WorldWideScience

Sample records for quiet solar atmosphere

  1. Models of the quiet and active solar atmosphere from Harvard OSO data.

    Science.gov (United States)

    Noyes, R. W.

    1971-01-01

    Review of some Harvard Observatory programs aimed at defining the physical conditions in quiet and active solar regions on the basis of data obtained from the OSO-IV and OSO-VI spacecraft. The spectral range covered is from 300 A to 1400 A. This spectral range consists of emission lines and continua from abundant elements such as hydrogen, helium, carbon, nitrogen, oxygen, silicon, magnesium, aluminum, neon, iron, and calcium in various ionization states ranging from neutral to 15 times ionized. The structure is discussed of the quiet solar atmosphere as deduced from center-to-limb behavior of spectral lines and continua formed in the chromosphere and corona. In reviewing investigations of solar active regions, it is shown that the structure of these regions varies in a complicated manner from point to point. The local structure is influenced by factors such as the magnetic field configuration within the active region and the age or evolutionary state of the region.

  2. THE QUIET SOLAR ATMOSPHERE OBSERVED AND SIMULATED IN Na I D1

    International Nuclear Information System (INIS)

    Leenaarts, J.; Rutten, R. J.; Carlsson, M.; Hansteen, V.; Reardon, K.

    2010-01-01

    The Na I D 1 line in the solar spectrum is sometimes attributed to the solar chromosphere. We study its formation in quiet-Sun network and internetwork. We first present high-resolution profile-resolved images taken in this line with the imaging spectrometer Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope and compare these to simultaneous chromospheric images taken in Ca II 8542 A and Hα. We then model Na I D 1 formation by performing three-dimensional (3D) non-local thermodynamic equilibrium profile synthesis for a snapshot from a 3D radiation-magnetohydrodynamics simulation. We find that most Na I D 1 brightness is not chromospheric but samples the magnetic concentrations that make up the quiet-Sun network in the photosphere, well below the height where they merge into chromospheric canopies, with aureoles from 3D resonance scattering. The line core is sensitive to magneto-acoustic shocks in and near magnetic concentrations, where shocks occur deeper than elsewhere, and may provide evidence of heating deep within magnetic concentrations.

  3. Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona

    Science.gov (United States)

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-01-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.

  4. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  5. Deviation from local thermodynamical equilibrium in the solar atmosphere. Metodology. The line source function

    International Nuclear Information System (INIS)

    Shchukina, N.G.

    1980-01-01

    The methodology of the problem of deviation from local thermodynamical equilibrium in the solar atmosphere is presented. The difficulties of solution and methods of realization are systematized. The processes of line formation are considered which take into account velocity fields, structural inhomogeneity, radiation non-coherence etc. as applied to a quiet solar atmosphere. The conclusion is made on the regularity of deviation of the local thermodynamic equilibrium in upper layers of the solar atmosphere

  6. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Xu, Guirong [Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205 (China)

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  7. Solar wind conditions for a quiet magnetosphere

    International Nuclear Information System (INIS)

    Kerns, K.J.; Gussenhoven, M.S.

    1990-01-01

    The conditions of the solar wind that lead to a quiet magnetosphere are determined under the assumption that the quiet or baseline magnetosphere can be identified by prolonged periods of low values of the am index. The authors analyzed solar wind data from 1978 to 1984 (7 years) during periods in which am ≤ 3 nT to identify those solar wind parameters that deviate significantly from average values. Parallel studies were also performed for prolonged periods of Kp = 0, 0+ and AE z ) show distinctive variations from average values. They independently varied these solar wind parameters and the length of time the conditions must persist to minimize am. This was done with the additional requirement that the conditions yield a reasonable number of occurrences (5% of the data set). The resulting baseline conditions are V ≤ 390 km/s; 180 degree - arctan |B y /B z | ≤ 101 degree, when b z ≤ 0 (no restriction on B z positive); B ≤ 6.5 nT; and persistence of these conditions for at least 5 hours. Minimizing the am index does not require a clear upper limit on the value of B z as might be anticipated from the work of Gussenhoven (1988) and Berthelier (1980). Apparently, this is a result of the requirement that the conditions must occur 5% of the time. When the requirement is lowered to 1% occurrence, an upper limit to B z emerges

  8. Characteristics of seasonal variation and solar activity dependence of the geomagnetic solar quiet daily variation

    Science.gov (United States)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.

    2017-12-01

    Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in

  9. Magnetic Flux Cancellation as the Origin of Solar Quiet-region Pre-jet Minifilaments

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-01

    We investigate the origin of 10 solar quiet-region pre-jet minifilaments , using EUV images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) and magnetograms from the SDO Helioseismic and Magnetic Imager (HMI). We recently found that quiet-region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancellation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancellation between minority-polarity and majority-polarity flux patches. In each of 10 pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10%–40% from before to after the minifilament appears. For our 10 events, the minifilaments exist for periods ranging from 1.5 hr to 2 days before erupting to make a jet. Apparently, the flux cancellation builds a highly sheared field that runs above and traces the neutral line, and the cool transition region plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancellation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus, our observations strongly support that quiet-region magnetic flux cancellation results in both the formation of the pre-jet minifilament and its jet-driving eruption.

  10. Effects in atmospheric electricity daily variation controlled by solar wind

    International Nuclear Information System (INIS)

    Ptitsyna, N.G.; Tyasto, M.I.; Levitin, A.E.; Gromova, L.A.; Tuomi, T.; AN SSSR, Moscow

    1995-01-01

    An analysis of fair weather atmospheric electricity, one of the environmental factors which affects the biosphere, is conducted. A distinct difference in the diurnal variation of atmospheric electric field at Helsinki is found between disturbed and extremely quiet conditions in the magnetosphere in winter before midnight. The comparison with the numerical model of the ionospheric electric field based on the solar wind parameters reveals that the maximum contribution of the magnetospheric-ionospheric generator to atmospheric electric field is about 100-150 v/m which assumes values of about 30% of the surface field. 8 refs.; 2 figs

  11. Quiet-time 0.04 - 2 MeV/nucleon Ions at 1 AU in Solar Cycles 23 and 24

    Science.gov (United States)

    Zeldovich, M. A.; Logachev, Y. I.; Kecskeméty, K.

    2018-01-01

    The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about 0.04 - 2 MeV/nucleon) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the {˜} 80 - 320 keV/nucleon Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.

  12. Probing the Quiet Solar Atmosphere from the Photosphere to the Corona

    Science.gov (United States)

    Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas

    2018-04-01

    We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.

  13. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Chakrapani, Prithi, E-mail: navdeep.k.panesar@nasa.gov [Hunter College High School, New York, NY (United States)

    2016-11-20

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  14. IS THE POLAR REGION DIFFERENT FROM THE QUIET REGION OF THE SUN?

    International Nuclear Information System (INIS)

    Ito, Hiroaki; Shiota, Daikou; Tokumaru, Munetoshi; Fujiki, Ken'ichi; Tsuneta, Saku

    2010-01-01

    Observations of the polar region of the Sun are critically important for understanding the solar dynamo and the acceleration of solar wind. We carried out precise magnetic observations on both the north polar region and the quiet Sun at the east limb with the spectropolarimeter of the Solar Optical Telescope aboard Hinode to characterize the polar region with respect to the quiet Sun. The average area and the total magnetic flux of the kilo-Gauss magnetic concentrations in the polar region appear to be larger than those of the quiet Sun. The magnetic field vectors classified as vertical in the quiet Sun have symmetric histograms around zero in the strengths, showing balanced positive and negative fluxes, while the histogram in the north polar region is clearly asymmetric, showing a predominance of the negative polarity. The total magnetic flux of the polar region is larger than that of the quiet Sun. In contrast, the histogram of the horizontal magnetic fields is exactly the same for both the polar region and the quiet Sun. This is consistent with the idea that a local dynamo process is responsible for the horizontal magnetic fields. A high-resolution potential field extrapolation shows that the majority of magnetic field lines from the kG-patches in the polar region are open with a fanning-out structure very low in the atmosphere, while in the quiet Sun, almost all the field lines are closed.

  15. Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery

    Science.gov (United States)

    Khomenko, E.; Vitas, N.; Collados, M.; de Vicente, A.

    2017-08-01

    The magnetic fields of the quiet Sun cover at any time more than 90% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is the action of the local dynamo in the upper convection zone of the Sun. Existing simulations of the local solar dynamo require an initial seed field and sufficiently high spatial resolution in order to achieve the amplification of the seed field to the observed values in the quiet Sun. Here we report an alternative model of seeding based on the action of the Bierman battery effect. This effect generates a magnetic field due to the local imbalances in electron pressure in the partially ionized solar plasma. We show that the battery effect self-consistently creates from zero an initial seed field of a strength of the order of micro G, and together with dynamo amplification allows the generation of quiet Sun magnetic fields of a similar strength to those from solar observations.

  16. Heating the Chromosphere in the Quiet Sun

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    The best-studied star the Sun still harbors mysteries for scientists to puzzle over. A new study has now explored the role of tiny magnetic-field hiccups in an effort to explain the strangely high temperatures of the Suns upper atmosphere.Schematic illustrating the temperatures in different layers of the Sun. [ESA]Strange Temperature RiseSince the Suns energy is produced in its core, the temperature is hottest here. As expected, the temperature decreases further from the Suns core up until just above its surface, where it oddly begins to rise again. While the Suns surface is 6,000 K, the temperature is higher above this: 10,000 K in the outer chromosphere.So how is the chromosphere of the Sun heated? Its possible that the explanation can be found not amid high solar activity, but in quiet-Sun regions.In a new study led by Milan Goi (Lockheed Martin Solar and Astrophysics Laboratory, Bay Area Environmental Research Institute), a team of scientists has examined a process that quietly happens in the background: the cancellation of magnetic field lines in the quiet Sun.Activity in a SupergranuleTop left: SDO AIA image of part of the solar disk. The next three panels are a zoom of the particular quiet-Sun region that the authors studied, all taken with IRIS at varying wavelengths: 1400 (top right), 2796 (bottom left), and 2832 (bottom right). [Goi et al. 2018]The Sun is threaded by strong magnetic field lines that divide it into supergranules measuring 30 million meters across (more than double the diameter of Earth!). Supergranules may seem quiet inside, but looks can be deceiving: the interiors of supergranules contain smaller, transient internetwork fields that move about, often resulting in magnetic elements of opposite polarity encountering and canceling each other.For those internetwork flux cancellations that occur above the Suns surface, a small amount of energy could be released that locally heats the chromosphere. But though each individual event has a small

  17. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Science.gov (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  18. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  19. Solar quiet day ionospheric source current in the West African region

    OpenAIRE

    Obiekezie, Theresa N.; Okeke, Francisca N.

    2012-01-01

    The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method....

  20. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  1. Chromospheric Heating due to Cancellation of Quiet Sun Internetwork Fields

    Science.gov (United States)

    Gošić, M.; de la Cruz Rodríguez, J.; De Pontieu, B.; Bellot Rubio, L. R.; Carlsson, M.; Esteban Pozuelo, S.; Ortiz, A.; Polito, V.

    2018-04-01

    The heating of the solar chromosphere remains one of the most important questions in solar physics. Our current understanding is that small-scale internetwork (IN) magnetic fields play an important role as a heating agent. Indeed, cancellations of IN magnetic elements in the photosphere can produce transient brightenings in the chromosphere and transition region. These bright structures might be the signature of energy release and plasma heating, probably driven by the magnetic reconnection of IN field lines. Although single events are not expected to release large amounts of energy, their global contribution to the chromosphere may be significant due to their ubiquitous presence in quiet Sun regions. In this paper, we study cancellations of IN elements and analyze their impact on the energetics and dynamics of the quiet Sun atmosphere. We use high-resolution, multiwavelength, coordinated observations obtained with the Interface Region Imaging Spectrograph and the Swedish 1 m Solar Telescope (SST) to identify cancellations of IN magnetic flux patches and follow their evolution. We find that, on average, these events live for ∼3 minutes in the photosphere and ∼12 minutes in the chromosphere and/or transition region. Employing multi-line inversions of the Mg II h and k lines, we show that cancellations produce clear signatures of heating in the upper atmospheric layers. However, at the resolution and sensitivity accessible to the SST, their number density still seems to be one order of magnitude too low to explain the global chromospheric heating.

  2. High-resolution studies of the structure of the solar atmosphere using a new imaging algorithm

    Science.gov (United States)

    Karovska, Margarita; Habbal, Shadia Rifai

    1991-01-01

    The results of the application of a new image restoration algorithm developed by Ayers and Dainty (1988) to the multiwavelength EUV/Skylab observations of the solar atmosphere are presented. The application of the algorithm makes it possible to reach a resolution better than 5 arcsec, and thus study the structure of the quiet sun on that spatial scale. The results show evidence for discrete looplike structures in the network boundary, 5-10 arcsec in size, at temperatures of 100,000 K.

  3. A comparative study of night-time enhancement of TEC at a low latitude station on storm and quiet nights including the local time, seasonal and solar activity dependence

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    Full Text Available The main characteristics of night-time enhancements in TEC during magnetic storms are compared with those during quiet nights for different seasons and solar activity conditions at Palehua, a low latitude station during the period 1980–1989. We find that the mean amplitude has both a seasonal and solar activity dependence: in winter, the values are higher for weak storms as compared to those during quiet nights and increase with an increase in solar activity. In summer, the mean amplitude values during weak storms and quiet nights are almost equal. But during equinox, the mean amplitude values for quiet nights are greater than those during weak storms. The mean half-amplitude duration is higher during weak storms as compared to that during quiet nights in summer. However, during winter and equinox, the durations are almost equal for both quiet and weak storm nights. For the mean half-amplitude duration, the quiet night values for all the seasons and equinoctial weak storm values increase with an increase in solar activity. The occurrence frequency (in percent of TEC enhancement during weak storms is greater than during quiet nights for all seasons. The mean amplitude, the mean half-amplitude duration and the occurrence frequency (in percent of TEC enhancement values are higher during major storms as compared to those during quiet nights. The above parameters have their highest values during pre-midnight hours. From the data analysed, this behaviour is true in the case of major storms also.

    Key words. Ionosphere (ionospheric disturbances; plasma convection Magnetospheric physics (storms and substorms

  4. Energy distribution of nanoflares in the quiet solar corona

    Science.gov (United States)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  5. Solar quiet day ionospheric source current in the West African region.

    Science.gov (United States)

    Obiekezie, Theresa N; Okeke, Francisca N

    2013-05-01

    The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January-December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method. The range of the source current was calculated and this enabled the viewing of a full year's change in the source current system of Sq.

  6. Solar quiet day ionospheric source current in the West African region

    Directory of Open Access Journals (Sweden)

    Theresa N. Obiekezie

    2013-05-01

    Full Text Available The Solar Quiet (Sq day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced components of Sq using Spherical Harmonics Analysis (SHA method. The range of the source current was calculated and this enabled the viewing of a full year’s change in the source current system of Sq.

  7. Variation of the Solar Microwave Spectrum in the Last Half Century

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi; Saito, Masao [National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, 181-8588 (Japan); Iwai, Kazumasa [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Chikusa-ku, Nagoya, 464-8601 (Japan); Asai, Ayumi [Kwasan and Hida Observatories, Kyoto University, Sakyo-ku, Kyoto, 606-8502 (Japan); Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Minamidani, Tetsuhiro, E-mail: masumi.shimojo@nao.ac.jp [Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo, 181-8588 (Japan)

    2017-10-10

    The total solar fluxes at 1, 2, 3.75, and 9.4 GHz were observed continuously from 1957 to 1994 at Toyokawa, Japan, and from 1994 until now at Nobeyama, Japan, with the current Nobeyama Radio Polarimeters. We examined the multi-frequency and long-term data sets, and found that not only the microwave solar flux but also its monthly standard deviation indicate the long-term variation of solar activity. Furthermore, we found that the microwave spectra at the solar minima of Cycles 20–24 agree with each other. These results show that the average atmospheric structure above the upper chromosphere in the quiet-Sun has not varied for half a century, and suggest that the energy input for atmospheric heating from the sub-photosphere to the corona have not changed in the quiet-Sun despite significantly differing strengths of magnetic activity in the last five solar cycles.

  8. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  9. Structure and Dynamics of the Quiet Solar Chromosphere

    Science.gov (United States)

    Kalkofen, Wolfgang

    2002-04-01

    The grant supported research on the structure of the quiet, nonmagnetic chromosphere and on wave excitation and propagation in both the nonmagnetic chromosphere and the magnetic network. The work on the structure of the chromosphere culminated in the recognition that between two competing views of the solar chromosphere, older models by Avrett and collaborators (referred to as VAL) and the newer, dynamical model by Carlsson & Stein (referred to as CS), the clear decision is in favor of the older models, and this in spite of the evident lack of physics, which does not include wave motion and oscillations. The contrast between the static VAL models and the dynamical CS model can be stated most succinctly by comparing the temperature variation implied by the VAL models and the temperature fluctuations of the CS model, which are, respectively, of the order of 10% for the VAL model (at heights where hydrogen is 50% ionized) and a factor of 10 (at the upper boundary of their chromospheric model). The huge fluctuations of the CS model have never been observed, whereas the smaller temperature variations of the VAL models are consistent with ground-based and space-based observations. While it should be obvious which model describes the Sun and which one fails, the case is far from settled in the minds of solar physicists. Thus, much educational work remains to be done and, of course, more research to develop arguments that make the case more convincing. The research on waves and oscillations has been based on a unified theory of excitation of acoustic waves in the field-free atmosphere and of transverse and longitudinal waves in magnetic flux tubes located in the magnetic network by noting, first, that impulsive excitation of all these waves in gravitationally stratified media leads to oscillations at the respective cutoff frequencies and, second, that the observed oscillation frequencies in the nonmagnetic and magnetic parts of the chromosphere match corresponding cutoff

  10. Vertical propagation of waves in the solar atmosphere. II. Phase delays in the quiet chromosphere and cell-network distinctions

    International Nuclear Information System (INIS)

    Lites, B.W.; Chipman, E.G.; White, O.R.

    1982-01-01

    The differences in the phase of the velocity oscillations between a pair of chromospheric Ca II lines was measured using the Vacuum Tower Telescope at the Sacramento Peak Observatory. The observed phase differences indicate that the acoustic modes are trapped or envanescent, rather than propagating in the chromosphere. We find systematic distinctions in the phase delays between quiet network and cell interior regions for both intensity and velocity oscillations in photospheric and chromospheric lines. The theory of linear perturbations in a isothermal atmosphere is invoked to interpret these differences. From this analysis we find that one or more of the following explanations is possible. (1) the radiative damping is more effective in the network than in the cell interior; (2) the network features exclude oscillations of large horizontal wavenumber; or (3) the scale height of the chromosphere is larger in the network than in the cell interior

  11. Modulation of cosmic rays on geomagnetically most quiet days

    Science.gov (United States)

    Agarwal Mishra, Rekha; Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    The aim of this work is to study the first three harmonics of cosmic ray intensity on geomagnetically quiet days over the period 1980-1990 for Deep River and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days.. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational/1800 Hr direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of semi/tri-diurnal anisotropy have a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days for Deep River and Tokyo having different cutoff rigidity during 1980-1990. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for two neutron monitoring station of low and high cutoff rigidity threshold. The semi-diurnal amplitude has a significant anti-correlation, whereas the amplitude of third harmonic and direction of first harmonic has a good anti-correlation with IMF Bz and the product V x Bz on quiet days at Deep River station. However, the direction of first harmonic has a significant anti-correlation and the direction of second harmonic has a good anti-correlation with IMF Bz and the product V x Bz on quiet days at Tokyo station.

  12. 1D Atmosphere Models from Inversion of Fe i 630 nm Observations with an Application to Solar Irradiance Studies

    Energy Technology Data Exchange (ETDEWEB)

    Cristaldi, Alice; Ermolli, Ilaria, E-mail: alice.cristaldi@oaroma.inaf.it [INAF Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, I-00078 (Italy)

    2017-06-01

    Present-day semi-empirical models of solar irradiance (SI) variations reconstruct SI changes measured on timescales greater than a day by using spectra computed in one dimensional atmosphere models (1D models), which are representative of various solar surface features. Various recent studies have pointed out, however, that the spectra synthesized in 1D models do not reflect the radiative emission of the inhomogenous atmosphere revealed by high-resolution solar observations. We aimed to derive observation-based atmospheres from such observations and test their accuracy for SI estimates. We analyzed spectropolarimetric data of the Fe i 630 nm line pair in photospheric regions that are representative of the granular quiet-Sun pattern (QS) and of small- and large-scale magnetic features, both bright and dark with respect to the QS. The data were taken on 2011 August 6, with the CRisp Imaging Spectropolarimeter at the Swedish Solar Telescope, under excellent seeing conditions. We derived atmosphere models of the observed regions from data inversion with the SIR code. We studied the sensitivity of results to spatial resolution and temporal evolution, and discuss the obtained atmospheres with respect to several 1D models. The atmospheres derived from our study agree well with most of the 1D models we compare our results with, both qualitatively and quantitatively (within 10%), except for pore regions. Spectral synthesis computations of the atmosphere obtained from the QS observations return an SI between 400 and 2400 nm that agrees, on average, within 2.2% with standard reference measurements, and within −0.14% with the SI computed on the QS atmosphere employed by the most advanced semi-empirical model of SI variations.

  13. Cyclical Variation of the Quiet Corona and Coronal Holes

    Indian Academy of Sciences (India)

    tribpo

    Key words. Coronagraphs—solar activity cycle—solar corona—total ... can be divided into the quiet sun (including coronal holes) and active regions. The ... regions has attracted attention and is termed as 'the extended solar cycle'. Here the.

  14. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    Science.gov (United States)

    Leenaarts, J.; Carlsson, M.; Hansteen, V.; Rutten, R. J.

    2007-10-01

    Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and electron density depend sensitively on hydrogen ionization, numerical simulation of the solar atmosphere requires non-equilibrium treatment of all pertinent hydrogen transitions. The same holds for any diagnostic application employing hydrogen lines. Aims: To demonstrate the importance and to quantify the effects of non-equilibrium hydrogen ionization, both on the dynamical structure of the solar atmosphere and on hydrogen line formation, in particular Hα. Methods: We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Results: Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Hα, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements

  15. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    Science.gov (United States)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  16. WHAT IS THE SOURCE OF QUIET SUN TRANSITION REGION EMISSION?

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, D. J.; De Pontieu, Bart [Lockheed-Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

    2016-11-10

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph ( IRIS ) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  17. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    Science.gov (United States)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  18. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  19. Calculated Resonance Line Profiles of [Mg II], [C II], and [Si IV] in the Solar Atmosphere

    Science.gov (United States)

    Avrett, E.; Landi, E.; McKillop, S.

    2013-12-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  20. Calculated resonance line profiles of [Mg II], [C II], and [Si IV] in the solar atmosphere

    International Nuclear Information System (INIS)

    Avrett, E.; McKillop, S.; Landi, E.

    2013-01-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  1. Long-term rise in geomagnetic activity - A close connection between quiet days and storms

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2000-01-01

    Geomagnetic quiet days and magnetic storms are naturally believed to be due to very different solar wind conditions. In this study we however demonstrate that the long-term variation of geomagnetic quiet and disturbed days are surprisingly similar. By the use of daily averages of the geomagnetic.......7. The results indicate that the longterm,increase is due to an increase in the background solar wind parameters, rather than in the number of solar wind disturbances....

  2. Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches

    Energy Technology Data Exchange (ETDEWEB)

    Argüelles, C.A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA (United States); De Wasseige, G. [Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Fedynitch, A. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Jones, B.J.P., E-mail: caad@mit.edu, E-mail: gdewasse@vub.ac.be, E-mail: anatoli.fedynitch@desy.de, E-mail: ben.jones@uta.edu [University of Texas at Arlington, 108 Science Hall, 502 Yates St, Arlington TX (United States)

    2017-07-01

    Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP self-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP self-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric shower evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.

  3. Time-causal decomposition of geomagnetic time series into secular variation, solar quiet, and disturbance signals

    Science.gov (United States)

    Rigler, E. Joshua

    2017-04-26

    A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.

  4. SOHO reveals violent action on the quiet Sun

    Science.gov (United States)

    1996-05-01

    SOHO's scientists are impressed by the vigorous action that they see going on every day, because the Sun is in the very quietest phase of its eleven-year cycle of activity. To ground-based observatories it appears extremely calm just now. The early indications of SOHO's performance amply justify the creation of a sungazing spacecraft capable of observing ultraviolet emissions that are blotted out by the Earth's atmosphere. Apart from the imager, two ultraviolet spectrometers and an ultraviolet coronagraph (an imager for the outer atmosphere) are busy analysing the violent processes at a wide range of wavelengths. Between them, these instruments should cure long-lasting ignorance concerning the Sun, especially about why the atmosphere is so hot and what drives the solar wind that blows non-stop into the Solar System. Scientists from other experimental teams use SOHO to explore the Sun from its deep interior to the far reaches of the solar wind. They have watched the supposedly quiet Sun belching huge masses of gas into space. They have mapped a hole burnt by the solar wind in a breeze of gas coming from the stars. And they have detected currents of gas flowing just below the visible surface. SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO on 2 December 1995, and also provides the ground stations and an operations centre near Washington. The first results are the more remarkable because SOHO arrived at its vantage point 1,500,000 kilometres out in space only in February, and formally completed its commissioning on 16 April. It has a long life ahead of it. All scientific instruments are working well. The luminosity oscillation imager belonging to the VIRGO experiment had trouble with its lens cover. When opened, the cover rebounded on its hinges and closed again. Commands were devised that gave a shorter impulse

  5. First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events

    DEFF Research Database (Denmark)

    Marsh, Andrew J.; Smith, David M.; Glesener, Lindsay

    2017-01-01

    We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite. While NuSTAR was designed as an astrophysics mission, it can observe the Sun above 2 keV with unprecedented sensitivity due...... to its pioneering use of focusing optics. NuSTAR first observed quiet-Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet-Sun transient brightenings on timescales...... as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet-Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the Nu...

  6. Magnetic tornadoes as energy channels into the solar corona.

    Science.gov (United States)

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  7. The EUV chromospheric network in the quiet Sun

    International Nuclear Information System (INIS)

    Reeves, E.M.

    1976-01-01

    Investigations on the structure and intensity of the chromospheric network from quiet solar regions have been carried out with EUV data obtained from the Harvard spectroheliometer on the Apollo Telescope Mount of Skylab. The distribution of intensities within supergranulation cell interiors follows a near normal function, where the standard deviation exceeds the value expected from the counting rate, which indicates fine-scale structure below the 5 arc sec resolution of the data. The intensities from the centers of supergranulation cells appear to be the same in both quiet regions and coronal holes, although the network is significantly different in the two types of regions. The average halfwidth of the network elements was measured as 10 arc sec, and was independent of the temperature of formation of the observing line for 3.8< logTsub(e)<5.8. The contrast between the network and the centers of cells is greatest for lines with logTsub(e)approximately5.2, where the network contributes approximately 75% of the intensity of quiet solar regions. The contrast and fractional intensity contributions decrease to higher and lower temperatures characteristic of the corona and chromosphere. (Auth.)

  8. The mid-latitude ionosphere under quiet geomagnetic conditions: propagation analysis of SuperDARN radar observations from large ionospheric perturbations

    OpenAIRE

    De Larquier, Sebastien

    2013-01-01

    The Earth's ionosphere is a dynamic environment strongly coupled to the neutral atmosphere, magnetosphere and solar activity. In the context of this research, we restrict our interest to the mid-latitude (a.k.a., sub-auroral) ionosphere during quiet geomagnetic conditions. The Super Dual Auroral Radar Network (SuperDARN) is composed of more than 30 low-power High Frequency (HF, from 8-18 MHz) Doppler radars covering the sub-auroral, auroral and polar ionosphere in both hemispheres. SuperDARN ...

  9. Atmospheric energy harvesting: use of Doppler Wind Lidars on UAVs to extend mission endurance and enable quiet operations

    Science.gov (United States)

    Greco, S.; Emmitt, G. D.; Wood, S. A.; Costello, M.

    2014-10-01

    The investigators are developing a system tool that utilizes both pre-flight information and continuous real-time knowledge and description of the state of the atmosphere and atmospheric energetics by an Airborne Doppler Wind Lidar (ADWL) to provide the autonomous guidance for detailed and adaptive flight path planning by UAS and small manned aircraft. This flight planning and control has the potential to reduce mission dependence upon preflight assumptions, extend flight duration and endurance, enable long periods of quiet operations and allow for the optimum self-routing of the aircraft. The ADWL wind data is used in real-time to detect atmospheric energy features such as thermals, waves, wind shear and others. These detected features are then used with an onboard, weather model driven flight control model to adaptively plan a flight path that optimizes energy harvesting with frequent updates on local changes in the opportunities and atmospheric flow characteristics. We have named this package AEORA for the Atmospheric Energy Opportunity Ranking Algorithm (AEORA).

  10. Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field

    Science.gov (United States)

    Loukitcheva, M.; White, S. M.; Solanki, S. K.; Fleishman, G. D.; Carlsson, M.

    2017-05-01

    Aims: We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free radiation at millimeter and submillimeter wavelengths (mm/submm). Methods: The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. Results: The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10% is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Conclusions: Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.

  11. Quiet Areas and the Need for Quietness in Amsterdam

    Directory of Open Access Journals (Sweden)

    Hester Booi

    2012-03-01

    Full Text Available This paper describes the Quiet Places Project in Amsterdam. The purpose of the study was to find out: (1 which public quiet places there are according to Amsterdam residents; (2 what characterizes a quiet place; (3 to what extent do residents want peace and quiet; (4 how do residents realize these needs. The factors determining the need for quietness are presented in a model showing the influence of demographic and socio-economic issues, health status, sensitiveness to noise, daily activities and the noisiness in and around home. Most important of these factors is sensitivity to noise. Elderly and less healthy people are more often sensitive to noise. People who are annoyed by sound from traffic, airplanes and the like show a higher need for quietness. People with a lively household or neighbourhood report lower needs for quietness. Visiting a quiet place and going outside to walk or bike can have a compensating effect on the need for quietness. This suggests that creating quiet places and enhancing possibilities for quiet recreation in urban environments can have a positive effect on the quality of life in the city. Objective noise levels at the quiet places were taken from environmental noise maps. This shows that there may be a preference for low transportation noise levels, but levels up to 60 dB Lday are acceptable. Apparently this depends on a relative quietness or on non-acoustic characteristics of an area: the presence of vegetation and other pleasant stimuli.

  12. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  13. Solar wind ∼0.1-1.5 keV electrons at quiet times

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jiawei; Wang, Linghua, E-mail: wanglhwang@gmail.com; Zong, Qiugang; He, Jiansen; Tu, Chuanyi [School of Earth and Space Science, Peking University, Beijing 100871 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Alabama 35899 (United States); Salem, Chadi S.; Bale, Stuart D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Wimmer-Schweingruber, Robert F. [Institute for Experimental and Applied Physics, University of Kiel (Germany)

    2016-03-25

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ∼0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature T{sub eff} and density n{sub 0}. We also integrate the the measurements over ∼0.1-1.5 keV to obtain the average electron energy E{sub avg} of the strahl and halo. We find a strong positive correlation between κ and T{sub eff} for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ∼68% have the halo κ smaller than the strahl κ, while ∼50% have the halo E{sub h} larger than the strahl E{sub s}.

  14. Preliminary results from the orbiting solar observatory 8: Persistent velocity fields in the chromosphere and transition region

    International Nuclear Information System (INIS)

    Lites, B.W.; Bruner, E.C. Jr.; Chipman, E.G.; Shine, R.A.; Rottman, G.J.; White, O.R.; Athay, R.G.

    1976-01-01

    Velocity images, or tachograms, of the solar chromosphere and chromosphere-corona transition region were made by measuring the Si II 1816.93 A chromospheric line and the Si IV 1393.8 A transition region line with the University of Colorado spectrometer aboard OSO-8. Persistent flows are indicated in both active and quiet regions of the solar atmosphere. In quiet regions, areas of enhanced emission (the chromospheric network) are apparently systematically redshifted with respect to the areas of lower intensity. This correlation does not hold in active regions, where long-lived downflows into sunspots have been observed

  15. QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; He, Jiansen; Tu, Chuanyi [School of Earth and Space Science, Peking University, Beijing 100871 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Alabama 35899 (United States); Salem, Chadi S.; Bale, Stuart D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institute for Experimental and Applied Physics, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2016-03-20

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl and halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)

  16. Coherent Structure in Solar Wind C$^{6+}$/C$^{4+}$ Ionic Composition Data During the Quiet-Sun Conditions of 2008

    OpenAIRE

    Edmondson, J. K.; Lynch, B. J.; Lepri, S. T.; Zurbuchen, T. H.

    2013-01-01

    This analysis offers evidence of characteristic scale sizes in solar wind charge state data measured in-situ for thirteen quiet-sun Carrington rotations in 2008. Using a previously established novel methodology, we analyze the wavelet power spectrum of the charge state ratio C$^{6+}$/C$^{4+}$ measured in-situ by ACE/SWICS for 2-hour and 12-minute cadence. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missi...

  17. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough

    Science.gov (United States)

    Ishida, T.; Ogawa, Y.; Kadokura, A.; Hiraki, Y.; Häggström, I.

    2014-08-01

    We have conducted a statistical analysis of the ionospheric F region trough, focusing on its seasonal variation and solar activity dependence under geomagnetically quiet and moderate conditions, using plasma parameter data obtained via Common Program 3 observations performed by the European Incoherent Scatter (EISCAT) radar between 1982 and 2011. We have confirmed that there is a major difference in frictional heating between the high- and low-latitude sides of the EISCAT field of view (FOV) at ~73°0'N-60°5'N (geomagnetic latitude) at an altitude of 325 km, which is associated with trough formation. Our statistical results show that the high-latitude and midlatitude troughs occur on the high- and low-latitude sides of the FOV, respectively. Seasonal variations indicate that dissociative recombination accompanied by frictional heating is a main cause of trough formation in sunlit regions. During summer, therefore, the occurrence rate is maintained at 80-90% in the postmidnight high-latitude region owing to frictional heating by eastward return flow. Solar activity dependence on trough formation indicates that field-aligned currents modulate the occurrence rate of the trough during the winter and equinox seasons. In addition, the trough becomes deeper via dissociative recombination caused by an increased ion temperature with F10.7, at least in the equinox and summer seasons but not in winter.

  18. DETECTION OF SMALL-SCALE GRANULAR STRUCTURES IN THE QUIET SUN WITH THE NEW SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.; Kitiashvili, I. N.; Kosovichev, A. G.

    2012-01-01

    Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet-Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope at Big Bear Solar Observatory and with a broadband filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.''0375) augmented by the very high image contrast (15.5% ± 0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures. These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of –1.8 (which is close to the Kolmogorov's –5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties, and role of the population of mini-granular structures in the solar magnetoconvection are yet to be explored.

  19. The Heating of the Solar Atmosphere: from the Bottom Up?

    Science.gov (United States)

    Winebarger, Amy

    2014-01-01

    The heating of the solar atmosphere remains a mystery. Over the past several decades, scientists have examined the observational properties of structures in the solar atmosphere, notably their temperature, density, lifetime, and geometry, to determine the location, frequency, and duration of heating. In this talk, I will review these observational results, focusing on the wealth of information stored in the light curve of structures in different spectral lines or channels available in the Solar Dynamic Observatory's Atmospheric Imaging Assembly, Hinode's X-ray Telescope and Extreme-ultraviolet Imaging Spectrometer, and the Interface Region Imaging Spectrograph. I will discuss some recent results from combined data sets that support the heating of the solar atmosphere may be dominated by low, near-constant heating events.

  20. Solar energy and the abatement of atmospheric emissions

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Diakoulaki, D.; Assimacopoulos, D.

    1996-01-01

    In spite of the fact that solar energy is a ''clean'' energy form, gaseous pollutants are emitted during the manufacturing of the systems necessary for its utilisation. An attempt is made in this paper to estimate the level of atmospheric pollutants emitted during the successive stages which make up the manufacture process for solar water heating (SWH) systems, and to evaluate these results in comparison with the respective pollutant emission levels attributed to the generation of electricity in Greece's conventional power plants. As energy consumption is recognised as the main source of atmospheric pollution, a Life Cycle Analysis (LCA) method was applied, focusing on the most energy-consuming stages of the SWH system production process. The conclusions of the analysis indicate that the emissions of gaseous pollutants associated with the utilisation of solar energy are considerably lower than those caused by the production of electricity in conventional systems, thereby substantiating that solar energy utilisation can make a notable contribution to the abatement of atmospheric pollution. (author)

  1. Solar dynamics influence on the atmospheric ozone

    International Nuclear Information System (INIS)

    Gogosheva, T.; Grigorieva, V.; Mendeva, B.; Krastev, D.; Petkov, B.

    2007-01-01

    A response of the atmospheric ozone to the solar dynamics has been studied using the total ozone content data, taken from the satellite experiments GOME on ERS-2 and TOMS-EP together with data obtained from the ground-based spectrophotometer Photon operating in Stara Zagora, Bulgaria during the period 1999-2005. We also use data from surface ozone observations performed in Sofia, Bulgaria. The solar activity was characterized by the sunspot daily numbers W, the solar radio flux at 10.7 cm (F10.7) and the MgII wing-to-core ratio solar index. The impact of the solar activity on the total ozone has been investigated analysing the ozone response to sharp changes of these parameters. Some of the examined cases showed a positive correlation between the ozone and the solar parameters, however, a negative correlation in other cases was found. There were some cases when the sharp increases of the solar activity did not provoke any ozone changes. The solar radiation changes during an eclipse can be considered a particular case of the solar dynamics as this event causes a sharp change of irradiance within a comparatively short time interval. The results of both - the total and surface ozone measurements carried out during the eclipses on 11 August 1999, 31 May 2003 and 29 March 2006 are presented. It was found that the atmospheric ozone behavior shows strong response to the fast solar radiation changes which take place during solar eclipse. (authors)

  2. Chromospheric heating during flux emergence in the solar atmosphere

    Science.gov (United States)

    Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime; Danilovic, Sanja; Scharmer, Göran; Carlsson, Mats

    2018-04-01

    Context. The radiative losses in the solar chromosphere vary from 4 kW m-2 in the quiet Sun, to 20 kW m-2 in active regions. The mechanisms that transport non-thermal energy to and deposit it in the chromosphere are still not understood. Aim. We aim to investigate the atmospheric structure and heating of the solar chromosphere in an emerging flux region. Methods: We have used observations taken with the CHROMIS and CRISP instruments on the Swedish 1-m Solar Telescope in the Ca II K , Ca II 854.2 nm, Hα, and Fe I 630.1 nm and 630.2 nm lines. We analysed the various line profiles and in addition perform multi-line, multi-species, non-local thermodynamic equilibrium (non-LTE) inversions to estimate the spatial and temporal variation of the chromospheric structure. Results: We investigate which spectral features of Ca II K contribute to the frequency-integrated Ca II K brightness, which we use as a tracer of chromospheric radiative losses. The majority of the radiative losses are not associated with localised high-Ca II K-brightness events, but instead with a more gentle, spatially extended, and persistent heating. The frequency-integrated Ca II K brightness correlates strongly with the total linear polarization in the Ca II 854.2 nm, while the Ca II K profile shapes indicate that the bulk of the radiative losses occur in the lower chromosphere. Non-LTE inversions indicate a transition from heating concentrated around photospheric magnetic elements below log τ500 = -3 to a more space-filling and time-persistent heating above log τ500 = -4. The inferred gas temperature at log τ500 = -3.8 correlates strongly with the total linear polarization in the Ca II 854.2 nm line, suggesting that that the heating rate correlates with the strength of the horizontal magnetic field in the low chromosphere. Movies attached to Figs. 1 and 4 are available at http://https://www.aanda.org/

  3. Energy balance in solar and stellar chromospheres

    Science.gov (United States)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  4. Chromospheric manifestations in solar hydrodynamics

    International Nuclear Information System (INIS)

    Foing, B.

    1983-02-01

    Monochromatic pictures of the sun have been obtained during the second flight of the Transition Region Camera, in the ultra-violet continuum. 160 nm intensity distribution has been studied statistically. The trace of solar structures are underlined, at the temperature minimum, by the statistical distribution of the brightness quanta parameters. The ladder series and their spatial organization have been studied. Physical origin of the brightness quanta, in solar atmosphere seem to be explained, for the chromospheric network, as magnetic element flux tubes effects on the energy and radiation balance at small scale, but also by trace of energy propagation and non radiative heating in the quiet chrom 9 uosphere [fr

  5. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy 8 B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure ν e , which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of θ 12 and, together with other solar neutrino measurements, either a measurement of θ 13 or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the 7 Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and 7 Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a

  6. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    Science.gov (United States)

    Caspi, Amir; Woods, Thomas N.; Stone, Jordan

    2013-03-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the 1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to 5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution ( 0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below 1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from 0.5 to >10 keV with 0.15 keV FWHM resolution (though, due to hardware limitations, with only 0.12 keV binning) and 2-sec cadence over 5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above 4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  7. Modeling the Quiet Time Outflow Solution in the Polar Cap

    Science.gov (United States)

    Glocer, Alex

    2011-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.

  8. NuSTAR Detection of X-Ray Heating Events in the Quiet Sun

    Science.gov (United States)

    Kuhar, Matej; Krucker, Säm; Glesener, Lindsay; Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.; Hudson, Hugh S.; White, Stephen M.

    2018-04-01

    The explanation of the coronal heating problem potentially lies in the existence of nanoflares, numerous small-scale heating events occurring across the whole solar disk. In this Letter, we present the first imaging spectroscopy X-ray observations of three quiet Sun flares during the Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaigns on 2016 July 26 and 2017 March 21, concurrent with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. Two of the three events showed time lags of a few minutes between peak X-ray and extreme ultraviolet emissions. Isothermal fits with rather low temperatures in the range 3.2–4.1 MK and emission measures of (0.6–15) × 1044 cm‑3 describe their spectra well, resulting in thermal energies in the range (2–6) × 1026 erg. NuSTAR spectra did not show any signs of a nonthermal or higher temperature component. However, as the estimated upper limits of (hidden) nonthermal energy are comparable to the thermal energy estimates, the lack of a nonthermal component in the observed spectra is not a constraining result. The estimated Geostationary Operational Environmental Satellite (GOES) classes from the fitted values of temperature and emission measure fall between 1/1000 and 1/100 A class level, making them eight orders of magnitude fainter in soft X-ray flux than the largest solar flares.

  9. NEWLY DISCOVERED GLOBAL TEMPERATURE STRUCTURES IN THE QUIET SUN AT SOLAR MINIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhenguang; Frazin, Richard A.; Landi, Enrico; Manchester, Ward B.; Gombosi, Tamas I. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio, CONICET-University of Buenos Aires, Ciudad de Buenos Aires, CC 67-Suc 28 (Argentina)

    2012-08-20

    Magnetic loops are building blocks of the closed-field corona. While active region loops are readily seen in images taken at EUV and X-ray wavelengths, quiet-Sun (QS) loops are seldom identifiable and are therefore difficult to study on an individual basis. The first analysis of solar minimum (Carrington Rotation 2077) QS coronal loops utilizing a novel technique called the Michigan Loop Diagnostic Technique (MLDT) is presented. This technique combines Differential Emission Measure Tomography and a potential field source surface (PFSS) model, and consists of tracing PFSS field lines through the tomographic grid on which the local differential emission measure is determined. As a result, the electron temperature T{sub e} and density N{sub e} at each point along each individual field line can be obtained. Using data from STEREO/EUVI and SOHO/MDI, the MLDT identifies two types of QS loops in the corona: so-called up loops in which the temperature increases with height and so-called down loops in which the temperature decreases with height. Up loops are expected, however, down loops are a surprise, and furthermore, they are ubiquitous in the low-latitude corona. Up loops dominate the QS at higher latitudes. The MLDT allows independent determination of the empirical pressure and density scale heights, and the differences between the two remain to be explained. The down loops appear to be a newly discovered property of the solar minimum corona that may shed light on the physics of coronal heating. The results are shown to be robust to the calibration uncertainties of the EUVI instrument.

  10. Role of solar influences on geomagnetosphere and upper atmosphere

    Science.gov (United States)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  11. A comparison of quiet time thermospheric winds between FPIs and models

    Science.gov (United States)

    Jiang, G.; Xu, J.; Wang, W.; Yuan, W.; Zhang, S.; Yu, T.; Zhang, X.; Huang, C.; Liu, W.; Li, Q.

    2017-12-01

    Abstract:The Fabry-Perot Interferometer (FPI) instruments installed at Xinglong, (geog.: 40.2oN, 117.4oE; geom.: 35oN), Kelan (geog.: 38.7oN, 111.6oE; geom.: 34oN) and Millstone Hill (geog.: 42.6oN, 71.5oW; geom.: 52oN) started to measure the thermosphere neutral winds near 250 km since April 2010, March 2010 and November 2011, respectively. In this work, the joined comparison of FPI observed winds and two models during geomagnetic quiet time are processed for the study of mid-latitudinal thermosphere. The years of FPI wind data we use are from 2010 to 2014. The two models we use are NCAR TIE-GCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model of National Center for Atmospheric Research) and HWM07 (Horizontal Wind Model, version 2007). The real solar and geomagnetic conditions were applied to the models.

  12. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    International Nuclear Information System (INIS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-01-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution

  13. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    Science.gov (United States)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-11-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  14. PROBING THE SOLAR ATMOSPHERE USING OSCILLATIONS OF INFRARED CO SPECTRAL LINES

    International Nuclear Information System (INIS)

    Penn, M. J.; Schad, T.; Cox, E.

    2011-01-01

    Oscillations were observed across the whole solar disk using the Doppler shift and line center intensity of spectral lines from the CO molecule near 4666 nm with the National Solar Observatory's McMath/Pierce solar telescope. Power, coherence, and phase spectra were examined, and diagnostic diagrams reveal power ridges at the solar global mode frequencies to show that these oscillations are solar p-modes. The phase was used to determine the height of formation of the CO lines by comparison with the IR continuum intensity phase shifts as measured in Kopp et al.; we find that the CO line formation height varies from 425 km μ > 0.5. The velocity power spectra show that while the sum of the background and p-mode power increases with height in the solar atmosphere as seen in previous work, the power in the p-modes only (background subtracted) decreases with height. The CO line center intensity weakens in regions of stronger magnetic fields, as does the p-mode oscillation power. Across most of the solar surface the phase shift is larger than the expected value of 90 0 for an adiabatic atmosphere. We fit the phase spectra at different disk positions with a simple atmospheric model to determine that the acoustic cutoff frequency is about 4.5 mHz with only small variations, but that the thermal relaxation frequency drops significantly from 2.7 to 0 mHz at these heights in the solar atmosphere.

  15. Wave heating of the solar atmosphere

    Science.gov (United States)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  16. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  17. Response of the middle atmosphere to solar UV and dynamical perturbations

    International Nuclear Information System (INIS)

    Chandra, S.

    1989-01-01

    Recent studies of solar UV related changes of ozone and temperature have considerably improved the understanding of the solar UV and ozone relationship in the middle atmosphere on time scales of a solar rotation. These studies have shown that during periods of high solar activity, ozone in the upper stratosphere has a measurable response to changes in the solar UV flux in accordance with theoretical predictions. The problem of measuring solar response of the stratospheric ozone and temperature on time scales of a solar cycle is more difficult. In the altitude range of 2 mb, the model based calculations, based on plausible scenarios of solar UV variation, suggest a change of less than 4 percent in ozone mixing ratio and 1 to 2 K in temperature. The relative response was studied of the middle atmosphere to solar forcing at 155 and 27 day periods as indicated from the spectral analyses of a number of solar indices

  18. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  19. Auroral ionospheric quiet summer time conductances

    International Nuclear Information System (INIS)

    Brekke, A.; Hall, C.

    1988-01-01

    The auroral zone E-region conductivities and conductances have been studied for 7 quiet time summer days. The Hall- and Pedersen conductances are found to follow the solar zenith variations in a rather regular fashion, and empirical formulas for these conductances are obtained. The choice of proper collision frequency models is found to be of great importance when deriving the conductances, and it is argued that some of the different results presented by other authors may be due to different models of the collision frequencies. The Hall- to Pedersen conductance ratios can only be used as an indicator of the energy of the precipitating auroral particles when the contribution from the background solar ionization is subtracted. When this is done this ratio takes much higher values than previously reported

  20. Brightness temperature of the ''quiet'' Sun in the millimeter wavelength range

    International Nuclear Information System (INIS)

    Pelyushenko, S.A.

    1982-01-01

    Results are presented of recalibration of the data available for measurements of the solar brightness temperature Tsub(s) made by comparison with the lunar radio emission. A spectrum has been obtained of the ''quiet'' Sun radio emission in the range of 1-20 mm. The mean square spread of data does not exceed +-(from 3 to 4)%. The ''quiet'' Sun spectrum has a form of: Tsub(c)=(6150+-70)lambdasup(01+-0.01)[mm]K in the wavelength interval of lambda=(1-6) mm and Tsub(c)=(3470+-80)lambdasup(0.42+-0.01) [mm]K in the wavelength interval of lambda=(7-20) mm on approximation of recalibrated values of Tsub(c) with a linear dependence using the mean-square-root method. The obtained spectral characteristics of the ''quiet'' Sun radio frequency emission in the mullimeter wavelength range testify on the spectrum flatteming in the (1-6) mm wavelength range

  1. On disturbances in the atmosphere produced by solar heating and by earth rotation

    International Nuclear Information System (INIS)

    Somsikov, V.M.

    1980-01-01

    Using solar terminator as an example analyzed are the problems connected with generation of various disturbances in atmosphere resulted from solar heating and earth rotation. An equation for atmosphere pressure disturbance in the spherical system of coordinates is obtained. The Green function of this equation is found for isothermal atmosphere. A spectrum of space harmonics of disturbances is found and its diagram is presented. It is shown that disturbances of large and small scales can arize in atmosphere simultaneously. They can be refferred to acoustic, gravitational and tidal waves. It is noted that the obtained equation solution permits to obtain a full spectrum of atmosphere vibrations, conditioned by its solar heating

  2. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  3. Diurnal and Seasonal Statistical Characteristics of Well-formed Plasma Depletion and Enhancement Plumes under Quiet Solar Conditions

    Science.gov (United States)

    Haaser, R. A.

    2011-12-01

    The Ion Velocity Meter (IVM), a part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite, is used to measure in situ ion densities and drifts at altitudes between 400 and 550 km during the nighttime hours from 2100 to 300 local time. A new approach to detecting and classifying well-formed ionospheric plasma depletion and enhancement plumes (bubbles and blobs) of scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter and equinox seasons of the quiet solar conditions during 2009 and 2010. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on irregularities and scintillations, while others reveal new behaviors that require additional observations and modeling to promote full understanding.

  4. Evidence for continuum absorption above the quiet sun transition region

    International Nuclear Information System (INIS)

    Schmahl, E.J.; Orrall, F.Q.

    1979-01-01

    We report new evidence for continuum absorption in the solar transition zone in EUV spectra obtained from OSO 4, OSO 6, ATM, and full Sun measurements. This absorption shortward of 912 A is manifest everywhere on the Sun's disk. It is present within network cells and boundaries of the quiet Sun, in coronal holes, in active regions, above the limb, and in solar prominences. Models of the upper chromosphere and the transition zone must be modified to include an admixture of neutral hydrogen (or possibly singly ionized helium) with the hotter plasma

  5. Occurrence and persistence of magnetic elements in the quiet Sun

    Science.gov (United States)

    Giannattasio, F.; Berrilli, F.; Consolini, G.; Del Moro, D.; Gošić, M.; Bellot Rubio, L.

    2018-03-01

    Context. Turbulent convection efficiently transports energy up to the solar photosphere, but its multi-scale nature and dynamic properties are still not fully understood. Several works in the literature have investigated the emergence of patterns of convective and magnetic nature in the quiet Sun at spatial and temporal scales from granular to global. Aims: To shed light on the scales of organisation at which turbulent convection operates, and its relationship with the magnetic flux therein, we studied characteristic spatial and temporal scales of magnetic features in the quiet Sun. Methods: Thanks to an unprecedented data set entirely enclosing a supergranule, occurrence and persistence analysis of magnetogram time series were used to detect spatial and long-lived temporal correlations in the quiet Sun and to investigate their nature. Results: A relation between occurrence and persistence representative for the quiet Sun was found. In particular, highly recurrent and persistent patterns were detected especially in the boundary of the supergranular cell. These are due to moving magnetic elements undergoing motion that behaves like a random walk together with longer decorrelations ( 2 h) with respect to regions inside the supergranule. In the vertices of the supegranular cell the maximum observed occurrence is not associated with the maximum persistence, suggesting that there are different dynamic regimes affecting the magnetic elements.

  6. Improving the Ni I atomic model for solar and stellar atmospheric models

    International Nuclear Information System (INIS)

    Vieytes, M. C.; Fontenla, J. M.

    2013-01-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  7. Improving the Ni I atomic model for solar and stellar atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Vieytes, M. C. [Instituto de de Astronomía y Física del Espacio, CONICET and UNTREF, Buenos Aires (Argentina); Fontenla, J. M., E-mail: mariela@iafe.uba.ar, E-mail: johnf@digidyna.com [North West Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2013-06-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  8. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  9. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    Science.gov (United States)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  10. Cometary X-rays : solar wind charge exchange in cometary atmospheres

    NARCIS (Netherlands)

    Bodewits, Dennis

    2007-01-01

    The interaction of the solar wind with the planets and the interstellar medium is of key importance for the evolution of our solar system. The interaction with Earth's atmosphere is best known for the northern light. In case of Mars, the interaction with the solar wind might have lead to the erosion

  11. First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun

    Science.gov (United States)

    Brajša, R.; Sudar, D.; Benz, A. O.; Skokić, I.; Bárta, M.; Pontieu, B. De; Kim, S.; Kobelski, A.; Kuhar, M.; Shimojo, M.; Wedemeyer, S.; White, S.; Yagoubov, P.; Yan, Y.

    2018-05-01

    Context. Various solar features can be seen in emission or absorption on maps of the Sun in the millimetre and submillimetre wavelength range. The recently installed Atacama Large Millimetre/submillimetre Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA, the first important step is to compare solar ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. Aims: The first aim of the present work is to identify different structures in the solar atmosphere seen in the optical, infrared, and EUV parts of the spectrum (quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points) in a full-disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and to compare them with the corresponding quiet Sun level. Methods: A full-disc solar image at 1.21 mm obtained on December 18, 2015, during a CSV-EOC campaign with ALMA is calibrated and compared with full-disc solar images from the same day in Hα line, in He I 1083 nm line core, and with various SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the calibrated ALMA image. Results: Positions of the quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points are identified in the ALMA image. At the wavelength of 1.21 mm, active regions appear as bright areas (but sunspots are dark), while prominences on the disc and coronal holes are not discernible from the quiet Sun background, despite having slightly less intensity than surrounding quiet Sun regions. Magnetic inversion lines appear as large, elongated dark structures and coronal bright points correspond

  12. First results on quiet and magnetic granulation from SOUP

    Science.gov (United States)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-01-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  13. First results on quiet and magnetic granulation from SOUP

    Science.gov (United States)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-09-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  14. Origin and Properties of Quiet-time 0.11–1.28 MeV Nucleon{sup −1} Heavy-ion Population Near 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Dayeh, M. A.; Desai, M. I.; Ebert, R. W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Farahat, A., E-mail: maldayeh@swri.edu [Department of Physics, College of Applied and Supporting Studies, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2017-02-01

    Using measurements from the Advanced Composition Explorer /Ultra-Low Energy Isotope Spectrometer near 1 au, we surveyed the composition and spectra of heavy ions (He-through-Fe) during quiet times from 1998 January 1 to 2015 December 31 at suprathermal energies between ∼0.11 and ∼1.28 MeV nucleon{sup −1}. The selected time period covers the maxima of solar cycles 23 and 24 and the extended solar minimum in between. We find the following. (1) The number of quiet hours in each year correlates well with the sunspot number, year 2009 was the quietest for about 82% of the time. (2) The composition of the quiet-time suprathermal heavy-ion population ({sup 3}He, C-through-Fe) correlates well with the level of solar activity, exhibiting SEP-like composition signatures during solar maximum, and CIR- or solar wind-like composition during solar minimum. (3) The heavy-ion (C–Fe) spectra exhibit suprathermal tails at energies of 0.11–0.32 MeV nucleon{sup −1} with power-law spectral indices ranging from 1.40 to 2.97. Fe spectra soften (steepen, i.e., spectral index increases) smoothly with increasing energies compared with Fe, indicating a rollover behavior of Fe at higher energies (0.45–1.28 MeV nucleon{sup −1}). (4) Spectral indices of Fe and O do not appear to exhibit clear solar cycle dependence. (2) and (3) imply that during IP quiet times and at energies above ∼0.1 MeV nucleon{sup −1}, the IP medium is dominated by material from prior solar and interplanetary events. We discuss the implications of these extended observations in the context of the current understanding of the suprathermal ion population near 1 au.

  15. Searching for dark matter with neutron star mergers and quiet kilonovae

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai

    2018-03-01

    We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.

  16. Diagnosing transient plasma status: from solar atmosphere to tokamak divertor

    International Nuclear Information System (INIS)

    Giunta, A.S.; Henderson, S.; O'Mullane, M.; Summers, H.P.; Harrison, J.; Doyle, J.G.

    2016-01-01

    This work strongly exploits the interdisciplinary links between astrophysical (such as the solar upper atmosphere) and laboratory plasmas (such as tokamak devices) by sharing the development of a common modelling for time-dependent ionisation. This is applied to the interpretation of solar flare data observed by the UVSP (Ultraviolet Spectrometer and Polarimeter), on-board the Solar Maximum Mission and the IRIS (Interface Region Imaging Spectrograph), and also to data from B2-SOLPS (Scrape Off Layer Plasma Simulations) for MAST (Mega Ampère Spherical Tokamak) Super-X divertor upgrade. The derived atomic data, calculated in the framework of the ADAS (Atomic Data and Analysis Structure) project, allow equivalent prediction in non-stationary transport regimes and transients of both the solar atmosphere and tokamak divertors, except that the tokamak evolution is about one thousand times faster.

  17. The effects of solar particle events on the middle atmosphere

    International Nuclear Information System (INIS)

    Jackman, C.H.; Douglass, A.R.; Meade, P.E.

    1989-01-01

    Solar particle events (SPEs) have been investigated since the late 1960's for possible effects on the middle atmosphere. Solar protons from SPEs produce ionizations, dissociations, dissociative ionizations, and excitations in the middle atmosphere. The production of HO(x) and NO(x) and their subsequent effects on ozone can also be computed using energy deposition and photochemical models. The effects of SPE-produced HO(x) species on the odd nitrogen abundance of the middle atmosphere as well as the SPE-produced long term effects on ozone. Model computations indicate fairly good agreement with ozone data for the SPE-induced ozone depletion caused by NO(y) species connected with the August 1972 SPE. The model computations indicate that NO(y) will not be substantially changed over a solar cycle by SPEs. The changes are mainly at high latitudes and are on time scales of several months, after which the NO(y) drifts back to its ambient levels

  18. Automated Detection of Oscillating Regions in the Solar Atmosphere

    Science.gov (United States)

    Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.

    2010-01-01

    Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

  19. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  20. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    Science.gov (United States)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  1. Elemental composition and ionization state of the solar atmosphere and solar wind

    International Nuclear Information System (INIS)

    Joselyn, J.A.C.

    1978-01-01

    Abundance measurements have always proved useful in generating and refining astrophysical theories. Some of the classical problems of astrophysics involve determining the relative abundances of elements in the atmosphere of a star from observations of its line spectrum, and then synthesizing the physical processes which would produce such abundances. Theories of the formation of the solar system are critically tested by their ability to explain observed abundances, and, elemental abundances can serve as tracers, helping to determine the origin and transport of ions. Since the solar wind originates at the sun, it can act as a diagnostic probe of solar conditions. In particular, measurements of the composition of the solar wind should be related to the solar composition. And, assuming ionization equilibrium, measurements of the relative abundances of the ionization states in the solar wind should infer coronal temperatures and temperature gradients. However, most spherically symmetric models of the solar wind are unable to explain the relationship between the composition estimated from solar observations and as measured at 1 AU; and, recent observations of significant flow speeds in the transition region raise doubts about the validity of the assumption of ionization equilibrium

  2. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    Energy Technology Data Exchange (ETDEWEB)

    Murcray, F.; Stephen, T.; Kosters, J. [Univ. of Denver, CO (United States)

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  3. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  4. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.

    2015-06-01

    Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

  5. Non-LTE Calculations of the Fe I 6173 Å Line in a Flaring Atmosphere

    Science.gov (United States)

    Hong, Jie; Ding, M. D.; Li, Ying; Carlsson, Mats

    2018-04-01

    The Fe I 6173 Å line is widely used in the measurements of vector magnetic fields by instruments including the Helioseismic and Magnetic Imager (HMI). We perform non-local thermodynamic equilibrium calculations of this line based on radiative hydrodynamic simulations in a flaring atmosphere. We employ both a quiet-Sun atmosphere and a penumbral atmosphere as the initial one in our simulations. We find that, in the quiet-Sun atmosphere, the line center is obviously enhanced during an intermediate flare. The enhanced emission is contributed from both radiative backwarming in the photosphere and particle beam heating in the lower chromosphere. A blue asymmetry of the line profile also appears due to an upward mass motion in the lower chromosphere. If we take a penumbral atmosphere as the initial atmosphere, the line has a more significant response to the flare heating, showing a central emission and an obvious asymmetry. The low spectral resolution of HMI would indicate some loss of information, but the enhancement and line asymmetry are still kept. By calculating polarized line profiles, we find that the Stokes I and V profiles can be altered as a result of flare heating. Thus the distortion of this line has a crucial influence on the magnetic field measured from this line, and one should be cautious in interpreting the magnetic transients observed frequently in solar flares.

  6. THE SUN'S SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Jin, C. L.; Wang, J. X.; Song, Q.; Zhao, H.

    2011-01-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and the following results are found. (1) The quiet regions dominated the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23. They contributed (0.94-1.44) x10 23 Mx flux to the Sun from the solar minimum to maximum. The monthly average magnetic flux of the quiet regions is 1.12 times that of the active regions in the cycle. (2) The ratio of quiet region flux to that of the total Sun equally characterizes the course of a solar cycle. The 6 month running average flux ratio of the quiet regions was larger than 90.0% for 28 continuous months from July 2007 to October 2009, which very well characterizes the grand solar minima of cycles 23-24. (3) From the small to the large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)x10 18 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. These results provide insight into the reason for anti-correlations of small-scale magnetic activity during the solar cycle.

  7. Out-of-ecliptic quiet time MeV electron increases: Ulysses COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Ferreira, S.E.S.; Potgieter, M.S.; Henize, V.K.; Moeketsi, D.M.; Fichtner, H.; Kissmann, R.

    2004-01-01

    The propagation of cosmic rays in turbulent magnetic fields can be studied in detail by way of in-situ measurements of energetic particles in the three-dimensional heliosphere. Measurements of 3-20 MeV electrons from 1990 to 2003 have been made by the Kiel Electron Telescope (KET) onboard the Ulysses spacecraft during varying solar conditions. In order to interpret these measurements, it is necessary to distinguish between solar, galactic and Jovian electrons and to investigate their propagation, by using sophisticated particle propagation models. The solar contribution to the MeV electron intensities can be excluded by analyzing the electron energy spectra and the nuclei time histories. The residual electron intensities can be reasonably described by modulation models taking into account galactic cosmic rays as well as Jovian electrons using different diffusion coefficients for solar minimum and maximum. The way in which the relative contribution of Jovian (point source in the ecliptic) and galactic electrons (isotropic source) varies along the Ulysses orbit is strongly dependent on the choice of these coefficients. Since the 1970's quiet time electron increases have been observed in the ecliptic and interpreted as Jovian electron increases. Therefore, the occurrence of such quiet time electron increases is an indicator for a dominant Jovian contribution to the measured MeV electron intensities. At solar minimum and maximum such events have been observed up to ∼30 deg. and ∼45 deg. These observations are crucial for a determination of the diffusion parameters. At solar maximum a more efficient latitude transport is needed to account for the electron intensity variations

  8. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua

    2018-05-01

    Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.

  9. Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events

    Science.gov (United States)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.; Labow, Gordon J.; Randall, Cora E.; Lopez-Puertas, Manuel; Funke, Bernd

    2007-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted

  10. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    Science.gov (United States)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  11. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  12. Statistical equilibrium of copper in the solar atmosphere

    International Nuclear Information System (INIS)

    Shi, J. R.; Mashonkina, L.; Zhao, G.; Gehren, T.; Zeng, J. L.

    2014-01-01

    Non-local thermodynamic equilibrium (NLTE) line formation for neutral copper in the one-dimensional solar atmospheres is presented for the atomic model, including 96 terms of Cu I and the ground state of Cu II. The accurate oscillator strengths for all the line transitions in model atom and photoionization cross sections were calculated using the R-matrix method in the Russell-Saunders coupling scheme. The main NLTE mechanism for Cu I is the ultraviolet overionization. We find that NLTE leads to systematically depleted total absorption in the Cu I lines and, accordingly, positive abundance corrections. Inelastic collisions with neutral hydrogen atoms produce minor effects on the statistical equilibrium of Cu I in the solar atmosphere. For the solar Cu I lines, the departures from LTE are found to be small, the mean NLTE abundance correction of ∼0.01 dex. It was found that the six low-excitation lines, with excitation energy of the lower level E exc ≤ 1.64 eV, give a 0.14 dex lower mean solar abundance compared to that from the six E exc > 3.7 eV lines, when applying experimental gf-values of Kock and Richter. Without the two strong resonance transitions, the solar mean NLTE abundance from 10 lines of Cu I is log ε ☉ (Cu) = 4.19 ± 0.10, which is consistent within the error bars with the meteoritic value 4.25 ± 0.05 of Lodders et al. The discrepancy between E exc = 1.39-1.64 eV and E exc > 3.7 eV lines can be removed when the calculated gf-values are adopted and a mean solar abundance of log ε ☉ (Cu) = 4.24 ± 0.08 is derived.

  13. Near IR observations of Quiet Chromosphere

    Science.gov (United States)

    Prasad Choudhary, Debi; Deng, N.; Tejamoortula, U.; Penn, M. J.

    2009-05-01

    We have carried out the observations of quiet solar limb during April 29 to May 1, 2008, March 9-13, 2009 using the vertical spectrograph at the focal plane of McMath-Pierce telescope at Kitt Peak National Observatory. The solar limb was mostly featureless during the observations. The New Infrared Array (NAC) at the exit port of the spectrograph has been used to record the limb spectrum at HeI 1083.0 nm, Hydrogen Paschen beta at 1281.8 nm and Brackett gamma 2165.5 nm wavelength regions. The NAC is a 1024 x 1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of about 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. In this presentation, we shall compare the line parameters of these lines around the solar disk. Acknowledgements: This work is supported by NSF under grant ATM 05-48952 and by NASA under grant NNX08AQ32G.

  14. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    International Nuclear Information System (INIS)

    Landi, E.; Young, P. R.

    2009-01-01

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s 2 3p 5 4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

  15. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    International Nuclear Information System (INIS)

    Zaheer, S.; Yoon, P. H.

    2013-01-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f e ∼ v –α is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α average ∼ 6.69, according to observation

  16. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  17. Small-scale eruptive filaments on the quiet sun

    International Nuclear Information System (INIS)

    Hermans, L.M.; Martin, S.F.

    1986-01-01

    A study of a little known class of eruptive events on the quiet sun was conducted. All of 61 small-scale eruptive filamentary structures were identified in a systematic survey of 32 days of H alpha time-lapse films of the quiet sun acquired at Big Bear Solar Observatory. When fully developed, these structures have an average length of 15 arc seconds before eruption. They appear to be the small-scale analog of large-scale eruptive filaments observed against the disk. At the observed rate of 1.9 small-scale eruptive features per field of view per average 7.0 hour day, the rate of occurence of these events on the sun were estimated to be greater than 600 per 24 hour day.. The average duration of the eruptive phase was 26 minutes while the average lifetime from formation through eruption was 70 minutes. A majority of the small-scale filamentary sturctures were spatially related to cancelling magnetic features in line-of-sight photospheric magnetograms. Similar to large-scale filaments, the small-scale filamentary structures sometimes divided opposite polarity cancelling fragments but often had one or both ends terminating at a cancellation site. Their high numbers appear to reflect the much greater flux on the quiet sun. From their characteristics, evolution, and relationship to photospheric magnetic flux, it was concluded that the structures described are small-scale eruptive filaments and are a subset of all filaments

  18. EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, Avery J.; Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2016-11-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.

  19. Lyman continuum observations of solar flares

    Science.gov (United States)

    Machado, M. E.; Noyes, R. W.

    1978-01-01

    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  20. Investigation of the Effects of Solar and Geomagnetic Changes on the Total Electron Content: Mid-Latitude Region

    Science.gov (United States)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.

  1. Modelling the quiet-time geomagnetic daily variations using observatory data

    OpenAIRE

    Hamilton, Brian; Macmillan, Susan

    2008-01-01

    We present on-going work towards building a global model of the quiet-time geomagnetic daily variation using bservatory data. We select hourly mean data during June 2006 (solar minimum). We fit Fourier series in time, with a fundamental period of 24 hours, to the data at each observatory. We then use global spherical harmonic expansions to separate the daily variation signal, as characterised by the Fourier coefficients in time, into external and induced internal contributions. The mode...

  2. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    Science.gov (United States)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands

  3. Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4

    Science.gov (United States)

    Peck, E. D.; Randall, C. E.; Harvey, V. L.; Marsh, D. R.

    2015-06-01

    The Whole Atmosphere Community Climate Model version 4 (WACCM4) is used to quantify solar cycle impacts, including both irradiance and particle precipitation, on the middle atmosphere. Results are compared to previous work using WACCM version 3 (WACCM3) to estimate the sensitivity of simulated solar cycle effects to model modifications. The residual circulation in WACCM4 is stronger than in WACCM3, leading to larger solar cycle effects from energetic particle precipitation; this impacts polar stratospheric odd nitrogen and ozone, as well as polar mesospheric temperatures. The cold pole problem, which is present in both versions, is exacerbated in WACCM4, leading to more ozone loss in the Antarctic stratosphere. Relative to WACCM3, a westerly shift in the WACCM4 zonal winds in the tropical stratosphere and mesosphere, and a strengthening and poleward shift of the Antarctic polar night jet, are attributed to inclusion of the QBO and changes in the gravity wave parameterization in WACCM4. Solar cycle effects in WACCM3 and WACCM4 are qualitatively similar. However, the EPP-induced increase from solar minimum to solar maximum in polar stratospheric NOy is about twice as large in WACCM4 as in WACCM3; correspondingly, maximum increases in polar O3 loss from solar min to solar max are more than twice as large in WACCM4. This does not cause large differences in the WACCM3 versus WACCM4 solar cycle responses in temperature and wind. Overall, these results provide a framework for future studies using WACCM to analyze the impacts of the solar cycle on the middle atmosphere.

  4. Solar signals detected within neutral atmospheric and ionospheric parameters

    Czech Academy of Sciences Publication Activity Database

    Koucká Knížová, Petra; Georgieva, K.; Mošna, Zbyšek; Kozubek, Michal; Kouba, Daniel; Kirov, B.; Potužníková, Kateřina; Boška, Josef

    2018-01-01

    Roč. 171, June (2018), s. 147-156 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GA15-24688S Grant - others:AV ČR(CZ) BAS-17-06 Program:Bilaterální spolupráce Institutional support: RVO:68378289 Keywords : solar energy * upper atmosphere Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.326, year: 2016 http://www.sciencedirect.com/science/article/pii/S1364682617302365

  5. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    Science.gov (United States)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  6. Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network

    Directory of Open Access Journals (Sweden)

    L. A. Leonovich

    Full Text Available This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system. The method uses the effect of partial "shadowing" of the atmosphere by the terrestrial globe. The study of the solar flare influence on the atmosphere uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow, and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on 14 July 2000 (10:24 UT, N22 W07 in quiet geomagnetic conditions (Dst = -10 nT has shown that about 75% of the TEC increase corresponds to the ionospheric region lying below 300 km and about 25% to regions lying above 300 km.

    Key words. Ionosphere (solar radiation and cosmic ray effects; instruments and techniques – Solar physics, astrophysics and astronomy (ultraviolet emissions

  7. Wavelength Dependence of Solar Irradiance Enhancement During X-Class Flares and Its Influence on the Upper Atmosphere

    Science.gov (United States)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Chamberlin, Phillip C.; Qian, Liying; Solomon, Stanley C.; Roble, Raymond G.; Xiao, Zuo

    2013-01-01

    The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (T-I) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61 X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-14 nm irradiance increases much more (approx. 680% on average) than that in the 14-25 nm waveband (approx. 65% on average), except at 24 nm (approx. 220%). The average percentage increases for the 25-105 nm and 122-190 nm wavebands are approx. 120% and approx. 35%, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105- 120 nm, 121.56 nm, and 122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the 0-14 nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approx. 7.4% of the total approx. 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.

  8. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  9. AN INTERFACE REGION IMAGING SPECTROGRAPH FIRST VIEW ON SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, T. M. D.; De Pontieu, B.; Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Tarbell, T. D.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Wülser, J. P.; Martínez-Sykora, J.; Kleint, L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Bldg. 252, Palo Alto, CA 94304 (United States); Golub, L.; McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.; Tian, H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jaeggli, S.; Kankelborg, C., E-mail: tiago.pereira@astro.uio.no [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2014-09-01

    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet-Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region, we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet-Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.

  10. Infrared investigation of the temperature structure of the solar atmosphere

    International Nuclear Information System (INIS)

    Allen, R.G.

    1978-01-01

    Narrow-band continuum limb darkening observations of the sun were taken with the Infrared Spectrometer and the West Auxiliary of the McMath Solar Telescope during the first half of 1974. The infrared limb darkening measures were used with a few absolute intensity and limb darkening measures of other investigators to develop a series of empirical solar models. The temperatures in most of the solar models were adjusted until the predictions of the model atmosphere program matched the observational measures as well as possible. Limb darkening residuals were calculated by subtracting the observational measures of the limb darkening from the limb darkening measures that were computed from the program. Experiments with several models indicated that a steep temperature gradient was needed to fit the observations at short wavelengths while a rather low temperature gradient was needed at long wavelengths. Non-LTE effects and errors in the H - opacity were ruled out as possible sources of this discrepancy. An excellent fit to the observations was ultimately achieved with a two-component LTE solar model. The hot component of this model represents the half of the solar surface that is above the median temperature at each depth; while the cool component represents the half of the solar surface that is below the median temperature. Most of the observations are fitted to within the expected errors by this model. Discrepancies below 4500 A are probably due to line blanketing. The splitting between the hot and cool components of the model is consistent with current estimates of the rms intensity fluctuations in the solar atmosphere. The model also resembles several theoretical two-component models that have recently appeared in the literature

  11. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    sources, namely photovoltaic (PV) panels, to roughly determine the energy producing potential of an installation’s solar array. The implicit...power resources assembled as a single system (generator, storage, distribution and load), with the ability to run independently as an “island” and/or...atmospheric layers that will act on the solar radiation as it traverses strata. These terms are a function of cloud type, size , and density. To create a

  12. Fundamental (f) oscillations in a magnetically coupled solar interior-atmosphere system - An analytical approach

    Science.gov (United States)

    Pintér, Balázs; Erdélyi, R.

    2018-01-01

    Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to

  13. Structure and dynamics of solar atmosphere: the reign of SOHO

    International Nuclear Information System (INIS)

    Bocchialini, Karine

    2004-01-01

    In this report for Accreditation to Supervise Research (HDR), the author proposes an overview of his research works which particularly addressed the study of the solar atmosphere, notably based on observations made by the SOHO (Solar and Heliospheric Observatory) satellite. After a recall of his curriculum, he presents and comments results obtained in various areas: Corona heating and origin of solar wind, heating by waves, heating by quasi-steady mechanisms, regions which are sources of fast solar wind, sources of Coronal matter ejections. He also presents the different adopted approaches and methods (multi-wavelength analysis, oscillation measurement, statistical analysis) and the various observed structures (chromospheric network, shiny points, Coronal holes, and protuberances)

  14. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Capalbo, Fernando J.; Bénilan, Yves [Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR 7583 du CNRS, Universités Paris Est Créteil (UPEC) and Paris Diderot - UPD, 61 avenue du Général de Gaulle, F-94010, Créteil Cédex (France); Yelle, Roger V.; Koskinen, Tommi T., E-mail: fernando.capalbo@lisa.u-pec.fr [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States)

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  15. Formation Mechanisms of the Spring-Autumn Asymmetry of the Midlatitudinal NmF2 under Daytime Quiet Geomagnetic Conditions at Low Solar Activity

    Science.gov (United States)

    Pavlov, A. V.; Pavlova, N. M.

    2018-05-01

    Formation mechanism of the spring-autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere-plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring-autumn asymmetry of NmF2: first, the spring-autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring-autumn asymmetry of NmF2.

  16. The induced electric field distribution in the solar atmosphere

    International Nuclear Information System (INIS)

    Chen Rong; Yang Zhi-Liang; Deng Yuan-Yong

    2013-01-01

    A method of calculating the induced electric field is presented. The induced electric field in the solar atmosphere is derived by the time variation of the magnetic field when the accumulation of charged particles is neglected. In order to derive the spatial distribution of the magnetic field, several extrapolation methods are introduced. With observational data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field from the photosphere to the upper atmosphere. By calculating the time variation of the magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 10 2 V cm −1 and the average electric field has a maximum point at the layer 360 km above the photosphere. The Monte Carlo method is used to compute the triple integration of the induced electric field.

  17. The dynamic quiet solar corona: 4 days of joint observing with MDI and EIT

    Science.gov (United States)

    Schrijver, C. J.; Shine, R. A.; Hurlburt, N. E.; Tarbell, T. D.; Lemen, J. R.

    1997-01-01

    The analysis of a sequence of joint extreme ultraviolet imaging telescope (EIT) Fe XII and Michelson Doppler imager (MDI) magnetogram observations of the quiet sun near disk center is presented. It was found that: all the emerging flux above the threshold of approximately 10(sup 17) Mx is associated with enhanced coronal emissions; loop systems between the polarities in ephemeral regions remain visible up to separations of 10000 up to 30000 km; brightenings between approaching opposite polarity network concentrations form when the concentrations are between 5000 and 25000 km apart, and that faint connections up to 40000 km in length form as sets of concentrations of the same polarity coagulate. The coronal emission over patches of the quiet sun depends on the total flux in connected concentrations, on their distance and on the positions and strengths of neighboring concentrations.

  18. Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux

    International Nuclear Information System (INIS)

    Donnelly, R.F.

    1982-01-01

    The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component

  19. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  20. On abnormal quiet day Sq(Z) ranges in the Indian region

    International Nuclear Information System (INIS)

    Thakur, N.K.; Sontakke, K.G.

    1981-01-01

    Solar quiet day variations of the vertical geomagnetic component Sq(Z) have been studied. These show abnormal variations from day to day. The study for the period 1961 to 1976 indicates that, for quite a number of days, the Sq(Z) phase reverses completely. It is concluded that changes in phase of Sq(Z) could be explained by the movement of the Sq current system and the penetration of the Sq southern current system into the northern hemisphere. (author)

  1. Spectral solar irradiance and some optical properties for various polluted atmospheres

    International Nuclear Information System (INIS)

    Jacovides, Constantinos P.; Asimakopoulos, Demosthenis N.; Steven, Michael D.

    2000-01-01

    Using ground-based spectroradiometric measurements taken over the Athens atmosphere during May 1995, the influence of gaseous pollutants and aerosol on the spectral radiant energy distribution was investigated. It was found that spectral measurements exhibited variations based on various polluted urban atmospheric conditions as determined via gaseous pollutants record analysis. The relative attenuations cause by gaseous pollutants and aerosol can exceed 27%, 17% and 16% in the global ultraviolet, visible and near-infrared portions of the solar spectrum respectively, as compared to 'background' values. In contrast, an enhancement of the near-infrared diffuse component by 66%, was observed, while in visible and ultraviolet bands the relative increases reached 54% and 21% respectively. Experimental total Rayleigh-corrected and spectral aerosol optical depths were retrieved, representing differences in polluted air over the Athens atmosphere. The diffuse component accounts for more than 80% of the total radiation field under high polluted atmosphere. The observed differences of solar radiation between the Athens center and at a nearby suburban site are a manifestation of contrasting air properties provided mainly by automotive traffic. (Author)

  2. Synchronized observations of bright points from the solar photosphere to the corona

    Science.gov (United States)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  3. The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

    Science.gov (United States)

    Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-11-01

    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.

  4. Quiet Sun X-rays as Signature for New Particles

    CERN Document Server

    Zioutas, Konstantin; Di Lella, L; Hoffmann, Dieter H H; Jacoby, J; Papaevangelou, T

    2004-01-01

    We have studied published data from the Yohkoh solar X-ray mission, with the purpose of searching for signals from radiative decays of new, as yet undiscovered massive neutral particles. This search is based on the prediction that solar axions of the Kaluza-Klein type should result in the emission of X-rays from the Sun direction beyond the limb with a characteristic radial distribution. These X-rays should be observed more easily during periods of quiet Sun. An additional signature is the observed emission of hard X-rays by SMM, NEAR and RHESSI. The recent observation made by RHESSI of a continuous emission from the non-flaring Sun of X-rays in the 3 to ~15 keV range fits the generic axion scenario. This work also suggests new analyses of existing data, in order to exclude instrumental effects; it provides the rationale for targeted observations with present and upcoming (solar) X-ray telescopes, which can provide the final answer on the nature of the signals considered here. Such measurements become more pr...

  5. Atmospheric scattering corrections to solar radiometry

    International Nuclear Information System (INIS)

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  6. THE ROLE OF NITROGEN IN TITAN’S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Department of Space Research, Southwest Research Institute, San Antonio, TX 78228 (United States); Westlake, J. H. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [Fund Kis, F-92160 Antony (France)

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N({sup 4}S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH{sub 3}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}, despite the lower CH{sub 4} photodissociation rates compared with solar maximum conditions, is explained by the role of N({sup 4}S). N({sup 4}S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH{sub 3}. When in higher abundance during solar maximum at lower altitudes, N({sup 4}S) increases the importance of bimolecular CH{sub 3} + N({sup 4}S) reactions producing HCN and H{sub 2}CN. The subsequent remarkable CH{sub 3} loss and decrease in the CH{sub 3} abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  7. Solar flares and radiocarbon abundance in the atmosphere of the Earth

    International Nuclear Information System (INIS)

    Metskhvarishvili, R.Ya.; Imedadze, T.Sh.; Tleugaliev, S.Kh.; Tsinamdzgvrishvili, T.Sh.; Tsereteli, S.L.

    1978-01-01

    The correlation between the radiocarbon ( 14 C) content in the atmosphere of the Earth and the solar activity is studied. Annual measurements of the 14 C content in the tree rings for the last 120 years have been made. Relations of the radiocarbon content in dendrochronologically dated tree rings and the Wolf numbers for the period from 1850 to 1940 are presented. The spectroscopic and Borg methods have been used to ascertain the periodicities in the radiocarbon series. It is shown that well-defined periods of approximately 11 and approximately 65 years are observed in the radiocarbon series. The former is associated with an 11-year and the latter with a secular cycle of the 14 C content in the earth atmosphere. To study the relation of the solar activity to the level of radiocarbon in the earth atmosphere a mutual correlation function was calculated for various values of the time lags of 14 C with respect to the processes on the Sun. It follows from the data obtained that a positive correlation takes place for time lags smaller than three years. The detected positive correlation has revealed that the effect of solar flares in the 11-year cycle is prevalent

  8. Horse-collar aurora: A frequent pattern of the aurora in quiet times

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Evans, D.S.; Newell, P.T.

    1989-01-01

    Reported here are DE 1 auroral imager observations of an auroral configuration which is given the name ''horse-collar aurora.'' The horse-collar pattern comprises the total area of auroral emissions from a single hemisphere and derives its name from the shape of the emitting area. The pattern is found in images recorded during quiet geomagnetic conditions and is possibly related to the theta aurora, another quiet time configuration of the auroras. This initial report of the DE 1 observations illustrates the horse-collar aurora with a 2-hour images sequence that displays its basic features and shows an example of its evolution into a theta-like auroral pattern. The interplanetary magnetic field was northward during this image sequence and there is some evidence for IMF B/sub y/ influence of the temporal development of the horse-collar pattern. A preliminary statistical analysis found the horse-collar pattern appearing in one-third or more of image sequences recorded during quiet conditions; it did not appear during disturbed conditions. Further study is required to establish more fully the characteristics of the horse-collar aurora and to determine its implications concerning solar wind-magnetosphere coupling when the IMF B/sub z/ is northward. copyright American Geophysical Union 1989

  9. Non-Potential Magnetic Fields and Magnetic Reconnection In Low Collisional Plasmas-Discovery of Solar EUV Mini-Sigmoids and Development of Novel In-Space Propulsion Systems

    Science.gov (United States)

    Chesny, David

    Magnetic reconnection is the source of many of the most powerful explosions of astrophysical plasmas in the universe. Blazars, magnetars, stellar atmospheres, and planetary magnetic fields have all been shown to be primary sites of strong reconnection events. For studying the fundamental physics behind this process, the solar atmosphere is our most accessible laboratory setting. Magnetic reconnection resulting from non-potential fields leads to plasma heating and particle acceleration, often in the form of explosive activity, contributing to coronal heating and the solar wind. Large-scale non-potential (sigmoid) fields in the solar atmosphere are poorly understood due to their crowded neighborhoods. For the first time, small-scale, non-potential loop structures have been observed in quiet Sun EUV observations. Fourteen unique mini-sigmoid events and three diffuse non-potential loops have been discovered, suggesting a multi-scaled self-similarity in the sigmoid formation process. These events are on the order of 10 arcseconds in length and do not appear in X-ray emissions, where large-scale sigmoids are well documented. We have discovered the first evidence of sigmoidal structuring in EUV bright point phenomena, which are prolific events in the solar atmosphere. Observations of these mini-sigmoids suggest that they are being formed via tether-cutting reconnection, a process observed to occur at active region scales. Thus, tether-cutting is suggested to be ubiquitous throughout the solar atmosphere. These dynamics are shown to be a function of the free magnetic energy in the quiet Sun network. Recently, the reconnection process has been reproduced in Earth-based laboratory tokamaks. Easily achievable magnetic field configurations can induce reconnection and result in ion acceleration. Here, magnetic reconnection is utilized as the plasma acceleration mechanism for a theoretical propulsion system. The theory of torsional spine reconnection is shown to result in ion

  10. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    Science.gov (United States)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  11. Non-LTE H2+ as the source of missing opacity in the solar atmosphere

    Science.gov (United States)

    Swamy, K. S. K.; Stecher, T. P.

    1974-01-01

    The population of the various vibrational levels of the H2+ molecule has been calculated from the consideration of formation and destruction mechanisms. The resulting population is used in calculating the total absorption due to H2+ and is compared with the other known sources of opacity at several optical depths of the solar atmosphere. It is shown that the absorption due to H2+ can probably account for the missing ultraviolet opacity in the solar atmosphere.

  12. Proceedings of the workshop: the solar constant and the Earth's atmosphere

    International Nuclear Information System (INIS)

    Zirin, H.; Moore, R.L.; Walter, J.

    1976-01-01

    The solar constant has long been a fundamental quantity in astrophysics, but as with many fundamental quantities, interest in its exact value or its variation has not been great over the last decade. This was particularly due to the fact that most models of stars indicated that their luminosity should be quite constant, varying only over nuclear burning times of hundreds of millions of years. Thus, after the pioneering work of Abbott, it has been more a subject of interest for atmospheric scientists who needed to know the exact inputs to the Earth's atmosphere. In recent years however, the celebrated problem of the missing solar neutrinos has brought into question the theories of stellar structure, and the solar constant is again being thought about. Standard solar models predict a lower solar constant in the past, 75% of the present, 4x10 9 years ago and a virtually constant value over short time scales (10 7 years). However, the lack of observed neutrinos predicted by this model suggests that the interior of the Sun is not really understood, which means that solar constant variations cannot be ruled out on the basis of the theory of stellar interiors. Measurement of the planets, the old Smithsonian measurements, and other data suggest that the Sun cannot have varied more than a few percent over the past hundred years, but some of the measurements even suggest small variation of the order of a percent. On the other hand, in the important near ultraviolet region, there is evidence for some variation in the 2700-3100 A region and up to 50% variation below 1600 A, dependent on solar activity. (Auth.)

  13. Quiet areas

    DEFF Research Database (Denmark)

    Petersen, Rikke Munck

    2016-01-01

    This paper argues that drone filming can substantiate our understanding of multisensorial experiences of quiet areas and urban landscapes. Contrary to the distanced gaze often associated with the drone, this paper discusses drone filming as an intimate performativity apparatus that can affect...... perception as a result of its interrelationships between motion, gaze, and sound. This paper uses four films, one of which is a drone flyover, to launch a discussion concerning a smooth and alluring gaze, a sliding gaze that penetrates landscapes, and site appearance. Films hold the capacity to project both...... and transcendence can facilitate a deeper understanding of intimate sensations, substantiating their role in the future design and planning of urban landscapes. Hence, it addresses the ethics of an intimacy perspective (of drone filming) in the qualification of quiet areas....

  14. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  15. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    Science.gov (United States)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  16. Outer atmospheres of cool stars. XII - A survey of IUE ultraviolet emission line spectra of cool dwarf stars

    Science.gov (United States)

    Linsky, J. L.; Bornmann, P. L.; Carpenter, K. G.; Hege, E. K.; Wing, R. F.; Giampapa, M. S.; Worden, S. P.

    1982-01-01

    Quantitative information is obtained on the chromospheres and transition regions of M dwarf stars, in order to determine how the outer atmospheres of dMe stars differ from dM stars and how they compare with the outer atmospheres of quiet and active G and K type dwarfs. IUE spectra of six dMe and four dM stars, together with ground-based photometry and spectroscopy of the Balmer and Ca II H and K lines, show no evidence of flares. It is concluded, regarding the quiescent behavior of these stars, that emission-line spectra resemble that of the sun and contain emission lines formed in regions with 4000-20,000 K temperatures that are presumably analogous to the solar chromosphere, as well as regions with temperatures of 20,000-200,000 K that are presumably analogous to the solar transition region. Emission-line surface fluxes are proportional to the emission measure over the range of temperatures at which the lines are formed.

  17. Fourier analysis of Solar atmospheric numerical simulations accelerated with GPUs (CUDA).

    Science.gov (United States)

    Marur, A.

    2015-12-01

    Solar dynamics from the convection zone creates a variety of waves that may propagate through the solar atmosphere. These waves are important in facilitating the energy transfer between the sun's surface and the corona as well as propagating energy throughout the solar system. How and where these waves are dissipated remains an open question. Advanced 3D numerical simulations have furthered our understanding of the processes involved. Fourier transforms to understand the nature of the waves by finding the frequency and wavelength of these waves through the simulated atmosphere, as well as the nature of their propagation and where they get dissipated. In order to analyze the different waves produced by the aforementioned simulations and models, Fast Fourier Transform algorithms will be applied. Since the processing of the multitude of different layers of the simulations (of the order of several 100^3 grid points) would be time intensive and inefficient on a CPU, CUDA, a computing architecture that harnesses the power of the GPU, will be used to accelerate the calculations.

  18. The upper atmosphere and solar-terrestrial relations - An introduction to the aerospace environment

    International Nuclear Information System (INIS)

    Hargreaves, J.K.

    1979-01-01

    A theoretical and observational overview of earth's aerospace environment is presented in this book. Emphasis is placed on the principles and observed phenomena of the neutral upper atmosphere, particularly in relation to solar activity. Topics include the structure of the ionosphere and magnetosphere, waves in the magnetosphere, solar flares and solar protons, and storms and other disturbance phenomena, while applications to communications, navigation and space technology are also discussed

  19. Cosmogenic radionuclide 7Be in atmospheric fallouts, weather factors and solar activity

    International Nuclear Information System (INIS)

    Kungurov, F.R.

    2011-11-01

    Key words: 7 Be activity, atmospheric fallouts, solar activity, gamma spectroscopy. Subjects of research: cosmogenic radionuclide 7 Be in atmospheric fallouts and surrounding objects of environment, its migrational distribution connected to solar activity and weather meteorologic parameters of the region studied. Purpose of work: Defining correlation between atmospheric humidity and solar activity with concentration and distribution of cosmogenic radionuclide 7 Be. Methods of research: gamma-spectrometry method of activity measurements. The results obtained and their novelty: Cycle of research works on definition of concentration and migrational distribution of CRN 7 Be in Samarkand region during 2002-2005 was carried out for the first time. Volumetric activity of 7 Be in squat air layer of Samarkand was determined. Average density of 7 Be fallouts for the four years of studies was determined. Qualitative correlation bet ween 7 Be fallouts density variations and solar activity, expressed through Wolf number has been found. Qualitative correlation between 7 Be fallouts density variations and amount of precipitations has been found. Regularity in 7 Be concentration decrease towards north latitudes has been detected. Practical value: Developed scintillation method of 7 Be activity detection in atmospheric fallouts was used in works performed in the framework of republican grants 2F-No 1.2.3, CNT RUz PFNI 2F-No 2.1.39 and ITD-7-024. Methodology was used for the estimation of the velocity of erosion processes in the soils of different regions of Uzbekistan. Methodology is used in the works on 7 Be radioactivity measurements. Degree of embed and economic effectivity: Gained results replenish database on 7 Be isotope distribution on Earth regions and its role in formation of some processes, connected with meteorology, agronomy and radioecology of Samarkand region. Field of application: meteorology, agronomy and radioecology. (author)

  20. Variation of the quiet sun at 21 cm - 1981-1987

    International Nuclear Information System (INIS)

    Bastian, T.S.; Dulk, G.A.

    1988-01-01

    The sun was imaged at a wavelength of about 21 cm during 1981-1987 using the VLA, the Green Bank 91-m telescope, the Arecibo 305 m telescope, and powerful maximum entropy image reconstruction techniques. There was a systematic decrease in the quiet sun's brightness temperature at 21 cm as the sun declined from sunspot maximum to sunspot minimum; this was accompanied by a systematic decrease in the sun's radius. The two-fold decrease in the electron number density in the solar transition region and low corona could have been the cause of these variations. 7 references

  1. An estimation of impact of anthropogenic aerosols in atmosphere of Tirana on solar insolation. Part II: Modification of solar energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Buzra, Urim, E-mail: rimibuzra@yahoo.com; Berberi, Pellumb; Mitrushi, Driada; Muda, Valbona [Department of Engineering Physics, FIMIF, PUT, Tirana (Albania); Halili, Daniela [Department of physics, FNS, AXHU, Elbasan (Albania); Berdufi, Irma [Institute of Nuclear Physics, INP, TU, Tirana (Albania)

    2016-03-25

    Change of irradiative properties of the atmosphere during clear days is an indicator, among others, of existence of atmospheric aerosols and can be used as an indicator for assessment both air pollution and local modifications of solar energy potentials. The main objective of this study is estimation of influence of anthropogenic aerosols on solar energy falling in a horizontal surface during a cloudless day. We have analyzed and quantified the effect of aerosols on reducing the amount of solar energy that falls on the horizontal ground surface in cloudless sky conditions, estimating temporal evolution, both in daily and hour scale, considering also, side effects caused by relative humidity of the air wind speed and geometric factor. As an indicator of concentration of aerosols in atmosphere, we agreed to use the attenuation of solar radiation after the last rainy day. All data were corrected by factors such as, variations of relative humidity, wind speed and daily change of incident angle of solar radiation. We studied the change of solar insolation in three sites with different traffic intensity, one in city of Shkodra and two in city of Tirana. Fifteen days after last rainy day, approximate time needed to achieve saturation, the insolation drops only 3.1% in the city of Shkodra, while in two sites in city of Tirana are 8.5 % and 18.4%. These data show that reduction of solar insolation is closely related with anthropogenic activity, mainly traffic around the site of the meteorological station. The day to day difference tends to decrease with increasing of number of days passed from the last rainy day, which is an evidence of a trend toward a dynamic equilibrium between decantation process of aerosols during the night and their generation during the day.

  2. Electrifying atmospheres charging, ionisation and lightning in the solar system and beyond

    CERN Document Server

    Aplin, Karen L

    2013-01-01

    Electrical processes take place in all planetary atmospheres. There is evidence for lightning on Venus, Jupiter, Saturn, Uranus and Neptune, it is possible on Mars and Titan, and cosmic rays ionise every atmosphere, leading to charged droplets and particles. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This book reviews the theory, and, where available, measurements, of planetary atmospheric electricity, taken to include ion production and ion-aerosol interactions. The conditions necessary for a global atmospheric electric circuit similar to Earth’s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification is more important at planets receiving little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ...

  3. Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks

    International Nuclear Information System (INIS)

    Cao Long; Bala, Govindasamy; Caldeira, Ken

    2012-01-01

    Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO 2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO 2 content and solar irradiance. Over ocean, increased atmospheric CO 2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO 2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO 2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO 2 versus solar forcing are manifested within days after the forcing is imposed. (letter)

  4. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N.-E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J.-C.

    2012-04-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.

  5. SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, J.; Gaelzer, R. [UFPEL, Pelotas (Brazil); Vinas, A. F. [NASA GSFC, Greenbelt, MD 20771 (United States); Yoon, P. H. [IPST, UMD, College Park, MD (United States); Ziebell, L. F., E-mail: joel.pavan@ufpel.edu.br, E-mail: rudi@ufpel.edu.br, E-mail: adolfo.vinas@nasa.gov, E-mail: yoonp@umd.edu, E-mail: luiz.ziebell@ufrgs.br [UFRGS, Porto Alegre (Brazil)

    2013-06-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  6. Solar and atmospheric forcing on mountain lakes.

    Science.gov (United States)

    Luoto, Tomi P; Nevalainen, Liisa

    2016-10-01

    We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  8. Waves and Magnetism in the Solar Atmosphere (WAMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Yuan-Kuen [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Moses, John D. [Heliophysics Division, Science Mission Directorate, NASA, Washington, DC (United States); Laming, John M.; Strachan, Leonard; Tun Beltran, Samuel [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Tomczyk, Steven; Gibson, Sarah E. [High Altitude Observatory, Boulder, CO (United States); Auchère, Frédéric [Institut d' Astrophysique Spatiale, CNRS Université Paris-Sud, Orsay (France); Casini, Roberto [High Altitude Observatory, Boulder, CO (United States); Fineschi, Silvano [INAF - National Institute for Astrophysics, Astrophysical Observatory of Torino, Pino Torinese (Italy); Knoelker, Michael [High Altitude Observatory, Boulder, CO (United States); Korendyke, Clarence [Space Science Division, Naval Research Laboratory, Washington, DC (United States); McIntosh, Scott W. [High Altitude Observatory, Boulder, CO (United States); Romoli, Marco [Department of Physics and Astronomy, University of Florence, Florence (Italy); Rybak, Jan [Astronomical Institute, Slovak Academy of Sciences, Tatranska Lomnica (Slovakia); Socker, Dennis G. [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Vourlidas, Angelos [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD (United States); Wu, Qian, E-mail: yuan-kuen.ko@nrl.navy.mil [High Altitude Observatory, Boulder, CO (United States)

    2016-02-16

    Comprehensive measurements of magnetic fields in the solar corona have a long history as an important scientific goal. Besides being crucial to understanding coronal structures and the Sun's generation of space weather, direct measurements of their strength and direction are also crucial steps in understanding observed wave motions. In this regard, the remote sensing instrumentation used to make coronal magnetic field measurements is well suited to measuring the Doppler signature of waves in the solar structures. In this paper, we describe the design and scientific values of the Waves and Magnetism in the Solar Atmosphere (WAMIS) investigation. WAMIS, taking advantage of greatly improved infrared filters and detectors, forward models, advanced diagnostic tools and inversion codes, is a long-duration high-altitude balloon payload designed to obtain a breakthrough in the measurement of coronal magnetic fields and in advancing the understanding of the interaction of these fields with space plasmas. It consists of a 20 cm aperture coronagraph with a visible-IR spectro-polarimeter focal plane assembly. The balloon altitude would provide minimum sky background and atmospheric scattering at the wavelengths in which these observations are made. It would also enable continuous measurements of the strength and direction of coronal magnetic fields without interruptions from the day–night cycle and weather. These measurements will be made over a large field-of-view allowing one to distinguish the magnetic signatures of different coronal structures, and at the spatial and temporal resolutions required to address outstanding problems in coronal physics. Additionally, WAMIS could obtain near simultaneous observations of the electron scattered K-corona for context and to obtain the electron density. These comprehensive observations are not provided by any current single ground-based or space observatory. The fundamental advancements achieved by the near-space observations

  9. Waves and Magnetism in the Solar Atmosphere (WAMIS)

    International Nuclear Information System (INIS)

    Ko, Yuan-Kuen; Moses, John D.; Laming, John M.; Strachan, Leonard; Tun Beltran, Samuel; Tomczyk, Steven; Gibson, Sarah E.; Auchère, Frédéric; Casini, Roberto; Fineschi, Silvano; Knoelker, Michael; Korendyke, Clarence; McIntosh, Scott W.; Romoli, Marco; Rybak, Jan; Socker, Dennis G.; Vourlidas, Angelos; Wu, Qian

    2016-01-01

    Comprehensive measurements of magnetic fields in the solar corona have a long history as an important scientific goal. Besides being crucial to understanding coronal structures and the Sun's generation of space weather, direct measurements of their strength and direction are also crucial steps in understanding observed wave motions. In this regard, the remote sensing instrumentation used to make coronal magnetic field measurements is well suited to measuring the Doppler signature of waves in the solar structures. In this paper, we describe the design and scientific values of the Waves and Magnetism in the Solar Atmosphere (WAMIS) investigation. WAMIS, taking advantage of greatly improved infrared filters and detectors, forward models, advanced diagnostic tools and inversion codes, is a long-duration high-altitude balloon payload designed to obtain a breakthrough in the measurement of coronal magnetic fields and in advancing the understanding of the interaction of these fields with space plasmas. It consists of a 20 cm aperture coronagraph with a visible-IR spectro-polarimeter focal plane assembly. The balloon altitude would provide minimum sky background and atmospheric scattering at the wavelengths in which these observations are made. It would also enable continuous measurements of the strength and direction of coronal magnetic fields without interruptions from the day–night cycle and weather. These measurements will be made over a large field-of-view allowing one to distinguish the magnetic signatures of different coronal structures, and at the spatial and temporal resolutions required to address outstanding problems in coronal physics. Additionally, WAMIS could obtain near simultaneous observations of the electron scattered K-corona for context and to obtain the electron density. These comprehensive observations are not provided by any current single ground-based or space observatory. The fundamental advancements achieved by the near-space observations

  10. Impact of atmospheric components on solar clear-sky models at different elevation: Case study Canary Islands

    International Nuclear Information System (INIS)

    Antonanzas-Torres, F.; Antonanzas, J.; Urraca, R.; Alia-Martinez, M.; Martinez-de-Pison, F.J.

    2016-01-01

    Highlights: • Assessment on the performance of solar clear-sky models at different altitude. • SOLIS and REST2 clear-sky models were superior with fine atmospheric inputs. • ESRA proved more robust with low spatial resolution atmospheric inputs. • Over-estimation occurred at the lower site when using inputs from the upper site. - Abstract: The estimation of clear-sky solar irradiance via clear-sky models depends on reliable values of aerosol optical depth, water vapor and ozone content. These atmospheric variables are rarely on-site measured and are generally provided as gridded estimates in very low spatial resolution (1°). The high spatial variability of atmospheric variables within the grid resolution (pixel) leads to important errors in those areas with great atmospheric variability, such as in mountainous regions. In this paper, the performance of three clear-sky solar irradiance models was evaluated in a site with especially great elevation range, the Izana station from the Baseline Surface Radiation Network (Tenerife, Canary Islands) located at a high elevation (2373 m) and just 14 km from the ocean. Aerosols data were obtained from measurements from the Aerosol Robotic Network (AERONET) at the same site. The evaluation was also compared with global horizontal irradiance estimations with clear-sky models in the Guimar station, located at a lower elevation (156 m) and only 11.5 km away from Izana. Results showed a strong influence of elevation on solar radiation estimation under clear-sky conditions.

  11. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  12. Atmospheric Mining in the Outer Solar System:. [Aerial Vehicle Reconnaissance and Exploration Options

    Science.gov (United States)

    Palaszewski, Bryan A.

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.

  13. Atmospheric turbidity and transmittance of solar radiation in Riyadh, Saudi Arabia

    Science.gov (United States)

    El-Shobokshy, Mohammad S.; Al-Saedi, Yaseen G.

    During the last two decades, the urban areas in the city of Riyadh—the capital of Saudi Arabia—were increasing at an exceptionally high rate through a series of development plans. The major plans had been completed by the end of 1982. Some other big utility projects were started and completed during 1987. As a consequence, the air quality has deteriorated markedly and air pollution episodes recorded during these activities showed that particulates were present in the atmosphere at high concentrations. Later in January 1991 the Gulf war started and the firing of the oil fields in Kuwait soon followed. It was estimated that soot particulates were emitted at a rate of 600 ton d -1 along with high rates of other gases. This event has led to significant air quality and visibility problems. Direct normal solar radiation has been measured during the summer months of July and August which were characterized by very dry and cloudless weather for the period between 1982 and 1992. A year-to-year trend of the transmittance of direct normal solar irradiance was then determined. The atmospheric fine aerosol (oil field fires in Kuwait were passing over Riyadh are presented. The reduction in solar irradiation reflects the intensity of dark smoke at a distance of 500 km from Kuwait.

  14. Decreased Stress Levels in Nurses: A Benefit of Quiet Time.

    Science.gov (United States)

    Riemer, Heather C; Mates, Joanna; Ryan, Linda; Schleder, Bonnie J

    2015-09-01

    The benefits of quiet time, a therapeutic method of improving the health care environment, have been evaluated in patients, but only a few studies have examined the effects of quiet time on intensive care nurses. To evaluate the effects of implementing quiet time in a medical-surgical intensive care unit on levels of light, noise, and nurses' stress. Quiet time consisted of turning down the unit lights for a designated time. Levels of light, noise, and nurses' stress were measured. Nurses' stress levels were measured by using a 100-point visual analog scale; unit noise, by using a digital sound level meter (model 407736, Extech Instruments); and unit light, by using an illumination light meter (model 615, Huygen Corporation). Measurements were obtained 30 minutes before and 30 minutes, 1 hour, and 2 hours after implementation of quiet time. Analysis of variance and comparisons of means indicated that both light levels and nurses' stress levels were significantly decreased after quiet time (both P quiet time, but the decrease was not significant (P = .08). Use of quiet time resulted in decreased light levels and decreased stress levels among nurses. Quiet time is an easily performed energy-saving intervention to promote a healthy work environment. ©2015 American Association of Critical-Care Nurses.

  15. Atmospheric Responses from Radiosonde Observations of the 2017 Total Solar Eclipse

    Science.gov (United States)

    Fowler, J.

    2017-12-01

    The Atmospheric Responses from Radiosonde Observations project during the August 21st, 2017 Total Solar Eclipse was to observe the atmospheric response under the shadow of the Moon using both research and operational earth science instruments run primarily by undergraduate students not formally trained in atmospheric science. During the eclipse, approximately 15 teams across the path of totality launched radiosonde balloon platforms in very rapid, serial sonde deployment. Our strategy was to combine a dense ground observation network with multiple radiosonde sites, located within and along the margins of the path of totality. This can demonstrate how dense observation networks leveraged among various programs can "fill the gaps" in data sparse regions allowing research ideas and questions that previously could not be approached with courser resolution data and improving the scientific understanding and prediction of geophysical and hazardous phenomenon. The core scientific objectives are (1) to make high-resolution surface and upper air observations in several sites along the eclipse path (2) to quantitatively study atmospheric responses to the rapid disappearance of the Sun across the United States, and (3) to assess the performance of high-resolution weather forecasting models in simulating the observed response. Such a scientific campaign, especially unique during a total solar eclipse, provides a rare but life-altering opportunity to attract and enable next-generation of observational scientists. It was an ideal "laboratory" for graduate, undergraduate, citizen scientists and k-12 students and staff to learn, explore and research in STEM.

  16. Divergence of sun-rays by atmospheric refraction at large solar zenith angles

    Directory of Open Access Journals (Sweden)

    R. Uhl

    2004-01-01

    Full Text Available For the determination of photolysis rates at large zenith angles it has been demonstrated that refraction by the earth's atmosphere must be taken into account. In fact, due to the modified optical path the optical transmittance is thereby increased in most instances. Here we show that in addition the divergence of sun-rays, which is also caused by refraction but which reduces the direct solar irradiance, should not be neglected. Our calculations are based on a spherically symmetric atmosphere and include extinction by Rayleigh scattering, ozone, and background aerosol. For rays with 10km tangent altitude the divergence yields a reduction of about 10% to 40% at solar zenith angles of 91° to 96°. Moreover, we find that the divergence effect can completely cancel the relative enhancement caused by the increase of transmittance.

  17. BIOSIGNATURE GASES IN H{sub 2}-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Seager, S.; Bains, W.; Hu, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H{sub 2}-dominated atmospheres. We study biosignature gases on exoplanets with thin H{sub 2} atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H{sub 2} atmospheres. In atmospheres with high CO{sub 2} levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H{sub 2} atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH{sub 3}Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH{sub 3} and N{sub 2}O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH{sub 4} and H{sub 2}S, are not effective signs of life in an H{sub 2}-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H{sub 2}-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission

  18. Modeling atmospheric effects of the September 1859 Solar Flare

    OpenAIRE

    Thomas, Brian; Jackman, Charles; Melott, Adrian

    2006-01-01

    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.

  19. Periodicities common to the solar atmosphere rotation and the functioning of human organism

    International Nuclear Information System (INIS)

    Tyagun, N.F.

    1995-01-01

    The study is made of the occurrence rates of menstrual cycle periods for ∼ 2000 women. Peaks on the distribution histogram, corresponding to 21, 25, 28 and 30 days, coincide with a set of axial rotation periods of the solar atmosphere. It is proposed that the functioning of human organism is determined not only by the Moon bu by the rithmics of solar system. 10 refs., 1 fig

  20. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere

    Czech Academy of Sciences Publication Activity Database

    Velinov, P. I. Y.; Asenovski, S.; Kudela, K.; Laštovička, Jan; Mateev, L.; Mishev, A.; Tonev, P.

    2013-01-01

    Roč. 3, 26 March (2013), A14/1-A14/17 ISSN 2115-7251 Grant - others:European COST Action(XE) ES0803 Institutional support: RVO:68378289 Keywords : cosmic rays * solar energetic particles * ionization * ionosphere * atmosphere * solar activity * solar-terrestrial relationships Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/articles/swsc/abs/2013/01/swsc120040/swsc120040.html

  1. Observational Evidence of Magnetic Waves in the Solar Atmosphere

    Science.gov (United States)

    McIntosh, Scott W.

    2012-03-01

    The observational evidence in supporting the presence of magnetic waves in the outer solar atmosphere is growing rapidly - we will discuss recent observations and place them in context with salient observations made in the past. While the clear delineation of these magnetic wave "modes" is unclear, much can be learned about the environment in which they originated and possibly how they are removed from the system from the observations. Their diagnostic power is, as yet, untapped and their energy content (both as a mechanical source for the heating of coronal material and acceleration of the solar wind) remains in question, but can be probed observationally - raising challenges for modeling efforts. We look forward to the IRIS mission by proposing some sample observing sequences to help resolve some of the zoological issues present in the literature.

  2. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    Science.gov (United States)

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  3. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.; Bera, Ashok; Haque, Mohammed; Baby, Rakhi Raghavan; Del Gobbo, Silvano; Alshareef, Husam N.; Wu, Tao

    2015-01-01

    nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely

  4. Long-period fading in atmospherics during severe meteorological activity and associated solar geophysical phenomena at low latitudes

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    1998-02-01

    Full Text Available The records of VLF atmospherics over Calcutta and then over Kalyani (West Bengal during the torrential rainfall, caused by violent monsoon and post-monsoon depressions, exhibit distinct long-period fadings both at day and night. Interesting results obtained from an analysis of round-the-clock atmospherics data and associated meteorological parameters are reported in this paper. A possible correlation between the severe meteorological activity with the solar geophysical phenomena was studied. The results are indicative of an interesting sequence of solar-terrestrial events. A tentative conclusion is reached, suggesting an origin of the fading from atmospheric gravity waves generated in the centre of activity of the depressions concerned.Key words. Meteorology and atmospheric dynamics · Lightning · Precipitation

  5. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  6. Waves and Magnetism in the Solar Atmosphere (WAMIS

    Directory of Open Access Journals (Sweden)

    Yuan-Kuen eKo

    2016-02-01

    Full Text Available Comprehensive measurements of magnetic fields in the solar corona have a long history as an important scientific goal. Besides being crucial to understanding coronal structures and the Sun’s generation of space weather, direct measurements of their strength and direction are also crucial steps in understanding observed wave motions. In this regard, the remote sensing instrumentation used to make coronal magnetic field measurements is well suited to measuring the Doppler signature of waves in the solar structures. In this paper, we describe the design and scientific values of the Waves and Magnetism in the Solar Atmosphere (WAMIS investigation. WAMIS, taking advantage of greatly improved infrared filters and detectors, forward models, advanced diagnostic tools and inversion codes, is a long-duration high-altitude balloon payload designed to obtain a breakthrough in the measurement of coronal magnetic fields and in advancing the understanding of the interaction of these fields with space plasmas. It consists of a 20 cm aperture coronagraph with a visible-IR spectro-polarimeter focal plane assembly. The balloon altitude would provide minimum sky background and atmospheric scattering at the wavelengths in which these observations are made. It would also enable continuous measurements of the strength and direction of coronal magnetic fields without interruptions from the day-night cycle and weather. These measurements will be made over a large field-of-view allowing one to distinguish the magnetic signatures of different coronal structures, and at the spatial and temporal resolutions required to address outstanding problems in coronal physics. Additionally, WAMIS could obtain near simultaneous observations of the electron scattered K-corona for context and to obtain the electron density. These comprehensive observations are not provided by any current single ground-based or space observatory. The fundamental advancements achieved by the near

  7. A Steady Flow Model for the Differential Emission Measure in the Solar Quiet Region

    Science.gov (United States)

    Bong, S.; Chae, J.; Yun, H.; Lee, J.

    2001-05-01

    With high quality UV spectroscopy from the SoHO spacecraft, the physical structure of the solar Transition Region (TR) is of renewed interest. We have investigated the thermodynamic structure of the TR using a one dimensional magnetic tube model constrained to Raymond & Doyle's Differential Emission Measure (DEM) in the average quiet sun. We have included the effect of the expansion of magnetic flux tube and a heating which is required in addition to conductive heat, convective energy and radiative cooling. From the resulting heating and flux tube geometry, we also investigated upflows probable in the transition region. To reproduce the Doppler shift of UV lines measured using SoHO/SUMER (Chae, Yun, & Poland 1998), flux tube needs to expand rapidly above T=105 K at a rate of radius increase up to (7.4x 10-2 km-1)~ r4.1 where r4.1 is the radius at log T = 4.1. To balance the energy, an energy supply by more than (9.3x 104 erg cm-2 s-1)~π r4.12 is required at the region between 1.3x 104 K and 2.5x 104 K regardless of filling factor, suggesting a local heating in the chromosphere. As for upflows, in subsonic flow cases, a model with the same additional energy loss as in a downflow is probable. Also, supersonic flows could be easily made and, in this case, supersonic upflows could carry extra energy to corona without increasing DEM, showing the possibility that upflows play a role in corona heating. This work was supported by the Basic Science Research Institute Program, Ministry of Education (BSRI-98-5408) and by the BK21 Project of the Korean Government.

  8. Ionospheric Peak Electron Density and Performance Evaluation of IRI-CCIR Near Magnetic Equator in Africa During Two Extreme Solar Activities

    Science.gov (United States)

    Adebesin, B. O.; Rabiu, A. B.; Obrou, O. K.; Adeniyi, J. O.

    2018-03-01

    The F2 layer peak electron density (NmF2) was investigated over Korhogo (Geomagnetic: 1.26°S, 67.38°E), a station near the magnetic equator in the African sector. Data for 1996 and 2000 were, respectively, categorized into low solar quiet and disturbed and high solar quiet and disturbed. NmF2 prenoon peak was higher than the postnoon peak during high solar activity irrespective of magnetic activity condition, while the postnoon peak was higher for low solar activity. Higher NmF2 peak amplitude characterizes disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum peaks appeared in equinox. June solstice noontime bite out lagged other seasons by 1-2 h. For any condition of solar and magnetic activities, the daytime NmF2 percentage variability (%VR) measured by the relative standard deviation maximizes/minimizes in June solstice/equinox. Daytime variability increases with increasing magnetic activity. The highest peak in the morning time NmF2 variability occurs in equinox, while the highest evening/nighttime variability appeared in June solstice for all solar/magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period. At daytime, variability is similar for all conditions of solar activities. NmF2 at Korhogo is well represented on the International Reference Ionosphere-International Radio Consultative Committee (IRI-CCIR) option. The model/observation relationship performed best between local midnight and postmidnight period (00-08 LT). The noontime trough characteristics is not prominent in the IRI pattern during high solar activity but evident during low solar conditions when compared with Korhogo observations. The Nash-Sutcliffe coefficients revealed better model performance during disturbed activities.

  9. Atmospheric turbidity parameters affecting the incident solar solar radiation for two different areas in (Eg))

    International Nuclear Information System (INIS)

    Tadros, M.T.Y.; Mosalam, M.A.; El-metwally, M.

    1999-01-01

    Atmospheric turbidity parameters such as Linke turbidity (L-0) and true Angstrom parameters (Bita o , Alpha 0 ) have been determined from the measurements of direct solar radiation for entire spectrum and for specified spectral bands during one year starting from june 1992 to may 1993. Comparison between the industrial area in Helwan (south Cairo) with that of the agricultural area in Mansoura, in (Eg), was done. Analysis of data revealed that the atmospheric turbidity parameters (L Beta) in Helwan is higher than that in Mansoura, except for hot wet months. The increase of L in Mansoura, in summer, is due to the increase of water vapor content. The wavelength exponent Alpha shows that the size the size of particles in Helwan is larger than that in Mansoura

  10. Formation of a hybrid-type proto-atmosphere on Mars accreting in the solar nebula

    Science.gov (United States)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2018-03-01

    Recent studies of the chronology of Martian meteorites suggest that the growth of Mars was almost complete within a few Myr after the birth of the Solar system. During such rapid accretion, proto-Mars likely gravitationally maintained both the solar nebula component and the impact degassing component, containing H2O vapour and reduced gas species, as a proto-atmosphere to be called a hybrid-type proto-atmosphere. Here we numerically analyse the mass and composition of the degassed component and the atmospheric thermal structure sustained by accretional heating. Our results predict that a growing Mars possibly acquired a massive and hot hybrid-type proto-atmosphere with surface pressure and temperature greater than several kbar and 2000 K, respectively, which is sufficient to produce a deep magma ocean. In such a high-temperature and high-pressure environment, a significant amount of H2O, CH4, CO, and H2 is expected to be partitioned into the planetary interior, although this would strongly depend on the dynamics of the magma ocean and mantle solidification. The dissolved H2O may explain the wet Martian mantle implied from basaltic Martian meteorites. Along with the remnant reduced atmosphere after the hydrodynamic atmospheric escape, dissolved reduced gas species may have maintained an earliest Martian surface environment that allowed prebiotic chemical evolution and liquid H2O activities.

  11. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    International Nuclear Information System (INIS)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui

    2012-01-01

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  12. ON THE NON-KOLMOGOROV NATURE OF FLARE-PRODUCTIVE SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandage, Revati S. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, TX 77005-1827 (United States); McAteer, R. T. James, E-mail: mcateer@nmsu.edu [Department of Astronomy, New Mexico State University, MSC 4500, Las Cruces, NM 88001 (United States)

    2016-12-20

    A magnetic power spectral analysis is performed on 53 solar active regions, observed from 2011 August to 2012 July. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the numbers and sizes of solar flares they produce in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic power index. The overall distribution of magnetic power indices has a range of 1.0–2.5. Flare-quiet regions peak at a value of 1.6. However, flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12% of flare-quiet regions exhibit an index greater than 2, whereas 90% of flare-productive regions exhibit an index greater than 2. Flare-quiet regions exhibit a high temporal variance (i.e., the index fluctuates between high and low values), whereas flare-productive regions maintain an index greater than 2 for several days. This shows the importance of including the temporal evolution of active regions in flare prediction studies, and highlights the potential of a 2–3 day prediction window for space weather applications.

  13. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    Science.gov (United States)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project No.284461, www.eheroes.eu).

  14. The "Quiet" Troubles of Low-Income Children

    Science.gov (United States)

    Weissbourd, Richard

    2009-01-01

    Most of the troubles poor at-risk children have are not "loud" problems like disruptive behavior or gang involvement. They are "quiet." The range of these problems is vast. Hunger, dehydration, asthma, obesity, and hearing problems can all insidiously trip children up in school. Some quiet problems are psychological--depression, anxiety, the fear…

  15. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  16. The Western Primary School 'Quiet Room' Project.

    Science.gov (United States)

    King, Angus; Chantler, Zara

    2002-01-01

    This article describes a "Quiet Room" project for students with social, emotional, and behavioral problems at a British primary school. The Quiet Room was designed to provide a nurturing environment away from the classroom in which a child's emotional needs can be explored on a one-to-one basis. Benefits for children, parents, and…

  17. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  18. Dynamics of the solar transition zone

    International Nuclear Information System (INIS)

    Bruner, E.C. Jr.

    1978-01-01

    This paper reports on the analysis of time-resolved C IV line profiles arising from the solar transition zone. Objectives were twofold: to determine whether the 300 s photospheric oscillations penetrate to the transition zone, and to measure the rms velocity disturbance amplitude and its dependence upon solar activity. The data set consisted of 44 times sequences of 50 min average duration and included samples from study experiments of both active and quiet regions of the disk. Power-spectrum analysis of the time series of intensity and line position measurements showed at least one example of a well-developed 300 s oscillation. There was no evidence, however, for 300 s peaks in the average power spectra either in the quiet network or in active regions.The rms velocities were found to be about 2.3 km s - 1 in active regions and 5.7 km s -1 in quiet regions. The suggested average value, allowing for the substantial statistical noise contribution to the quiet Sun data, is about 3 km s -1 . The inferred energy flux, assuming energy transport by acoustic waves, is at most 1.6 x 10 4 ergs cm -2 s -1 for spatial scales greater than 15,000 km and periods in the range 100--1800 s. The acoustic-wave hypothesis apparently fails by at least one order of magnitude to provide the 2--6 x 10 5 ergs cm -2 s -1 thought to be required to replace coronal energy losses. The data are, however, consistent with heating mechanisms based on energy transport by magnetohydrodynamic waves

  19. Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds.

    Science.gov (United States)

    Barker, H. W.; Stephens, G. L.; Partain, P. T.; Bergman, J. W.; Bonnel, B.; Campana, K.; Clothiaux, E. E.; Clough, S.; Cusack, S.; Delamere, J.; Edwards, J.; Evans, K. F.; Fouquart, Y.; Freidenreich, S.; Galin, V.; Hou, Y.; Kato, S.; Li, J.;  Mlawer, E.;  Morcrette, J.-J.;  O'Hirok, W.;  Räisänen, P.;  Ramaswamy, V.;  Ritter, B.;  Rozanov, E.;  Schlesinger, M.;  Shibata, K.;  Sporyshev, P.;  Sun, Z.;  Wendisch, M.;  Wood, N.;  Yang, F.

    2003-08-01

    The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15-25 W m-2 at overhead sun for the standard tropical atmosphere regardless of clouds.Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for

  20. Small-scale Magnetic Flux Emergence in the Quiet Sun

    Science.gov (United States)

    Moreno-Insertis, F.; Martinez-Sykora, J.; Hansteen, V. H.; Muñoz, D.

    2018-06-01

    Small bipolar magnetic features are observed to appear in the interior of individual granules in the quiet Sun, signaling the emergence of tiny magnetic loops from the solar interior. We study the origin of those features as part of the magnetoconvection process in the top layers of the convection zone. Two quiet-Sun magnetoconvection models, calculated with the radiation-magnetohydrodynamic (MHD) Bifrost code and with domain stretching from the top layers of the convection zone to the corona, are analyzed. Using 3D visualization as well as a posteriori spectral synthesis of Stokes parameters, we detect the repeated emergence of small magnetic elements in the interior of granules, as in the observations. Additionally, we identify the formation of organized horizontal magnetic sheets covering whole granules. Our approach is twofold, calculating statistical properties of the system, like joint probability density functions (JPDFs), and pursuing individual events via visualization tools. We conclude that the small magnetic loops surfacing within individual granules in the observations may originate from sites at or near the downflows in the granular and mesogranular levels, probably in the first 1 or 1.5 Mm below the surface. We also document the creation of granule-covering magnetic sheet-like structures through the sideways expansion of a small subphotospheric magnetic concentration picked up and pulled out of the interior by a nascent granule. The sheet-like structures that we found in the models may match the recent observations of Centeno et al.

  1. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Science.gov (United States)

    2010-10-01

    ...-Rule Quiet Zone may be established by automatic approval and remain in effect, subject to § 222.51, if... Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the Pre... 49 Transportation 4 2010-10-01 2010-10-01 false How does this rule affect Pre-Rule Quiet Zones and...

  2. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    1995-06-01

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  3. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  4. Causes of the mid-latitudinal daytime NmF2 semi-annual anomaly at solar minimum

    Science.gov (United States)

    Pavlov, A. V.

    2018-04-01

    Ionospheric ionosonde and radar observations and theoretical calculations of the F2-layer peak altitude, hmF2, and number density, NmF2, over Millstone Hill during winter, spring, summer, and autumn geomagnetically quiet time periods at low solar activity are used to study the causes of the observed daytime NmF2 semi-annual anomaly. It follows from the model simulations that this anomalous phenomenon arises in the ionosphere mainly as a result of seasonal variations of the following atmospheric parameters: (1) the plasma drift along geomagnetic field lines due to corresponding changes in neutral wind components, (2) temperature and number densities of the neutral atmosphere, and (3) an optical thickness of the atmosphere caused by the dependence of the solar zenith angle on the day of the year for the same solar local time. Seasonal variations of the production rate unexcited O+ ions due to chemical reactions involving electronically excited O+ ions contribute to the formation of the NmF2 semi-annual anomaly during the predominant part of the existence time of this anomalous phenomenon. However, these seasonal variations are not significant, and this mechanism should be considered only as an additional source of the NmF2 semi-annual anomaly during its time of existence. The reactions of unexcited O+ ions with vibrationally excited N2 and O2 cause only weak changes of NmF2 and these changes are close in magnitude at a given solar local time during the winter, spring, summer, and autumn daytime conditions under consideration. Ignoring these reactions cannot produce a significant impact on the formation of the NmF2 semi-annual anomaly.

  5. THE TOTAL SOLAR IRRADIANCE CLIMATE DATA RECORD

    Energy Technology Data Exchange (ETDEWEB)

    Dewitte, Steven; Nevens, Stijn [Royal Meteorological Institute of Belgium, Ringlaan 3, B-1180 Brussels (Belgium)

    2016-10-10

    We present the composite measurements of total solar irradiance (TSI) as measured by an ensemble of space instruments. The measurements of the individual instruments are put on a common absolute scale, and their quality is assessed by intercomparison. The composite time series is the average of all available measurements. From 1984 April to the present the TSI shows a variation in phase with the 11 yr solar cycle and no significant changes of the quiet-Sun level in between the three covered solar minima.

  6. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  7. IRIS Burst Spectra Co-spatial to a Quiet-Sun Ellerman-like Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. J.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Freij, N.; Oliver, R. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Reid, A.; Mathioudakis, M., E-mail: c.j.nelson@sheffield.ac.uk [Astrophysics Research Centre (ARC), School of Mathematics and Physics, Queens University, Belfast, BT7 1NN (United Kingdom)

    2017-08-10

    Ellerman bombs (EBs) have been widely studied over the past two decades; however, only recently have the counterparts of these events been observed in the quiet-Sun. The aim of this article is to further understand small-scale quiet-Sun Ellerman-like brightenings (QSEBs) through research into their spectral signatures, including investigating whether the hot signatures associated with some EBs are also visible co-spatial to any QSEBs. We combine H α and Ca ii 8542 Å line scans at the solar limb with spectral and imaging data sampled by the Interface Region Imaging Spectrograph ( IRIS ). Twenty-one QSEBs were identified with average lifetimes, lengths, and widths measured to be around 120 s, 0.″63, and 0.″35, respectively. Three of these QSEBs displayed clear repetitive flaring through their lifetimes, comparable to the behavior of EBs in active regions. Two QSEBs in this sample occurred co-spatial to increased emission in SDO /AIA 1600 Å and IRIS slit-jaw imager 1400 Å data; however, these intensity increases were smaller than those reported co-spatially with EBs. One QSEB was also sampled by the IRIS slit during its lifetime, displaying increases in intensity in the Si iv 1393 Å and Si iv 1403 Å cores, as well as the C ii and Mg ii line wings, analogous to IRIS bursts (IBs). Using RADYN simulations, we are unable to reproduce the observed QSEB H α and Ca ii 8542 Å line profiles, leaving the question of the temperature stratification of QSEBs open. Our results imply that some QSEBs could be heated to transition region temperatures, suggesting that IB profiles should be observed throughout the quiet-Sun.

  8. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  9. Solar and atmospheric neutrinos in three generations with a magnetic moment

    International Nuclear Information System (INIS)

    Pulido, J.; Tao, Z.

    1995-01-01

    A solution to the solar and atomospheric neutrino problems in three generations in the joint context of matter oscillations and the magnetic moment is investigated. An appropriate rotation of the evolution Hamiltonian reduces the three generation case to a two generation one. A convenient background for such a scenario with small neutrino masses and large magnetic moments is given by the Zee-type models, in which the mass generation mechanism leads to a pair of separate orders of magnitude for the mass square differences between neutrino species. We obtain a ratio var-epsilon congruent 10 -2 --10 -3 between these orders of magnitude, so that one of them [(0.3--3)x10 -2 eV 2 ] is suitable for the atmospheric neutrino solution and the other (∼10 -5 eV 2 ) for the solar neutrino solution. The magnetic moment leads to a decrease of the survival probability with solar neutrino energy. Such a decrease is consistent with the experimental situation

  10. Correlation of trace element content in air particulates with solar meteorological data in the atmosphere of Athens

    International Nuclear Information System (INIS)

    Kanias, G.D.; Grimanis, A.P.; Viras, L.G.

    2003-01-01

    Relation between the trace element content in air particulates and solar meteorological data in the atmospheric environment of Athens, Greece, was studied. For this purpose, Sm, Br, As, Na, K, La, Ce, Cr, Ag, Sc, Fe, Zn, Co, Sb, Th were determined by INAA in respirable aerosols collected during winter 1993-1994. The results showed that the average cloudiness, sunshine, and the total solar radiation (sun and sky) on a horizontal surface, (3 variables) have no relation with trace element variation. However, diffuse solar radiation (sun and sky) on a horizontal surface seems to have statistically significant relationship with some of the trace element variation. It forms a single component with some trace elements after the application of the factor analysis. The increase of the same solar variable in the Athens City center, is one of the factors which cannot permit the emission of trace elements in the atmospheric environment from dust soil and car tires. (author)

  11. Depths of formation of the CN molecule lines in the solar atmosphere

    International Nuclear Information System (INIS)

    Porfir'eva, G.A.

    1975-01-01

    The depths of production of lines of weak bands of the CN molecule violet (lambda=4216A) system are calculated by the weight function method. Two models of solar atmosphere are used. Lines with the different rotational vibrational quantum numbers are produced practically in the same layer (tau approximately equal to 0.05-0.06). The difference of depths of production of the line center and the wing is small (Δtau 0 =0.005). The contribution functions for the solar disk center differ little from those for the edge. The calculations carried out are in good agreement with the results obtained from earlier observations

  12. Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2012-12-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth’s geomagnetic filed by space weather, we use the international quiet days’ data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components’ quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation’s amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth’s atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

  13. Solar Wind Interaction and Impact on the Venus Atmosphere

    Science.gov (United States)

    Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.

    2017-11-01

    Venus has intrigued planetary scientists for decades because of its huge contrasts to Earth, in spite of its nickname of "Earth's Twin". Its invisible upper atmosphere and space environment are also part of the larger story of Venus and its evolution. In 60s to 70s, several missions (Venera and Mariner series) explored Venus-solar wind interaction regions. They identified the basic structure of the near-Venus space environment, for example, existence of the bow shock, magnetotail, ionosphere, as well as the lack of the intrinsic magnetic field. A huge leap in knowledge about the solar wind interaction with Venus was made possible by the 14-year long mission, Pioneer Venus Orbiter (PVO), launched in 1978. More recently, ESA's probe, Venus Express (VEX), was inserted into orbit in 2006, operated for 8 years. Owing to its different orbit from that of PVO, VEX made unique measurements in the polar and terminator regions, and probed the near-Venus tail for the first time. The near-tail hosts dynamic processes that lead to plasma energization. These processes in turn lead to the loss of ionospheric ions to space, slowly eroding the Venusian atmosphere. VEX carried an ion spectrometer with a moderate mass-separation capability and the observed ratio of the escaping hydrogen and oxygen ions in the wake indicates the stoichiometric loss of water from Venus. The structure and dynamics of the induced magnetosphere depends on the prevailing solar wind conditions. VEX studied the response of the magnetospheric system on different time scales. A plethora of waves was identified by the magnetometer on VEX; some of them were not previously observed by PVO. Proton cyclotron waves were seen far upstream of the bow shock, mirror mode waves were observed in magnetosheath and whistler mode waves, possibly generated by lightning discharges were frequently seen. VEX also encouraged renewed numerical modeling efforts, including fluid-type of models and particle-fluid hybrid type of models

  14. Heating of the outer solar atmosphere

    International Nuclear Information System (INIS)

    Parker, E.N.

    1983-01-01

    The author discusses the idea that there must be a source of magnetic fields somewhere below the solar surface. He starts by considering present day ideas about the sun's internal structure. The sun has a radius of approximately 700,000 km, of which the outer 100,000 km or so is the convective zone, according to mixing-length models. The dynamo is believed to operate in the convective zone, across which there may be a 5-10% variation in the angular velocity. There are the stretched east-west fields similar to the ones in the earth's core. Associated with these are poloidal fields which contribute to a net dipole moment of the sun and are generated by a dynamo. The author shows that essentially no magnetic field configuration has an equilibrium; they dissipate quickly in spite of the high conductivity in fluid motions and heating. This is probably the major part of the heating of the sun's outer atmosphere. (Auth.)

  15. Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2

    Science.gov (United States)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.; Ferguson, S.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.; Pope, T.; Reeves, R.; Rehse, R.; Shine, R.; Simon, G.; Harvey, J.; Leibacher, J.; Livingston, W.; November, L.; Zirker, J.

    The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.

  16. The lower solar atmosphere

    NARCIS (Netherlands)

    Rutten, R.J.

    1998-01-01

    This "rapporteur" report discusses the solar photosphere and low chromosphere in the context of chemical composition studies. The highly dynamical nature of the photosphere does not seem to jeopardize precise determination of solar abundances in classical fashion. It is still an open question how

  17. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui, E-mail: quweizhe@ouc.edu.cn [College of Environment Oceanography, Ocean University of China, Qingdao 266100 (China)

    2012-07-15

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  18. 49 CFR 222.51 - Under what conditions will quiet zone status be terminated?

    Science.gov (United States)

    2010-10-01

    ...-Quiet Zones § 222.51 Under what conditions will quiet zone status be terminated? (a) New Quiet Zones... 49 Transportation 4 2010-10-01 2010-10-01 false Under what conditions will quiet zone status be terminated? 222.51 Section 222.51 Transportation Other Regulations Relating to Transportation (Continued...

  19. A New Method to Comprehensively Diagnose Shock Waves in the Solar Atmosphere Based on Simultaneous Spectroscopic and Imaging Observations

    Science.gov (United States)

    Ruan, Wenzhi; Yan, Limei; He, Jiansen; Zhang, Lei; Wang, Linghua; Wei, Yong

    2018-06-01

    Shock waves are believed to play an important role in plasma heating. The shock-like temporal jumps in radiation intensity and Doppler shift have been identified in the solar atmosphere. However, a quantitative diagnosis of the shocks in the solar atmosphere is still lacking, seriously hindering the understanding of shock dissipative heating of the solar atmosphere. Here, we propose a new method to realize the goal of the shock quantitative diagnosis, based on Rankine–Hugoniot equations and taking the advantages of simultaneous imaging and spectroscopic observations from, e.g., IRIS (Interface Region Imaging Spectrograph). Because of this method, the key parameters of shock candidates can be derived, such as the bulk velocity and temperature of the plasma in the upstream and downstream, the propagation speed and direction. The method is applied to the shock candidates observed by IRIS, and the overall characteristics of the shocks are revealed quantitatively for the first time. This method is also tested with the help of forward modeling, i.e., virtual observations of simulated shocks. The parameters obtained from the method are consistent with the parameters of the shock formed in the model and are independent of the viewing direction. Therefore, the method we proposed here is applicable to the quantitative and comprehensive diagnosis of the observed shocks in the solar atmosphere.

  20. New solar telescope in Big Bear: evidence for super-diffusivity and small-scale solar dynamos?

    International Nuclear Information System (INIS)

    Goode, Philip R; Abramenko, Valentyna; Yurchyshyn, Vasyl

    2012-01-01

    The 1.6 m clear aperture New Solar Telescope (NST) in Big Bear Solar Observatory (BBSO) is now providing the highest resolution solar data ever. These data have revealed surprises about the Sun on small-scales including the observation that bright points (BPs), which can be used as proxies for the intense, compact magnetic elements that are apparent in photospheric intergranular lanes. The BPs are ever more numerous on ever smaller spatial scales as though there were no limit to how small the BPs can be. Here we discuss high resolution NST data on BPs that provide support for the ideas that a turbulent regime of super-diffusivity dominates in the quiet Sun, and there are local dynamos operating near the solar surface. (comment)

  1. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    Science.gov (United States)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term

  2. Statistical Feature Recognition for Multidimensional Solar Imagery

    Science.gov (United States)

    Turmon, Michael; Jones, Harrison P.; Malanushenko, Olena V.; Pap, Judit M.

    2010-04-01

    A maximum a posteriori (MAP) technique is developed to identify solar features in cotemporal and cospatial images of line-of-sight magnetic flux, continuum intensity, and equivalent width observed with the NASA/National Solar Observatory (NSO) Spectromagnetograph (SPM). The technique facilitates human understanding of patterns in large data sets and enables systematic studies of feature characteristics for comparison with models and observations of long-term solar activity and variability. The method uses Bayes’ rule to compute the posterior probability of any feature segmentation of a trio of observed images from per-pixel, class-conditional probabilities derived from independently-segmented training images. Simulated annealing is used to find the most likely segmentation. New algorithms for computing class-conditional probabilities from three-dimensional Gaussian mixture models and interpolated histogram densities are described and compared. A new extension to the spatial smoothing in the Bayesian prior model is introduced, which can incorporate a spatial dependence such as center-to-limb variation. How the spatial scale of training segmentations affects the results is discussed, and a new method for statistical separation of quiet Sun and quiet network is presented.

  3. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    Science.gov (United States)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  4. 2-D multiline spectroscopy of the solar photosphere

    Science.gov (United States)

    Berrilli, F.; Consolini, G.; Pietropaolo, E.; Caccin, B.; Penza, V.; Lepreti, F.

    2002-01-01

    The structure and dynamics of the photosphere are investigated, with time series of broadband and monochromatic images of quiet granulation, at the solar disk center. Images were acquired with the IPM observing mode at the THEMIS telescope. Velocity and line center intensity fields, derived from the observation of three different photospheric lines, are used to study velocity and intensity patterns at different heights in the photosphere. Automatic segmentation procedures are applied to velocity and intensity frames to extract solar features, and to investigate the dependence of their properties at different scales and heights. We find a dependence of the statistical properties of upflow and downflow regions on the atmospheric height. Larger granules, passing through a great part of the photosphere, are used to investigate the damping of convective motions in stably stratified layers. The results suggest the occurrence of an intense braking in the deep photosphere (first ~ 120 km). Furthermore, we investigate the temporal and spatial evolution of velocity fields, deriving typical time scales of dynamical processes relative to different solar features. In particular, for two selected isolated exploders, we reveal a velocity deceleration in the central region since the early phase of their fragmentation. Based on observations made with THEMIS-CNRS/INSU-CNR operated on the island of Tenerife by THEMIS S.L. in the Spanish Observatorio del Teide of the Instituto de Astrofisica de Canarias.

  5. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  6. On the magnetic effect of the quiet ring current

    International Nuclear Information System (INIS)

    Feldstein, Ya.I.; Porchkhidze, Ts.D.

    1983-01-01

    Magnetic effects of the quiet ring current DRsu (q) along the geomagnetic equator near a minimUm of solar activity are considered. The division of Dsub(st)-variation of the geomagnetic field observed on the Earth's surface into DCF and DR components for January 23-24, 1974 has been carried out. DRsup(q) being 16.7 nT. A comparison with the magnetic field of the ring current and the energy particles moving round the Earth in the radiation zone shows a good agreement in the intensities obtained by two methods. This means that in calculating the Dsub(st)-index the values of the H-component of the field are taken as a bench mark during such time intervals when the DRsup(q) field is approximately compensated by the fields of currents on the magnetopause DCFsup(q). The estimates giVe RCsup(q) approximately - 12 nT

  7. The quiet Sun brightness temperature at 408 MHz

    International Nuclear Information System (INIS)

    Avignon, Y.; Lantos, P.; Palagi, F.; Patriarchi, P.

    1975-01-01

    The flux of the radio quiet Sun and the brightness temperature at 408 MHz (73cm) are derived from measurements with the E-W Nancay interferometer and the E-W arm of the Medicina North Cross. It is shown that the lowest envelopes, which defined the radio quiet Sun, correspond to transits of extended coronal holes across the disk of the Sun. (Auth.)

  8. Ellerman bombs observed with the new vacuum solar telescope and the atmospheric imaging assembly onboard the solar dynamics observatory

    Science.gov (United States)

    Chen, Yajie; Tian, Hui; Xu, Zhi; Xiang, Yongyuan; Fang, Yuliang; Yang, Zihao

    2017-12-01

    Ellerman bombs (EBs) are believed to be small-scale reconnection events occurring around the temperature minimum region in the solar atmosphere. They are often identified as significant enhancements in the extended Hα wings without obvious signatures in the Hα core. Here we explore the possibility of using the 1700 Å images taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to study EBs. From the Hα wing images obtained with the New Vacuum Solar Telescope (NVST) on 2015 May 2, we have identified 145 EBs and 51% of them clearly correspond to the bright points (BPs) in the AIA 1700 Å images. If we resize the NVST images using a linear interpolation to make the pixel sizes of the AIA and NVST images the same, some previously identified EBs disappear and about 71% of the remaining EBs are associated with BPs. Meanwhile, 66% of the compact brightenings in the AIA 1700 Å images can be identified as EBs in the Hα wings. The intensity enhancements of the EBs in the Hα wing images reveal a linear correlation with those of the BPs in the AIA 1700 Å images. Our study suggests that a significant fraction of EBs can be observed with the AIA 1700 Å filter, which is promising for large-sample statistical study of EBs as the seeing-free and full-disk SDO/AIA data are routinely available.

  9. Annual reconstruction of the solar cycle from atmospheric 14C variations

    International Nuclear Information System (INIS)

    Murphy, J.O.

    1990-01-01

    Initially, the rise and fall components of the 11-year solar sunspot cycle are approximated by separate least-squares polynomials for four cycle classifications, which are determined by the magnitude of the average of the annual sunspot numbers per cycle. Following a method is formulated to generate detailed reconstruction of the annual variation of a solar cycle based on this cycle average, and the results obtained for cycles -4 through to 21 are compared with the annual Zurich values. This procedure is then employed to establish annual sunspot numbers using published average cycle values obtained from atmospheric carbon 14 variations, which have been derived from the chemical analysis of tree ring sections. The reconstructed sequences are correlated with the observed cycle values and with tree ring width index chronologies which exhibit a significant 11-year periodicity. It is anticipated that the long carbon 14 records and parallel dendrochronological data could be employed to obtain a more detailed portrayal of previous periods of strong solar activity than that given by current estimates based on historical records. 17 refs., 2 tabs., 9 figs

  10. Variations of B0 and B1 with the solar quiet Sq-current system and comparison with IRI-2012 model at Ilorin

    Science.gov (United States)

    Bello, S. A.; Abdullah, M.; Hamid, N. S. A.; Yoshikawa, A.; Olawepo, A. O.

    2017-07-01

    The ionospheric thickness (B0) and shape (B1) are bottomside profile parameters introduced by the International Reference Ionosphere (IRI) model. We have validated these parameters with the latest version of the IRI-2012 model and compared them with the solar quiet of geomagnetic H-component (SqH). The B0, B1 and SqH are calculated from the measurements obtained from digisonde DPS-4 sounder and the Magnetic Data Acquisition System (MAGDAS) magnetometer, respectively at Ilorin (geo latitude 8.50°N, geo longitude 4.68°E, and Magnetic dip 4.1°S) an equatorial station in the African sector. The study was for the year 2010, a year of low solar activity (with 27-day averaged solar index, F10.7 = 80 sfu). The results show that B0 for the entire months was higher during the daytime than during the night time. On the other hand, the magnitude of B1during the daytime period is lower than nighttime values and exhibit oscillatory pattern. By comparing the experimental observations of the profile parameters with the IRI-2012 model prediction, we found that B0 was fairly represented by the IRI model options during the nighttime period while discrepancies exist between the model estimates and the experimental values during the morning till midday. A close agreement exists between the observed B1 values and IRI model options. We observed a positive and significant correlation coefficient between B0 and SqH indicating a plausible relationship between these parameters while a weak and negative correlation coefficient between B1 and SqH was observed. We concluded that the difference in the relationship of SqH and the profile parameters B0 and B1 observed can be attributed to their sensitivity to the electric field which is responsible for the E × B drift which in turn modulate the height of the F2.

  11. Recruitment of quiet cells at the onset of vasomotion in mesenteric arteries

    DEFF Research Database (Denmark)

    Brings Jacobsen, Jens Christian; Aalkjær, Christian; Matchkov, Vladimir

    2008-01-01

    quiet. At the onset of vasomotion however, all cells, including those that were previously quiet, are forced into synchronized oscillation. We hypothesize that this entrainment of previously quiet cells is caused by the driving force from a collective cyclic variation in membrane potential.   Methods...

  12. New View on Quiet-Sun Photospheric Dynamics Offered by NST Data

    Science.gov (United States)

    Abramenko, Valentyna; Yurchyshyn, V.; Goode, P. R.

    2011-05-01

    Recent observations of the quiet sun photosphere obtained with the 1.6 meter New Solar telescope (NST) of Big Bear Solar observatory (BBSO) delivered new information about photospheric fine structures and their dynamics, as well as posing new questions. The 2-hour uninterrupted data set of solar granulation obtained under excellent seeing conditions on August 3, 2010 (with cadence of 10 sec) was the basis for the study. Statistical analysis of automatically detected and tracked magnetic bright points (MBPs) showed that the MBPs population monotonically increases as their size decreases, down to 60-70 km. Our analysis shows that if the smallest magnetic flux tubes exist, their size is still smaller that 60-70 km, which impose strong restrictions on the modeling of these structures. We also found that the distributions of the MBP's size and lifetime do not follow a traditional Gaussian distribution, typical for random processes. Instead, it follows a log-normal distribution, typical for avalanches, catastrophes, stock market data, etc. Our data set also demonstrated that a majority (98.6 %) of MBPs are short live (<2 min). This remarkable fact was not obvious from previous studies because an extremely high time cadence was required. The fact indicates that the majority of MBPs appear for a very short time (tens of seconds), similar to other transient features, for example, chromospheric jets. The most important point here is that these small and short living MBPs significantly increase dynamics (flux emergence, collapse into MBPs, and magnetic flux recycling) of the solar surface magnetic fields.

  13. HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Roussev, Ilia I. [Division of Geosciences, National Science Foundation Arlington, Virginia (United States); Schmieder, Brigitte, E-mail: leini@ynao.ac.cn [Observatoire de Paris, LESIA, Meudon (France)

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.

  14. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  15. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  16. Radioactivation in ''quiet'' sections of the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-10-01

    Estimation of induced radioactivity in the ''quiet'' sections of the SSC is approached using elementary methods. Estimates are given of total activity and residual dose rates on the surface of magnets in the quiet regions, as well as estimates of the activation of tunnel concrete. The residual radioactivity produced in the magnets and concrete walls of the ''quiet'' regions of the SSC are found to be quite small and of little radiological impact, but that simple scaling could yield results for more ''lossy'' regions

  17. Occurrence and zonal drifts of small-scale ionospheric irregularities over an equatorial station during solar maximum - Magnetic quiet and disturbed conditions

    Science.gov (United States)

    Muella, M. T. A. H.; de Paula, E. R.; Kantor, I. J.; Rezende, L. F. C.; Smorigo, P. F.

    2009-06-01

    A statistical study of L-band amplitude scintillations and zonal drift velocity of Fresnel-scale ionospheric irregularities is presented. Ground-based global positioning system (GPS) data acquired at the equatorial station of São Luís (2.33°S, 44.21°W, dip latitude 1.3°S), Brazil, during the solar maximum period from March 2001 to February 2002 are used in the analysis. The variation of scintillations and irregularity drift velocities with local time, season and magnetic activity are reported. The results reveal that for the near overhead ionosphere (satellite elevation angle >45°) a broad maximum in the occurrence of scintillation is seen from October to February. In general, weak scintillations (S 4 90%) during equinox (March-April; September-October) and December solstice (November-February) quiet time conditions and, many of the scintillations, occurred during pre-midnight hours. The mean zonal velocities of the irregularities are seen to be ˜30 m s -1 larger near December solstice, while during the equinoctial period the velocities decay faster and the scintillations tend to cease earlier. On geomagnetically disturbed nights, scintillation activity seems to be strongly affected by the prompt penetration of magnetospheric electric fields and disturbance dynamo effects. On disturbed days, during the equinox and December solstice seasons, the scintillations tend to be suppressed in the pre-midnight hours, whereas during June solstice months (May-August) the effect is opposite. In the post-midnight period, the mostly marked increase in the scintillation occurrence is observed during the equinox months. The results show that during disturbed conditions only one type of storm (when the main phase maximum takes place during the daytime hours) agrees with the Aarons' description, that is the suppression of L-band scintillations in the first recovery phase night. The results also reveal that the storm-time irregularity drifts become more spread in velocity and

  18. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  19. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  20. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    Science.gov (United States)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  1. Influence of the atmospheric aerosol and air pollution on solar albedo of the earth. Vol. 4

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Mohamed, K.S.

    1996-01-01

    The effect of increasing atmospheric aerosol and air pollutant concentration on the solar albedo and consequently upon the heat budget near the earth's surface is studied. The magnitude of aerosol absorption coefficient to back-scattering coefficient B ab /B bs is calculated. This study will be used to estimate atmospheric stability categories and other meteorological parameters which are affected by thermal state radiation balance of the atmosphere as mixing and inversion height of Inshas nuclear reactor site. Consequently, concentration distribution of radioactive release from Inshas can be evaluated.. 4 figs., 5 tabs

  2. Influence of the atmospheric aerosol and air pollution on solar albedo of the earth. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Mayhoub, A B; Mohamed, K S [Mathematics and Theoretical Physics Department, Nuclear Research Center, Atomic Energy Auhtority, Cairo, (Egypt)

    1996-03-01

    The effect of increasing atmospheric aerosol and air pollutant concentration on the solar albedo and consequently upon the heat budget near the earth`s surface is studied. The magnitude of aerosol absorption coefficient to back-scattering coefficient B{sub ab}/B{sub bs} is calculated. This study will be used to estimate atmospheric stability categories and other meteorological parameters which are affected by thermal state radiation balance of the atmosphere as mixing and inversion height of Inshas nuclear reactor site. Consequently, concentration distribution of radioactive release from Inshas can be evaluated.. 4 figs., 5 tabs.

  3. 49 CFR Appendix C to Part 222 - Guide to Establishing Quiet Zones

    Science.gov (United States)

    2010-10-01

    ... authority. FRA believes that it will be very useful to include these organizations in the planning process... implementation process. This section also discusses Partial (e.g. night time only quiet zones) and Intermediate... provides four basic ways in which a quiet zone may be established. Creation of both New Quiet Zones and Pre...

  4. Do Quiet Areas Afford Greater Health-Related Quality of Life than Noisy Areas?

    Directory of Open Access Journals (Sweden)

    Kim N. Dirks

    2013-03-01

    Full Text Available People typically choose to live in quiet areas in order to safeguard their health and wellbeing. However, the benefits of living in quiet areas are relatively understudied compared to the burdens associated with living in noisy areas. Additionally, research is increasingly focusing on the relationship between the human response to noise and measures of health and wellbeing, complementing traditional dose-response approaches, and further elucidating the impact of noise and health by incorporating human factors as mediators and moderators. To further explore the benefits of living in quiet areas, we compared the results of health-related quality of life (HRQOL questionnaire datasets collected from households in localities differentiated by their soundscapes and population density: noisy city, quiet city, quiet rural, and noisy rural. The dose-response relationships between noise annoyance and HRQOL measures indicated an inverse relationship between the two. Additionally, quiet areas were found to have higher mean HRQOL domain scores than noisy areas. This research further supports the protection of quiet locales and ongoing noise abatement in noisy areas.

  5. A proposed new method for the determination of the solar irradiance at EUV wavelength range

    Science.gov (United States)

    Feldman, Uri; Doschek, G. A.; Seely, J. F.; Landi, E.; Dammasch, I.

    The solar irradiance in the far ultraviolet (FUV) and extreme ultraviolet (EUV) and its time variability are important inputs to geospace models. It provides the primary mechanism for heating the earth's upper atmosphere and creating the ionosphere. Understanding various space weather phenomena requires reliable detailed knowledge of the solar EUV irradiance. Ideally one would like to have a single well-calibrated, high-resolution spectrometer that can continuously monitor the solar irradiance over the relevant wavelengths range. Since this is much too difficult to accomplish, a number of monitoring instruments were constructed in the past, each covering a fraction of the required wavelength range. Assembling solar irradiance from measurements by a number of instruments is extremely difficult and is usually plagued by large uncertainties. To overcome some of the difficulties resulting from such procedures, empirical models have been developed that rely in large part on solar activity levels as proxies. In recent years a different approach has been established for the determination of the solar irradiance, an approach independent of irradiance observations. The new approach is based on the line intensities calculated from emission measure (EM) distributions across the solar surface. The EM distributions are derived from spatially and spectrally resolved measurements of line intensities and describe the temperature and density structure of the basic large scale features of the solar atmosphere, specifically coronal holes, quiet Sun, and active regions. Recently, as a result of detailed analysis of solar upper atmosphere (SUA) spectra recorded by SUMER/SoHO it was discovered that, in contrast to earlier beliefs, the solar EM in 3x105 -4x106 K plasmas does not appear to vary continuously with temperature as previously assumed. Instead it appears to be composed of isothermal structures where each can attain but one of the following four main temperatures: 5x105 , 9x105

  6. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  7. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  8. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  9. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. IRAS observations of radio-quiet and radio-loud quasars

    Science.gov (United States)

    Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.

    1984-01-01

    Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.

  11. Some studies relating to solar-terrestrial physics and the middle atmosphere

    International Nuclear Information System (INIS)

    Theobald, A.G.

    1977-12-01

    A review is given of observed variations in the Earth's rotation rate, and mechanisms by which the Sun might affect the length of day are discussed. Solar activity and means by which the planets might influence this activity are considered. Observed solar activity - weather correlations, in particular in relation to the sun-based, interplanetary magnetic sector structure and some of the suggested mechanisms for producing these correlations are discussed. The simple photochemical production of ozone in the middle atmosphere and the manner in which cosmic rays, through the production of nitrogen compounds, alter the ozone concentration at high altitudes is described. A computer model is developed which calculates ozone concentrations and energy absorption at any altitude, latitude, longitude and time of year and used to predict ozone and temperature change profiles over a 14-day cycle of ultra-violet changes. The existence of a solar magnetic sector linked variation of the high latitude, high altitude NO concentration is postulated and this is incorporated into the computer model to predict a temperature oscillation over a 14-day cycle which varies with geographic latitude and longitude. This effect is investigated in detail. (UK)

  12. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  13. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  14. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    Science.gov (United States)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the

  15. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Quiet Moment around the Campfire

    Centers for Disease Control (CDC) Podcasts

    2014-06-18

    Byron Breedlove reads his essay, "Quiet Moment around the Campfire," about the art of Frederic Remington and the transmission of pathogens as frontiers expand.  Created: 6/18/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/19/2014.

  17. Empirical forecast of quiet time ionospheric Total Electron Content maps over Europe

    Science.gov (United States)

    Badeke, Ronny; Borries, Claudia; Hoque, Mainul M.; Minkwitz, David

    2018-06-01

    An accurate forecast of the atmospheric Total Electron Content (TEC) is helpful to investigate space weather influences on the ionosphere and technical applications like satellite-receiver radio links. The purpose of this work is to compare four empirical methods for a 24-h forecast of vertical TEC maps over Europe under geomagnetically quiet conditions. TEC map data are obtained from the Space Weather Application Center Ionosphere (SWACI) and the Universitat Politècnica de Catalunya (UPC). The time-series methods Standard Persistence Model (SPM), a 27 day median model (MediMod) and a Fourier Series Expansion are compared to maps for the entire year of 2015. As a representative of the climatological coefficient models the forecast performance of the Global Neustrelitz TEC model (NTCM-GL) is also investigated. Time periods of magnetic storms, which are identified with the Dst index, are excluded from the validation. By calculating the TEC values with the most recent maps, the time-series methods perform slightly better than the coefficient model NTCM-GL. The benefit of NTCM-GL is its independence on observational TEC data. Amongst the time-series methods mentioned, MediMod delivers the best overall performance regarding accuracy and data gap handling. Quiet-time SWACI maps can be forecasted accurately and in real-time by the MediMod time-series approach.

  18. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    Energy Technology Data Exchange (ETDEWEB)

    Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  19. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  20. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Ave, Boulder, CO 80305 (United States); Allred, Joel C.; Daw, Adrian [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Cauzzi, Gianna [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Carlsson, Mats, E-mail: Adam.Kowalski@lasp.colorado.edu [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.

  1. A contribution to the study of the influence of the energy of solar wind upon the atmospheric processes

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2003-01-01

    Full Text Available According to the satellite observing of solar wind, and as well according the development of certain weather conditions it is realized that their interactive connections could have important role on the development of atmospheric processes. In this paper is given several of such situations. We have tried to point to a very important significance of new methodological approach in understanding development of meteorological conditions. Researching the influence of the solar wind on the changes of conditions in the atmosphere could develop in several ways but in any case for the further steps a multidiscipline approach is needed. Karen Labitske in Germany has done a lot of research in this area. "The physics is still highly speculative at this point though".

  2. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  3. Radiocarbon evidence for low frequency solar oscillations

    International Nuclear Information System (INIS)

    Damon, P.E.; Jirikowic, I.

    1992-01-01

    From the spectrum of Δ 14 C variations attributed to solar activity modulation of cosmogenic isotope production, a long-period variation (the Hallstattzeit) of 2120±20 years was deduced with 93% statistical confidence. Although most Hallstattzeit harmonic overtones may be shape-related, two also behave as fundamentals: that of 212 years (Suess) and of 88 years (Gleissberg). These exceptional harmonic overtones modulate the 11-year Schwabe solar cycle determined from indices of sunspots. The Hallstattzeit period may be associated with dramatic secular changes in solar behavior. Sun-like stars exhibit quiet and active states consistent with such long-period secular variations. The climate impact of solar output changes may partially explain periods of rapid climate change such as the Little Ice Age associated with 14 C anomalies. (author) 9 tabs., 8 figs., 23 refs

  4. Asymmetries of the solar Ca II lines

    International Nuclear Information System (INIS)

    Heasley, J.N.

    1975-01-01

    A theoretical study of the influence of propagating acoustic pulses in the solar chromosphere upon the line profiles of the Ca II resonance and infrared triplet lines has been made. The major objective has been to explain the observed asymmetries seen in the cores of the H and K lines and to predict the temporal behavior of the infrared lines caused by passing acoustic or shock pulses. The velocities in the pulses, calculated from weak shock theory, have been included consistently in the non-LTE calculations. The results of the calculations show that these lines are very sensitive to perturbations in the background atmosphere caused by the pulses. Only minor changes in the line shapes result from including the velocities consistently in the line source function calculations. The qualitative changes in the line profiles vary markedly with the strength of the shock pulses. The observed differences in the K line profiles seen on the quiet Sun can be explained in terms of a spectrum of pulses with different wavelengths and initial amplitudes in the photosphere. (Auth.)

  5. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong, E-mail: yxt27272@mail.ustc.edu.cn, E-mail: zjun@nao.cas.cn, E-mail: liting@nao.cas.cn, E-mail: yuzong@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  6. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  7. Quiet Periods in Edge Turbulence Preceding the L-H Transition in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.J.; Hager, R.; Hallatschek, K.; Kaye, S.M.; Munsat, T.; Poli, F.M.; Roquemore, A.L.; Sechrest, Y.; Stotler, D.P.

    2010-01-01

    This paper describes the first observations in NSTX of 'quiet periods' in the edge turbulence preceding the L-H transition, as diagnosed by the GPI diagnostic near the outer midplane separatrix. During these quiet periods the GPI D light emission pattern was transiently similar to that seen during Hmode, i.e. with a relatively small fraction of the GPI light emission located outside the separatrix. These quiet periods had a frequency of ∼3 kHz for at least 30 msec before the L-H transition, and were correlated with changes in the direction of the local poloidal velocity. The GPI turbulence images were also analyzed to obtain an estimate for the dimensionless poloidal shearing S =(dVp/dr)(Lr/Lp). The values of S were strongly modulated by the quiet periods, but not otherwise varying for at least 30 msec preceding the L-H transition. Since neither the quiet periods nor the shear flow increased significantly immediately preceding the L-H transition, neither of these appears to be the trigger for this transition, at least for these cases in NSTX.

  8. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  9. Response of earth's atmosphere to increases in solar flux and implications for loss of water from Venus

    International Nuclear Information System (INIS)

    Kasting, J.F.; Pollack, J.B.; Ackerman, T.P.

    1984-01-01

    A one-dimensional radiative-convective model is used to compute temperature and water vapor profiles as functions of solar flux for an earthlike atmosphere. The troposphere is assumed to be fully saturated, with a moist adiabatic lapse rate, and changes in cloudiness are neglected. Predicted surface temperatures increase monotonically from -1 to 111 C as the solar flux is increased from 0.81 to 1.45 times its present value. The results imply that the surface temperature of a primitive water-rich Venus should have been at least 80-100 C and may have been much higher. Water vapor should have been a major atmospheric constituent at all altitudes, leading to the rapid hydrodynamic escape of hydrogen. The oxygen left behind by this process was presumably consumed by reactions with reduced minerals in the crust. 43 references

  10. Development of dual stream PCRTM-SOLAR for fast and accurate radiative transfer modeling in the cloudy atmosphere with solar radiation

    Science.gov (United States)

    Yang, Q.; Liu, X.; Wu, W.; Kizer, S.; Baize, R. R.

    2016-12-01

    Fast and accurate radiative transfer model is the key for satellite data assimilation and observation system simulation experiments for numerical weather prediction and climate study applications. We proposed and developed a dual stream PCRTM-SOLAR model which may simulate radiative transfer in the cloudy atmosphere with solar radiation quickly and accurately. Multi-scattering of multiple layers of clouds/aerosols is included in the model. The root-mean-square errors are usually less than 5x10-4 mW/cm2.sr.cm-1. The computation speed is 3 to 4 orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This model will enable a vast new set of scientific calculations that were previously limited due to the computational expenses of available radiative transfer models.

  11. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  12. Meteorology ans solar physics

    Science.gov (United States)

    Schwarz, Oliver

    When in the second half of the 19th century both solar physics and astrophysics came into existence, various solar phenomena were described by analogies encountered in the terrestrial atmosphere. For a certain time, meteorology played a central role in research on solar processes. At first glance, this may appear as a curious and old-fashioned specialty. However, solar physics owes its first insights into solar structure to various analogies in terrestrial atmospheric studies. The present investigation intends to elucidate this fact, to present details of the historical development, and to demonstrate how our present knowledge in certain fields is based on considerations which were originally taken from the description of the terrestrial atmosphere.

  13. TEMPERATURE GRADIENTS IN THE SOLAR ATMOSPHERE AND THE ORIGIN OF CUTOFF FREQUENCY FOR TORSIONAL TUBE WAVES

    International Nuclear Information System (INIS)

    Routh, S.; Musielak, Z. E.; Hammer, R.

    2010-01-01

    Fundamental modes supported by a thin magnetic flux tube embedded in the solar atmosphere are typically classified as longitudinal, transverse, and torsional waves. If the tube is isothermal, then the propagation of longitudinal and transverse tube waves is restricted to frequencies that are higher than the corresponding global cutoff frequency for each wave. However, no such global cutoff frequency exists for torsional tube waves, which means that a thin and isothermal flux tube supports torsional tube waves of any frequency. In this paper, we consider a thin and non-isothermal magnetic flux tube and demonstrate that temperature gradients inside this tube are responsible for the origin of a cutoff frequency for torsional tube waves. The cutoff frequency is used to determine conditions for the wave propagation in the solar atmosphere, and the obtained results are compared to the recent observational data that support the existence of torsional tube waves in the Sun.

  14. DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields

    DEFF Research Database (Denmark)

    Chassefiere, E.; Nagy, A.; Mandea, M.

    2004-01-01

    DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure...... of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate...

  15. Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.

  16. Motions and magnetic fields in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-09-01

    The measured magnetic fields generally cannot be regarded as ''mean'' values of the magnetic field intensity H due to depolarization effects in the sum of the Zeeman components of small elements. A picture of smallest magnetic elements in the photosphere can be identified with the photospheric network of the granulation. A relatively long lifetime of the elements of this network and characteristics of its evolution show that a magnetic field of H > or approximately = 10/sup 2/ Oe is concentrated in the dark network between granules near to the solar disc center. Direct measurements of H in solar prominences give values of H ranging from 10 to 10/sup 2/ Oe. At their boundary they cannot be smaller than 10/sup 2/ Oe. The chromospheric elements seen in the center of H/sub a/ (spectrograms obtained on the solar stratospheric observatory (SSO) in 1970-1973) are about four times wider than photospheric elements. The growth in size of the structure elements from the photosphere to the chromosphere results from the magnetic expansion of elements floating up in the atmosphere. On the basis of the stratospheric and best filter observations it is shown that typical configurations of the field are magnetic arcs. Sunspots are considered as stationary processes dissipating due to magnetohydrodynamic instabilities. They have (observations on the SSO) considerable regions of a homogeneous magnetic field inside the umbra. The complicated system of twisted magnetic ropes in outer parts of the umbra and penumbra results from the dissipation of the main configuration. The most plausible model of a sunspot seems to be a twisted toroid with a steady magnetic field directed along the axis of symmetry inside the toroid. This model explains the fact of appearance of a secondary sunspot group inside the primary main group. The axis of the sunspot toroid always remains in the photosphere. Some properties of ''super-granules'' and ''giant granules'' are discussed.

  17. MODELING THE CHROMOSPHERE OF A SUNSPOT AND THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Avrett, E.; Tian, H. [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Curdt, W. [Max Planck Institut für Sonnensystemfoschung, Goettingen (Germany); Wülser, J.-P. [Lockheed Martin Advanced Techonology Center (United States)

    2015-10-01

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equations for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.

  18. Spectroscopic and polarimetric study of radio-quiet weak emission line quasars

    Science.gov (United States)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna; Srianand, Raghunathan; Stalin, Chelliah Subramonian; Petitjean, Patrick

    2018-04-01

    A small subset of optically selected radio-quiet QSOs with weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with an infant/shielded broad line region (BLR). High polarisation (p > 3-4%), a hallmark of BL Lacs, can be used to test whether some optically selected ‘radio-quiet weak emission line QSOs’ (RQWLQs) show a fractional polarisation high enough to qualify as radio-quiet analogues of BL Lac objects. To check this possibility, we have made optical spectral and polarisation measurements of a sample of 19 RQWLQs. Out of these, only 9 sources show a non-significant proper motion (hence very likely extragalactic) and only two of them are found to have p > 1%. For these two RQWLQs, namely J142505.59+035336.2 and J154515.77+003235.2, we found the highest polarization to be 1.59±0.53%, which is again too low to classify them as (radio-quiet) BL Lacs, although one may recall that even genuine BL Lacs sometimes appear weakly polarised. We also present a statistical comparison of the optical spectral index, for a sample of 45 RQWLQs with redshift-luminosity matched control samples of 900 QSOs and an equivalent sample of 120 blazars, assembled from the literature. The spectral index distribution of RQWLQs is found to differ, at a high significance level, from that of blazars. This, too, is consistent with the common view that the mechanism of the central engine in RQWLQs, as a population, is close to that operating in normal QSOs and the primary difference between them is related to the BLR.

  19. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2010-02-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  20. Brief quiet ego contemplation reduces oxidative stress and mind-wandering

    Directory of Open Access Journals (Sweden)

    Heidi A. Wayment

    2015-09-01

    Full Text Available Excessive self-concern increases perceptions of threat and defensiveness. In contrast, fostering a more inclusive and expanded sense of self can reduce stress and improve well-being. We developed and tested a novel brief intervention designed to strengthen a student’s compassionate self-identity, an identity that values balance and growth by reminding them of four quiet ego characteristics: detached awareness, inclusive identity, perspective taking, and growth. Students (N = 32 in their first semester of college who reported greater self-protective (e.g., defensive goals in the first two weeks of the semester were invited to participate in the study. Volunteers were randomly assigned to one of three conditions: quiet ego contemplation (QEC, QEC with virtual reality headset (QEC-VR, and control. Participants came to the lab three times to engage in a 15-minute exercise in a 30-day period. The 15-minute Quiet Ego Contemplation (QEC briefly described each quiet ego characteristic followed by a few minutes time to reflect on what that characteristic meant to them. Those in the QEC condition reported improved quiet ego characteristics and pluralistic thinking, decreases in a urinary marker of oxidative stress, and reduced mind-wandering on a cognitive task. Contrary to expectation, participants who wore the VR headsets while listening to the QEC demonstrated the least improvement. Results suggest that a brief intervention that reduces self-focus and strengthens a more compassionate self-view may offer an additional resource that individuals can use in their everyday lives.

  1. Short- and medium-term atmospheric constituent effects of very large solar proton events

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2008-02-01

    Full Text Available Solar eruptions sometimes produce protons, which impact the Earth's atmosphere. These solar proton events (SPEs generally last a few days and produce high energy particles that precipitate into the Earth's atmosphere. The protons cause ionization and dissociation processes that ultimately lead to an enhancement of odd-hydrogen and odd-nitrogen in the polar cap regions (>60° geomagnetic latitude. We have used the Whole Atmosphere Community Climate Model (WACCM3 to study the atmospheric impact of SPEs over the period 1963–2005. The very largest SPEs were found to be the most important and caused atmospheric effects that lasted several months after the events. We present the short- and medium-term (days to a few months atmospheric influence of the four largest SPEs in the past 45 years (August 1972; October 1989; July 2000; and October–November 2003 as computed by WACCM3 and observed by satellite instruments. Polar mesospheric NOx (NO+NO2 increased by over 50 ppbv and mesospheric ozone decreased by over 30% during these very large SPEs. Changes in HNO3, N2O5, ClONO2, HOCl, and ClO were indirectly caused by the very large SPEs in October–November 2003, were simulated by WACCM3, and previously measured by Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. WACCM3 output was also represented by sampling with the MIPAS averaging kernel for a more valid comparison. Although qualitatively similar, there are discrepancies between the model and measurement with WACCM3 predicted HNO3 and ClONO2 enhancements being smaller than measured and N2O5 enhancements being larger than measured. The HOCl enhancements were fairly similar in amounts and temporal variation in WACCM3 and MIPAS. WACCM3 simulated ClO decreases below 50 km, whereas MIPAS mainly observed increases, a very perplexing difference. Upper stratospheric

  2. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  3. Plasma Brightenings in a Failed Solar Filament Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D., E-mail: yingli@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-03-20

    Failed filament eruptions are solar eruptions that are not associated with coronal mass ejections. In a failed filament eruption, the filament materials usually show some ascending and falling motions as well as generating bright EUV emissions. Here we report a failed filament eruption (SOL2016-07-22) that occurred in a quiet-Sun region observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . In this event, the filament spreads out but gets confined by the surrounding magnetic field. When interacting with the ambient magnetic field, the filament material brightens up and flows along the magnetic field lines through the corona to the chromosphere. We find that some materials slide down along the lifting magnetic structure containing the filament and impact the chromosphere, and through kinetic energy dissipation, cause two ribbon-like brightenings in a wide temperature range. There is evidence suggesting that magnetic reconnection occurs between the filament magnetic structure and the surrounding magnetic fields where filament plasma is heated to coronal temperatures. In addition, thread-like brightenings show up on top of the erupting magnetic fields at low temperatures, which might be produced by an energy imbalance from a fast drop of radiative cooling due to plasma rarefaction. Thus, this single event of a failed filament eruption shows the existence of a variety of plasma brightenings that may be caused by completely different heating mechanisms.

  4. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    International Nuclear Information System (INIS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-01-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).

  5. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  6. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    International Nuclear Information System (INIS)

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikić, Zoran

    2012-01-01

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  7. Middle atmospheric thermal structures in Eastern and Western hemispheres over a solar cycle

    International Nuclear Information System (INIS)

    Mohanakumar, K.; Devanarayanan, S.

    1987-01-01

    Temperature variations of the 25-60 km region of the atmosphere over stations in the Eastern and Western Hemispheres were compared for an 11-year solar cycle period (1971-1981). The temperature of the two hemispheres did not show similar variations at the same height and time. A cross-correlation analysis between the variations in temperature of the two hemispheres showed insignificant correlation, except at 30 km over the tropics and at 40 km over the midlatitude. Up to 40 km, the temperature changes in the two hemispheres are identical. At higher levels, Western Hemispheric temperatures were higher than those of the Eastern Hemisphere. The diurnal variation of minor constituents and their vertical transport in the middle atmosphere might be responsible for the differences in temperature observed in the two hemispheres. (author)

  8. Observations of chromospheric lines from OSO-8

    Science.gov (United States)

    Grossmann-Doerth, U.; Kneer, F.; Uexkuell, M.; Artzner, G. E.; Vial, J. C.

    1980-01-01

    Results of OSO-8 measurements of the line profiles of the solar Lyman alpha, Ca II K and Mg II k lines are presented. Observations were obtained with the Laboratoire de Physique Stellaire et Planetaire spectrometer at spectral resolutions of 0.25 and 0.060 A for Lyman alpha and 0.025 A for the Mg II and Ca II lines. The Lyman alpha profiles are found to be highly variable according to spatial position with the intensities of the three lines well correlated, and confirm previous observations of the quiet solar chromosphere. Data suggest that the quiet chromosphere is a dynamical phenomenon whose description in terms of a static model atmosphere is only qualitatively valid at best.

  9. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  10. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  11. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Batlles, F.J. [Dept. de Ingenieria Electrica y Termica, EPS La Rabida, Univ. de Huelva, Huelva (Spain)

    2004-07-01

    Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Aangstroem turbidity coefficient {beta} is frequently used. In this work, we analyse the performance of three methods based on broadband solar irradiance measurements in the estimation of {beta}. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors) means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of {beta} for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns. (orig.)

  12. Statistical evolution of quiet-Sun small-scale magnetic features using Sunrise observations

    Science.gov (United States)

    Anusha, L. S.; Solanki, S. K.; Hirzberger, J.; Feller, A.

    2017-02-01

    The evolution of small magnetic features in quiet regions of the Sun provides a unique window for probing solar magneto-convection. Here we analyze small-scale magnetic features in the quiet Sun, using the high resolution, seeing-free observations from the Sunrise balloon borne solar observatory. Our aim is to understand the contribution of different physical processes, such as splitting, merging, emergence and cancellation of magnetic fields to the rearrangement, addition and removal of magnetic flux in the photosphere. We have employed a statistical approach for the analysis and the evolution studies are carried out using a feature-tracking technique. In this paper we provide a detailed description of the feature-tracking algorithm that we have newly developed and we present the results of a statistical study of several physical quantities. The results on the fractions of the flux in the emergence, appearance, splitting, merging, disappearance and cancellation qualitatively agrees with other recent studies. To summarize, the total flux gained in unipolar appearance is an order of magnitude larger than the total flux gained in emergence. On the other hand, the bipolar cancellation contributes nearly an equal amount to the loss of magnetic flux as unipolar disappearance. The total flux lost in cancellation is nearly six to eight times larger than the total flux gained in emergence. One big difference between our study and previous similar studies is that, thanks to the higher spatial resolution of Sunrise, we can track features with fluxes as low as 9 × 1014 Mx. This flux is nearly an order of magnitude lower than the smallest fluxes of the features tracked in the highest resolution previous studies based on Hinode data. The area and flux of the magnetic features follow power-law type distribution, while the lifetimes show either power-law or exponential type distribution depending on the exact definitions used to define various birth and death events. We have

  13. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  14. On the hazard of quiet vehicles to pedestrians and drivers.

    Science.gov (United States)

    Wogalter, Michael S; Lim, Raymond W; Nyeste, Patrick G

    2014-09-01

    The need to produce more efficient and less polluting vehicles has encouraged mass production of alternative energy vehicles, such as hybrid and electric cars. Many of these vehicles are capable of very quiet operation. While reducing noise pollution is desirable, quieter vehicles could negatively affect pedestrian safety because of reduced sound cues compared to louder internal combustion engines. Three studies were performed to investigate people's concern about this issue. In Study 1, a questionnaire completed by 378 people showed substantial positive interest in quiet hybrid and electric cars. However, they also indicated concern about the reduced auditory cues of quiet vehicles. In Study 2, 316 participants rated 14 sounds that could be potentially added to quiet alternative-energy vehicles. The data showed that participants did not want annoying sounds, but preferred adding "engine" and "hum" sounds relative to other types of sounds. In Study 3, 24 persons heard and rated 18 actual sounds within 6 categories that were added to a video of a hybrid vehicle driving by. The sounds most preferred were "engine" followed by "white noise" and "hum". Implications for adding sounds to facilitate pedestrians' detection of moving vehicles and for aiding drivers' awareness of speed are discussed. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. High resolution atlas of the solar spectrum 2678-2931 A

    Science.gov (United States)

    Allen, M. S.; Mcallister, H. C.; Jefferies, J. T.

    1977-01-01

    A portion of the ultraviolet solar spectrum is presented in this high resolution atlas. The data, originating from a rocket echelle spectrogram obtained on 19 June 1974 of a quiet area near the center of the solar disk, extend from 2678 to 2931 A. The instrument had a nominal resolving power of 200,000 at these wavelengths and the rms precision of the rectified wavelength scale is 15 mA. Absolute intensities are computed by calibration to the absolute measurements of Kohl and Parkinson.

  16. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    Science.gov (United States)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  17. New enhancement mechanism of the transitions in the Earth of the solar and atmospheric neutrinos crossing the Earth core

    International Nuclear Information System (INIS)

    Petcov, S.T.

    1999-01-01

    It is shown that the ν 2 → ν e and ν μ → ν e (ν e → ν μ(τ) ) transitions respectively of the solar and atmospheric neutrinos in the Earth in the case of ν e - ν μ(τ) mixing in vacuum, are strongly enhanced by a new type of resonance when the neutrinos cross the Earth core. The resonance is operative at small mixing angles but differs from the MSW one. It is in many respects similar to the electron paramagnetic resonance taking place in a specific configuration of two magnetic fields. The conditions for existence of the new resonance include, in particular, specific constraints on the neutrino oscillation lengths in the Earth mantle and in the Earth core, thus the resonance is a 'neutrino oscillation length resonance'. It leads also to enhancement of the ν 2 → ν e and ν e → ν s transitions in the case of ν e - ν s mixing and of the ν-bar s (or ν μ → ν s ) transitions at small mixing angles. The presence of the neutrino oscillation length resonance in the transitions of solar and atmospheric neutrinos traversing the Earth core has important implications for current and future solar and atmospheric neutrino experiments, and more specifically, for the interpretation of the results of the Super-Kamiokande experiment

  18. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiajia; Zhou Zhenjun; Wang Yuming; Liu Rui; Liao Chijian; Shen Chenglong; Zheng Huinan; Miao Bin; Su Zhenpeng; Wang, S. [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Bin, E-mail: ymwang@ustc.edu.cn, E-mail: ymwang@ustc.edu.cn [Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094 (China)

    2012-10-20

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed, compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).

  19. Investigating the Impact of a Solar Eclipse on Atmospheric Radiation

    Science.gov (United States)

    Fender, Josh; Morse, Justin; Ringler, John; Galovich, Cynthia; Kuehn, Charles A.; Semak, Matthew

    2018-06-01

    We present a project that measured atmospheric muon flux as a function of altitude during a total solar eclipse. An auxiliary goal was to design and build a cost-effective muon detection device that is simple enough for those with minimal training to build. The detector is part of a self-contained autonomous payload that is carried to altitude aboard a weather balloon. The detection system consists of three Geiger counters connected to a coincidence circuit. This system, along with internal and external temperature sensors and an altimeter, are controlled by an onboard Arduino Mega microcontroller. An internal frame was constructed to house and protect the payload components using modular 3D-printed parts. The payload was launched during the 2017 solar eclipse from Guernsey, Wyoming, along the path of totality. Initial data analysis indicates that line-of-sight blockage of the sun due to a total eclipse produces a negligible difference in muon flux when compared to the results of previous daytime flights. The successful performance of the payload, its low overall cost, and its ease of use suggest that this project would be well-suited for individuals or groups such as high school or undergraduate science students to reproduce and enhance.

  20. MASC: Magnetic Activity of the Solar Corona

    Science.gov (United States)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  1. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  2. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  3. Determination of the decameter wavelength spectrum of the quiet sun

    International Nuclear Information System (INIS)

    Erickson, W.C.; Gergely, T.E.; Kundu, M.R.; Mahoney, M.J.

    1977-01-01

    The Teepee Tee array of the Clark Lake Radio Observatory has been used to compare the flux of the Sun with that of the sidereal sources Tau A and Vir A at several frequencies in the range 109.0-19.0 MHz. Only the two central banks of the E-W arm of the array were used as elements of a phase switched interferometer so that the Sun could be observed as a point souce and compared directly to the sidereal sources. The Sun was still partially resolved however, and appropriate corrections for this effect were made. The observations were taken at times when the Sun and either Tau A or Vir A were at the same declination. The authors have therefore been able to derive the values for the solar flux, without having to resort to a gain vs zenith distance correction. The observations, combined with those available in the literature, allow an accurate derivation of the meter and decameter wavelength spectrum of the quiet Sun. (Auth.)

  4. THE RESPONSE OF A THREE-DIMENSIONAL SOLAR ATMOSPHERE TO WAVE-DRIVEN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Scullion, E. [Institute of Theoretical Astrophysics, University of Oslo (Norway); Erdelyi, R.; Fedun, V. [Solar Physics and Space Plasma Research Centre (SP2RC), Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Doyle, J. G., E-mail: eamonms@astro.uio.no, E-mail: robertus@sheffield.ac.uk, E-mail: v.fedun@sheffield.ac.uk, E-mail: jgd@arm.ac.uk [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom)

    2011-12-10

    Global oscillations from the solar interior are, mainly, pressure-driven (p-modes) oscillations with a peak power of a five-minute period. These oscillations are considered to manifest in many phenomena in the lower solar atmosphere, most notably, in spicules. These small-scale jets may provide the key to understanding the powering mechanisms of the transition region (TR) and lower corona. Here, we simulate the formation of wave-driven (type-I) spicule phenomena in three dimensions and the transmission of acoustic waves from the lower chromosphere and into the corona. The outer atmosphere oscillates in response to the jet formation, and in turn, we reveal the formation of a circular seismic surface wave, which we name as a Transition Region Quake (TRQ). The TRQ forms as a consequence of an upward propelling spicular wave train that repeatedly punctures and energizes the TR. The steep density gradient enables the TRQ to develop and radially fan outward from the location where the spicular plasma column impinges the TR. We suggest the TRQ formation as a formidable mechanism in continuously sustaining part of the energy budget of the TR. We present a supporting numerical model which allow us to determine the level of energy dumping at the TR by upward-propagating p-modes. Upon applying a wavelet analysis on our simulations we identify the presence of a chromospheric cavity which resonates with the jet propagation and leaves behind an oscillatory wake with a distinctive periodicity. Through our numerical analysis we also discover type-I spicule turbulence leading to a convection-based motion in the low corona.

  5. Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer

    Science.gov (United States)

    Lee, Jae Nyung

    2008-10-01

    Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum

  6. MAVEN Observations of Atmospheric Loss at Mars

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other

  7. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  8. Solar flare location effect on the spectral characteristics of the diurnal anisotropy of cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, R S; Kumar, S; Naqvi, T N [Aligarh Muslim Univ. (India)

    1977-01-01

    The spectral parameters of the diurnal anisotropy of cosmic ray intensity are studied separately for days where the solar flares have occurred on the western limb as well as on the eastern limb of the solar disc for both nucleonic as well as mesonic components of the cosmic rays. It is observed that the diurnal amplitude of the cosmic ray intensity in space is larger for days where solar flares have occurred on the western limb of the solar disc as compared to the days where solar flares have occurred on the eartern limb of the solar disc. This is true in both nucleonic as well as mesonic components of the cosmic ray intensity. The average value of the direction in space of diurnal anisotropy in local asymptotic time for various stations is almost same and is observed at around the same hours for flares which occur on the western as well as eastern limb of the solar disc. When these results are compared with the direction of the diurnal anisotropy in space on quiet days, it is found that the direction of the diurnal anisotropy on days where solar flares have occurred on the western limb as well as eastern limb of the solar disc is earlier in comparison to quiet days. This phase shift towards earlier hours is about three hours for nucleonic as well as mesonic components of the cosmic rays intensity. The variation of the rigidity exponent observed on different types of days for the nucleonic component has also been discussed.

  9. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    Science.gov (United States)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  10. 76 FR 64353 - Buy Quiet Workshop

    Science.gov (United States)

    2011-10-18

    ... no later than October 21, 2011: 1. Name: 2. Gender: 3. Date of Birth: 4. Place of birth (city, province, state, country): 5. Citizenship: 6. Passport Number: 7. Date of Passport Issue: 8. Date of... employee representatives who want to assist in bringing ``Buy Quiet'' programs into the workplace. Format...

  11. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    International Nuclear Information System (INIS)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y.; Bueno, J. Trujillo; Winebarger, A.; Kobayashi, K.; Auchère, F.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Goto, M.; Belluzzi, L.

    2017-01-01

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  12. Discovery of Scattering Polarization in the Hydrogen Ly α Line of the Solar Disk Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Katsukawa, Y.; Kubo, M.; Giono, G.; Hara, H.; Suematsu, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205 (Spain); Winebarger, A.; Kobayashi, K. [Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), Huntsville, AL 35812 (United States); Auchère, F. [Institut d’Astrophysique Spatiale, Université Paris Sud, Batiment 121, F-91405 Orsay (France); Ishikawa, S.; Shimizu, T.; Sakao, T.; Tsuneta, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichimoto, K. [Hida Observatory, Kyoto University, Takayama, Gifu 506-1314 (Japan); Goto, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Belluzzi, L., E-mail: ryouhei.kano@nao.ac.jp [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); and others

    2017-04-10

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Ly α line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Ly α line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q / I and U / I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere–corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  13. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  14. Nb-TiO{sub 2}/polymer hybrid solar cells with photovoltaic response under inert atmosphere conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lira-Cantu, Monica; Khoda Siddiki, Mahbube; Munoz-Rojas, David; Amade, Roger [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Gonzalez-Pech, Natalia I. [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM), Ave. Eugenio Garza Sada, 64640 Monterrey, N.L. (Mexico)

    2010-07-15

    Hybrid Solar Cells (HSC) applying Nb-TiO{sub 2} in direct contact with a conducting organic polymer, MEH-PPV, show higher stability than the bare TiO{sub 2}-based HSC when analyzed under inert atmosphere conditions. IPCE analyses revealed that inert atmospheres affect directly the semiconductor oxide in the first stages of the analyses but photovoltaic performance stabilizes after several hours. A 20 wt% Nb-doped TiO{sub 2} presented the highest stability and photovoltaic properties. The behavior has been attributed to the solubility limit of Nb within the TiO{sub 2} beyond 20 wt% doping level where the co-existence of NbO{sub 2} is observed. The HSCs were analyzed under controlled N{sub 2} atmosphere and 1000 W/m{sup 2} (AM 1.5) irradiation. (author)

  15. Phase synchronisation of the three leg joints in quiet human stance.

    Science.gov (United States)

    Günther, Michael; Putsche, Peter; Leistritz, Lutz; Grimmer, Sten

    2011-03-01

    Quiet human stance is a dynamic multi-segment phenomenon. In literature, coupled ankle and hip actions are in the focus and examinations are usually restricted to frequency contributions below 4 Hz. Very few studies point to the knee playing an active role, and just one study gives evidence of higher frequency contributions. In order to investigate the dynamic coupling of all three leg joints in more depth, we revisited an experimental data set on quiet human stance. Since phase synchronisation is a strong indicator of non-linear coupling behind, we used the phase synchronisation index (PSI) to quantify the degree of leg joint coupling as a function of frequency. One main result is that we did not find any synchronisation between ankle and hip across the whole frequency range examined up to 8 Hz. In contrast, there is significant synchronisation between ankle and knee at a couple of frequencies between 1.25 Hz and 8 Hz when looking at the kinematics. Their joint torques rather synchronise below 2 Hz. There is also synchronisation between knee and hip kinematics above 6 Hz, however, only significant at one frequency bin in our data set. From this, we would infer that the multiple mechanical degrees of freedom contributing to quiet human stance should be chosen according to, thus map, physiology. Thereby, the knee is indispensable and bi-articular muscles play a central role in organising quiet human stance. Examining the non-stationarity of phase synchronisations will probably advance the understanding of self-organisation of quiet human stance. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  17. Micro Coronal Bright Points Observed in the Quiet Magnetic Network by SOHO/EIT

    Science.gov (United States)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.

    1997-01-01

    When one looks at SOHO/EIT Fe XII images of quiet regions, one can see the conventional coronal bright points (> 10 arcsec in diameter), but one will also notice many smaller faint enhancements in brightness (Figure 1). Do these micro coronal bright points belong to the same family as the conventional bright points? To investigate this question we compared SOHO/EIT Fe XII images with Kitt Peak magnetograms to determine whether the micro bright points are in the magnetic network and mark magnetic bipoles within the network. To identify the coronal bright points, we applied a picture frame filter to the Fe XII images; this brings out the Fe XII network and bright points (Figure 2) and allows us to study the bright points down to the resolution limit of the SOHO/EIT instrument. This picture frame filter is a square smoothing function (hlargelyalf a network cell wide) with a central square (quarter of a network cell wide) removed so that a bright point's intensity does not effect its own background. This smoothing function is applied to the full disk image. Then we divide the original image by the smoothed image to obtain our filtered image. A bright point is defined as any contiguous set of pixels (including diagonally) which have enhancements of 30% or more above the background; a micro bright point is any bright point 16 pixels or smaller in size. We then analyzed the bright points that were fully within quiet regions (0.6 x 0.6 solar radius) centered on disk center on six different days.

  18. Unified fit of solar and atmospheric neutrinos: towards the MNSP matrix

    International Nuclear Information System (INIS)

    2002-01-01

    Present solar and atmospheric neutrino give a strong indication that neutrinos oscillate between the three active species. This is the first step towards the determination of their mass. But we have also to determine the 3 x 3 neutrino mixing matrix (3 angles and one or several phases linked to CP violation), called MNSP (Maki-Nakagawa-Suzuki-Pontecorvo) and similar to the quark mixing matrix, called CKM (Cabibbo-Kobayashi-Maskawa). The purpose of the colloquium (one day) is to give an overview of the present situation and what progresses are expected in the forthcoming years. 3 guidelines: pedagogical approach, critical review of the experimental situation and of the different analyses, lookout to the future. (author)

  19. Quiet Ego, Self-Regulatory Skills, and Perceived Stress in College Students.

    Science.gov (United States)

    Wayment, Heidi A; Cavolo, Keragan

    2018-04-13

    Examine the unique contributions of self-control and grit subscales (perseverance, interest consistency) as potential mediators of the relationship between quiet ego characteristics and less perceived stress in college students. Data from 1117 college students were collected between October, 2015 and May, 2016. The sample was split randomly into exploratory and confirmatory samples. Multiple mediator models were tested with PROCESS module (SPSS v. 24) in both samples. Hypotheses were largely confirmed with self-control fully mediating the link between quiet ego and perceived stress in both samples. Although many self-regulatory constructs may argue for their positive impact on college student outcomes, interventions that strengthen self-control, and not grit, may be most promising to reduce perceived stress. Further, interventions to strengthen quiet ego characteristics may be beneficial for strengthening self-control in college students.

  20. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  1. A quiet ego quiets death anxiety: humility as an existential anxiety buffer.

    Science.gov (United States)

    Kesebir, Pelin

    2014-04-01

    Five studies tested the hypothesis that a quiet ego, as exemplified by humility, would buffer death anxiety. Humility is characterized by a willingness to accept the self and life without comforting illusions, and by low levels of self-focus. As a consequence, it was expected to render mortality thoughts less threatening and less likely to evoke potentially destructive behavior patterns. In line with this reasoning, Study 1 found that people high in humility do not engage in self-serving moral disengagement following mortality reminders, whereas people low in humility do. Study 2 showed that only people low in humility respond to death reminders with increased fear of death, and established that this effect was driven uniquely by humility and not by some other related personality trait. In Study 3, a low sense of psychological entitlement decreased cultural worldview defense in response to death thoughts, whereas a high sense of entitlement tended to increase it. Study 4 demonstrated that priming humility reduces self-reported death anxiety relative to both a baseline and a pride priming condition. Finally, in Study 5, experimentally induced feelings of humility prevented mortality reminders from leading to depleted self-control. As a whole, these findings obtained from relatively diverse Internet samples illustrate that the dark side of death anxiety is brought about by a noisy ego only and not by a quiet ego, revealing self-transcendence as a sturdier, healthier anxiety buffer than self-enhancement. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  2. Circulation of the polar thermosphere during geomagnetically quiet and active times as observed by Dynamics Explorer 2

    International Nuclear Information System (INIS)

    McCormac, F.G.; Killeen, T.L.; Thayer, J.P.; Hernandez, G.; Tschan, C.R.; Ponthieu, J.J.; Spencer, N.W.

    1987-01-01

    Neutral wind measurements obtained by instruments on board the Dynamics Explorer 2 (DE 2) spacecraft have been used to study the effects of geomagnetic activity on the circulation of the high-latitude neutral thermosphere for solar maximum conditions during the periods of November 1981 through January 1982 and November 1982 through January 1983. The data have been sorted and ordered according to the two geophysical indices Kp and (auroral electrojet) AE. Simple expressions have been derived which describe (1) the maximum antisunward wind speed in the geomagnetic polar cap, (2) the maximum sunward wind speeds in the dawn and dusk sectors of the auroral oval, and (3) the latitudinal extent of the polar cap antisunward neutral wind as functions of Kp and AE. The results show a positive correlation between the geomagnetic indices and the three characteristic features of the neutral circulation described above. Averaged vector wind fields in geomagnetic coordinates for Kp ≤ 2 and Kp ≥ 4 in both northern and southern hemispheres for the 6 months have been derived from the data. In doing this, a first-order invariance of the neutral wind circulation in geomagnetic coordinates as a function of universal time (UT) was assumed. The results show a two-cell circulation pattern in the northern winter hemisphere for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. A diminution of this cell occurs for reduced levels of geomagnetic activity

  3. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  5. Vowel and tone recognition in quiet and in noise among Mandarin-speaking amusics.

    Science.gov (United States)

    Tang, Wei; Wang, Xi-Jian; Li, Jia-Qi; Liu, Chang; Dong, Qi; Nan, Yun

    2018-03-06

    Music and language are two intricately linked communication modalities in humans. A deficit in music pitch processing as manifested in the condition of congenital amusia has been related to difficulties in lexical tone processing for both tone and non-tonal languages. However, it is still unclear whether amusia also affects the perception of vowel phonemes in quiet and in noise. In this study, we examined vowel-plus-tone identification in quiet and noise conditions among Mandarin-speaking amusics with and without speech tone difficulties (tone agnosics and pure amusics, respectively), and IQ- and age-matched controls. Overall, pure amusics showed vowel and tone identification comparable to the controls in both quiet and noise conditions. Compared to pure amusics and controls, tone agnosics showed deficits in tone perception in both quiet and noise conditions. More importantly, their vowel perception was lower than pure amusics and controls in noise conditions, e.g., at a signal-to-noise ratio of -4 dB, although they showed normal-like performance in quiet and at a signal-to-noise ratio of -8 dB. These results suggest that when amusia affected speech tone processing (e.g., tone agnosics), it could also compromise vowel processing in noise. However, amusia alone does not affect tone or vowel perception in Mandarin Chinese either in quiet or in noise. Overall, the current study highlights the necessity of taking heterogeneity within the amusic group into account when considering the related speech deficits in this group. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. NmF2 Morphology during four-classes of solar and magnetic activity conditions at an African station around the EIA trough and comparison with IRI-2016 Map

    Science.gov (United States)

    Adebesin, B.; Rabiu, B.; Obrou, O. K.

    2017-12-01

    Better understanding of the electrodynamics between parameters used in describing the ionospheric layer and their solar and geomagnetic influences goes a long way in furthering the expansion of space weather knowledge. Telecommunication and scientific radar launch activities can however be interrupted either on a larger/smaller scales by geomagnetic activities which is susceptible to changes in solar activity and effects. Consequently, the ionospheric NmF2 electrodynamics was investigated for a station near the magnetic dip in the African sector (Korhogo, Geomagnetic: -1.26°N, 67.38°E). Data covering years 1996 and 2000 were investigated for four categories of magnetic and solar activities viz (i) F10.7 7 nT (low solar disturbed, LSD); (iii) F10.7 > 150 sfu, ap ≤ 7 nT (high solar quiet, HSQ); and (iv) F10.7 > 150 sfu, ap > 7 nT (high solar disturbed, HSD). NmF2 revealed a pre-noon peak higher than the post-noon peak during high solar activity irrespective of magnetic activity condition and overturned during low solar activity. Higher NmF2 peak amplitude however characterise disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum pre-/post-noon peaks appeared in equinox season. June solstice noon-time bite out lagged other seasons by 1-2 h. Daytime variability increases with increasing magnetic activity. Equinox/June solstice recorded the highest pre-sunrise/post-sunset peak variability magnitudes with the lowest emerging in June solstice/equinox for all solar and magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period; while the range is similar for daytime observations. The noon-time trough characteristics is not significant in the IRI NmF2 pattern during high solar activity but evident during low solar conditions. IRI-2016 map performed best during disturbed activity conditions especially for F10.7 7 nT condition.

  7. The role of periodicity in perceiving speech in quiet and in background noise.

    Science.gov (United States)

    Steinmetzger, Kurt; Rosen, Stuart

    2015-12-01

    The ability of normal-hearing listeners to perceive sentences in quiet and in background noise was investigated in a variety of conditions mixing the presence and absence of periodicity (i.e., voicing) in both target and masker. Experiment 1 showed that in quiet, aperiodic noise-vocoded speech and speech with a natural amount of periodicity were equally intelligible, while fully periodic speech was much harder to understand. In Experiments 2 and 3, speech reception thresholds for these targets were measured in the presence of four different maskers: speech-shaped noise, harmonic complexes with a dynamically varying F0 contour, and 10 Hz amplitude-modulated versions of both. For experiment 2, results of experiment 1 were used to identify conditions with equal intelligibility in quiet, while in experiment 3 target intelligibility in quiet was near ceiling. In the presence of a masker, periodicity in the target speech mattered little, but listeners strongly benefited from periodicity in the masker. Substantial fluctuating-masker benefits required the target speech to be almost perfectly intelligible in quiet. In summary, results suggest that the ability to exploit periodicity cues may be an even more important factor when attempting to understand speech embedded in noise than the ability to benefit from masker fluctuations.

  8. Multi-wavelength Observations of Two Explosive Events and Their Effects on the Solar Atmosphere

    Directory of Open Access Journals (Sweden)

    Agustinus G. Admiranto

    2016-09-01

    Full Text Available We investigated two flares in the solar atmosphere that occurred on June 3, 2012 and July 6, 2012 and caused propagation of Moreton and EIT waves. In the June 3 event, we noticed a filament winking which presumably was caused by the wave propagation from the flare. An interesting feature of this event is that there was a reflection of this wave by a coronal hole located alongside the wave propagation, but not all of this wave was transmitted by the coronal hole. Using the running difference method, we calculated the speed of Moreton and EIT waves and we found values of 926 km/s before the reflection and 276 km/s after the reflection (Moreton wave and 1,127 km/s before the reflection and 46 km/s after the reflection (EIT wave. In the July 6 event, this phenomenon was accompanied by type II and type III solar radio bursts, and we also performed a running difference analysis to find the speed of the Moreton wave, obtaining a value of 988 km/s. The speed derived from the analysis of the solar radio burst was 1,200 km/s, and we assume that this difference was caused by the different nature of the motions in these phenomena, where the solar radio burst was caused by the propagating particles, not waves.

  9. Thermospheric/ionospheric disturbances under quiet and magneto-perturbed conditions

    Science.gov (United States)

    Zakharov, Ivan G.; Mozgovaya, O. L.

    2003-04-01

    The basic mechanisms of ionospheric storms (IS) are investigated sufficiently full. Despite of it a quantitative forecast of ionospheric disturbance is not always satisfactory. One of the possible causes can be related to the insufficient account of a background ionospheric. In particualr using electron concentration Ne in the peak of F2-region and total electron content are shown, that the amplitude of a IS positive phase for similar magnetic storms can differ by ~1,5 times. Hence a cause of distinction can be variations in the thermosphere conditions, not reflected by known activity indices. For further research we used the incoherent scatter radar data of the Institute of ionosphere in height range 200-1000 km in the very quiet periods coming to the geomagnetic disturbance. A steady periodic disturbance in Ne during quiet conditions in all heights is established, which can be identified as tidal moda m=6. The amplitude of wave is ~15%, the phase changes with a height. The storm onset leads to an increase of the amplitudes approximately twice without a change in the phase. An ionospheric disturbance in very quiet conditions can lead to additional complicating an ionosphere reaction to magnetic storm.

  10. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  11. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  12. Boundary-Layer Instability Measurements in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Berridge, Dennis C.; Ward, Christopher, A. C.; Luersen, Ryan P. K.; Chou, Amanda; Abney, Andrew D.; Schneider, Steven P.

    2012-01-01

    Several experiments have been performed in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University. A 7 degree half angle cone at 6 degree angle of attack with temperature-sensitive paint (TSP) and PCB pressure transducers was tested under quiet flow. The stationary crossflow vortices appear to break down to turbulence near the lee ray for sufficiently high Reynolds numbers. Attempts to use roughness elements to control the spacing of hot streaks on a flared cone in quiet flow did not succeed. Roughness was observed to damp the second-mode waves in areas influenced by the roughness, and wide roughness spacing allowed hot streaks to form between the roughness elements. A forward-facing cavity was used for proof-of-concept studies for a laser perturber. The lowest density at which the freestream laser perturbations could be detected was 1.07 x 10(exp -2) kilograms per cubic meter. Experiments were conducted to determine the transition characteristics of a streamwise corner flow at hypersonic velocities. Quiet flow resulted in a delayed onset of hot streak spreading. Under low Reynolds number flow hot streak spreading did not occur along the model. A new shock tube has been built at Purdue. The shock tube is designed to create weak shocks suitable for calibrating sensors, particularly PCB-132 sensors. PCB-132 measurements in another shock tube show the shock response and a linear calibration over a moderate pressure range.

  13. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  14. Witnessing Solar Rejuvenation

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    At the end of last year, the Suns large-scale magnetic field suddenly strengthened, reaching its highest value in over two decades. Here, Neil Sheeley and Yi-Ming Wang (both of the Naval Research Laboratory) propose an explanation for why this happened and what it predicts for the next solar cycle.Magnetic StrengtheningUntil midway through 2014, solar cycle 24 the current solar cycle was remarkably quiet. Even at its peak, it averaged only 79 sunspots per year, compared to maximums of up to 190 in recent cycles. Thus it was rather surprising when, toward the end of 2014, the Suns large-scale magnetic field underwent a sudden rejuvenation, with its mean field leaping up to its highest values since 1991 and causing unprecedentedly large numbers of coronal loops to collapse inward.Yet in spite of the increase we observed in the Suns open flux (the magnetic flux leaving the Suns atmosphere, measured from Earth), there was not a significant increase in solar activity, as indicated by sunspot number and the rate of coronal mass ejections. This means that the number of sources of magnetic flux didnt increase so Sheeley and Wang conclude that flux must instead have been emerging from those sources in a more efficient way! But how?Aligned ActivityWSO open flux and the radial component of the interplanetary magnetic field (measures of the magnetic flux leaving the Suns photosphere and heliosphere, respectively), compared to sunspot number (in units of 100 sunspots). A sudden increase in flux is visible after the peak of each of the last four sunspot cycles. Click for a larger view! [Sheeley Wang 2015]The authors show that the active regions on the solar surface in late 2014 lined up in such a way that the emerging flux was enhanced, forming a strong equatorial dipole field that accounts for the sudden rejuvenation observed.Interestingly, this rejuvenation of the Suns open flux wasnt just a one-time thing; similar bursts have occurred shortly after the peak of every sunspot

  15. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  16. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique.

    Science.gov (United States)

    Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo

    2017-08-01

    This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.

  17. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  18. On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2005-01-01

    Roč. 67, č. 1-2 (2005), s. 83-92 ISSN 1364-6826 R&D Projects: GA AV ČR KSK3012103; GA AV ČR IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * Atmosphere * Ionosphere * Solar activity * Geomagnetic activity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.309, year: 2005

  19. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  20. Solar Spicules: Prospects for Breakthroughs in Understanding with Solar-B

    Science.gov (United States)

    Sterling, A.

    Spicules densely populate the lower solar atmosphere; any image or movie of the chromosphere shows a plethora of them or their "cousins," such as mottles or fibrils. Yet despite several decades of effort we still do not know the mechanism that generates them, or how important their contribution is to the material and energy balance of the overall solar atmosphere. Solar-B will provide exciting new chromospheric observations at high time- and spatial-resolution, along with associated quality magnetic field data, that promise to open doors to revolutionary breakthroughs in spicule research. In this presentation we will review the current observational and theoretical status of spicule studies, and discuss prospects for advances in spicule understanding during the Solar-B era.

  1. AUTOMATIC DETECTION ALGORITHM OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Li, Huijun; Xu, Xiaojun

    2015-01-01

    Dynamic pressure pulses (DPPs) in the solar wind are a significant phenomenon closely related to the solar-terrestrial connection and physical processes of solar wind dynamics. In order to automatically identify DPPs from solar wind measurements, we develop a procedure with a three-step detection algorithm that is able to rapidly select DPPs from the plasma data stream and simultaneously define the transition region where large dynamic pressure variations occur and demarcate the upstream and downstream region by selecting the relatively quiet status before and after the abrupt change in dynamic pressure. To demonstrate the usefulness, efficiency, and accuracy of this procedure, we have applied it to the Wind observations from 1996 to 2008 by successfully obtaining the DPPs. The procedure can also be applied to other solar wind spacecraft observation data sets with different time resolutions

  2. Steady flows in the solar transition region observed with SMM

    International Nuclear Information System (INIS)

    Gebbie, K.B.; Hill, F.; Toomre, J.; November, L.J.; Simon, G.W.; Gurman, J.B.; Shine, R.A.; Woodgate, B.E.; Athay, R.G.; Bruner, E.C. Jr.; Rehse, R.A.; Tandberg-Hanssen, E.A.

    1981-01-01

    Steady flows in the quiet solar transition region have been observed with the Ultraviolet Spectrometer and Polarimeter (UVSP) experiment on the Solar Maximum Mission (SMM) satellite. The persistent vertical motions seen at disk center have spatial rms amplitudes of 1.4 km s -1 in the C II line, 3.9 km s -1 in Si IV, and 4.2 km s -1 in C IV. The amplitudes of the more horizontal flows seen toward the limb tend to be somewhat higher. Plots of steady vertical velocity versus intensity seen at disk center in Si IV and C IV show two distinct branches

  3. Technologies and Methods Used at the Laboratory for Atmospheric and Space Physics (LASP) to Serve Solar Irradiance Data

    Science.gov (United States)

    Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don

    2018-01-01

    The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.

  4. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  5. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yu Daren; Xie Zongxia; Hu Qinghua [Harbin Institute of Technology, Harbin 150001 (China); Yang Shuhong; Zhang Jun; Wang Jingxiu, E-mail: caddiexie@hotmail.com, E-mail: zjun@ourstar.bao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2011-12-10

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in the five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I

  6. The CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) Mission Concept

    Science.gov (United States)

    Caspi, Amir; Shih, Albert Y.; Warren, Harry; DeForest, Craig; Laurent, Glenn Thomas; Schwartz, Richard A.; Woods, Thomas N.; Mason, James; Palo, Scott; Steslicki, Marek; Sylwester, Janusz; Gburek, Szymon; Mrozek, Tomasz; Kowalinski, Miroslaw; Torre, Gabriele; Crowley, Geoffrey; Schattenburg, Mark

    2017-08-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics, origins, and evolution of these energetic processes, providing probes both into the temperature distributions and elemental compositions of hot plasmas; spatially-resolved measurements are critical for understanding energy transport and mass flow. A better understanding of the thermal plasma improves our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed small satellite mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-FastSDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. Multiple detectors and tailored apertures provide sensitivity to a wide range of solar conditions, optimized for a launch during solar minimum. The precise spectra from these instruments will provide detailed measurements of the coronal temperature distribution and elemental abundances from the quiet Sun to active regions and flares. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a custom pinhole camera and Chandra-heritage X-ray transmission diffraction grating to provide spatially- resolved, full-Sun imaging spectroscopy from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. MOXSI’s unique capabilities enable SXR spectroscopy and temperature diagnostics of individual

  7. Solar Atmosphere to Earth's Surface: Long Lead Time dB/dt Predictions with the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Manchester, W.; Savani, N.; Sokolov, I.; van der Holst, B.; Jin, M.; Toth, G.; Liemohn, M. W.; Gombosi, T. I.

    2017-12-01

    The future of space weather prediction depends on the community's ability to predict L1 values from observations of the solar atmosphere, which can yield hours of lead time. While both empirical and physics-based L1 forecast methods exist, it is not yet known if this nascent capability can translate to skilled dB/dt forecasts at the Earth's surface. This paper shows results for the first forecast-quality, solar-atmosphere-to-Earth's-surface dB/dt predictions. Two methods are used to predict solar wind and IMF conditions at L1 for several real-world coronal mass ejection events. The first method is an empirical and observationally based system to estimate the plasma characteristics. The magnetic field predictions are based on the Bz4Cast system which assumes that the CME has a cylindrical flux rope geometry locally around Earth's trajectory. The remaining plasma parameters of density, temperature and velocity are estimated from white-light coronagraphs via a variety of triangulation methods and forward based modelling. The second is a first-principles-based approach that combines the Eruptive Event Generator using Gibson-Low configuration (EEGGL) model with the Alfven Wave Solar Model (AWSoM). EEGGL specifies parameters for the Gibson-Low flux rope such that it erupts, driving a CME in the coronal model that reproduces coronagraph observations and propagates to 1AU. The resulting solar wind predictions are used to drive the operational Space Weather Modeling Framework (SWMF) for geospace. Following the configuration used by NOAA's Space Weather Prediction Center, this setup couples the BATS-R-US global magnetohydromagnetic model to the Rice Convection Model (RCM) ring current model and a height-integrated ionosphere electrodynamics model. The long lead time predictions of dB/dt are compared to model results that are driven by L1 solar wind observations. Both are compared to real-world observations from surface magnetometers at a variety of geomagnetic latitudes

  8. Solar Adaptive Optics.

    Science.gov (United States)

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  9. MULTIWAVELENGTH OBSERVATIONS OF RADIO-QUIET QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Anderson, Scott F.; MacLeod, Chelsea L.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Shemmer, Ohad

    2010-01-01

    We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z < 2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are active galactic nuclei (AGNs) with abnormally weak emission features; 10 of those 13 are definitively radio quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGNs lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGNs appear to have intrinsically weak or absent broad emission line regions (BELRs), and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z < 2.2 radio-quiet BL Lac candidates already identified in the SDSS, but not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN BELRs.

  10. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  11. Total solar eclipse of 16 February 1980 and the vertical profiles of atmospheric parameters in the lowest 200M

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Vertical profiles of air temperature, wind and humidity at Raichur (16 degrees 12'N and 77 degrees 21'E) in the lowest 200m of the atmosphere are presented for the period 15-18 February 1980. The effect of the total solar eclipse, on 16 February...

  12. Structure of the solar transition region and inner corona

    International Nuclear Information System (INIS)

    Mariska, J.T.

    1977-01-01

    Emission gradient curves for extreme ultraviolet (EUV) resonance lines of lithium-like ions were constructed from spectroheliograms of quiet limb regions and a north polar coronal hole observed with the Harvard experiment on Skylab. The observations are interpreted with simple coronal models. Comparison of the theoretical and observed emission gradients for quiet regions indicates that for these areas the temperature rises throughout the inner corona (1.03 less than or equal to r less than or equal to 1.20 R/sub mass/). In the coronal hole the temperature rises in a manner consistent with a constant conductive flux to an isothermal corona at a temperature of 1.1 x 10 6 K at 1.08/sub mass/. The geometry of the coronal hole boundary is also determined. The boundary geometry and density distribution are combined with typical solar wind parameters at the north to determine an outflow velocity of 15 km s -1 at 1.08 R/sub mass/. The energy balance implications of the models are examined. It was found that in the transition region both conduction and radiation are important in determining the energy balance in network regions in both quiet areas and coronal holes. Additional energy sources are required in the network in coronal holes. In the corona it is found that, to within the errors of the determination, the energy losses, and hence the requirements for mechanical heating, are the same in quiet regions and coronal holes

  13. The Hidden Gifts of Quiet Kids

    Science.gov (United States)

    Trierweiler, Hannah

    2006-01-01

    The author relates that she was an introvert child. It has always taken her time and energy to find her place in a group. As a grown-up, she still needed quiet time to regroup during a busy day. In this article, the author presents an interview with Marti Olsen Laney, author of "The Hidden Gifts of the Introverted Child." During the interview,…

  14. Atmospheric nitrous oxide produced by solar protons and relativistic electrons

    International Nuclear Information System (INIS)

    Prasad, S.S.; Zipf, E.C.

    1981-01-01

    An alternative means of nitric oxide production in the stratosphere to that of direct formation in the upper atmosphere by solar proton (SP) events and by relativistic electron precipitation (REP) events from the Earth's radiation belt, is described. It is suggested that nitrous oxide is produced in the mesosphere and then migrates downward and is converted in the stratosphere to NO by the reaction N 2 O + O( 1 D) → 2 NO. Such a process could amplify the direct NO production by >10%. Mesospheric nitrous oxide mixing ratios increase to values as high as 6 x 10 -7 due to REP- and SP- related production. Lateral transport will reduce these high values but mesospheric mixing ratios of N 2 O in the high latitudes would approach 10 -7 , considerably greater than those expected on the basis of theories which neglect REP- and SP-related production of this species. (U.K.)

  15. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    Science.gov (United States)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  16. Multi-wavelength imaging of solar plasma. High-beta disruption model of solar flares

    International Nuclear Information System (INIS)

    Shibasaki, Kiyoto

    2007-01-01

    Solar atmosphere is filled with plasma and magnetic field. Activities in the atmosphere are due to plasma instabilities in the magnetic field. To understand the physical mechanisms of activities / instabilities, it is necessary to know the physical conditions of magnetized plasma, such as temperature, density, magnetic field, and their spatial structures and temporal developments. Multi-wavelength imaging is essential for this purpose. Imaging observations of the Sun at microwave, X-ray, EUV and optical ranges are routinely going on. Due to free exchange of original data among solar physics and related field communities, we can easily combine images covering wide range of spectrum. Even under such circumstances, we still do not understand the cause of activities in the solar atmosphere well. The current standard model of solar activities is based on magnetic reconnection: release of stored magnetic energy by reconnection is the cause of solar activities on the Sun such as solar flares. However, recent X-ray, EUV and microwave observations with high spatial and temporal resolution show that dense plasma is involved in activities from the beginning. Based on these observations, I propose a high-beta model of solar activities, which is very similar to high-beta disruptions in magnetically confined fusion experiments. (author)

  17. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  18. The role of cosmic rays in the atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Stozhkov, Y I [Lebedev Physical Institute, Russian Academy of Sciences, 119991, Leninsky Prospect, 53, Moscow (Russian Federation)

    2003-05-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10{sup 8} times). But at altitudes of h {approx} 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h {approx} 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning.

  19. The role of cosmic rays in the atmospheric processes

    International Nuclear Information System (INIS)

    Stozhkov, Y I

    2003-01-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10 8 times). But at altitudes of h ∼ 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h ∼ 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning

  20. Initiation of non-tropical thunderstorms by solar activity

    Energy Technology Data Exchange (ETDEWEB)

    Herman, J R [Radio Sciences Co., Melbourne, Fla. (USA); Goldberg, R A

    1978-02-01

    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the influence of cosmic ray decreases and/or high-energy solar protons associated with active solar events. Galactic cosmic ray decreases tend to enhance the electric field at low heights. The protons produce excess ionization near and above 20 km, greatly increasing the atmospheric conductivity and possibly lowering the height of the electrosphere. Consequent effects near the solar proton cut-off latitude also lead to an enhancement of the atmospheric electric field near the surface. If appropriate meteorological conditions (warm moist air with updrafts) exist or develop during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. The suggested mechanism appears plausible enough to warrant a co-ordinated experimental effort involving satellite balloon and ground-based measurements of the possible forcing functions (solar protons and cosmic rays) and the responding atmospheric electrical and ionic species' characteristics.

  1. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  2. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  3. A Solar Radiation Parameterization for Atmospheric Studies. Volume 15

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J. (Editor)

    1999-01-01

    The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.

  4. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  5. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  6. Evaluating the Solar Slowly Varying Component at C-Band Using Dual- and Single-Polarization Weather Radars in Europe

    Directory of Open Access Journals (Sweden)

    M. Gabella

    2017-01-01

    Full Text Available Six C-band weather radars located in Europe (Finland, Netherlands, and Switzerland have been used to monitor the slowly varying solar emission, which is an oscillation with an amplitude of several decibels and a period of approximately 27 days. It is caused by the fact that the number of active regions that enhance the solar radio emission with respect to the quiet component, as seen from Earth, varies because of the Sun’s rotation about its axis. The analysis is based on solar signals contained in the polar volume data produced during the operational weather scan strategy. This paper presents hundreds of daily comparisons between radar estimates and the Sun’s reference signal, during the current active Sun period (year 2014. The Sun’s reference values are accurately measured by the Dominion Radio Astrophysical Observatory (DRAO at S-band and converted to C-band using a standard DRAO formula. Vertical and horizontal polarization receivers are able to capture the monthly oscillation of the solar microwave signal: the standard deviation of the log-transformed ratio between radars and the DRAO reference ranges from 0.26 to 0.4 dB. A larger coefficient (and a different value for the quiet Sun component in the standard formula improves the agreement.

  7. Selection of astrophysical/astronomical/solar sites at the Argentina East Andes range taking into account atmospheric components

    Czech Academy of Sciences Publication Activity Database

    Piacentini, R.D.; García, B.; Micheletti, M.I.; Salum, G.; Freire, M.; Maya, J.; Mancilla, A.; Crinó, E.; Mandát, Dušan; Pech, M.; Bulik, T.

    2016-01-01

    Roč. 57, č. 12 (2016), s. 2559-2574 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) 7AMB14AR005; GA MŠk LE13012; GA MŠk LG14019; GA MŠk LM2015046 Institutional support: RVO:68378271 Keywords : astrophysical * astronomical * solar: sites * Argentina -Andes: atmospheric components Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  8. Dark energy and the quietness of the local Hubble flow

    International Nuclear Information System (INIS)

    Axenides, M.; Perivolaropoulos, L.

    2002-01-01

    The linearity and quietness of the local ( X (t 0 ) of dark energy obeying the time independent equation of state p X =wρ X . We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value v rms ≅40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and Ω X . Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow

  9. Companions of low-redshift radio-quiet quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1987-01-01

    Using imaging data from a relatively complete subset of low-redshift radio-quiet quasars, the frequency of finding associated companion galaxies of the quasars is determined statistically. With an average completeness limit of M/sub r/ of about -19, it is found that about 40 percent of the quasars have at least one close physical companion within a projected distance of 100 kpc. The percentage of quasars with detected companions is consistent with all quasars in the sample having a companion of luminosity brighter than about -16.5 mag. It is estimated that the frequency of finding close companions to quasars is about six times higher than that expected for field galaxies. This frequency is similar to that found for lower-luminosity Seyfert galaxies. The properties of the companions appear to be uncorrelated with the level of activity in the quasars. This suggests that, for radio-quiet quasars, the companions act mainly as triggers of the activity and are probably not a strong determining factor of the detailed properties of the quasars. 28 references

  10. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  11. No evidence for radio-quiet BL Lacertae objects

    International Nuclear Information System (INIS)

    Stocke, J.T.; Morris, S.L.; Gioia, I.; Maccacaro, T.; Schild, R.E.

    1990-01-01

    Using a large, flux-limited sample of faint X-ray sources, a search has been conducted for radio-quiet BL Lacertae objects. None has been found. Thirty-two X-ray-selected BL Lac objects and BL Lac candidates have been found within the sources of the Einstein Medium Sensitivity Survey (EMSS). Thirty-one of these have been observed with the VLA and all have been detected at 5 GHz. While the optical magnitudes of the EMSS BL Lac objects range from 17 to 20.8, their radio-to-optical spectral indices occupy a very small range. The very bright X-ray-selected BL Lac objects like PKS 2155-304 and Markarian 501 have similar range values. Therefore, unlike the clear dichotomy between radio-loud quasars and radio-quiet QSOs, there is no evidence for two populations of Lacertids distinguished by radio loudness. 43 refs

  12. Non-LTE profiles of the Al I autoionization lines. [for solar model atmospheres

    Science.gov (United States)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at 1932 and 1936 A through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. The results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.

  13. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  14. On the quiet-time Pc 5 pulsation events (spacequakes)

    International Nuclear Information System (INIS)

    Gupta, J.C.; Niblett, E.R.

    1979-01-01

    A quiet-time Pc 5 event (designated Spacequake) of March 18, 1974, first noted on the Fort Churchill magnetogram, was studied using global data. Its amplitude was found to be largest in the northern part of the auroral zone and its period seemed to increase with latitude. The clockwise polarization of the event noted at Baker Lake and higher latitudes changed to counterclockwise at Fort Churchill in X-Y, X-Z and Y-Z planes. The resonance of a field line (L approximately 10) excited due to an instability of the Kelvin-Helmholtz type may have given rise to the observed event. It is conjectured that the cause of instability at this altitude was internal convection of the magnetosphere. Similar quiet-time events from four Canadian observatories were selected from approximately 11 years of magnetograms and their statistical analysis revealed that (i) occurrences maximised near dawn and dusk (ii) the amplitude-latitude profile peaked at Great Whale River (L approximately 6.67), (iii) periods increased with increasing geomagnetic latitudes, (iv) a large number of events occurred in January, February and March every year, and (v) frequency of occurrence increased with increasing sunspot numbers. Comparison of these results with those available in the literature from analyses of satellite data clearly indicate that quiet-time Pc 5 events (Spacequakes) originate in the outer magnetosphere. (author)

  15. Estimativa de radiação solar via modelagem atmosférica de mesoescala aplicada à região nordeste do Brasil Estimation of solar radiation by mesoscale atmospheric modeling applied to the northeast Brazil region

    Directory of Open Access Journals (Sweden)

    Otacilio Leandro De Menezes Neto

    2009-09-01

    Full Text Available A utilização de fontes alternativas de energias, como a solar, a eólica e a biomassa, vem crescendo significativamente nos últimos anos, sendo a energia solar, em particular, uma fonte abundante na região Nordeste do Brasil. O conhecimento preciso da radiação solar incidente é, assim, de grande importância para o planejamento energético brasileiro, servindo de base para o desenvolvimento de futuros projetos de plantas fotovoltaicas e de aproveitamento da energia solar. Este trabalho apresenta uma metodologia para o mapeamento da energia solar incidente ao nível do solo para a região Nordeste do Brasil, utilizando um modelo atmosférico de mesoescala (Regional Atmospheric Modeling System - RAMS, validado e ajustado por meio dos dados medidos pela rede de plataformas de coleta de dados (PCDs da Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME. Os resultados mostraram que o modelo apresenta erros sistemáticos, sobreestimando a radiação na superfície, porém após as devidas correções estatísticas, utilizando-se uma relação entre a fração de cobertura de nuvens prevista pelo modelo e a radiação observada na superfície e estimada no topo da atmosfera, encontram-se correlações de 0,92 com intervalos de confiança de 13,5 W/m² para dados com base mensal. Usando essa metodologia, a estimativa do valor médio anual (após ajustes da radiação solar incidente no estado do Ceará é de 215 W/m² (máximo em outubro: 260 W/m².The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation being a particularly abundant energy source over Northeast Brazil. Thus, the proper quantitative knowledge of the incoming solar radiation is of great importance for energy generation planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploration. This work presents a methodology for mapping the

  16. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere

    Science.gov (United States)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2015-06-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.

  17. Solar helium and neon in the Earth

    Science.gov (United States)

    Honda, M.; Mcdougall, I.; Patterson, D. B.

    1994-01-01

    Neon isotopic compositions in mantle-derived samples commonly are enriched in (20)Ne and (21)Ne relative to (22)Ne compared with atmospheric neon ((20)Ne/(22)Ne and (21)Ne/(22)Ne ratios in atmospheric neon are 9.8 and 0.029, respectively), together with significant primordial (3)He. Such results have been obtained on MORB's, intraplate plume-related oceanic island basalts, backarc basin basalts, mantle xenoliths, ancient diamonds and CO2 well gases (e.g., 1 - 8). The highest (20)Ne/(22)Ne ratio observed in MORB glasses (= 13.6 plus or minus 1.3 is close to the solar value (= 13.6, as observed in solar wind). In order to explain the enrichment of (20)Ne and (21)Ne relative to atmospheric neon for samples derived from the mantle, it is necessary to postulate the presence of at least two distinct non-atmospheric components. The two most likely candidates are solar and nucleogenic ((20)Ne/(22)Ne solar = 13.6 (21)Ne/(22)Ne solar = 0.032, (20)Ne/(22)Ne nucleogenic = 2.5 and (21)Ne/(22)Ne nucleogenic = 32). This is because solar neon is the only known component with a (20)Ne/(22)Ne ratio greater than both the atmospheric value and that observed in samples derived from the mantle. Nucleogenic neon is well known to elevate (21)Ne/(22)Ne ratios. Neon isotopic signatures observed in mantle-derived samples can be accounted for by mixing of the three neon end members: solar, nucleogenic and atmospheric.

  18. Influence of base pressure and atmospheric contaminants on a-Si:H solar cell properties

    International Nuclear Information System (INIS)

    Woerdenweber, J.; Schmitz, R.; Mueck, A.; Zastrow, U.; Niessen, L.; Gordijn, A.; Carius, R.; Beyer, W.; Rau, U.; Merdzhanova, T.; Stiebig, H.

    2008-01-01

    The influence of atmospheric contaminants oxygen and nitrogen on the performance of thin-film hydrogenated amorphous silicon (a-Si:H) solar cells grown by plasma-enhanced chemical vapor deposition at 13.56 MHz was systematically investigated. The question is addressed as to what degree of high base pressures (up to 10 -4 Torr) are compatible with the preparation of good quality amorphous silicon based solar cells. The data show that for the intrinsic a-Si:H absorber layer exists critical oxygen and nitrogen contamination levels (about 2x10 19 atoms/cm 3 and 4x10 18 atoms/cm 3 , respectively). These levels define the minimum impurity concentration that causes a deterioration in solar cell performance. This critical concentration is found to depend little on the applied deposition regime. By enhancing, for example, the flow of process gases, a higher base pressure (and leak rate) can be tolerated before reaching the critical contamination level. The electrical properties of the corresponding films show that increasing oxygen and nitrogen contamination results in an increase in dark conductivity and photoconductivity, while activation energy and photosensitivity are decreased. These effects are attributed to nitrogen and oxygen induced donor states, which cause a shift of the Fermi level toward the conduction band and presumably deteriorate the built-in electric field in the solar cells. Higher doping efficiencies are observed for nitrogen compared to oxygen. Alloying effects (formation of SiO x ) are observed for oxygen contaminations above 10 20 atoms/cm 3 , leading to an increase in the band gap

  19. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  20. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  1. Solar Magnetism eXplorer (Solme X)

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  2. Atmospheric stability and atmospheric circulation in Athens, Greece

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Petrakis, M.; Kassomenos, P.; Lykoudis, S.

    1996-01-01

    In the evaluation and study of atmospheric pollution reference is always made to the stability criteria. These criteria, usually represented as functions of different meteorological data such as wind speed and direction, temperature, solar radiation, etc., play a very important role in the investigation of different parameters that affect the build up of pollution episodes mainly in urban areas. In this paper an attempt is made to evaluate the atmospheric stability criteria based on measurements obtained from two locations in and nearby Athens. The atmospheric stability is then examined along with the other meteorological parameters

  3. Dynamics of the quiet polar cap

    International Nuclear Information System (INIS)

    Carlson, H.C. Jr.

    1990-01-01

    Work in the past has established that a few percent of the time, under northward interplanetary magnetic field and thus magnetically quiet conditions, sun aligned arcs are found in the polar cap with intensities greater than the order of a kilo Rayleigh in the visible. Here we extend this view. We first note that imaging systems with sensitivity down to tens of Rayleighs in the visible find sun aligned arcs in the polar cap far more often, closer to half the time than a few percent. Furthermore, these sun aligned arcs have simple electrodynamics. They mark boundaries between rapid antisunward flow of ionospheric plasma on their dawn side and significantly slower flow, or even sunward flow, on their dusk side. Since the sun aligned arcs are typically the order of 1000 km to transpolar in the sun-earth direction, and the order of 100 km or less in the dawn-dusk direction, they demarcate lines of strongly anisotropic ionospheric flow shears or convection cells. The very quiet polar cap (strongly northward IMF) is in fact characterized by the presence of sun aligned arcs and multiple highly anisotropic ionospheric flow shears. Sensitive optical images are a valuable diagnostic with which to study polar ionospheric convection under these poorly understood conditions. (author)

  4. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  5. Variations of plasmaspheric field-aligned electron and ion densities (90-4000 km) during quiet to moderately active (Kp < 4) geomagnetic conditions

    Science.gov (United States)

    Sonwalkar, V. S.; Reddy, A.

    2017-12-01

    Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.

  6. Solar Magnetic Atmospheric Effects on Global Helioseismic ...

    Indian Academy of Sciences (India)

    provide priceless diagnostic tools in the search for hidden aspects of the solar interior ... The overall structure of the helioseismic frequency spectrum, see Figure 1, has not .... 10.7 cm radio flux were used as a proxy of the solar surface activity. All the ..... According to their predictions, at least B = 5 × 105 G field strength is.

  7. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  8. Effects of road traffic noise and the benefit of access to quietness

    Science.gov (United States)

    Öhrström, E.; Skånberg, A.; Svensson, H.; Gidlöf-Gunnarsson, A.

    2006-08-01

    Socio-acoustic surveys were carried out as part of the Soundscape Support to Health research programme to assess the health effects of various soundscapes in residential areas. The study was designed to test whether having access to a quiet side of one's dwelling enhances opportunities for relaxation and reduces noise annoyance and other adverse health effects related to noise. The dwellings chosen were exposed to sound levels from road traffic ranging from about L=45-68 dB at the most-exposed side. The study involved 956 individuals aged 18-75 years. The results demonstrate that access to quiet indoor and outdoor sections of one's dwelling supports health; it produces a lower degree and extent of annoyance and disturbed daytime relaxation, improves sleep and contributes to physiological and psychological well-being. Having access to a quiet side of one's dwelling reduces disturbances by an average of 30-50% for the various critical effects, and corresponds to a reduction in sound levels of ( LAeq,24h) 5 dB at the most-exposed side. To protect most people (80%) from annoyance and other adverse effects, sound levels from road traffic should not exceed ( LAeq,24h) 60 dB at the most-exposed side, even if there is access to a quiet side of one's dwelling ( LAeq,24h⩽45 dB).

  9. INTERPLANETARY SUPRATHERMAL He+ AND He++ OBSERVATIONS DURING QUIET PERIODS FROM 1 TO 9 AU AND IMPLICATIONS FOR PARTICLE ACCELERATION

    International Nuclear Information System (INIS)

    Hill, M. E.; Schwadron, N. A.; Hamilton, D. C.; DiFabio, R. D.; Squier, R. K.

    2009-01-01

    We measured quiet-time differential intensities of ∼2-60 keV nucleon -1 He + and He ++ during the 1999-2004, 1-9 AU portion of Cassini's interplanetary cruise to Saturn and found that the He + /He ++ composition ratio grows as the distance from the Sun r increases. An increase in the ratio is expected from the theoretical pickup ion and solar wind intensities, but the absolute He + intensity, counter to the predicted falling r -1 dependence of the density, is actually slightly increasing, and He ++ falls off much more slowly than the r -2 dependence one might expect from a population with a solar source. With an approximately r 2.2 radial dependence, our rigorous numerical transport and acceleration model (with stochastic acceleration) matches the higher-energy (>13 keV nucleon -1 ) measured He + /He ++ composition profiles well, as does our analytical theory. Two acceleration processes are likely needed: the composition ratios are explainable by stochastic acceleration while a velocity-dependent mechanism that acts beyond 1 AU equally on He + and He ++ is required to explain the spatial intensity profiles.

  10. Dark Skies are a Universal Resource. So are Quiet Skies!

    Science.gov (United States)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  12. Characterising infant inter-breath interval patterns during active and quiet sleep using recurrence plot analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M

    2009-01-01

    Breathing patterns are characteristically different between active and quiet sleep states in infants. It has been previously identified that breathing dynamics are governed by a non-linear controller which implies the need for a nonlinear analytical tool. Further, it has been shown that quantified nonlinear variables are different between adult sleep states. This study aims to determine whether a nonlinear analytical tool known as recurrence plot analysis can characterize breath intervals of active and quiet sleep states in infants. Overnight polysomnograms were obtained from 32 healthy infants. The 6 longest periods each of active and quiet sleep were identified and a software routine extracted inter-breath interval data for recurrence plot analysis. Determinism (DET), laminarity (LAM) and radius (RAD) values were calculated for an embedding dimension of 4, 6, 8 and 16, and fixed recurrence of 0.5, 1, 2, 3.5 and 5%. Recurrence plots exhibited characteristically different patterns for active and quiet sleep. Active sleep periods typically had higher values of RAD, DET and LAM than for quiet sleep, and this trend was invariant to a specific choice of embedding dimension or fixed recurrence. These differences may provide a basis for automated sleep state classification, and the quantitative investigation of pathological breathing patterns.

  13. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    International Nuclear Information System (INIS)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.; Nutto, Ch.; Rezaei, R.; Schmidt, W.; Martinez Pillet, V.; Bonet Navarro, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Knoelker, M.

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  14. Children's speech recognition and loudness perception with the Desired Sensation Level v5 Quiet and Noise prescriptions.

    Science.gov (United States)

    Crukley, Jeffery; Scollie, Susan D

    2012-12-01

    To determine whether Desired Sensation Level (DSL) v5 Noise is a viable hearing instrument prescriptive algorithm for children, in comparison with DSL v5 Quiet. In particular, the authors compared children's performance on measures of consonant recognition in quiet, sentence recognition in noise, and loudness perception when fitted with DSL v5 Quiet and Noise. Eleven children (ages 8 to 17 years) with stable, congenital sensorineural hearing losses participated in the study. Participants were fitted bilaterally to DSL v5 prescriptions with behind-the-ear hearing instruments. The order of prescription was counterbalanced across participants. Repeated measures analysis of variance was used to compare performance between prescriptions. Use of the Noise prescription resulted in a significant decrease in consonant perception in Quiet with low-level input, but no difference with average-level input. There was no significant difference in sentence-in-noise recognition between the two prescriptions. Loudness ratings for input levels above 72 dB SPL were significantly lower with the noise prescription. Average-level consonant recognition in quiet was preserved and aversive loudness was alleviated by the Noise prescription relative to the quiet prescription, which suggests that the DSL v5 Noise prescription may be an effective approach to managing the nonquiet listening needs of children with hearing loss.

  15. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  16. Atmospheric solar tides and their electrodynamic effects

    International Nuclear Information System (INIS)

    Forbes, J.M.; Lindzen, R.S.

    1977-01-01

    In this final part of a three-part study, the polarization electric field generated by E-region dynamo action is considered, and its consistency with presently available experimental measurements is established. This serves as an independent check on some of the results and conclusions described in Parts I and II (Forbes and Lindzen, J. Atmos. Terr. Phys.; 38:897,911 (1976)). Incoherent scatter measurements of ionospheric drifts are reviewed from the point of view of determining the origin of the polarization electric field in the quiet-time ionosphere, and are compared with the theoretical dynamo electric fields which drive the current systems in Parts I and II. The analysis indicates that the polarization fields originating from E-region dynamo action are consistent with daytime F-region drift measurements, but are in poor agreement at night. This supports previous suggestions that electric fields generated by the plasmaspheric and F-region dynamos are short-circuited by the high E-region conductivity during the day, but contribite strongly to the night-time electric field. (author)

  17. Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    S. Müller

    2009-05-01

    Full Text Available We have studied the dependence of the thermospheric mass density at equatorial latitudes on the influence of various drivers. This statistical study is based on CHAMP accelerometer measurements. Our aim is to delineate the influences of the different contributions. For the isolation of the effects we make use of a dedicated data selection procedure and/or removal of disturbing effects. In a first step all readings are normalised to an altitude of 400 km. For the investigation of the solar influences only magnetically quiet days (Ap≤15 are considered. The dependence on solar flux can well be described by a linear relation within the flux range F10.7=80–240. The slope is twice as steep on the day side as on the night side. The air density exhibits clear annual and semi-annual variations with maxima at the equinoxes and a pronounced minimum around June solstice. The thermosphere maintains during quiet days a day to night mass density ratio very close to 2, which is independent of solar flux level or season. The magnetospheric input causing thermospheric density enhancement can well be parameterised by the am activity index. The low latitude density responds with a delay to changes of the index by about 3 h on the dayside and 4–5 h on the night side. The magnetospheric forcing causes an additive contribution to the quiet-time density, which is linearly correlated with the am index. The slopes of density increases are the same on the day and night sides. We present quantitative expressions for all the dependences. Our results suggest that all the studied forcing terms can be treated as linear combinations of the respective contribution.

  18. Abundance analysis of neodymium in the solar atmosphere

    Science.gov (United States)

    Abdelkawy, Ali G. A.; Shaltout, Abdelrazek M. K.; Beheary, M. M.; Bakry, A.

    2017-10-01

    Based on non-local thermodynamical equilibrium (NLTE) calculations, the solar neodymium (Nd) content was found based on a model atom of singly ionized neodymium (Nd II) containing 153 energy levels and 42 line transitions plus the ground state of Nd III. Here, we re-derive the solar Nd abundance using the model of the solar photosphere of Holweger & Müller.We succeed in selecting a good sample line list, relying on 20 Nd II solar lines together with the most accurate transition probabilities measured experimentally and available observational data. With damping parameters obtained from the literature, we find a mean NLTE solar photospheric Nd abundance of log ɛNd(1D) = 1.43 ± 0.16, which is in excellent agreement with the meteoritic value (log ɛNd = 1.45 ± 0.02). For a set of selected Nd II lines, the NLTE abundance correction is found to be +0.01 dex compared with the standard LTE effect. The influence of collisional interactions with electrons and neutral hydrogen atoms is investigated in detail.

  19. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    Science.gov (United States)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and

  20. Solar Indices - Sunspot Numbers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Solar Indices - Plage Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Fields and plasmas in the outer solar system. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E J [Jet Propulsion Lab., Pasadena, CA (USA); Wolfe, J H [National Aeronautics and Space Administration, Moffett Field, CA (USA). Ames Research Center

    1979-04-01

    The most significant information about fields and plasmas in the outer solar system, based on observations by Pioneer 10 and 11 investigations, is reviewed. The characteristic evolution of solar wind streams beyond 1 AU has been observed. The region within which the velocity increases continuously near 1 AU is replaced at larger distances by a thick interaction region with abrupt jumps in the solar wind speed at the leading and trailing edges. These abrupt increases, accompanied by corresponding jumps in the field magnitude and in the solar wind density and temperature, consist typically of a forward and a reverse shock. The existance of two distinct corotating regions, separated by sharp boundaries, is a characteristic feature of the interplanetary medium in the outer solar system. Within the interaction regions, compression effects are dominant and the field strength, plasma density, plasma temperature and the level of fluctuations are enhanced. Within the intervening quiet regions, rarefaction effects dominante and the field magnitude, solar wind density and fluctuation level are very low. These changes in the structure of interplanetary space have significant consequences for the many energetic particles propagating through the medium.

  3. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  4. Ionization rates and profiles of electron concentration in Martian atmosphere

    International Nuclear Information System (INIS)

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  5. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  6. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Science.gov (United States)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex

    2017-07-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and

  7. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  8. Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity

    Science.gov (United States)

    Menezes, Fabian; Valio, Adriana

    2017-12-01

    The Sun emits radiation at several wavelengths of the electromagnetic spectrum. In the optical band, the solar radius is 695 700 km, and this defines the photosphere, which is the visible surface of the Sun. However, as the altitude increases, the electromagnetic radiation is produced at other frequencies, causing the solar radius to change as a function of wavelength. These measurements enable a better understanding of the solar atmosphere, and the radius dependence on the solar cycle is a good indicator of the changes that occur in the atmospheric structure. We measure the solar radius at the subterahertz frequencies of 0.212 and 0.405 THz, which is the altitude at which these emissions are primarily generated, and also analyze the radius variation over the 11-year solar activity cycle. For this, we used radio maps of the solar disk for the period between 1999 and 2017, reconstructed from daily scans made by the Solar Submillimeter-wave Telescope (SST), installed at El Leoncito Astronomical Complex (CASLEO) in the Argentinean Andes. Our measurements yield radii of 966.5'' ±2.8'' for 0.2 THz and 966.5'' ±2.7'' for 0.4 THz. This implies a height of 5.0 ±2.0 ×106 m above the photosphere. Furthermore, we also observed a strong anticorrelation between the radius variation and the solar activity at both frequencies.

  9. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  10. A Long-Term Dissipation of the EUV He ii (30.4 nm) Segmentation in Full-Disk Solar Images

    Science.gov (United States)

    Didkovsky, Leonid

    2018-06-01

    Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010 - 2017 were used to continue our previous analyses reported by Didkovsky and Gurman ( Solar Phys. 289, 153, 2014a) and Didkovsky, Wieman, and Korogodina ( Solar Phys. 292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two "standard" solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a "typical" trend of instrumental degradation or a long-term activity profile from the He ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.

  11. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics: A Text for the Science of Planetary Systems covers the field of solar system astrophysics beginning with basic tools of spherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. After a basic treatment of the two- and restricted three-body system motions in Background Science and the Inner Solar System, perturbations are discussed, followed by the Earth's gravitational potential field and its effect on satellite orbits. This is followed by analysis of the Earth-Moon system and the interior planets. In Planetary Atmospheres and the Outer Solar System, the atmospheres chapters include detailed discussions of circulation, applicable also to the subsequent discussion of the gas giants. The giant planets are discussed together, and the thermal excesses of three of them are highlighted. This is followed by chapters on moons and rings, mainly in the context of dynamical stability, comets and meteors, m...

  12. Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet

    Science.gov (United States)

    Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.

    2018-03-01

    Aim. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods: We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. Hα images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both Hα and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results: We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (λ171 Å, λ193 Å, λ304 Å, and λ211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ171 Å and λ193 Å images. In the λ304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in Hα and EUV images is caused by different absorption

  13. Modular trigger processing The GCT muon and quiet bit system

    CERN Document Server

    Stettler, Matthew; Hansen, Magnus; Iles, Gregory; Jones, John; PH-EP

    2007-01-01

    The CMS Global Calorimeter Trigger system's HCAL Muon and Quiet bit reformatting function is being implemented with a novel processing architecture. This architecture utilizes micro TCA, a modern modular communications standard based on high speed serial links, to implement a processing matrix. This matrix is configurable in both logical functionality and data flow, allowing far greater flexibility than current trigger processing systems. In addition, the modular nature of this architecture allows flexibility in scale unmatched by traditional approaches. The Muon and Quiet bit system consists of two major components, a custom micro TCA backplane and processing module. These components are based on Xilinx Virtex5 and Mindspeed crosspoint switch devices, bringing together state of the art FPGA based processing and Telcom switching technologies.

  14. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  15. Dynamics of the Solar Chromosphere. II. Ca II H2V and K2V Grains versus Internetwork Fields

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Berger, T.E.

    1998-01-01

    We use the Advanced Stokes Polarimeter at the NSO/Sacramento Peak Vacuum Tower Telescope to search for spatio- temporal correlations between enhanced magnetic fields in the quiet solar internetwork photosphere and the occurrence of Ca II H2v grains in the overlying chromosphere.We address the

  16. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    Directory of Open Access Journals (Sweden)

    Wen Guoyong

    2017-01-01

    Full Text Available We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor based, the other the SATIRE (Spectral And Total Irradiance REconstruction modeled, as inputs to the GISS (Goddard Institute for Space Studies GCMAM (Global Climate Middle Atmosphere Model to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm and total solar irradiance (TSI. From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of ~0.1 °C to SATIRE solar forcing compared to ~0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  17. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Christe, Steven [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Ishikawa, Shin-nosuke [National Astronomical Observatory, Mitaka (Japan); Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee [NASA Marshall Space Flight Center, Huntsville, AL (United States); Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya [Institute of Space and Astronautical Science (ISAS)/JAXA, Sagamihara (Japan); Tajima, Hiroyasu [Solar-Terrestial Environment Laboratory, Nagoya University, Nagoya (Japan); Tanaka, Takaaki [Department of Physics, Kyoto University, Kyoto (Japan); White, Stephen [Air Force Research Laboratory, Albuquerque, NM (United States)

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  18. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    Science.gov (United States)

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  19. THERMAL DIAGNOSTICS WITH THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY: A VALIDATED METHOD FOR DIFFERENTIAL EMISSION MEASURE INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.; Malanushenko, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street Bldg. 252, Palo Alto, CA 94304 (United States); Testa, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chen, F.; Peter, H., E-mail: cheung@lmsal.com [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2015-07-10

    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized Gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a nonlinear force-free field, and (3) thermodynamic models from a fully compressible, 3D MHD simulation of active region (AR) corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and Hinode X-ray Telescope data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.

  20. Investigations on physics of planetary atmospheres and small bodies of the Solar system, extrasolar planets and disk structures around the stars

    Science.gov (United States)

    Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.

    2015-12-01

    The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards

  1. Wave propagation in a non-isothermal atmosphere and the solar five-minute oscillations. [Acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi, C; Giovanardi, C [Florence Univ. (Italy). Istituto di Astronomia

    1979-11-01

    This paper presents a detailed discussion of the properties of linear, periodic acoustic waves that propagate vertically in a non-isothermal atmosphere. In order to retain the basic feature of the solar atmosphere we have chosen a temperature profile presenting a minimum. An analytical solution of the problem is possible if T/..mu.., ..mu.. being the mean molecular weight, varies parabolically with height. The purpose of this study is to point out the qualitative differences existing between the case treated here and the customary analysis based on a locally isothermal treatment. The computed velocity amplitude and the temperature-perturbation as functions of the wave period exhibit a sharp peak in the region between 180 and 300 s, thus showing the possibility of interpreting the five-minute oscillations as a resonant phenomenon. The propagating or stationary nature of the waves is investigated by a study of the phase of the proposed analytical solution.

  2. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  3. Slender Ca ii H Fibrils Mapping Magnetic Fields in the Low Solar Chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, S.; Rutten, R. J.; Szydlarski, M. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Solanki, S. K.; Wiegelmann, T.; Riethmüller, T. L.; Noort, M. van; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Knölker, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Schmidt, W., E-mail: shahin.jafarzadeh@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany)

    2017-04-01

    A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca ii H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca ii H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.

  4. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  5. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    Science.gov (United States)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  6. Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us po

    Science.gov (United States)

    2002-01-01

    Credit: Image courtesy Barbara Summey, NASA Goddard Visualization Analysis Lab, based upon data processed by Takmeng Wong, CERES Science Team, NASA Langley Research Center Satellite: Terra Sensor: CERES Image Date: 09-30-2001 VE Record ID: 11546 Description: Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us possible. But the energy cannot stay bound up in the Earth's environment forever. If it did then the Earth would be as hot as the Sun. Instead, as the surface and the atmosphere warm, they emit thermal longwave radiation, some of which escapes into space and allows the Earth to cool. This false-color image of the Earth was produced on September 30, 2001, by the Clouds and the Earth's Radiant Energy System (CERES) instrument flying aboard NASA's Terra spacecraft. The image shows where more or less heat, in the form of longwave radiation, is emanating from the top of Earth's atmosphere. As one can see in the image, the thermal radiation leaving the oceans is fairly uniform. The blue swaths across the central Pacific represent thick clouds, the tops of which are so high they are among the coldest places on Earth. In the American Southwest, which can be seen in the upper righthand corner of the globe, there is often little cloud cover to block outgoing radiation and relatively little water to absorb solar energy. Consequently, the amount of outgoing radiation in the American Southwest exceeds that of the oceans. Also, that region was experiencing an extreme heatwave when these data were acquired. Recently, NASA researchers discovered that incoming solar radiation and outgoing thermal radiation increased in the tropics from the 1980s to the 1990s. (Click to read the press release .) They believe that the reason for the unexpected increase has to do with an apparent change in circulation patterns around the globe, which effectively reduced the amount of water vapor and cloud cover in the upper reaches of the atmosphere

  7. The quiet time structure of energetic (35--560 keV) radiation belt electrons

    International Nuclear Information System (INIS)

    Lyons, L.R.; Williams, D.J.

    1975-01-01

    Detailed Explorer 45 equatorial observations of the quiet time structure of radiation belt electrons (35--560 keV) for 1.7approximately-less-thanLapproximately-less-than5.2 are presented. Throughout the slot region and outer regions of the plasmasphere the observed pitch angle distributions are found to agree with those expected from resonant interactions with the plasmaspheric whistler mode wave band. Coulomb collisions become the dominant loss mechanism within the inner zone. The overall two-zone structure of the observed radial profiles is found to agree with the equilibrium structure expected to result from a balance between pitch angle scattering losses and radial diffusion from an average outer zone source. This agreement suggests that the dominant quiet time source and loss mechanisms have been identified and evaluated for energetic radiation belt electrons within the plasmasphere. In the outer regions of the plasmasphere (Lapprox.5) the equilibrium structure is observed to be modified by daily flux variations associated with changes in the level of magnetic activity that occur even during relatively quiet times. Within the inner region of the plasmasphere (Lapproximately-less-than3.5), electron fluxes are decoupled from these magnetic activity variations by the long time scales (>10 days) required for pitch angle and radial diffusion. Consequently, fluxes of these electrons are observed to remain nearly constant at equilibrium levels throughout the quiet periods examined

  8. D-region electron density and effective recombination coefficients during twilight – experimental data and modelling during solar proton events

    Directory of Open Access Journals (Sweden)

    A. Osepian

    2009-10-01

    Full Text Available Accurate measurements of electron density in the lower D-region (below 70 km altitude are rarely made. This applies both with regard to measurements by ground-based facilities and by sounding rockets, and during both quiet conditions and conditions of energetic electron precipitation. Deep penetration into the atmosphere of high-energy solar proton fluxes (during solar proton events, SPE produces extra ionisation in the whole D-region, including the lower altitudes, which gives favourable conditions for accurate measurements using ground-based facilities. In this study we show that electron densities measured with two ground-based facilities at almost the same latitude but slightly different longitudes, provide a valuable tool for validation of model computations. The two techniques used are incoherent scatter of radio waves (by the EISCAT 224 MHz radar in Tromsø, Norway, 69.6° N, 19.3° E, and partial reflection of radio-waves (by the 2.8 MHz radar near Murmansk, Russia, 69.0° N, 35.7° E. Both radars give accurate electron density values during SPE, from heights 57–60 km and upward with the EISCAT radar and between 55–70 km with the partial reflection technique. Near noon, there is little difference in the solar zenith angle between the two locations and both methods give approximately the same values of electron density at the overlapping heights. During twilight, when the difference in solar zenith angles increases, electron density values diverge. When both radars are in night conditions (solar zenith angle >99° electron densities at the overlapping altitudes again become equal. We use the joint measurements to validate model computations of the ionospheric parameters f+, λ, αeff and their variations during solar proton events. These parameters are important characteristics of the lower ionosphere structure which cannot be determined by other methods.

  9. A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III–V triple-junction solar cell

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Stark, Cameron; O’Donovan, Tadhg S.

    2016-01-01

    Highlights: • An integrated spectral dependent electrical–thermal model has been developed. • The effect of atmospheric parameters on system’s performance is evaluated. • The HCPV cooling requirements under “hot & dry” conditions are quantified. • Case studies show the impact of heat transfer coefficient on annual energy yield. • The integrated modelling allows the system’s optimisation. - Abstract: The spectral sensitivity of a concentrating triple-junction (3J) solar cell has been investigated. The atmospheric parameters such as the air mass (AM), aerosol optical depth (AOD) and precipitable water (PW) change the distribution of the solar spectrum in a way that the spectral, electrical and thermal performance of a 3J solar cell is affected. In this paper, the influence of the spectral changes on the performance of each subcell and whole cell has been analysed. It has been shown that increasing the AM and AOD have a negative impact on the spectral and electrical performance of 3J solar cells while increasing the PW has a positive effect, although, to a lesser degree. A three-dimensional finite element analysis model is used to quantify the effect of each atmospheric parameter on the thermal performance for a range of heat transfer coefficients from the back-plate to the ambient air and also ambient temperature. It is shown that a heat transfer coefficient greater than 1300 W/(m"2 K) is required to keep the solar cell under 100 °C at all times. In order to get a more realistic assessment and also to investigate the effect of heat transfer coefficient on the annual energy yield, the methodology is applied for four US locations using data from a typical meteorological year (TMY3).

  10. Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences

    Science.gov (United States)

    2016-09-01

    1.2 DOD Renewable Energy Applications 1 1.3 Atmospheric Renewable Energy Research Strategy 2 1.4 Microgrid Definitions 3 1.4.1 Mobile Microgrid 4...1.4.2 Hybrid Microgrid 4 1.4.3 Smart Microgrid 4 1.5 Long-Term Atmospheric Renewable Energy Research Vision 5 2. Atmospheric Dependencies 5 2.1...developed-for-Army “ smart ” mobile hybrid microgrid that will incorporate both traditional and renewable energy power resources. A significant

  11. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    Science.gov (United States)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  12. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  13. Diurnal global variability of the Earth's magnetic field during geomagnetically quiet conditions

    Science.gov (United States)

    Klausner, V.

    2012-12-01

    This work proposes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation. It is based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. We apply the Principal Component Analysis (PCA) technique using gapped wavelet transform and wavelet correlation. This new approach was used to describe the characteristics of the magnetic variations at Vassouras (Brazil) and 12 other magnetic stations spread around the terrestrial globe. Using magnetograms from 2007, we have investigated the global dominant pattern of the Sq variation as a function of low solar activity. This year was divided into two seasons for seasonal variation analysis: solstices (June and December) and equinoxes (March and September). We aim to reconstruct the original geomagnetic data series of the H component taking into account only the diurnal variations with periods of 24 hours on geomagnetically quiet days. We advance a proposal to reconstruct the Sq baseline using only the PCA first mode. The first interpretation of the results suggests that PCA/wavelet method could be used to the reconstruction of the Sq baseline.

  14. Northern Hemisphere Atmospheric Influence of the Solar Proton Events and Ground Level Enhancement in January 2005

    Science.gov (United States)

    Jackman, C. H.; Marsh, D. R.; Vitt, F. M.; Roble, R. G.; Randall, C. E.; Bernath, P. F.; Funke, B.; Lopez-Puertas, M.; Versick, S.; Stiller, G. P.; hide

    2011-01-01

    Solar eruptions in early 2005 led substantial barrage of charged particles on the Earth's atmosphere during the January 16-21 period. Proton fluxes were greatly increased during these several days and led to the production ofHO(x)(H, OH, BO2)and NO(x)(N, NO, NO2), which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3) showed large enhancements in mesospheric HO(x) and NO(x) constituents, and associated ozone reductions, due 10 these solar proton events (SPEs). The WACCM3 simulations show enhanced short-lived OH throughout the mesosphere in the 60-82.5degN latitude band due to the SPEs for most days in the Jan.16-2l,2005 period, in reasonable agreement with the Aura Microwave Limb Sounder (MLS) measurements. Mesospheric HO2 is also predicted to be increased by the SPEs, however, the modeled HO2 results are somewhat larger than the MLS measurements. These HO(x) enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40% throughout most of the Northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements of hydrogen peroxide (H2O2) show increases throughout the stratosphere with highest enhancements of about 60 ppt y in the lowermost mesosphere over the Jan. 16-18, 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of more than twice that amount. Measurements of nitric acid (HNO3) by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during January 16-29, 2005. WACCM3 simulations show only minuscule HNO3 changes in the upper stratosphere during this time period. However due to the small loss rates during winter, polar mesospheric enhancements of NO(x) are computed to be greater than 50 ppbv during the SPE period. Computed NO

  15. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2011-07-01

    Full Text Available Solar eruptions in early 2005 led to a substantial barrage of charged particles on the Earth's atmosphere during the 16–21 January period. Proton fluxes were greatly increased during these several days and led to the production of HOx (H, OH, HO2 and NOx (N, NO, NO2, which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3 showed large enhancements in mesospheric HOx and NOx constituents, and associated ozone reductions, due to these solar proton events (SPEs. The WACCM3 simulations show enhanced short-lived OH and HO2 concentrations throughout the mesosphere in the 60–82.5° N latitude band due to the SPEs for most days in the 16–21 January 2005 period, somewhat higher in abundance than those observed by the Aura Microwave Limb Sounder (MLS. These HOx enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40 % throughout most of the northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS measurements of hydrogen peroxide (H2O2 show increases throughout the stratosphere with highest enhancements of about 60 pptv in the lowermost mesosphere over the 16–18 January 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of about three times that amount. Measurements of nitric acid (HNO3 by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during 16–29 January 2005. WACCM3 simulations show only minuscule HNO3 increases (<0.05 ppbv in the upper stratosphere during this time period. Polar mesospheric enhancements of NOx are computed to be greater than 50

  16. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  17. Oscillator phenomena in the solar atmosphere and radiation modulation in microwaves

    International Nuclear Information System (INIS)

    Vaz, A.M.Z.

    1983-05-01

    An overview of the principal known descriptions of oscillations in the solar atmosphere at different ranges of periods was developed. Particular attention was given to oscillations with time scale of seconds, associated to active regions or bursts. 1.5 quasi-periodic oscillations were detected by the first time at more than one microwave frequency simultaneously (22 GHz and 44 GHz), with high sensitivity and high time resolution, superimposed on a burst on Dec. 15, 1980. An advance phase of 0,3s between the oscillations in the frequencies of 22 GHz and 44 GHz was discovered. The proposed mechanism to explain such oscillations is based on oscillations of the magnetic field at the source. These oscillations modulate the gyro-synchrotron emission from high energy electrons trapped in the magnetic structure. The phase difference is attributed to the influence of the optical thickness of the gyro-synchrotron emission at 22 GHz. (Author) [pt

  18. Recovering the fine structures in solar images

    Science.gov (United States)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  19. Quiet sustainability: Fertile lessons from Europe's productive gardeners

    Czech Academy of Sciences Publication Activity Database

    Smith, J.; Jehlička, Petr

    2013-01-01

    Roč. 32, č. 3 (2013), s. 148-157 ISSN 0743-0167 R&D Projects: GA ČR GAP404/10/0521 Institutional research plan: CEZ:AV0Z70280505 Keywords : Quiet sustainability * Sustainable development * Sharing Subject RIV: AD - Politology ; Political Sciences Impact factor: 2.036, year: 2013 http://www.sciencedirect.com/science/article/pii/S0743016713000454

  20. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  1. Studying the influence of strong meteorological disturbances in the Earth's lower atmosphere on variations of ionospheric parameters in the Asian region of Russia

    Science.gov (United States)

    Chernigovskaya, Marina; Kurkin, Vladimir; Orlov, Igor; Oinats, Alexey; Sharkov, Eugenii

    2010-05-01

    Short-period temporal variations of ionospheric parameters were analyzed to study probabilities of manifestation of strong meteorological disturbances in the Earth's lower atmosphere in variations of upper atmosphere parameters in a zone far removed from a disturbance source. In the analysis, we used data on maximum observed frequencies (MOF) of oblique sounding (OS) signals along Norilsk-Irkutsk, Magadan-Irkutsk, and Khabarovsk-Irkutsk paths in East Siberia and the Far East. These data were obtained during solar minimum at equinoxes (March, September) in 2008-2009. Analyzing effects of wave disturbances in ionospheric parameters, we take into account helio-geomagnetic and meteorological conditions in regions under study to do an effective separation between disturbances associated with magnetospheric-ionospheric coupling and those induced by the influence of the lower atmosphere on the upper one. The frequency analysis we conducted revealed time intervals with higher intensity of short-period oscillations which may have been interpreted as manifestation of large-scale traveling ionospheric disturbances (TIDs) whose sources were internal gravity waves (IGWs) with periods of 1-5 hours. The complex analysis of helio-geomagnetic, ionospheric, and atmospheric data as well as data on tropical cyclones established that the detected TIDs were unrelated to helio-geomagnetic disturbances (2008-2009 exhibited solar minimum and quiet geomagnetic conditions). The analysis of other potential sources of the observed short-period wave disturbances shows that observed TIDs do not always coincide in time with passage of local meteorological fronts through the region of subionospheric points of OS paths and are not associated with passage of solar terminator. An attempt was made to connect a number of detected TIDs with ionospheric responses to tropical cyclones (TC) which were in active phase in the north-west of the Pacific Ocean during the periods considered. A considerable

  2. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Directory of Open Access Journals (Sweden)

    J. Hsu

    2017-07-01

    Full Text Available Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM applications (RRTMG-SW. Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  3. Storm/Quiet Ratio Comparisons Between TIMED/SABER NO (sup +)(v) Volume Emission Rates and Incoherent Scatter Radar Electron Densities at E-Region Altitudes

    Science.gov (United States)

    Fernandez, J. R.; Mertens, C. J.; Bilitza, D.; Xu, X.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Broadband infrared limb emission at 4.3 microns is measured by the TIMED/SABER instrument. At night, these emission observations at E-region altitudes are used to derive the so called NO+(v) Volume Emission Rate (VER). NO+(v) VER can be derived by removing the background CO2(v3) 4.3 microns radiance contribution using SABER-based non-LTE radiation transfer models, and by performing a standard Abel inversion on the residual radiance. SABER observations show that NO+(v) VER is significantly enhanced during magnetic storms in accordance with increased ionization of the neutral atmosphere by auroral electron precipitation, followed by vibrational excitation of NO+ (i.e., NO+(v)) from fast exothermic ion-neutral reactions, and prompt infrared emission at 4.3 m. Due to charge neutrality, the NO+(v) VER enhancements are highly correlated with electron density enhancements, as observed for example by Incoherent Scatter Radar (ISR). In order to characterize the response of the storm-time E-region from both SABER and ISR measurements, a Storm/Quiet ratio (SQR) quantity is defined as a function of altitude. For SABER, the SQR is the ratio of the storm-to-quiet NO+(v) VER. SQR is the storm-to-quiet ratio of electron densities for ISR. In this work, we compare SABER and ISR SQR values between 100 to 120 km. Results indicate good agreement between these measurements. SQR values are intended to be used as a correction factor to be included in an empirical storm-time correction to the International Reference Ionosphere model at E-region altitudes.

  4. Thermodynamics of supra-arcade downflows in solar flares

    Science.gov (United States)

    Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin

    2017-10-01

    Context. Supra-arcade downflows (SADs) have been frequently observed during the gradual phase of solar flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the diffuse fan-shaped "haze" above, flowing toward the well-defined flare arcade. Aims: We aim to investigate the evolution of SADs' thermal properties, and to shed light on the formation mechanism and physical processes of SADs. Methods: We carefully studied several selected SADs from two flare events and calculated their differential emission measures (DEMs) as well as DEM-weighted temperatures using data obtained by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. Results: Our analysis shows that SADs are associated with a substantial decrease in DEM above 4 MK, which is 1-3 orders of magnitude smaller than the surrounding haze as well as the region before or after the passage of SADs, but comparable to the quiet corona. There is no evidence for the presence of the SAD-associated hot plasma (>20 MK) in the AIA data, and this decrease in DEM does not cause any significant change in the DEM distribution as well as the DEM-weighted temperature, which supports this idea that SADs are density depletion. This depression in DEM rapidly recovers in the wake of the SADs studied, generally within a few minutes, suggesting that they are discrete features. In addition, we found that SADs in one event are spatio-temporally associated with the successive formation of post-flare loops along the flare arcade. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  5. Solar Imagery - Chromosphere - H-Alpha

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of H-alpha photographic datasets contributed by a number of national and private solar observatories located worldwide. Solar...

  6. Science with the solar optical telescope

    Science.gov (United States)

    Jordan, S. D.; Hogan, G. D.

    1984-01-01

    The Solar Optical Telescope (SOT) is designed to provide the solar physics community with the data necessary for solving several fundamental problems in the energetics and dynamics of the solar atmosphere. Among these problems are questions on the origin and evolution of the sun's magnetic field, heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. The SOT will be built under the management of NASA's Goddard Space Flight Center, with science instruments provided by teams led by Principal Investigators. The telescope will be built by the Perkin-Elmer Corporation, and the science instruments selected for the first flight will be provided by the Lockheed Palo Alto Research Laboratory (LPARL) and the California Institute of Technology, with actual construction of a combined science instrument taking place at the LPARL. The SOT has a 1.3-meter-diameter primary mirror that will be capable of achieving diffraction-limited viewing in the visible of 0.1 arc-second. This dimension is less than a hydrodynamic scale-height or a mean-free-path of a continuum photon in the solar atmosphere. Image stability will be achieved by a control system in the telescope, which moves both the primary and tertiary mirrors in tandem, and will be further enhanced by a correlation tracker in the combined science instrument. The SOT Facility is currently scheduled for its first flight on Spacelab at the beginning of the 1990's.

  7. Review: Donald Seekins: Burma and Japan since 1940. From ‘Co-Prosperity’ to ‘Quiet Dialogue’ (2008 Buchbesprechung: Donald Seekins: Burma and Japan since 1940. From ‘Co-Prosperity’ to ‘Quiet Dialogue’ (2008

    Directory of Open Access Journals (Sweden)

    Hans-Bernd Zöllner

    2009-04-01

    Full Text Available Review of the monograph: Donald Seekins: Burma and Japan since 1940. From ‘Co-Prosperity’ to ‘Quiet Dialogue’ Copenhagen: NIAS Press, 2008, ISBN 978 87 7694 017 1, 191 pages Besprechung der Monographie: Donald Seekins: Burma and Japan since 1940. From ‘Co-Prosperity’ to ‘Quiet Dialogue’ Kopenhagen: NIAS Press, 2008, ISBN 978 87 7694 017 1, 191 Seiten

  8. Quiet ionospheric currents of the southern hemisphere derived from geomagnetic records

    International Nuclear Information System (INIS)

    Campbell, W.H.; Schiffmacher, E.R.

    1988-01-01

    This work describes the month-by-month behavior of the equivalent ionospheric current systems derived from spherical harmonic analyses of the quiet time geomagnetic field daily variations in 1965 at selected observatories representing the three southern global half-sector regions separately encompassing South America, Africa, and Australia. These external Sq current patterns were vortices having mid-latitude foci with midday summertime amplitudes reaching 16.2 x 10 4 A above the midnight level. The wintertime amplitudes were about 10 x 10 4 A smaller. At low latitudes there was a large intrusion of the opposite hemisphere external Sq current system into the wintertime hemisphere at prenoon hours, displacing the primary current vortex to later postnoon hours. The behavior of the southern hemisphere external currents were found to be seasonally similar to those of the northern hemisphere for the same year. The quiet year behavior was compared to the results for the 1958 active year determined earlier by Matsushita. The winter-to-summertime increase in focus current was found to be similar in amplitude for the 2 years. The active year summertime and equinoctial current focus amplitudes were about 2.3 times the amplitudes of corresponding months in the quiet year

  9. CLOUDS IN SUPER-EARTH ATMOSPHERES: CHEMICAL EQUILIBRIUM CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mbarek, Rostom; Kempton, Eliza M.-R., E-mail: mbarekro@grinnell.edu, E-mail: kemptone@grinnell.edu [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States)

    2016-08-20

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer and Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350–3000 K. Clouds should form along the temperature–pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K{sub 2}SO{sub 4} and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.

  10. Pressure Balance at Mars and Solar Wind Interaction with the Martian Atmosphere

    Science.gov (United States)

    Krymskii, A. M.; Ness, N. F.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.

    2003-01-01

    The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.

  11. Energetic solar particles

    International Nuclear Information System (INIS)

    Biswas, M.

    1975-01-01

    In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H 2 , H 3 and He 3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)

  12. The Application of Satellite Borne Accelerometer Data to the Study of Upper Atmosphere

    Science.gov (United States)

    Wang, H. B.

    2010-10-01

    The thesis studies some issues on the upper atmosphere based on the accelerometer data of CHAMP and GRACE-A/B satellites (Reigber et al. 2001, Tapley et al. 2004). The total atmospheric densities from 2002 to 2008 are computed from accelerometer measurements. Then the accuracies of three empirical density models such as CIRA72, DTM94 and NRLMSISE00 are evaluated. It shows that the mean errors of these models are about 22%, 26% and 27%, respectively. All of them underestimated the densities. For the years of Solar maximum (2002-2003), the models' errors exceed 30%, while for the years of Solar minimum (2007-2008), the errors are less than 15%. Three characteristics of density variation are studied, such as diurnal variation, seasonal variation and semi-annual variation. The results are: (1) The diurnal-amplitude in low-latitude region is about 1.3 at 470 km and 0.8 at 370 km. (2) The seasonal-amplitude is about 0.6 in the 60 degree region and 0.3 in the 30 degree region. (3) The semi-annual variation is related to the solar radiation. The stronger the radiation is, the greater the semi-annual-amplitude is. For example, it is about 0.32 with strong solar radiation and 0.20 with weak solar radiation. The effects of various solar indices on the model accuracy are also studied. It is shown that E10.7 could reduce the mean errors of models about 20%, and S10, Mg10, Y10 could reduce the standard deviations of models about 5%. To study the density response to magnetic storms, 52 storm events from 2003 to 2007 (ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP) are chosen as examples. It is deduced that the index Dst is more suitable to describe the density variation than index Ap. The first response of density during the storm is very fast. In about 15 minutes after the storm onset, the density around the north and south poles would enhance about 40%~70%. However, the disturbance would take 2~6 hours to travel to the equator region. It is also found that the

  13. Design of Quiet Rotorcraft Approach Trajectories

    Science.gov (United States)

    Padula, Sharon L.; Burley, Casey L.; Boyd, D. Douglas, Jr.; Marcolini, Michael A.

    2009-01-01

    A optimization procedure for identifying quiet rotorcraft approach trajectories is proposed and demonstrated. The procedure employs a multi-objective genetic algorithm in order to reduce noise and create approach paths that will be acceptable to pilots and passengers. The concept is demonstrated by application to two different helicopters. The optimized paths are compared with one another and to a standard 6-deg approach path. The two demonstration cases validate the optimization procedure but highlight the need for improved noise prediction techniques and for additional rotorcraft acoustic data sets.

  14. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  15. Chandra Observations of Pluto's Escaping Atmosphere in Support of the New Horizons Mission

    Science.gov (United States)

    McNutt, Ralph, Jr.

    2013-09-01

    Current models of Pluto's extended N2+CH4 atmosphere are still very uncertain, causing numerous difficulties in optimizing the New Horizons fast flyby operations plan for the dwarf planet. Applying knowledge gained from studying cometary X-ray emission, Chandra ACIS-S photometric imaging of X-rays produced by CXE between the solar wind and Pluto's atmosphere will address both the run of atmospheric density and the interaction of the solar wind with the extended Plutonian atmosphere. Determining the atmosphere's extent and amount of free molecular escape will aid the atmospheric sounding measurements of the NH ALICE instrument, while determining the x-ray luminosity will help the NH PEPSI instrument characterize the solar wind particle environment.

  16. Variations in ion and neutral composition at Venus - Evidence of solar control of the formation of the predawn bulges in H/+/ and He1

    Science.gov (United States)

    Taylor, H. A., Jr.; Mayr, H.; Brinton, H.; Niemann, H.; Hartle, R.; Daniell, R. E., Jr.

    1982-01-01

    A comparison of ion and neutral composition measurements at Venus for periods of greatly different solar activity provides qualitative evidence of solar control of the day-to-night transport of light ion and neutral species. Concentrations of H(+) and He in the predawn bulge near solar maximum in November, 1979, exhibit a depletion signature correlated with a pronounced modulation in the solar F10.7 and EUV fluxes. This perturbation, not observed in the predawn region during an earlier period of relative quiet solar conditions, is interpreted as resulting from pronounced changes in solar heating and photoionization on the dayside, which in turn modulate the transport of ions and neutrals into the bulge region.

  17. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-07-20

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca ii K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  18. Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars

    Science.gov (United States)

    Shemmer, Ohad

    2017-09-01

    We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.

  19. The quiet Sun extreme ultraviolet spectrum observed in normal incidence by the SOHO Coronal Diagnostic Spectrometer

    CERN Document Server

    Brooks, D H; Fludra, A; Harrison, R A; Innes, D E; Landi, E; Landini, M; Lang, J; Lanzafame, A C; Loch, S D; McWhirter, R W P; Summers, H P; Thompson, W T

    1999-01-01

    The extreme ultraviolet quiet Sun spectrum, observed at normal incidence by the Coronal Diagnostic Spectrometer on the SOHO spacecraft, is presented. The spectrum covers the wavelength ranges 308-381 AA and 513-633 AA and is based $9 on data recorded at various positions on the solar disk between October 1996 and February 1997. Datasets at twelve of these `positions' were judged to be free from active regions and data faults and selected for detailed study. A $9 constrained maximum likelihood spectral line fitting code was used to analyse the spectral features. In all over 200 spectrum lines have been measured and about 50 186584dentified. The line identification process consisted of a $9 number of steps. Firstly assignment of well known lines was made and used to obtain the primary wavelength calibration. Variations of wavelengths with position were used to assess the precision of calibration achievable. Then, an $9 analysis method first used in studies with the CHASE experiment, was applied to the new obser...

  20. Mg I absorption features in the solar spectrum near 9 and 12 microns

    Science.gov (United States)

    Glenar, David A.; Reuter, Dennis C.; Deming, Drake; Chang, Edward S.

    1988-01-01

    High-resolution FTS observations from the Kitt Peak National Solar Observatory and the Spacelab 3 ATMOS experiment have revealed additional infrared transitions due to Mg I in the spectra of both quiet sun and sunspot penumbra. In contrast to previous observations, these transitions are seen in absorption, not emission. Absorption intensities range from 1 to 7 percent of the continuum in the quiet sun. In the penumbra, the same features appear to show Zeeman splitting. Modeling of the line profiles in the photospheric spectrum shows evidence for a factor of three overabundance in the n = 5 or more levels of Mg I in the upper photosphere, but with no deviations from a Planck source function. It is concluded that whatever the process that produces the emission (including the Lemke and Holweger mechanism), it must occur well above the tau(5000) = 0.01 level.

  1. Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

    Science.gov (United States)

    Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.

    2007-08-01

    We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.

  2. Whole Atmosphere Simulation of Anthropogenic Climate Change

    Science.gov (United States)

    Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.

    2018-02-01

    We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.

  3. Clouds and Hazes in Exoplanet Atmospheres

    OpenAIRE

    Marley, Mark S.; Ackerman, Andrew S.; Cuzzi, Jeffrey N.; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider t...

  4. Solar/Space Environment Data (Satellites)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) monitors the geospace and solar environments using a variety of space weather sensors aboard its fleet of...

  5. "SOLAR MAGNETIZED ""TORNADOES:"" RELATION TO FILAMENTS"

    OpenAIRE

    Su, Yang; Wang, Tongjiang; Veronig, Astrid; Temmer, Manuela; Gan, Weiqun

    2012-01-01

    Solar magnetized "tornadoes", a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but root in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar "tornadoes" {Two papers which focused on different aspect of solar tornadoes were published in the Astrophysical Journal Letters (Li et al. 2012) and Nature (W...

  6. Foil Gas Bearing Supported Quiet Fan for Spacecraft Ventilation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Developing a quiet fan for Environmental Control and Life Support systems to enhance the livable environment within the spacecraft has been a challenge. A Foil Gas...

  7. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  8. Thallium in the solar atmosphere.

    Science.gov (United States)

    Lambert, D. L.; Mallia, E. A.; Smith, G.

    1972-01-01

    Evidence for the presence of thallium in the sun is presented. Umbral spectra were found to contain an absorption feature at or near the predicted position for the Tl I 5350 A line. Analysis of the 5350 A line indicated that the solar thallium abundance is given by log N(Tl) values ranging from 0.72 to 1.07 on the standard scale log N(H) = 12.00. Unidentified blends, however, limit the accuracy of the abundance determination.

  9. Five-minute oscillation power within magnetic elements in the solar atmosphere

    International Nuclear Information System (INIS)

    Jain, Rekha; Gascoyne, Andrew; Hindman, Bradley W.; Greer, Benjamin

    2014-01-01

    It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions. In this paper we investigate the observed power suppression in plage and magnetic elements, by modeling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near the solar disk center, where the line-of-sight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers. In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. However, further physical effects need to be examined for understanding the observed power ratios for stronger magnetic field strengths and higher frequencies. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Furthermore, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.

  10. Solar X-rays from Axions: Rest-Mass Dependent Signatures

    CERN Document Server

    Zioutas, Konstantin; Semertzidis, Yannis; Papaevangelou, Thomas; Gardikiotis, Antonios; Dafni, Theopisti; Anastassopoulos, Vassilis

    2010-01-01

    The spectral shape of solar X-rays is a power law. The more active the Sun is, the less steep the distribution. This behaviour can be explained by axion regeneration to X-rays occurring ~400km deep into the photosphere. Their down-comptonization reproduces the measured spectral shape, pointing at axions with rest mass m_a~17 meV/c2, without contradicting astrophysical-laboratory limits. Directly measured soft X-ray spectra from the extremely quiet Sun during 2009 (SphinX mission), though hitherto overlooked, fitt the axion scenario.

  11. Radiation pressure: A possible cause for the superrotation of the Venusian atmosphere

    Science.gov (United States)

    Krause, J. L.

    1992-01-01

    The superrotation of the venusian atmosphere relative to the planet's surface has long been known. Yet the process by which this vigorous circulation is maintained is poorly understood. The purpose of this report is to show that a mechanism by which the solar radiation interacts with the cloudy atmosphere of Venus could be the principle cause of the superrotation. It has been long known that Venus has a high albedo due to the scattering (similar to the reflection process) of solar radiation by the cloud droplets in its atmosphere. The radiation not scattered, but intercepted by the planet and its atmosphere, is mainly absorbed within the cloud layers. Therefore, momentum (equal, more or less, to that of the solar radiation intercepted) is continually transferred to the venusian atmosphere. The atmospheric system presents a symmetrical surface (same radiation-matter interaction) toward the solar radiation at its morning and evening limbs. If the cross-sectional areas at both limbs were equal, the momentum transfer at the morning limb would decelerate the atmosphere's rotation while at the evening limb the same transfer would accelerate the rotation an equal amount. The net result of this is that the overall rate of rotation would be unchanged. Such a symmetrical configuration is not likely since the atmosphere must be warmed as it rotates across the planet's day hemisphere and cooled as it rotates across the planet's night hemisphere. This warming and cooling must result in a formation of an asymmetrical configuration. It is apparent that the momentum transfer at the evening limb must be greater than that at the morning limb because the atmosphere's greater cross section at the evening limb intercepts a greater amount of solar radiation. It should be noted that very little of the solar radiation is transmitted through the cloud layers, especially at or near the limbs where the atmospheric path length of the radiation is long. This net momentum transfer must be

  12. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    Science.gov (United States)

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  13. Digital control and data acquisition system for the QUIET experiment

    International Nuclear Information System (INIS)

    Bogdan, Mircea; Kapner, Dan; Samtleben, Dorothea; Vanderlinde, Keith

    2007-01-01

    We present the Digital Control and Data Acquisition System (DCDAQ) for Phase I of the Q/U Imaging Experiment (QUIET), arrays of 91 W-band and 19 Q-band receivers, placed on 1.4 m telescopes, in Chajnantor, Chile to measure the polarization of the cosmic microwave background. QUIET uses custom-built electronics boards that control and monitor its polarimeters. Each of these boards is digitally addressable, so that the DCDAQ can set and monitor any of the 1600 biases needed to operate the 91 receivers. The DCDAQ consists of a controller and up to 13 custom-made 32-channel ADC cards. Local FPGAs allow real-time data processing for each channel. This immediate data reduction is necessary, as it is planned to scale this technology beyond Phase I. The DCDAQ system is implemented with this future in mind and can easily be scaled to operate 1000 receivers

  14. IRIS Observations of Magnetic Interactions in the Solar Atmosphere between Preexisting and Emerging Magnetic Fields. I. Overall Evolution

    Science.gov (United States)

    Guglielmino, Salvo L.; Zuccarello, Francesca; Young, Peter R.; Murabito, Mariarita; Romano, Paolo

    2018-04-01

    We report multiwavelength ultraviolet observations taken with the IRIS satellite, concerning the emergence phase in the upper chromosphere and transition region of an emerging flux region (EFR) embedded in the preexisting field of active region NOAA 12529 in the Sun. IRIS data are complemented by full-disk observations of the Solar Dynamics Observatory satellite, relevant to the photosphere and the corona. The photospheric configuration of the EFR is also analyzed by measurements taken with the spectropolarimeter on board the Hinode satellite, when the EFR was fully developed. Recurrent intense brightenings that resemble UV bursts, with counterparts in all coronal passbands, are identified at the edges of the EFR. Jet activity is also observed at chromospheric and coronal levels, near the observed brightenings. The analysis of the IRIS line profiles reveals the heating of dense plasma in the low solar atmosphere and the driving of bidirectional high-velocity flows with speed up to 100 km s‑1 at the same locations. Compared with previous observations and numerical models, these signatures suggest evidence of several long-lasting, small-scale magnetic reconnection episodes between the emerging bipole and the ambient field. This process leads to the cancellation of a preexisting photospheric flux concentration and appears to occur higher in the atmosphere than usually found in UV bursts, explaining the observed coronal counterparts.

  15. A comparative study on chaoticity of equatorial/low latitude ionosphere over Indian subcontinent during geomagnetically quiet and disturbed periods

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    2010-12-01

    Full Text Available In the present study, the latitudinal aspect of chaotic behaviour of ionosphere during quiet and storm periods are analyzed and compared by using GPS TEC time series measured at equatorial trough, crest and outside crest stations over Indian subcontinent, by employing the chaotic quantifiers like Lyapunov exponent (LE, correlation dimension (CD, entropy and nonlinear prediction error (NPE. It is observed that the values of LE are low for storm periods compared to those of quiet periods for all the stations considered here. The lowest value of LE is observed at the trough station, Agatti (2.38° N, Geomagnetically, and highest at crest station, Mumbai (10.09° N, Geomagnetically for both quiet and storm periods. The values of correlation dimension computed for TEC time series are in the range 2.23–2.74 for quiet period, which indicate that equatorial ionosphere may be described with three variables during quiet period. But the crest station Mumbai shows a higher value of CD (3.373 during storm time, which asserts that four variables are necessary to describe the system during storm period. The values of non linear prediction error (NPE are lower for Agatti (2.38° N, Geomagnetically and Jodhpur (18.3° N, Geomagnetically, during storm period, compared to those of quiet period, mainly because of the predominance of non linear aspects during storm periods The surrogate data test is carried out and on the basis of the significance of difference of the original data and surrogates for various aspects, the surrogate data test rejects the null hypothesis that the time series of TEC during storm and quiet times represent a linear stochastic process. It is also observed that using state space model, detrended TEC can be predicted, which reasonably reproduces the observed data. Based on the values of the above quantifiers, the features of chaotic behaviour of equatorial trough crest and outside the crest regions of ionosphere during geomagnetically

  16. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  17. The SUVIT Instrument on the Solar-C Mission

    Science.gov (United States)

    Tarbell, Theodore D.; Ichimoto, Kiyoshi

    2014-06-01

    Solar-C is a new space mission being proposed to JAXA, with significant contributions anticipated from NASA, ESA, and EU countries. The main scientific objectives are to: reveal the mechanisms for heating and dynamics of the chromosphere and corona and acceleration of the solar wind; determine the physical origin of the large-scale explosions and eruptions that drive short-term solar, heliospheric, and geospace variability; use the solar atmosphere as a laboratory for understanding fundamental physical processes; make unprecedented observations of the polar magnetic fields. The unique approaches of Solar-C to achieve these goals are to: determine the properties and evolution of the 3-dimensional magnetic field, especially on small spatial scales, and for the first time observed in the crucial low beta plasma region; observe all the temperature regimes of the atmosphere seamlessly at the highest spatial resolution ever achieved; observe at high cadence the prevailing dynamics in all regions of the atmosphere; determine physical properties from high resolution spectroscopic measurements throughout the atmosphere and into the solar wind. The powerful suite of instruments onboard Solar-C will be sensitive to temperatures from the photosphere 5500 K) to solar flares 20 MK) with no temperature gap, with spatial resolution at all temperatures of 0.3″ or less (0.1″ in the lower atmosphere) and at high cadence. The purpose of the Solar UV-Visible-IR Telescope (SUVIT) is to obtain chromospheric velocity, temperature, density and magnetic field diagnostics over as wide arange of heights as possible, through high cadence spectral line profiles and vector spectro-polarimetry. SUVIT is a meter-class telescope currently under study at 1.4m in order to obtain sufficientresolution and S/N. SUVIT has two complementary focal plane packages, the Filtergraph that makes high cadence imaging observations with the highest spatial resolution and the Spectro-polarimeter that makes

  18. Design and development of a quiet, self-thrusting blast hole

    CSIR Research Space (South Africa)

    Ottermann, RW

    2001-08-01

    Full Text Available and demonstrated. The primary output of this project is a quiet, ergonomically, reliable blast hole drilling system, which is used to drill suitable blast holes by workers responsible for drilling these holes. The system has to be safe and reliable with reduced...

  19. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    Hill, H.A.

    1984-01-01

    The objective of the project is to detect and monitor climatically significant solar variability by accurate monitoring of the associated variability in solar shape and diameter. The observing program for this project was initiated in 1981. Solar diameter measurements have been taken and data reduction programs for these measurements have been developed. Theoretical analysis of the expected change in the intensity from the solar atmosphere to a given mechanial driving has progressed to the extent that changes in the solar diameter can be related to the associated change in the solar luminosity. An absolute calibration system for the telescope has been constructed and is currently being tested. A proposal is made for the continuation of the work in each of these areas

  20. Extended neutral atmosphere effect on solar wind interaction with nonmagnetic bodies of the solar system

    International Nuclear Information System (INIS)

    Breus, T.K.; Krymskij, A.M.; Mitnitskij, V.Ya.

    1987-01-01

    Numeric modelling of the Venus flow-around by the solar wind with regard to stream loading by heavy ions, produced under photoionization of the Venus neutral oxygen corona, is conducted. It is shown, that this effect can account for a whole number of peculiarities related to the solar wind interaction with the planet which have not been clearly explained yet, namely, shock wave position, solar wind stream and magnetic field characteristics behind the front

  1. The solar probe mission

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, J.; Bohlin, J.D.; Burlaga, L.F.; Farquhar, R.; Gloeckler, G.; Goldstein, B.E.; Harvey, J.W.; Holzer, T.E.; Jones, W.V.; Kellogg, P.J.; Krimigis, S.M.; Kundu, M.R.; Lazarus, A.J.; Mellott, M.M.; Parker, E.N.; Rosner, R.; Rottman, G.J.; Slavin, J.A.; Suess, S.T.; Tsurutani, B.T.; Woo, R.T.; Zwickl, R.D.

    1990-01-01

    The Solar Probe will deliver a 133.5 kg science payload into a 4 R s perihelion solar polar orbit (with the first perihelion passage in 2004) to explore in situ one of the last frontiers in the solar system---the solar corona. This mission is both affordable and technologically feasible. Using a payload of 12 (predominantly particles and fields) scientific experiments, it will be possible to answer many long-standing, fundamental problems concerning the structure and dynamics of the outer solar atmosphere, including the acceleration, storage, and transport of energetic particles near the Sun and in the inner ( s ) heliosphere

  2. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  3. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    Science.gov (United States)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  4. Shhh… I Need Quiet! Children's Understanding of American, British, and Japanese-accented English Speakers.

    Science.gov (United States)

    Bent, Tessa; Holt, Rachael Frush

    2018-02-01

    Children's ability to understand speakers with a wide range of dialects and accents is essential for efficient language development and communication in a global society. Here, the impact of regional dialect and foreign-accent variability on children's speech understanding was evaluated in both quiet and noisy conditions. Five- to seven-year-old children ( n = 90) and adults ( n = 96) repeated sentences produced by three speakers with different accents-American English, British English, and Japanese-accented English-in quiet or noisy conditions. Adults had no difficulty understanding any speaker in quiet conditions. Their performance declined for the nonnative speaker with a moderate amount of noise; their performance only substantially declined for the British English speaker (i.e., below 93% correct) when their understanding of the American English speaker was also impeded. In contrast, although children showed accurate word recognition for the American and British English speakers in quiet conditions, they had difficulty understanding the nonnative speaker even under ideal listening conditions. With a moderate amount of noise, their perception of British English speech declined substantially and their ability to understand the nonnative speaker was particularly poor. These results suggest that although school-aged children can understand unfamiliar native dialects under ideal listening conditions, their ability to recognize words in these dialects may be highly susceptible to the influence of environmental degradation. Fully adult-like word identification for speakers with unfamiliar accents and dialects may exhibit a protracted developmental trajectory.

  5. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Final results of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    Science.gov (United States)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2017-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is important for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. Until recently, some large and unsolved discrepancies (up to 10 %) were observed in the 1.6 μm region between space instruments, models and ground-based measurements. We designed a ground-based instrumentation for SSI measurements at the Top Of Atmosphere (TOA) through atmospheric NIR windows using the Bouguer-Langley technique. The main instrument is a double NIR spectroradiometer designed by Bentham (UK), radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. It was absolute calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign was carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) follows the four-month IRESPERAD campaign which was carried out in the summer 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3'week PYR-ILIOS campaign and compare them with the ATLAS 3 spectrum as well as from recently reprocessed NIR solar spectra obtained with SOLAR/SOLSPEC on ISS and SCIAMACHY on ENVISAT. The uncertainty budget of the PYR-ILIOS results will be discussed.

  6. Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell

    Science.gov (United States)

    Tsin, Fabien; Venerosy, Amélie; Vidal, Julien; Collin, Stéphane; Clatot, Johnny; Lombez, Laurent; Paire, Myriam; Borensztajn, Stephan; Broussillou, Cédric; Grand, Pierre Philippe; Jaime, Salvador; Lincot, Daniel; Rousset, Jean

    2015-01-01

    This paper presents the low cost electrodeposition of a transparent and conductive chlorine doped ZnO layer with performances comparable to that produced by standard vacuum processes. First, an in-depth study of the defect physics by ab-initio calculation shows that chlorine is one of the best candidates to dope the ZnO. This result is experimentally confirmed by a complete optical analysis of the ZnO layer deposited in a chloride rich solution. We demonstrate that high doping levels (>1020 cm−3) and mobilities (up to 20 cm2 V−1 s−1) can be reached by insertion of chlorine in the lattice. The process developed in this study has been applied on a CdS/Cu(In,Ga)(Se,S)2 p-n junction produced in a pilot line by a non vacuum process, to be tested as solar cell front contact deposition method. As a result efficiency of 14.3% has been reached opening the way of atmospheric production of Cu(In,Ga)(Se,S)2 solar cell. PMID:25753657

  7. Common SphinX and RHESSI observations of solar flares

    Science.gov (United States)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  8. RELATIONSHIPS BETWEEN FLUID VORTICITY, KINETIC HELICITY, AND MAGNETIC FIELD ON SMALL-SCALES (QUIET-NETWORK) ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in [Indian Institute of Astrophysics, Bangalore-34 (India)

    2016-06-20

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  9. Summary of significant solar-initiated events during STIP interval XII

    International Nuclear Information System (INIS)

    Gergely, T.E.

    1982-01-01

    A summary of the significant solar-terrestrial events of STIP Interval XII (April 10-July 1, 1981) is presented. It is shown that the first half of the interval was extremely active, with several of the largest X-ray flares, particle events, and shocks of this solar cycle taking place during April and the first half of May. However, the second half of the interval was characterized by relatively quiet conditions. A detailed examination is presented of several large events which occurred on 10, 24, and 27 April and on 8 and 16 May. It is suggested that the comparison and statistical analysis of the numerous events for which excellent observations are available could provide information on what causes a type II burst to propagate in the interplanetary medium

  10. Magnetic Braids in Eruptions of a Spiral Structure in the Solar Atmosphere

    Science.gov (United States)

    Huang, Zhenghua; Xia, Lidong; Nelson, Chris J.; Liu, Jiajia; Wiegelmann, Thomas; Tian, Hui; Klimchuk, James A.; Chen, Yao; Li, Bo

    2018-02-01

    We report on high-resolution imaging and spectral observations of eruptions of a spiral structure in the transition region, which were taken with the Interface Region Imaging Spectrograph, and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The eruption coincided with the appearance of two series of jets, with velocities comparable to the Alfvén speeds in their footpoints. Several pieces of evidence of magnetic braiding in the eruption are revealed, including localized bright knots, multiple well-separated jet threads, transition region explosive events, and the fact that all three of these are falling into the same locations within the eruptive structures. Through analysis of the extrapolated 3D magnetic field in the region, we found that the eruptive spiral structure corresponded well to locations of twisted magnetic flux tubes with varying curl values along their lengths. The eruption occurred where strong parallel currents, high squashing factors, and large twist numbers were obtained. The electron number density of the eruptive structure is found to be ∼3 × 1012 cm‑3, indicating that a significant amount of mass could be pumped into the corona by the jets. Following the eruption, the extrapolations revealed a set of seemingly relaxed loops, which were visible in the AIA 94 Å channel, indicating temperatures of around 6.3 MK. With these observations, we suggest that magnetic braiding could be part of the mechanisms explaining the formation of solar eruption and the mass and energy supplement to the corona.

  11. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Finlay, Chris; Hesse, M.

    2017-01-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagneticmain field. Observations from...... the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine...

  12. An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas.

    Science.gov (United States)

    Votsi, Nefta-Eleftheria P; Kallimanis, Athanasios S; Pantis, Ioannis D

    2017-02-01

    Quietness exists in places without human induced noise sources and could offer multiple benefits to citizens. Unlit areas are sites free of human intense interference at night time. The aim of this research is to develop an integrated environmental index of noise and light pollution. In order to achieve this goal the spatial pattern of quietness and darkness of Europe was identified, as well as their overlap. The environmental index revealed that the spatial patterns of Quiet and Unlit Areas differ to a great extent highlighting the importance of preserving quietness as well as darkness in EU. The spatial overlap of these two environmental characteristics covers 32.06% of EU surface area, which could be considered a feasible threshold for protection. This diurnal and nocturnal metric of environmental quality accompanied with all direct and indirect benefits to human well-being could indicate a target for environmental protection in the EU policy and practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of different sound atmospheres on SnO2:Sb thin films prepared by dip coating technique

    Science.gov (United States)

    Kocyigit, Adem; Ozturk, Erhan; Ejderha, Kadir; Turgut, Guven

    2017-11-01

    Different sound atmosphere effects were investigated on SnO2:Sb thin films, which were deposited with dip coating technique. Two sound atmospheres were used in this study; one of them was nay sound atmosphere for soft sound, another was metallic sound for hard sound. X-ray diffraction (XRD) graphs have indicated that the films have different orientations and structural parameters in quiet room, metallic and soft sound atmospheres. It could be seen from UV-Vis spectrometer measurements that films have different band gaps and optical transmittances with changing sound atmospheres. Scanning electron microscope (SEM) and AFM images of the films have been pointed out that surfaces of films have been affected with changing sound atmospheres. The electrical measurements have shown that films have different I-V plots and different sheet resistances with changing sound atmospheres. These sound effects may be used to manage atoms in nano dimensions.

  14. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; hide

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  15. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    Science.gov (United States)

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  16. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    Science.gov (United States)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  17. DYNAMICS OF MULTI-CORED MAGNETIC STRUCTURES IN THE QUIET SUN

    International Nuclear Information System (INIS)

    Requerey, Iker S.; Iniesta, Jose Carlos Del Toro; Rubio, Luis R. Bellot; Pillet, Valentín Martínez; Solanki, Sami K.; Schmidt, Wolfgang

    2015-01-01

    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by Sunrise. We use high spatial resolution (0.″15–0.″18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca ii H filtergrams from Sunrise Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are “compressed” by surrounding granules and split when they are “squeezed” between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by Martínez González et al. correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes

  18. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  19. "Quiet Food Sovereignty” as Food Sovereignty without Movements? Understanding Food Sovereignty in Post-Socialist Russia

    OpenAIRE

    Visser, Oane; Mamonova, Natalia; Spoor, Max; Nikulin, Alexander

    2017-01-01

    textabstractWhat does food sovereignty look like in settings where rural social movements are weak or non-existent, such as in countries with post-socialist, semi-authoritarian regimes? Focusing on Russia, we present a divergent form of food sovereignty. Building on the concept of ‘quiet sustainability’, we present a dispersed, muted, but clearly bottom-up variant we term ‘quiet food sovereignty’. In the latter, the role of the very productive smallholdings is downplayed by the state and part...

  20. Solar Energetic Particle Composition over Two Solar Cycles as Observed by the Ulysses/HISCALE and ACE/EPAM Pulse Height Analyzers.

    Science.gov (United States)

    Patterson, J. D.; Madanian, H.; Manweiler, J. W.; Lanzerotti, L. J.

    2017-12-01

    We present the compositional variation in the Solar Energetic Particle (SEP) population in the inner heliosphere over two solar cycles using data from the Ulysses Heliospheric Instrument for Spectra, Composition, and Anisotropy at Low Energies (HISCALE) and Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM). The Ulysses mission was active from late 1990 to mid-2009 in a heliopolar orbit inclined by 80° with a perihelion of 1.3 AU and an aphelion of 5.4 AU. The ACE mission has been active since its launch in late 1997 and is in a halo orbit about L1. These two missions provide a total of 27 years of continuous observation in the inner heliosphere with twelve years of simultaneous observation. HISCALE and EPAM data provide species-resolved differential flux and density of SEP between 0.5-5 MeV/nuc. Several ion species (He, C, O, Ne, Si, Fe) are identified using the Pulse Height Analyzer (PHA) system of the Composition Aperture for both instruments. The He density shows a noticeable increase at high solar activity followed by a moderate drop at the quiet time of the solar minimum between cycles 23 and 24. The density of heavier ions (i.e. O and Fe) change minimally with respect to the F10.7 index variations however, certain energy-specific count rates decrease during solar minimum. With Ulysses and ACE observing in different regions of the inner heliosphere, there are significant latitudinal differences in how the O/He ratios vary with the solar cycle. At solar minimum, there is reasonable agreement between the observations from both instruments. At solar max 23, the differences in composition over the course of the solar cycle, and as observed at different heliospheric locations can provide insight to the origins of and acceleration processes differentially affecting solar energetic ions.