WorldWideScience

Sample records for quinacrine

  1. Quinacrine enhances carmustine therapy of experimental rat glioma.

    Science.gov (United States)

    Reyes, S; Herrera, L A; Ostrosky, P; Sotelo, J

    2001-10-01

    The high rate of mutagenesis in malignant cells has been considered to be a primary factor in the appearance of chemotherapy-resistant cell clones in glioblastomas. Quinacrine binds strongly to deoxyribonucleic acid, preventing mutagenesis. We investigated whether quinacrine could improve carmustine therapy in C6 cell cultures and in C6 malignant gliomas implanted subcutaneously into Wistar rats. A potential chemopreventive effect of quinacrine on acquired resistance to carmustine therapy was studied in vitro and in vivo. Deoxyribonucleic acid damage was measured in cultured C6 cells by using the micronucleus test. Wistar rats with subcutaneously implanted C6 gliomas were treated with carmustine, quinacrine, or carmustine plus quinacrine, using pharmacological schemes similar to those used for human patients. The addition of quinacrine to cultured C6 cells did not modify carmustine-induced cytotoxicity; however, the deoxyribonucleic acid damage in surviving cells was minor, as indicated by the frequency of micronucleated cells. The surviving cells continued to be susceptible to a second exposure to carmustine, in contrast to non-quinacrine-treated control cells, which developed resistance to carmustine in a subsequent exposure (P < 0.05). The rate of tumor remission was higher for glioma-bearing rats treated with quinacrine plus carmustine, compared with rats treated with carmustine alone (P < 0.01). The addition of quinacrine to carmustine therapy increases the antineoplastic effect of the carmustine therapy. Our results suggest that chemical inhibition of mutagenesis in malignant glial cells during chemotherapy prevents the appearance of resistant clones.

  2. Quinacrine reactivity with prion proteins and prion-derived peptides

    Czech Academy of Sciences Publication Activity Database

    Zawada, Zbigniew; Šafařík, Martin; Dvořáková, E.; Janoušková, O.; Březinová, Anna; Stibor, Ivan; Holada, K.; Bouř, Petr; Hlaváček, Jan; Šebestík, Jaroslav

    2013-01-01

    Roč. 44, č. 5 (2013), s. 1279-1292 ISSN 0939-4451 R&D Projects: GA ČR GA203/07/1517 Institutional support: RVO:61388963 Keywords : quinacrine * prion protein and peptide model reactions * solid phase and recombinant synthesis Subject RIV: CE - Biochemistry Impact factor: 3.653, year: 2013

  3. Quinacrine non-surgical female sterilization in Bangladesh.

    Science.gov (United States)

    Bhuiyan, S N; Begum, R

    2001-11-01

    This study was undertaken to evaluate the efficacy, safety, and acceptability of transcervical applications of quinacrine along with other adjuvants, such as ampicillin and ibuprofen, for sterilization. The cohort consisted of 750 normal women who requested sterilization and volunteered for this method at the family planning clinic of a tertiary hospital and community clinics in Chittagong, Bangladesh. Several different protocols were followed from October 1989 to April 1999. Each woman received one or two insertions of 180 mg or 252 mg quinacrine with or without adjuvants including 55.5 mg ibuprofen or 125 mg ampicillin. Supplementary contraception was given in the form of combined oral contraceptive pills, barrier methods, or injection of depot medroxyprogesterone acetate for 3 months. Details of each protocol are described in the text. The gross pregnancy failure rate for insertion of 180 mg in 590 women was 3.9% compared to 1.9% for the 160 who received 252 mg. There were no serious complications, and side effects were transient. We conclude that quinacrine non-surgical sterilization is a safe, acceptably effective method when two insertions of 252 mg quinacrine with medroxyprogesterone injection as a supplement is used.

  4. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane

    Science.gov (United States)

    Ding, Xue-feng; Wu, Yan; Qu, Wen-rui; Fan, Ming; Zhao, Yong-qi

    2018-01-01

    Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation. PMID:29623929

  5. Potentiation of X-ray response by quinacrine in experimental mouse mammary carcinomas

    International Nuclear Information System (INIS)

    Neubort, S.; Goldfeder, A.

    1984-01-01

    Two mouse mammary carcinomas were subjected to various doses of 250 KV X-rays alone or in combination with quinacrine-HCl (Atabrine). The tumors, maintained by subcutaneous implant in isogenic mouse hosts, were: MT2 (X/Gf mouse strain) and DBAH (DBA/2J strain). X-rays were given locally in single doses to the tumor while the body was shielded. Quinacrine was given ad lib in drinking water (0.03%) for 5 days beginning 48 hr before X-rays. Quinacrine alone had no effect on tumor growth, and was well-tolerated by the mice, which recovered rapidly after slight, transient weight loss. In the MT2 tumor, quinacrine had only a small potentiating effect, reducing the TCD-50 from 57.5 Gy (54.9, 60.2 95% confidence) to 49.0 (47.5, 52.5) Gy for the combination treatment. Conversely, in the DBAH tumor a substantial potential was obtained (E.R. = 2.0), the TCD-50 being reduced from 50.1 (46.8, 53.7) Gy to 25.1 (22.9, 27.5) Gy. The mechanism of this potential is under investigation. Since the more responsive DBAH tumor is known to be less hypoxic than the MT2 tumor, sensitization of hypoxic cells does not appear to play a role in quinacrine-induced potentiation

  6. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds.

    Science.gov (United States)

    Macfarlane, D E; Manzel, L

    1998-02-01

    Phosphorothioate oligodeoxynucleotides containing CpG (CpG-ODN) activate immune responses. We report that quinacrine, chloroquine, and structurally related compounds completely inhibit the antiapoptotic effect of CpG-ODN on WEHI 231 murine B lymphoma cells and inhibit CpG-ODN-induced secretion of IL-6 by WEHI 231. They also inhibit IL-6 synthesis and thymidine uptake by human unfractionated PBMC induced by CpG-ODN. The compounds did not inhibit LPS-induced responses. Half-maximal inhibition required 10 nM quinacrine or 100 nM chloroquine. Inhibition was noncompetitive with respect to CpG-ODN. Quinine, quinidine, and primaquine were much less powerful. Quinacrine was effective even when added after the CpG-ODN. Near-toxic concentrations of ammonia plus bafilomycin A1 (used to inhibit vesicular acidification) did not reduce the efficacy of the quinacrine, but the effects of both quinacrine and chloroquine were enhanced by inhibition of the multidrug resistance efflux pump by verapamil. Agents that bind to DNA, including propidium iodide, Hoechst dye 33258, and coralyne chloride did not inhibit CpG-ODN effect, nor did 4-bromophenacyl bromide, an inhibitor of phospholipase A2. Examination of the structure-activity relationship of seventy 4-aminoquinoline and 9-aminoacridine analogues reveals that increased activity was conferred by bulky hydrophobic substituents on positions 2 and 6 of the quinoline nucleus. No correlation was found between published antimalarial activity and ability to block CpG-ODN-induced effects. These results are discussed in the light of the ability of quinacrine and chloroquine to induce remission of rheumatoid arthritis and lupus erythematosus.

  7. Sonographic recognition of three cases of septate uteri diminishes failures of quinacrine sterilization.

    Science.gov (United States)

    Ferreira, C R C; Magalhaes, D R B; Lippes, J

    2006-04-01

    Using sonography, the bicornate and septate uterus as causes of failure of quinacrine sterilization (QS) are explored. Whether QS can be effectively performed on women with a bicornate or septate uterus is a question answered by a presentation of three such cases. Three cases presented were part of a prospective nonrandomized study of QS in 205 women requesting sterilization at the Family Planning Clinic, School of Medicine of the Federal University of Minas Gerais, Belo Horizonte, Brazil. Sonography was performed on all patients before, during and after QS. Quinacrine was packaged as seven pellets in a modified Copper-T IUD inserter (Sipharm, Sisseln, Switzerland). Each woman received the first transcervical insertion of 252 mg of quinacrine during the follicular phase of the menstrual cycle, usually immediately after menses. One month later, a second insertion was similarly performed. Patients were advised to use an alternate method of birth control for 12 weeks to allow time for scarring of the oviducts. A blood pregnancy test was done before the QS procedure. The diagnosis of a septate or bicornuate uterus was made by sonography in three of the 205 patients in the study. It was obvious that quinacrine had to be inserted into the two horns of such an anomalous uterus if the dissolved drug was to enter both fallopian tubes. Quinacrine dissolved into "lakes of quinacrine," and sonographically could be seen at the top of the uterine fundus. For this clinical trial of 205 patients, there were 546 woman-years of follow-up, and the Pearl index was 0.73 per 100 woman-years (95% confidence limits: 0.02, 1.4). The bicornate or septate uterus can be a cause of failure of QS if undetected. Advantages of sonography prior to, during and after QS are apparent in the three patients with septate uteri. Sonography is advantageous when performing QS by demonstrating an anomaly of the uterus, which required separate insertions of quinacrine into each horn of a septate uterus and

  8. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia

    International Nuclear Information System (INIS)

    Eriksson, A; Österroos, A; Hassan, S; Gullbo, J; Rickardson, L; Jarvius, M; Nygren, P; Fryknäs, M; Höglund, M; Larsson, R

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC 1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 μM drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug–drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis

  9. What could be the role of quinacrine in Creutzfeldt-Jakob disease treatment?

    Czech Academy of Sciences Publication Activity Database

    Zawada, Zbigniew; Šebestík, Jaroslav; Šafařík, Martin; Krejčiříková, A.; Hlaváček, Jan; Stibor, Ivan; Holada, K.; Bouř, Petr

    2010-01-01

    Roč. 16, S2 (2010), s. 55-55 ISSN 1075-2617. [European Peptide Symposium /31./. 05.09.2010-09.09.2010, Copenhagen] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : prion * quinacrine * thiolysis Subject RIV: CC - Organic Chemistry

  10. Non-surgical female sterilization with quinacrine-induced tubal occlusion: a clinical trial

    Directory of Open Access Journals (Sweden)

    Seifi

    2008-08-01

    Full Text Available Background: Over the last 35 years, quinacrine has been used to sterilize more than 150,000 women in 40 countries, first in the form of slurry and now in the form of cylindrical pellets. Some studies confirmed the tubal occlusion by hysterosalpyngo-graphy, but this method increases the chance of failure. Only a few studies on tubal occlusion have used transvaginal sonography for confirmation, and there were some doubts about the effect of quinacrine on the endometrium. We performed this study to evaluate the tubal scar and endometrial pattern by ultrasound and to determine the feasibility, acceptance, and side effects of quinacrine sterilization (QS in Iranian women. Methods: This prospective clinical trial was done at the Vali-e-Asr Reproductive Health Research Center of the Tehran University of Medical Sciences between April 2005 and July 2006. One hundred sexually active women ranging from 30 to 47 years of age, who had at least two children above two years old, requesting sterilization, were sterilized by this method. By the end of menstrual bleeding, seven pellets, each containing 36mg quinacrine, were inserted in the uterine fundal area via the cervical canal. The procedure was repeated one month later. Three cycles after the first step, transvaginal sonography was performed to visualize the tubal scar and determine the endometrial pattern. Patients were followed at one and three years after initiation of the procedure. Results: All women were satisfied with the procedure. There were no side effects. No pregnancies had occurred, nor were there endometrial thickness abnormalities. Scar formation was visible in the tubes. "nConclusion: Quinacrine sterilization is a useful method for women and can be recommended to family planning services as an ambulatory procedure due to its efficacy, simplicity, acceptance and cost effectiveness.

  11. Hypertension and low birth weight babies in females sterilized with quinacrine in faisalabad from 1995 to 2005

    International Nuclear Information System (INIS)

    Afzal, S.; Mehboob, R.

    2013-01-01

    To find out hypertension and low birth weight babies in 6 to 17 years follow up after quinacrine sterilization (QS) during 1995-2005 in Faisalabad. Study design: The Cross sectional study. Place and duration of the study: The females who had transcervical insertion of quinacrine during 1995 to 2005 in Faisalabad were included in the survey. The duration of the survey was from January 2012 to April 2013. Subjects and Methods: The sample size calculated at 95% confidence level was 540. Sampling technique was simple random sampling. The home based survey of quinacrine sterilization was done by Lady health visitors and structured pretested questionnaires were filled. The examination and referral was done at the Manzar Medical Centre Faisalabad. Results: The frequency distribution and calculation of statistics showed the mean age at quinacrine sterilization was 38.5 years, standard deviation 6.517, standard error=0.461. The demographic features showed that the most of the females were living in rural areas (67%), poor (51.85%), unemployed (89.7%) and Iliterate (65%). In the study, low birth weight babies were in 9(1.66%) and hypertension was in 113 (20.9%) women after quinacrine sterilization. Conclusion: The hypertension and low birth weight babies were reported in females after quinacrine sterilization. Thus these findings may have a bearing on permanent sterilization practices and design of future investigations. (author)

  12. Reaction of quinacrine with prion protein: treatment for Creutzfeldt-Jakob disease?

    Czech Academy of Sciences Publication Activity Database

    Zawada, Zbigniew; Šebestík, Jaroslav; Šafařík, Martin; Březinová, Anna; Bouř, Petr; Hlaváček, Jan; Stibor, Ivan

    2010-01-01

    Roč. 104, č. 11 (2010), s. 1129-1129 ISSN 0009-2770. [Pokroky v organické, bioorganické a farmaceutické chemii /45./. 20.11.2010-22.11.2010, Nymburk] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : quinacrine * acridine displacement * prions * prevention of aggregation Subject RIV: CC - Organic Chemistry

  13. Reactivity of 9-aminoacridine drug quinacrine with glutathione limits its antiprion activity

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Martin; Moško, T.; Zawada, Zbigniew; Šafaříková, E.; Dračínský, Martin; Holada, K.; Šebestík, Jaroslav

    2017-01-01

    Roč. 89, č. 6 (2017), s. 932-942 ISSN 1747-0277 R&D Projects: GA ČR(CZ) GA14-00431S; GA ČR GA15-09072S; GA ČR(CZ) GA16-00270S Institutional support: RVO:61388963 Keywords : antiprion activity * failure in clinical trials * nucleophilic displacement * prion protein binding * quinacrine Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.396, year: 2016

  14. N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity.

    Science.gov (United States)

    Gomes, Ana; Pérez, Bianca; Albuquerque, Inês; Machado, Marta; Prudêncio, Miguel; Nogueira, Fátima; Teixeira, Cátia; Gomes, Paula

    2014-02-01

    Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future "rise of a fallen angel" in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  16. Intensification of the inhibitory effect of X-rays on the growth of Ehrlich ascites tumor cells in monolayer culture by quinacrine (atebrine) or chloroquine (resochine)

    International Nuclear Information System (INIS)

    Biller, H.; Pfab, R.; Hess, F.; Schachtschabel, D.O.; Leising, H.B.

    1980-01-01

    Monolayers of Ehrlich ascites tumor cells in their logarithmic phase of growth were exposed to a single X-ray dose of 1 to 16 Gy. Following exposure, the monolayers were cultured for several days or weeks with or without an addition of 4 x to 6 x 10 -6 M of quinacrine (atebrine) or 3.3 x 10 -5 to 1 x 10 -4 M of chloroquine. Proliferation activity was controlled by the daily microscopical count of representative areas out of the total population. A significant delay resulted from exposure to 4 Gy (particularly during the 1st day), while sole irradiation with 1 or 2 Gy did not much influence the proliferation of the cells. An 8-Gy dose and to a larger extent 16 Gy led to a fall of the cell number down to 20% (8 Gy) or around 10% (16 Gy) of the initial value between the 7th and the 10th day. The cells subsequently multiplied with nearly the growth rate of controls. The inhibitory effect on cells proliferation produced by an exposure to X-rays was distinctly intensified by means of incubation with continuously replaced quinacrine or chloroquine containing culture media. Treatment with 1 x 10 -4 mol chloroquine thus brought about a more pronounced inhibition after pre-irradiation with a single dose of 2 or 8 Gy. If 4 x 10 -6 or 6 x 10 -6 M of quinacrine were added to cultures pretreated with 4 Gy, a more intense inhibition of growth resulted therefrom than from sole treatment with either quinacrine or X-rays. Incubation of cultures pretreated with 8 Gy in the presence of 6 x 10 -6 M quinacrine led to the death of all the cells within 8 days. Quinacrine and chloroquine effects on cells previously exposed to X-rays are discussed in view of the well-known effects these agents exert by inhibiting enzymatic repair processes of DNA damage. (orig.) [de

  17. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.; Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca

    2013-07-15

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K{sub M} 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V{sub max}. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion

  18. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    International Nuclear Information System (INIS)

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.; Marceau, François

    2013-01-01

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K M 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V max . PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion trapping

  19. Molecular mechanisms mediating the neuroproyective effects of quinacrine and minocycline on cell death induced by the prion protein fragment 90-231 (hPrP90-231

    Directory of Open Access Journals (Sweden)

    V. Villa

    2011-01-01

    Full Text Available The effects of quinacrine and minocycline on the toxicity induced by hPrP90-231 were studied. By mild thermal denaturation, hPrP90-231 can be converted in a toxic PrPSc-like structure affecting the survival of SH-SY5Y cells. Quinacrine and minocycline prevented hPrP90-231-induced toxicity interfering with different mechanisms: protective effects of quinacrine are mediated by the binding to the fragment that abolished hPrP90-231 structural changes and cell internalization, whereas, minocycline reverted MAP kinase neurotoxic signaling exerted by the prion fragment.

  20. Localization of sites modified during inactivation of the bovine heart mitochondrial F1-ATPase by quinacrine mustard using [3H]aniline as a probe

    International Nuclear Information System (INIS)

    Bullough, D.A.; Ceccarelli, E.A.; Verburg, J.G.; Allison, W.S.

    1989-01-01

    The aziridinium of purified quinacrine mustard at 50 microM inactivates the bovine heart mitochondrial F1-ATPase with a pseudo-first order rate constant of 0.07 min-1 at pH 7.0 and 23 degrees C. An apparent Kd of 27 microM for the enzyme-reagent complex was estimated from the dependence of the rate of inactivation on the concentration of quinacrine mustard. The pH inactivation profile revealed that deprotonation of a group with a pKa of about 6.7 is necessary for inactivation. The amount of reagent incorporated into the protein increased linearly with the extent of inactivation. Complete inactivation was estimated to occur when 3 mol of reagent were incorporated/mol of F1. Enzyme, in which steady state ATPase was inactivated by 98% by quinacrine mustard, hydrolyzed substoichiometric ATP with zero order kinetics suggesting that residual activity is catalyzed by F1 in which at least one beta subunit is modified. By exploiting the reactivity of the aziridinium of covalently attached reagent with [3H] aniline, sites modified by quinacrine mustard were labeled with 3H. Isolation of radioactive cyanogen bromide peptides derived from F1 inactivated with the reagent in the presence of [3H]aniline which were identified by sequence analysis and sequence analyses of radioactive tryptic fragments arising from them have revealed the following. About two thirds of the radioactivity incorporated into the enzyme during inactivation is apparently esterified to one or more of the carboxylic acid side chains in a CNBr-tryptic fragment of the beta subunit with the sequence: 394DELSEEDK401. The remainder of the radioactivity is associated with at least two sites within the cyanogen bromide peptide containing residues 293-358 of the beta subunit

  1. A serological study of removal of UV-induced photoproducts in the DNA of tetrahymena pyriformis GL: influence of caffeine, quinacrine and chloroquine

    International Nuclear Information System (INIS)

    Lakhanisky, Th.; Hendrickx, B.; Mouton, R.F.; Cornelis, J.J.

    1979-01-01

    Antisera that recognise specifically UV-photoproducts in DNA have been used to follow the elimination of photolesions in UV irradiated Tetrahymena pyriformis. The amount of bound tritium-labelled antibodies to nuclei has been estimated by autoradiography. Curves of dose-response of DNA photo-products, their elimination by dark repair, and effect of caffeine, quinacrine, and chloroquine on the disappearance of UV-lesions have been evaluated. (author)

  2. Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles.

    Science.gov (United States)

    Pierzyńska-Mach, Agnieszka; Janowski, Paweł A; Dobrucki, Jurek W

    2014-08-01

    Acidic vesicles can be imaged and tracked in live cells after staining with several low molecular weight fluorescent probes, or with fluorescently labeled proteins. Three fluorescent dyes, acridine orange, LysoTracker Red DND-99, and quinacrine, were evaluated as acidic vesicle tracers for confocal fluorescence imaging and quantitative analysis. The stability of fluorescent signals, achievable image contrast, and phototoxicity were taken into consideration. The three tested tracers exhibit different advantages and pose different problems in imaging experiments. Acridine orange makes it possible to distinguish acidic vesicles with different internal pH but is fairly phototoxic and can cause spectacular bursts of the dye-loaded vesicles. LysoTracker Red is less phototoxic but its rapid photobleaching limits the range of useful applications considerably. We demonstrate that quinacrine is most suitable for long-term imaging when a high number of frames is required. This capacity made it possible to trace acidic vesicles for several hours, during a process of drug-induced apoptosis. An ability to record the behavior of acidic vesicles over such long periods opens a possibility to study processes like autophagy or long-term effects of drugs on endocytosis and exocytosis. © 2014 International Society for Advancement of Cytometry.

  3. A high-content phenotypic screen reveals the disruptive potency of quinacrine and 3',4'-dichlorobenzamil on the digestive vacuole of Plasmodium falciparum.

    Science.gov (United States)

    Lee, Yan Quan; Goh, Amanda S P; Ch'ng, Jun Hong; Nosten, François H; Preiser, Peter Rainer; Pervaiz, Shazib; Yadav, Sanjiv Kumar; Tan, Kevin S W

    2014-01-01

    Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of intravacuolar Ca(2+). This assay uses the ImageStream 100, an imaging-capable flow cytometer, to assess the distribution of the fluorescent calcium probe Fluo-4. We obtained two hits from a small library of 25 test compounds, quinacrine and 3',4'-dichlorobenzamil. The ability of these compounds to permeabilize the digestive vacuole in laboratory strains and clinical isolates was validated by confocal microscopy. The hits could induce programmed cell death features in both chloroquine-sensitive and -resistant laboratory strains. Quinacrine was effective at inhibiting field isolates in a 48-h reinvasion assay regardless of artemisinin clearance status. We therefore present as proof of concept a phenotypic screening method with the potential to provide mechanistic insights to the activity of antimalarial drugs.

  4. Analysis of the G1 arrest position of senescent WI38 cells by quinacrine dihydrochloride nuclear fluorescence: evidence for a late G1 arrest

    International Nuclear Information System (INIS)

    Gorman, S.D.; Cristofalo, V.J.

    1986-01-01

    Senescence of the human diploid fibroblast-like cell line, W138, is characterized by a loss of proliferative activity and an arrest of cells with a 2C DNA content (G1 or G0). To examine the specific region within G1 in which senescent cells arrest, senescent cells were stained with quinacrine dihydrochloride (QDH) and their nuclear fluorescence was compared with that of young cultures arrested in early and late G1 by serum deprivation and hydroxyurea exposure, respectively. Release of these G1-arrested young cultures from their blocking conditions and timing the kinetics of their entry into the S phase by autoradiographic detection of [ 3 H]thymidine incorporation revealed that serum-deprived cells entered the S phase within 15-18h, whereas hydroxyurea-exposed cells entered the S phase within 1.5h, thus confirming their relative G1-arrest positions. QDH-stained, serum-deprived and hydroxyurea-exposed young cells exhibited relative nuclear fluorescence intensities of 51.7 and 23.9, respectively. Senescent cells exhibited a relative nuclear fluorescence intensity of 17.4, closely resembling the fluorescence of young cultures arrested in late G1 by hydroxyurea exposure. These data support the concept that senescent cells are arrested from further progression in the cell cycle in late G1

  5. The acceptability, efficacy and safety of quinacrine non-surgical sterilization (QS), tubectomy and vasectomy in 5 provinces in the Red River Delta, Vietnam: a follow-up of 15,190 cases.

    Science.gov (United States)

    Hieu, D T; Luong, T T; Anh, P T; Ngoc, D H; Duong, L Q

    2003-10-01

    To compare the safety, efficacy and acceptability of quinacrine sterilization (QS), tubectomy and vasectomy in Vietnam. This study was initiated in January 1998 and completed in February 2000. A sample of 9 districts in 5 provinces, where the prevalence of QS was known to be high, was selected. Every person sterilized in these 9 districts between January 1, 1988 and March 31, 1998 was identified and systematically interviewed by family planning clinicians who had received special training for this project. A total of 15,982 sterilization users were identified and 15,190 were interviewed and examined, including a gynecologic exam, if needed: a follow-up rate of 95%. Of those interviewed, 9,753 used tubectomy, 3,734 used QS and 1,703 used vasectomy. All three methods were found to be safe, although morbidity associated with tubectomy was more serious than with QS or vasectomy. No deaths were reported. After more than 5 years of follow-up, tubectomy had the lowest failure rate: 1.0%, followed by 4.1% with vasectomy. A pregnancy rate of 13.2% was reported with quinacrine, although only a small fraction of these failures were confirmed. A strong preference for QS was found. QS has an important role to play in sterilization services in Vietnam.

  6. A High-Content Phenotypic Screen Reveals the Disruptive Potency of Quinacrine and 3′,4′-Dichlorobenzamil on the Digestive Vacuole of Plasmodium falciparum

    OpenAIRE

    Lee, Yan Quan; Goh, Amanda S. P.; Ch'ng, Jun Hong; Nosten, François H.; Preiser, Peter Rainer; Pervaiz, Shazib; Yadav, Sanjiv Kumar; Tan, Kevin S. W.

    2014-01-01

    Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of in...

  7. Lichen planus

    Science.gov (United States)

    ... and other chemicals (including gold, antibiotics, arsenic, iodides, chloroquine, quinacrine, quinide, phenothiazines, and diuretics) Diseases such as ... A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM Health ...

  8. Effect Linn ts of aq n on re queous eprodu s leave uctive es extr ...

    African Journals Online (AJOL)

    SAM

    been reported. It has also been reported that medicinal plants with antimicrobial effects have tendency to adversely affect male fertility (Olayemi, 2010). Many antimalarial drugs have been implicated in male infertility. For instance chloroquine, quinine and quinacrine have been reported to inhibit Leydig cell steroidogenesis ...

  9. Effects of a phospholipase A2 inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    International Nuclear Information System (INIS)

    Jett, M.; Alving, C.R.

    1986-01-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing 14 C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A 2 (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A 2 , decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A 2

  10. Visualization of ATP release in pancreatic acini in response to cholinergic stimulus. Use of fluorescent probes and confocal microscopy

    DEFF Research Database (Denmark)

    Sørensen, Christiane Elisabeth; Novak, Ivana

    2001-01-01

    of this reaction in confocal microscopy, we monitored luciferin fluorescence as a sign of ATP release by single acini. In addition we used quinacrine to mark ATP stores, which were similar to those marked with fluorescent ATP, 2'-(or-3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate, but only partially...

  11. Good enough for the Third world.

    Science.gov (United States)

    Cooley, D

    2000-08-01

    Over the past two years, much has been made by some governments and the media about the possible callous and racist distribution of Quinacrine by two Americans to sterilize women in the Third World. The main criticism of the practice is that though Quinacrine is unapproved by the developed world's health regulatory agencies for this particular use in the developed world due to inadequate testing for long-term side effects, it is used on defenseless women in the developing world.I argue that the distribution of unapproved medical and other products is morally permissible if it satisfies two conditions: agent-centered utilitarianism and Kant's Categorical Imperative. Roughly, I contend that if the situation will probably improve and no one is treated as a mere means, then it is ethical either to give or to sell the products to those who choose to have them, regardless of where in the world they live.

  12. Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots

    OpenAIRE

    Pourrut, Bertrand; Perchet, Geoffrey; Silvestre, Jérôme; Cecchi, Marie; Guiresse, Agnès Maritchù; Pinelli, Eric

    2008-01-01

    The mechanism of oxidative burst induced by lead in Vicia faba excised roots was investigated by luminol-dependent chemiluminescence. Results showed that lead triggered a rapid and dose-dependent increase in chemiluminescence production. In this study, specific inhibitors of putative reactive oxygen species (ROS) sources were used to determine the mechanism of lead-induced ROS generation. This generation was sensitive to dephenylene iodonium (DPI), quinacrine and imidazole, some inhibitors of ...

  13. Determination of zinc concentration in female reproductive system by instrumental neutron activation

    International Nuclear Information System (INIS)

    Carvalho, Fernando Ramos de

    2009-01-01

    Non-surgical female sterilization through the transcervical insertion of quinacrine pellets was considered a definitive, low-cost, safe and effective contraceptive method. The zinc, present in both uterus and Fallopian tubes, inhibit the quinacrine efficiency. The addition of copper increases the efficacy of quinacrine, reducing the risk of pregnancy due to the failure to obstruct the Fallopian tubes. The copper neutralized the deleterious effect of the zinc and so the treatment efficacy is increased. In order to obtain a mapping to study the zinc content in the female reproductive system, samples of both uterus and Fallopian tubes were analyzed by instrumental neutron activation. The results show that, on average, the obtained zinc concentrations in tubes (89 μg-g -1 ) is lower than in the uterus (118 μg-g -1 ), confirming results obtained by other authors. These results will support a research project about non-surgical female sterilization of the 'Faculdade de Medicina da Universidade Federal de Minas Gerais' (Medical School of Federal University of Minas Gerais). The used methodology and obtained results are here reported. (author)

  14. ATP-containing vesicles in stria vascular marginal cell cytoplasms in neonatal rat cochlea are lysosomes.

    Science.gov (United States)

    Liu, Jun; Liu, Wenjing; Yang, Jun

    2016-02-11

    We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1-3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca(2+)-dependent lysosomal exocytosis.

  15. Determination of zinc concentration in female reproductive system by instrumental neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando Ramos de, E-mail: framosc@oi.com.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Oliveira, Arno Heeren de, E-mail: heeren@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina. Dept. de Ginecologia e Obstetricia; Ferreira, Claudia R.C.; Ferreira, Ricardo Alberto Neto; Menezes, Maria Angela de B.C., E-mail: claudia@medicina.ufmg.b, E-mail: ranf@cdtn.b, E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Non-surgical female sterilization through the transcervical insertion of quinacrine pellets was considered a definitive, low-cost, safe and effective contraceptive method. The zinc, present in both uterus and Fallopian tubes, inhibit the quinacrine efficiency. The addition of copper increases the efficacy of quinacrine, reducing the risk of pregnancy due to the failure to obstruct the Fallopian tubes. The copper neutralized the deleterious effect of the zinc and so the treatment efficacy is increased. In order to obtain a mapping to study the zinc content in the female reproductive system, samples of both uterus and Fallopian tubes were analyzed by instrumental neutron activation. The results show that, on average, the obtained zinc concentrations in tubes (89 mug-g{sup -1}) is lower than in the uterus (118 mug-g{sup -1}), confirming results obtained by other authors. These results will support a research project about non-surgical female sterilization of the 'Faculdade de Medicina da Universidade Federal de Minas Gerais' (Medical School of Federal University of Minas Gerais). The used methodology and obtained results are here reported. (author)

  16. Clofazimine Induced Suicidal Death of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Arbace Officioso

    2015-08-01

    Full Text Available Background/Aims: The antimycobacterial riminophenazine clofazimine has previously been shown to up-regulate cellular phospholipase A2 and to induce apoptosis. In erythrocytes phospholipase A2 stimulates eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Phospholipase A2 is in part effective by fostering formation of prostaglandin E2, which triggers Ca2+ entry. Stimulators of Ca2+ entry and eryptosis further include oxidative stress and energy depletion. The present study tested, whether and how clofazimine induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, cytosolic Ca2+ activity ([Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS from 2′, 7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, and cytosolic ATP level utilizing a luciferin-luciferase assay kit. Results: A 24-48 hours exposure of human erythrocytes to clofazimine (≥1.5 µg/ml significantly increased the percentage of annexin-V-binding cells without appreciably modifying forward scatter. Clofazimine significantly increased [Ca2+]i, significantly decreased cytosolic ATP, but did not significantly modify ROS. The effect of clofazimine on annexin-V-binding was significantly blunted, but not fully abolished by removal of extracellular Ca2+, and by phospholipase A2 inhibitor quinacrine (25 µM. Clofazimine further augmented the effect of Ca2+ ionophore ionomycin (0.1 µM on eryptosis. The clofazimine induced annexin-V-binding was, however, completely abrogated by combined Ca2+ removal and addition of quinacrine. Conclusion: Clofazimine stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect in part dependent on entry of extracellular Ca2+, paralleled by cellular energy depletion and sensitive to

  17. Induction of micronuclei in the mouse. Revised timing of the final stage of erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Hart, J.W. (Leo Pharmaceutical Products Ltd., Ballerup (Denmark)); Hartley-Asp, B. (AB Leo, Helsingborg (Sweden))

    1983-05-01

    the early effects of X-rays, vincristine, cyclophosphamide, quinacrine dihydrochloride, cycloheximide, actinomycin D and hydroxyurea on the induction of micronuclei in mouse bone-marrow erythrocytes were studied. A significant increase in the incidence of micronuclei in polychromatic erythrocytes was seen as early as 5 h after a single treatment with vincristine, 6 h after treatment with X-rays and 10 h after treatment with cyclophosphamide. The cell kinetics of the mouse erythropoietic system described by Cole et al. (1981) can be modified to fit these results. According to this revised model, the final mitosis takes place only 5 h before the expulsion of the nucleus.

  18. Human transmissible spongiform encephalopathy: Case report

    Directory of Open Access Journals (Sweden)

    Duque Velásquez, Camilo

    2014-07-01

    Full Text Available We report the case of a 64 year-old woman with motor and cognitive deterioration that progressed rapidly during eight months. She was unsuccessfully treated with quinacrine, and died in a terminal status, by septic shock secondary to bronchopneumonia by broncho-aspiration. The brain was donated for research and the histopathological analysis showed spongiform changes, astrogliosis and prion protein (PrPRes deposits, confirmed by Western blot (WB. These features are considered characteristic of prion diseases, which are uncommon in Colombia. We highlight that its diagnosis was made for the first time in this country by the simultaneous use of immunohistochemistry and Western blot.

  19. Induction of micronuclei in the mouse. Revised timing of the final stage of erythropoiesis

    International Nuclear Information System (INIS)

    Hart, J.W.; Hartley-Asp, B.

    1983-01-01

    the early effects of X-rays, vincristine, cyclophosphamide, quinacrine dihydrochloride, cycloheximide, actinomycin D and hydroxyurea on the induction of micronuclei in mouse bone-marrow erythrocytes were studied. A significant increase in the incidence of micronuclei in polychromatic erythrocytes was seen as early as 5 h after a single treatment with vincristine, 6 h after treatment with X-rays and 10 h after treatment with cyclophosphamide. The cell kinetics of the mouse erythropoietic system described by Cole et al. (1981) can be modified to fit these results. According to this revised model, the final mitosis takes place only 5 h before the expulsion of the nucleus. (orig.)

  20. Feasibility of testing DNA repair inhibitors for mutagenicity by a simple method

    International Nuclear Information System (INIS)

    Sideropoulos, A.S.; Specht, S.M.; Jones, M.T.

    1980-01-01

    A simple screening methodology for the determination of mutagenicity of DNA repair inhibitors has been tested in this laboratory. Radiation-resistant E. coli B/r and WP2 hcr + and hcr - are suitable strains for mutagenicity testing. In these strains irradiated with 40-60 ergs/mm 2 , chemicals which interfere with repair of ultraviolet-induced pre-mutational lesions can be shown to enhance significantly the frequency of mutations to streptomycin resistance. This phenomenon is termed 'mutational synergism' [18,20]. We have attempted to apply the procedure for securing data for 'mutational synergism' between ultraviolet (UV) radiation and a number of antimalarial drugs including quinine hydrochloride (50 μg/ml), quinine hydrobromide (50 μg/ml), primaquine diphosphate (50 μg/ml), chloroquine (50 μg/ml), quinine (50 μg/ml) and quinacrine dihydrochloride (25 μg/ml). All drugs tested give synergistic effects with UV light. The synergistic activity ranges from 3- to 35-fold. Quinine and quinacrine dihydrochloride have been found to be much more efficient enhancers of the mutagenic effect of UV than caffeine. In general, we have found that the expression of synergistic action occurs at a concentration well below the minimum inhibitory concentration (MIC) with the drugs tested. The implication of these observations in the establishment of a screening method for the evaluation of the mutagenicity of DNA repair inhibitors is discussed. (orig.)

  1. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.

    Science.gov (United States)

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p -aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p -aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.

  2. Feasibility of testing DNA repair inhibitors for mutagenicity by a simple method

    International Nuclear Information System (INIS)

    Sideropoulos, A.S.; Specht, S.M.; Jones, M.T.

    1980-01-01

    A simple screening methodology for the determination of mutagenictity of DNA repair inhibitors has been tested in this laboratory. Radiation-resistant E. coli B/r and WP2 hcr + and hcr - are suitable strains for mutagenicity testing. In these strains irradiated with 40-60 ergs/mm 2 , chemicals which interfere with repair of ultraviolet-induced pre-mutational lesions can be shown to enhance significantly the frequency of mutations to streptomycin resistance. This phenomenon is termed mutational synergism. We have attempted to apply the procedure for securing data for mutational synergism between ultraviolet (UV) radiation and a number of antimalarial drugs including quinine hydrochloride (50 μg/ml), quinine hydrobromide (50 μg/ml), primaquine diphosphate (50 μg/ml), chloroquine (50μg/ml) and quinacrine dihydrochloride (25 μg/ml). All drugs tested give synergistic effets with UV light. The synergistic activity ranges from 3- to 35-fold. Quinine and quinacrine dihydrochloride have been found to be much more efficient enhancers of the mutagenic effect of UV than caffeine. In general, we have found that the expression of synergistic action occurs at a concentration well below the minimum inhibitory concentration (MIC) with the drugs tested. The implication of these observations in the establishment of a screening method for the evaluation of the mutagenicity of DNA repair inhibitors is discussed. (orig.)

  3. Feasibility of testing DNA repair inhibitors for mutagenicity by a simple method

    Energy Technology Data Exchange (ETDEWEB)

    Sideropoulos, A S; Specht, S M; Jones, M T [Duquesne Univ., Pittsburgh, PA (USA). Dept. of Biological Sciences

    1980-04-01

    A simple screening methodology for the determination of mutagenictity of DNA repair inhibitors has been tested in this laboratory. Radiation-resistant E. coli B/r and WP2 hcr/sup +/ and hcr/sup -/ are suitable strains for mutagenicity testing. In these strains irradiated with 40-60 ergs/mm/sup 2/, chemicals which interfere with repair of ultraviolet-induced pre-mutational lesions can be shown to enhance significantly the frequency of mutations to streptomycin resistance. This phenomenon is termed mutational synergism. We have attempted to apply the procedure for securing data for mutational synergism between ultraviolet (uv) radiation and a number of antimalarial drugs including quinine hydrochloride (50 ..mu..g/ml), quinine hydrobromide (50 ..mu..g/ml), primaquine diphosphate (50 ..mu..g/ml), chloroquine (50..mu..g/ml) and quinacrine dihydrochloride (25 ..mu..g/ml). All drugs tested give synergistic effects with uv light. The synergistic activity ranges from 3- to 35-fold. Quinine and quinacrine dihydrochloride have been found to be much more efficient enhancers of the mutagenic effect of uv than caffeine. In general, we have found that the expression of synergistic action occurs at a concentration well below the minimum inhibitory concentration (MIC) with the drugs tested. The implication of these observations in the establishment of a screening method for the evaluation of the mutagenicity of DNA repair inhibitors is discussed.

  4. Feasibility of testing DNA repair inhibitors for mutagenicity by a simple method

    Energy Technology Data Exchange (ETDEWEB)

    Sideropoulos, A S; Specht, S M; Jones, M T [Duquesne Univ., Pittsburgh, PA (USA). Dept. of Biological Sciences

    1980-04-01

    A simple screening methodology for the determination of mutagenicity of DNA repair inhibitors has been tested in this laboratory. Radiation-resistant E. coli B/r and WP2 hcr/sup +/ and hcr/sup -/ are suitable strains for mutagenicity testing. In these strains irradiated with 40-60 ergs/mm/sup 2/, chemicals which interfere with repair of ultraviolet-induced pre-mutational lesions can be shown to enhance significantly the frequency of mutations to streptomycin resistance. This phenomenon is termed 'mutational synergism' (18,20). We have attempted to apply the procedure for securing data for 'mutational synergism' between ultraviolet (UV) radiation and a number of antimalarial drugs including quinine hydrochloride (50 ..mu..g/ml), quinine hydrobromide (50 ..mu..g/ml), primaquine diphosphate (50 ..mu..g/ml), chloroquine (50 ..mu..g/ml), quinine (50 ..mu..g/ml) and quinacrine dihydrochloride (25 ..mu..g/ml). All drugs tested give synergistic effects with UV light. The synergistic activity ranges from 3- to 35-fold. Quinine and quinacrine dihydrochloride have been found to be much more efficient enhancers of the mutagenic effect of UV than caffeine. In general, we have found that the expression of synergistic action occurs at a concentration well below the minimum inhibitory concentration (MIC) with the drugs tested. The implication of these observations in the establishment of a screening method for the evaluation of the mutagenicity of DNA repair inhibitors is discussed.

  5. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    International Nuclear Information System (INIS)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-01-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism

  6. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. (Univ. of Missouri-Columbia (USA))

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  7. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Alexandre; Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca

    2016-08-15

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et{sub 3}N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic function were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et{sub 3}Ns with essentially no cell type specificity. Predictors of s-Et{sub 3}N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et{sub 3}N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et{sub 3}N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines has been

  8. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    International Nuclear Information System (INIS)

    Parks, Alexandre; Marceau, François

    2016-01-01

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et 3 N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic function were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et 3 Ns with essentially no cell type specificity. Predictors of s-Et 3 N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et 3 N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et 3 N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines has been studied in 4 cell

  9. Small-molecule xenomycins inhibit all stages of the Plasmodium life cycle.

    Science.gov (United States)

    Erath, Jessey; Gallego-Delgado, Julio; Xu, Wenyue; Andriani, Grasiella; Tanghe, Scott; Gurova, Katerina V; Gudkov, Andrei; Purmal, Andrei; Rydkina, Elena; Rodriguez, Ana

    2015-03-01

    Widespread resistance to most antimalaria drugs in use has prompted the search for novel candidate compounds with activity against Plasmodium asexual blood stages to be developed for treatment. In addition, the current malaria eradication programs require the development of drugs that are effective against all stages of the parasite life cycle. We have analyzed the antimalarial properties of xenomycins, a novel subclass of small molecule compounds initially isolated for anticancer activity and similarity to quinacrine in biological effects on mammalian cells. In vitro studies show potent activity of Xenomycins against Plasmodium falciparum. Oral administration of xenomycins in mouse models result in effective clearance of liver and blood asexual and sexual stages, as well as effective inhibition of transmission to mosquitoes. These characteristics position xenomycins as antimalarial candidates with potential activity in prevention, treatment and elimination of this disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Niclosamide as a treatment for Hymenolepis diminuta and Dipylidium caninum infection in man.

    Science.gov (United States)

    Jones, W E

    1979-03-01

    In the 5-year period 1973-1977, 43 patients infected with Dipylidium caninum and 43 patients infected with Hymenolepis diminuta were treated with Yomesan (niclosamide) in the dosages recommended by the Parasitic Disease Drug Service, Center for Disease Control. The first post-treatment stool specimen and 1-week and 3-month specimens were examined in 13 patients with D. caninum and 19 patients with H. diminuta. One hundred percent (13/13) of those with D. caninum and 89% (17/19) of those with H. diminuta had negative examinations at 3 months and were considered cured. Two patients with persistent H. diminuta were cured with a second course of drug without changing the dosage or time schedule. Four of these cases had been unresponsive to an initial course of quinacrine hydrochloride. Thus, niclosamide seems to be an effective, relatively nontoxic drug for the initial therapy of these cestode infections.

  11. The induction of the oxidative burst in Elodea densa by sulfhydryl reagent does not depend on de novo protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Amicucci, Enrica [Milan, Univ. (Italy). Dipt. di Fisiologia e Biochimica delle Piante

    1997-12-31

    In Elodea densa Planchon leaves, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a marked and temporary increase of respiration that is insensitive to cyanide, hydroxamate and propylgallate and completely inhibited by diphenylene iodonium (DPI) and by quinacrine. In this paper the author investigates whether the mechanism that causes the oxidative burst depends on the activation of preexisting oxidative systems or on the activation of de novo protein synthesis. The inhibitors used were cycloheximide (CHI) which inhibits protein synthesis in plant cells by depressing the incorporation of aminoacids into proteins and cordycepin, an effective inhibitor of mRNA synthesis. The data support the idea that the mechanism investigated depends on the activation of a long lived protein(s) and not on de novo protein synthesis.

  12. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  13. The Fab1/PIKfyve Phosphoinositide Phosphate Kinase Is Not Necessary to Maintain the pH of Lysosomes and of the Yeast Vacuole*

    Science.gov (United States)

    Ho, Cheuk Y.; Choy, Christopher H.; Wattson, Christina A.; Johnson, Danielle E.; Botelho, Roberto J.

    2015-01-01

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. PMID:25713145

  14. New concepts in antimalarial use and mode of action in dermatology.

    Science.gov (United States)

    Kalia, Sunil; Dutz, Jan P

    2007-01-01

    Although chloroquine, hydroxychloroquine and quinacrine were originally developed for the treatment of malaria, these medications have been used to treat skin disease for over 50 years. Recent clinical data have confirmed the usefulness of these medications for the treatment of lupus erythematosus. Current research has further enhanced our understanding of the pharmacologic mechanisms of action of these drugs involving inhibition of endosomal toll-like receptor (TLR) signaling limiting B cell and dendritic cell activation. With this understanding, the use of these medications in dermatology is broadening. This article highlights the different antimalarials used within dermatology through their pharmacologic properties and mechanism of action, as well as indicating their clinical uses. In addition, contraindications, adverse effects, and possible drug interactions of antimalarials are reviewed.

  15. Machine learning models identify molecules active against the Ebola virus in vitro [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2017-01-01

    Full Text Available The search for small molecule inhibitors of Ebola virus (EBOV has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in

  16. Machine learning models identify molecules active against the Ebola virus in vitro [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2015-10-01

    Full Text Available The search for small molecule inhibitors of Ebola virus (EBOV has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in

  17. Machine learning models identify molecules active against the Ebola virus in vitro [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-01-01

    Full Text Available The search for small molecule inhibitors of Ebola virus (EBOV has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in

  18. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    Science.gov (United States)

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Bands and chromosome arrangement in interphase nuclei

    International Nuclear Information System (INIS)

    Bianchi, N.O.; Bianchi, M.A.; Matayoshi, T.

    1977-01-01

    Chromosomes from the vole mouse Akodon dolores and from laboratory mouse showed the presence of G-bands after 3 minutes digestion with trypsin and Giemsa stain. Simultaneously, 30- to 40% of the interphase nuclei exhibited a dark ring parallel to the nuclear contour and a radial array of the chromatin in the internal and external regions of the ring. The origin and meaning of this ring image was analyzed by combining progressive trypsinizations with other methods such as C-banding procedures, autoradiography with 3 HTdR, staining with quinacrine mustard and 33258 Hoechst fluorochromes. Moreover, the presence of the dark ring was also investigated in cells treated with actinomycin and in control cells not subjected to any treatment. The results obtained allowed to assume that in interphase nuclei the chromosomes have chromatin bridges which connect the dark G-bands and that these bridges are probably involved in maintaining an ordered architecture of the nucleus with fixed chromosome positions in regard to the nuclear envelope and in regard to other chromosomes. Trypsinization produces a disruption of the interphase chromatin arrangement and the subsequent appearance of a dark ring formed by the combination of constitutive heterochromatin and dark G-bands. (auth.)

  20. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    International Nuclear Information System (INIS)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    1990-01-01

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove

  1. A new quantitative in vitro microculture method for Giardia duodenalis trophozoites.

    Science.gov (United States)

    Bénéré, Ely; da Luz, Raquel Andreia Inocêncio; Vermeersch, Marieke; Cos, Paul; Maes, Louis

    2007-11-01

    A reliable, rapid and low-cost method for drug sensitivity determination of Giardia duodenalis trophozoites (WB-strain) was developed in a 96-well plate. Using a standard inoculum of 5 x 10(4) trophozoites per well (300 microl), good growth was obtained after sealing the plate with an air-tight adhesive tape and incubation at 37 degrees C for 72 h in modified TYI-S-33 medium. Viable burdens were quantified using the formazan dyes MTT (100 microg/well) and XTT (20 microg/well) and the fluorescent substrate resazurin (2.5 microg/well). Prior removal of the culture medium is required since it causes spontaneous reduction of the substrate. Resazurin proved to be far superior to MTT and XTT with a level of sensitivity of about 3 x 10(4) trophozoites. Inhibitory concentrations (IC(50)) of several anti-giardial reference drugs were within the range of published values: metronidazole 2.25 microM, tinidazole 1.75 microM, albendazole 0.10 microM, furazolidone 2.00 microM and quinacrine 0.32 microM. The broad-spectrum antibiotics chloramphenicol, rifampicin, penicillin G+streptomycin and gentamycin were devoid of any inhibitory activity and are considered suitable for decontamination during excystation experiments.

  2. Pulp tissue in sex determination: A fluorescent microscopic study

    Science.gov (United States)

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  3. Response of maternal immune cells of irradiation of mouse embryos

    International Nuclear Information System (INIS)

    Nicholls, E.M.; Markovic, B.

    1988-01-01

    This work began as an attempt to explain the paradox of pregnancy - the survival and growth of the semi-allogenic embryo in an immunologically hostile environment. In 1982 and 1983 we reported the tracing of quinacrine labelled maternal leukocytes (WBC) in maternal, placental and embryonic mouse tissues by fluorescence microscopy. We found that cells in the placenta phagocytose labelled WBC, so that after 1-2 hours the labelled nuclear DNA is found as brightly fluorescing particles in the cytoplasm of the phagocytes with no evidence of it in the nuclei. Identical cells were observed in slide preparations of embryos which had been carefully separated from their placentas. We also found a small population of intact labelled lymphocytes, clearly maternal in origin, in the embryos. This seems to be another paradox - placental phagocytes are observed to be phagocytosing maternal WBC in the placenta and embryo, but there are also free maternal cells in the placenta and embryo. A theoretical explanation is that maternal lymphocytes alloreactive against the embryo will attempt to react with placental cells and in the process be phagocytosed, while other maternal cells will be able to enter the embryo where they could have a surveillance function, removing dead or mutant embryonic cells. To test this theory a series of experiments were carried out and are reported

  4. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    Science.gov (United States)

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  6. Reduction and repopulation of recipient T4+ and T8+ T-lymphocytes in allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Gratama, J.W.; van den Bergh, R.L.; Naipal, A.; D'Amaro, J.; Zwaan, F.E.; Jansen, J.; de Gast, G.C.

    1986-01-01

    In eight recipients of allogeneic bone marrow grafts who had sex-mismatched donors, the reduction and subsequent repopulation of T4+ and T8+ T-lymphocytes of recipient origin were studied. The origin of the donor-recipient T4+ and T8+ T cells was studied using quinacrine staining of Y chromatin combined with T-cell typing for T4 and T8. Following chemoradiotherapy and bone marrow transplantation (BMT), T cells reached their nadir at a median of five (range 1-8) days after BMT. T8+ T cells decreased at a faster rate from the peripheral blood than T4+ T cells. The first T cells that appeared in the circulation at day 12 were predominantly T4+, and a large number of them were of recipient origin. Thereafter, they gradually decreased, and the numbers of T cells of donor origin increased. In the patients who had no or only minor complications, T4+ and T8+ T cells of donor origin repopulated the blood at similar rates. This pattern, however, was modified by severe graft-versus-host disease or by cytomegalovirus infection

  7. N-Cinnamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual-Stage Antimalarials.

    Science.gov (United States)

    Gomes, Ana; Machado, Marta; Lobo, Lis; Nogueira, Fátima; Prudêncio, Miguel; Teixeira, Cátia; Gomes, Paula

    2015-08-01

    In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  9. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.

    Science.gov (United States)

    Ho, Cheuk Y; Choy, Christopher H; Wattson, Christina A; Johnson, Danielle E; Botelho, Roberto J

    2015-04-10

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases.

    Science.gov (United States)

    Al-Bari, Md Abdul Alim

    2015-01-01

    Antimalarial drugs (e.g. chloroquine and its close structural analogues) were developed primarily to treat malaria; however, they are beneficial for many dermatological, immunological, rheumatological and severe infectious diseases, for which they are used mostly today. Chloroquine and hydroxychloroquine, two of the most fascinating drugs developed in the last 50 years, are increasingly recognized for their effectiveness in myriad non-malarial diseases. In advanced research, chloroquine and hydroxychloroquine have been shown to have various immunomodulatory and immunosuppressive effects, and currently have established roles in the management of rheumatic diseases, lupus erythematosus (different forms) and skin diseases, and in the treatment of different forms of cancer. Recently, chloroquine analogues have also been found to have metabolic, cardiovascular, antithrombotic and antineoplastic effects. This review is concerned with the lysosomotropic, anti-inflammatory and immunomodulatory mechanisms of chloroquine, hydroxychloroquine, quinacrine and related analogues, and the current evidence for both their beneficial effects and potential adverse manifestations in various diseases. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. In utero exposure to chloroquine alters sexual development in the male fetal rat

    International Nuclear Information System (INIS)

    Clewell, Rebecca A.; Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-01-01

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  12. Effect of iron deficiency stress on leaves movements and electrical potentials in mimosa (Mimosa pudica L.

    Directory of Open Access Journals (Sweden)

    Edward Ślesak

    2014-01-01

    Full Text Available The aim of the studies was to trace the motorical and electrical activity of the mimosa (Mimosa pudica L. grown under conditions of iron deficiency. The speed of leaf folding was measured (motorical activity and the action potential induced with thermic and light stimuli and turgorin (electrical activity was recorded. It was found that the iron deficiency caused acidification of medium and the maximum of the process coincided with the period when the young leaves were turning green. Chlorotic mimosa leaves, not detached from the plant, showed an increased motorical activity. Motorical and electrical activity of the leaves were inhibited by an inhibitor of the plasmalemma redox systems - quinacrine, and stimulated by blue light. Leaf movement factor - turgorin - caused a hypersensitivity of chlorotic plants. It follows from the studies that the observed effects resulted from the adaptation of mimosa to the iron stress. The adaptation was a result of formation of new plasmalemma redox systems (turbo-reductase, responsible for maintaining high energy levels in the cells.

  13. Structure-activity studies of dicationically substituted bis-benzimidazoles against Giardia lamblia: correlation of antigiardial activity with DNA binding affinity and giardial topoisomerase II inhibition.

    Science.gov (United States)

    Bell, C A; Dykstra, C C; Naiman, N A; Cory, M; Fairley, T A; Tidwell, R R

    1993-01-01

    Nine dicationically substituted bis-benzimidazoles were examined for their in vitro activities against Giardia lamblia WB (ATCC 30957). The potential mechanisms of action of these compounds were evaluated by investigating the relationship among in vitro antigiardial activity and the affinity of the molecules for DNA and their ability to inhibit the activity of giardial topoisomerase II. Each compound demonstrated antigiardial activity, as measured by assessing the incorporation of [methyl-3H]thymidine by giardial trophozoites exposed to the test agents. Three compounds exhibited excellent in vitro antigiardial activities, with 50% inhibitory concentrations which compared very favorably with those of two currently used drugs, quinacrine HCl and metronidazole. Putative mechanisms of action for these compounds were suggested by the strong correlation observed among in vitro antigiardial activity and the affinity of the molecules for natural and synthetic DNA and their ability to inhibit the relaxation activity of giardial topoisomerase II. A strong correlation between the DNA binding affinity of these compounds and their inhibition of giardial topoisomerase II activity was also observed. Images PMID:8109934

  14. Release of ATP from Marginal Cells in the Cochlea of Neonatal Rats Can Be Induced by Changes in Extracellular and Intracellular Ion Concentrations

    Science.gov (United States)

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao

    2012-01-01

    Background Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Methods Sprague-Dawley rats aged 1–3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Results Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K+ and intra- and extracellular Ca2+. Furthermore, changes in the concentration of intracellular Ca2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. Conclusion We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A2. PMID:23071731

  15. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  16. Involvement of PLA2, COX and LOX in Rhinella arenarum oocyte maturation.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Bühler, Marta Inés; Zelarayán, Liliana Isabel

    2014-11-01

    In Rhinella arenarum, progesterone is the physiological nuclear maturation inducer that interacts with the oocyte surface and starts a cascade of events that leads to germinal vesicle breakdown (GVBD). Polyunsaturated fatty acids and their metabolites produced through cyclooxygenase (COX) and lipoxygenase (LOX) pathways play an important role in reproductive processes. In amphibians, to date, the role of arachidonic acid (AA) metabolites in progesterone (P4)-induced oocyte maturation has not been clarified. In this work we studied the participation of three enzymes involved in AA metabolism - phospholipase A2 (PLA2), COX and LOX in Rhinella arenarum oocyte maturation. PLA2 activation induced maturation in Rhinella arenarum oocytes in a dose-dependent manner. Oocytes when treated with 0.08 μM melittin showed the highest response (78 ± 6% GVBD). In follicles, PLA2 activation did not significantly induce maturation at the assayed doses (12 ± 3% GVBD). PLA2 inhibition with quinacrine prevented melittin-induced GVBD in a dose-dependent manner, however PLA2 inactivation did not affect P4-induced maturation. This finding suggests that PLA2 is not the only phospholipase involved in P4-induced maturation in this species. P4-induced oocyte maturation was inhibited by the COX inhibitors indomethacin and rofecoxib (65 ± 3% and 63 ± 3% GVBD, respectively), although COX activity was never blocked by their addition. Follicles showed a similar response following the addition of these inhibitors. Participation of LOX metabolites in maturation seems to be correlated with seasonal variation in ovarian response to P4. During the February to June period (low P4 response), LOX inhibition by nordihydroguaiaretic acid or lysine clonixinate increased maturation by up to 70%. In contrast, during the July to January period (high P4 response), LOX inhibition had no effect on hormone-induced maturation.

  17. Treatment of infectious complications of acquired immunodeficiency syndrome.

    Science.gov (United States)

    Furio, M M; Wordell, C J

    1985-01-01

    The infectious complications of the acquired immunodeficiency syndrome (AIDS) are discussed, and the conventional and nonconventional therapies used for these infections are reviewed. The infections most commonly encountered in patients with AIDS are Pneumocystis carinii pneumonia (58%), Candida esophagitis (31%), toxoplasmosis (21%), cytomegalovirus infections (15%), and herpes-simplex virus infections (12%). Pneumocystis carinii pneumonia is the most common life-threatening process in these patients. Trimethoprim-sulfamethoxazole (TMP-SMZ) is considered the drug of choice for its treatment. Oral candidiasis often indicates the progression to AIDS in the high-risk populations of homosexual or bisexual men, intravenous drug abusers, and individuals with hemophilia. Nystatin suspension is commonly used to treat oral candidiasis, while Candida esophagitis demands systemic therapy with ketoconazole. Toxoplasmosis most commonly manifests itself in patients with AIDS as a cerebral mass lesion. The recommended therapy includes sulfadiazine and pyrimethamine. AIDS patients frequently experience protozoal invasion of the intestinal tract with Giardia lamblia, Isospora belli, and Cryptosporidium muris. Various drugs have been tried for these infections, including quinacrine hydrochloride, metronidazole, TMP-SMZ, and spiramycin. Cytomegalovirus (CMV) infections commonly involve the lungs, gastrointestinal tract, eyes, brain, and nervous system. Attempts to treat these disseminated CMV infections with antiviral agents, including acyclovir, have not been successful. However, acyclovir has been found beneficial in the treatment of herpes-simplex virus infections. Multiple infectious complications may occur in patients with AIDS as a result of the cellular-immune deficiency associated with this disease. Until more research is done with AIDS patients, therapy must be based on the data available from the treatment of these infections in immunosuppressed patients without AIDS.

  18. Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Hellekant Göran

    2003-03-01

    Full Text Available Abstract Background Recent progress in discernment of molecular pathways of taste transduction underscores the need for comprehensive phenotypic information for the understanding of the influence of genetic factors in taste. To obtain information that can be used as a base line for assessment of effects of genetic manipulations in mice taste, we have recorded the whole-nerve integrated responses to a wide array of taste stimuli in the chorda tympani (CT and glossopharyngeal (NG nerves, the two major taste nerves from the tongue. Results In C57BL/6J mice the responses in the two nerves were not the same. In general sweeteners gave larger responses in the CT than in the NG, while responses to bitter taste in the NG were larger. Thus the CT responses to cyanosuosan, fructose, NC00174, D-phenylalanline and sucrose at all concentrations were significantly larger than in the NG, whereas for acesulfame-K, L-proline, saccharin and SC45647 the differences were not significant. Among bitter compounds amiloride, atropine, cycloheximide, denatonium benzoate, L-phenylalanine, 6-n-propyl-2-thiouracil (PROP and tetraethyl ammonium chloride (TEA gave larger responses in the NG, while the responses to brucine, chloroquine, quinacrine, quinine hydrochloride (QHCl, sparteine and strychnine, known to be very bitter to humans, were not significantly larger in the NG than in the CT. Conclusion These data provide a comprehensive survey and comparison of the taste sensitivity of the normal C57BL/6J mouse against which the effects of manipulations of its gustatory system can be better assessed.

  19. Involvement of arachidonate metabolism in neurotensin-induced prolactin release in vitro

    International Nuclear Information System (INIS)

    Canonico, P.L.; Speciale, C.; Sortino, M.A.; Scapagnini, U.

    1985-01-01

    Neurotensin increased in a concentration-dependent manner the level of hypophyseal [ 3 H]arachidonic acid in vitro as well as prolactin release from hemipituitary glands. The effect of 1 microM neurotensin on arachidonate release was already present at 2.5 min, maximal at 5, and disappeared after a 10-min incubation. Neurotensin analogues produced an enhancement of hypophyseal arachidonate similar to their relative potencies in other cellular systems, whereas other peptides (somatostatin and vasoactive intestinal peptide) were devoid of any effect on the concentration of the fatty acid in the pituitary. Seventy micromoles RHC 80267, a rather selective inhibitor of diacylglycerol lipase, completely prevented the neurotensin-stimulated prolactin release and decreased arachidonate release both in basal or in neurotensin-induced conditions. Similar results were obtained with 50 microM quinacrine, a phospholipase A2 inhibitor. To clarify whether arachidonate released by neurotensin requires a further metabolism through specific pathways to stimulate prolactin release, the authors used indomethacin and BW 755c, two blockers of cyclooxygenase and lipoxygenase pathways. Thirty micromoles indomethacin, a dose active to inhibit cyclooxygenase, did not affect unesterified arachidonate levels either in basal or in neurotensin-induced conditions; moreover, the drug did not modify basal prolactin release but slightly potentiated the stimulatory effect of neurotensin on the release of the hormone. On the other hand, 250 microM BW 755c, an inhibitor of both cyclooxygenase and lipoxygenase pathways, significantly inhibited both basal and neurotensin-stimulated prolactin release and further potentiated the increase of the fatty acid concentrations produced by 1 microM neurotensin

  20. DNA characterization and karyotypic evolution in the bee genus Melipona (Hymenoptera, Meliponini).

    Science.gov (United States)

    Rocha, Marla Piumbini; Pompolo, Silvia Das Graças; Dergam, Jorge Abdala; Fernandes, Anderson; Campos, Lucio Antonio De Oliveira

    2002-01-01

    We analyzed patterns of heterochromatic bands in the Neotropical stingless bee genus Melipona (Hymenoptera, Meliponini). Group I species (Melipona bicolor bicolor, Melipona quadrifasciata, Melipona asilvae, Melipona marginata, Melipona subnitida) were characterized by low heterochromatic content. Group II species (Melipona capixaba, Melipona compressipes, Melipona crinita, Melipona seminigra fuscopilosa e Melipona scutellaris) had high heterochromatic content. All species had 2n = 18 and n = 9. In species of Group I heterochromatin was pericentromeric and located on the short arm of acrocentric chromosomes, while in Group II species heterochromatin was distributed along most of the chromosome length. The most effective sequential staining was quinacrine mustard (QM)/distamycin (DA)/chromomycin A3(CMA3)/4-6-diamidino-2-phenylindole (DAPI). Heterochromatic and euchromatic bands varied extensively within Group I. In Group II species euchromatin was restricted to the chromosome tips and it was uniformly GC+. Patterns of restriction enzymes (EcoRI, DraI, HindIII) showed that heterochromatin was heterogeneous. In all species the first pair of homologues was of unequal size and showed heteromorphism of a GC+ pericentromeric heterochromatin. In M. asilvae (Group I) this pair bore NOR and in M. compressipes (Group II) it hybridized with a rDNA FISH probe. As for Group I species the second pair was AT+ in M. subnitida and neutral for AT and GC in the remaining species of this group. Outgroup comparison indicates that high levels of heterochromatin represent a derived condition within Melipona. The pattern of karyotypic evolution sets Melipona in an isolated position within the Meliponini.

  1. Calcium in the Mechanism of Ammonia-Induced Astrocyte Swelling

    Science.gov (United States)

    Jayakumar, A.R.; Rao, K.V. Rama; Tong, X.Y; Norenberg, M.D.

    2016-01-01

    Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress (ONS) appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator BAPTA-AM. We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS) and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pretreatment of cultures with 7-nitroindazole, apocyanin and quinacrine, respective inhibitors of cNOS, NOX and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling. PMID:19393035

  2. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    Science.gov (United States)

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-09-01

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H + exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl 2 and ZnSO 4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl 2 or 1-mM ZnSO 4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H + transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd 2+ or Zn 2+ /H + exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  3. ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis.

    Science.gov (United States)

    Luna-Tapia, Arturo; Peters, Brian M; Eberle, Karen E; Kerns, Morgan E; Foster, Timothy P; Marrero, Luis; Noverr, Mairi C; Fidel, Paul L; Palmer, Glen E

    2015-10-01

    Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Virtual Screening for Potential Inhibitors of NS3 Protein of Zika Virus

    Directory of Open Access Journals (Sweden)

    Maheswata Sahoo

    2016-09-01

    Full Text Available Zika virus (ZIKV is a mosquito borne pathogen, belongs to Flaviviridae family having a positive-sense single-stranded RNA genome, currently known for causing large epidemics in Brazil. Its infection can cause microcephaly, a serious birth defect during pregnancy. The recent outbreak of ZIKV in February 2016 in Brazil realized it as a major health risk, demands an enhanced surveillance and a need to develop novel drugs against ZIKV. Amodiaquine, prochlorperazine, quinacrine, and berberine are few promising drugs approved by Food and Drug Administration against dengue virus which also belong to Flaviviridae family. In this study, we performed molecular docking analysis of these drugs against nonstructural 3 (NS3 protein of ZIKV. The protease activity of NS3 is necessary for viral replication and its prohibition could be considered as a strategy for treatment of ZIKV infection. Amongst these four drugs, berberine has shown highest binding affinity of –5.8 kcal/mol and it is binding around the active site region of the receptor. Based on the properties of berberine, more similar compounds were retrieved from ZINC database and a structure-based virtual screening was carried out by AutoDock Vina in PyRx 0.8. Best 10 novel drug-like compounds were identified and amongst them ZINC53047591 (2-(benzylsulfanyl-3-cyclohexyl-3H-spiro[benzo[h]quinazoline-5,1'-cyclopentan]-4(6H-one was found to interact with NS3 protein with binding energy of –7.1 kcal/mol and formed H-bonds with Ser135 and Asn152 amino acid residues. Observations made in this study may extend an assuring platform for developing anti-viral competitive inhibitors against ZIKV infection.

  5. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols.

    Directory of Open Access Journals (Sweden)

    Juliana B R Corrêa Soares

    Full Text Available BACKGROUND: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN, quinidine (QND and quinacrine (QCR in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day from the 11(th to 17(th day after infection caused significant decreases in worm burden (39%-61% and egg production (42%-98%. Hz formation was significantly inhibited (40%-65% in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms. CONCLUSIONS: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a

  6. Oxygen consumption in Plasmodium berghei-infected murine red cells: a direct spectrophotometric assay in intact erythrocytes.

    Science.gov (United States)

    Deslauriers, R; Moffatt, D J; Smith, I C

    1986-05-29

    A spectrophotometric assay has been devised to measure oxygen consumption non-invasively in intact murine red cells parasitized by Plasmodium berghei. The method uses oxyhemoglobin in the erythrocytes both as a source of oxygen and as an indicator of oxygen consumption. Spectra of intact cells show broad peaks and sloping baselines due to light-scattering. In order to ascertain the number of varying components in the 370-450 nm range, the resolution of the spectra was enhanced using Fourier transforms of the frequency domain spectra. Calculation of oxygen consumption was carried out for two-component systems (oxyhemoglobin, deoxyhemoglobin) using absorbances at 415 and 431 nm. Samples prepared from highly parasitized mice (greater than 80% parasitemia, 5% hematocrit) showed oxygen consumption rates of (4-8) X 10(-8) microliter/cell per h. This rate was not attributable to the presence of white cells or reticulocytes. The rate of oxygen consumption in the erythrocytes is shown to be modulated by various agents: the respiratory inhibitors NaN3 and KCN (1 mM) reduced oxygen consumption 2-3-fold; salicylhydroxamic acid (2.5 mM) caused a 20% reduction in rate and 10 mM NaN3, completely blocked deoxygenation. Antimalarial drugs and metal-chelating agents were also tested. Chloroquine, EDTA and desferal (desferoxamine mesylate) did not decrease the deoxygenation rate of hemoglobin in parasitized cells. Quinacrine, quinine and primaquine reduced the rate of formation of deoxyhemoglobin but also produced substantial quantities of methemoglobin. The lipophilic chelator, 5-hydroxyquinoline, decreased the rate of deoxygenation one-third. The spectrophotometric assay provides a convenient means to monitor oxygen consumption in parasitized red cells, to test the effects of various agents thereon, and potentially to explore possible mechanisms for oxygen utilization.

  7. Structure-function correlation of chloroquine and analogues as transgene expression enhancers in nonviral gene delivery.

    Science.gov (United States)

    Cheng, Jianjun; Zeidan, Ryan; Mishra, Swaroop; Liu, Aijie; Pun, Suzie H; Kulkarni, Rajan P; Jensen, Gregory S; Bellocq, Nathalie C; Davis, Mark E

    2006-11-02

    To understand how chloroquine (CQ) enhances transgene expression in polycation-based, nonviral gene delivery systems, a number of CQ analogues with variations in the aliphatic amino side chain or in the aromatic ring are synthesized and investigated. Our studies indicate that the aliphatic amino moiety of CQ is essential to provide increased gene expression. Further, the enhancements are more dramatically affected by changes to the aromatic ring and are positively correlated to the strength of intercalation between DNA and the CQ analogues. Quinacrine (QC), a CQ analogue with a fused acridinyl structure that can strongly intercalate DNA, enhances transfection similarly to CQ at a concentration 10 times lower, while N(4)-(4-pyridinyl)-N(1),N(1)-diethyl-1,4-pentanediamine (CP), a CQ analogue that has a weakly intercalating pyridinyl ring, shows no effect on gene expression. Subtle change on the 7-substituent of the chloroquine aromatic structure can also greatly affect the ability of the CQ analogues to enhance transgene expression. Transfection in the presence of N(4)-(7-trifluoromethyl-4-quinolinyl)-N(1),N(1)-diethyl-1,4-pentanediamin e (CQ7a) shows expression efficiency 10 times higher than in the presence of CQ at same concentration, while transfection in the presence of N(4)-(4-quinolinyl)-N(1),N(1)-diethyl-1,4-pentanediamine (CQ7b) does not reveal any enhancing effects on expression. Through a number of comparative studies with CQ and its analogues, we conclude that there are at least three mechanistic features of CQ that lead to the enhancement in gene expression: (i) pH buffering in endocytic vesicles, (ii) displacement of polycations from the nucleic acids in polyplexes, and (iii) alteration of the biophysical properties of the released nucleic acid.

  8. Gametocytocidal screen identifies novel chemical classes with Plasmodium falciparum transmission blocking activity.

    Directory of Open Access Journals (Sweden)

    Natalie G Sanders

    Full Text Available Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds.

  9. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs.

    Science.gov (United States)

    Kettle, A J; Winterbourn, C C

    1991-05-15

    Hypochlorous acid (HOCl) is the most powerful oxidant produced by human neutrophils, and should therefore be expected to contribute to the damage caused by these inflammatory cells. It is produced from H2O2 and Cl- by the heme enzyme myeloperoxidase (MPO). We used a H2O2-electrode to assess the ability of a variety of anti-inflammatory drugs to inhibit conversion of H2O2 to HOCl. Dapsone, mefenamic acid, sulfapyridine, quinacrine, primaquine and aminopyrine were potent inhibitors, giving 50% inhibition of the initial rate of H2O2 loss at concentrations of about 1 microM or less. Phenylbutazone, piroxicam, salicylate, olsalazine and sulfasalazine were also effective inhibitors. Spectral investigations showed that the inhibitors acted by promoting the formation of compound II, which is an inactive redox intermediate of MPO. Ascorbate reversed inhibition by reducing compound II back to the active enzyme. The characteristic properties that allowed the drugs to inhibit MPO reversibly were ascertained by determining the inhibitory capacity of related phenols and anilines. Inhibition increased as substituents on the aromatic ring became more electron withdrawing, until an optimum reduction potential was reached. Beyond this optimum, their inhibitory capacity declined. The best inhibitor was 4-bromoaniline which had an I50 of 45 nM. An optimum reduction potential enables inhibitors to reduce MPO to compound II, but prevents them from reducing compound II back to the active enzyme. Exploitation of this optimum reduction potential will help in targeting drugs against HOCl-dependent tissue damage.

  10. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  11. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    Science.gov (United States)

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  12. Identification and characterization of phospholipase A2 (PLA2) in bovine pulmonary endothelial cells (BPEC)

    International Nuclear Information System (INIS)

    Martin, T.W.; Wysolmerski, R.B.; Lagunoff, D.

    1986-01-01

    Phosphatidylcholine labeled in the sn-2 position with 3 H-oleic acid was used to measure PLA 2 in cell sonicates (CS) prepared from confluent cultures of BPEC. Substrate at 10-200 μM was incubated with 5-30 μg of CS protein in HEPES buffer at 37 0 C. A plot of 3 H-oleic acid release vs time was linear and proportional to the amount of CS protein. Lineweaver-Burk plots of the data were linear with V/sub max/ = 22.2 nmole/mg protein/hr and K/sub d/ = 121 μM. Under these conditions, phospholipase C activity was 20-fold lower, and phospholipase A 1 activity was not detectable. PLA 2 activity was pH-dependent with optima at 4.5 and 7.5. Ca ++ was not required for activity, and addition of up to 10 mM Ca ++ to CS in EDTA increased activity by only 10-20%. After centrifugation of CS at 100,000 g for 90 min, 62% of the PLA 2 activity was recovered in the particular fraction. Triton X-100 (0.006-0.4%) inhibited PLA 2 up to 90%, whereas 2 mM deoxycholate produced nearly 3-fold activation. Of several agents tested, bromophenacylbromide (BPB) was the most effective inhibitor. Treatment of CS with BPB at 37 0 C for 30 min produced up to 9% inhibition (K/sub i/ = 5 μM). Phenylmethanesulfonyl fluoride at 200 μm produced 41% inhibition. Quinacrine at 1 mM inhibited PLA 2 by 18%. These data define characteristics of BPEC PLA 2 that should prove useful in studies of the role of this enzyme in specific cellular functions

  13. Prion diseases: immunotargets and therapy

    Directory of Open Access Journals (Sweden)

    Burchell JT

    2016-06-01

    Full Text Available Jennifer T Burchell, Peter K Panegyres Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia Abstract: Transmissible spongiform encephathalopathies or prion diseases are a group of neurological disorders characterized by neuronal loss, spongiform degeneration, and activation of astrocytes or microglia. These diseases affect humans and animals with an extremely high prevalence in some species such as deer and elk in North America. Although rare in humans, they result in a devastatingly swift neurological progression with dementia and ataxia. Patients usually die within a year of diagnosis. Prion diseases are familial, sporadic, iatrogenic, or transmissible. Human prion diseases include Kuru, sporadic, iatrogenic, and familial forms of Creutzfeldt–Jakob disease, variant Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker disease, and fatal familial insomnia. The causative agent is a misfolded version of the physiological prion protein called PrPSc in the brain. There are a number of therapeutic options currently under investigation. A number of small molecules have had some success in delaying disease progression in animal models and mixed results in clinical trials, including pentosan polysulfate, quinacrine, and amphotericin B. More promisingly, immunotherapy has reported success in vitro and in vivo in animal studies and clinical trials. The three main branches of immunotherapy research are focus on antibody vaccines, dendritic cell vaccines, and adoptive transfer of physiological prion protein-specific CD4+ T-lymphocytes. Vaccines utilizing antibodies generally target disease-specific epitopes that are only exposed in the misfolded PrPSc conformation. Vaccines utilizing antigen-loaded dendritic cell have the ability to bypass immune tolerance and prime CD4+ cells to initiate an immune response. Adoptive transfer of CD4+ T-cells is another promising target as this cell type can orchestrate the

  14. Aberrant ERK 1/2 complex activation and localization in scrapie-infected GT1-1 cells

    Directory of Open Access Journals (Sweden)

    Didonna Alessandro

    2010-08-01

    Full Text Available Abstract Background Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP denominated PrPSc. The latter derives from the host cellular form, PrPC, through a process whereby portions of its α-helical and coil structures are refolded into β-sheet structures. Results In this work, the widely known in vitro model of prion replication, hypothalamic GT1-1 cell line, was used to investigate cellular and molecular responses to prion infection. The MAP kinase cascade was dissected to assess the phosphorylation levels of src, MEK 1/2 and ERK 1/2 signaling molecules, both before and after prion infection. Our findings suggest that prion replication leads to a hyper-activation of this pathway. Biochemical analysis was complemented with immunofluorescence studies to map the localization of the ERK complex within the different cellular compartments. We showed how the ERK complex relocates in the cytosol upon prion infection. We correlated these findings with an impairment of cell growth in prion-infected GT1-1 cells as probed by MTT assay. Furthermore, given the persistent urgency in finding compounds able to cure prion infected cells, we tested the effects on the ERK cascade of two molecules known to block prion replication in vitro, quinacrine and Fab D18. We were able to show that while these two compounds possess similar effects in curing prion infection, they affect the MAP kinase cascade differently. Conclusions Taken together, our results help shed light on the molecular events involved in neurodegeneration and neuronal loss in prion infection and replication. In particular, the combination of chronic activation and aberrant localization of the ERK complex may lead to a lack of essential neuroprotective and survival factors

  15. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    Science.gov (United States)

    Upcroft, Peter; Upcroft, Jacqueline A.

    2001-01-01

    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

  16. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves

    International Nuclear Information System (INIS)

    Kasai, M.; Muto, S.

    1990-01-01

    Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment. 45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(Km(Ca2+) = 0.4 microM) and ATP(Km(ATP) = 3.9 microM), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl- or NO3-. Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl- was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanide m-chlorophenylhydrazone (CCCP) and VO4(3-) which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl(-)-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl(-)-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl(-)-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves

  17. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hayoz Sébastien

    2012-05-01

    Full Text Available Abstract Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP and a G protein-coupled P2Y receptor agonist (UTP. Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP