Comprehensive Environmental...

  13. Summer Meal Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Information pertaining to Summer Meal Sites, as collected by Citiparks in the City of Pittsburgh Department of Parks and Recreation. This dataset includes the...

  14. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  15. Platinum nanoparticles–manganese oxide nanorods as novel binary catalysts for formic acid oxidation

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2012-01-01

    Full Text Available The current study proposes a novel binary catalyst system (composed of metal/metal oxide nanoparticles as a promising electrocatalyst in formic acid oxidation. The electro-catalytic oxidation of formic acid is carried out with binary catalysts of Pt nanoparticles (nano-Pt and manganese oxide nanorods (nano-MnOx electrodeposited onto glassy carbon (GC electrodes. Cyclic voltammetric (CV measurements showed that unmodified GC and nano-MnOx/GC electrodes have no catalytic activity. While two oxidation peaks were observed at nano-Pt/GC electrode at ca. 0.2 and 0.55 V (corresponding to the direct oxidation of formic acid and the oxidation of the poisoning CO intermediate, respectively. The combined use of nano-MnOx and nano-Pt results in superb enhancement of the direct oxidation pathway. Nano-MnOx is shown to facilitate the oxidation of CO (to CO2 by providing oxygen at low over-potential. This leads to retrieval of Pt active sites necessary for the direct oxidation of formic acid. The higher catalytic activity of nano-MnOx/nano-Pt/GC electrode (with Pt firstly deposited compared to its mirror image electrode (i.e., with MnOx firstly deposited, nano-Pt/nano-MnOx/GC reveals that the order of the electrodeposition is an essential parameter.

  16. Generalized trends in the formation energies of perovskite oxides.

    Science.gov (United States)

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  17. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    , but the mechanisms regulating fuel preferences remain unclear. During intense exercise, oxidation of long-chain fatty acids (LCFAs) decreases, and the major control is likely to be at the mitochondrial level. Potential mitochondrial sites for control of lipid oxidation include transport of LCFAs into mitochondrial...

  18. Estimating Absolute Site Effects

    Energy Technology Data Exchange (ETDEWEB)

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency

  19. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  20. Site clearance working group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Gulf of Mexico and Louisiana continue to be areas with a high level of facility removal, and the pace of removal is projected to increase. Regulations were promulgated for the Gulf of Mexico and Louisiana requiring that abandoned sites be cleared of debris that could interfere with fishing and shrimping activities. The site clearance regulations also required verification that the sites were clear. Additionally, government programs were established to compensate fishermen for losses associated with snagging their equipment on oil and gas related objects that remained on the water bottoms in areas other than active producing sites and sites that had been verified as clear of obstructions and snags. The oil and gas industry funds the compensation programs. This paper reviews the regulations and evolving operating practices in the Gulf of Mexico and Louisiana where site clearance and fisherman`s gear compensation regulations have been in place for a number of years. Although regulations and guidelines may be in place elsewhere in the world, this paper focuses on the Gulf of Mexico and Louisiana. Workshop participants are encouraged to bring up international issues during the course of the workshop. Additionally, this paper raises questions and focuses on issues that are of concern to the various Gulf of Mexico and Louisiana water surface and water bottom stakeholders. This paper does not have answers to the questions or issues. During the workshop participants will debate the questions and issues in an attempt to develop consensus opinions and/or make suggestions that can be provided to the appropriate organizations, both private and government, for possible future research or policy adjustments. Site clearance and facility removal are different activities. Facility removal deals with removal of the structures used to produce oil and gas including platforms, wells, casing, piles, pipelines, well protection structures, etc.

  1. SiteGuide: A tool for web site authoring support

    NARCIS (Netherlands)

    Hollink, V.; de Boer, V.; van Someren, M.; Cordeiro, J.; Filipe, J.

    2010-01-01

    We present ‘SiteGuide’, a tool that helps web designers to decide which information will be included in a new web site and how the information will be organized. SiteGuide takes as input URLs of web sites from the same domain as the site the user wants to create. It automatically searches the pages

  2. Evaporative oxidation treatability test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  3. Product desorption limitations in selective photocatalytic oxidation

    NARCIS (Netherlands)

    Renckens, T.J.A.; Almeida, A.R.; Damen, M.R.; Kreutzer, M.T.; Mul, G.

    2010-01-01

    The rate of photocatalytic processes can be significantly improved if strongly bound products rapidly desorb to free up active sites. This paper deals with the rate of desorption of cyclohexanone, the product of the liquid-phase photo-oxidation of cyclohexane. Dynamic step-response and pulse-respons

  4. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  5. Leukocytic oxygen activation and microbicidal oxidative toxins.

    Science.gov (United States)

    Hurst, J K; Barrette, W C

    1989-01-01

    Following a brief introduction of cellular response to stimulation comprising leukocyte activation, three major areas are discussed: (1) the neutrophil oxidase; (2) myeloperoxidase (MPO)-dependent oxidative microbicidal reactions; and (3) MPO-independent oxidative reactions. Topics included in section (A) are current views on the activation mechanism, redox composition, structural and topographic organization of the oxidase, and its respiratory products. In section (B), emphasis is placed on recent research on cidal mechanisms of HOCl, including the oxidative biochemistry of active chlorine compounds, identification of sites of lesions in bacteria, and attendant metabolic consequences. In section (C), we review the (bio)chemistry of H2O2 and .OH microbicidal reactions, with particular attention being given to addressing the controversial issue of probe methods to identify .OH radical and critical assessment of the recent proposal that MPO-independent killing arises from site-specific metal-catalyzed Fenton-type chemistry.

  6. Superfund and Toxic Release Inventory Sites - MDC_ContaminatedSite

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A point feature class of open DERM Contaminated sites - see phase code for status of site. Contaminated sites identifies properties where environmental contamination...

  7. Region 9 NPL Sites (Superfund Sites 2013) Polygons

    Data.gov (United States)

    U.S. Environmental Protection Agency — NPL site POLYGON locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

  8. Superfund and Toxic Release Inventory Sites - MDC_ContaminatedSite

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A point feature class of open DERM Contaminated sites - see phase code for status of site. Contaminated sites identifies properties where environmental contamination...

  9. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  10. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  11. Hydroelectric generating site signage

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, K. [British Columbia Hydro, Vancouver, BC (Canada)

    1997-04-01

    Recreational sites have been developed at several BC Hydro reservoirs. These sites are visited by approximately 800,000 people annually and therefore, require consistent control measures to ensure public safety and to restrict public access to hazardous areas. BC Hydro is in the process of establishing a province-wide standard in which layout, colour, description of hazards, BC Hydro identity and sign placement would follow an established set of criteria. Proposed signs would consist of a pictograph and a printed warning below. Preliminary designs for 16 of the signs were presented. 16 figs.

  12. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.

    Science.gov (United States)

    Pan, Shuyang; Aksay, Ilhan A

    2011-05-24

    We have studied the effect of the oxidation path and the mechanical energy input on the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 μm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. As the effective crack propagation rate in the cross-planar direction is an order of magnitude smaller than the edge-to-center oxidation rate, graphene oxide single sheets larger than those defined by the periodic cracking cell size are produced depending on the aspect ratio of the graphite particles. We also demonstrate that external energy input from hydrodynamic drag created by fluid motion or sonication, further reduces the size of the graphene oxide sheets through tensile stress buildup in the sheets.

  13. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Univ. of California, Berkeley, CA (United States); Frei, Heinz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States)

    2017-02-22

    Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. In conclusion, combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.

  14. Oxidative removal of aqueous steroid estrogens by manganese oxides.

    Science.gov (United States)

    Xu, Lei; Xu, Chao; Zhao, Meirong; Qiu, Yuping; Sheng, G Daniel

    2008-12-01

    This study investigated the oxidative removal of steroid estrogens from water by synthetic manganese oxide (MnO2) and the factors influencing the reactions. Using 1 x 10(-5)M MnO2 at pH 4, estrone (E1), 17beta-estradiol (E2), estriol (E3) and 17alpha-ethinylestradiol (EE2), all at 4 x 10(-6)M, were rapidly removed within 220 min, indicating the effectiveness of MnO2 as an oxidizing agent towards estrogens. E2 removal increased with decreasing pH over the tested range of 4-8, due most likely to increased oxidizing power of MnO2 and a cleaner reactive surface in acidic solutions. Coexisting metal ions of 0.01 M (Cu(II), Zn(II), Fe(III) and Mn(II)) and Mn(II) released from MnO2 reduction competed with E2 for reactive sites leading to reduced E2 removal. Observed differential suppression on E2 removal may be related to different speciations of metals, as suggested by the MINTEQ calculations, and hence their different adsorptivities on MnO2. By suppressing the metal effect, humic acid substantially enhanced E2 removal. This was attributed to complexation of humic acid with metal ions. With 0.01 M ZnCl2 in solutions containing 1 mg l(-1) humic acid, the binding of humic acid for Zn(II) was determined at 251 mmol g(-1). An in vitro assay using human breast carcinoma MCF-7 cells indicated a near elimination of estrogenic activities without secondary risk of estrogen solutions treated with MnO2. Synthetic MnO2 is therefore a promising chemical agent under optimized conditions for estrogen removal from water. Metal chelators recalcitrant to MnO2 oxidation may be properly used to further enhance the MnO2 performance.

  15. Oxidative stress decreases with elevation in the lizard Psammodromus algirus.

    Science.gov (United States)

    Reguera, Senda; Zamora-Camacho, Francisco J; Trenzado, Cristina E; Sanz, Ana; Moreno-Rueda, Gregorio

    2014-06-01

    Oxidative stress is considered one of the main ecological and evolutionary forces. Several environmental stressors vary geographically and thus organisms inhabiting different sites face different oxidant environments. Nevertheless, there is scarce information about how oxidative damage and antioxidant defences vary geographically in animals. Here we study how oxidative stress varies from lowlands (300-700 m asl) to highlands (2200-2500 m asl) in the lizard Psammodromus algirus. To accomplish this, antioxidant enzymatic activity (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, DT-diaphorase) and lipid peroxidation were assayed in tissue samples from the lizards' tail. Lipid peroxidation was higher in individuals from lowlands than from highlands, indicating higher oxidative stress in lowland lizards. These results suggest that environmental conditions are less oxidant at high elevations with respect to low ones. Therefore, our study shows that oxidative stress varies geographically, which should have important consequences for our understanding of geographic variation in physiology and life-history of organisms.

  16. Region 9 NPL Sites - 2014

    Data.gov (United States)

    U.S. Environmental Protection Agency — NPL site point locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup...

  17. Site-Specific Innovation

    DEFF Research Database (Denmark)

    Reeh, Henrik; Hemmersam, Peter

    2015-01-01

    , but also places for emerging lifestyles and cultural processes. In this transformation process, harbours provide arenas for a new urban dynamics, involving multiple sectors and functions in society, as opposed to the monoculturalism prevailing in the ages of the industrial city. To us, the critical...... question is how innovation may contribute to urban life and site-specific qualities....

  18. Sites and Enactments

    DEFF Research Database (Denmark)

    Korsgaard, Steffen; Neergaard, Helle

    2010-01-01

    This paper develops a framework for researching entrepreneurial opportunities. We argue that these can best be understood as dynamic and fluid effects of entrepreneurial processes that are enacted differently across different sites. On this basis we develop a framework for studying entrepreneuria...

  19. 2014 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Douglas [Brookhaven National Lab. (BNL), Upton, NY (United States); Remien, Jason [Brookhaven National Lab. (BNL), Upton, NY (United States); Foley, Brian [Brookhaven National Lab. (BNL), Upton, NY (United States); Burke, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Dorsch, William [Brookhaven National Lab. (BNL), Upton, NY (United States); Ratel, Karen [Brookhaven National Lab. (BNL), Upton, NY (United States); Howe, Robert [Brookhaven National Lab. (BNL), Upton, NY (United States); Welty, Tim [Brookhaven National Lab. (BNL), Upton, NY (United States); Williams, Jeffrey [Brookhaven National Lab. (BNL), Upton, NY (United States); Pohlpt, Peter [Brookhaven National Lab. (BNL), Upton, NY (United States); Lagattolla, Richard [Brookhaven National Lab. (BNL), Upton, NY (United States); Metz, Robert [Brookhaven National Lab. (BNL), Upton, NY (United States); Milligan, James [Brookhaven National Lab. (BNL), Upton, NY (United States); Lettieri, Lawrence [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-01

    BNL prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory’s environmental performance during the calendar year in review.

  20. Sites and Enactments

    DEFF Research Database (Denmark)

    Korsgaard, Steffen T.; Neergaard, Helle

    2008-01-01

    is formulated where opportunities are seen as dynamic in the sense that they are enacted in different social practices at different sites. The method is illustrated through an analysis of the birth of The Republic of Tea, a very successful tea company, as presented in the book "The Republic of Tea"....

  1. Visit our Site

    NARCIS (Netherlands)

    Jos de Haan; Renée Mast; Marleen Varekamp; Susanne Janssen

    2006-01-01

    Original title: Bezoek onze site. More and more cultural organisations are digitising content and making this cultural treasure chest available to a wider public via the Internet. International comparison shows that the Netherlands is one of the leaders in this regard. This report summarises the ma

  2. Power plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Winter, J.V.; Conner, D.A.

    1978-01-01

    Just to keep up with expected demand, the US will need over 500 new power generation units by 1985. Where these power plants will be located is the subject of heated debate among utility officials, government leaders, conservationists, concerned citizens and a multitude of special interest groups. This book offers a balanced review of all of the salient factors that must be taken into consideration in selecting power plant locations. To deal with this enormously complex subject, the authors (1) offer a general overview of the history and reasoning behind present legislation on the state and national levels; (2) describe the many different agencies that have jurisdiction in power plant location, from local water authorities and city councils to state conservation boards and the Nuclear Regulatory Commission; and (3) include a state-by-state breakdown of siting laws, regulations and present licensing procedures. Architects, engineers, contractors, and others involved in plant construction and site evaluation will learn of the trade-offs that must be made in balancing the engineering, economic, and environmental impacts of plant location. The book covers such areas as availability of water supplies for generation or cooling; geology, typography, and demography of the proposed site; and even the selection of the fuel best suited for the area. Finally, the authors examine the numerous environmental aspects of power plant siting.

  3. School-Site Management.

    Science.gov (United States)

    English, Fenwick W.

    1989-01-01

    School-site management embodies the concept that decisions should be made at the lowest possible level in organizations and intends that no decision be made without the input of those affected by them. The concept also suggests the empowerment of individual units of the system, particularly, the teachers. Centralization versus decentralization is…

  4. Small Wind Site Assessment Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Tim [Advanced Energy Systems LLC, Eugene, OR (United States); Preus, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  5. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Vallejo, Federico Calle; Guo, Wei

    2011-01-01

    Versatile Brønsted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site, and the dissociating molecule. The slope of the BEP...

  6. A New Family of Ce6MoO15 as Fast Oxide Ion Conductor

    Institute of Scientific and Technical Information of China (English)

    Feng Jing; Meng Jian; Bo Qibing; Che Ping; Wang Jingping; Liu Jianfen; Lu Minfeng; Zhang Deping; Fang Daqing; Cao Xueqiang

    2004-01-01

    A novel solid solution Ce6MoO15 was achieved. Their structure and oxide ionic conductivity were studied.Based on Ce6MoO15, rare earth element substitution on cerium site shows that all resulting oxides enhance the conductivity further, and have high oxide-ion conductivity, which may be a kind of promising material for SOFCs.

  7. Biocompatibility of implantable materials: An oxidative stress viewpoint.

    Science.gov (United States)

    Mouthuy, Pierre-Alexis; Snelling, Sarah J B; Dakin, Stephanie G; Milković, Lidija; Gašparović, Ana Čipak; Carr, Andrew J; Žarković, Neven

    2016-12-01

    Oxidative stress occurs when the production of oxidants surpasses the antioxidant capacity in living cells. Oxidative stress is implicated in a number of pathological conditions such as cardiovascular and neurodegenerative diseases but it also has crucial roles in the regulation of cellular activities. Over the last few decades, many studies have identified significant connections between oxidative stress, inflammation and healing. In particular, increasing evidence indicates that the production of oxidants and the cellular response to oxidative stress are intricately connected to the fate of implanted biomaterials. This review article provides an overview of the major mechanisms underlying the link between oxidative stress and the biocompatibility of biomaterials. ROS, RNS and lipid peroxidation products act as chemo-attractants, signalling molecules and agents of degradation during the inflammation and healing phases. As chemo-attractants and signalling molecules, they contribute to the recruitment and activation of inflammatory and healing cells, which in turn produce more oxidants. As agents of degradation, they contribute to the maturation of the extracellular matrix at the healing site and to the degradation of the implanted material. Oxidative stress is itself influenced by the material properties, such as by their composition, their surface properties and their degradation products. Because both cells and materials produce and react with oxidants, oxidative stress may be the most direct route mediating the communication between cells and materials. Improved understanding of the oxidative stress mechanisms following biomaterial implantation may therefore help the development of new biomaterials with enhanced biocompatibility.

  8. Pattern of occurrence and occupancy of carbonylation sites in proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2011-01-01

    Proteins are targets for modification by reactive oxygen species, and carbonylation is an important irreversible modification that increases during oxidative stress. While information on protein carbonylation is accumulating, its pattern is not yet understood. We have made a meta-analysis of the ......Proteins are targets for modification by reactive oxygen species, and carbonylation is an important irreversible modification that increases during oxidative stress. While information on protein carbonylation is accumulating, its pattern is not yet understood. We have made a meta...... sites. Comparison of metal-catalyzed oxidation of two closely related proteins indicates that this type of carbonylation might not be very specific in proteins. Interestingly, carbonylated sites show a very strong tendency to cluster together in the protein primary sequence hinting at some sort...

  9. Hanford Site air operating permit application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  10. Generalized trends in the formation energies of perovskite oxides

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Calle-Vallejo, Federico; Mogensen, Mogens Bjerg

    2013-01-01

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied...... systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual...... contributions of their constituent oxides, the trends can be rationalized in terms of A–O and B–O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion–ion interactions...

  11. Oxidative stress and myocarditis.

    Science.gov (United States)

    Tada, Yuko; Suzuki, Jun-Ichi

    2016-01-01

    Reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide are produced highly in myocarditis. ROS, which not only act as effectors for pathogen killing but also mediate signal transduction in the stress responsive pathways, are closely related with both innate and adaptive immunity. On the other hand, oxidative stress overwhelming the capacity of anti-oxidative system generated in severe inflammation has been suggested to damage tissues and exacerbate inflammation. Oxidative stress worsens the autoimmunological process of myocarditis, and suppression of the anti-oxidative system and long-lasting oxidative stress could be one of the pathological mechanisms of cardiac remodeling leading to inflammatory cardiomyopathy. Oxidative stress is considered to be one of the promising treatment targets of myocarditis. Evidences of anti-oxidative treatments in myocarditis have not been fully established. Basic strategies of anti-oxidative treatments include inhibition of ROS production, activation of anti-oxidative enzymes and elimination of generated free radicals. ROS are produced by mitochondrial respiratory chain reactions and enzymes including NADPH oxidases, cyclooxygenase, and xanthine oxidase. Other systems involved in inflammation and stress response, such as NF-κB, Nrf2/Keap1, and neurohumoral factors also influence oxidative stress in myocarditis. The efficacy of anti-oxidative treatments could also depend on the etiology and the phases of myocarditis. We review in this article the pathological significance of ROS and oxidative stress, and the potential anti-oxidative treatments in myocarditis.

  12. Solid oxide electrolyser cell

    Energy Technology Data Exchange (ETDEWEB)

    Hoejgaard Jensen, S.

    2006-12-15

    Solid oxide fuel cells (SOFCs) produced at Riso National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 deg. C and a cell voltage of 1.48V the current density was -3.6 A/cm{sup 2} with app. 30% H{sub 2} + 70% H{sub 2}O in the inlet gas and a H{sub 2}O utilization of app. 40%. The tested SOECs were also used for CO{sub 2} electrolysis. Economy studies of CO and H2 production show that especially H{sub 2} production can be competitive in areas with cheap electricity. Assuming the above described initial performance and a lifetime of 10 years it is possible to achieve a production price of 0.7 US dollar/kg H{sub 2} with an electricity price of 1.3 US cent/kWh. The cell voltage was measured as function of time. In test of about two month of duration a long-term degradation was observed. At 850 deg. C, -0.5 A/cm{sup 2} with 50 vol% H{sub 2} the degradation rate was app. 20 mV/1000h. It was shown that the degradation happens at Ni/YSZ-electrode. The long term degradation is probably caused by coarsening of the Ni-particles. After onset of electrolysis operation a transient passivation/reactivation phenomena with duration of several days was observed. It was shown that the phenomenon is attributed to the SiO{sub 2} contamination at the Ni/YSZ electrode-electrolyte interface. The SiO{sub 2} arises from the albite glass sealing (NaAlSi{sub 3}O{sub 8}) that surrounds the electrode. Si may enter the Ni/YSZ electrode via the reaction Si(OH){sub 4}(g) {r_reversible} SiO{sub 2}(l)+H{sub 2}O(g). At the active sites of the Ni/YSZ electrode steam is reduced via the reaction H{sub 2}O - 2e {yields} H{sub 2}+O{sup 2-} . This shifts the equilibrium of the first reaction to form SiO{sub 2}(l) at the active sites. After a certain time the sealing crystallizes and the SiO{sub 2}(l) evaporates from the active sites and the cell reactivates. The passivation is shown to relate to a build up of a

  13. PhosphoSiteAnalyzer

    DEFF Research Database (Denmark)

    Bennetzen, Martin V; Cox, Jürgen; Mann, Matthias

    2012-01-01

    an algorithm to retrieve kinase predictions from the public NetworKIN webpage in a semiautomated way and applies hereafter advanced statistics to facilitate a user-tailored in-depth analysis of the phosphoproteomic data sets. The interface of the software provides a high degree of analytical flexibility...... and is designed to be intuitive for most users. PhosphoSiteAnalyzer is a freeware program available at http://phosphosite.sourceforge.net ....

  14. Site-directed mutagenesis.

    Science.gov (United States)

    Bachman, Julia

    2013-01-01

    Site-directed mutagenesis is a PCR-based method to mutate specified nucleotides of a sequence within a plasmid vector. This technique allows one to study the relative importance of a particular amino acid for protein structure and function. Typical mutations are designed to disrupt or map protein-protein interactions, mimic or block posttranslational modifications, or to silence enzymatic activity. Alternatively, noncoding changes are often used to generate rescue constructs that are resistant to knockdown via RNAi.

  15. 1999 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

    2000-09-01

    Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

  16. Characterization of a protein-generated O₂ binding pocket in PqqC, a cofactorless oxidase catalyzing the final step in PQQ production.

    Science.gov (United States)

    RoseFigura, Jordan M; Puehringer, Sandra; Schwarzenbacher, Robert; Toyama, Hirohide; Klinman, Judith P

    2011-03-08

    PQQ is an exogenous, tricyclic, quino-cofactor for a number of bacterial dehydrogenases. The final step of PQQ formation is catalyzed by PqqC, a cofactorless oxidase. This study focuses on the activation of molecular oxygen in an enzyme active site without metal or cofactor and has identified a specific oxygen binding and activating pocket in PqqC. The active site variants H154N, Y175F,S, and R179S were studied with the goal of defining the site of O(2) binding and activation. Using apo-glucose dehydrogenase to assay for PQQ production, none of the mutants in this "O(2) core" are capable of PQQ/PQQH(2) formation. Spectrophotometric assays give insight into the incomplete reactions being catalyzed by these mutants. Active site variants Y175F, H154N, and R179S form a quinoid intermediate (Figure 1) anaerobically. Y175S is capable of proceeding further from quinoid to quinol, whereas Y175F, H154N, and R179S require O(2) to produce the quinol species. None of the mutations precludes substrate/product binding or oxygen binding. Assays for the oxidation of PQQH(2) to PQQ show that these O(2) core mutants are incapable of catalyzing a rate increase over the reaction in buffer, whereas H154N can catalyze the oxidation of PQQH(2) to PQQ in the presence of H(2)O(2) as an electron acceptor. Taken together, these data indicate that none of the targeted mutants can react fully to form quinone even in the presence of bound O(2). The data indicate a successful separation of oxidative chemistry from O(2) binding. The residues H154, Y175, and R179 are proposed to form a core O(2) binding structure that is essential for efficient O(2) activation.

  17. Characterization of a Protein Generated O2 Binding Pocket in PqqC, a Cofactorless Oxidase Catalyzing the Final Step in PQQ Production†

    Science.gov (United States)

    RoseFigura, Jordan M.; Puehringer, Sandra; Schwarzenbacher, Robert; Toyama, Hirohide; Klinman, Judith P.

    2012-01-01

    PQQ is an exogenous, tricyclic, quino-cofactor for a number of bacterial dehydrogenases. The final step of PQQ formation is catalyzed by PqqC, a cofactorless oxidase. This study focuses on the activation of molecular oxygen in an enzyme active site without metal or cofactor and has identified a specific oxygen binding and activating pocket in PqqC. The active site variants H154N, Y175F,S and R179S were studied with the goal of defining the site of O2 binding and activation. Using apo-glucose dehydrogenase to assay for PQQ production, none of the mutants in this “O2 core” are capable of PQQ/PQQH2 formation. Spectrophotometric assays give insight into the incomplete reactions being catalyzed by these mutants. Active site variants Y175F, H154N and R179S form a quinoid intermediate (Figure 1) anaerobically. Y175S is capable of proceeding further from quinoid to quinol, whereas Y175F, H154N and R179S require O2 to produce the quinol species. None of the mutations precludes substrate/product binding or oxygen binding. Assays for the oxidation of PQQH2 to PQQ show that these O2 core mutants are incapable of catalyzing a rate increase over the reaction in buffer. Interestingly, H154N can catalyze the oxidation of PQQH2 to PQQ faster than buffer, but only with H2O2 as an electron acceptor, not with O2. Taken together, these data indicate that none of the targeted mutants can react fully to form quinone even in the presence of bound O2. The data indicate a successful separation of oxidative chemistry from O2 binding. The residues H154, Y175, and R179 are proposed to form a core O2 binding structure that is essential for O2 activation. PMID:21155540

  18. Electrolytic oxidation of anthracite

    Science.gov (United States)

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  19. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  20. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  1. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  2. Nitrous Oxide Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Nitrous Oxide (N20) flux is the net rate of nitrous oxide exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS...

  3. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.

    Science.gov (United States)

    Du, Yatao; Zhang, Huihui; Zhang, Xu; Lu, Jun; Holmgren, Arne

    2013-11-08

    The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress.

  4. Metal/oxide interfacial effects on the selective oxidation of primary alcohols

    Science.gov (United States)

    Zhao, Guofeng; Yang, Fan; Chen, Zongjia; Liu, Qingfei; Ji, Yongjun; Zhang, Yi; Niu, Zhiqiang; Mao, Junjie; Bao, Xinhe; Hu, Peijun; Li, Yadong

    2017-01-01

    A main obstacle in the rational development of heterogeneous catalysts is the difficulty in identifying active sites. Here we show metal/oxide interfacial sites are highly active for the oxidation of benzyl alcohol and other industrially important primary alcohols on a range of metals and oxides combinations. Scanning tunnelling microscopy together with density functional theory calculations on FeO/Pt(111) reveals that benzyl alcohol enriches preferentially at the oxygen-terminated FeO/Pt(111) interface and undergoes readily O-H and C-H dissociations with the aid of interfacial oxygen, which is also validated in the model study of Cu2O/Ag(111). We demonstrate that the interfacial effects are independent of metal or oxide sizes and the way by which the interfaces were constructed. It inspires us to inversely support nano-oxides on micro-metals to make the structure more stable against sintering while the number of active sites is not sacrificed. The catalyst lifetime, by taking the inverse design, is thereby significantly prolonged.

  5. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  6. Validation of the chloramine-T induced oxidation of human serum albumin as a model for oxidative damage in vivo.

    Science.gov (United States)

    Anraku, Makoto; Kragh-Hansen, Ulrich; Kawai, Keiichi; Maruyama, Toru; Yamasaki, Yasuomi; Takakura, Yoshinobu; Otagiri, Masaki

    2003-04-01

    The validity of using chloramine-T as a model compound for mimicing oxidative stress was examined using human serum albumin (HSA) as a model. Important sites of oxidation were studied by mild treatment with chloramine-T and by mutating 34Cys for a serine (C34S). High-performance liquid chromatography (HPLC) combined with fluorescence detection to confirm the validity of chloramine-T as an oxidizing agent was used. Oxidized amino acid residues were detected by reaction with 5,5'-dithiobis(2-nitro benzoic acid), digestion with cyanogen bromide, followed by capillary electrophoresis. Protein conformation was examined by spectroscopic techniques. From the HPLC analysis of human serum, the validity of using chloramine-T as an oxidizing agent was confirmed. At low chloramine-T concentrations (CT0.1-HSA, CT1-HSA), 34Cys and Met residues were oxidized, at medium concentrations (CT10-HSA), the tryptophan residue also appeared to be oxidized, and at the highest concentration (CT50-HSA), the net charge of Site II of HSA was found to be more negative. The two highest levels of oxidation of HSA (CT10-HSA, CT50-HSA) resulted in conformational changes with an increased exposure of hydrophobic regions, decreased high-affinity bindings of warfarin and ketoprofen and a reduced esterase-like activity. The latter protein also has a shorter plasma half-life and an increased liver clearance. We succeeded in imitating oxidative damage to HSA using chloramine-T and the findings show that Site II is more affected than Site I and 34Cys, when HSA is exposed to oxidative stress.

  7. Homogeneous and heterogenized iridium water oxidation catalysts

    Science.gov (United States)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  8. ZFN-Site searches genomes for zinc finger nuclease target sites and off-target sites

    Directory of Open Access Journals (Sweden)

    Iseli Christian

    2011-05-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs are man-made restriction enzymes useful for manipulating genomes by cleaving target DNA sequences. ZFNs allow therapeutic gene correction or creation of genetically modified model organisms. ZFN specificity is not absolute; therefore, it is essential to select ZFN target sites without similar genomic off-target sites. It is important to assay for off-target cleavage events at sites similar to the target sequence. Results ZFN-Site is a web interface that searches multiple genomes for ZFN off-target sites. Queries can be based on the target sequence or can be expanded using degenerate specificity to account for known ZFN binding preferences. ZFN off-target sites are outputted with links to genome browsers, facilitating off-target cleavage site screening. We verified ZFN-Site using previously published ZFN half-sites and located their target sites and their previously described off-target sites. While we have tailored this tool to ZFNs, ZFN-Site can also be used to find potential off-target sites for other nucleases, such as TALE nucleases. Conclusions ZFN-Site facilitates genome searches for possible ZFN cleavage sites based on user-defined stringency limits. ZFN-Site is an improvement over other methods because the FetchGWI search engine uses an indexed search of genome sequences for all ZFN target sites and possible off-target sites matching the half-sites and stringency limits. Therefore, ZFN-Site does not miss potential off-target sites.

  9. Role of nitric oxide in hematosuppression and benzene-induced toxicity.

    OpenAIRE

    Laskin, D L; Heck, D E; Punjabi, C J; Laskin, J D

    1996-01-01

    It is becoming increasingly apparent that nitric oxide plays a multifunctional role in regulating inflammatory processes in the body. Although nitric oxide and its oxidation products are cytotoxic toward certain pathogens, they can also cause tissue injury and suppress proliferation. Cytokines and growth factors released at sites of inflammation or injury stimulate both immune and nonimmume cells to produce nitric oxide. Nowhere in the body is this more detrimental than in the bone marrow, fo...

  10. Oxygen trapping and cation site-splitting in Y(2-x)PrxO3+δ (0.0≤x<2.0 and δ≤1.0)

    Science.gov (United States)

    Lussier, Joey A.; Devitt, Graham; Szkop, Kevin M.; Bieringer, Mario

    2016-10-01

    The reduction and oxidation of the solid solution Y2-xPrxO3+δ (0.0≤xtime of flight neutron diffraction data. In the bixbyite structures the 8c cation site splits into the 16c cation site and the 24d cation position migrates toward the ideal fluorite coordination upon oxidation. Reductive in-situ diffraction experiments reveal the co-existence of the fluorite and bixbyite structure only in a narrow temperature range. During oxidation of the bixbyite phase a new 16c oxide anion site is populated. The impact of the 16c oxide site population on the cation sublattice is being discussed.

  11. Oxide catalysts for oxidation of xylene

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2013-09-01

    Full Text Available Polioxide granulated catalysts based on transition and rare earth metals for oxidative conversion of xylene by oxygen have been investigated. It was defined the effect of the composition and concentration of the active phase of oxide catalysts: Cu-Mn-Ln; Cu-Mn-Ce and Cu-Mn-Nd on the o-xylene oxidation. It was found that the Cu-Mn-Ce catalyst has the highest activity at the concentrations of metals: copper – 3.0%; manganese – 3.0%; cerium – 1.0%.

  12. Windows Azure web sites

    CERN Document Server

    Chambers, James

    2013-01-01

    A no-nonsense guide to maintaining websites in Windows Azure If you're looking for a straightforward, practical guide to get Azure websites up and running, then this is the book for you. This to-the-point guide provides you with the tools you need to move and maintain a website in the cloud. You'll discover the features that most affect developers and learn how they can be leveraged to work to your advantage. Accompanying projects enhance your learning experience and help you to walk away with a thorough understanding of Azure's supported technologies, site deployment, and manageme

  13. 1994 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  14. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  15. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    Science.gov (United States)

    Liu, Yun; Yang, Fan; Zhang, Yi; Xiao, Jianping; Yu, Liang; Liu, Qingfei; Ning, Yanxiao; Zhou, Zhiwen; Chen, Hao; Huang, Wugen; Liu, Ping; Bao, Xinhe

    2017-02-01

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2. We find this dynamic size effect to govern the chemical properties of active NSs.

  16. Mechanism of nitrite oxidation by eosinophil peroxidase: implications for oxidant production and nitration by eosinophils.

    Science.gov (United States)

    van Dalen, Christine J; Winterbourn, Christine C; Kettle, Anthony J

    2006-03-15

    Eosinophil peroxidase is a haem enzyme of eosinophils that is implicated in oxidative tissue injury in asthma. It uses hydrogen peroxide to oxidize thiocyanate and bromide to their respective hypohalous acids. Nitrite is also a substrate for eosinophil peroxidase. We have investigated the mechanisms by which the enzyme oxidizes nitrite. Nitrite was very effective at inhibiting hypothiocyanous acid ('cyanosulphenic acid') and hypobromous acid production. Spectral studies showed that nitrite reduced the enzyme to its compound II form, which is a redox intermediate containing Fe(IV) in the haem active site. Compound II does not oxidize thiocyanate or bromide. These results demonstrate that nitrite is readily oxidized by compound I, which contains Fe(V) at the active site. However, it reacts more slowly with compound II. The observed rate constant for reduction of compound II by nitrite was determined to be 5.6x10(3) M(-1) x s(-1). Eosinophils were at least 4-fold more effective at promoting nitration of a heptapeptide than neutrophils. This result is explained by our finding that nitrite reacts 10-fold faster with compound II of eosinophil peroxidase than with the analogous redox intermediate of myeloperoxidase. Nitration by eosinophils was increased 3-fold by superoxide dismutase, which indicates that superoxide interferes with nitration. We propose that at sites of eosinophilic inflammation, low concentrations of nitrite will retard oxidant production by eosinophil peroxidase, whereas at higher concentrations nitrogen dioxide will be a major oxidant formed by these cells. The efficiency of protein nitration will be decreased by the diffusion-controlled reaction of superoxide with nitrogen dioxide.

  17. AMF 1 Site Science

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark Alan [Rutgers Univ., New Brunswick, NJ (United States)

    2016-08-18

    This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommending instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.

  18. Site-specific

    Directory of Open Access Journals (Sweden)

    Adel M.E. Mohamed

    2013-06-01

    Full Text Available In order to quantify the near-surface seismic properties (P- and S-wave velocities, and the dynamic elastic properties with respect to the depth at a specific area (6th of October club, we conducted a non-invasive and low cost active seismic survey. The primary wave velocity is determined by conducting a P-wave shallow seismic refraction survey. The dispersive characteristics of Rayleigh type surface waves were utilized for imaging the shallow subsurface layers by estimating the 1D (depth and 2D (depth and surface location shear wave velocities. The reliability of the Multi-channel Analysis of Surface Waves (MASW depends on the accurate determination of phase velocities for horizontally traveling fundamental mode Rayleigh waves. Consequently, the elastic properties are evaluated empirically. The Vs30 (average shear wave velocity down to 30 m depth, which is obtained from the MASW technique, plays a critical role in evaluating the site response of the upper 30 m depth. The distribution of the obtained values of Vs30 through the studied area demonstrates site classes of C and D, according to the NEHRP (National Earthquake Hazard Reduction Program and IBC (International Building Code standards.

  19. Multi-Sited Resilience

    DEFF Research Database (Denmark)

    Olwig, Mette Fog

    2012-01-01

    Participatory methods to build local resilience often involve the organization of local community groups. When global organizations use such methods, it reflects a desire to incorporate local agency. They thereby acknowledge the ability of a society to be innovative and adapt when faced with natu......Participatory methods to build local resilience often involve the organization of local community groups. When global organizations use such methods, it reflects a desire to incorporate local agency. They thereby acknowledge the ability of a society to be innovative and adapt when faced...... with natural disasters and climate change. In a globalized world, however, it is hard to discern what is “local” as global organizations play an increasingly visible and powerful role. This paper will argue that local understandings and practices of resilience cannot be disentangled from global understandings...... flooding in northern Ghana, this paper examines the mutual construction of “local” and “global” notions and practices of resilience through multi-sited processes. It is based on interviews and participant observation in multiple sites at the “local,” “regional” and “global” levels....

  20. Multi-Sited Resilience

    DEFF Research Database (Denmark)

    Olwig, Mette Fog

    2012-01-01

    Participatory methods to build local resilience often involve the organization of local community groups. When global organizations use such methods, it reflects a desire to incorporate local agency. They thereby acknowledge the ability of a society to be innovative and adapt when faced with natu......Participatory methods to build local resilience often involve the organization of local community groups. When global organizations use such methods, it reflects a desire to incorporate local agency. They thereby acknowledge the ability of a society to be innovative and adapt when faced...... with natural disasters and climate change. In a globalized world, however, it is hard to discern what is “local” as global organizations play an increasingly visible and powerful role. This paper will argue that local understandings and practices of resilience cannot be disentangled from global understandings...... flooding in northern Ghana, this paper examines the mutual construction of “local” and “global” notions and practices of resilience through multi-sited processes. It is based on interviews and participant observation in multiple sites at the “local,” “regional” and “global” levels....

  1. 2003 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ENVIRONMENT AND WASTE MANAGMENT SERVICES DIVISION; ET AL.

    2004-10-01

    Each year, Brookhaven National Laboratory (BNL), a multi-program national laboratory, prepares an annual Site Environmental Report (SER) in accordance with Order 231.1A, Environment, Safety and Health Reporting, of the U.S. Department of Energy (DOE). The SER is written to inform outside regulators, the public, and Laboratory employees of BNL's environmental performance during the calendar year in review, and to summarize BNL's on-site environmental data; environmental management performance; compliance with applicable DOE, Environmental Protection Agency (EPA), state, and local regulations; and environmental, restoration, and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. This report is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.ser.htm. A summary of the SER is also prepared each year to provide a general overview, and is distributed with a CD version of the full-length SER. The summary supports BNL's educational and community outreach program.

  2. 1996 Site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The FEMP is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the FEMP in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the FEMP. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1996 SER provides the general public as well as scientists and engineers with the results from the ongoing Environmental Monitoring Program. Also included in this report is information concerning the FEMP progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (EPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  3. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  4. All-Oxide Photovoltaics.

    Science.gov (United States)

    Rühle, Sven; Anderson, Assaf Y; Barad, Hannah-Noa; Kupfer, Benjamin; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Zaban, Arie

    2012-12-20

    Recently, a new field in photovoltaics (PV) has emerged, focusing on solar cells that are entirely based on metal oxide semiconductors. The all-oxide PV approach is very attractive due to the chemical stability, nontoxicity, and abundance of many metal oxides that potentially allow manufacturing under ambient conditions. Already today, metal oxides (MOs) are widely used as components in PV cells such as transparent conducting front electrodes or electron-transport layers, while only very few MOs have been used as light absorbers. In this Perspective, we review recent developments of all-oxide PV systems, which until today were mostly based on Cu2O as an absorber. Furthermore, ferroelectric BiFeO3-based PV systems are discussed, which have recently attracted considerable attention. The performance of all-oxide PV cells is discussed in terms of general PV principles, and directions for progress are proposed, pointing toward the development of novel metal oxide semiconductors using combinatorial methods.

  5. Site-City Interaction through Modifications of Site Effects

    CERN Document Server

    Semblat, Jean-François; Guéguen, Philippe; Bard, Pierre-Yves; Duval, Anne Marie

    2009-01-01

    The analysis of seismic site effects generally disregards the influence of surface structures on the free field motion in densely urbanized areas. This paper aims at investigating this particular problem called site-city interaction especially by comparison to the "free-field" amplification process. Several evidences (experimental, analytical, numerical) of the site-city interaction phenomenon have been given in previous work (Gu\\'eguen, Bard, Semblat 2000). The influence of site city-interaction could be large for structures having eigenfrequencies close to that of the surface soil layers. Furthermore, the density of structures is also an important governing parameter of the problem. Considering a specific site (Nice, France) where site-city interaction is supposed to be significant, we start from detailed experimental and numerical studies of seismic site effects giving both amplification levels and occuring frequencies, as well as the location of the maximum amplification areas. The influence of site-city ...

  6. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  7. Preliminary siting characterization Salt Disposition Facility - Site B

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.

    2000-01-04

    A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

  8. Automatic web site authoring with SiteGuide

    NARCIS (Netherlands)

    de Boer, V.; Hollink, V.; van Someren, M.W.; Kłopotek, M.A.; Przepiórkowski, A.; Wierzchoń, S.T.; Trojanowski, K.

    2009-01-01

    An important step in the design process for a web site is to determine which information is to be included and how the information should be organized on the web site’s pages. In this paper we describe ’SiteGuide’, a tool that automatically produces an information architecture for a web site that a

  9. Site-selective nanoscale-polymerization of pyrrole on gold nanoparticles via plasmon induced charge separation.

    Science.gov (United States)

    Takahashi, Y; Furukawa, Y; Ishida, T; Yamada, S

    2016-04-28

    We proposed a nanoscale oxidative polymerization method which enables site-selective deposition on the surface of gold nanoparticles (AuNPs) combined with TiO2 by using plasmon induced charge separation (PICS) under visible-to-near infrared (IR) light irradiation. The method also revealed that the anodic site of PICS was located at the surface of AuNPs.

  10. Lakeview, Oregon, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management (LM), Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprap was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability

  11. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.

    Science.gov (United States)

    Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy

    2015-02-11

    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation.

  12. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  13. Sprucing up the site

    CERN Multimedia

    2009-01-01

    From the Globe to restaurants and meeting rooms, feverish activity is under way on both of the CERN sites to replace old equipment, carry out maitenance on existing facilities and buildings and increase their energy efficiency. Work being carried out on the Globe of Science and Innovation.The visual landmark of CERN, the Globe, has been undergoing maintenance work since July. The 40 m diameter sphere, made entirely of wood, is currently being sanded down and new treatments are being applied to the wood to protect the whole building. The work will continue until the beginning of October. Major work is also under way on some of the most emblematic rooms of the Lab, such as the Conference Room in Building 60 and the Council Chamber: while the first has been completely refurbished, with around 15 extra seats added and new audiovisual facilities installed, in the latter the air conditioning and the main electrical switchboards have been r...

  14. 2006 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY; RATEL,K.

    2007-10-01

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  15. Pseudoshadows for site planning

    Energy Technology Data Exchange (ETDEWEB)

    White, R.W.

    1982-01-01

    A horizontal projection technique using ''pseudoshadows'' and gnomonic diagrams allows the shading effects on any surface in any orientation to be seen directly and calculated. Cotangent horizontal projection of facade surfaces according to the rules of solar geometry and the superposition of real shadows on a common horizontal plane permit analysis of solar rights, shading, and direct gains on walls and windows. The exact location of shading lines, dynamic and transient shading problems, the percent of the facade shading, and the determination of critical rear profiles for shading are rapidly accomplished from the same study using only building plans. The graphical results produce dynamic and axonometric projections, making them an ideal tool for conceptual design. They are sufficiently precise to assess and calculate direct solar gain, beam daylighting, and critical site massing envelopes.

  16. 2009 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.M.; Brookhaven National Laboratory

    2010-09-30

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  17. IOs as Social Sites

    DEFF Research Database (Denmark)

    Park, Susan M.; Vetterlein, Antje

    for actors with a given identity, which becomes institutionalized and internalized over time. Building on recent work that details how a norm’s strength is also derived from its specificity, the article assesses how the different ways an IO adopts norms may affect the norm’s power. The article provides......Norms research has made significant inroads into examining their emergence and influence in international relations, while recognizing international organizations (IOs) as key social sites for norms to be created and/or disseminated. This paper interrogates how IOs as “organizational platforms......” (Finnemore 1996) influence the norm building process. Going beyond state-centric approaches to norm construction, it argues that the process of taking up a norm by an IO does affect the norm’s power. A norm’s strength is determined by the extent to which it is uncontested and taken for granted as appropriate...

  18. Oxidative stress and hypertension.

    Science.gov (United States)

    Harrison, David G; Gongora, Maria Carolina

    2009-05-01

    This review has summarized some of the data supporting a role of ROS and oxidant stress in the genesis of hypertension. There is evidence that hypertensive stimuli, such as high salt and angiotensin II, promote the production of ROS in the brain, the kidney, and the vasculature and that each of these sites contributes either to hypertension or to the untoward sequelae of this disease. Although the NADPH oxidase in these various organs is a predominant source, other enzymes likely contribute to ROS production and signaling in these tissues. A major clinical challenge is that the routinely used antioxidants are ineffective in preventing or treating cardiovascular disease and hypertension. This is likely because these drugs are either ineffective or act in a non-targeted fashion, such that they remove not only injurious ROS Fig. 5. Proposed role of T cells in the genesis of hypertension and the role of the NADPH oxidase in multiple cells/organs in modulating this effect. In this scenario, angiotensin II stimulates an NADPH oxidase in the CVOs of the brain, increasing sympathetic outflow. Sympathetic nerve terminals in lymph nodes activate T cells, and angiotensin II also directly activates T cells. These stimuli also activate expression of homing signals in the vessel and likely the kidney, which attract T cells to these organs. T cells release cytokines that stimulate the vessel and kidney NADPH oxidases, promoting vasoconstriction and sodium retention. SFO, subfornical organ. 630 Harrison & Gongora but also those involved in normal cell signaling. A potentially important and relatively new direction is the concept that inflammatory cells such as T cells contribute to hypertension. Future studies are needed to understand the interaction of T cells with the CNS, the kidney, and the vasculature and how this might be interrupted to provide therapeutic benefit.

  19. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  20. The oxidative damage initiation hypothesis for meiosis.

    Science.gov (United States)

    Hörandl, Elvira; Hadacek, Franz

    2013-12-01

    The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.

  1. 2004 Rose Site 25P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 25P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 30, 1999. The site was originally...

  2. 2002 Rose Site 10P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 10P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  3. Site compare scripts and output

    Data.gov (United States)

    U.S. Environmental Protection Agency — Monthly site compare scripts and output used to generate the model/ob plots and statistics in the manuscript. The AQS hourly site compare output files are not...

  4. 2006 Rose Site 10P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 10P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  5. 2002 Rose Site 9P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 9P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  6. 2004 Rose Site 9P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 9P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  7. 2012 Rose Site 25P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 25P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 30, 1999. The site was originally...

  8. 2012 Rose Site 27P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 27P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 24, 1999. The site was...

  9. 2006 Rose Site 27P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 27P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 24, 1999. The site was...

  10. 2012 Rose Site 8P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 8P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 29, 1999. The site was originally...

  11. 2004 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  12. 1999 Rose Site 25P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 25P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 30, 1999. The site was originally...

  13. 1999 Rose Site 10P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 10P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  14. 1999 Rose Site 27P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 27P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 24, 1999. The site was...

  15. 2002 Rose Site 8P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 8P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 29, 1999. The site was originally...

  16. 2006 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  17. 2006 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  18. 2006 Rose Site 9P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 9P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  19. 2004 Rose Site 8P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 8P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 29, 1999. The site was originally...

  20. 2004 Rose Site 10P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 10P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  1. 1999 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  2. 1999 Rose Site 8P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 8P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 29, 1999. The site was originally...

  3. 2012 Rose Site 9P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 9P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  4. 1999 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  5. 2012 Rose Site 10P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 10P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  6. 2012 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  7. 1999 Rose Site 9P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 9P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on July 31, 1999. The site was originally...

  8. 2012 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  9. 2004 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  10. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  11. Characterization of oxidative carbonylation on recombinant monoclonal antibodies.

    Science.gov (United States)

    Yang, Yi; Stella, Cinzia; Wang, Weiru; Schöneich, Christian; Gennaro, Lynn

    2014-05-20

    In the biotechnology industry, oxidative carbonylation as a post-translational modification of protein pharmaceuticals has not been studied in detail. Using Quality by Design (QbD) principles, understanding the impact of oxidative carbonylation on product quality of protein pharmaceuticals, particularly from a site-specific perspective, is critical. However, comprehensive identification of carbonylation sites has so far remained a very difficult analytical challenge for the industry. In this paper, we report for the first time the identification of specific carbonylation sites on recombinant monoclonal antibodies with a new analytical approach via derivatization with Girard's Reagent T (GRT) and subsequent peptide mapping with high-resolution mass spectrometry. Enhanced ionization efficiency and high quality MS(2) data resulted from GRT derivatization were observed as key benefits of this approach, which enabled direct identification of carbonylation sites without any fractionation or affinity enrichment steps. A simple data filtering process was also incorporated to significantly reduce false positive assignments. Sensitivity and efficiency of this approach were demonstrated by identification of carbonylation sites on both unstressed and oxidized antibody bulk drug substances. The applicability of this approach was further demonstrated by identification of 14 common carbonylation sites on three highly similar IgG1s. Our approach represents a significant improvement to the existing analytical methodologies and facilitates extended characterization of oxidative carbonylation on recombinant monoclonal antibodies and potentially other protein pharmaceuticals in the biotechnology industry.

  12. Structural Characterization of Biogenic Manganese Oxides Produced in Sea Water

    Science.gov (United States)

    Webb, S. M.; Bargar, J. R.; Tebo, B. M.

    2003-12-01

    Manganese oxides have been coined as the "scavengers of the sea" and play important roles in both marine and freshwater systems. Natural manganese oxide nanoparticles and grain coatings are ubiquitous in the environment and profoundly impact the quality of sediments via their ability to degrade and sequester contaminants. These oxides are believed to form dominantly via oxidation of Mn(II) by marine and freshwater bacteria and have extremely high sorptive capacities for heavy metals. We have used XANES, EXAFS, and synchrotron (SR)-XRD techniques to study biogenic manganese oxides produced by spores of the marine Bacillus sp., strain SG-1 in seawater as a function of reaction time under fully in-situ conditions. The primary biogenic solid-phase Mn oxide product is a hexagonal layered phyollomanganate with an oxidation state similar to that in delta-MnO2. XRD data show the biooxides to have a phyllomanganate 10 basal plane spacing, suggesting the interlayer is hydrated and contains calcium. As the experiment continues, the initial biooxide changes to show triclinic symmetry. Fits to these EXAFS spectra suggest the octahedral layers have low Mn octahedral site vacancies in the lattice and the latyers bend to accommodate Jahn-Teller distortions creating the change in symmetry. The oxides observed in this study as models of Mn(II) bio-oxidation may be representative of the most abundant manganese oxide phase suspended in the oxic and sub-oxic zones of the oceanic water column.

  13. Catalysis on cobalt oxide-based nanocatalysts

    Science.gov (United States)

    Zhang, Shiran

    Heterogeneous catalysis, being the focus of attention in the realm of catalysis, plays a vital role in modern chemical and energy industries. A prototype of heterogeneous catalyst consists of metal nanoparticles dispersed and supported on a substrate. Transition metal oxide is one of the key components of heterogeneous catalyst and is frequently used as catalyst support for noble metal nanoparticle catalysts due to low cost. As a result of the high cost of noble metal elements, it is particularly favorable to design and develop transition metal oxide-based nanocatalysts mainly made of earthabundant elements with no or less noble metal with comparable or better catalytic performance than noble metal-based nanocatalysts in a catalytic reaction. In some cases, surface chemistry and structure of nanocatalysts are not invariable during catalysis. They evolve in terms of surface restructuring or phase change, which contributes to the complexity of catalyst surface under different catalytic conditions. Transition metal oxides, especially reducible transition metal oxides, have multiple cationic valence states and crystallographic structures. New catalytic active phases or sites could be formed upon surface restructuring under certain catalytic conditions while they may not be preserved if exposed to ambient conditions. Thus, it is essential to characterize catalyst surface under reaction conditions so that chemistry and structure of catalyst surface could be correlated with the corresponding catalytic performance. It also suggests a new route to design nanocatalysts through restructuring catalyst precursor under certain catalytic conditions tracked with in-situ analytical techniques. Catalysis occurs on catalyst surface. For noble metal nanoparticle catalysts, only atoms exposed on surface participate in catalytic processes, while atoms in bulk do not. In order to make full use of noble metal atoms, it is crucial to maximize the dispersion. A configuration of noble metal

  14. Anticonvulsant drugs, oxidative stress and nitric oxide.

    Science.gov (United States)

    Vega Rasgado, L A; Ceballos Reyes, G M; Vega-Diaz, M F

    2011-01-01

    Nitric Oxide (NO) is thought to play a fundamental role in the genesis and the spreading of epileptiform hyperactivity, although its function is unclear and controversial. As a free radical, NO may cause oxidative stress, which is emerging as an important mechanism in the etiology of seizure-induced neuronal death. Here we investigated the role of NO in seizure mechanisms through oxidative stress generation by studying the effect of anticonvulsant drugs such as amino oxyacetic acid (AAOA), valproate (VALP), diazepam (DIAZ) and gabapentin (GBPTNA) on oxidative stress in the brain, estimated as free carbonyls by the method of Dalle and Rossi, and by measuring NO by the indirect method based on the Griess reaction. Results show that, except for AAOA and VALP, anticonvulsants did not significantly affect or decreased free carbonyls, but reversed the oxidative stress produced by pentylenetetrazole (PTZ) induced convulsions. Anticonvulsants except AAOA diminished NO levels and with the exception of VALP, counteracted the increase in NO generated by PTZ. Anticonvulsants decreased oxidative stress and NO especially in hippocampus (HI) and cortex (CX), and reversed PTZ effects on both parameters. PTZ diminished NO in HI, which could be explained since PTZ caused an increase on endothelial NO synthase but a decrease in neuronal NOS expression in this brain area. Since the drugs studied are modulating GABA levels, our results suggest that seizures generated by alterations in GABAergic transmission produce oxidative stress caused by NO, which can be reversed by anticonvulsants. The effects described differ among the brain regions studied and the NO synthase isoform affected.

  15. Mechanisms and target sites of damage in killing of Candida albicans hyphae by human polymorphonuclear neutrophils.

    Science.gov (United States)

    Christin, L; Wysong, D R; Meshulam, T; Wang, S; Diamond, R D

    1997-12-01

    Target sites of fungal cell damage were studied to define mechanisms of neutrophil-mediated killing of Candida albicans hyphae. Neutrophils induced hyphal cell wall damage, as evidenced by release of cell wall glycoproteins and confocal microscopic changes. Damage occurred in the presence of neutrophil granule extracts and did not require oxidants. However, oxidation of hyphal surface glycoproteins correlated strongly with parallel increments in fungicidal activity, suggesting that oxidants did contribute to maximal cell wall damage. Neutrophil oxidants also induced hyphal DNA fragmentation, primarily single-strand breakage, as shown by increased electrophoretic migration after nuclease-S1 DNA digestion at single-strand break sites. The onset of damage to hyphal cell walls and DNA preceded detectable neutrophil-mediated fungicidal effects. Likewise, hyphal amino acid and nucleotide turnover as well as ATP initially rose, then declined as lethal effects became detectable. Thus, preceding detectable fungal cell death, neutrophil oxidative and oxygen-independent mechanisms damaged defined targets.

  16. 2004 Johnston Site 10P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 10P was established at Johnston Atoll by Dr. James Maragos, U.S. Fish & Wildlife Service, on January 15, 2004. Site 10P replaced site JOH 2A-P...

  17. Oxidation state of BZ reaction mixtures.

    Science.gov (United States)

    Sobel, Sabrina G; Hastings, Harold M; Field, Richard J

    2006-01-12

    The unstirred, ferroin (Fe(phen)(3)2+)-catalyzed Belousov-Zhabotinsky (BZ) reaction1-4 is the prototype oscillatory chemical system. After an induction period of several minutes, one sees "spontaneous" formation of "pacemaker" sites, which oscillate between a blue, oxidized state (high [Fe(phen)3(3+)]) and a red, reduced state (low [Fe(phen)(3)3+]). The reaction medium appears red (reduced) during the induction phase, and the pacemaker sites generate target patterns of concentric, outwardly moving waves of oxidation (blue). Auto-oscillatory behavior is also seen in the Oregonator model of Field, Korös, and Noyes (FKN), a robust, reduced model which captures qualitative BZ kinetics in the auto-oscillatory regime. However, the Oregonator model predicts a blue (oxidized) induction phase. Here, we show that including reaction R8 of the FKN mechanism, not incorporated in the original Oregonator, accounts for bromide release during the induction phase, thus producing the observed red oxidation state.

  18. Reductant-dependent electron distribution among redox sites of laccase

    DEFF Research Database (Denmark)

    Farver, O; Goldberg, M; Wherland, S

    1978-01-01

    chemical and thermodynamic properties. The distribution of electron equivalents among the redox sites was found to be reductant dependent. When the data for titration by various reductants of the type 3 site were plotted against those of the type 1 site according to the Nernst formalism, the slope n varied...... from 2.0 to 1.0. The redox potential of the reductant's first oxidation step is qualitatively correlated with the value of n and is suggested as the factor that modulates the electron distribution. Such a behavior implies a nonequilibrium situation. A very good simulation of the data was provided...... by an analysis assuming a formally variable cooperativity between the two type 3 copper ions. This apparent variability is suggested to result from a process whereby sufficiently strong reductants induce a transition of the type 3 site from a cooperative two-electron acceptor to a pair of independent one...

  19. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  20. Oxidizer Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  1. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  2. METAL OXIDE NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  3. Metal oxides as photocatalysts

    Directory of Open Access Journals (Sweden)

    Mohammad Mansoob Khan

    2015-09-01

    Full Text Available Metal oxides are of great technological importance in environmental remediation and electronics because of their capability to generate charge carriers when stimulated with required amount of energy. The promising arrangement of electronic structure, light absorption properties, and charge transport characteristics of most of the metal oxides has made possible its application as photocatalyst. In this article definition of metal oxides as photocatalyst, structural characteristics, requirements of the photocatalyst, classification of photocatalysts and the mechanism of the photocatalytic process are discussed.

  4. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  5. SHAREPOINT SITE CREATING AND SETTING

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Tebenko

    2011-02-01

    Full Text Available Tools for sites building that offer users the ability to work together, an actual theme in information society and modern Web technologies. This article considers the SharePoint system, which enables to create sites of any complexity, including large portals with a complex structure of documents. Purpose of this article is to consider the main points of site creating and its setting with tools of SharePoint system, namely: a site template creating and configuring, web application environment to create and configure Web applications, change of existing and creation of new theme site, a web part setting.

  6. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  7. Generic Site Safety Report

    CERN Document Server

    International Atomic Energy Agency. Vienna. ITER Joint Central Team

    2001-01-01

    The ITER Engineering Design Activities (EDA) are being conducted jointly by Euratom, Japan, and the Russian Federation, as Parties to the ITER EDA Agreement signed on 21 July 1992 and subsequently extended until July 20th 2001. (The United States of America was an ITER Party until September 30th 1999). The activities are conducted under the auspices of the IAEA by the ITER Joint Central Team and by the Home Teams (HT). The JCT is composed of qualified persons made available by each of the Parties in approximately equal numbers. The JCT members are located at the ITER Joint Work Sites (JWS) in Naka (Japan), Garching (Germany), and formerly in San Diego (USA). The Home Teams are established and organized by each Party for performing the tasks of the work programme for the EDA, assigned to them in approximately equal shares. Home Teams in each of the Parties perform specific design tasks, and perform research and development in technology (physics R&D is contributed voluntarily). The Home Team Leaders (HTL) ...

  8. 2007 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Ratel,K.

    2008-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the-length report.

  9. 2004 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY; SER TEAM; ENVIRONMENTAL INFORMATION MANAGEMENT SERVICES GROUP; ENVIROMENTAL AND WASTE MANAGEMENT SERVICES DIVISION FIELD SAMPLING TEAM; (MANY OTHER CONTRIBUTORS)

    2005-08-22

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The SER is written to inform the public, regulators, Laboratory employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The report summarizes BNL's environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The SER is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/esd/SER.htm. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD version of the full report. The summary supports BNL's educational and community outreach program.

  10. 2002 SITE ENVIRONMENTAL REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    2003-10-01

    The 2002 Site Environmental Report (SER) is prepared in accordance with DOE Order 231.1, ''Environment, Safety and Health Reporting'', and summarizes the status of Brookhaven National Laboratory's (BNL) environmental programs and performance and restoration efforts, as well as any impacts, both past and present, that Laboratory operations have had on the environment. The document is intended to be technical in nature. A summary of the report is also prepared as a separate document to provide a general overview and includes a CD version of the full report. Operated by Brookhaven Science Associates (BSA) for the Department of Energy (DOE), BNL manages its world-class scientific research with particular sensitivity to environmental and community issues. BNL's motto, ''Exploring Life's Mysteries...Protecting its Future'', reflects BNL's management philosophy to fully integrate environmental stewardship into all facets of its missions, with a health balance between science and the environment.

  11. 2005 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    2006-08-29

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  12. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  13. Ethylene epoxidation catalyzed by chlorine-promoted silver oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, M O; Onal, I [Chemical Engineering Department, Middle East Technical University, 06531, Ankara (Turkey); Van Santen, R A, E-mail: r.a.v.santen@tue.nl [Chemical Engineering and Chemistry Department, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands)

    2011-10-12

    It is demonstrated that, on a silver oxide surface, direct formation of ethylene oxide (EO) through the reaction between gas phase ethylene and surface oxygen is possible. The direct reaction channel produces EO selectively without competing with acetaldehyde (AA) formation. The oxometallacycle (OMC) forms on an oxygen vacant surface and reduces EO selectivity. Cl adsorption removes these surface vacant sites and hence prevents the formation of the OMC intermediate.

  14. Site Management Guide (Blue Book)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    The U.S. Department of Energy (Department) Office of Legacy Management (LM), established in 2003, manages the Department’s postclosure responsibilities and ensures the future protection of human health and the environment. During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Since 1989, the Department has taken an aggressive accelerated cleanup approach to reduce risks and cut costs. At most Departmental sites undergoing cleanup, some residual hazards will remain at the time cleanup is completed due to financial and technical impracticality. However, the Department still has an obligation to protect human health and the environment after cleanup is completed. LM fulfills DOE’s postclosure obligation by providing long-term management of postcleanup sites which do not have continuing missions. LM is also responsible for sites under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Currently, the U.S. Army Corps of Engineers (USACE) is responsible for site surveys and remediation at FUSRAP sites. Once remediation is completed, LM becomes responsible for long-term management. LM also has responsibility for uranium processing sites addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under a U.S. Nuclear Regulatory Commission (NRC) license. For license termination, the owner must conduct an NRC-approved cleanup of any on-site radioactive waste remaining from former uranium ore-processing operations. The site owner must also provide full funding for inspections and, if necessary, ongoing maintenance. Once site

  15. SITE-94. Site specific base data for the performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J. [ed.] [Clearwater Hardrock Consulting, Monmouth, OR (United States); Tiren, S. [Geosigma AB, Uppsala (Sweden); Dverstorp, B. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Glynn, P. [U.S. Geological Survey, Reston, VA (United States)

    1996-06-01

    This report documents the site specific base data that were available, and the utilization of these data within SITE-94. A brief summary is given of SKB`s preliminary site investigations for the Aespoe Hard Rock Laboratory (HRL), which were the main source of site-specific data for SITE-94, and an overview is given of the field methods and instrumentation for the preliminary investigations. A compilation is given of comments concerning the availability and quality of the data for Aespoe, and specific recommendations are given for future site investigations. It was found that the HRL pre-investigations produced a large quantity of data which were, for the most part, of sufficient quality to be valuable for a performance assessment. However, some problems were encountered regarding documentation, procedural consistency, positional information, and storage of the data from the measurements. 77 refs, 4 tabs.

  16. Catalytic process for formaldehyde oxidation

    Science.gov (United States)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  17. Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides.

    Energy Technology Data Exchange (ETDEWEB)

    Shkrob, I. A.; Marin, T. M.; Sevilla, M. D.; Chemerisov, S. (Chemical Sciences and Engineering Division); (Benedictine Univ.); (Oakland Univ.)

    2011-03-24

    Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition-metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO{sub 2}, {alpha}-FeOOH, and {alpha}-Fe{sub 2}O{sub 3} particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO{sub 2} oxidizes all of the carbohydrates and polyols, whereas {alpha}-FeOOH oxidizes some of the carbohydrates, and {alpha}-Fe{sub 2}O{sub 3} is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.

  18. Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides

    Science.gov (United States)

    Shkrob, Ilya A.; Marin, Timothy M.; Chemerisov, Sergey D.; Sevilla, Michael D.

    2011-01-01

    Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO2, α-FeOOH, and α-Fe2O3 particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo-bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO2 oxidizes all of the carbohydrates and polyols, whereas α-FeOOH oxidizes some of the carbohydrates, and α-Fe2O3 is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids. PMID:21532934

  19. Interim Record of Decision Davis Global Communications Site

    Science.gov (United States)

    1994-10-21

    exposure estimates (developed in the exposure assessment) to estimate adverse effects from chemicals potentially originating from the site...3,000 pounds of carbon would be used each year. During changeout, the spent charbon would be replaced with new or regenerated carbon. The spent carbon...activated-carbon beds, were originally pro- posed, but during evaluation of this alternative advanced UV oxidation was determined to be the most suitable

  20. Interim Record of Decision Davis Global Communication Site. Draft Copy

    Science.gov (United States)

    1994-07-18

    developed in the exposure assessment) to estimate adverse effects from chemicals potentially originating from the site. Noncarcinogenic effects were...would be used each year. During changeout, the spent charbon would be replaced with new or regenerated carbon. The spent carbon would be transported by...oxidation. Two other treatment methods, air stripping and granular activated-carbon beds, were originally proposed, but during evaluation of this

  1. Site-Selective Trimetallic Heterogeneous Nanostructures for Enhanced Electrocatalytic Performance.

    Science.gov (United States)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Shibayama, Tamaki; Lei, Yanhua; Gao, Duyang; Cai, Lintao

    2015-10-07

    Trimetallic Au/Ag/Pt hetero-nanostructures (AAPHNs) with distinctive, designed morphology are synthesized by galvanic replacement reaction and a site-selective strategy. The three metals present on the surface are shown to act synergistically to enhance the electro-catalytic performance and durability for methanol oxidation. The described structural modification of the nanocomposites increases the range of potential applications to include both the oxygen reduction reaction in fuel cells and photocatalysis of the hydrogen evolution reaction.

  2. Umatilla Satellite and Release Sites Project : Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  3. SITE COMPREHENSIVE LISTING (CERCLIS) (Superfund) - Non-NPL Sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — Non-NPL Sites - The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) (Superfund) Public Access Database contains a...

  4. SITE COMPREHENSIVE LISTING (CERCLIS) - Contaminants at CERCLIS (Superfund) Sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — Contaminants at Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) (Superfund) Sites - The CERCLIS Public Access Database...

  5. SITE COMPREHENSIVE LISTING (CERCLIS) (Superfund) - Responsible Parties at CERCLIS Sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — Responsible Parties at CERCLIS Sites - The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) (Superfund) Public Access...

  6. Charge transfer in multicomponent oxides

    Science.gov (United States)

    Kohan, A. F.; Ceder, G.

    1998-02-01

    The transfer of charge between different ions in an oxide plays an essential role in the stability of these compounds. Since small variations in charge can introduce large changes in the total energy, a correct description of this phenomenon is critical. In this work, we show that the ionic charge in oxides can strongly depend on its atomic environment. A model to assign point charges to atoms as a function of their atomic environment has recently been proposed for binary alloys [C. Wolverton, A. Zunger, S. Froyen, and S.-H. Wei, Phys. Rev. B 54, 7843 (1996)] and proven to be very successful in screened solids such as semiconductors and metals. Here, we extend this formalism to multicomponent oxides and we assess its applicability. The simple point-charge model predicts a linear relation between the charge on an atom and the number of unlike neighbors, and between the net value of the charge and the Coulomb field at a given site. The applicability of this approach is tested in a large-supercell self-consistent tight-binding calculation for a random Zr-Ca-O alloy. The observed fluctuations of the ionic charge about the average linear behavior (as a function of the number of unlike neighbors) was larger than 0.25 electrons even when many shells of atomic neighbors were considered in the fit. This variation is significant since it can introduce large errors in the electrostatic energy. On the other hand, for small absolute values of the charge, the ionic charge varied linearly with the Coulomb field, in agreement with previous findings. However, for large Coulomb fields, this function saturates at the formal chemical charge.

  7. Etiologies of sperm oxidative stress

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2016-04-01

    Full Text Available Sperm is particularly susceptible to reactive oxygen species (ROS during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions

  8. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  9. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  10. An additional substrate binding site in a bacterial phenylalanine hydroxylase.

    Science.gov (United States)

    Ronau, Judith A; Paul, Lake N; Fuchs, Julian E; Corn, Isaac R; Wagner, Kyle T; Liedl, Klaus R; Abu-Omar, Mahdi M; Das, Chittaranjan

    2013-09-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.

  11. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found...... to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  12. The Role of Flavonoids on Oxidative Stress in Epilepsy

    Directory of Open Access Journals (Sweden)

    Tâmara Coimbra Diniz

    2015-01-01

    Full Text Available Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy.

  13. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  14. [Molecular mechanism of accelerating ageing by oxidative stress].

    Science.gov (United States)

    Yoshikawa, Toshikazu; Naito, Yuji

    2009-07-01

    Reactive oxygen species are important for many life sustaining processes of cells and tissues, but they can also induce cell damage and death. If their production and levels within cells are not effectively controlled, then the detrimental effects of oxidative stress can accumulate. Oxidative stress is widely thought to underpin many ageing processes, and the oxidative stress theory of ageing is one of the most widely acknowledged theories of ageing. As well as being the major source of reactive oxygen species, mitochondria are also a major site of oxidative damage. The purpose of this review is a concise and current review of the role of oxidative stress in ageing process. Emphasis is placed upon the roles of mitochondrial proton leak, the uncoupling proteins, and the anti-ageing effects of caloric restriction.

  15. 2010 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.; Lee, R; Remien, J; Hooda, B; Green, T; Williams, J; Pohlot, P; Dorsch, W; Paquette, D; Burke, J

    2011-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in Chapter 7, Groundwater Protection, of this volume. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report. BNL is operated and managed for DOE's Office of Science by Brookhaven Science Associates (BSA), a partnership formed by Stony Brook University and Battelle Memorial Institute. For more than 60 years, the Laboratory has played a lead role in the DOE Science and Technology mission and continues to contribute to the DOE missions in energy resources, environmental quality, and

  16. Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope

    Science.gov (United States)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1975-01-01

    Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  17. Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope

    Science.gov (United States)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1975-01-01

    Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  18. Proteomic profile of reversible protein oxidation using PROP, purification of reversibly oxidized proteins.

    Directory of Open Access Journals (Sweden)

    Ken G Victor

    Full Text Available Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO, KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3, the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells.

  19. Thermally assisted oxidation of GaSb(100) and the effect of initial oxide phases

    Energy Technology Data Exchange (ETDEWEB)

    Mäkelä, J., E-mail: jaakko.m.makela@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Tuominen, M.; Yasir, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kuzmin, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Dahl, J.; Punkkinen, M.P.J. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Laukkanen, P., E-mail: pekka.laukkanen@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kokko, K. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-04-30

    Highlights: • Unforeseen details of GaSb(100) oxidation are revealed with high resolution PES. • Bonding is elucidated with consistent Ga 3d, Sb 3d and O 1s core-level spectral fitting. • Correspondence is found between these and previous microscopic results. • At the first stage, band-gap states arise from the preferential oxidation of Ga. • Oxidation initiates through replacement of Sb with O in the subsurface atomic sites. - Abstract: The oxidation of GaSb(100) surface has been widely studied because it affects the functionality of various devices. However even initial stages of the oxygen incorporation are not completely understood. To clarify this issue, we have investigated the oxidized GaSb(100) surfaces, which have been recently probed by scanning tunneling microscopy and spectroscopy, with high resolution synchrotron radiation photoelectron spectroscopy, in order to interconnect these different measurements. The results give a clear support that the oxidation initiates through saturation of available Ga bonds with; i.e., replacing some of the Sb−Ga bonds with O−Ga in the surface layers. Oxygen atoms have two different bonding environments in consistent with two dominating STM features. Also role of the plasmon features in the spectra have been elucidated.

  20. Drupal 7 Multi Sites Configuration

    CERN Document Server

    Butcher, Matt

    2012-01-01

    Follow the creation of a multi-site instance with Drupal. The practical examples and accompanying screenshots will help you to get multiple Drupal sites set up in no time. This book is for Drupal site builders. It is assumed that readers are familiar with Drupal already, with a basic grasp of its concepts and components. System administration concepts, such as configuring Apache, MySQL, and Vagrant are covered but no previous knowledge of these tools is required.

  1. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  2. Region 9 Removal Sites 2012

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of CERCLA (Superfund) Removal sites. CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act)...

  3. UST/LUST Site Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset contains all Underground Storage Tank (UST) site information. It includes details such as property location, acreage, identification and characterization,...

  4. Site environmental report for 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2003-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE, Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2002 was prepared in accordance with DOE Order 231.1. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2002. General site and environmental program information is also included.

  5. Early Site Permit Demonstration Program: Siting Guide, Site selection and evaluation criteria for an early site permit application. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-24

    In August 1991, the Joint Contractors came to agreement with Sandia National Laboratories (SNL) and the Department of Energy (DOE) on a workscope for the cost-shared Early Site Permit Demonstration Program. One task within the scope was the development of a guide for site selection criteria and procedures. A generic Siting Guide his been prepared that is a roadmap and tool for applicants to use developing detailed siting plans for their specific region of the country. The guide presents three fundamental principles that, if used, ensure a high degree of success for an ESP applicant. First, the site selection process should take into consideration environmentally diverse site locations within a given region of interest. Second, the process should contain appropriate opportunities for input from the public. Third, the process should be applied so that it is clearly reasonable to an impartial observer, based on appropriately selected criteria, including criteria which demonstrate that the site can host an advanced light water reactor (ALWR). The Siting Guide provides for a systematic, comprehensive site selection process in which three basic types of criteria (exclusionary, avoidance, and suitability) are presented via a four-step procedure. It provides a check list of the criteria for each one of these steps. Criteria are applied qualitatively, as well as presented numerically, within the guide. The applicant should use the generic guide as an exhaustive checklist, customizing the guide to his individual situation.

  6. DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands.

    Science.gov (United States)

    Abe, Yukiko S; Sasaki, Shigeki

    2016-02-15

    DNA is continuously damaged by endogenous and exogenous factors such as oxidation and alkylation. In the base excision repair pathway, the damaged nucleobases are removed by DNA N-glycosylase to form the abasic sites (AP sites). The alkylating antitumor agent exhibits cytotoxicity through the formation of the AP site. Therefore blockage or modulation of the AP site repair pathway may enhance the antitumor efficacy of DNA alkylating agents. In this study, we have examined the effects of the nucleobase-polyamine conjugated ligands (G-, A-, C- and T-ligands) on the cleavage of the AP site. The G- and A-ligands cleaved DNA at the AP site by promoting β-elimination in a non-selective manner by the G-ligand, and in a selective manner for the opposing dT by the A-ligand. These results suggest that the nucleobase-polyamine conjugate ligands may have the potential for enhancement of the cytotoxicities of the AP site.

  7. Site locality identification study: Hanford Site. Volume II. Data cataloging

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Data compilation and cataloging for the candidate site locality identification study were conducted in order to provide a retrievable data cataloging system for the present siting study and future site evaluation and licensng processes. This task occurred concurrently with and also independently of other tasks of the candidate site locality identification study. Work in this task provided the data utilized primarily in the development and application of screening and ranking processes to identify candidate site localities on the Hanford Site. The overall approach included two steps: (1) data acquisition and screening; and (2) data compilation and cataloging. Data acquisition and screening formed the basis for preliminary review of data sources with respect to their probable utilization in the candidate site locality identification study and review with respect to the level of completeness and detail of the data. The important working assumption was that the data to be used in the study be based on existing and available published and unpublished literature. The data compilation and cataloging provided the basic product of the Task; a retrievable data cataloging system in the form of an annotated reference list and key word index and an index of compiled data. The annotated reference list and key word index are cross referenced and can be used to trace and retrieve the data sources utilized in the candidate site locality identification study.

  8. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  9. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  10. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state.

    Science.gov (United States)

    Rabe, Stefan; Nachtegaal, Maarten; Vogel, Frédéric

    2007-03-28

    The catalytic partial oxidation of methane to synthesis gas over ruthenium catalysts was investigated by thermogravimetry coupled with infrared spectroscopy (TGA-FTIR) and in situ X-ray absorption spectroscopy (XAS). It was found that the oxidation state of the catalyst influences the product formation. On oxidized ruthenium sites, carbon dioxide was formed. The reduced catalyst yielded carbon monoxide as a product. The influence of the temperature was also investigated. At temperatures below the ignition point of the reaction, the catalyst was in an oxidized state. At temperatures above the ignition point, the catalyst was reduced. This was also confirmed by the in situ XAS spectroscopy. The results indicate that both a direct reaction mechanism as well as a combustion-reforming mechanism can occur. The importance of knowing the oxidation state of the surface is discussed and a method to determine it under reaction conditions is presented.

  11. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  12. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.

    Directory of Open Access Journals (Sweden)

    Silvia Schumann

    Full Text Available Mouse aldehyde oxidase (mAOX1 forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.

  13. Magnetic resonance tracking of endothelial progenitor cells labeled with superparamagnetic iron ox-ide homing to the site of hepatoma%超顺磁性氧化铁纳米粒子标记内皮祖细胞靶向肝癌的MR实验研究

    Institute of Scientific and Technical Information of China (English)

    麦筱莉; 范海健; 牡丹; 余德才; 杨军; 朱斌

    2016-01-01

    Objective To track the migration and incorporation of intravenously injected, magneti⁃cally labeled endothelial progenitor cells ( EPCs) from mouse bone marrow into the blood vessels in a rapid⁃ly growing HCC model by microMR (7.0 T). Methods This study was approved by the Institutional Com⁃mittee on Animal Research. H22 hepatic ascitic cancer cells was directly injected into the left liver lobe of BALB/c nude mice ( n=15) . EPCs derived from bone marrow of C57BL/6 mice were isolated and cultured. The third passage EPCs were collected and labeled with 25 μg/ml superparamagnetic iron oxide ( SPIO) and poly⁃l⁃lysine (PLL) complex (SPIO⁃PLL). MTT assay and flow cytometry were used to evaluate the difference of growth curve and apoptosis between labeled and unlabeled EPCs. EPCs labeled with SPIO⁃PLL were injected into mice via tail vein in experiment group (on the 3rd day after establishing HCC model) (n=15) and control group (n=6). The signal changes of tumor (the 1st, 3rd and 7th day after transplantation) were observed by microMR. Prussian blue staining and immunohistochemistry staining of CD31 were per⁃formed. MRI findings were confirmed by histomorphology. Two⁃sample t test was used to analyze the data. Results Single tumor was showed in the liver of all mice 3 d after establishing models. Labeling with SPIO⁃PLL at a concentration of 25μg/ml did not alter cell growth curve ( measured by MTT assay;t=0.281, P>0.05) and cell apoptosis (analyzed by flow cytometry). The apoptosis rates of SPIO⁃PLL labeled and un⁃labled EPCs were (12.31±1.43)% and (11.57±1.24)% in early stage, and (0.55±0.07)% and (0.49± 0�05)% in late stage. No significant differences were observed between them (t=0.967, 1.060; both P>0�05) . Migration and incorporation of transplanted and labeled cells into tumor were documented with in vivo microMR as low signal intensity at the tumor periphery as early as the 3rd day after EPCs administration in preformed tumors (4

  14. Oxidation as an important factor of protein damage: Implications for Maillard reaction

    Indian Academy of Sciences (India)

    L Trnková; J Dršata; I Boušová

    2015-06-01

    Protein oxidation, the process caused especially by reactive oxygen and nitrogen species, is thought to play a major role in various oxidative processes within cells and is implicated in the development of many human diseases. This review provides a brief overview of the protein oxidation with the emphasis on the types of oxidation (oxidation of protein backbone and amino acid residues side chains, site-specific metal-catalysed protein oxidation), oxidation-dependent generation of protein hydroperoxides, carbonyl derivatives and protein–protein cross-linkages. Non-enzymatic glycoxidation (also known as Maillard reaction) as an important factor of protein damage, consequences of oxidative protein impairment and related diseases as well as means of monitoring and assessment of protein modifications are discussed.

  15. Highly oxidized graphene oxide and methods for production thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Kosynkin, Dmitry V.

    2016-08-30

    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  16. Lignite oxidative desulphurization

    Institute of Scientific and Technical Information of China (English)

    Volodymyr Gunka; Serhiy Pyshyev

    2014-01-01

    The process of lignite desulphurization via its treatment by an oxidant (air or air–steam mixture) has been studied. The research objective was useful determination of steam application in oxidative lignite desulphurization. It has been proved that the water steam should be included in the oxidant composition to increase the hydrogen sulphide and combustible constituent content in the gases obtained during the processes under research. The impact of factors which affect the reactions between solid (in our case–lignite) and gaseous reagent (oxidant, i.e. air and or air–steam mixture) upon the research process has been investigated, if these reactions occur in the kinetic area. Such factors are linear rate of oxidant movement and coal grain size. The values of oxidant movement linear rate and coal grain size, which the reaction transfer from pyrite sulphur and organic content of lignite from diffusion into kinetic area occurs by, have been determined. Under these‘‘transfer’’ conditions, the values of coefficients of oxidant mass transfer (b, m/s) as well as Sherwood criteria and boiling layer differences have been calculated.

  17. Paraffin Oxidation Studies

    Directory of Open Access Journals (Sweden)

    Mrs. S. J. Purohit

    2013-02-01

    Full Text Available The oxidation of paraffin has been studied with keen interest by several workers from all over the world; as oxidation leads to the introduction of various functional groups in hydrocarbon chains. Processes involving the Oxidation of Paraffin’s in the liquid phase, using air or oxygen are of great importance to industrialized economies because of their role in converting petroleum hydrocarbon feed stocks such as alkanes, olefins and aromatics into industrial organic chemicals important in the polymer, petrochemicals ,cosmetics and detergent industries. The oxidation leads predominantly to the formation of secondary alcohols consisting of a mixture of all possible isomers with the same number of carbon atoms in the molecules as the initial hydrocarbons. The secondary alcohols which are oxidation products of paraffin exhibit excellent hydrolytic, oxidative and color stability, because of the nature of their branching. These alcohols have lower melting points than straight chain alcohols of corresponding length, while retaining their high temperature stability. The oxidation of paraffin wax to fatty acids is carried out in temperature range 110 0C- 140 0C. Paraffin oxidation which is carried out by ALFOL, Oxo-processes, are high temperature, high pressure processes which utilize expensive catalysts, making them energy intensive as well as expensive. The maximum conversion achieved yet by existing processes is 15�0for a batch time of 4 hours. A cheaper alternative in this article has been studied, in which paraffin Oxidation has been carried out in a foam reactor at moderate temperature and pressure with suitable catalyst , the output of the products is increased up to 62%.

  18. Denitrification: An important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; LokaBharathi, P.A.; Bonin, P.C.; Michotey, V.D.

    Net nitrous oxide production and denitrification activity were measured in two mangrove ecosystems of Goa, India. The relatively pristine site Tuvem was compared to Divar, which is prone to high nutrient input. Stratified sampling at 2-cm intervals...

  19. Spectroscopic and catalytic investigations of VxOy/SBA-15 and magnesium vanadate model catalysts for selective propene oxidation

    OpenAIRE

    Walter, Anke

    2011-01-01

    The objective of the present work was elucidating structure-activity relationships concerning the individual role of vanadium sites in selective propene oxidation. Two suitable vanadium oxide model catalyst systems were employed: vanadium oxides supported on SBA-15, “VxOy/SBA-15”, and various magnesium vanadate phases. Detailed investigations on the preparation, thermal stability, structure, and structural evolution under reducing and propene oxidizing condition were conducted. Various in sit...

  20. Hanford Site technical baseline database

    Energy Technology Data Exchange (ETDEWEB)

    Porter, P.E.

    1996-09-30

    This document includes a cassette tape that contains the Hanford specific files that make up the Hanford Site Technical Baseline Database as of September 30, 1996. The cassette tape also includes the delta files that dellinate the differences between this revision and revision 4 (May 10, 1996) of the Hanford Site Technical Baseline Database.

  1. Hanford Site technical baseline database

    Energy Technology Data Exchange (ETDEWEB)

    Porter, P.E., Westinghouse Hanford

    1996-05-10

    This document includes a cassette tape that contains the Hanford specific files that make up the Hanford Site Technical Baseline Database as of May 10, 1996. The cassette tape also includes the delta files that delineate the differences between this revision and revision 3 (April 10, 1996) of the Hanford Site Technical Baseline Database.

  2. Criteria for School Site Selection.

    Science.gov (United States)

    Stanford Univ., CA.

    An outline of the factors and conditions affecting the desirability of a specific building site. The primary factor headings are--(1) availability, (2) location, (3) environment, (4) accessibility, (5) size, (6) shape, (7) topography, (8) acquisition, (9) cost of land, (10) soil condition, (11) sub-surface condition, (12) site preparation, (13)…

  3. Educational Leadership. [SITE 2002 Section].

    Science.gov (United States)

    2002

    This document contains the following papers on educational leadership from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Personality Assessment of Educational Leaders via Technology" (Pamela T. Barber Freeman and Michael L. McFrazier); (2) "Contributions and Concerns of SITE Participants: A Survey of…

  4. Southern Africa CTA Site Proposal

    CERN Document Server

    Krüger, P P

    2012-01-01

    Southern Africa has some of the world's best sites for air Cherenkov telescopes. South Africa has only one viable site, which is south of Sutherland and also close to the Southern African Large Telescope (SALT). This site has very good infrastructure and is easy to access, but only 47% of the night-time has a cloudless sky usable for observations. Namibia, which already hosts the H.E.S.S telescope, has a number of potential sites with much less cloud coverage. The H.E.S.S. site is one of the highest of these sites at 1840 m a.s.l. with about 64% of the night-time cloudless. It also has very low night sky background levels and is relatively close (about 100 km) to Windhoek. Moving further away from Windhoek to the south, the cloud coverage and artificial night sky brightness becomes even less, with the site at Kuibis (between Keetmanshoop and Luderitz) at 1640 m a.s.l. having clear night skies 73% of the time. Even though this site seems remote (being 660 km from Windhoek by road), it is close to the national ...

  5. Site Environmental Report for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Pauer, Ron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baskin, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borglin, Ned [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fox, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Harvey, Zachary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jelinski, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thorson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wahl, Linnea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wehle, Petra [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Suying [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-09-01

    This report, prepared by LBNL for the U.S. Department of Energy, Berkeley Site Office provides a comprehensive summary of the environmental program activities at LBNL for calendar year 2013 SERS are prepared annually for all DOE sites with significant environmental activities, and distributed to relevant external regulatory agencies and other interested organizations or individual.

  6. Site Environmental Report summary, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes the Fernald site mission, exposure pathways, and environmental standards and guidelines. Environmental monitoring activities measure and estimate the amount of radioactive and nonradioactive materials that may leave the site and enter the surrounding environment. This presents an overall view of the impact these activities have on the local environment and public health.

  7. Privacy and Social Networking Sites

    Science.gov (United States)

    Timm, Dianne M.; Duven, Carolyn J.

    2008-01-01

    College students are relying on the Internet to make connections with other people every day. As the Internet has developed and grown, so have the capabilities for interaction. Social networking sites, a group of Web sites that provide people with the opportunity to create an online profile and to share that profile with others, are a part of…

  8. Site environmental report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Holland, R.C.

    1997-08-01

    To help verify effective protection of public safety and preservation of the environment, Sandia National Laboratories (SNL)/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant airborne and liquid effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site environmental monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally produced food-stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the environment and estimated radiation doses to the public from site emissions. Chapter 3, {open_quotes}Compliance Summary,{close_quotes} reviews the site`s various environmental protection activities and compliance status, with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1996 show that SNL/California operations had no harmful effects on the environment or the public. 37 figs., 12 tabs.

  9. Hanford site sodium management plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1995-09-25

    The Hanford Site Sodium Management Plan, Revision 1, provides changes to the major elements and management strategy to ensure an integrated and coordinated approach for disposition of the more than 350,000 gallons of sodium and related sodium facilities located at the DOE`s Hanford Site

  10. Site environmental report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Holland, R.C.

    1997-08-01

    To help verify effective protection of public safety and preservation of the environment, Sandia National Laboratories (SNL)/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant airborne and liquid effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site environmental monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally produced food-stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the environment and estimated radiation doses to the public from site emissions. Chapter 3, {open_quotes}Compliance Summary,{close_quotes} reviews the site`s various environmental protection activities and compliance status, with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1996 show that SNL/California operations had no harmful effects on the environment or the public. 37 figs., 12 tabs.

  11. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  12. Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: The Monument Valley site in Arizona, USA

    Science.gov (United States)

    Miao, Ziheng; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-01-01

    The Monument Valley site, a former uranium mining site located in the state of Arizona in the Southwest USA, has high concentrations of sulfate in groundwater. Stable isotope analysis of S and O for sulfate, in combination with geochemical and hydrogeological data, was used to characterize the sources and fate of sulfate. The results indicate the existence of two discrete sources of sulfate (in excess of baseline levels): sulfuric acid released during ore processing and sulfate generated via sulfide-mineral oxidation. The contributions of the sources are related to spatial distributions of sulfate in the plume through analysis of groundwater travel times. Quantification of the sources using two isotope-analysis methods yielded similar results. The results indicate that sulfuric acid served as the primary source (mean = 427 mg/L, 74%), with sulfide-mineral oxidation providing a smaller contribution (mean = 147 mg/L, 26%). It appears that the major contribution to the sulfide-mineral oxidation component originates from oxidation of sulfide minerals in exposed bedrock residing in the primary recharge zone of the local aquifer, which provides an elevated sulfate background for groundwater. Conversely, the oxidation of sulfide minerals associated with the mine tailings appears to provide a relatively minor contribution (∼8% of the overall total). Interestingly, it appears that sulfuric acid served as a sustained source of sulfate for approximately 40 years. This may be related to the accumulation of sulfate salts (formed after neutralization and disposal of the sulfuric acid) in the source zone due to the arid climate of the site. Contrary to the typical assumption applied at many mining sites that sulfide-mineral oxidation is the primary source of sulfate, these sulfate salts are hypothesized to be the primary source for this site. PMID:24729633

  13. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  14. Site description of Laxemar at completion of the site investigation phase. SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    2009-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the SDM is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model of geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site Laxemar, presents an integrated understanding of the Laxemar-Simpevarp area (with special emphasis on the Laxemar subarea) at the completion of the surface-based investigations, which were conducted during the period 2002 to 2007. A summary is also provided of the abundant underlying data and the discipline specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details of the data analyses and modelling of the different disciplines. The Laxemar-Simpevarp area is located in the province of Smaaland within the municipality of Oskarshamn, about 230 km south of Stockholm. The candidate area for site investigation is located along the shoreline of the strait of Kalmarsund, within a 1.8 billion year old suite of well preserved bedrock belonging to the Transscandinavian Igneous Belt formed during

  15. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  16. Web sites that work secrets from winning web sites

    CERN Document Server

    Smith, Jon

    2012-01-01

    Leading web site entrepreneur Jon Smith has condensed the secrets of his success into 52 inspiring ideas that even the most hopeless technophobe can implement. The brilliant tips and practical advice in Web sites that work will uplift and transform any website, from the simplest to the most complicated. It deals with everything from fundamentals such as how to assess the effectiveness of a website and how to get a site listed on the most popular search engines to more sophisticated challenges like creating a community and dealing with legal requirements. Straight-talking, practical and humorou

  17. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott

    2009-07-01

    The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethite and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.

  18. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott

    2009-07-01

    The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethite and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.

  19. Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  20. CATALYTIC ENANTIOSELECTIVE ALLYLIC OXIDATION

    NARCIS (Netherlands)

    Rispens, Minze T.; Zondervan, Charon; Feringa, Bernard

    1995-01-01

    Several chiral Cu(II)-complexes of cyclic amino acids catalyse the enantioselective allylic oxidation of cyclohexene to cyclohexenyl esters. Cyclohexenyl propionate was obtained in 86% yield with e.e.'s up to 61%.