WorldWideScience

Sample records for quinalizarin

  1. Spectrophotometric determination of piroxicam and tenoxicam in pharmaceutical formulations using alizarin.

    Science.gov (United States)

    Amin, Alaa S

    2002-07-20

    New spectrophotometric procedures have been established for the quantitation of piroxicam and tenoxicam. The procedures are based on the reaction between the examined drug and alizarin (I), alizarin red S (II), alizarin yellow G (III) or quinalizarin (IV) producing ion-pair complexes which can be measured at the optimum wavelength. The optimization of the reaction conditions is investigated. Beer's law is obeyed in the concentration ranges 0.05-2.40 microg ml(-1), whereas optimum concentration as adopted from Ringbom plots was 0.12-2.25 microg ml(-1). The molar absorptivity, Sandell sensitivity, detection and quantification limits are also calculated. The correlation coefficient was >/=0.9990 (n=10) with a relative standard deviation (R.S.D.) of

  2. Utility of Charge Transfer and Ion-Pair Complexation for Spectrophotometric Determination of Eletriptan Hydrobromide in Pure and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda

    2013-01-01

    Full Text Available Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz and alizarin red S (ARS producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1 for Quinz, ARS, and Mo(V-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%. of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.

  3. Determination of thallium at ultra-trace levels in water and biological samples using solid phase spectrophotometry.

    Science.gov (United States)

    Amin, Alaa S; El-Sharjawy, Abdel-Azeem M; Kassem, Mohammed A

    2013-06-01

    A new simple, very sensitive, selective and accurate procedure for the determination of trace amounts of thallium(III) by solid-phase spectrophotometry (SPS) has been developed. The procedure is based on fixation of Tl(III) as quinalizarin ion associate on a styrene-divinylbenzene anion-exchange resin. The absorbance of resin sorbed Tl(III) ion associate is measured directly at 636 and 830 nm. Thallium(I) was determined by difference measurements after oxidation of Tl(I) to Tl(III) with bromine. Calibration is linear over the range 0.5-12.0 μg L(-1) of Tl(III) with relative standard deviation (RSD) of 1.40% (n=10). The detection and quantification limits are 150 and 495 ng L(-1) using 0.6 g of the exchanger. The molar absorptivity and Sandell sensitivity are also calculated and found to be 1.31×10(7) L mol(-1)cm(-1) and 0.00156 ng cm(-2), respectively. The proposed procedure has been successfully applied to determine thallium in water, urine and serum samples.

  4. Malaria protein kinase CK2 (PfCK2 shows novel mechanisms of regulation.

    Directory of Open Access Journals (Sweden)

    Michele Graciotti

    Full Text Available Casein kinase 2 (protein kinase CK2 is a conserved eukaryotic serine/theronine kinase with multiple substrates and roles in the regulation of cellular processes such as cellular stress, cell proliferation and apoptosis. Here we report a detailed analysis of the Plasmodium falciparum CK2, PfCK2, demonstrating that this kinase, like the mammalian orthologue, is a dual specificity kinase able to phosphorylate at both serine and tyrosine. However, unlike the human orthologue that is auto-phosphorylated on tyrosine within the activation loop, PfCK2 shows no activation loop auto-phosphorylation but rather is auto-phosphorylated at threonine 63 within subdomain I. Phosphorylation at this site in PfCK2 is shown here to regulate the intrinsic kinase activity of PfCK2. Furthermore, we generate an homology model of PfCK2 in complex with the known selective protein kinase CK2 inhibitor, quinalizarin, and in so doing identify key co-ordinating residues in the ATP binding pocket that could aid in designing selective inhibitors to PfCK2.

  5. THE EFFECT OF DYES ON THE CALCIFICATION OF HYPERTROPHIC RACHITIC CARTILAGE IN VITRO

    Science.gov (United States)

    Miller, Zelma B.; Waldman, Jerome; McLean, Franklin C.

    1952-01-01

    The calcification of rat hypertrophic cartilage slices in vitro is markedly inhibited by preliminary exposure to metachromatic and other basic dyes. The dyes are effective at 10–3 to 10–4 M in the absence of calcium and phosphate. This inhibition does not occur at the same low dye concentration if calcium and phosphate are present. Neither ion alone is effective in preventing the inhibition. The inhibitory action can be removed by placing slices which have been treated with basic dye in a solution which contains calcium and phosphate ions, plus an acid dye, Orange G. Most acid dyes do not inhibit calcification, except at very high concentrations. Alizarin and quinalizarin are exceptional, and produce marked inhibition at 10–3 M, an effect which is perhaps attributable to the tendency of these dyes to form lakes with calcium. Rachitic cartilage slices which no longer calcify in inorganic phosphate as a result of treatment with basic dyes show normal calcification in the presence of organic phosphate esters. These results are discussed in terms of the possibility that chondroitin sulfate ester participates in normal calcification. PMID:14927802

  6. Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum (VI) ion in seawater samples

    Energy Technology Data Exchange (ETDEWEB)

    Filik, Hayati, E-mail: filik@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey); Cengel, Tayfun; Apak, Resat [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey)

    2009-09-30

    A cloud point extraction process using the nonionic surfactant Triton X-114 to extract molybdenum from aqueous solutions was investigated. The method is based on the complexation reaction of Mo(VI) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarine: QA) and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by graphite furnace atomic absorption spectrometry (GFAAS). The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature, incubation and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the limit of detection (LOD) for Mo(VI) was 7.0 ng L{sup -1} with an preconcentration factor of {approx}25 when 10 mL of sample solution was preconcentrated to 0.4 mL. The proposed method (with extraction) showed linear calibration within the range 0.03-0.6 {mu}g L{sup -1}. The relative standard deviation (RSD) was found to be 3.7% (C{sub Mo(VI)} = 0.05 {mu}g L{sup -1}, n = 5) for pure standard solutions, whereas RSD for the recoveries from real samples ranged between 2 and 8% (mean RSD = 3.9%). The method was applied to the determination of Mo(VI) in seawater and tap water samples with a recovery for the spiked samples in the range of 98-103%. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. In order to verify the accuracy of the method, a certified reference water sample was analysed and the results obtained were in good agreement with the certified values.

  7. Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese(II) in water and food samples

    Science.gov (United States)

    Gouda, Ayman A.

    2014-10-01

    A new cloud point extraction (CPE) process using the nonionic surfactant Triton X-114 to extract manganese(II) from aqueous solution was investigated. The method is based on the complexation reaction of manganese(II) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarin) in the presence of borate buffer at pH 8.5 and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by spectrophotometry at 528 nm. The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the analytical characteristics of the method (e.g., limit of detection (LOD), linear range, preconcentration and improvement factors) were obtained. The proposed CPE method showed linear calibration within the range 5.0-200 ng mL-1 of manganese(II) and the limit of detection of the method was 0.8 ng mL-1 with an preconcentration factor of ∼50 when 25 mL of sample solution was preconcentrated to 0.5 mL. The relative standard deviation (RSD) and relative error were found to be 1.35% and 1.42%, respectively (CMn(II) = 150 ng mL-1, n = 6) for pure standard solutions. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. The method was applied to the determination of manganese(II) in water and food samples with a recovery for the spiked samples in the range of 95.87-102.5%.

  8. Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese(II) in water and food samples.

    Science.gov (United States)

    Gouda, Ayman A

    2014-10-15

    A new cloud point extraction (CPE) process using the nonionic surfactant Triton X-114 to extract manganese(II) from aqueous solution was investigated. The method is based on the complexation reaction of manganese(II) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarin) in the presence of borate buffer at pH 8.5 and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by spectrophotometry at 528nm. The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the analytical characteristics of the method (e.g., limit of detection (LOD), linear range, preconcentration and improvement factors) were obtained. The proposed CPE method showed linear calibration within the range 5.0-200ngmL(-1) of manganese(II) and the limit of detection of the method was 0.8ngmL(-1) with an preconcentration factor of ∼50 when 25mL of sample solution was preconcentrated to 0.5mL. The relative standard deviation (RSD) and relative error were found to be 1.35% and 1.42%, respectively (CMn(II)=150ngmL(-1), n=6) for pure standard solutions. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. The method was applied to the determination of manganese(II) in water and food samples with a recovery for the spiked samples in the range of 95.87-102.5%.