Sample records for quinizarin

  1. Synchrotron radiation linear dichroism (SRLD) investigation of the electronictransitions of quinizarin, chrysazin, and anthrarufin

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Jones, Nykola C.; Hoffmann, Søren Vrønning;


    The electronic transitions of the three , (alpha), (alphaPrime) -dihydroxy derivatives of anthraquinone, 1,4-dihydroxy-, 1,8-dihydroxy-, and 1,5-dihydroxy-9,10-anthraquinone (quinizarin, chrysazin, and anthrarufin), were investigated by synchrotron radiation linear dichroism (SRLD) spectroscopy...... the investigated region (15,000-58,000cm-1), essentially similar wavenumbers, intensities, and transition moment directions were determined for chrysazin and anthrarufin, while the spectrum of quinizarin deviated significantly. The results of time-dependent density functional theory (TD-DFT) calculations were...

  2. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). (United States)

    Zengin, G; Degirmenci, N S; Alpsoy, L; Aktumsek, A


    The aim of this work was to investigate the cytotoxic, antioxidative, and enzyme inhibition effects of alizarin, quinizarin, and purpurin, which are anthraquinones (AQ). Cytotoxic effects were evaluated with cell inhibition rate by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay. Different chemical assays, including free radical scavenging activity (1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazloine-6-sulfonic acid)), phosphomolybdenum and reducing power (ferric reducing antioxidant power and cupric ion reducing activity), were used to evaluate the antioxidant properties. Moreover, enzyme inhibitory activities were analyzed against acetylcholinesterase, butrylcholinesterase, tyrosinase, α-amylase, and α-glucosidase. These components have antioxidant and enzyme inhibition activity. Especially, purpurin showed the strongest antioxidant and good enzyme inhibitory effects. According to our cytotoxicity results, alizarin, purpurin, and quinizarin induced dose- and time-dependent cell proliferation. Furthermore, when we applied AQs with mitomycin C (MC) on L929 cell line, we demonstrated that cell proliferation in MC-AQ groups compared with MC group was increased. The most effective component was alizarin at 100 µM concentration. These AQs showed positive effects on L929 cell lines with high half-maximal inhibitory concentration values. Our results demonstrate that AQs may be used as antioxidative compounds in food and medicinal applications. © The Author(s) 2015.

  3. Effects of Quinizarin and Five Synthesized Derivatives on Fifth Larval Instar Midgut Ecdysone 20-Monooxygenase Activity of the Tobacco Hornworm Manduca sexta

    Directory of Open Access Journals (Sweden)

    Christopher A. Drummond


    Full Text Available The plant allelochemical, quinizarin (1,4-dihydroxy-9,10-anthraquinone, and five anthraquinones that were synthesized from quinizarin, namely, 1,4-anthraquinone; 2-hydroxy-1,4-anthraquinone; 2-methoxy-1,4-anthraquinone; 9-hydroxy-1,4-anthraquinone; and 9-methoxy-1,4-anthraquinone, were assessed as to their effects on the essential, P450-dependent ecdysone 20-monooxygenase system of the insect model Manduca sexta (tobacco hornworm. This steroid hydroxylase converts the arthropod molting hormone, ecdysone, to the physiologically required 20-hydroxyecdysone form. M. sexta fifth larval instar midgut homogenates were incubated with increasing concentrations (10−8 to 10−3 M of each of the six anthraquinones followed by ecdysone 20-monooxygenase assessments using a radioenzymological assay. Four of the five anthraquinones exhibited I50’s of about 4×10-6 to 6×10-2 M. The most effective inhibitors were 2-methoxy-1,4-anthraquinone and 1,4-anthraquinone followed by 9-hydroxy-1,4 anthraquinone and 9-methoxy-1,4-anthraquinone. At lower concentrations the latter anthraquinone stimulated E20M activity. Quinizarin was less inhibitory and 2-hydroxy-1,4-anthraquinone was essentially without effect. Significantly, these studies make evident for the first time that anthraquinones can affect insect E20M activity, and thus insect endocrine regulation and development, and that a relationship between anthraquinone structure and effectiveness is apparent. These studies represent the first demonstrations of anthraquinones affecting any steroid hydroxylase system.

  4. Spectrophotometeric determination of trace amounts of Al3+ ion in water samples after cloud point extraction using quinizarin as a complexing agent. (United States)

    Shokrollahi, Ardeshir; Aghaei, Roghayeh


    In this study, cloud point extraction was used for the preconcentration of Al(3+) ion after the complex formation with 1,4-dihydroxy-9,10-anthraquinone (Quinizarin [QUIN]), and subsequent analysis by spectrophotometeric method, using Triton X-114 as surfactant. The optimal extraction and reaction conditions were studied (i.e., pH = 5.5, 0.1 mM QUIN, Triton X-114 = 0.1% (w/v)), and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and enrichment factors) were obtained. Linearity was obeyed in the range of 3.33-166.67 ng ml(-1) of Al(3+) ion. The detection limit of the method was 2.09 ng ml(-1) for Al(3+) ion. The interference effect of some anions and cations was also tested. The method was applied to determine Al(3+) ion in water samples.

  5. Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. (United States)

    Adnan, Liyana Amalina; Sathishkumar, Palanivel; Yusoff, Abdull Rahim Mohd; Hadibarata, Tony; Ameen, Fuad


    In this study, a newly isolated ascomycete fungus Trichoderma lixii F21 was explored to bioremediate the polar [Alizarin Red S (ARS)] and non-polar [Quinizarine Green SS (QGSS)] anthraquinone dyes. The bioremediation of ARS and QGSS by T. lixii F21 was found to be 77.78 and 98.31 %, respectively, via biosorption and enzymatic processes within 7 days of incubation. The maximum biosorption (ARS = 33.7 % and QGSS = 74.7 %) and enzymatic biodegradation (ARS = 44.1 % and QGSS = 23.6 %) were observed at pH 4 and 27 °C in the presence of glucose and yeast extract. The laccase and catechol 1,2-dioxygenase produced by T. lixii F21 were involved in the molecular conversions of ARS and QGSS to phenolic and carboxylic acid compounds, without the formation of toxic aromatic amines. This study suggests that T. lixii F21 may be a good candidate for the bioremediation of industrial effluents contaminated with anthraquinone dyes.

  6. Synchrotron Radiation Linear Dichroism (SRLD) and Time Dependent Density Functional Theory (TD-DFT) Calculations on Dihydroxy-Anthraquinones

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Spanget-Larsen, Jens

    SRLD spectra of Quinizarin, Anthrarufin, and Chrysazin partially aligned in stretched polyethylene were measured at the ASTRID synchrotron UV1 beamline (ISA, Aarhus University), yielding absorbance and polarization data up to 57000 cm-1. The observed absorption bands were assigned to electronic t...

  7. Synchrotron Radiation Linear Dichroism (SRLD) and Time Dependent Density Functional Theory (TD-DFT) Calculations on Dihydroxy-Anthraquinones

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Spanget-Larsen, Jens

    SRLD spectra of Quinizarin, Anthrarufin, and Chrysazin partially aligned in stretched polyethylene were measured at the ASTRID synchrotron UV1 beamline (ISA, Aarhus University), yielding absorbance and polarization data up to 57000 cm-1. The observed absorption bands were assigned to electronic t...

  8. Evaluation of natural anthracene-derived compounds as antimitotic agents. (United States)

    Badria, Farid A; Ibrahim, Ahmed S


    Plants that contain anthracene-derived compounds such as anthraquinones have been reported to act as anticancer besides their use for millennia to treat constipation, but the mechanism of action is still unfolding. Therefore we pursue this study to explore a new horizon in the anticancer property of these agents with relevance to mitotic arrest. To achieve this goal, the antimitotic activity of a series of naturally occurring anthracene-derived anthraquinones including anthrone, alizarin (1,2-dihydroxyanthraquinone), quinizarin (1,4-dihydroxyanthraquinone), rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid), emodin (1,6,8-trihydroxy-3-methylanthraquinone), and aloe emodin (1,8-dihydroxy-3-hydroxymethylanthraquinone) were evaluated using Allium cepa root tips. Initial results revealed that the mitosis was inhibited after 3, 6, and 24 h, respectively, of incubation with 500, 250, and 125 ppm of each compound in a dose-dependent manner. Furthermore, alizarin at 500 ppm was proved to be the most active compound to arrest the mitosis after 24 h followed by emodin, aloe emodin, rhein, and finally quinizarin. Interestingly, this inhibition of mitosis was irreversible in root tips incubated with each compound at concentration of 500 ppm but not with 250 ppm or 125 ppm, where the roots regained their normal mitotic activity after 96 h post-incubation in water. This re-evaluation of an old remedy suggests that several bioactive anthraquinones possess promising anti-mitotic activity that may have the potential to be lead compounds for the development of a new class of multifaceted natural anticancer/antimitotic agents.

  9. HPLC-MS of anthraquinoids, flavonoids, and their degradation products in analysis of natural dyes in archeological objects. (United States)

    Surowiec, Izabella; Szostek, Bogdan; Trojanowicz, Marek


    LC with MS detection was optimized for sensitive and selective analysis of main classes of natural dyes used in ancient times for dyeing textiles -- red anthraquinoids, yellow flavonoids, and known degradation products of flavonols -- hydroxybenzoic acids. Fragmentation patterns of both negative and positive molecular ions for the above mentioned compounds were investigated. Three acquisition modes of MS analysis: scanning, SIM, and multiple reaction monitoring (MRM) in both positive and negative ion modes were optimized and compared with each other and with the UV-Vis diode-array detection. Even though in the applied chromatographic system formic acid was used in the mobile phase, SIM in the negative ion mode was the most selective and sensitive detection for all the investigated compounds when both mixtures of standards and analysis of extracts from archeological samples were concerned, with one exception -- alizarin, for which MS detection in positive ion mode was more sensitive. Detection limits obtained with MS detection for all investigated compounds except quinizarin were lower than the ones obtained with the diode-array UV-Vis detection, making MS detection the most suitable tool for the analysis of natural dyes and their degradation products in extracts from archeological samples.

  10. Micellar electrokinetic chromatography method for the determination of several natural red dyestuff and lake pigments used in art work. (United States)

    Maguregui, M I; Alonso, R M; Barandiaran, M; Jimenez, R M; García, N


    The identification of organic colorants used in artistic paintings is an important information source for reconstructing the working techniques found in a particular work and for defining a programme for the restoration and conservation of the painting. In this work, sodium dodecyl sulfate (SDS) was used as a surfactant in micellar electrokinetic chromatography (MEKC) for separating a broad range of red organic pigments, based on their colouring matters: madder (colouring matters: alizarin, quinizarin and purpurin), cochineal (colouring matter: carminic acid), red sandalwood (colouring matter: santalin), brazilwood (colouring matter: brazilin), lac dye (colouring matter: laccaic acid) and dragon's blood (colouring matter: dracorhodin). The running electrolyte used was 20 mM borax (pH 9), containing 20 mM SDS and 10% acetonitrile as organic modifier. Separation was carried out by applying a +20 kV voltage at the injection end, 25 degrees C and 214 nm/254 nm as detection wavelengths. All colorants were separated within less than 13 min with a good baseline resolution. The method was applied to the analysis of paint samples obtained from the Diocesan Museum of Holy Art of Bilbao.

  11. Turbine oil

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, E.A.; Bogdanov, Sh.K.; Dovgopolyi, E.E.; Gryaznov, B.V.; Ivanov, V.S.; Ivanova, Z.M.; Kozlova, E.K.; Nikolaeva, N.M.; Rozhdestvenskaya, A.A.


    In the known turbine oil (TO), for the purpose of improving the anticorrosion and demulsifying properties, a polyoxypropylene glycol ether, ethylenediamine or propylene glycol or an alkylphenol are additionally introduced, where the C/sub 8/-C/sub 12/ alkyl has a molecular weight of 2000-10,000. The proportions of the components are: 2, 6-di-tert-butyl-4-methylphenol 0.2-1.0%, quinizarin 0.01-0.05%, an acid ester of an alkenylsuccinic acid 0.02-0.1%, a polyoxypropylene glycol ether 0.02-0.2%, polymethylsiloxane 0.003-0.005%, and petroleum oil the remainder. The TO is prepared by mixing the petroleum oil with the additives in any sequence at a temperature of 60-80/sup 0/ by mechanical stirring. On the five TO samples the antioxidative, demulsifying, and anticorrosion properties by comparison with the prototype were investigated. It was shown that the obtained TO possesses improved anticorrosion properties (time until the appearance of Kr (staining.), up to 60 h as against 35 on the prototype) and demulsifying properties (quantity of water separating on breaking the emulsion 10 mg/L as against 65 mg/L on the prototype) for an antioxidative stability equal to that of the analog. The TO is designated for use in various turbo-units, in the first place in marine steam turbine units, where there is the probability of contact of the TO with seawater. Use of the TO makes it possible to increase the service life of the mechanisms, to reduce the amount of oil mixable in the form of an emulsion (by a factor of 1.5 to 2), and to lower the operating expenses.

  12. Crystal structures of two 2,3-di­ethyl­naphtho­[2,3-g]quinoxaline-6,11-dione derivatives (United States)

    Forsyth, Craig M.


    Two new 5,12-disubstituted 2,3-di­ethyl­naphtho­[2,3-g]quinoxaline-6,11-dione compounds were readily synthesized from the commercial dye quinizarin. For 2,3-diethyl-5,12-di­hydroxy­naphtho­[2,3-g]quinoxaline-6,11-dione, (II), C20H16N2O4, the mol­ecule displays a near planar conformation and both hy­droxy groups participate in intra­molecular O—H⋯O(carbon­yl) hydrogen bonds. In the crystal, π–π ring inter­actions [minimum ring centroid separation = 3.5493 (9) Å] form stacks of co-planar mol­ecules down the c axis, while only minor inter­molecular C—H⋯O inter­actions are present. In contrast, in 2,3-diethyl-5,12-bis­(piperidin-1-yl)naphtho­[2,3-g]quinoxaline-6,11-dione, (IV), C30H34N4O2, which contains two independent, but similar, mol­ecules in the asymmetric unit, the polycyclic cores have a significant twist, with dihedral angles of 29.79 (6) and 29.31 (7)° between the terminal rings and only minor inter­molecular C—H⋯O hydrogen-bonding inter­actions are present. Electron density associated with additional solvent mol­ecules disordered about a fourfold axis was accounted for using the SQUEEZE procedure in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9–18]. PMID:28932420