WorldWideScience

Sample records for quercetin modified carbon

  1. Preparation of amino-modified active carbon cartridges and their use in the extraction of quercetin from Oldenlandia diffusa.

    Science.gov (United States)

    Zhu, Tao; Row, Kyung Ho

    2011-12-05

    Polyethyleneimine (PEI) and ethylenediamine (EDA) as modifiers were bonded on active carbon (AC) surface for specific selective extraction of quercetin from Oldenlandia diffusa. The characteristics of the modified AC materials that were obtained were investigated by field emission-scanning electron microscopy (FE-SEM) and Fourier transform infrared spectrometer (FT-IR). The interactions between quercetin and the AC materials were investigated by fitting the static adsorption data to four linear and nonlinear adsorption isotherm models. Of these four models, the Langmuir-Freundlich adsorption isotherm was proved the best for investigating quercetin on AC materials. Scatchard analysis was used to evaluate the binding properties of the AC materials for quercetin. Solvent extraction and solid-phase extraction (SPE) were optimized, and the effect of the mobile phase pH was investigated to improve the performance for the separation of quercetin on high performance liquid chromatography (HPLC). The results from the validation of the proposed analytical method demonstrated that the EDA-modified AC was the most suitable SPE cartridge for the purification of quercetin from O. diffusa. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Dithiooxamide Modified Glassy Carbon Electrode for the Studies of Non-Aqueous Media: Electrochemical Behaviors of Quercetin on the Electrode Surface

    Directory of Open Access Journals (Sweden)

    Ecir Yılmaz

    2012-03-01

    Full Text Available Electrochemical oxidation of quercetin, as an important biological molecule, has been studied in non-aqueous media using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. To investigate the electrochemical properties of quercetin, an important flavonoid derivative, on a different surface, a new glassy carbon electrode has been developed using dithiooxamide as modifier in non-aqueous media. The surface modification of glassy carbon electrode has been performed within the 0.0 mV and +800 mV potential range with 20 cycles using 1 mM dithioxamide solution in acetonitrile. However, the modification of quercetin to both bare glassy carbon and dithiooxamide modified glassy carbon electrode surface was carried out in a wide +300 mV and +2,800 mV potential range with 10 cycles. Following the modification process, cyclic voltammetry has been used for the surface characterization in aqueous and non-aqueous media whereas electrochemical impedance spectroscopy has been used in aqueous media. Scanning electron microscopy has also been used to support the surface analysis. The obtained data from the characterization and modification studies of dithioxamide modified and quercetin grafted glassy carbon electrode showed that the developed electrode can be used for the quantitative determination of quercetin and antioxidant capacity determination as a chemical sensor electrode.

  3. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L–Cysteine in real samples using quercetin silver nanoparticles–graphene nanosheets modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazd.ac.ir; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    Highlights: • Quercetin AgNPs graphene nanosheets modified GCE (Q–AgNPs–GNs–GCE) was prepared as a new sensor. • Q–AgNPs–GNs–GCE shows a high catalytic activity for L–Cysteine (L–Cys) oxidation. • In DPV, the calibration plots were linear within two ranges of 0.9–12.4 μM and 12.4–538.5 μM of L–Cys. • The proposed modified electrode is used for the simultaneous determinations of AA, UA and L–Cys. • Q–AgNPs–GNs–GCE was satisfactorily used for the determination of AA, UA and L–Cys in real samples. - Abstract: By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q–AgNPs–GNs–GCE) a new sensor has been fabricated. The cyclic voltammogram of Q–AgNPs–GNs–GCE shows a stable redox couple with surface confined characteristics. Q–AgNPs–GNs–GCE demonstrated a high catalytic activity for L–Cysteine (L–Cys) oxidation. Results indicated that L–Cys peak potential at Q–AgNPs–GNs–GCE shifted to less positive values compared to GNs–GCE or AgNPs–GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k′, for the oxidation of L–Cys at the Q–AgNPs–GNs–GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L–Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9–12.4 μM and 12.4–538.5 μM of L–Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L–Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L–Cys in a milk sample and UA in a human urine sample.

  4. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode

    Science.gov (United States)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.

  5. Investigation of Electrochemical Behaviour of Quercetin on the Modified Electrode Surfaces with Procaine and Aminophenyl in Non-Aquous Medium

    Directory of Open Access Journals (Sweden)

    Ibrahim Ender Mulazimoglu

    2008-01-01

    Full Text Available In this study, cyclic voltammetry and electrochemical ımpedance spectroscopy have been used to investigate the electrochemical behaviour of quercetin (3,3′,4′,5,7-pentahydroxyflavone on the procaine and aminophenyl modified electrode. The modification of procaine and aminophenyl binded electrode surface with quercetin was performed in +0,3/+2,8 V (for procaine and +0,4/+1,5 V (for aminophenyl potential range using 100 mV s-1 scanning rate having 10 cycle. A solution of 0.1 M tetrabutylammonium tetrafluoroborate in acetonitrile was used as a non-aquous solvent. For the modification process a solution of 1 mM quercetin in 0.1 M tetrabutylammonium tetrafluoroborate was used. In order to obtain these two surface, a solution of 1 mM procaine and 1 mM nitrophenyl diazonium salt in 0.1 M tetrabutylammonium tetrafluoroborate was used. By using these solutions bare glassy carbon electrode surface was modified. Nitrophenyl was reduced to amine group in 0.1 M HCl medium on the nitrophenyl modified glassy carbon elelctrode surface. Procaine modified glassy carbon electrode surface was quite electroactive. Although nitrophenyl modified glassy carbon elelctrode surface was electroinactive, it was activated by reducing nitro group into amine group. For the characterization of the modified surface 1 mM ferrocene in 0.1 M tetrabutylammonium tetrafluoroborate for cyclic voltammetry and 1 mM ferricyanide/ferrocyanide (1:1 mixture in 0,1 M KCl for electrochemical impedance spectroscopy were used.

  6. Protective Effects of Quercetin and Quercetin-5',8-Disulfonate against Carbon Tetrachloride-Caused Oxidative Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yanmang Cui

    2013-12-01

    Full Text Available Oxidative stress is one of the major factors in the pathogenesis of liver disease. Quercetin is a plant-based antioxidant traditionally used as a treatment for hepatic injury, but its poor solubility affects its bioavailability. We here report the regulative effects on hepatoprotection and absorption in mice of quercetin sulfation to form quercetin-5',8-disulfonate (QS, a novel synthetic compound. Oral administration of both QS and the parent quercetin at 100, 200 and 500 mg/kg·bw prior to acute CCl4 oxidative damage in mice, effectively attenuated serum alanine aminotransferase (ALT, aspartate aminotransferase (AST and lactate dehydrogenase (LDH activities and hepatic malondialdehyde (MDA levels (p < 0.05, and suppressed the CCl4-induced depletion of glutathione peroxidase (GSH-Px and total superoxide dismutase (T-SOD. Selective 5',8-sulfation of quercetin increased the hepatoprotective effect, and its relative absorption relative to quercetin (p < 0.05 as indicated by an improved 24-hour urinary excretion and a decreased fecal excretion determined by HPLC. These results and histopathological observations collectively demonstrate that quercetin sulfation increases its hepatoprotective effects and absorption in mice, and QS has potential as a chemopreventive and chemotherapeutic agent for liver diseases.

  7. MODIFYING V-14 RUBBER WITH CARBON FIBERS

    Directory of Open Access Journals (Sweden)

    Shadrinov N. V.

    2016-01-01

    Full Text Available The influence of carbon fibers and modified carbon fibers on properties of industrially produced V-14 rubber is examined. The dependences of physical and mechanical properties, hardness, abrasion resistance and resistance in aggressive environment on few amount of filled fiber are established. Structural properties of reinforced elastomeric composites are studied by scanning electron microscopy. Elastomeric layer on the surface of modified carbon fiber, confirmed with high adhesion is identified

  8. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment.

    Directory of Open Access Journals (Sweden)

    Chabita Saha

    Full Text Available Polymer nanoparticles are vehicles used for delivery of hydrophobic anti-cancer drugs, like doxorubicin, paclitaxel or chemopreventors like quercetin (Q. The present study deals with the synthesis and characterisation of nano formulations (NFs from Q loaded PLGA (poly lactic-co-glycolic acid nano particles (NPs by surface modification. The surface of Q-loaded (NPs is modified by coating with biopolymers like bovine serum albumin (BSA or histones (His. Conventional chemotherapeutic drugs adriamycin (ADR and mitoxantrone (MTX are bound to BSA and His respectively before being coated on Q-loaded NPs to nano formulate NF1 and NF2 respectively. The sizes of these NFs are in the range 400-500 nm as ascertained by SEM and DLS measurements. Encapsulation of Q in polymer NPs is confirmed from shifts in FT-IR, TGA and DSC traces of Q-loaded NPs compared to native PLGA and Q. Surface modification in NFs is evidenced by three distinct regions in their TEM images; the core, polymer capsule and the coated surface. Negative zeta potential of Q-loaded NPs shifted to positive potential on surface modification in NF1 and NF2. In vitro release of Q from the NFs lasted up to twenty days with an early burst release. NF2 is better formulation than NF1 as loading of MTX is 85% compared to 23% loading of ADR. Such NFs are expected to overcome multi-drug resistance (MDR by reaching and treating the target cancerous cells by virtue of size, charge and retention.

  9. Photothermal effects of immunologically modified carbon nanotubes

    Science.gov (United States)

    Griswold, Ryan T.; Henderson, Brock; Goddard, Jessica; Tan, Yongqiang; Hode, Tomas; Liu, Hong; Nordquist, Robert E.; Chen, Wei R.

    2013-02-01

    Carbon nanotubes have a great potential in the biomedical applications. To use carbon nanotubes in the treatment of cancer, we synthesized an immunologically modified single-walled carbon nanotube (SWNT) using a novel immunomodifier, glycated chitosan (GC), as an effective surfactant for SWNT. This new composition SWNT-GC was stable due to the strong non-covalent binding between SWNT and GC. The structure of SWNT-GC is presented in this report. The photothermal effect of SWNT-GC was investigated under irradiation of a near-infrared laser. SWNT-GC retained the optical properties of SWNT and the immunological properties of GC. Specifically, the SWNT-GC could selectively absorb a 980-nm light and induce desirable thermal effects in tissue culture and in animals. It could also induce tumor cell destruction, controlled by the laser settings and the doses of SWNT and GC. Laser+SWNT-GC treatment could also induce strong expression of heat shock proteins on the surface of tumor cells. This immunologically modified carbon nanotube could be used for selective photothermal interactions in noninvasive tumor treatment.

  10. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    OpenAIRE

    Lin J. Q.; Yang S. E.; Duan J. M.; Wu J.J.; Jin L. Y.; Lin J. M.; Deng Q. L.

    2016-01-01

    Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and ki...

  11. Electroanalysis using modified hierarchical nanoporous carbon materials.

    Science.gov (United States)

    Rodriguez, Rusbel Coneo; Moncada, Angelica Baena; Acevedo, Diego F; Planes, Gabriel A; Miras, Maria C; Barbero, Cesar A

    2013-01-01

    The role of the electrode nanoporosity in electroanalytical processes is discussed and specific phenomena (slow double layer charging, local pH effects) which can be present in porous electrode are described. Hierarchical porous carbon (HPC) materials are synthesized using a hard template method. The three dimensional carbon porosity is examined using scanning electron microscopy on flat surfaces cut using a focused ion beam (FIB-SEM). The electrochemical properties of the HPC are measured using cyclic voltammetry, AC impedance, chronoamperometry and Probe Beam Deflection (PBD) techniques. Chronoamperometry measurements of HPC seems to fit a transmission line model. PBD data show evidence of local pH changes inside the pores, during double layer charging. The HPC are modified by in situ (chemical or electrochemical) formation of metal (Pt/Ru) or metal oxide (CoOx, Fe3O4) nanoparticles. Additionally, HPC loaded with Pt decorated magnetite (Fe3O4) nanoparticles is produced by galvanic displacement. The modified HPC materials are used for the electroanalysis of different substances (CO, O2, AsO3(-3)). The role of the nanoporous carbon substrate in the electroanalytical data is evaluated.

  12. Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin from Herba Artemisiae Scopariae.

    Science.gov (United States)

    Li, Guizhen; Ahn, Wha Seung; Row, Kyung Ho

    2016-12-01

    Different kinds of deep eutectic solvents based on choline chloride and ionic liquids based on 1-methylimidazole were used to modify hybrid molecularly imprinted polymers with the monomer γ-aminopropyltriethoxysilane-methacrylic and three templates (rutin, scoparone, and quercetin). The materials were adopted as solid-phase extraction packing agents, and were characterized by FTIR spectroscopy and field emission scanning electron microscopy. The hybrid molecularly imprinted polymers modified by deep eutectic solvents had high recoveries and a strong recognition of rutin, scoparone, and quercetin in Herba Artemisiae Scopariae than those modified by ionic liquids. In the procedure of solid-phase extraction, deep eutectic solvents-2-hybrid molecularly imprinted polymers were obtained with the best recoveries with rutin (92.27%), scoparone (87.51%), and quercetin (80.02%), and the actual extraction yields of rutin (5.6 mg/g), scoparone (2.3 mg/g), and quercetin (3.4 mg/g). Overall, the proposed approach with the high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Deli; Yuan, Danhua [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); He, Hua, E-mail: dochehua@163.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Gao, Mengmeng [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)

    2013-08-15

    In this study, a new sensitive and convenient method for the determination of quercetin based on the fluorescence quenching of fluorescent carbon nanoparticles (CNPs) was developed. The CNPs derived from ionic liquids were prepared using a green and rapid microwave-assisted synthetic approach for the first time. The one-step green preparation process is simple and effective, neither a strong acid solvent nor surface modification reagent is needed, which makes this approach very suitable for large-scale production. The prepared CNPs were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectrometry, elemental analysis and spectrofluorometry. In NH{sub 3}–NH{sub 4}Cl buffer solution (pH 9.47), the fluorescence signals of CNPs decreased obviously with increase of the quercetin concentration. The effect of other coexisting foreign substances on the intensity of CNPs showed a low interference response. Under the optimum conditions, the fluorescence intensity presented a linear response versus quercetin concentration according to the Stern–Volmer equation with an excellent 0.9989 correlation coefficient. The linearity ranged from 2.87×10{sup −6} to 31.57×10{sup −6} mol L{sup −1} with the detection limit (3σ) of 9.88×10{sup −8} mol L{sup −1}. The recovery of this method was in the range of 93.3–105.1%. Therefore, the CNPs could to be a promising candidate as a fluorescence probe for the detection of trace levels of quercetin due to their advantages in low-cost production, low cytotoxicity, strong fluorescence and excellent biocompatibility. -- Highlights: ► Fluorescent CNPs were synthesized with microwave pyrolysis approach. ► Ionic liquids were used as sources of carbon and nitrogen for the first time. ► The formation and functionalization of CNPs were accomplished simultaneously. ► CNPs were used as fluorescent probes for the determination of quercetin. ► A sensitive and convenient method based

  14. CVD carbon powders modified by ball milling

    Directory of Open Access Journals (Sweden)

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  15. Removal of congo red from water using quercetin modified α-Fe{sub 2}O{sub 3} nanoparticles as effective nanoadsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh, R. [Department of Chemistry, Sethu Institute of Technology, Madurai, 626115, Tamilnadu (India); Vignesh, K. [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang (Malaysia); Anano Sphere Sdn Bhd, Lorong Industri 11, Kawasan Industri Bukit Panchor, Nibong Tebal, 14300, Penang (Malaysia); Rajarajan, M., E-mail: rajarajan_1962@yahoo.com [P.G. & Research Department of Chemistry, C.P.A College, Bodinayakanur, 626513, Tamilnadu (India); Suganthi, A., E-mail: suganthitcarts@gmail.com [P.G. & Research Department of Chemistry, Thiagarajar College, Madurai, 625009, Tamilnadu (India); Sreekantan, Srimala, E-mail: sreekantansrimala1974@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang (Malaysia); Kang, Misook, E-mail: mskang@ynu.ac.kr [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749 (Korea, Republic of); Kwak, Byeong Sub [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749 (Korea, Republic of)

    2016-09-01

    In the present investigation, Quercetin modified α-Fe{sub 2}O{sub 3} nanoadsorbent (Qur-Fe{sub 2}O{sub 3}) is synthesized by a simple chemical impregnation method, followed by characterization and evaluated for the removal of congo red dye (CR) from the aqueous solution. The adsorption of CR onto the novel Qur-Fe{sub 2}O{sub 3} is investigated with variable parameters such as contact time, initial concentration of CR, adsorbent dosage and pH of solution using batch adsorption technique. It is found that the adsorption of CR on Qur-Fe{sub 2}O{sub 3} is rapid during the initial stages and reached a steady-state condition with an uptake of approximately 95.4% after 140 min. Langmuir and the Freundlich adsorption isotherms are used to observe and quantify the interaction of CR and Qur-Fe{sub 2}O{sub 3}. Dye adsorption equilibrium data are well-fit with Langmuir isotherm rather than Freundlich isotherm. The maximum monolayer dye adsorption capacity at the optimum pH 5.4 by applying the Langmuir equation is 427.35 mg g{sup −1} at 25 °C for Qur-Fe{sub 2}O{sub 3.} Thermodynamic examination demonstrated that CR adsorption on the Qur-Fe{sub 2}O{sub 3} nanoadsorbent was reasonably spontaneous and endothermic. A comparison of kinetic models showed that the overall adsorption process is described in well manner by pseudo-second-order kinetic model. The intraparticle diffusion model described that the rate-limiting step is not the diffusion of intraparticle alone. Moreover, the adsorption capacity is about 81.64% of the initial saturation adsorption capacity after being used four times. Thus, Qur-Fe{sub 2}O{sub 3} nanoparticles are good candidate for efficient CR removal process from wastewater and for the deep-purification of polluted water. - Graphical abstract: The photographs for colour changes in Congo red (35 mg L{sup −1}) dye in the presence of Qur – Fe{sub 2}O{sub 3} adsorbent at different time intervals. - Highlights: • Quercetin modified α-Fe{sub 2}O

  16. Wu-Chia-Pi Solution Attenuates Carbon Tetrachloride-Induced Hepatic Injury through the Antioxidative Abilities of Its Components Acteoside and Quercetin

    Directory of Open Access Journals (Sweden)

    Ching-Chiung Wang

    2012-12-01

    Full Text Available Wu-Chia-Pi medicated wine, composed nine Chinese medicines soaked in 35% alcohol, is widely used in Asia for its health-promoting functions. However, long-term consumption of alcohol could result in liver dysfunction. In this study, Wu-Chia-Pi solution (WCPS and extract (WCPE were prepared by modification of the principals given by the Committee on Chinese Medicine and Pharmacy in Taiwan. The aim of this study was to explore the protective effect of WCPS against carbon tetrachloride (CCl4-induced liver injury and to clarify its active component(s. Antioxidative effects of the test samples were evaluated via MDA inhibition, catalase activity and DPPH-scavenging assays. HPLC was used to analysis the active components. Results showed that WCPS (1 and 5 mL/kg significantly prevented CCl4-induced liver injury without chronic liver toxicity. Referring to the antioxidative activities, WCPE displayed significant MDA inhibitory and DPPH-scavenging activities with IC50 values of 0.91 ± 0.03 and 0.60 ± 0.04 mg/mL, respectively. Catalase activity was also enhanced by treatment of WCPE, acteoside and quercetin. Therefore, we suggest that acteoside and quercetin are the major contributors to the antioxidative and hepatoprotective activities of WCPS, and a possible mechanism could be mediated through reduction of oxidative stress.

  17. Quercetin- A Flavanoid

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2010-01-01

    Full Text Available Quercetin is the most abundant form of the flavonoids. It gain attention when quercetin was found to cause DNA mutations which can then contribute to cancer treatment. Quercitrin is present in the bark of Quercus tinctoria (American Oak. It is generally available in natural sources. In this article we have tried to simplify the basic un-derstanding of quercetin, its synthesis, structure activity relationship, chemical reaction etc. It will help students to understand basic concept and chemistry of quercetin.

  18. Copper modified carbon molecular sieves for selective oxygen removal

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  19. Quercetin, Inflammation and Immunity.

    Science.gov (United States)

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-15

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  20. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  1. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    electrochemical behaviours of hydroquinone (HQ) and catechol (CC) were investigated using cyclic ... Key words/phrases: Catechol, hydroquinone, multiwall carbon nanotubes, poly(para-amino ... zymes and synthesize different new organic/-.

  2. Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats.

    Science.gov (United States)

    Zhang, Kexia; Zhang, Meiyu; Liu, Ziying; Zhang, Yuanyuan; Gu, Liqiang; Hu, Gaosheng; Chen, Xiaohui; Jia, Jingming

    2016-09-01

    Quercetin (QT) is a natural flavonoid with various biological activities and pharmacological actions. However, the bioavailability of QT is relatively low due to its low solubility which severely limits its use. In this study, we intended to improve the bioavailability of QT by preparing quercetin-phospholipid complex (QT-PC) and investigate the protective effect of QT-PC against carbon tetrachloride (CCl4) induced acute liver damage in Sprague-Dawley (SD) rats. The physicochemical properties of QT-PC were characterized in terms of infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRPD) and water/n-octanol solubility. FTIR, DSC and XRPD data confirmed the formation of QT-PC. The water solubility of QT was improved significantly in the prepared complex, indicating its increased hydrophilicity. Oral bioavailability of QT and QT-PC was evaluated in SD rats, and the plasma QT was estimated by HPLC-MS. QT-PC exhibited higher Cmax (1.58±0.11 vs. 0.67±0.08μg/mL), increased AUC0-∞ (8.60±1.25 vs. 2.41±0.51mg/Lh) and t1/2z (7.76±1.09 vs. 4.81±0.87h) when compared to free QT. The greater absorption of QT-PC group suggested the improved bioavailability. Moreover, biochemical changes and histopathological observations revealed that QT-PC provided better protection to rat liver than free QT at the same dose. Thus, phospholipid complexation might be one of the suitable approaches to improve the oral bioavailability of QT and obtain better protective effects against CCl4 induced acute liver damage in SD rats than free QT at the same dose level.

  3. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  4. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  5. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  6. Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications

    Science.gov (United States)

    Korivi, Naga S.; Vangari, Manisha; Jiang, Li

    2016-12-01

    This paper describes the evaluation of carbon paper electrodes for supercapacitor applications. The electrodes are based on carbon micro-fiber paper modified with active material consisting of layers of silver nano-particulate ink and a nanocomposite of multi-walled carbon nanotubes and silver nano-particulate ink. The electrodes were characterized microscopically and electrically. Current-voltage studies revealed a consistent Ohmic behavior of the electrode when modified with different nanostructured active material. Among the active materials incorporated into the electrode, a nanocomposite of carbon nanotubes and silver nano-particulate ink significantly improved capacitance. The paper electrodes can be used for lightweight and ultrathin supercapacitors and other portable energy applications.

  7. Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications

    Science.gov (United States)

    Korivi, Naga S.; Vangari, Manisha; Jiang, Li

    2017-02-01

    This paper describes the evaluation of carbon paper electrodes for supercapacitor applications. The electrodes are based on carbon micro-fiber paper modified with active material consisting of layers of silver nano-particulate ink and a nanocomposite of multi-walled carbon nanotubes and silver nano-particulate ink. The electrodes were characterized microscopically and electrically. Current-voltage studies revealed a consistent Ohmic behavior of the electrode when modified with different nanostructured active material. Among the active materials incorporated into the electrode, a nanocomposite of carbon nanotubes and silver nano-particulate ink significantly improved capacitance. The paper electrodes can be used for lightweight and ultrathin supercapacitors and other portable energy applications.

  8. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  9. Study of CO2 adsorption capacity of mesoporous carbon and activated carbon modified by triethylenetetramine (TETA)

    Science.gov (United States)

    Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.

    2017-04-01

    Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.

  10. Quercetin Reverses Rat Liver Preneoplastic Lesions Induced by Chemical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Gabriela Carrasco-Torres

    2017-01-01

    Full Text Available Quercetin is a flavonoid widely studied as a chemopreventive agent in different types of cancer. Previously, we reported that quercetin has a chemopreventive effect on the liver-induced preneoplastic lesions in rats. Here, we evaluated if quercetin was able not only to prevent but also to reverse rat liver preneoplastic lesions. We used the modified resistant hepatocyte model (MRHM to evaluate this possibility. Treatment with quercetin was used 15 days after the induction of preneoplastic lesions. We found that quercetin reverses the number of preneoplastic lesions and their areas. Our results showed that quercetin downregulates the expression of EGFR and modulates this signaling pathway in spite of the activated status of EGFR as detected by the upregulation of this receptor, with respect to that observed in control rats. Besides, quercetin affects the phosphorylation status of Src-1, STAT5, and Sp-1. The better status of the liver after the treatment with quercetin could also be confirmed by the recovery in the expression of IGF-1. In conclusion, we suggest that quercetin reversed preneoplastic lesions by EGFR modulation and the activation state of Src, STAT5, and Sp1, so as the basal IGF-1.

  11. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng(王鹏); ZHU,Guo-Yi(朱果逸)

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate (CuHCF)nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite, which was used as electrode material to fabricate surface-renewable CuHCF-modified electrodes. Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voitammetry.Cyclic voltammograms at various scan rates indicated that peak currents were surface-confined at low scan rates. In the presence of glutathione, a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes. In addition, the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper, as well as ease of preparation, and good chemical and mechanical stability in a flowing stream.

  12. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng; ZHU,Guo-Yi

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate(CuHCF) nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite,which was used as electrode materials to fabricate surface-renewable CuHCF-modified electrodes.Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voltammetry. Cyclinc voltammograms at various scan rates indicated that peak currents were suface-confined at low scan rates.In the presence of glutathione,a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes.In addition,the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper,as well as ease of preparation,and good chemical and mechanical stability in a flowing stream.

  13. QUERCETIN- A FLAVANOID

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2010-01-01

    Full Text Available Quercetin is the most abundant form of the flavonoids. It gain attention when quercetin was found to cause DNA mutations which can then contribute to cancer treatment. Quercitrin is present in the bark of Quercus tinctoria (American Oak. It is generally available in natural sources. In this article we have tried to simplify the basic understanding of quercetin, its synthesis, structure activity relationship, chemical reaction etc. It will help students to understand basic concept and chemistry of quercetin.

  14. Quercetin: a versatile flavonoid

    Directory of Open Access Journals (Sweden)

    Dr. Deepak Kumar Rai

    2007-07-01

    Full Text Available Associative evidence from observational and intervention studies in human subjects shows that a diet including plant foods (particularly fruit and vegetables rich in antioxidants conveys health benefits. There is no evidence that any particular nutrient or class of bioactive substances makes a special contribution to these benefits. Flavonoids occur naturally in fruits, vegetables and beverages such as tea and wine. Quercetin is the major flavonoid which belongs to the class called flavonols. Quercetin is found in many common foods including apples, tea, onions, nuts, berries, cauliflower, cabbage and many other foods. Quercetin provides many health promoting benefits, including improvement of cardiovascular health, eye diseases, allergic disorders, arthritis, reducing risk for cancers and many more. The main aim of this review is to obtain a further understanding of the reported beneficial health effects of Quercetin, its pharmacological effects, clinical application and also to evaluate its safety.

  15. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  16. Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism%槲皮素对四氯化碳引起的小鼠急性肝损伤治疗作用及其机理

    Institute of Scientific and Technical Information of China (English)

    Jia-qi ZHANG; Liang SHI; Xi-ning XU; Si-chong HUANG; Bin LU; Li-li JI; Zheng-tao WANG

    2014-01-01

    This study observes the therapeutic detoxification of quercetin, a wel-known flavonoid, against carbon tetrachloride (CCl4) induced acute liver injuryin vivo and explores its mechanism. Quercetin decreased CCl4-increased serum activities of alanine and aspartate aminotransferases (ALT/AST) when orally taken 30 min after CCl4 intoxica-tion. The results of a histological evaluation further evidenced the ability of quercetin to protect against CCl4-induced liver injury. Quercetin decreased the CCl4-increased malondialdehyde (MDA) and reduced the glutathione (GSH) amounts in the liver. It also reduced the enhanced immunohistochemical staining of the 4-hydroxynonenal (4-HNE) in the liver induced by CCl4. Peroxiredoxin (Prx) 1, 2, 3, 5, 6, thioredoxin reductase 1 and 2 (TrxR1/2), thioredoxin 1 and 2 (Trx1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) al play critical roles in maintaining celular redox homeostasis. Real-time polymerase chain reaction (PCR) results demonstrated that quercetin reversed the decreased mRNA expression of al those genes induced by CCl4. In conclusion, our results demonstrate that quercetin ameliorates CCl4-induced acute liver injuryin vivo via aleviating oxidative stress injuries when oraly taken after CCl4 intoxication. This protection may be caused by the elevation of the antioxidant capacity induced by quercetin.

  17. N-Modified Carbon-Based Materials: Nanoscience for Catalysis.

    Science.gov (United States)

    Prati, Laura; Chan-Thaw, Carine E; Campisi, Sebastiano; Villa, Alberto

    2016-10-01

    Carbon-based materials constitute a large family of materials characterized by some peculiarities such as resistance to both acidic and basic environments, flexibility of structure, and surface chemical groups. Moreover, they can be deeply modified by simple organic reactions (acid-base or redox) to acquire different properties. In particular, the introduction of N-containing groups, achieved by post-treatments or during preparation of the material, enhances the basic properties. Moreover, it has been revealed that the position and chemical nature of the N-containing groups is important in determining the interaction with metal nanoparticles, and thus, their reactivity. The modified activity was addressed to a different metal dispersion. Moreover, experiments on catalysts, showing the same metal dispersion, demonstrated that the best results were obtained when N was embedded into the carbon structure and not very close to the metal active site.

  18. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  19. Carbon nanoparticle-modified multi-wall carbon nanotubes with fast adsorption kinetics for water treatment

    Science.gov (United States)

    Wang, Guan; Ren, Wei; Tan, Hui Ru; Liu, Ye

    2017-02-01

    Carbon nanoparticle-modified multi-wall carbon nanotubes were prepared using a dehydration of carbohydrate compound method. The structural change was characterized by transmission electron microscopy, Raman spectroscopy, and Brunauer, Emmett and Teller measurement. Fast adsorption kinetics was observed for multi-wall carbon nanotubes with modification, as demonstrated by the adsorption of the model compound methylene blue. This work provides a novel facile engineering strategy to equip multi-wall carbon nanotubes with fast adsorption kinetics, which is promising for efficient water purification.

  20. 预处理玻碳电极线性扫描伏安法测定槲皮素的研究%Determination of quercetin by linear sweep voltammetry with electrochemical pretreated glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    杜海军; 汪念

    2012-01-01

    运用循环伏安法、线性扫描伏安法等测试技术研究了槲皮素在预处理玻碳电极上的电化学行为,建立了一种直接测定槲皮素的电化学分析方法.结果表明,与裸玻碳电极相比,预处理玻碳电极能显著提高槲皮素的氧化峰电流.在优化的实验条件下,氧化峰电流与槲皮素浓度在1.0×10-7~2.0 ×10-5mol/L范围内呈良好的线性关系,最低检测限为6.2×10-3 mol/L.该方法简便、快捷、准确、灵敏度高.本法用于芦丁水解产物槲皮素的测定,效果良好.%The electrochemical behavior of quercetin at the electrochemical pretreated glassy carbon electrode ( PGCE) was investigated by cyclic voltammetry (CV) and linear sweep voltammetry ( LSV). The experimental parameters were optimized, and a direct electroanalytical method for determining quercetin was developed. The oxidation peak current of quercetin was enhanced significantly at the PGCE.in contrast to that obtained at the bare GCE. Under the optimized experimental conditions, the oxidation peak current was proportional to the quercetin concentration in the ranges of 1 × 10-7 ~ 2 × 10 -5 mol/L with a detection limit of 6. 2 × 10-8 mol/L. The pretreated glassy carbon electrode is easy to be prepared with good reproducibility. The proposed methodology was successfully applied to the detection of quercetin in the hydrolysis of rutin with satisfactory results.

  1. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode.

    Science.gov (United States)

    Zhao, Qiang; Zhan, Dongping; Ma, Hongyang; Zhang, Meiqin; Zhao, Yifang; Jing, Ping; Zhu, Zhiwei; Wan, Xinhua; Shao, Yuanhua; Zhuang, Qiankun

    2005-01-01

    A novel glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) is reported. The gel is formed by grinding of MWNTs and BMIPF6. Such gel is then coated on the surface of a glassy carbon electrode. We have employed scanning electron microscopy, Fourier transform infrared spectrometry (FTIR) and cyclic voltammetry to characterize the modified electrode. The direct electron transfers of hemoglobin and catalase on the modified electrode have been observed and studied in detail electrochemically. Hemoglobin is verified to be adsorbed on the modified electrode with the retention of conformation, which has been proved by microscopic FTIR. The electrochemical response of the adsorbed hemoglobin on the modified electrode is very stable, and shows repeated changes in the different pH solutions. It also has shown electrocatalysis to the reduction of oxygen and trichloroacetic acid. Catalase adsorbed on the gel modified electrode still keep activity to hydrogen peroxide. This work provides a simple and easy approach to construct biosensors based on the carbon nanotubes and ionic liquids.

  2. Modified {pi}-states in ion-irradiated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, G. [Research Institute for Technical Physics and Materials Sciences, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: gkovach@chemres.hu; Karacs, A.; Radnoczi, G.; Csorbai, H. [Research Institute for Technical Physics and Materials Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Guczi, L. [Institute of Isotope, Department of Surface Chemistry and Catalysis, P.O. Box 77, H-1525 Budapest (Hungary); Veres, M.; Koos, M. [Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, Solid State Physics Section, 54124 Thessaloniki (Greece); Solyom, A. [Budapest University of Technology and Economics, Department of Atomic Physics, Budafoki ut 8, H-1111 Budapest (Hungary); Peto, G. [Research Institute for Technical Physics and Materials Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-02-28

    CVD polycrystalline diamond film, pulse laser-deposited (PLD) carbon film and highly oriented pirolitical graphite (HOPG) as reference, were modified by means of Ar{sup +} ion bombardment and characterized by means of Raman scattering, transmission electron microscopy, electron-diffraction (TEM), reflected electron energy loss specroscopy (REELS) and X-ray photoelectron spectroscopy (XPS) techniques. It was found that the diamond was transferred to a carbon with halo-like morphology and disordered stack of graphene segments. Instead of the well-known electron energy loss peak of graphite at 6.5 eV, a new REELS peak appeared at 4-5 eV energies. The observed effect was explained by the modification of {pi}-system in carbon films as a consequence of the formation of non-planar, nanometer-sized graphitic planes.

  3. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chu,Benjamin (Setauket, NY); Hsiao, Benjamin S. (Setauket, NY)

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  4. Direct Electrochemistry of Catalase on Single Wall Carbon Nanotubes Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiang ZHAO; Lun Hui GUAN; Zhen Nan GU; Qian Kun ZHUANG

    2005-01-01

    Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at --0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0).The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode.

  5. Investigation of bioresistant dry building mixes modified by carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2015-04-01

    Full Text Available Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials comparing to traditional cement-sandy solutions of centralized preparation. The authors present the results of the investigations on obtaining biocidal cement-sand compositions. It was established, that introduction of sodium sulfate into the composition provides obtaining the materials with funginert and fungicide properties. The strength properties of the mixes modified by carbon nanotubes and biocide additive were investigated by mathematical planning methods. The results of the investigations showed that the modification of cement stone structure by carbon nanotubes positively influences their strength and technological properties. Nanomodifying of construction composites by introducing carbon nanotubes may be effectively used at different stages of structure formation of a construction material.

  6. Oxidation of Quercetin by Myeloperoxidase

    OpenAIRE

    Tatjana Momić; Jasmina Savić; Vesna Vasić

    2009-01-01

    Study of effect of myeloperoxidase on quercetin at pH 6.0 indicated quercetin oxidation via the formation of the oxidation product. The stability of quercetin and oxidation product was investigated as a function of time by using spectrophotometric and HPLC techniques. The apparent pseudo first-order rate constants were calculated and discussed.

  7. Antioxidant and Prophylactic Effects of Delonix elata L., Stem Bark Extracts, and Flavonoid Isolated Quercetin against Carbon Tetrachloride-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Pradeepa Krishnappa

    2014-01-01

    Full Text Available Delonix elata L. (Ceasalpinaceae, is widely used by the traditional medical practitioners of Karnataka, India, to cure jaundice, and bronchial and rheumatic problems. The objective of this study was to screen the in vitro antioxidant and hepatoprotective activity of the stem bark extracts against CCl4-induced liver damage in rats. Among different stem bark extracts tested, the ethanol extract (DSE has shown significant in vitro antioxidant property in radicals scavenging, metal chelating, and lipid peroxidation inhibition assays. HPLC analysis of the DSE revealed the presence of known antioxidant molecules, namely, gallic acid, ellagic acid, coumaric acid, quercetin, and rutin. Bioassay-guided fractionation of DSE has resulted in the isolation and characterization of quercetin. DSE and quercetin have shown significant prophylactic effects by restoring the liver function markers (AST, ALT, ALP, serum bilirubin, and total protein and antioxidant enzymes (SOD, CAT, GPx, and GST. These results were proved to be hepatoprotective at par with silymarin and well supported by the histological observations of liver sections with distinct hepatic cells, and mild degree of fatty change and necrosis. The results indicated that the DSE and quercetin were significant for prophylactic activity against CCl4-induced liver damage in rats. This activity could be attributed to the antioxidant constituents in the DSE and hence justified the ethnomedicinal claims.

  8. Electrical Resistance and Magnetoresistance of Modified Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    T.A. Len

    2014-11-01

    Full Text Available The paper presents the results of the experimental studies of the magnetoresistance and electrical resistance of carbon nanotubes modified with iron and iron oxide. A comprehensive study of the processes, which act with change in the temperature of modified CNTs, is performed. Joint analysis of the structural studies and electrical transport characteristics is enabled to explain new and interesting results. It is established that modification with iron has little effect on the electrical resistance. On the other hand, modification is strongly reflected on the ferromagnetic resistance anisotropy. It is shown that the localization mechanism and anisotropic magnetoresistance are manifested in magnetoresistance. Anisotropic magnetoresistance arises due to the features of magnetization of ferromagnetic phase in an external magnetic field.

  9. Basic analytical investigation of plasma-chemically modified carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Bubert, H.; Ai, X.; Haiber, S.; Heintze, M.; Brueser, V.; Pasch, E.; Brandl, W.; Marginean, G

    2002-10-15

    The background of the present investigation is to enhance the overall adherence of vapor grown carbon fibers (VGCF) to the surrounding polymer matrix in different applications by forming polar groups at their surfaces and by modifying the surface morphology. This has been done by plasma treatments using a low-pressure plasma with different gases, flow rates, pressures and powers. Two different types of carbon fibers were investigated: carbon microfibers and carbon nanofibers. The characterization of fiber surfaces was achieved by photoelectron spectroscopy (XPS), contact angle measurements and titration. These investigations were accompanied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The oxygen plasma treatment of the fibers changes the surfaces by forming a layer with a thickness of the order of one nanometer mainly consisting of functional groups like hydroxyl, carbonyl and carboxyl. After functionalization of the complete surface, a further plasma treatment does not enhance the superficial oxygen content but changes slightly the portions of the functional groups. A comparison of the methods applied provides a largely consistent image of the effect of plasma treatment.

  10. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  11. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration.

    Science.gov (United States)

    Gupta, Sweta K; Kumar, Ritesh; Mishra, Narayan C

    2017-02-01

    In the present study, goat-lung scaffold was fabricated by decellularization of lung tissue and verified for complete cell removal by DNA quantification, DAPI and H&E staining. The scaffold was then modified by crosslinking with quercetin and nanohydroxyapatite (nHAp), and characterized to evaluate the suitability of quercetin-crosslinked nHAp-modified scaffold for regeneration of bone tissue. The crosslinking chemistry between quercetin and decellularized scaffold was established theoretically by AutoDock Vina program (in silico docking study), which predicted multiple intermolecular hydrogen bonding interactions between quercetin and decellularized scaffold, and FTIR spectroscopy analysis also proved the same. From MTT assay and SEM studies, it was found that the quercetin-crosslinked nHAp-modified decellularized scaffold encouraged better growth and proliferation of bone-marrow derived mesenchymal stem cells (BMMSCs) in comparison to unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold. Alkaline Phosphatase (ALP) assay results showed highest expression of ALP over quercetin-crosslinked nHAp-modified scaffold among all the tested scaffolds (unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold) indicating that quercetin and nHAp is very much efficient in stimulating the differentiation of BMMSCs into osteoblast cells. Alizarin red test quantified in vitro mineralization (calcium deposits), and increased expression of alizarin red over quercetin-crosslinked nHAp-modified scaffold indicating better stimulation of osteogenesis in BMMSCs. The above findings suggest that quercetin-crosslinked nHAp-modified decellularized goat-lung scaffold provides biomimetic bone-like microenvironment for BMMSCs to differentiate into osteoblast and could be applied as a potential promising biomaterial for bone regeneration.

  12. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  13. Electrochemical behaviorof carbon paste electrode modified with Carbon Nanofibers: Application to detection of Bisphenol A

    Directory of Open Access Journals (Sweden)

    N.Achargui

    2016-12-01

    Full Text Available The electrochemical behavior of carbon paste electrode modified with carbon nanofibers has been studied using cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS and scaning electron microscopy. The response of modified electrodein ferroferricyanidesolutionshows reversible behavior and significant increment in current value compared to the bare CPE indicating that CNFs act as efficient electron mediator to catalyze reactions at the surface. The modified electrode has been used to study the electrochemical response of bisphenol Ausing different electrochemical techniques such as cyclic voltammetry, linear sweep voltammetry, differential pulse voltammetry and square wave voltammetry. The oxidation peak of BPA was observed at about 0.53 V in phosphate buffer solution at pH 6.7. The oxidation peak current of BPA varied linearly with concentration over a wide range of 5µmol L-1 to 400 µmol L-1 and the detection limit of this method was found to be 0.55 µmol L-1

  14. The Combination of Resveratrol and Quercetin Attenuates Metabolic Syndrome in Rats by Modifying the Serum Fatty Acid Composition and by Upregulating SIRT 1 and SIRT 2 Expression in White Adipose Tissue.

    Science.gov (United States)

    Peredo-Escárcega, Ana Elena; Guarner-Lans, Verónica; Pérez-Torres, Israel; Ortega-Ocampo, Sergio; Carreón-Torres, Elizabeth; Castrejón-Tellez, Vicente; Díaz-Díaz, Eulises; Rubio-Ruiz, María Esther

    2015-01-01

    Resveratrol (RSV) and quercetin (QRC) modify energy metabolism and reduce cardiovascular risk factors included in the metabolic syndrome (MetS). These natural compounds upregulate and activate sirtuins (SIRTs), a family of NAD-dependent histone deacetylases. We analyzed the effect of two doses of a commercial combination of RSV and QRC on serum fatty acid composition and their regulation of SIRTs 1-3 and PPAR-γ expression in white adipose tissue. MetS was induced in Wistar rats by adding 30% sucrose to drinking water for five months. Rats were divided into control and two groups receiving the two different doses of RSV and QRC in drinking water daily for 4 weeks following the 5 months of sucrose treatment. Commercial kits were used to determine serum parameters and the expressions of SIRTs in WAT were analysed by western blot. In MetS rats body mass, central adiposity, insulin, triglycerides, non-HDL-C, leptin, adiponectin, monounsaturated fatty acids (MUFAs), and nonesterified fatty acids (NEFAs) were increased, while polyunsaturated fatty acids (PUFAs) and HDL-C were decreased. SIRT 1 and SIRT 2 were downregulated, while PPAR-γ was increased. RSV + QRC administration improved the serum health parameters modified by MetS and upregulate SIRT 1 and SIRT 2 expression in white abdominal tissue in MetS animals.

  15. The Combination of Resveratrol and Quercetin Attenuates Metabolic Syndrome in Rats by Modifying the Serum Fatty Acid Composition and by Upregulating SIRT 1 and SIRT 2 Expression in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ana Elena Peredo-Escárcega

    2015-01-01

    Full Text Available Resveratrol (RSV and quercetin (QRC modify energy metabolism and reduce cardiovascular risk factors included in the metabolic syndrome (MetS. These natural compounds upregulate and activate sirtuins (SIRTs, a family of NAD-dependent histone deacetylases. We analyzed the effect of two doses of a commercial combination of RSV and QRC on serum fatty acid composition and their regulation of SIRTs 1–3 and PPAR-γ expression in white adipose tissue. MetS was induced in Wistar rats by adding 30% sucrose to drinking water for five months. Rats were divided into control and two groups receiving the two different doses of RSV and QRC in drinking water daily for 4 weeks following the 5 months of sucrose treatment. Commercial kits were used to determine serum parameters and the expressions of SIRTs in WAT were analysed by western blot. In MetS rats body mass, central adiposity, insulin, triglycerides, non-HDL-C, leptin, adiponectin, monounsaturated fatty acids (MUFAs, and nonesterified fatty acids (NEFAs were increased, while polyunsaturated fatty acids (PUFAs and HDL-C were decreased. SIRT 1 and SIRT 2 were downregulated, while PPAR-γ was increased. RSV + QRC administration improved the serum health parameters modified by MetS and upregulate SIRT 1 and SIRT 2 expression in white abdominal tissue in MetS animals.

  16. Cellulose: A review as natural, modified and activated carbon adsorbent.

    Science.gov (United States)

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  17. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    Science.gov (United States)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  18. Enhanced adsorption of quaternary amine using modified activated carbon.

    Science.gov (United States)

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon.

  19. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  20. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Science.gov (United States)

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  1. Reprogramming cellular signaling machinery using surface-modified carbon nanotubes.

    Science.gov (United States)

    Zhang, Yi; Wu, Ling; Jiang, Cuijuan; Yan, Bing

    2015-03-16

    Nanoparticles, such as carbon nanotubes (CNTs), interact with cells and are easily internalized, causing various perturbations to cell functions. The mechanisms involved in such perturbations are investigated by a systematic approach that utilizes modified CNTs and various chemical-biological assays. Three modes of actions are (1) CNTs bind to different cell surface receptors and perturb different cell signaling pathways; (2) CNTs bind to a receptor with different affinity and, therefore, strengthen or weaken signals; (3) CNTs enter cells and bind to soluble signaling proteins involved in a signaling pathway. Understanding of such mechanisms not only clarifies how CNTs cause cytotoxicity but also demonstrates a useful method to modulate biological/toxicological activities of CNTs for their various industrial, biomedical, and consumer applications.

  2. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    Science.gov (United States)

    2013-02-12

    1000 mg of commercially available carbon powder (Cabot Vulcan XCR72R) was placed into the barrel and the chamber was evacuated to approximately 1 × 10−6...unmodified and N-modified Vulcan were obtained on a Philips CM200 TEM. X-ray Photoelectron Spectroscopy (XPS) analysis of the synthesized catalysts was done...durability cycles Pt-Ru/ Vulcan 73 3.3 × 10−5 24 51 10 Pt-Ru/N- Vulcan 55 2.9 × 10−5 17 60 40 Pt-Ru/C JM 5000 69 3.0 × 10−5 20 48 17 tials higher than 0.7 V

  3. Dispersion monitoring of carbon nanotube modified epoxy systems

    Science.gov (United States)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Maistros, Gh. M.; Barkoula, N.-M.; Paipetis, A. S.

    2012-04-01

    The remarkable mechanical and electrical properties exhibited by carbon nanotubes (CNTs) have encouraged efforts to develop mass production techniques. As a result, CNTs are becoming increasingly available, and more attention from both the academic world and industry has focused on the applications of CNTs in bulk quantities. These opportunities include the use of CNTs as conductive filler in insulating polymer matrices and as reinforcement in structural materials. The use of composites made from an insulating matrix and highly conductive fillers is becoming more and more important due to their ability to electromagnetically shield and prevent electrostatic charging of electronic devices. In recent years, different models have been proposed to explain the formation of the conductive filler network. Moreover, intrinsic difficulties and unresolved issues related to the incorporation of carbon nanotubes as conductive fillers in an epoxy matrix and the interpretation of the processing behavior have not yet been resolved. In this sense, a further challenge is becoming more and more important in composite processing: cure monitoring and optimization. This paper considers the potential for real-time control of cure cycle and dispersion of a modified epoxy resin system commonly utilized in aerospace composite parts. It shows how cure cycle and dispersion control may become possible through realtime in-situ acquisition of dielectric signal from the curing resin, analysis of its main components and identification of the significant features.

  4. Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode.

    Science.gov (United States)

    Manisankar, P; Sundari, Pl Abirama; Sasikumar, R; Palaniappan, Sp

    2008-09-15

    The cyclic voltammetric behaviour of three common pesticides such as isoproturon (ISO), voltage (VOL) and dicofol (DCF) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNTs/GCE), polyaniline (PANI) and polypyrrole (PPY) deposited MWCNT/GCE. The modified electrode film was characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The electroactive behaviour of the pesticides was realized from the cyclic voltammetric studies. The differential pulse voltammetric principle was used to analyze the above-mentioned pesticides using MWCNT/GCE, PANI/MWCNT/GCE and PPY/MWCNT/GCE. Effects of accumulation potential, accumulation time, Initial scan potential, amplitude and pulse width were examined for the optimization of stripping conditions. The PANI/MWCNT/GCE performed well among the three electrode systems and the determination range obtained was 0.01-100 mgL(-1) for ISO, VOL and DCF respectively. The limit of detection (LOD) was 0.1 microgL(-1) for ISO, 0.01 microgL(-1) for VOL and 0.05 microgL(-1) for DCF on PANI/MWCNT/GCE modified system. It is significant to note that the PANI/MWCNT/GCE modified system results in the lowest LOD in comparison with the earlier reports. Suitability of this method for the trace determination of pesticide in spiked samples was also realized.

  5. Behavior of pure and modified carbon/carbon composites in atomic oxygen environment

    Institute of Scientific and Technical Information of China (English)

    Xiao-chong Liu; Lai-fei Cheng; Li-tong Zhang; Xin-gang Luan; Hui Mei

    2014-01-01

    Atomic oxygen (AO) is considered the most erosive particle to spacecraft materials in low earth orbit (LEO). Carbon fiber, car-bon/carbon (C/C), and some modified C/C composites were exposed to a simulated AO environment to investigate their behaviors in LEO. Scanning electron microscopy (SEM), AO erosion rate calculation, and mechanical property testing were used to characterize the material properties. Results show that the carbon fiber and C/C specimens undergo significant degradation under the AO bombing. According to the effects of AO on C/C-SiC and CVD-SiC-coated C/C, a condensed CVD-SiC coat is a feasible approach to protect C/C composites from AO degradation.

  6. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis

    Directory of Open Access Journals (Sweden)

    Lindahl Sofia

    2011-02-01

    Full Text Available Abstract Background The thermostable β-glucosidase (TnBgl1A from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3 was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-β-D-glucopyranoside (pNPGlc, and screened for hydrolysis of Q3. Results Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1. Three residues in this area located on β-strand 5 (F219, N221, and G222 close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt, was kept in the mutated variants and significant decrease (ΔT of 5 - 10°C was only observed for the triple mutants. The exchanged residue(s in the respective mutant resulted in variations in KM and turnover. The KM-value was only changed in variants mutated at position 221 (N221S and was in all cases monitored as a 2-3 × increase for pNPGlc, while the KM decreased a corresponding extent for Q3. Turnover was only significantly changed using pNPGlc, and was decreased 2-3 × in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S increased turnover up to 3.5 × compared to the wild type. Modelling

  7. Microbial Transformation of Quercetin by Bacillus cereus

    OpenAIRE

    Rao, Koppaka V.; Weisner, Nghe T.

    1981-01-01

    Biotransformation of quercetin was examined with a number of bacterial cultures. In the presence of a bacterial culture (Bacillus cereus), quercetin was transformed into two crystalline products, identified as protocatechuic acid and quercetin-3-glucoside (isoquercitrin).

  8. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  9. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  10. Preparation and Characterization of Polycarbonate Modified Multiple-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    YU Jin-Gang; HUANG Ke-Long; LIU Su-Qin; TANG Jin-Chun

    2008-01-01

    To prepare polymer/carbon nanotube composites, polycarbonate was chosen to modify multiple-walled carbon nanotubes. Poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)], poly(butylene-co-ε-caprolactone carbonate),and poly[(propylene oxide)-co-(carbon dioxide)-co-(maleic anhydride)] were the polycarbonates which were used to modify multiple-walled carbon nanotubes, but only soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes could be obtained. Thermogravimetric analysis clearly indicated that more polycarbonates were attached to soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes. The formation of surface functional groups and changes of nanotube structures and morphology were monitored by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. Because of their solubility and bioactive moieties,poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes may find their potential use in drug delivery.

  11. Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans

    OpenAIRE

    Olthof, M.; Hollman, P.C.H.; Vree, T. B.; Katan, M.B.

    2000-01-01

    The flavonoid quercetin is an antioxidant which occurs in foods mainly as glycosides. The sugar moiety in quercetin glycosides affects their bioavailability in humans. Quercetin-3-rutinoside is an important form of quercetin in foods, but its bioavailability in humans is only 20␘f that of quercetin-4'-glucoside. Quercetin-3-rutinoside can be transformed into quercetin-3-glucoside by splitting off a rhamnose molecule. We studied whether this 3-glucoside has the same high bioavailability as the...

  12. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    OpenAIRE

    Wei Yang; Ruiying Luo; Zhenhua Hou

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68...

  13. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  14. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Guillermina L.; Ferreyra, Nancy F. [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Granero, Adrian [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Departamento de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Rio Cuarto (Argentina); Bollo, Soledad [Laboratorio de Bioelectroquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, P.O. Box 233, Santiago (Chile); Rivas, Gustavo A., E-mail: grivas@fcq.unc.edu.ar [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-10-30

    This work reports the electrochemical response of the complex between dsDNA and PEI formed in solution and at the surface of glassy carbon electrodes (GCE) modified with a dispersion of multi-walled carbon nanotubes in polyethylenimine (CNT-PEI). Scanning Electron Microscopy and Scanning Electrochemical Microscopy demonstrate that the dispersion covers the whole surface of the electrode although there are areas with higher density of CNT and, consequently, with higher electrochemical reactivity. The adsorption of DNA at GCE/CNT-PEI is fast and it is mainly driven by electrostatic forces. A clear oxidation signal is obtained either for dsDNA or a heterooligonucleotide of 21 bases (oligoY) at potentials smaller than those for the oxidation at bare GCE. The comparison of the behavior of DNA before and after thermal treatment demonstrated that the electrochemical response highly depends on the 3D structure of the nucleic acid.

  15. A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes

    Science.gov (United States)

    Zhao, Weiyun; Fam, Derrick Wen Hui; Yin, Zongyou; Sun, Ting; Tan, Hui Teng; Liu, Weiling; Iing Yoong Tok, Alfred; Boey, Yin Chiang Freddy; Zhang, Hua; Hng, Huey Hoon; Yan, Qingyu

    2012-10-01

    Carbon monoxide (CO) is a highly toxic gas that can be commonly found in many places. However, it is not easily detected by human olfaction due to its colorless and odorless nature. Therefore, highly sensitive sensors need to be developed for this purpose. Carbon nanotubes (CNTs) have an immense potential in gas sensing. However, CNT-based gas sensors for sensing CO are seldom reported due to the lack of reactivity between CO and CNTs. In this work, O2 plasma modified CNT was used to fabricate a CNT gas sensor. The plasma treated CNTs showed selectively towards CO, with the capability of sensing low concentrations of CO (5 ppm) at room temperature, while the pristine CNTs showed no response. UV spectra and oxygen reduction reaction provided evidence that the difference in sensing property was due to the elimination of metallic CNTs and enhancement of the oxygen reduction property.

  16. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani-Bidkorbeh, Fatemeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of)

    2010-03-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 muL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 muM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 muM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  17. Electrochemical capacitor improvement fabricated by carbon microfiber composite with admicellar-modified carbon nanotube

    Science.gov (United States)

    Pongprayoon, Thirawudh; Ayutthaya, Montira Seneewong-Na; Poochai, Chatwarin

    2017-02-01

    Conventional electrochemical capacitors are usually made from activated carbon microfiber electrode, which has relatively low electrochemical capacitance. To improve performance of electrochemical capacitor, carbon nanotube (CNT) was used to incorporate in carbon microfiber. Firstly, CNT was coated with ultra-thin polyacrylonitrile (PAN) film coating using the admicellar polymerization technique to improve its dispersion in PAN matrix. Secondly, the mix solution of admicellar-modified CNT (Ad-CNT) and PAN in N,N-dimethylformamide (DMF) was prepared to produce microfiber by electrospinning. Lastly, microfiber was collected as a sheet, which was then stabilized and carbonized to be used as an electrode. The fabricated electrode using Ad-CNT/PAN was analyzed by SEM and TEM. SEM images show that the microfiber was uniform with approximately 2 μm average diameter. TEM images display well alignment and good dispersion of Ad-CNT in the matrix. The electrode made from Ad-CNT/PAN exhibited a high specific capacitance of 125 F g-1 at a scan rate of 3 mV s-1 (based on cyclic voltammetry) and 82 F g-1 at a specific current of 1 A g-1 (based on galvanostatic charge/discharge). The percentage of relative specific capacitance retention of the prepared electrode was 70% after 1000 cycles. The results clearly show that the Ad-CNT played an effective role in improving dispersion in electrode leading to increase in electrical conductivity as well as electrical capacitance of the capacitor.

  18. A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin

    Directory of Open Access Journals (Sweden)

    Xiwen He

    2013-04-01

    Full Text Available The molecularly imprinted polymer based on polypyrrole film with incorporated graphene oxide was fabricated and used for electrochemical determination of quercetin. The electrochemical behavior of quercetin on the modified electrode was studied in detail using differential pulse voltammetry. The oxidation peak current of quercetin in B-R buffer solution (pH = 3.5 at the modified electrode was regressed with the concentration in the range from 6.0 × 10−7 to 1.5 × 10−5 mol/L (r2 = 0.997 with a detection limit of 4.8 × 10−8 mol/L (S/N = 3. This electrode showed good stability and reproducibility. In the above mentioned range, rutin or morin which has similar structures and at the same concentration as quercetin did not interfere with the determination of quercetin. The applicability of the method for complex matrix analysis was also evaluated.

  19. A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin.

    Science.gov (United States)

    Sun, Si; Zhang, Mengqi; Li, Yijun; He, Xiwen

    2013-04-25

    The molecularly imprinted polymer based on polypyrrole film with incorporated graphene oxide was fabricated and used for electrochemical determination of quercetin. The electrochemical behavior of quercetin on the modified electrode was studied in detail using differential pulse voltammetry. The oxidation peak current of quercetin in B-R buffer solution (pH = 3.5) at the modified electrode was regressed with the concentration in the range from 6.0 × 10(-7) to 1.5 × 10(-5) mol/L (r2 = 0.997) with a detection limit of 4.8 × 10(-8) mol/L (S/N = 3). This electrode showed good stability and reproducibility. In the above mentioned range, rutin or morin which has similar structures and at the same concentration as quercetin did not interfere with the determination of quercetin. The applicability of the method for complex matrix analysis was also evaluated.

  20. Modified carbon black materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  1. Facile synthesis of tunable carbon modified mesoporous TiO2 for visible light photocatalytic application

    Science.gov (United States)

    Wei, Xiao-Na; Wang, Hui-Long; Wang, Xin-Kui; Jiang, Wen-Feng

    2017-08-01

    In this paper, we describe a simple and novel approach for preparing tunable carbon-modified mesoporous TiO2 photocatalysts by combining the in-situ carbonization of PAA-Ti/TiO2, hydrothermal reaction process and post-calcination treatment. The synthesized carbon-modified mesoporous TiO2 powders were of high crystallinity, large specific surface area and good visible light response. The carbon species were formed by the carbonization of polyacrylate (PAA). The presence of carbonates was subsequently confirmed by the XPS spectra, which significantly narrow down the band gap of TiO2. The organic group in polyacrylate served as the carbon source and carbon resulted from in-situ carbonization treatment could help to inhibit the excessive growth of TiO2 grain and enlarge the pore structure of TiO2. The amount of carbon species could be feasibly modulated by adjusting the post-calcination temperature and the surface area of the photocatalyst was enlarged further after the partial removal of carbon species. The carbon-modified mesoporous TiO2 powders exhibit excellent reproducibility and photocatalytic performance under visible light irradiation.

  2. Methanol oxidation at carbon paste electrodes modified with (Pt–Ru)/carbon aerogels nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Carmen I., E-mail: iladiu@chem.ubbcluj.ro [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Cotet, Liviu C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Vasiliu, Florin [The National Institute of Materials Physics, Atomistilor str. 105 bis, PO Box MG. 7, Magurele, RO 077125, Bucharest (Romania); Marginean, Petre [National Institute for Research and Development of Isotopic and Molecular Technologies, RO 400293, Cluj-Napoca (Romania); Danciu, Virginia; Popescu, Ionel C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2016-04-01

    Mesoporous carbon aerogels (CAs) impregnated with (Pt–Ru) nanoparticles were prepared, incorporated into carbon paste electrodes (CPEs) and investigated as electrocatalysts for CH{sub 3}OH electro-oxidation. The sol–gel method, followed by supercritical drying with liquid CO{sub 2} and thermal pyrolysis in an inert atmosphere, was used to obtain high mesoporous CAs. (Pt–Ru)/CAs nanocomposites with various (Pt–Ru) loading were prepared by using Ru(AcAc){sub 3} and H{sub 2}PtCl{sub 6} as metal precursors and the impregnation method. The morpho-structural peculiarities of the so prepared (Pt–Ru)/CAs electrocatalysts were examined by using elemental analysis, N{sub 2} adsorption-desorption isotherms, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) and selected area electron diffraction (SAED). Cyclic voltammetry measurements, carried out at (Pt–Ru)/CA-CPEs incorporating nanocomposites with various Pt–Ru loading and different specific surface areas, showed that CA with the highest specific surface area (843 m{sup 2}/g) and impregnated with 6% (w/w) (Pt–Ru) nanoparticles exhibit the best CH{sub 3}OH electro-oxidation efficiency. The Michaelis–Menten formalism was used to describe the dependence of the oxidation peak current on the CH{sub 3}OH concentration, allowing the estimation of the modified electrodes sensitivities. Thus, for (Pt–Ru, 10%)/CA{sub 535}-CPE was observed the highest sensitivity (12.5 ± 0.8 mA/M) and, at the same time, the highest maximum current density ever reported (153.1 mA/cm{sup 2} for 2 M CH{sub 3}OH and an applied potential of 600 mV vs. SHE). - Highlights: • (Pt–Ru) nanoparticles were deposited on high mesoporous carbon aerogels (CAs). • (Pt–Ru)/CAs were characterized by TEM, EDX, SAED and N{sub 2} adsorption-desorption. • Carbon paste electrodes modified with (Pt–Ru)/CA were used for CH{sub 3}OH oxidation. • (Pt–Ru, 10

  3. Synthesis of mesoporous carbon as electrode material for supercapacitor by modified template method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jia-chang; LAI Chun-yan; DAI Yang; XIE Jing-ying

    2005-01-01

    The pore structures and electrochemical performances of mesoporous carbons prepared by silica sol template method as electrode material for supercapacitor were investigated. The mean pore size and mass specific capacitance of the mesoporous carbons increase with the increase of mass ratio of silica sol to carbon source (glucose). A modified template method, combining silica sol template method and ZnCl2 chemical activation method, was proposed to improve the mass specific capacitance of the mesoporous carbon with an improved BET surface area. The correlation of rate capability and pore structure was studied by constant current discharge and electrochemical impedance spectroscopy. A commercially available microporous carbon was used for comparison. The result shows that mesoporous carbon with a larger pore size displays a higher rate capability. Mesoporous carbon synthesized by modified template method has both high mass specific capacitance and good rate capability.

  4. [Surface characteristics of alkali modified activated carbon and the adsorption capacity of methane].

    Science.gov (United States)

    Zhang, Meng-Zhu; Li, Lin; Liu, Jun-Xin; Sun, Yong-Jun; Li, Guo-Bin

    2013-01-01

    Coconut shell based activated carbon was modified by alkali with different concentrations. The surface structures of tested carbons were observed and analyzed by SEM and BET methods. Boehm's titration and SEM/EDS methods were applied to assay the functional groups and elements on the carbon surface. The adsorption of methane on tested carbons was investigated and adsorption behavior was described by the adsorption isotherms. Results showed that surface area and pore volume of modified carbon increased and surface oxygen groups decreased as the concentration of the alkali used increased, with no obvious change in pore size. When concentration of alkali was higher than 3.3 mol x L(-1), the specific surface area and pore volume of modified carbon was larger than that of original carbon. Methane adsorption capacity of alkali modified carbon increased 24%. Enlargement of surface area and pore volume, reduction of surface oxygen groups will benefit to enhance the methane adsorption ability on activated carbon. Adsorption behavior of methane followed the Langmuir isotherm and the adsorption coefficient was 163.7 m3 x mg(-1).

  5. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  6. Surface characteristics of modified carbon nanotubes and its application in lead adsorption from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Carbon nanotubes (CNT) were modified by nitric acid oxidation. Infrared spectroscopy (IR) demonstrated that hydroxyl (-OH) and carbonyl (-C== O) functional groups were introduced to the surface of modified CNT. Micrometrics ASAP 2000 measurement showed that the surface area of modified CNT was slightly increased. Furthermore, the Pb2+ adsorption behavior on the surface of modified CNT has been investigated. The results indicate that the modified CNT has an exceptional adsorption capability for Pb2+ removal. The adsorption isotherms are well described by the Langmuir equation under test temperatures and the kinetics level is three.

  7. Desorption of toluene from modified clays using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Carneiro D. G. P.

    2004-01-01

    Full Text Available The main objective of this work is to study the regeneration capacity of modified clays using supercritical fluid. These modified clays are used as organic compound adsorvents. The experimental step was done using a packed column with the clay contaminated by toluene. The results obtained showed the influence of the density of the supercritical CO2 and of the organic modifier in the desorption process. These data were modeled with first- and second-order models. Better results were obtained using the second-order model. This study makes possible the scale-up of the desorption process for regeneration of solid matrices using supercritical fluids.

  8. Adsorption of ciprofloxacin on surface-modified carbon materials.

    Science.gov (United States)

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings.

  9. Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-09-01

    Full Text Available that single-walled carbon nanotubes-Prussian blue hybrid (SWCNT-PB) modified electrode demonstrated greater sensitivity and catalysis towards nitrite compared to PB or a SWCNT modified electrode. The current response of the electrode was reduced...

  10. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  11. Biosafety of non-surface modified carbon nanocapsules as a potential alternative to carbon nanotubes for drug delivery purposes.

    Directory of Open Access Journals (Sweden)

    Alan C L Tang

    Full Text Available BACKGROUND: Carbon nanotubes (CNTs have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs, single-walled carbon nanotubes (SWCNTs, carbon nanocapsules (CNCs, and C ₆₀ fullerene (C ₆₀. The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C ₆₀ were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C ₆₀ injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection.

  12. Effects of Graphene Oxide Modified Sizing Agents on Interfacial Properties of Carbon Fibers/Epoxy Composites.

    Science.gov (United States)

    Zhang, Qingbo; Jiang, Dawei; Liu, Li; Huang, Yudong; Long, Jun; Wu, Guangshun; Wu, Zijian; Umar, Ahmad; Guo, Jiang; Zhang, Xi; Guo, Zhanhu

    2015-12-01

    A kind of graphene oxide (GO) modified sizing agent was used to improve the interfacial properties of carbon fibers/epoxy composites. The surface topography of carbon fibers was investigated by scanning electron microscopy (SEM). The surface compositions of carbon fibers were determined by X-ray photoelectron spectroscopy (XPS) and the interfacial properties of composites were studied by interlaminar shear strength (ILSS). The results show that the existence of GO increases the content of reactive functional groups on carbon fiber surface. Thus it enhances the interfacial properties of carbon fibers/epoxy composites. When GO loading in sizing agents is 1 wt%, the ILSS value of composite reaches to 96.2 MPa, which is increased by 27.2% while comparing with unsized carbon fiber composites. Furthermore, the ILSS of composites after aging is also increased significantly with GO modified sizing agents.

  13. Suppressive Activity of Quercetin on Periostin Functions In Vitro.

    Science.gov (United States)

    Irie, Shinji; Kashiwabara, Misako; Yamada, Asako; Asano, Kazuhito

    2016-01-01

    Periostin, a 90-kDa extracellular matrix protein, has been attracting attention as a novel biomarker of airway inflammatory diseases such as allergic rhinitis (AR) and asthma. Although oral administration of quercetin to patients with AR can favorably modify the clinical condition of this disease, the influence of quercetin on periostin functions is not well understood. The present study was, therefore, undertaken to examine the influence of quercetin on the production of both periostin and periostin-induced eosinophil chemoattractants from human nasal epithelial cells (HNEpC) in vitro. HNEpC were stimulated with 15.0 ng/ml interleukin (IL)-4 in the absence or presence of quercetin for 72 h. Periostin levels in the culture supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Addition of 4.0 μM quercetin into cell cultures suppressed periostin production from HNEpC that was induced by IL-4 stimulation through inhibitation of signal transducer and activator of transcription 6 (STAT6) activation. We then examined whether quercetin could inhibit production of the periostin-induced eosinophil chemoattractants, regulated on activation, normal T-cell expressed and secreted (RANTES) and eotaxin, from HNEpC. HNEpC were stimulated with 2.0 ng/ml periostin in the absence or presence of quercetin for 72 h. RANTES and eotaxin levels in culture supernatants were examined using ELISA. Treatment of HNEpC with quercetin at a concentration of 4.0 μM suppressed the ability of cells to produce RANTES and eotaxin. This suppression was mediated through suppression of activation of the transcription factor nuclear factor-kappa B (NF-κB) p65, as measured using ELISA, and of chemokine mRNA expression, as measured using reverse transcriptase-polymerase chain reaction (RT-PCR). These results strongly suggest that quercetin suppresses the production of both periostin and periostin-induced eosinophil chemoattractants from HNEpC and results in improvement of the

  14. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  15. Polynuclear Nickel Hexacyanoferrate/Graphitized Mesoporous Carbon Hybrid Chemically Modified Electrode for Selective Hydrazine Detection

    OpenAIRE

    Palani Barathi; Annamalai Senthil Kumar; Minnal Ranjan Babu Karthick

    2011-01-01

    A hybrid polynuclear nickel hexacyanoferrate (NiHCFe)/graphitized mesoporous carbon- (GMC-) modified glassy carbon electrode (GCE/NiHCFe@GMC) has been prepared by a sequential method using electrodeposited Ni on a GMC-modified glassy carbon electrode (GCE/Ni@GMC) as a template and [Fe(CN)6]3− as an in-situ chemical precipitant, without any additional interlinking agent. Physicochemical and electrochemical characterizations reveal the presence of NiHCFe units within the porous sites of the GM...

  16. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M.A. [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2008-10-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ethanol was determined amperometrically at -0.3 V vs. SCE at pH 7.5. Electrocatalytic effects of MWCNT were observed with respect to unmodified carbon film electrodes. The sensitivity obtained was 20 times higher at carbon film/MWCNT-based biosensors than without MWCNT. (author)

  17. Lightning Damage of Carbon Fiber/Epoxy Laminates with Interlayers Modified by Nickel-Coated Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    Dong, Qi; Wan, Guoshun; Xu, Yongzheng; Guo, Yunli; Du, Tianxiang; Yi, Xiaosu; Jia, Yuxi

    2017-02-01

    The numerical model of carbon fiber reinforced polymer (CFRP) laminates with electrically modified interlayers subjected to lightning strike is constructed through finite element simulation, in which both intra-laminar and inter-laminar lightning damages are considered by means of coupled electrical-thermal-pyrolytic analysis method. Then the lightning damage extents including the damage volume and maximum damage depth are investigated. The results reveal that the simulated lightning damages could be qualitatively compared to the experimental counterparts of CFRP laminates with interlayers modified by nickel-coated multi-walled carbon nanotubes (Ni-MWCNTs). With higher electrical conductivity of modified interlayer and more amount of modified interlayers, both damage volume and maximum damage depth are reduced. This work provides an effective guidance to the anti-lightning optimization of CFRP laminates.

  18. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    Science.gov (United States)

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Electromagnetism and Absorptivity of the Modified Micro-coiled Chiral Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    Zheng Tianliang; Wang Yuehong; Zheng Kuangyu; Li Qian; Tao Ye

    2007-01-01

    Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m2.

  20. Bioavailability of the dietary antioxidant flavonol quercetin in man.

    NARCIS (Netherlands)

    Hollman, P.C.H.; Trijp, van J.M.P.; Mengelers, M.J.B.; Vries, de J.H.M.; Katan, M.B.

    1997-01-01

    Quercetin, a dietary antioxidant flavonoid, has anticarcinogenic properties. We quantified the absorption of quercetin in ileostomists. Absorption was 52 ± 5␏or quercetin glucosides from onions, 17 ± 15␏or quercetin rutinoside, and 24 ± 9␏or quercetin aglycone. The plasma quercetin concentration in

  1. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

    Indian Academy of Sciences (India)

    Suling Yang; Ran Yang; Gang Li; Jianjun Li; Lingbo Qu

    2010-11-01

    A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10-8-6.0 × 10-5 mol/L, with a detection limit of 2.0 × 10-8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

  2. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Science.gov (United States)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  3. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    OpenAIRE

    Koh Sing Ngai; Wee Tee Tan; Zulkarnain Zainal; Ruzniza Mohd Zawawi; Joon Ching Juan

    2015-01-01

    A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni) nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE) surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE w...

  4. Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang, E-mail: liufangfw@163.com; Gao, Ya; Zhang, Shuang; Yan, Xi; Fan, Fengtao; Zhao, Chaocheng; Sun, Juan [China University of Petroleum(East China), Department of Chemical Engineering (China)

    2016-02-15

    Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N{sub 2} adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m{sup 2}/g, 0.313552 and 0.603573 cm{sup 3}/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.

  5. Improved fire retardancy of thermoset composites modified with carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhao and Jan Gou

    2009-01-01

    Full Text Available Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS. Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.

  6. Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes

    Indian Academy of Sciences (India)

    Tingliang Xia; Hongmei Bi; Keying Shi

    2010-05-01

    The NO electro-oxidation was investigated at various single-wall carbon nanotubes (SWCNTs) modified electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared with the glassy carbon electrode, the SWCNTs modified electrodes possess higher electro-catalytic activity to NO electro-oxidation. CV results indicate that the peak current density of NO electro-oxidation at the SWCNT-COOH (SWCNTs with carboxyl groups) modified electrode is the highest and the peak potential is the most negative among the four kinds of electrodes. EIS indicates that the charge transfer resistance of NO electro-oxidation at the SWCNT-COOH modified electrode is the least. The determined factors (charge transfer and mass transfer of diffusion) of NO electro-oxidation are different in varied potential region. The mechanism of NO electro-oxidation reaction at the SWCNTs modified electrodes is also discussed.

  7. Formation of TiO2 Modified Film on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Laizhou SONG; Shizhe SONG; Zhiming GAO

    2004-01-01

    A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min,dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.

  8. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen.

    Science.gov (United States)

    Karnicka, Katarzyna; Miecznikowski, Krzysztof; Kowalewska, Barbara; Skunik, Magdalena; Opallo, Marcin; Rogalski, Jerzy; Schuhmann, Wolfgang; Kulesza, Pawel J

    2008-10-01

    The ability of such a common redox mediator as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to undergo sorption on carbon surfaces is explored here to convert multiwalled carbon nanotubes (CNTs) into a stable colloidal solution of ABTS-modified carbon nanostructures, the diameters of which are approximately 10 nm (as determined by transmission electron microscopy). Subsequently, inks composed of fungal laccase (Cerrena unicolor) mixed with the dispersion of ABTS-modified CNTs and stabilized with Nafion, were deposited on glassy carbon and successfully employed to the reduction of oxygen in McIlvain buffer at pH 5.2. For comparison, the systems utilizing only ABTS-free CNTs and laccase as well as ABTS-modified CNTs did not show appreciable activity toward the oxygen reduction. The three-dimensionally distributed ABTS-modified CNTs are expected to improve the film's overall conductivity and to facilitate electrical connection between the electrode and the enzyme. The network film of ABTS-modified CNTs is rigid, and it is characterized by charge propagation capabilities comparable to the conventional redox polymers. The whole concept of utilization of CNTs modified with ultrathin films of redox mediators in the preparation of efficient bioelectrocatalytic films seems to be of general importance to electroanalytical chemistry and to the development of biosensors.

  9. Investigation of reinforcement of the modified carbon black from wasted tires by nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; YANG Yong-rong; REN Xiao-hong; STAPF Siegfried

    2006-01-01

    Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.

  10. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  11. Strain-modified RKKY interaction in carbon nanotubes

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen R.

    2015-01-01

    For low-dimensionalmetallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously...... been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show...... that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon...

  12. Surface characteristics of carbon fibers modified by direct oxyfluorination.

    Science.gov (United States)

    Seo, Min-Kang; Park, Soo-Jin

    2009-02-01

    The effect of oxyfluorinated conditions on the surface characteristics of carbon fibers was investigated. Infrared (IR) spectroscopy results indicated that the oxyfluorinated carbon fibers showed carboxyl/ester groups (CO) at 1632 cm(-1) and hydroxyl groups (OH) at 3450 cm(-1) and had a higher OH peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results for the fibers also showed that oxyfluorination introduced a much higher oxygen concentration onto the fiber surfaces than fluorination with F(2) only. Additionally, contact-angle results showed that the surface was better wetted by following oxyfluorination and that the polarity of the surface was increased by increasing the oxyfluorination temperature.

  13. Surface characterization of silver and palladium modified glassy carbon

    Indian Academy of Sciences (India)

    Aleksandra A Perić-Grujić; Olivera M Nešković; Miomir V Veljković; Zoran V Laušević; Mila D Laušević

    2007-12-01

    In this work, the influence of silver and palladium on the surface of undoped, boron doped and phosphorus doped glassy carbon has been studied. The silver and palladium concentrations in solution, after metal deposition, were measured by atomic absorption spectrophotometer. The morphology of metal coatings was characterized by scanning electron microscopy. In order to investigate the nature and thermal stability of surface oxygen groups, temperature-programmed desorption method combined with mass spectrometric analyses, was performed. The results obtained have shown that silver and palladium spontaneously deposit from their salt solutions at the surface of glassy carbon samples. Silver deposits have dendrite structure, whilst palladium forms separate clusters. The highest amount of both silver and palladium deposits at the surface of sample containing the highest quantity of surface oxide complexes. It has been concluded that carboxyl groups and structure defects are responsible for metal reduction. Calculated desorption energies have shown that the surface modification by metal deposition leads to the formation of more stable surface of undoped and doped glassy carbon samples.

  14. Quercetin Glucuronides but Not Glucosides Are Present in Human Plasma after Consumption of Quercetin-3-Glucoside or Quercetin-4'-Glucoside 1)

    NARCIS (Netherlands)

    Sesink, A.L.A.; O'Leary, K.A.; Hollman, P.C.H.

    2001-01-01

    The nature of quercetin conjugates present in blood after consumption of quercetin glucosides is still unclear. In this study, we analyzed plasma of volunteers that had consumed 325 ?mol of either quercetin-3-glucoside or quercetin-4'-glucoside as an oral solution. Quercetin metabolites were extract

  15. Thermal analysis of activated carbons modified with silver metavanadate

    Energy Technology Data Exchange (ETDEWEB)

    Goscianska, Joanna; Nowicki, Piotr; Nowak, Izabela [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland); Pietrzak, Robert, E-mail: pietrob@amu.edu.pl [Faculty of Chemistry, Adam Mickiewicz University in Poznan, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Preparation of the activated carbons from waste materials as new supports for AgVO{sub 3}. Black-Right-Pointing-Pointer Decomposition of AgVO{sub 3} to V{sub 2}O{sub 5} and Ag{sup 0} for the samples 1 and 3 wt.% Ag-V is observed. Black-Right-Pointing-Pointer Samples containing 5 wt.% Ag-V decompose to vanadyl species as intermediate compounds. - Abstract: The effect of silver metavanadate doping on physicochemical properties and thermal behaviour of the activated carbons obtained from waste materials was investigated. The carbonaceous supports were subjected to carbonisation at 400 or 600 Degree-Sign C. The samples carbonised at 600 Degree-Sign C have much more developed surface area and porous structure than the analogous samples obtained at 400 Degree-Sign C. Impregnation of activated carbons with silver metavanadate leads to a decrease in their surface area and pore volume. According to thermal analysis (TG, DTG) in the samples containing 1 and 3 wt.% of silver metavanadate, AgVO{sub 3} is fully decomposed to do vanadium oxide and Ag, with no intermediate products, while in the samples containing 5 wt.% AgVO{sub 3}, this salt is decomposed to vanadyl species as intermediate compounds at 350 Degree-Sign C before the formation of V{sub 2}O{sub 5} at 500 Degree-Sign C. Moreover, in all samples impregnated with silver metavanadate the nanoparticles of silver undergo crystallisation leading to reduction of Ag{sup +} ions from the vanadium salt to Ag{sup 0}.

  16. Electrocatalytic oxidation of diethylaminoethanethiol and hydrazine at single-walled carbon nanotubes modified with prussian blue nanoparticles

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-11-01

    Full Text Available In this work, edged plane pyrolytic graphite electrode EPPGE was modified with functionalised single-walled carbon nanotubes and Prussian blue nanoparticles (PB). The modified electrode was characterised by techniques such as TEM, FTIR, XPS, EDX...

  17. Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review

    Directory of Open Access Journals (Sweden)

    W.D.P Rengga

    2012-11-01

    Full Text Available Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that

  18. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two.

    Science.gov (United States)

    Sepunaru, Lior; Laborda, Eduardo; Compton, Richard G

    2016-04-18

    We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two-electron reduction of oxygen occurs at low potentials, whereas four-electron reduction is key for energy-transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four-electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme-modified electrode for energy-transformation devices is evident.

  19. Industrial testing of property-modified prebaked carbon anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    肖劲; 丁凤其; 李劼; 邹忠; 胡国荣; 刘业翔

    2003-01-01

    Aiming at reducing energy and carbon consumption and enhancing current efficiency of aluminum electrolysis, a batch of property-modified prebaked carbon anodes prepared in industrial production were applied to 160 kA prebaked anode aluminum electrolysis cells in a domestic aluminum company. The industrial statistical data show that, the property-modified anodes can averagely reduce carbon consumption 11.6 kg per ton aluminum and energy consumption 106.1 kW*h, further more, enhance current efficiency 0.72%. The industrial testing results prove that this kind of new type of prebaked anodes has remarkable effect of saving energy, reducing carbon consumption and enhancing current efficiency of aluminum electrolysis.

  20. Platinum-polyaniline-modified carbon fiber electrode for the electrooxidation of methanol

    Institute of Scientific and Technical Information of China (English)

    WU Kezhong; MENG Xu; WANG Xindong; LI Jingling

    2005-01-01

    Platinum was electrodeposited onto a polyaniline-modified carbon fiber electrode by the cyclic voltammetric method in sulfuric acid, which may enable an increase in the level of platinum u tilization currently achieved in electrocatalyric systems. This electrode preparation consists of a two-step procedure: first electropolymerization of aniline onto carbon fiber and then electrodeposition of platinum. The catalytic activity of the platinum-polyaniline-modified carbon fiber electrode (Pt/PAni/C) was compared with that of a bare carbon fiber electrode (Pt/C) by the oxidation of methanol. The maximum oxidation current of methanol on Pt/PAni/C is 50.7 mA.cm-2, which is 6.7 times higher than 7.6 mA.cm-2 on the Pt/C.Scanning electron microscopy was used to investigate the dispersion of the platinum particles of about 0.4 μm.

  1. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Institute of Scientific and Technical Information of China (English)

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  2. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Institute of Scientific and Technical Information of China (English)

    Chuanxiang Zhang; Haijun Tao; Yuming Dai; Xiancong He; Kejie Zhang

    2014-01-01

    Se-modified ruthenium supporting on carbon (Sex–Ru/C) electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG) in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS) presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR) performance was improved by appearance of selenium oxides.

  3. Antimony trifluoride-modified carbon paste electrode for electrochemical stripping analysis of selected heavy metals

    OpenAIRE

    Stočes, Matěj; Hočevar, Samo B.; Švancara, Ivan

    2011-01-01

    In this article, a new typ of non-mercury metal-based electrode, antimony trifluoridebulk- modified carbon paste electrode (SbF3-CPE) is for the first time reported and examined for electrochemical stripping analysis of selected heavy metal ions at their trace concentration level. In the role of bulk modifier and a source of antimony film generated in state nascenti, SbF3 in a content of 3% (w/w) in the carbon paste mixture was the ultimate choice. All important experimental parameters hav...

  4. Surface functional groups and redox property of modified activated carbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Xianglan; Deng Shengfu; Liu Qiong; Zhang Yan; Cheng Lei

    2011-01-01

    A series of activated carbons (ACs) were prepared using HNO3, H2O2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process. The effects of concentration of activation agent, activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption (TPD) and Cyclic Voitammetry (CV). Results showed that lactone groups of ACs activated by HNO3 increase with activation time, and the carboxyl groups increase with the concentration of HNO3. Carbonyl/quinine groups of ACs activated by H2O2 increase with the activation time and the concentration of H2O2, although the acidic groups decrease with the concentration of H2O2. The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD, but it is consistent with the SO2 catalytic oxidization/oxidation properties indicated by TPR.

  5. Linear polymer separation using carbon-nanotube-modified centrifugal filter units.

    Science.gov (United States)

    Krawczyk, Tomasz; Marian, Karolina; Pawlyta, Mirosława

    2016-02-01

    The separation of linear polymers such as polysaccharides and polyethylene glycol was performed with modified commercial centrifugal filter units. The deposition of a 0.16-0.35 μm layer of modified carbon nanotubes prevented permeation of linear polymers of molecular weight higher than 20 000 Da through the membrane. It allowed facile purification of solution of 0.1 g of polymer samples from small molecules within 25 min by using a bench-top centrifuge. The structure of modified carbon nanotubes was optimized in order to achieve good adhesion to the low binding regenerated cellulose surface and low solubility in aqueous solutions after deposition. The best modification of carbon nanotubes was oxidation and subsequent amide formation of diethanolamine. Introduction of acetic acid groups using sodium chloroacetate worked equally well. The modified filter could be used multiple times without the decrease of the efficiency. The carbon nanotubes layer was stable in aqueous solutions in a pH range of 1-7. The proposed method provides a convenient way of purification of modified polymers in research areas such as drug delivery or macromolecular probes synthesis.

  6. Influence of amount of graphite and modifying agent on the properties of periclase-carbon refractories

    OpenAIRE

    Борисенко, Оксана Миколаївна

    2016-01-01

    One of the main components of periclase-carbon materials is graphite, which provides high thermal conductivity and slag resistance of refractories. However, at temperatures of 600 °C it begins to oxidize. To prevent oxidation it is proposed to modify the sol-gel graphite by composition based on nickel salts for further formation of NiO coating on its surface, which will provide additional protection. An influence of graphite amount and its modifier agent on physical and mechanical properties ...

  7. A molecule-imprinted polyaniline membrane modified on carbon fiber for detection of glycine.

    Science.gov (United States)

    Zeng, Hongjuan; Wang, Deshun; Yu, Junsheng

    2014-01-01

    A layer of L-glycine-molecule-imprinted polyaniline (LMIP-PANI) polymer film has been modified on a carbon fiber electrode for the determination of L-glycine standard samples and L-glycine in cerebrospinal fluid of wistar mice. It has been found that a linear relationship exists between current and concentration for the glycine standard samples in the range of 0-12 μM by using the LMIP-PANI-modified carbon fiber electrode as a sensor. However, there is no any relationship between current and concentration for the carbon fiber electrode modified with no-glycine-molecule-imprinted polyaniline (NIP-PANI). The MIP-PANI- and NIP-PANI-modified carbon fiber films have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemistry methods. The investigation shows that the MIP-PANI-imprinted carbon fiber electrode will have a potential application in in-situ monitoring neurotransmitter due to its easy fabrication, low cost, bio-compatibility and flexibility.

  8. A Multiwall Carbon Nanotube-chitosan Modified Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid

    Institute of Scientific and Technical Information of China (English)

    Ling Yan JIANG; Chuan Yin LIU; Li Ping JIANG; Guang Han LU

    2005-01-01

    A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peak by 212 mY. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine can be determined selectively with the carbon nanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity and stability.keywords: Nanotube-chitosan modified electrode, dopamine, ascorbic acid.

  9. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.

    Science.gov (United States)

    Zhang, Xiaoqing; Fan, Xinyu; Yan, Chun; Li, Hongzhou; Zhu, Yingdan; Li, Xiaotuo; Yu, Liping

    2012-03-01

    The performance of carbon fiber-reinforced composites is dependent to a great extent on the properties of fiber-matrix interface. To improve the interfacial properties in carbon fiber/epoxy composites, we directly introduced graphene oxide (GO) sheets dispersed in the fiber sizing onto the surface of individual carbon fibers. The applied graphite oxide, which could be exfoliated to single-layer GO sheets, was verified by atomic force microscope (AFM). The surface topography of modified carbon fibers and the distribution of GO sheets in the interfacial region of carbon fibers were detected by scanning electron microscopy (SEM). The interfacial properties between carbon fiber and matrix were investigated by microbond test and three-point short beam shear test. The tensile properties of unidirectional (UD) composites were investigated in accordance with ASTM standards. The results of the tests reveal an improved interfacial and tensile properties in GO-modified carbon fiber composites. Furthermore, significant enhancement of interfacial shear strength (IFSS), interlaminar shear strength (ILSS), and tensile properties was achieved in the composites when only 5 wt % of GO sheets introduced in the fiber sizing. This means that an alternative method for improving the interfacial and tensile properties of carbon fiber composites by controlling the fiber-matrix interface was developed. Such multiscale reinforced composites show great potential with their improved mechanical performance to be likely applied in the aerospace and automotive industries. © 2012 American Chemical Society

  10. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Science.gov (United States)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-04-01

    The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  11. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  12. Mechanical properties of carbon fiber/cellulose composite papers modified by hot-melting fibers

    OpenAIRE

    Yunzhou Shi; Biao Wang

    2014-01-01

    Carbon fiber (CF)/cellulose (CLS) composite papers were prepared by papermaking techniques and hot-melting fibers were used for modification. The mechanical properties of the obtained composite papers with different CF, CLS and hot-melting fiber ratios were studied and further discussed. It is observed that, for both CF/CLS composite papers and those modified by hot-melting fibers, the normal stress firstly increases and then declines with the addition of carbon fibers. The results also show ...

  13. Electroanalysis of cationic species at membrane-carbon electrodes modified by polysaccharides. Bioaccumulation at microorganism-modified electrodes.

    Science.gov (United States)

    Lojou, E; Bianco, P

    2000-05-01

    Membrane-carbon electrodes modified with polysaccharides suspensions entrapped between a dialysis membrane and the carbon surface were used for electroanalysis of various cationic species. Cationic complexes of ruthenium and cobalt, metallic cations (Cu(2+), Fe(3+), UO(2)(2+)) as well as methylviologen were considered. By investigating various parameters (concentration of the suspension, pH) binding of the cations by the polysaccharides was demonstrated. Comparison of cations uptake by different kinds of polysaccharides such as alginic acid, polygalacturonic acid, pectin, dextran and agar was performed. This study has been extended to natural biomaterials, alga and lichen, which are known to contain polysaccharides. The interest of the membrane-electrode strategy is described.

  14. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester.

    Science.gov (United States)

    Mrvová, Nataša; Škandík, Martin; Kuniaková, Marcela; Račková, Lucia

    2015-11-01

    Chronic inflammation in brain plays a critical role in major neurodegenerative diseases such as Alzheimer's, Parkinson's disease, stroke or multiple sclerosis. Microglia, resident macrophages and intristinc components of CNS, appear to be main effectors in this pathological process. Quercetin, a naturally occurring flavonoid, was proven to downregulate inflammatory genes in microglia. Synthetically modified quercetin, 3'-O-(3-chloropivaloyl) quercetin (CPQ), is assumed to possess better biological availability and enhanced antioxidant properties. In the present study, antineuroinflammatory capability of the novel compound CPQ was assessed in BV-2 microglial cells. Our data show that treatment with CPQ attenuated the production of the inflammatory mediators, nitric oxide (NO) and tumour necrosis factor-α (TNF-α), in LPS-stimulated microglia somewhat more efficiently than did quercetin (p > 0.05 for CPQ vs. quercetin-treated group). Also, protein level of inducible NO synthase (iNOS) in LPS-activated BV-2 microglia was to some extent more effectively supressed by CPQ than by unmodified flavonoid. In consistence with the extent of their effects on pro-inflammatory markers, CPQ and quercetin showed down-regulation of NFκB activation. This quercetin analogue caused also a decline in BV-2 microglia proliferation with interfering with cell cycle progression (p microglia.

  15. Thermal effects of carbonated hydroxyapatite modified by glycine and albumin

    Science.gov (United States)

    Gerk, S. A.; Golovanova, O. A.; Kuimova, M. V.

    2017-01-01

    In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydration, decarboxylation and thermal degradation of amino acid and protein connected to the surface of solid phase occur. The tendency of temperature lowering of the decomposition of powders synthesized from a medium containing organic substances was determined. Results demonstrate a direct dependence between the concentration of the amino acid in a model solution and its content in the solid phase.

  16. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine.

    Science.gov (United States)

    Thomas, Tony; Mascarenhas, Ronald J; D' Souza, Ozma J; Detriche, Simon; Mekhalif, Zineb; Martis, Praveen

    2014-07-01

    An amperometric sensor for the determination of epinephrine (EP) was fabricated by modifying the carbon paste electrode (CPE) with pristine multi-walled carbon nanotubes (pMWCNTs) using bulk modification followed by drop casting of sodium dodecyl sulfate (SDS) onto the surface for its optimal potential application. The modified electrode showed an excellent electrocatalytic activity towards EP by decreasing the overpotential and greatly enhancing the current sensitivity. FE-SEM images confirmed the dispersion of pMWCNTs in the CPE matrix. EDX analysis ensured the surface coverage of SDS. A comparative study of pMWCNTs with those of oxidized MWCNTs (MWCNTsOX) modified electrodes reveals that the former is the best base material for the construction of the sensor with advantages of lower oxidation overpotential and the least background current. The performance of the modified electrode was impressive in terms of the least charge transfer resistance (Rct), highest values for diffusion coefficient (DEP) and standard heterogeneous electron transfer rate constant (k°). Analytical characterization of the modified electrode exhibited two linear dynamic ranges from 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 1.0×10(-4)M with a detection limit of (4.5±0.18)×10(-8)M. A 100-fold excess of serotonin, acetaminophen, folic acid, uric acid, tryptophan, tyrosine and cysteine, 10-fold excess of ascorbic acid and twofold excess of dopamine do not interfere in the quantification of EP at this electrode. The analytical applications of the modified electrode were demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection. The modified electrode involves a simple fabrication procedure, minimum usage of the modifier, quick response, excellent stability, reproducibility and anti-fouling effects.

  17. Design of Dendrimer Modified Carbon Nanotubes for Gene Delivery

    Institute of Scientific and Technical Information of China (English)

    PAN Bi-feng; BAO Chen-chen; GAO Feng; HE Rong; SHU Meng-jun; MA Yong-jie; CUI Da-xiang; XU Ping; CHEN Hao; LIU Feng-tao; LI Qing; HUANG Tuo; YOU Xiao-gang; SHAO Jun

    2007-01-01

    Objective: To investigate the efficiency of polyamidoamine dendrimer grafted carbon nanotube (dendrimer-CNT) mediated entrance of anti-survivin oligonucleotide into MCF-7 cells, and its effects on the growth of MCF-7 cells. Methods: Antisense survivin oligonucleotide was anchored onto polyamidoamine dendrimer grafted carbon nanotubes to form dendrimer-CNT-asODN complex and the complex was characterized by Zeta potential, AFM, TEM, and 1% agarose gel electrophoresis analysis. Dendrimer-CNT-asODN complexes were added into the medium and incubated with MCF-7 cells. MTT method was used to detect the effects of asODN and dendrimer-CNT-asODN on the growth of MCF-7 cells. TEM was used to observe the distribution of dendrimer-CNT-asODN complex within MCF-7 cells. Results: Successful synthesis of dendrimer-CNT-asODN complexes was proved by TEM, AFM and agarose gel electrophoresis. TEM showed that the complexes were located in the cytoplasm, endosome, and lysosome within MCF-7 cells. When dendrimer-CNT-asODN (1.0 μmol/L) and asODN (1.0 μmol/L) were used for 120 h incubation, the inhibitory rates of MCF-7 cells were (28.22±3.5)% for dendrimer-CNT-asODN complex group, (9.23±0.56)% for only asODN group, and (3.44±0.25)% for dendrimer-CNT group. Dendrimer-CNT-asODN complex at 3.0 μmol/L inhibited MCF-7 cells by (30.30±10.62)%, and the inhibitory effects were in a time- and concentration- dependent manner. Conclusion: Dendrimer-CNT nanoparticles may serve as a gene delivery vector with high efficiency, which can bring foreign gene into cancer cells, inhibiting cancer cell proliferation and markedly enhancing the cancer therapy effects.

  18. Herbivores modify the carbon cycle in a warming arctic

    Science.gov (United States)

    Cahoon, S. M.; Sullivan, P.; Welker, J. M.; Post, E.

    2009-12-01

    Typically, our studies of arctic terrestrial ecosystem responses to changes in climate focus on abiotic drivers (i.e. warming or added rain or added snow) and subsequent biogeochemical cycles and plant physiological performance. However, many arctic systems, such as those in western Greenland, are home ranges for large herbivores such as muskoxen and caribou. In order to fully understand how tundra landscapes in Greenland will respond to change, experiments are needed that allow us to quantify whether abiotic (climate warming) and or biotic (presence or absence of herbivores) drivers or their combinations regulate ecosystem function and structure. Here we present the results of two consecutive field seasons in western Greenland in which we quantified the interactive effects of local herbivore foraging and simulated climate warming on ecosystem C and N cycling and leaf level physiology. Large exclosure fences were erected in 2002, and ITEX passive warming chambers were established in 2003 within and adjacent to the fences. We performed weekly CO2 flux measurements during the 2008 and 2009 growing seasons which we normalized to a common irradiance by generating light-response curves at all plots (n=9). Although we observed interannual variability in soil moisture and average daily air temperature, browsing by herbivores was a key factor in the seasonal carbon dynamics. By physically removing leaves and upper stems, caribou and muskoxen altered the community composition, reduced leaf area and in turn decreased gross ecosystem photosynthesis (GEP), regardless of the warming treatment. Neither herbivory nor warming significantly affected ecosystem respiration rates. Thus the reduction in net ecosystem exchange (NEE) was primarily driven by reductions in GEP associated with leaf area removal by grazers. Our results indicate that the biotic influence from large herbivores can significantly influence carbon-derived climatic feedbacks and can no longer be overlooked in

  19. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    OpenAIRE

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents....

  20. Industrial preparation and performance testing of property-modified prebaked carbon anodes for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    肖劲; 李劼; 邹忠; 胡国荣; 赖延清; 刘业翔

    2003-01-01

    On the base of filtering composite additives in laboratory, the industrial property-modified prebaked car-bon anodes containing composite additives were prepared in factory. The performance tests show that this kind ofanodes not only have the same excellent physical performance as common (contrasting) ones used in aluminum elec-trolysis production at the present time, but also have better chemical and electrochemical performance than that ofthe common ones. Furthermore, the industrial preparation of the property-modified prebaked anode lays the founda-tion of electrolysis test. It can be forecasted that property-modified anodes will have good behavior in aluminum elec-trolysis production.

  1. New Electrochemically-Modified Carbon Paste Inclusion β-Cyclodextrin and Carbon Nanotubes Sensors for Quantification of Dorzolamide Hydrochloride

    Directory of Open Access Journals (Sweden)

    Nawal Ahmad Alarfaj

    2016-12-01

    Full Text Available The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion β-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ. This study is mainly based on the construction of three different carbon paste sensors by the incorporation of DRZ with phosphotungstic acid (PTA to form dorzolamide-phosphotungstate (DRZ-PT as an electroactive material in the presence of the solvent mediator ortho-nitrophenyloctyl ether (o-NPOE. The fabricated conventional carbon paste sensor (sensor I, as well as the other modified carbon paste sensors using β-cyclodextrin (sensor II and carbon nanotubes (sensor III, have been investigated. The sensors displayed Nernstian responses of 55.4 ± 0.6, 56.4 ± 0.4 and 58.1 ± 0.2 mV·decade−1 over concentration ranges of 1.0 × 10−5–1.0 × 10−2, 1.0 × 10−6–1.0 × 10−2, and 5.0 × 10−8–1.0 × 10−2 mol·L−1 with lower detection limits of 5.0 × 10−6, 5.0 × 10−7, and 2.5 × 10−9 mol·L−1 for sensors I, II, and III, respectively. The critical performance of the developed sensors was checked with respect to the effect of various parameters, including pH, selectivity, response time, linear concentration relationship, lifespan, etc. Method validation was applied according to the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ICH guidelines. The developed sensors were employed for the determination of DRZ in its bulk and dosage forms, as well as bio-samples. The observed data were statistically analyzed and compared with those obtained from other published methods.

  2. Metachromasy of methylene blue due to aggregation over phosphate-modified polymeric carbon nitride

    Science.gov (United States)

    Lakshminarasimhan, N.; Sangeetha, D. N.; Nivetha, G.

    2017-05-01

    Polymeric carbon nitride in graphitic form (g-C3N4) is an emerging visible light active photocatalyst. In this work, phosphate-modified polymeric carbon nitride (PCN) was synthesized by thermal condensation of melamine in the presence of ammonium dihydrogen phosphate (ADP). The addition of PCN to methylene blue (MB) solution showed the color intensification. The hypsochromic shift in the absorption spectrum of MB is due to metachromasy, a phenomenon in which aggregation of dye molecules occurs over the surface of a material. The polymerization of melamine into carbon nitride and MB trimerization depend on the amount of ADP and nature of phosphate species, respectively.

  3. Antioxidation of quercetin against spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-bo; TANG Tian-si; YANG Hui-lin

    2006-01-01

    Objective: To observe the effect of quercetin on experimental spinal cord injury (SCI) in rats.Methods: Sixty Sprague-Dawley rats were randomly divided into four groups: Group A only for laminectomy,Group B for laminectomy with SCI, Group C for SCI and intraperitoneal injection with a bolus of 200 mg/kg quercetin and Group D for SCI and intraperitoneal injection of saline. SCI model was made by using modified Allen's method on T12. Six rats of each group were killed at4 h after injury and the levels of free iron and malondialdehyde (MDA) of the involved spinal cord segments were measured by bleomycin and thiobarbituric acid (TBA) assays separately. The recovery of hind limb function was assessed by Modified Tarlov's scale and inclined plane method at 7 d,14 d and 21 d after SCI. The histological changes of the damaged spinal cord were also examined at 7 d after SCI.Results: After SCI, the levels of free iron and MDA were significantly increased in Groups B and D, while not in Group C. The Modified Tarlov's score and the inclined plane angles were significantly decreased in Groups B, C and D. The histological findings were not improved.Conclusions: After SCI, quercetin can reduce the level of lipid peroxidation, but not improve recovery of function.

  4. Cardiac output measurement using a modified carbon dioxide Fick method: a validation study in ventilated lambs.

    NARCIS (Netherlands)

    Boode, W.P. de; Hopman, J.C.W.; Daniels, O.; Hoeven, J.G. van der; Liem, K.D.

    2007-01-01

    Cardiac output can be measured using a modified carbon dioxide Fick (mCO2F) method. A validation study was performed comparing mCO2F method-derived cardiac output (Q(mCO2F)) with invasively measured pulmonary blood flow. In seven randomly bred ventilated newborn lambs, cardiac output was manipulated

  5. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    NARCIS (Netherlands)

    Lisowski, W.; Keim, E.G.; Berg, van den A.H.J.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material, m

  6. Novel estradiol sensors based on carbon nanotube multilayer modified gold hair microelectrodes

    Institute of Scientific and Technical Information of China (English)

    Jun Hui Xu; Cheng Guo Hu; Sheng Shui Hu

    2009-01-01

    Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-by-layer assembling method. The resulting electrode showed a sensitive oxidation response to estradiol with detection limit as low as 1.0×10~(-8) mol/L, foreseeing a promising approach to the fabrication of high-sensitive microsensors.

  7. Electrocatalytic amperometric determination of amitrole using a cobalt-phthalocyanine-modified carbon paste electrode.

    Science.gov (United States)

    Chicharro, Manuel; Zapardiel, Antonio; Bermejo, Esperanza; Moreno, Mónica; Madrid, Elena

    2002-07-01

    Cobalt-phthalocyanine-modified carbon paste electrodes are shown to be excellent indicators for electrocatalytic amperometric measurements of triazolic herbicides such as amitrole, at low oxidation potentials (+0.40 V). The detection and determination of amitrole in flow injection analysis with a modified carbon paste electrode with Co-phthalocyanine is described. The concentrations of amitrole in 0.1 M NaOH solutions were determined using the electrocatalytic oxidation signal corresponding to the Co(II)/Co(III) redox process. A detection limit of 0.04 microg mL(-1) (4 ng amitrole) was obtained for a sample loop of 100 microL at a fixed potential of +0.55 V (vs. Ag/AgCl) in 0.1 M NaOH and a flow rate of 4.0 mL min(-1). Furthermore, the modified carbon paste electrodes offers reproducible responses in such a system, and the relative standard deviation was 3.3% using the same surface, 5.1% using different surface, and 6.9% using different pastes. The performance of the cobalt-phthalocyanine-modified carbon paste electrodes is illustrated here for the determination of amitrole in commercial formulations. The response of the electrodes is stable, with more than 80% of the initial retained activity after 50 min of continuous use.

  8. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  9. Water vapor adsorption in activated carbon modified with hydrophilic organic salts

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 池东

    2015-01-01

    Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples. During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57−17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.

  10. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  11. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  12. Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine.

    Science.gov (United States)

    Li, Yonghong; Liu, Xinsheng; Liu, Xiaoying; Mai, Nannan; Li, Yuandong; Wei, Wanzhi; Cai, Qingyun

    2011-11-01

    A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).

  13. Adsorption Efficiency of Iron Modified Carbons for Removal of Pb(II Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Salmani

    2016-06-01

    Full Text Available Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II ions from aqueous solution. Materials and methods: the washed granola of pomegranate peel was separately socked with FeCl3 and FeCl2 solutions for 24 h. Then, the granules were carbonized at 400 ºC for 3 h in a programmable furnace in the atmosphere of nitrogen. The adsorption experiments were carried out for two types of iron-modified carbons by batch adsorption using one variable at a time procedures. Results: The optimum conditions were found as contact time 90 min, initial concentration 50 mg/l, and adsorbent dose, 1.00 g/100 ml solution. Maximum removal efficiency was calculated as 84% and 89% for Fe3+ and Fe2+ impregnated pomegranate peel carbons respectively. Conclusion: The iron treatment pomegranate peel carbons modified their surfaces for adsorption of heavy metals. The results showed that chemical modification of the low-cost adsorbents originating from agricultural waste has stood out for metal removal capabilities.

  14. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  15. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    NARCIS (Netherlands)

    Tuzovskaya, I.; Pacheco Benito, S.; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, L.; Meer, van der T.H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  16. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  17. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria.

    Science.gov (United States)

    Wang, Yazhen; Li, Qing; Hu, Shengshui

    2005-02-01

    A novel chemically modified electrode based on the multiwall carbon nanotubes (MWNTs) film-coated carbon fiber ultramicroelectrode (CFUE) has been described for the determination of nitric oxide radical (.NO). The electrochemical behaviors of MWNTs-modified CFUE have been characterized in 0.2 mmol L(-1) K(4)Fe(CN)(6) and 0.1 mol L(-1) KCl solution. The Nafion film was used to avoid some electroactive interferences. The amount of Nafion was optimized, and some possible interferents [such as nitrite (NO(2)(-)), nitrate (NO(3)(-)), ascorbate, dopamine (DA), l-arginine (l-Arg), etc.] were tested and evaluated. The oxidation peak current of .NO increases significantly at the MWNT/Nafion-modified CFUE, in contrast to that at the bare and the Nafion-modified CFUE, and the oxidation peak potential is at 0.78 V (vs. SCE), which can be used for the detection of .NO. The oxidation peak current is linearly with the concentration of .NO from 2x10(-7) to 8.6x10(-5) mol L(-1), and the detection limit is 2x10(-8) mol L(-1). The liver mitochondria in Carassius auratus were isolated and .NO release from mitochondria was monitored by using this ultramicroelectrode system.

  18. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅲ)-ADSORPTION ON MODIFIED ACTIVATED CARBON FIBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Structures of a series of activated carbon fibers were modified by impregnating them withorganic and inorganic materials such as Methylene blue(Mb)、 p-nitrophenol (PNP)、 NaCl or byoxidizing with KMnO4 or HNO3. The influence of pore filling or chemical treatment on their xenonadsorption properties was studied. The experimental results show that Mb and PNP filling ofactivated carbon fibers result in the decrease of xenon adsorption capacities of these treated ACFs,which is due to the decrease of their surface area and micro-pore volume. However, the adsorptioncapacity increases greatly with oxidizing treatment of activated carbon fibers by 7mol/L HNO3.

  19. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    Science.gov (United States)

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  20. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The activities of deep fluid are regionalized in the Tarim Basin. By analyzing the REE in core samples and crude oil, carbon isotope of carbon dioxide and inclusion temperature measurement in the west of the Tazhong Uplift in the western Tarim Basin, all the evidence confirms the existence of deep fluid. The deep fluid below the basin floor moved up into the basin through discordogenic fauit and volcanicity to cause corrosion and metaaomatosis of carbonate rock by exchange of matter and energy. The pore structure and permeability of the carbonate reservoirs were improved, making the carbonate reservoirs an excellent type of deeply buried modification. The fluorite ore belts discovered along the large fault and the volcanic area in the west of the Tazhong Uplift are the outcome of deep fluid action. Such carbonate reservoirs are the main type of reservoirs in the Tazhong 45 oilfield. The carbonate reservoirs in well YM 7 are improved obviously by thermal fluid dolomitization. The origin and territory of deep fluid are associated with the discordogenic fault and volcanicity in the basin. The discordogenic fault and volcanic area may be the pointer of looking for the deep fluid modified reservoirs. The primary characteristics of hydrocarbon accumulation in deep fluid reconstructed carbonate rock are summarized as accumulation near the large fault and volcano passage, late-period hydrocarbon accumulation after volcanic activity, and subtle trap reservoirs controlled by lithology.

  1. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source.

    Science.gov (United States)

    Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar

    2017-10-01

    Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N(+) atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Inorganic-Organic Hybrid 18-Molybdodiphosphate Nanoparticles Bulk-modified Carbon Paste Electrode and Its Electrocatalysis

    Institute of Scientific and Technical Information of China (English)

    WANG,Xiu-Li(王秀丽); KANG,Zhen-Hui(康振辉); WANG,En-Bo(王恩波); HU,Chang-Wen(胡长文)

    2002-01-01

    A kind of inorganic- organic hybrid 18-molybdodiphosphate nanoparticles ([(C4H9)4N]6P2Mo18O62 @4H2O) was firstly used as a bulk-modifier to fabricate a three-dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square-wave voltammetry. The hybrid 18-molybdodiphosphate nanoparticles bulk-modified CPE (MNP-CPE) displayed a high electrocatalytic activity towards the reduction of nitrite,bromate and hydrogen peroxide. The remarkable advantages of the MNP-CPE over the traditional polyoxometalates-modified electrodes are their excellent reproducibility of surface-renewal and high stability owing to the insolubility of the hybrid 18-molybdodiphosphate nanoparticles.

  3. Theoretical Design and Experimental Evaluation of Molten Carbonate Modified LSM Cathode for Low Temperature Solid Oxide Fuel Cells

    Science.gov (United States)

    2015-01-07

    molten carbonate; (2) Fabrication and test of SOFCs with MC modified LSM cathodes; (3) Low- temperature SOFCs using MC modified LSCF/GDC cathode; (4...have been deeply explored. (1) Interaction between oxygen and molten carbonate; (2) Fabrication and test of SOFCs with MC modified LSM cathodes; (3...c3cp52362d Diego Palacio, Yunhui Gong, Xueyan Song, Rajankumar L. Patel, Xinhua Liang, Xuan Zhao, John B. Goodenough , Kevin Huang. Stabilizing

  4. A study of single-walled carbon nanotubes modified by organics of the phthalocyanine category

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of the transmission electron microscope (TEM), ultraviolet visible absorptive spectra, fluorescent spectra and Raman spectra. Under the TEM, it was observed that the composite looked like sugarcoated haws. By comparing the ultraviolet visible absorptive spectra before and after absorption, it was disclosed that the spectral intensity and the intensity of the peaks in the fluorescent spectra dropped remarkably. This shows that the single-walled carbon nanotubes have absorbed a large number of phenoxy phthalocyanines. Raman analysis revealed that in the Raman spectra, the position of the main peaks of the single-walled carbon nanotubes after absorption moved in the direction of long waves. The analysis suggests that the movement of the Raman spectra results from the change in the state of the single-walled carbon nanotubes before and after absorption.

  5. Role of quercetin in vascular physiology.

    Science.gov (United States)

    Chirumbolo, Salvatore

    2012-12-01

    A recent paper in the Canadian Journal of Physiology and Pharmacology has shown that quercetin has a vascular protective effect associated with eNOS up-regulation, blood GSH redox ratio, and reduction of oxidative stress. Recent reports have recommended the consumption of quercetin, as it may contribute to a reduction in the risk of cardiovascular disease. However, the mechanisms by which quercetin exerts its action have not been fully elucidated. The majority of these mechanisms have been identified with models using animals treated with quercetin, and relatively few have been corroborated in human studies, which indicates the need for further investigation.

  6. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2{approx}10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin.

  7. Carbonate reservoirs modified by magmatic intrusions in the Bachu area, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2015-09-01

    Full Text Available Oil and gas exploration in carbonate rocks was extremely successful in recent years in the Ordovician in Tarim Basin, NW China. Here, we investigate the carbonate reservoirs in the Bachu area of the Tarim Basin through petrological and geochemical studies combined with oil and gas exploration data. Geochemical analysis included the major, trace, and rare earth elements; fluid inclusion thermometry; clay mineral characterization; and carbon and oxygen isotopes of the carbonate rocks. Homogenization temperatures of the fluid inclusions of Well He-3 in the Bachu area indicate three groups, 60–80 °C, 90–130 °C, and 140–170 °C, and suggest that the carbonate rocks experienced modification due to heating events. The porosity in the reservoir is defined by fractures and secondary pores, and there is a notable increase in the porosity of the carbonate reservoirs in proximity to magmatic intrusion, particularly approximately 8–10 m from the intrusive rocks. The development of secondary pores was controlled by lithofacies and corrosion by various fluids. We identify supercritical fluids with high density (138.12–143.97 mg/cm3 in the Bachu area. The negative correlations of δ13C (−2.76‰ to −0.97‰ and δ18O (−7.91‰ to −5.07‰ suggest that the carbonate rocks in the study area were modified by high-salinity hydrothermal fluid. The formation of clay minerals, such as illite and montmorillonite, caused a decrease in porosity. Our study demonstrates the effect of magmatic intrusions in modifying the reservoir characteristics of carbonate rocks and has important implications for oil and gas exploration.

  8. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  9. Preparation,Electrochemical Behavior and Electrocatalytic Activity of a Copper Hexacyanoferrate Modified Ceramic Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    YU,Hao; ZHENG,Jian-Bin

    2007-01-01

    A copper hexacyanoferrate modified ceramic carbon electrode(CuHCF/CCE)had been prepared by two-step sol-gel technique and characterized using electrochemical methods.The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs.SCE)in 0.050 mol·dm-3 HOAc-NaOAc buffer containing 0.30 mol·dm-3 KCI.The charge transfer coefficient (α) and charge transfer rate constant(Ks)for the modified electrode were calculated.The electrocatalytic activity of this modified electrode to hydrazine was also investigated,and chronoamperometry was exploited to conveniently determine the diffusion coefficient(D)of hydrazine in solution and the catalytic rate constant(Kcat).Finally,hydrazine was determined with amperometry using the resulting modified electrode.The calibration plot for hydrazine determination was linear in 3.0×10-6-7.5×10-4 mol·dm-3 with the detection limit of 8.0×10-7 mol·dm-3.This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods,such as renewable surface,good long-term stability,excellent catalytic activity and short response time to hydrazine.

  10. Carbon-dot organic surface modifier analysis by solution-state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philippidis, Aggelos; Spyros, Apostolos, E-mail: aspyros@chemistry.uoc.gr; Anglos, Demetrios [University of Crete, NMR Laboratory, Department of Chemistry (Greece); Bourlinos, Athanasios B. [University of Ioannina, Physics Department (Greece); Zboril, Radek [Palacky University in Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic); Giannelis, Emmanuel P. [Cornell University, Department of Materials Science and Engineering (United States)

    2013-07-15

    Carbon dots (C-dots) represent a new class of carbon-based materials that were discovered recently and have drawn the interest of the scientific community, particularly because of their attractive optical properties and their potential as fluorescent sensors. Investigation of the chemical structure of C-dots is extremely important for correlating the surface modifier composition with C-dot optical properties and allow for structure-properties fine tuning. In this article, we report the structural analysis of the surface modifiers of three different types of C-dot nanoparticles (Cwax, Cws, and Csalt) by use of 1D- and 2D-high-resolution NMR spectroscopy in solution. We unambiguously verify that the structure of the modifier chains remains chemically unchanged during the passivation procedure, and confirm the covalent attachment of the modifiers to the nanoparticle core, which contributes no signal to the solution-state NMR spectra. To our knowledge, this is the first study confirming the full structural assignment of C-dot organic surface modifiers by use of solution NMR spectroscopy.

  11. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

    Science.gov (United States)

    Wang, Zi-Bo; Xiong, Shi-Chang; Guan, Yu-Jiang; Zhu, Xue-Qiang

    2016-03-01

    The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L-1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

  12. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  13. Extraction of scandium from red mud by modified activated carbon and kinetics study

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hualei; LI Dongyan; TIAN Yajun; CHEN Yunfa

    2008-01-01

    Activated carbon (AC) was modified by tri-butyl phosphate (TBP) for selectively extracting scandium from red mud and characterized by BET (Brunauer-Emmett-Teller) surface area. The modified AC had a preferential adsorption to scandium. The influences of adsorbent dosage, adsorption temperature, and time on adsorption capacity and selectivity to scandium were examined. An optimum adsorbent dosage (~6.25g/L), adsorption temperature (308K), and adsorption time (40min) were figured out. A pseudo-second-order kinetics model was employed for describing the adsorption process of scandium.

  14. Determination of Trace Thiocyanate by a Chitosan-Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A chitosan-modified glassy carbon electrode(CMGCE) was employed for the determination of thiocyanate. The measurement was carried out by means of anodic stripping voltammetry. The effects of several experimental parameters, such as pH, the amount of modifier, deposition potential and deposition time were studied for analytical application, respectively. A liner response was obtained in the concentration range of 3.5×10-8-9.3×10-7 g/mL of SCN-. The detection limit was found to be 1.9×10-8 g/mL. The method was satisfactorily used to detect SCN- in saliva.

  15. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    OpenAIRE

    Mohammed Zidan; Tan Wee Tee; A. Halim Abdullah; Zulkarnain Zainal; Goh Joo Kheng

    2011-01-01

    A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE) was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditio...

  16. Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Mohammad Hassan Mahaninia; Paria Rahimian; Tahereh Kaghazchi

    2015-01-01

    Activated carbons were prepared by two chemical methods and the adsorption of Cu (II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration, and pHzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also, adsorption mechanism and effect of pH on the adsorption of Cu (II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu (II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.

  17. Graphene-containing carbon aerogel prepared using polyethyleneimine (PEl)-modified graphene oxide (GO) for supercapacitor: effect of polyethyleneimine-modified GO content.

    Science.gov (United States)

    Lee, Yoon Jae; Lee, Joongwon; Kim, Gil-Pyo; Lee, Eo Jin; Yi, Jongheop; Song, In Kyu

    2014-11-01

    Graphene-containing carbon aerogel was prepared by a sol-gel polymerization of resorcinol-formaldehyde (RF) method using polyethyleneimine (PEL)-modified chemically exfoliated graphene oxide (GO), and its electrochemical performance as an electrode for supercapacitor was examined. The effect of PEI-modified GO content on the physicochemical and electrochemical properties of graphene-containing carbon aerogel was investigated. For comparison, graphene-free carbon aerogel was also prepared. Among the samples, graphene-containing carbon aerogel prepared using 45 wt% PEI-modified GO solution (CA(45PG)) showed the highest BET surface area (784 m2/g) and the largest pore volume (1.71 cm3/g) with well-developed porous structure. Electrochemical properties of graphene-containing carbon aerogel and graphene-free carbon aerogel electrodes were measured by cyclic voltammetry, charge/discharge test, and electrochemical impedance spectroscopy in 6 M KOH electrolyte. Various electrochemical measurements revealed that CA(45PG) showed the highest specific capacitance (261 F/g), the lowest equivalent series resistance (0.16 Ω), and superior capacitive behavior. It is concluded that PEI-modified GO content served as an important factor determining the physicochemical properties and supercapacitive electrochemical performance of graphene-containing carbon aerogel.

  18. Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2)

    Science.gov (United States)

    Ichzan, A. M.; Gunlazuardi, J.; Ivandini, T. A.

    2017-04-01

    Electroreduction of carbon dioxide (CO2) at iridium oxide-modified boron-doped diamond (IrOx-BDD) electrodes in aqueous electrolytes was studied by voltammetric method. The aim of this study was to find out the catalytic effect of IrOx to produce fine chemicals contained of two or more carbon atoms (for example acetic acid) in high percentage. Characterization using FE-SEM and XPS indicated that IrO2 can be deposited at BDD electrode, whereas characterization using cyclic voltammetry indicated that the electrode was applicable to be used as working electrode for CO2 electroreduction.

  19. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Science.gov (United States)

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  20. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Chuanxiang Zhang

    2014-12-01

    Full Text Available Se-modified ruthenium supporting on carbon (Sex–Ru/C electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR performance was improved by appearance of selenium oxides.

  1. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue

    Institute of Scientific and Technical Information of China (English)

    Shu Ping Zhang; Lian Gang Shan; Zhen Ran Tian; Yi Zheng; Li Yi Shi; Deng Song Zhang

    2008-01-01

    The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes(MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase(ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected byusing i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrodewith 0.01U activity value and the detection limit of carbaryl is 10-12 g L-1 so the enzyme biosensor showed good properties forpesticides residue detection.2008 Shu Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  2. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  3. Voltammetric copper(II) determination with a montmorillonite-modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kula, P. [Institute of Geonics, Academy of Sciences of Czech Republic, Studertska 1768, 708 00 Ostrava (Czech Republic); Navratilova, Z. [Institute of Geonics, Academy of Sciences of Czech Republic, Studertska 1768, 708 00 Ostrava (Czech Republic)

    1996-03-01

    The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4 x 10{sup -8} mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4 x 10{sup -8}-8 x 10{sup -7} mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant. (orig.). With 5 figs., 1 tab.

  4. Electrochemical behaviour of platinum at polymer-modified glassy carbon electrodes

    Indian Academy of Sciences (India)

    Carmem L P S Zanta; C A Martínez-Huitle

    2007-07-01

    In this paper, the preparations and voltammetric characteristics of chitosan-modified glassy carbon (Ct-MGC) and platinum electrodes are studied. Ct-MGC can be used for pre-concentration and quantification of trace amounts of platinum in solution. At low pH medium, the complex of Pt with protonated group -NH3+ in the chitosan molecule has been confirmed by FT-IR spectra studies.

  5. Toughness and Hot/Wet Properties of a Novel Modified BMI/Carbon Fiber Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The toughness and hot/wet properties of a novel modified bismaleimide (BMI) 5428/carbon fiber composite was investigated. Results indicate that the prepared BMI/T700 composite owns high toughness, excellent hot/wet properties and mechanical properties. The compression strength after impact (CAl) of 5428/T700 composite is 260 MPa, and the results of hot/wet test show that the long-term service temperature of 5428/T700 composite can maintain at 170°C.

  6. A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle /Carbon Nanotube Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiao Cui SHI; Tu Zhi PENG

    2005-01-01

    A Pt-nanoparticle/carbon nanotube modified graphite electrode immobilized with cholesterol oxidase/sol-gel layer was developed for monitoring cholesterol. Using this electrode,cholesterol concentration (4.0×10-6 to 1.0×10 mol/L) could be determined accurately in the presence of ascorbic or uric acid, and the response time was rapid (< 20 s). This biosensor has high sensitivity and selectivity.

  7. A study of single-walled carbon nanotubes modified by organics of the phthalocyanine category

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of the transmission electron microscope (TEM), ultraviolet visible absorptive spectra, fluorescent spectra and Raman spectra. Under the TEM, it was observed that the composite looked like sugarcoated haws. By comparing the ultraviolet visible absorptive spectra before and after absorption, it was...

  8. Preconcentration and electroanalysis of copper at glassy carbon electrode modified with poly(2-aminothiazole)

    OpenAIRE

    Çiftçi, Hakan; Testereci, Hasan Nur; Öktem, Zeki

    2011-01-01

    Conducting poly(2-aminothiazole), PAT, was synthesized in acetonitrile with tetrabutylammonium tetrafluoroborate, TBAFB, as supporting electrolyte via constant potential electrolysis, CPE. Glassy carbon, GC, electrode was modified by immersing the electrode in a DMSO solution of PAT. Preconcentration of copper on polymer matrix was carried out at -0.7 V. The effects of preconcentration time and pH and Cu(II) concentration of the preconcentration solution on the stripping peak current of coppe...

  9. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

    Science.gov (United States)

    Barnes, Jeremy S.; Foss, Frank W.; Schug, Kevin A.

    2013-10-01

    Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]-. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H]- was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

  10. Removal NO with non-thermal plasma assisted catalyst modified activated carbon from coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.G. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering; Anhui Univ. of Science and Technology, Huainan, Anhui (China). School of Chemical Engineering; Takashima, T.; Mizuno, A. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering

    2010-07-01

    Non-thermal plasma can produce a significant number of free electrons, ions, reactive free radicals and a variety of free particles in excited states, containing a large number of active atomic oxygen (O) and higher activity energy so it can increase the chemical reaction rate. An effective way to generate the non-thermal plasma is through dielectric barrier discharge (DBD). There are three types of dielectric barrier discharge reactors: wire (or bar)-cylinder; wire-plate; and plate-plate structure. This paper examined the effect of gas concentration, space velocity, catalyst loading volume, and the input voltage on the removal ratio of nitric oxide (NO) in the process of non-thermal plasma assisted with modified activated carbon from coal. A form of bar-cylinder reactor was used and combined with a catalyst of modified activated carbon from coal. The catalyst was packed between the bar and the cylinder in the fixed bed reactor. It was concluded that a non-thermal plasma assisted catalyst which modifies activated carbon from coal is an effective way to remove NO, and the input voltage, gas concentration, gas space velocity and the catalyst packed weight has a certain degree of impact on the NO removal ratio. 17 refs., 7 figs.

  11. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    Directory of Open Access Journals (Sweden)

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  12. Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    CHEN, Jing(陈静); CAI, Chen-Xin(蔡称心)

    2004-01-01

    NADPH can be directly oxidized on a carbon nanotube modified glassy carbon (CNT/GC) electrode in phosphate buffer solution (pH=6.0) with a diminution of the overpotential of more than 700 mV. The anodic peak currents increase linearly with the increase of concentration of NADPH in the range of 5×10-7 to 1×10-3 mol/L with a detection limit of about 1×10-7 mol/L. The CNT/GC electrode exhibits high sensitivity, low potential and stability in detecting NADPH and thus might be used in biosensors to study the electrocatalytic reaction of important dehydrogenase-based biological systems.

  13. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A novel palygorskite-modified carbon paste amperometric sensor for catechol determination

    Energy Technology Data Exchange (ETDEWEB)

    Kong Yong [School of Chemistry and Chemical Engineering, Changzhou University, No. 1 Gehu Road, Changzhou 213164, Jiangsu Province (China); Key Lab of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093 (China); Chen Xiaohui; Wang Wenchang [School of Chemistry and Chemical Engineering, Changzhou University, No. 1 Gehu Road, Changzhou 213164, Jiangsu Province (China); Chen Zhidong, E-mail: czd_chen@yahoo.com.cn [School of Chemistry and Chemical Engineering, Changzhou University, No. 1 Gehu Road, Changzhou 213164, Jiangsu Province (China)

    2011-03-04

    A palygorskite-modified carbon paste electrode (CPE) was constructed using graphite powder mixed with palygorskite particles. Compared with the unmodified CPE, the resulting palygorskite-modified CPE remarkably increases the peak currents of catechol, and greatly lowers the peak potential separation. Therefore, the palygorskite exhibits catalytic activity to catechol and significantly improves the determining sensitivity. The electrocatalytic activity of palygorskite is attributed to its high adsorption capability and the -OH groups on its surface, which plays an important role in the electron transfer between the modified CPE and the catechol in the solution. The sensor shows a linear response range between 5 and 100 {mu}M catechol with a correlation coefficient of 0.998. The detection limit was calculated as 0.57 {mu}M (s/n = 3).

  15. MBBR system performance improvement for petroleum hydrocarbon removal using modified media with activated carbon.

    Science.gov (United States)

    Sayyahzadeh, Amir Hossein; Ganjidoust, Hossein; Ayati, Bita

    2016-01-01

    Moving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e. the place of growth and formation of biofilm, play the main role in the treatment in this system, MBBR systems were operated in the present research with modified Bee-cell media. Activated carbon granules of almond or walnut shells were placed in media pores to improve the treatment of refinery oil wastewater and their operation with MBBR system was compared with the conventional Bee-cell media. In these experiments, the effects of organic loading rate, hydraulic retention time (HRT), media filling ratio (MFR), and activated carbon concentration (ACC) used in the media were investigated on the operation of MBBR systems. The analysis of results estimated the optimal values of HRT, MFR, and ACC used in the media between the studied levels, being equal to 22 h, 50%, and 7.5 g/L, respectively. Under these conditions, total petroleum hydrocarbons removal efficiencies for MBBR systems using Bee-cell media with carbon of almond, carbon of walnut shells, and a carbon-free system were 95 ± 1.17%, 91 ± 1.11%, and 57 ± 1.7%, respectively, which confirms the adsorption ability of systems with the media containing activated carbon in the removal of petroleum compounds from wastewater.

  16. Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes.

    Science.gov (United States)

    Gao, Xin; Omosebi, Ayokunle; Landon, James; Liu, Kunlei

    2015-09-15

    Microporous SpectraCarb carbon cloth was treated using nitric acid to enhance negative surface charges of COO(-) in a neutral solution. This acid-treated carbon was further modified by ethylenediamine to attach -NH2 surface functional groups, resulting in positive surface charges of -NH3(+) via pronation in a neutral solution. Through multiple characterizations, in comparison to pristine SpectraCarb carbon, amine-treated SpectraCarb carbon displays a decreased potential of zero charge but an increased point of zero charge, which is opposed to the effect obtained for acid-treated SpectraCarb carbon. An inverted capacitive deionization cell was constructed using amine-treated cathodes and acid-treated anodes, where the cathode is the negatively polarized electrode and the anode is the positively polarized electrode. Constant-voltage switching operation using NaCl solution showed that the salt removal capacity was approximately 5.3 mg g(-1) at a maximum working voltage of 1.1/0 V, which is an expansion in both the salt capacity and potential window from previous i-CDI results demonstrated for carbon xerogel materials. This improved performance is accounted for by the enlarged cathodic working voltage window through ethylenediamine-derived functional groups, and the enhanced microporosity of the SpectraCarb electrodes for salt adsorption. These results expand the use of i-CDI for efficient desalination applications.

  17. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Dong, Lifeng, E-mail: donglifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Deng, Ying; Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H{sub 2}O{sub 2}, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates.

  18. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    Science.gov (United States)

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  19. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified

  20. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunyan, E-mail: dengchunyan@csu.edu.cn [College of Chemistry and Chemical Engineering, Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha 410083 (China); College of Pharmaceutical Science, Central South University, Changsha 410083 (China); Chen, Jinzhuo [College of Chemistry and Chemical Engineering, Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha 410083 (China); Nie, Zhou [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yang, Minghui, E-mail: yangminghui@csu.edu.cn [College of Chemistry and Chemical Engineering, Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha 410083 (China); Si, Shihui [College of Chemistry and Chemical Engineering, Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha 410083 (China)

    2012-09-30

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 {mu}A mM{sup -1}, and the detection limit of 1.4 Multiplication-Sign 10{sup -6} M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: Black-Right-Pointing-Pointer Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. Black-Right-Pointing-Pointer Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. Black-Right-Pointing-Pointer The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  1. Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications.

    Science.gov (United States)

    Bian, Chunli; Zeng, Qingxiang; Xiong, Huayu; Zhang, Xiuhua; Wang, Shengfu

    2010-08-01

    A carbon-coated nickel magnetic nanoparticles modified glassy carbon electrode (C-Ni/GCE) was fabricated. The carbon-coated nickel magnetic nanoparticles were characterized with transmission electron microscopy (TEM). The electrochemical behaviors of norepinephrine (NE) were investigated on the modified electrode by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The carbon-coated nickel magnetic nanoparticles showed excellent electrocatalytic activity for the electrochemical redox of NE. NE exhibited two couples of well-defined redox peaks on C-Ni/GCE over the potential range from -0.4 to 0.8V in phosphate buffer solution (PBS) (pH=7.0). The redox mechanism for NE was proposed. DPV response of NE on the C-Ni/GCE showed that the catalytic oxidative peak current was linear with the square root concentration of NE in the range of 2.0 x 10(-7) to 8.0 x 10(-5)M, with a detection limit of 6.0 x 10(-8)M. The C-Ni/GCE showed good sensitivity, selectivity and stability for the determination of NE.

  2. Removal of Chromium (III from Water by Using Modified and Nonmodified Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Muataz Ali Atieh

    2010-01-01

    Full Text Available This study was carried out to evaluate the environmental application of modified and nonmodified carbon nanotubes through the experiment removal of chromium trivalent (III from water. The aim was to find the optimal condition of the chromium (III removal from water under different treatment conditions of pH, adsorbent dosage, contact time and agitation speed. Multi wall carbon nanotubes (MW-CNTs were characterized by field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM. The diameter of the carbon nanotubes produced varied from 20–40 nm with average diameter of 24 nm and 10 micrometer in length. Adsorption isotherms were used to model the adsorption behavior and to calculate the adsorption capacity of the absorbents. The results showed that, 18% of chromium (III removal was achieved using modified carbon nanotubes (M-CNTs at pH 7, 150 rpm, and 2 hours for a dosage of 150 mg of CNTs. The removal of Cr (III is mainly attributed to the affinity of chromium (III to the physical and chemical properties of the CNTs. The adsorption isotherms plots were well fitted with experimental data.

  3. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland); Wittstock, Gunther, E-mail: gunther.wittstock@uni-oldenburg.d [Carl von Ossietzky University of Oldenburg, Faculty of Mathematics and Science, Center of Interface Science (CIS), Department of Pure and Applied Chemistry, D-26111 Oldenburg (Germany); Opallo, Marcin, E-mail: mopallo@ichf.edu.p [Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland)

    2010-08-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  4. Improvement of the LiBH{sub 4} hydrogen desorption by confinement in modified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.T.; Wan, C.B.; Meng, X.H.; Ju, X., E-mail: jux@ustb.edu.cn

    2015-10-05

    Highlights: • The desorption kinetics for LiBH{sub 4} greatly promoted using melt infiltration method. • The LiBH{sub 4} confined in modified MWCNTs shows the best desorption kinetics. • The crystal structure of MWCNTs and SWCNTs is unchanged after ball milling. • Ball milling introduces a great amount of structural defects in the CNTs. • Nano-confinement is dominant on improving the hydrogen desorption of LiBH{sub 4}. - Abstract: The dehydrogenation kinetics of LiBH{sub 4} incorporated within various carbon nanotubes has been studied. It is demonstrated that the desorption kinetics of LiBH{sub 4} could be greatly promoted using a simple melt infiltration method and LiBH{sub 4} confined in modified multi-walled carbon nanotubes (MWCNTs) shows the best desorption kinetics. The structural properties of carbon nanotubes and confined samples are demonstrated by means of transmission electron microscopy, powder X-ray diffraction and Raman spectroscopy. The crystal structure of MWCNTs and single-walled carbon nanotubes (SWCNTs) are almost unchanged after ball milling. But high energy ball milling leads to a decrease in the average nanotube length and introduces a great amount of local disorder and structural defects in the CNTs, which may provide a considerable kinetic improvement.

  5. Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus.

    Science.gov (United States)

    Zhong, Dan; Zhuo, Yan; Feng, Yuanjiao; Yang, Xiaoming

    2015-12-15

    By employing attractive performance of fluorescent carbon dots, we herein successfully established an assay for analyzing bacteria firstly. Specifically, carbon dots with blue fluorescence were initially synthesized according to a previous report, and modified with vancomycin on their surfaces. Subsequently, the prepared carbon dots were applied to detect Staphylococcus aureus accompanied with a linear range of 3.18×10(5)-1.59×10(8) cfu/mL as well as a detection limit of 9.40×10(4) cfu/mL. Compared with other regular methods, our method is more rapid and convenient in term of methodology. Meanwhile, the current strategy was applied for detection of other bacteria including Bacillus subtilis, Listeria monocytogenes, Salmonella, Pseudomonas aeruginosa and Escherichia coli, and the modified carbon dots showed obvious affinity with Gram-positive bacteria owing to the ligand-receptor interactions between vancomycin and the cell walls, suggesting its value for detecting Gram-positive bacteria. Additionally, the practicability of this sensing approach was validated by recovery experiments conducted in orange juice, confirming its potential to broaden avenues for detection of Gram-positive bacteria.

  6. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2016-06-01

    Full Text Available In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending, interlaminar shear strength (ILSS, interfacial debonding strength (IDS, internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL and rejected take-off (RTO. The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously.

  7. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  8. Removal of selected metals from drinking water using modified powdered block carbon

    Science.gov (United States)

    Campos, V.; Sayeg, I. J.; Buchler, P. M.

    2008-09-01

    This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe3C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.

  9. Hydrogen storage: a comparison of hydrogen uptake values in carbon nanotubes and modified charcoals

    Science.gov (United States)

    Miao, H.-Y.; Chen, G. R.; Chen, D. Y.; Lue, J. T.; Yu, M. S.

    2010-11-01

    We compared the hydrogen uptake weight percentages (wt.%) of different carbonized materials, before and after modification, for their application in hydrogen storage at room temperature. The Sievert's method [T.P. Blach, E. Mac, A. Gray, J. Alloys Compd. 446-447, 692 (2007)] was used to measure hydrogen uptake values on: (1) Taiwan bamboo charcoal (TBC), (2) white charcoal (WC), (3) single-walled carbon nanotubes (SWCNTs) bought from CBT Inc. and (4) homemade multi-walled carbon nanotubes (MWCNTs) grown on TBC. Modified samples were coated with a metal catalyst by dipping in KOH solutions of different concentrations and then activated in a high temperature oven (800 °C) under the atmospheric pressure of inert gas. The results showed that unmodified SWCNTs had superior uptake but that Taiwan bamboo charcoal, after modification, showed enhanced uptake comparable to the SWCNTs. Due to TBC's low cost and high mass production rate, they will be the key candidate for future hydrogen storage applications.

  10. Acetate production enhancement from carbon dioxide reduction by using modified cathode materials in microbial electrosynthesis

    DEFF Research Database (Denmark)

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei

    in the bioelectrochemical System (BES). The MES reactor can power with the solar photovoltaic system and harvest light energy to multi-carbon compounds to make it artificial photosynthesis system. Nevertheless, chemical production rate should be optimized for the commercialization of MES technology. Interestingly, it has......Microbial electrosynthesis (MES) is one of the emerging biosustainable technologies for the biological conversion of carbon dioxide to the value-added chemical precursor. The electro autotrophic bacteria fix CO2 via Wood-Ljungdahl pathway, accepting the electron derived from the cathode...... been demonstrated that the productivity was enhanced with the modified cathode surfaces by improving microbe-electrode electron transfer. Here, we have tested the different cathode materials for the improvement of acetate production from carbon dioxide and their behavior for the biofilm formation...

  11. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  12. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  13. Electorchemical Studies of Cytochrome c on Electodes Modified by Single—Wall Carbon Naotubes

    Institute of Scientific and Technical Information of China (English)

    程发良; 杜珊; 金葆康

    2003-01-01

    Single-wall carbon nanotubes(SWNTs) modified gold electrodes were prepared by using two different methods.The electrochemical behavior of cytochrome c on the modified gold electrodes was investigated.The first kind of SWNT-modified electrode (noted as SWNT/Au electrode)was prepared by the adsorption of carboxylterminated SWNTs from DMF dispersion on the gold electrode.The oxidatively processed SWNT tips were covalently modified by coupling with amines (AET) to form amide linkage.Via Au-S chemical bonding,the self-assembled monolayer of thiol-unctionalized nanotubes on gold surface was fabricated so as to prepare the others SWNT-modified electrode (noted as SWNT/AET/Au electrode).It was shown from cyclic voltammetry cxperiments that cytochrome c exhibited direct electrochemical responses on the both electrodes, but only the current of controlled diffusion existed on the SWNT/Au electrode while both the currents of controlled diffusion and adsorption of cytochrome c occurred on the SWNT/AET/Au electrode.Photoelastic Modulation Infared Reflection Absorpthion Spectroscopy (PEM-IRRAS) and Quartz Crystal Microbalance (QCM) were employed to verify the adsorption of SWNTs on the gold electrodes.The results proved that SWNTs could enhance the direct electron transfer proecss between the electrodes and redox proteins.

  14. Enhanced degradation of carbon tetrachloride by surfactant-modified zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    MENG Ya-feng; GUAN Bao-hong; WU Zhong-biao; WANG Da-hui

    2006-01-01

    Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVI is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation.

  15. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  16. Hall measurements on carbon nanotube paper modified with electroless deposited platinum.

    Science.gov (United States)

    Petrik, Leslie; Ndungu, Patrick; Iwuoha, Emmanuel

    2009-09-18

    Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt) distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  17. Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Directory of Open Access Journals (Sweden)

    Iwuoha Emmanuel

    2009-01-01

    Full Text Available Abstract Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  18. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    Science.gov (United States)

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  19. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  20. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    Science.gov (United States)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  1. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  2. Synthesis and characterization of carbon modified TiO{sub 2} nanotube and photocatalytic activity on methylene blue under sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinchang [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Wang, Yongqian, E-mail: cugwyq@126.com [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China); Zhejiang Research Institute, China University of Geosciences, Hanzhou 311305 (China); Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu [Faculty of Material Science and Chemistry, China University of Geoscience, Wuhan 430074 (China)

    2015-07-30

    Graphical abstract: Tentative photo-degradation mechanism diagram of the MB on the surface of carbon modified TNT. When the TiO{sub 2} was under ultraviolet light irradiation, the electrons were excited and transferred from the valence band (VB) to the conduction band (CB), leaving the holes on VB. The electrons were trapped by O{sub 2} and formed superoxide anion (O{sub 2}{sup −}). H{sub 2}O around the TiO{sub 2} was oxidized by the holes leaved on VB to hydroxyl radicals (OH·). When the TiO{sub 2} was modified by carbon, the same is that the electrons of C{sup 4+} would be excited from ground state to 2P orbital under visible light irradiation. The electrons and holes can also lead to the generation of the O{sub 2}{sup −} and OH·. The oxidability of O{sub 2}{sup −} and OH· created around the carbon modified TNT is strong, and could oxidize the MB to CO{sub 2} and H{sub 2}O. - Highlights: • The TNT was successfully modified by carbon, its amount is about 4.95%. • The carbon modified TNT has a great enhancement of visible light absorption. • The photocatalytic ability of carbon modified TNT is higher than pristine TNT. • A tentative photo-degradation mechanism of carbon modified TNT is proposed. - Abstract: Carbon modified TiO{sub 2} nanotube was successfully synthesized via anodic oxidation method and its photocatalytic activity was evaluated by photodegrading methylene blue. The full width at half maximum of carbon modified TiO{sub 2} nanotube is smaller than that of pristine TiO{sub 2} nanotube, indicating the fact that carbon modifying leads to the increase of TiO{sub 2} crystallinity. TiO{sub 2} nanotube modified by carbon has a great enhancement on visible light absorption while contrasting with the pristine TiO{sub 2} nanotube. A tentative mechanism for the enhancement of sunlight absorption is proposed.

  3. Tissue distribution of quercetin in rats and pigs

    NARCIS (Netherlands)

    Boer, V.C.J. de; Dihal, A.A.; Woude, H. van der; Arts, I.C.W.; Wolffram, S.; Alink, G.M.; Rietjens, I.M.C.M.; Keijer, J.; Hollman, P.C.H.

    2005-01-01

    Quercetin is a dietary polyphenolic compound with potentially beneficial effects on health. Claims that quercetin has biological effects are based mainly on in vitro studies with quercetin aglycone. However, quercetin is rapidly metabolized, and we have little knowledge of its availability to tissue

  4. Selective Voltammetric Determination of Uric Acid in the Presence of Ascorbic Acid at Ordered Mesoporous Carbon Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    WEN,Yan-Li; JIA,Neng-Qin; WANG,Zhi-Yong; SHEN,He-Bai

    2008-01-01

    A novel chemically modified electrode was fabricated by immobilizing ordered mesoporous carbon (OMC)onto a glassy carbon (GC) electrode.The electrocatalytic behavior of the OMC modified electrode towards the oxidation of uric acid (UA) and ascorbic acid (AA) was studied.Compared to a glassy carbon electrode,the OMC modified electrode showed a faster electron transfer rate and reduced the overpotentials greatly.Furthermore,the OMC modified electrode resolved the overlapping voltammetric responses of UA and AA into two well-defined voltammetric peaks with peak separation of ca.0.38 V.All results show that the OMC modified electrode has a good electrocatalytic ability to UA and AA,and has an excellent response towards UA even in the presence of high concentration AA.

  5. Simultaneous determination of dopamine, uric acid, and tryptophan using an MWCNT modified carbon paste electrode by square wave voltammetry

    OpenAIRE

    BEITOLLAHI, Hadi; Mohadesi, Alireza; MAHANI, Saeedeh KHALILIZADEH

    2012-01-01

    A highly sensitive method was investigated for the simultaneous determination of dopamine (DA), uric acid (UA), and tryptophan (TRP) using a multiwall carbon nanotubes/5-amino-3',4'-dimethoxy-biphenyl-2-ol modified carbon paste electrode (5ADMBCNPE). The 5ADMBCNPE displayed excellent electrochemical catalytic activities towards the oxidation of DA, UA, and TRP. The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV), which showe...

  6. Mechanical properties of carbon fiber/cellulose composite papers modified by hot-melting fibers

    Institute of Scientific and Technical Information of China (English)

    Yunzhou Shi; Biao Wang

    2014-01-01

    Carbon fiber (CF)/cellulose (CLS) composite papers were prepared by papermaking techniques and hot-melting fibers were used for modi-fication. The mechanical properties of the obtained composite papers with different CF, CLS and hot-melting fiber ratios were studied and further discussed. It is observed that, for both CF/CLS composite papers and those modified by hot-melting fibers, the normal stress firstly increases and then declines with the addition of carbon fibers. The results also show that with the addition of hot-melting fibers, the modified papers exhibit enhanced mechanical performance compared to CF/CLS composite papers. Through SEM characterization, it is confirmed that the improvement of mechanical properties attributes to the reinforcement of adhesive binding at the fiber overlap nodes. Also, through four-probe method, the resistivity and the electrical performance of the modified and unmodified papers were characterized and the result shows that the hot-melting fiber modification brings no harm to the electrical properties.

  7. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes.

    Science.gov (United States)

    Mulvey, J Justin; Feinberg, Evan N; Alidori, Simone; McDevitt, Michael R; Heller, Daniel A; Scheinberg, David A

    2014-01-01

    We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs). A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl)-protected, lysine-derived alpha-amino acid, H-Lys(Boc)-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The (111)In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA). In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work.

  8. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadpour-Mobarakeh, Leila; Nezamzadeh-Ejhieh, Alireza, E-mail: arnezamzadeh@iaush.ac.ir

    2015-04-01

    The voltammetric behavior of a carbon paste electrode modified with Co(II)-exchanged zeolite A (Co(II)-A/ZMCPE) for determination of acetaminophen was studied. The proposed electrode showed a diffusion controlled reaction with the electron transfer rate constant (K{sub s}) of 0.44 s{sup −1} and charge transfer coefficient of 0.73 in the absence of acetaminophen. A linear voltammetric response was obtained in the range of 0.1 to 190 μmol L{sup −1} of acetaminophen [r{sup 2} = 0.9979, r = 0.9989 (n = 10)] with a detection limit of 0.04 μmol L{sup −1}. The method was successfully applied to the analysis of acetaminophen in some drugs. - Highlights: • Modified carbon paste electrode with Co(II)-zeolite A improved the voltammetric current in determination of acetaminophen. • Modified electrode is applicable for acetaminophen in real samples. • The proposed method has good reproducibility and repeatability.

  9. Mechanical properties of carbon fiber/cellulose composite papers modified by hot-melting fibers

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2014-02-01

    Full Text Available Carbon fiber (CF/cellulose (CLS composite papers were prepared by papermaking techniques and hot-melting fibers were used for modification. The mechanical properties of the obtained composite papers with different CF, CLS and hot-melting fiber ratios were studied and further discussed. It is observed that, for both CF/CLS composite papers and those modified by hot-melting fibers, the normal stress firstly increases and then declines with the addition of carbon fibers. The results also show that with the addition of hot-melting fibers, the modified papers exhibit enhanced mechanical performance compared to CF/CLS composite papers. Through SEM characterization, it is confirmed that the improvement of mechanical properties attributes to the reinforcement of adhesive binding at the fiber overlap nodes. Also, through four-probe method, the resistivity and the electrical performance of the modified and unmodified papers were characterized and the result shows that the hot-melting fiber modification brings no harm to the electrical properties.

  10. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    Science.gov (United States)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  11. USE OF BATTERY CARBON AS ELECTRODES IN ARC DISCHARGE METHOD FOR FABRICATION OF CARBON-MODIFIED TIO2

    Directory of Open Access Journals (Sweden)

    Isya Fitria Andhika

    2016-09-01

    Full Text Available Fabrication with carbon-modified TiO2 by arc discharge method in liquid medium has been studied. This research was performed in two steps including fabrication and characterization. This fabrication was done by arcdischarge method with graphite electrodes from dry cell batteries and liquid medium suspension of TiO2 in ethanol 30, 50 and 70 %. A strong current was applied to electrode as 10 -50 A (20-40 V. Nanocomposites formed on the liquid medium surface were collected and characterized using X-ray diffraction (XRD,scanning electron microscope (SEM dan energy dispersive spectroscopy (EDS to determine crystallinity, surface morphology and the constituent elements, respectively. XRD data shows that the most effective fabrication TiO2/Karbon by liquid medium in ethanol 50 % indicated from the formation of a new peak with high intensity of TiC on 2Ɵ= 36.02 °. SEM data shows that the morphology of each aggregated TiO2/Karbon compared to the morphology of TiO2. In addition, EDS data shows the presence of the element carbon, titanium and oxygen in the same area indicating that the successful formation of composite material between TiO2 dan carbon.

  12. Disposable Carbon Dots Modified Screen Printed Carbon Electrode Electrochemical Sensor Strip for Selective Detection of Ferric Ions

    Directory of Open Access Journals (Sweden)

    Shao Chien Tan

    2017-01-01

    Full Text Available A disposable electrochemical sensor strip based on carbon nanodots (C-Dots modified screen printed carbon electrode (SPCE was fabricated for selective detection of ferric ions (Fe3+ in aqueous solution. C-Dots of mean diameters within the range of 1–7 nm were synthesized electrochemically from spent battery carbon rods. The analytical performance of this electrochemical sensor strip was characterized using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. The deposition of C-Dots had enhanced the electron-transfer kinetics and current intensity of the SPCE remarkably by 734% as compared to that of unmodified SPCE. Under optimized conditions, the electrochemical sensor strip exhibited a linear detection range of 0.5 to 25.0 ppm Fe3+ with a limit of detection (LOD of 0.44±0.04 ppm (at S/N ratio = 3. Validation of results by the electrochemical sensor strip was done by comparing analysis results obtained using an Atomic Absorption Spectrometer (AAS.

  13. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    Science.gov (United States)

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.

  14. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  15. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  16. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    Science.gov (United States)

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples.

  17. Quercetin-induced cardioprotection against doxorubicin cytotoxicity

    Science.gov (United States)

    2013-01-01

    Background Cancer has continually been the leading cause of death worldwide for decades. Thus, scientists have actively devoted themselves to studying cancer therapeutics. Doxorubicin is an efficient drug used in cancer therapy, but also produces reactive oxygen species (ROS) that induce severe cytotoxicity against heart cells. Quercetin, a plant-derived flavonoid, has been proven to contain potent antioxidant and anti-inflammatory properties. Thus, this in vitro study investigated whether quercetin can decrease doxorubicin-induced cytotoxicity and promote cell repair systems in cardiomyocyte H9C2 cells. Results Proteomic analysis and a cell biology assay were performed to investigate the quercetin-induced responses. Our data demonstrated that quercetin treatment protects the cardiomyocytes in a doxorubicin-induced heart damage model. Quercetin significantly facilitated cell survival by inhibiting cell apoptosis and maintaining cell morphology by rearranging the cytoskeleton. Additionally, 2D-DIGE combined with MALDI-TOF MS analysis indicated that quercetin might stimulate cardiomyocytes to repair damage after treating doxorubicin by modulating metabolic activation, protein folding and cytoskeleton rearrangement. Conclusion Based on a review of the literature, this study is the first to report detailed protective mechanisms for the action of quercetin against doxorubicin-induced cardiomyocyte toxicity based on in-depth cell biology and proteomic analysis. PMID:24359494

  18. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.

    Science.gov (United States)

    Singh, Prabhpreet; Toma, Francesca Maria; Kumar, Jitendra; Venkatesh, V; Raya, Jesus; Prato, Maurizio; Verma, Sandeep; Bianco, Alberto

    2011-06-06

    Single-walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid-state NMR spectroscopy. The uracil-functionalized SWCNTs are able to self-assemble into regular nanorings with a diameter of 50-70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil-uracil base-pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.

  19. Quercetin

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Cooper, Ross G.

    2008-01-01

    With increasing interest among the general public for using natural and herbal remedies, there is a great need to document and list ancient medical texts and practices, as well as to investigate the efficacy of a number of 'ancient' compounds that are currently reputed to have medicinal benefits ...

  20. Quercetin-induced apoptosis prevents EBV infection

    Science.gov (United States)

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  1. Quercetin-induced apoptosis prevents EBV infection.

    Science.gov (United States)

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  2. Age-related increases in F344 rat intestine microsomal quercetin glucuronidation

    Science.gov (United States)

    The objective of this study was to establish the extent age modifies intestinal quercetin glucuronidation capacity. Pooled microsomal fractions of three equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats (n=8/group) were employed to model the enzyme kinetics of UDP-gl...

  3. Novel self-nanoemulsifying formulation of quercetin

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    UNLABELLED: The present work focuses on the anticancer potential of quercetin (QT) loaded self-nanoemulsifying drug delivery system (QT-SNEDDS) composed of Capmul MCM, Tween 20 and ethanol. In vitro cell culture studies revealed potential cell cytotoxicity of developed formulation mediated by its...... to that of free QT (~20%). Finally, safety profile of developed formulation was established assessing various hepatotoxicity markers. FROM THE CLINICAL EDITOR: This basic science study focuses on the anticancer potential of a specific quercetin loaded self-nanoemulsifying drug delivery system. At higher doses...... significantly higher therapeutic anticancer efficacy (~65% tumor suppression) was noted in the same model as compared to that of free quercetin (~20%)....

  4. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Odelle; Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2008-04-14

    Black carbon (BC), a main component of combustion-generated soot, is a strong absorber of sunlight and contributes to climate change. Measurement methods for BC are uncertain, however. This study presents a method for analyzing the BC mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength as the sample is heated. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration based on derived mass attenuation efficiencies (MAE) of BC and char. The fraction of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO{sub 2}) at temperatures higher than 480 C. This method was applied to measure the BC concentration in precipitation samples collected from coastal and mountain sites in Northern California. The uncertainty in measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12 to 100 percent, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 {micro}g BC and uncertainty approached 20 percent for BC mass loading greater than 1.0 {micro}g BC.

  5. Cyclam Modified Carbon Paste Electrode as a Potentiometric Sensor For Determination of Cobalt(Ⅱ) Ions

    Institute of Scientific and Technical Information of China (English)

    Hamid Reza POURETEDAL; Mohammad Hossein KESHAVARZ

    2005-01-01

    A new modified carbon paste electrode based on cyclam as a modifier was prepared for the determination of Co(Ⅱ) ions. The proposed electrode shows a Nernstian slope 28.4 mV per decade over a wide concentration range 5.0×10-6_1.0×10-1 mol/L of Co2+ ions with detection limit 2.5×10-6 mol/L. The sensor exhibits good selectivities for Co2+ over a wide variety of other cations. It can be used as an indicator electrode in potentiometric titration of cobalt(Ⅱ) ions as well as in direct determination of cobalt(Ⅱ) ions in wastewater of acidic cobalt electroplating bath. The electrode shows Nernestian behavior in a solution of 25% ethanol.

  6. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yuan Zhuobin

    2003-12-01

    Full Text Available The direct electrochemistry of glucose oxidase (GOD was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs. A pair of welldefined redox peaks was obtained for GOD with the reduction peak potential at –0.465 V and a peak potential separation of 23 mV at pH 7.0. Both FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that GOD adsorbed onto the SWNT surfaces. The redox wave corresponds to the redox center of the flavin adenine dinucleotide(FAD of the GOD adsorbate. The electron transfer rate of GOD redox reaction was greatly enhanced at the SWNT-modified electrode. The peak potential was shown to be pH dependent. Verified by spectral methods, the specific enzyme activity of GOD adsorbates at the SWNTs appears to be retained.

  7. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  8. Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates

    Institute of Scientific and Technical Information of China (English)

    Jahan-Bakhsh Raoof; Sayed Reza Hosseini; Seyedeh Zeinab Mousavi-Sani

    2015-01-01

    A novel, cost‐effective, and simple electrocatalyst based on a Pt‐modified glassy carbon electrode (GCE), using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, is reported. Am‐phiphilic CTAB molecules were adsorbed on GCE by immersion in a CTAB solution. The positively charged hydrophilic layer, which consisted of small aggregates of average size less than 100 nm, was used for accumulation and complexation of [PtCl6]2− anions by immersing the electrode in K2PtCl6 solution. The modified electrode was characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, impedance spectroscopy, and electrochemical methods. The electrocatalytic activity of the Pt particles in the hydrogen evolution reaction (HER) was investigat‐ed. The results show that the CTAB surfactant enhances the electrocatalytic activity of the Pt parti‐cles in the HER in acidic solution.

  9. Synthesis and Characterizations of Poly(3-hexylthiophene and Modified Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2012-01-01

    Full Text Available Poly(3-hexylthiophene and modified (functionalized and silanized multiwall carbon nanotube (MWNT nanocomposites have been prepared through in situ polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites are characterized through Fourier transfer infrared spectroscopy (FT-IR, Raman, and X-ray diffraction (XRD measurements to probe the nature of interaction between the moieties. Optical properties of the composites are measured from ultraviolet-visible (UV-Vis and photoluminescence (PL spectroscopy. Conductivity of the composites is followed by four probe techniques to understand the conduction mechanism. The change (if any in C=C symmetric and antisymmetric stretching frequencies in FT-IR, the shift in G band frequencies in Raman, any alterations in λmax of UV-Vis, and PL spectroscopic measurements are monitored with modified MWNT loading in the polymer matrix.

  10. Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase.

    Science.gov (United States)

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2016-10-01

    Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed.

  11. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.

    Science.gov (United States)

    Shi, Bao-Xian; Wang, Yu; Zhang, Kai; Lam, Tin-Lun; Chan, Helen Lai-Wa

    2011-02-15

    The study of single cell dynamics has been greatly adapted in biological and medical research and applications. In this work a novel microfluidic electrochemical sensor with carbon nanotubes (CNTs) modified indium tin oxide (ITO) microelectrode was developed for single cells release monitoring. The sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5-3 orders of magnitude. The developed CNTs modified ITO sensor was successfully employed to monitor the dopamine release from single living rat pheochromocytoma (PC 12) cells. Its ultrahigh sensitivity, transparency and need for fewer agents enable this smart electrochemical sensor to become a powerful tool in recording dynamic release from various living tissues and organs optically and electrically.

  12. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayed excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.

  13. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  14. The Study of Electrochemical Behavior of Dopamine at Nano-gold Modified Carbon Fiber Electrode

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrochemical behaviors (cyclic voltammetry, CV and different pulse voltammetry, DPV) of dopamine (DA) were studied in this paper. The result indicated that the oxidation of dopamine was controlled by diffusion and adsorption simultaneously at nano-gold (NG) modified carbon fiber electrode (CFE). This modified electrode can separate the peak potentials of dopamine and ascorbic acid (AA). The peak current of DA in DPV curve was found to be linearly proportional to the concentration of DA at range of 2.0×10-6~1.5×10-5mol/L and 1.0×10-5~5.0×10-4mol/L, respectively.

  15. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY STUDY OF CORROSION INHIBITION OF MODIFIED LIGNOSULPHONATE FOR CARBON STEEL

    Institute of Scientific and Technical Information of China (English)

    C.H. Yi; X.Q. Qiu; D.J. Yang; H.M. Lou

    2005-01-01

    The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficiency of modified lignosulphonate GCL2 is a great improvement on that of lignosulphonate. The maximum inhibition efficiency of GCL2 reaches 99.21% at forming adsorption film on the metal surface for the electrochemical impedance spectroscopy in GCL2 solution shows more than one time-constant. Moreover, results also indicate that it is more efficient in stirring solution than in still solution for GCL2 because the constant of adsorption in stirring solution is much larger than that in still solution. The adsorption of inhibitor GCL2 follows Langmuir's adsorption isotherm.

  16. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon

    Directory of Open Access Journals (Sweden)

    Prapaporn Luekittisup

    2015-01-01

    Full Text Available Activated carbon (GAC was impregnated by sodium and used as adsorbent to remove chlorinated hydrocarbon (CHC gases contaminated in H2 feedstock. The adsorption was carried out in a continuous packed-bed column under the weight hourly space velocity range of 0.8–1.0 hr−1. The adsorption capacity was evaluated via the breakthrough curves. This modified GAC potentially adsorbed HCl and VCM of 0.0681 gHCl/gadsorbent and 0.0026 gVCM/gadsorbent, respectively. It showed higher adsorption capacity than SiO2 and Al2O3 balls for both organic and inorganic CHCs removal. In addition, the kinetic adsorption of chlorinated hydrocarbons on modified GAC fit well with Yoon-Nelson model.

  17. Chemically Modified Ordered Mesoporous Carbon/Polyaniline Composites for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    KONG Ling-bin; ZHANG Jing; CAI Jian-jun; YANG Zhen-sheng; LUO Yong-chun; KANG Long

    2011-01-01

    Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.

  18. Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine.

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah; Teymourian, Hazhir

    2012-01-15

    In the present study, the graphene nanosheets (GNSs) modified glassy carbon (GC) electrode is employed for simultaneous determination of morphine, noscapine and heroin. To the best of our knowledge this is the first report of the simultaneous determination of these three important opiate drugs based on their direct electrochemical oxidation. Field emission scanning electron microscopy (FESEM) technique is utilized in order to study the surface morphology of the modified electrode. The modified electrode shows excellent electrocatalytic activity toward oxidation of morphine, noscapine and heroin at reduced overpotentials in wide pH range. In the performed experiments, differential pulse voltammetric determination of morphine, noscapine and heroin yields calibration curves with the following characteristics; linear dynamic range up to 65, 40 and 100 μM, sensitivity of 275, 500 and 217 nA μM(-1) cm(-2), and detection limits of 0.4, 0.2 and 0.5 μM at 3S(B), respectively. Fast response time, signal stability, high sensitivity, low cost and ease of preparation method without using any specific electron-transfer mediator or specific reagent are the advantageous of the proposed sensor. The modified electrode can be used for simultaneous or individual detection of three major narcotic components, heroin, noscapine and morphine at micromolar concentration without any separation or pretreatment steps.

  19. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo, E-mail: jibojiang0506@163.com; Han, Sheng, E-mail: hansheng654321@sina.com

    2015-12-01

    Highlights: • The effective surface area of the modified CPE has been expanded after self-assembly. • The GO–La composite exhibited excellent electrocatalytic activity toward DA. • The GO–La/CPE presented high selectivity, sensitivity, excellent stability and repeatability. - Abstract: A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO–La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO–La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO–La/CPE electrode for determining DA was linear in the region of 0.01–0.1 μM and 0.1–400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  20. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Wang, Lei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-07-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E{sup 0′}) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H{sub 2}O{sub 2}. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized.

  1. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes

    Science.gov (United States)

    Sebarchievici, I.; Tăranu, B. O.; Birdeanu, M.; Rus, S. F.; Fagadar-Cosma, E.

    2016-12-01

    The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H2O2. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV-vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC_MnP_nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC_MnP_nAu in comparison with GC_MnP, due to increasing charge transfer efficiency. The MnP_nAu film mediates the electron transfer between H2O2 and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H2O2 at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H2O2 concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H2O2 are diffusion controlled. The GC_MnP_nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  2. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2011-01-01

    Full Text Available A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, supporting electrolyte, temperature and scan rate. The current enhancement observed in different electrolytic media varied in the following order: KH2PO4 > KCl > K2SO4 > KBr. Interestingly, the oxidation of paracetamol using modified GC electrode remain constant even after 15 cycling. It is therefore evident that the MgB2 modified GC electrode possesses some degree of stability. A slope of 0.52 dependent of scan rate on current indicates that the system undergoes diffusion-controlled process.

  3. Detection of vitamin b1 (thiamine) using modified carbon paste electrodes with polypyrrole

    Science.gov (United States)

    Muppariqoh, N. M.; Wahyuni, W. T.; Putra, B. R.

    2017-03-01

    Vitamin B1 (thiamine) is oxidized in alkaline medium and can be detected by cyclic voltammetry technique using carbon paste electrode (CPE) as a working electrode. polypyrrole-modified CPE were used in this study to increase sensitivity and selectivity measurement of thiamine. Molecularly imprinted polymers (MIP) of the modified CPE was prepared through electrodeposition of pyrrole. Measurement of thiamine performed in KCl 0.05 M (pH 10, tris buffer) using CPE and the modified CPE gave an optimum condition anodic current of thiamine at 0.3 V, potential range (-1.6_1 V), and scan rate of 100 mV/s. Measurement of thiamine using polypyrrole modified CPE (CPE-MIPpy) showed better result than CPE itself with detection limit of 6.9×10-5 M and quantitation limit 2.1×10-4 M. CPE-MIPpy is selective to vita min B1. In conclusion, CPE-MIPpy as a working electrode showed better performance of thiamine measurement than that of CPE.

  4. Voltammetric determination of carbidopa and folic acid using a modified carbon nanotubes paste electrode

    Directory of Open Access Journals (Sweden)

    Keshtkar Nasrin

    2015-01-01

    Full Text Available A novel electrochemical sensor for the selective and sensitive detection of carbidopa in presence of large excess of folic acid at physiological pH was developed by the bulk modification of carbon paste electrode (CPE with carbon nanotubes (CNTs and vinylferrocene. Large peak separation, good sensitivity and stability allow this modified electrode to analyze carbidopa individually and simultaneously along with folic acid. Applying square wave voltammetry (SWV, a linear dynamic range of 1.0×10-6- 7.0×10-4 M with detection limit of 2.0×10-7 M was obtained for carbidopa. Finally, the proposed method was applied to the determination of carbidopa and folic acid in urine sample.

  5. Carbon foam derived from pitches modified with mineral acids by a low pressure foaming process

    Energy Technology Data Exchange (ETDEWEB)

    Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Krzesinska, M.; Pusz, S.; Majewska, J.; Tzvetkov, P. [Bulgarian Academy of Science, Sofia (Bulgaria). Inst. of Organic Chemistry

    2010-10-15

    Carbon foams with an anisotropic texture and high mechanical strength were produced using precursors obtained after thermo-oxidation treatment of commercial coal-tar pitch with H{sub 2}SO{sub 4} and HNO{sub 3}. The investigations of the relation between the properties of the precursor and the structure of obtained foam indicate, that the composition and softening point of the pitch precursor significantly affect the foaming process, foam structure and foam mechanical strength. The composition and properties of the modified pitches allow foam formation at relatively low pressure and fast heating rate during the foaming process without a stabilization treatment. The foaming process of pitch-based carbon foams, pretreatment of the precursors, and the properties of resultant foams are discussed in this paper.

  6. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    Directory of Open Access Journals (Sweden)

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  7. Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode.

    Science.gov (United States)

    Teixeira, Meryene C; Tavares, Elisângela de F L; Saczk, Adelir A; Okumura, Leonardo L; Cardoso, Maria das Graças; Magriotis, Zuy M; de Oliveira, Marcelo F

    2014-07-01

    We have developed an eletroanalytical method that employs Cu(2+) solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110μgL(-1) and from 10 to 110μgL(-1) for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5μgL(-1) for mineral oil and 3.4 and 11.2μgL(-1) for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).

  8. Quinoline Group Modified Carbon Nanotubes for the Detection of Zinc Ions

    Directory of Open Access Journals (Sweden)

    Dong Zhengping

    2009-01-01

    Full Text Available Abstract Carbon nanotubes (CNTs were covalently modified by fluorescence ligand (glycine-N-8-quinolylamide and formed a hybrid material which could be used as a selective probe for metal ions detection. The anchoring to the surface of the CNTs was carried out by the reaction between the precursor and the carboxyl groups available on the surface of the support. Fourier transform infrared spectroscopy (FTIR and Thermogravimetric analysis (TGA unambiguously proved the existence of covalent bonds between CNTs and functional ligands. Fluorescence characterization shows that the obtained organic–inorganic hybrid composite is highly selective and sensitive (0.2 μM to Zn(II detection.

  9. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shuping Zhang

    2013-01-01

    Full Text Available A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE to MWNTs-modified glassy carbon electrode (GCE with chitosan (CS by layer-by-layer (LBL technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from  g/L to  g/L with a detection limit of  g/L. This biosensor is a promising new method for pesticide analysis.

  10. Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid☆

    Institute of Scientific and Technical Information of China (English)

    Xiang Hu; Zhao Cheng

    2015-01-01

    Modified multi-walled carbon nanotubes (MWCNTs) were used as adsorbents for removal of diclofenac. The re-action conditions were examined. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were applied to determine appropriate equilibrium expression. The results show that the experimental data fit the Freundlich equation well. Thermodynamic parameters show that the adsorption process is spontaneous and exothermic. The kinetic study indicates that the adsorption of diclofenac can be well described with the pseudo-second-order kinetic model and the process is controlled by multiple steps.

  11. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay

    DEFF Research Database (Denmark)

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel;

    2016-01-01

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La–P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock®). Short term (7 days) P adsorption studies revealed a significant negative effect of added...... DOC on the P sequestration of Phoslock®, whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state 31P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P...

  12. Reversible electrochemistry of DNA on multi-walled carbon nanotube modified electrode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Calf thymus DNA was electrochemically oxidized at a multi-walled carbon nanotube modified electrode. The potentials for DNA oxidation at pH 7.0 were 0.71 and 0.81 V versus SCE, corresponding to the oxidation of guanine and adenine residues,respectively. The initial 6e-oxidation of adenine, observed in the first scan, resulted a quasi-reversible 2e-redox process of the oxidation product in the following scans.(C) 2007 Hong Xia Luo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  13. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  14. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility.

  15. Chromatographic separation and concentration of quercetin and (+)-catechin using mesoporous composites based on MCM-41

    Science.gov (United States)

    Karpov, S. I.; Belanova, N. A.; Korabel'nikova, E. O.; Nedosekina, I. V.; Roessner, F.; Selemenev, V. F.

    2015-05-01

    Data on chromatographic separation of quercetin and (+)-catechin-flavonoids with similar physicochemical (including sorption) properties—are presented. The highest efficiency of chromatographic process at high sorption capacity of the material with respect to quercetin and slightly lower capacity for (+)-catechin were observed when silylated composites of ordered MCM-41 type materials were used. The application of acetonitrile as a solvent increased the sorption capacity of the material and can be recommended for separation of related polyphenol substances and their determination using ordered MCM-41 modified with trimethylchlorosilane as a stationary phase in a chromatographic column.

  16. Effect of RE-Modifier on Microstructure and Mechanical Property of High-Carbon Medium-Manganese Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work. The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel. The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated. Consequently, the impact toughness of the steel is increased by more than one time, compared with no addition of RE-modifier.

  17. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  18. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  19. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon.

    Science.gov (United States)

    Macías-García, A; Gómez Corzo, M; Alfaro Domínguez, M; Alexandre Franco, M; Martínez Naharro, J

    2017-04-15

    The aim of this work is to modify the porous texture and superficial groups of a commercial activated carbon through chemical and thermal treatment and subsequently study the kinetics of adsorption and electroadsorption of Cu (II) ion for these carbons. Samples of three activated carbons were used. These were a commercial activated carbon, commercial activated carbon modified thermically (C-N2-900) and finally commercial activated carbon modified chemically C-SO2-H2S-200. The activated carbons were characterized chemically and texturally and the electrical conductivity of them determined. Different kinetic models were applied. The kinetics of the adsorption and electroadsorption process of the Cu (II) ion fits a pseudo second order model and the most likely mechanism takes place in two stages. A first step through transfer of the metal mass through the boundary layer of the adsorbent and distribution of the Cu (II) on the external surface of the activated carbon and a second step that represents intraparticle diffusion and joining of the Cu (II) with the active centres of the activated carbon. Finally, the kinetics of the adsorption process are faster than the kinetics of the electroadsorption but the percentage of the Cu (II) ion retained is much higher in the electroadsorption process.

  20. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  1. Voltammetric detection of As(III) with Porphyridium cruentum based modified carbon paste electrode biosensor.

    Science.gov (United States)

    Zaib, M; Saeed, A; Hussain, I; Athar, M M; Iqbal, M

    2014-12-15

    A novel biosensor based on carbon paste electrode modified with Porphyridium cruentum biomass was developed for the determination of As(III) in contaminated water. As(III) was first biosorbed-accumulated on the electrode surface at open circuit potential and then stripped off by applying anodic scan range of -0.8 to +0.8 V using differential pulse anodic stripping voltammetric technique. The best result was obtained at pH 6.0 with 0.1M HNO3 solution as stripping medium, allowing biosorption-accumulation time of 8 min using 5% P. cruentum biomass in graphite-mineral oil paste. Linear range for As(III) detection with the modified electrode-biosensor was observed between 2.5 and 20 µg L(-1). The FTIR spectrum of P. cruentum biomass confirmed the presence of active functional groups that participate in the binding of As(III). Scanning Electron Microscopy (SEM) indulged the surface morphology of modified electrode-biosensor before and after As(III) adsorption. Similarly, Atomic Force Microscopy (AFM) showed that the average roughness of the modified electrode decreased indicating the successful incorporation of P. cruentum biomass. Efficiency of the biosensor in the presence of different interfering metal (Na(+), K(+), Ca(2+), and Mg(2+)) ions were also evaluated. The application of P. cruentum modified biosensor was successfully used for the detection of As(III) in the binary metal (Fe(3+), Mn(2+), Cd(2+), Cu(2+), Ni(2+), Hg(2+), and Pb(2+)) contaminated system. The accuracy of application of biosorption based biosensor for the detection of As(III) is as low as 2.5 µg L(-1).

  2. Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode.

    Science.gov (United States)

    Erden, Pınar Esra; Kaçar, Ceren; Öztürk, Funda; Kılıç, Esma

    2015-03-01

    In this study, a new uric acid biosensor was constructed based on ferrocene containing polymer poly(vinylferrocene) (PVF), carboxylated multiwalled carbon nanotubes (c-MWCNT) and gelatin (GEL) modified glassy carbon electrode (GCE). Uricase enzyme (UOx) was immobilized covalently through N-ethyl-N'-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS) chemistry onto c-MWCNT/GEL/PVF/GCE. The c-MWCNT/GEL/PVF composite was characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Various experimental parameters such as pH, applied potential, enzyme loading, PVF and c-MWCNT concentration were investigated in detail. Under the optimal conditions the dynamic linear range of uric acid was 2.0×10(-7) M-7.1×10(-4) M (R=0.9993) with the detection limit low to 2.3×10(-8) M. With good selectivity and sensitivity, the biosensor was successfully applied to determine the uric acid in human serum. The results of the biosensor were in good agreement with those obtained from standard method. Therefore, the presented biosensor could be a good promise for practical applications in real samples.

  3. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    Science.gov (United States)

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

  4. Encapsulation of quercetin and myricetin in cyclodextrins at acidic pH.

    Science.gov (United States)

    Lucas-Abellán, Carmen; Fortea, Isabel; Gabaldón, José Antonio; Núñez-Delicado, Estrella

    2008-01-09

    The in vitro formation of quercetin- and myricetin-cyclodextrin inclusion complexes in acidic medium has been characterized using the enzymatic system horseradish peroxidase, which oxidizes those flavonols in the presence of H2O2. The presence of cyclodextrins (CDs) in the reaction medium inhibited flavonol oxidation due to the complexation of the flavonol in the hydrophobic cavity of CDs. This inhibitory effect depends on the complexation constant Kc between flavonol and the CD type used. The Kc for quercetin and myricetin with the different types of CD used was calculated by nonlinear regression of the inhibition curves obtained in the presence of CDs. In both cases (quercetin and myricetin), the Kc values obtained followed the order hydroxypropyl-beta-CDs > maltosyl-beta-CDs > beta-CDs, reflecting the greater affinity of modified cyclodextrins for the studied flavonols compared with their parental beta-CDs. Moreover, the complexation efficiency (CE) values for HP-beta-CDs and quercetin or myricetin were calculated (267.4 and 5.3, respectively), indicating that HP-beta-CDs are more efficient for the complexation of quercetin than myricetin in the studied conditions, despite of the K c values being very similar in both cases.

  5. Different mechanisms of actions of genistein and quercetin on spontaneous contractions of rabbit duodenum

    Directory of Open Access Journals (Sweden)

    Diego Santos-Fagundes

    2015-07-01

    Full Text Available Flavonoids are known to relax precontracted intestinal smooth muscle and delay intestinal transit or intestinal peristalsis. The aim of this study was to determine the effects of genistein and quercetin on spontaneous contractions of rabbit duodenum in vitro in an organ bath. Genistein and quercetin (0.1-10 µM reduced the amplitude of spontaneous contractions in the longitudinal and circular smooth muscle of rabbit duodenum, but they did not modify the frequency. Bay K8644 (L-type Ca2+ channel activator, apamin, charybdotoxin, and tetraetylammonium (K+ channel blockers reverted the inhibition of amplitude of spontaneous contractions induced by genistein in longitudinal and circular smooth muscle. H-89 (protein kinase A inhibitor antagonized the reduction of the amplitude of spontaneous contractions induced by quercetin in longitudinal and circular smooth muscle of duodenum, while 2,5-dideoxiadenosine (adenylyl cyclase inhibitor reverted only the reduction of the amplitude in circular smooth muscle. In conclusion, genistein and quercetin reduce the spontaneous contractions in the duodenum by different mechanisms of actions. The effect of genistein would be mediated by Ca2+ and K+ channels, while the effect of quercetin would be mediated by cAMP and protein kinase A.

  6. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bukkitgar, Shikandar D.; Shetti, Nagaraj P., E-mail: dr.npshetti@gmail.com

    2016-08-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4 × 10{sup −5}–1 × 10{sup −7} M and detection limit and quantification limit were calculated to be 2.04 nM and 6.18 nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. - Highlights: • Electrochemical oxidation of 5-fluorouracil has been investigated for first time at methylene blue modified carbon paste electrode • The electrode process was irreversible and diffusion controlled • Probable electrochemical mechanism was proposed which involved two proton and two electron transfer reaction • The LOD and LOQ values were calculated to be 2.04 nM and 6.18 nM, respectively, with good selectivity and sensitivity. • Proposed method was applied to 5-Fluorouracil determination in pharmaceutical and spiked human urine samples.

  7. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.

    Science.gov (United States)

    Samarajeewa, Dinushi R; Dieckmann, Gregg R; Nielsen, Steven O; Musselman, Inga H

    2012-08-07

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)(5)(Lysine)(2), where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.

  8. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    Science.gov (United States)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  9. Microstructure and activation characteristics of Mg-Ni alloy modified by multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aminorroaya, Sima; Liu, Hua Kun [Institute for Superconducting and Electronic Materials, University of Wollongong, Fairy Meadow, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Cho, Younghee; Dahle, Arne [CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2010-05-15

    An Mg-6 wt% Ni alloy was fabricated by a casting technique and the drilled chips ball-milled by high energy ball milling to be examined for their hydrogenation modified with multi-walled carbon nanotubes (MWCNTs). The activation characteristics of ball-milled alloy are compared with those of the materials obtained by ball milling with 5 wt% MWCNTs for 0.5, 1, 2, 5 and 10 h. MWCNTs enhanced the absorption kinetics considerably in all cases. The hydrogen content of the modified powder with MWCNTs reached maximum hydrogen capacity within 2 min of exposure to hydrogen at 370 C and 2 MPa pressure. X-ray diffraction analysis provided evidence that no carbon-containing phase was formed during milling. However, milling with MWCNTs reduced the crystallite size, even if the milling was carried out for only an hour. The rate-controlling steps of the hydriding reactions at different milling times were determined by fitting the respective kinetic equations. Evidence is provided that nucleation and growth of hydrides are accelerated drastically by a homogenous distribution of MWCNTs on the surface of the ball-milled powders. We show that MWCNTs are very effective at promoting the hydriding/dehydriding kinetics, as well as in increasing the hydrogen capacity of the magnesium alloy. (author)

  10. Quercetin alters energy metabolism in swimming mice.

    Science.gov (United States)

    Wu, Jianquan; Gao, Weina; Wei, Jingyu; Yang, Jijun; Pu, Lingling; Guo, Changjiang

    2012-10-01

    Quercetin has been demonstrated to be effective in increasing physical endurance in mice and humans. However, the mechanisms involved are not fully understood. In this study, male Kunming mice were fed a diet containing 0.1% quercetin for 14 days before swimming for 60 min. The overall serum metabolic profile was investigated by a ¹H nuclear magnetic resonance-based metabolomic approach. Serum glucose, lactate, nonesterified fatty acids (NEFA), and nonprotein nitrogen (NPN), as well as hepatic and muscular glycogen were measured biochemically. The results of metabolomic analysis showed that swimming induced a significant change in serum metabolic profile. Relative increases in the levels of lactate, alanine, low-density lipoprotein-very low-density lipoprotein, and unsaturated fatty acids, and decreases in choline, phosphocholine, and glucose were observed after swimming. With quercetin supplementation, these changes were attenuated. The results of biochemical assays were consistent with the data obtained from metabolomic analysis, in that serum NEFA was increased while lactate and NPN decreased after exposed to quercetin in swimming mice. Similar change in NEFA was also found in liver and gastrocnemius muscle tissues. Our current findings suggest that quercetin alters energy metabolism in swimming mice and increased lipolysis may contribute to the actions of quercetin on physical endurance.

  11. The structure and properties of the carbon non-wovens modified with bioactive nanoceramics for medical applications.

    Science.gov (United States)

    Fraczek-Szczypta, A; Rabiej, S; Szparaga, G; Pabjanczyk-Wlazlo, E; Krol, P; Brzezinska, M; Blazewicz, S; Bogun, M

    2015-06-01

    The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces.

  12. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mulvey JJ

    2014-09-01

    Full Text Available J Justin Mulvey,1,2 Evan N Feinberg,1,3 Simone Alidori,1 Michael R McDevitt,4,5 Daniel A Heller,1,6 David A Scheinberg1,5,6 1Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA; 2Tri-Institutional MD-PhD Program, New York, NY, USA; 3Department of Applied Physics, Yale University, New Haven, CT USA; 4Department of Radiology and 5Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 6Weill Cornell Medical College, New York, NY, USA Abstract: We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs. A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl-protected, lysine-derived alpha-amino acid, H-Lys(Boc-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA. The 111In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA. In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work. Keywords: fullerene, cycloaddition, azomethine, DOTA, thermophoresis, 111In

  13. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  14. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Science.gov (United States)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating ("sizing"), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  15. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations.

  16. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  17. Carbon nanotube field emitters on KOVAR substrate modified by random pattern

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seol Ah; Song, Eun-Ho; Kang, Byung Hyun; Ju, Byeong-Kwon, E-mail: bkju@korea.ac.kr [Korea University, Display and Nanosystem Laboratory, College of Engineering (Korea, Republic of)

    2015-07-15

    We investigated the field emission characteristics of patterned carbon nanotubes (CNTs) on KOVAR substrates with different surface morphologies. The substrate with a micro-sized random pattern was fabricated through chemical wet etching, whereas the substrate with a nano-sized random pattern was formed by surface roughening process of polymer and chemical wet etching. The field emission characteristics of these substrates were the compared with those of non-treated substrates. It was clearly revealed that the field emission characteristics of CNTs were influenced by the surface morphology of the cathode substrate. When the surface of cathode was modified by random pattern, the modified substrate provided a large surface area and a wider print area. Also, the modified surface morphology of the cathode provided strong adhesion between the CNT paste and the cathode. Particularly, the substrate with the nano-sized random pattern showed that the turn-on field value decreases and the field enhancement factor value improves as compared with non-treated substrate.

  18. Double-loaded liposomes encapsulating Quercetin and Quercetin beta-cyclodextrin complexes: Preparation, characterization and evaluation

    Directory of Open Access Journals (Sweden)

    Jessy Shaji

    2012-01-01

    Full Text Available Beta-cyclodextrin (CD inclusion complexes of Quercetin were formed and characterized by Differential scanning calorimetry (DSC and Fourier transform infra-red spectroscopy (FTIR spectroscopy. Plain Quercetin liposomes using phosphatidylcholine and cholesterol were prepared and optimized. Factors such as ratio of lipids employed, drug:lipid ratio, etc. were fine tuned and optimized to achieve maximum entrapment of the Quercetin into the bilayer. Entrapment was further enhanced by double loading the liposomes. These were prepared by incorporating Quercetin as a plain drug as well as the inclusion complexes within the lipid bilayer and the aqueous compartment, respectively, of the liposomes using the thin film hydration technique. The highest entrapment was achieved with a lipid ratio of 9:1, and the amount of plain drug entering the bilayer was 1/10 th the amount of lipid employed. Double loading increased this value to one part of drug per five parts of lipid when Quercetin-beta-CD (1:1 mol/mol was entrapped. The release of Quercetin from liposomes was highest when the drug was entrapped in the form of a complex with beta cylodextrin. The high entrapment ability of Quercetin in the form of plain drug as well as beta cylodextrin-Quercetin complexes in comparison with plain drug is an indubitable advantage of this approach.

  19. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  20. Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Wu, Liang; Zhang, Xiaohua; Chen, Jinhua [Hunan Univ., Changsha (China)

    2014-01-15

    The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 μM, 0.7-440 μM and 3.0-365 μM, respectively, and the detection limits (S/N = 3) are 0.03 μM, 0.11 μM and 0.38 μM, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

  1. Facile synthesis of reduced graphene oxide-modified, nitrogen-doped carbon xerogel with enhanced electrochemical capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Gang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu, Xiaoyong [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Peng, Zhiguang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu, Jiawen, E-mail: jwhu@hnu.edu.cn [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Liu, Hongtao, E-mail: liuht@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-12-15

    In this contribution, we report a reduced graphene oxide (rGO)-modified nitrogen-doped carbon xerogel, which could be easily prepared by pyrolysis of melamine-formaldehyde (MF) resins that are polymerized hydrothermally in an aqueous GO dispersion. Scanning electron microscopy, transmission electron microscopy, Fourier-transformed infrared spectrometry, and nitrogen adsorption-desorption method were employed to reveal the morphologies and structures of the prepared carbon xerogel. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge were used to investigate the electrochemical properties. The results showed that the charge transfer barrier of the mesoporous nitrogen-doped carbon xerogel was decreased evidently, owing to the modification of a layer of rGO on its wall, and the xerogel demonstrated a capacitance of as high as 205 F g{sup −1} at the current of 1 A g{sup −1}. - Graphical abstract: A facile synthesis of rGO-modified, N-doped carbon material for supercapacitor application. - Highlights: • Nitrogen-doping and graphene-attachment in the carbon material are simultaneously achieved. • A thin layer of graphene attached on the wall of the mesoporous carbon material speeds up the charge transfer. • The graphene-modified nitrogen-doped carbon xerogel shows great potential for supercapacitor application.

  2. Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization-activation method.

    Science.gov (United States)

    Zhang, Chuanjun; Yang, Danni; Jiang, Xia; Jiang, Wenju

    2016-08-01

    In this study, TiO2 powder was used as the additive to directly blend with raw bituminous coal and coking coal for preparing modified activated carbon (Ti/AC) by one-step carbonization-activation method. The Ti/AC samples were prepared through blending with different ratios of TiO2 (0-12 wt%) and their desulphurization performance was evaluated. The results show that the desulphurization activity of all Ti/AC samples was higher than that of the blank one, and the highest breakthrough sulphur capacity was obtained at 200.55 mg/g C when the blending ratio of TiO2 was 6 wt%. The Brunauer-Emmett-Temer results show that the micropores were dominant in the Ti/AC samples, and their textual properties did not change evidently compared with the blank one. The X-ray photoelectron spectroscopy results show that the loaded TiO2 could influence the relative content of surface functional groups, with slightly higher content of π-π* transitions groups on the Ti/AC samples, and the relative contents of C=O and π-π* transitions groups decreased evidently after the desulphurization process. The X-ray diffraction results show that the anatase TiO2 and rutile TiO2 co-existed on the surface of the Ti/AC samples. After the desulphurization process, TiO2 phases did not change and Ti(SO4)2 was not observed on the Ti/AC samples, while sulphate was the main desulphurization product. It can be assumed that SO2 could be catalytically oxidized into SO3 by TiO2 indirectly, rather than TiO2 directly reacted with SO2 to Ti(SO4)2.

  3. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@henu.edu.cn; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-03-01

    Carbon-modified TiO{sub 2} (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO{sub 2} particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO{sub 2} has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts.

  4. Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee.

    Science.gov (United States)

    Amare, Meareg; Admassie, Shimelis

    2012-05-15

    4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses.

  5. Sensitive determination of buformin using poly-aminobenzoic acid modified glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    Gui-Ying Jin; Hui Li; Wan-Bang Xu

    2012-01-01

    Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS). The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3) was 2.0 ×10^9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8 102.5%. The proposed method is simple, cheap and highly efficient.

  6. SBA-15 Modified Carbon Paste Electrode for Rapid cTnI Detection with Enhanced Sensitivity

    Institute of Scientific and Technical Information of China (English)

    Nong Yue HE; Hui Shi GUO; Di YANG; Chun Rong GU; Ji Nan ZHANG

    2006-01-01

    A novel electrochemical immunoassay for cardiac troponin I (cTnI) combining the concepts of the dual monoclonal antibody "sandwich" principle, the silver enhancement on the nano-gold particle, and the SBA-15 mesoporous modified carbon paste electrode (SBA-MCPE) is described. Four main steps were carried out to obtain the analytical signal, i.e., electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection.A linear relationship between the anodic stripping peak current and concentration of cTnI from 0.5 to 5.0 ng/mL and a limit of detection of 0.2 ng/mL of cTnI were obtained.

  7. Carbon nanotubes modified with SnO{sub 2} rods for levofloxacin detection

    Energy Technology Data Exchange (ETDEWEB)

    Cesarino, Vivian [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia; Cesarino, Ivana; Moraes, Fernando C.; Machado, Sergio A.S., E-mail: ivana@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Mascaro, Lucia H. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2014-03-15

    A new sensor based on multi-walled carbon nanotubes modified with SnO{sub 2} rods for the electrochemical determination of levofloxacin has been investigated. The morphology, the structure, and the electrochemical performance of the composite electrode were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy, and cyclic voltammetry, respectively. Differential pulse voltammetry in phosphate buffer solution at pH 6.0, allowed the application of a method to determine levofloxacin levels in a range of 1.0-9.9 μmol L{sup -1}, with a limit of detection calculated at 0.2 μmol L{sup -1} (72.0 mg L{sup -1}). (author)

  8. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen.

    Science.gov (United States)

    Ahmadpour-Mobarakeh, Leila; Nezamzadeh-Ejhieh, Alireza

    2015-04-01

    The voltammetric behavior of a carbon paste electrode modified with Co(II)-exchanged zeolite A (Co(II)-A/ZMCPE) for determination of acetaminophen was studied. The proposed electrode showed a diffusion controlled reaction with the electron transfer rate constant (Ks) of 0.44s(-1) and charge transfer coefficient of 0.73 in the absence of acetaminophen. A linear voltammetric response was obtained in the range of 0.1 to 190μmolL(-1) of acetaminophen [r(2)=0.9979, r=0.9989 (n=10)] with a detection limit of 0.04μmolL(-1). The method was successfully applied to the analysis of acetaminophen in some drugs.

  9. Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes

    Science.gov (United States)

    Guo, Dao-Jun; Li, Hu-Lin

    Platinum nanoparticles on modified single-walled carbon nanotubes (SWNT) were investigated by a completely new electrochemical method. A Pt(IV) complex was formed on the SWNT surface through coordination to the oxygen atom of an oxide functional group on the SWNT surface and then converted to platinum nanoparticles by a potential pulse method. The structure and chemical nature of Pt nanoparticles on SWNTs have been investigated by transmission electron microscopy and X-ray diffraction, the mean diameter of Pt nanoparticles was 5-8 nm. The electrocatalytic properties of the Pt/SWNT electrode for methanol oxidation and its kinetic characterization were investigated by cyclic voltammetry (CV) and excellent electrocatalytic activity was observed.

  10. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2014-09-04

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs were utilized in different loadings, however, without any initiator. The resulting composites were characterized by using mechanical testing, differential scanning calorimetry, thermogravimetric analysis and melt rheology. The tensile tests show the addition of 0.5wt% of CNT-C18 results in 19.5% increment of Young\\'s modulus. The DSC study shows a decrease in T-g values of prepared PS/CNT nanocomposite. The rheological study was conducted at 190 degrees C and shows that addition of pure CNT increased the viscoelastic behavior of the PS matrices, while the CNT-C18 act as plasticizer. Thermogravimetric analysis shows that the incorporation of CNT into PS enhanced the thermal properties significantly.

  11. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Youliang Shen

    2014-01-01

    Full Text Available Carbon nanofibers modified graphite fibers (CNFs/GF composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  12. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides

    Science.gov (United States)

    Samarajeewa, Dinushi R.; Dieckmann, Gregg R.; Nielsen, Steven O.; Musselman, Inga H.

    2012-07-01

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)5(Lysine)2, where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino

  13. A Microbial Fuel Cell Modified with Carbon Nanomaterials for Organic Removal and Denitrification

    Directory of Open Access Journals (Sweden)

    Njud S. Alharbi

    2013-01-01

    Full Text Available This paper investigated microbial denitrification using electrochemical sources to replace organic matter as reductant. The work also involved developing a system that could be optimised for nitrate removal in applied situations such as water processing in fish farming or drinking water, where high nitrate levels represent a potential health problem. Consequently, the study examined a range of developments for the removal of nitrate from water based on the development of electrochemical biotransformation systems for nitrate removal. This also offers considerable scope for the potential application of these systems in broader bionanotechnology based processes. Furthermore, the work discussed the context of improved microbial fuel cell (MFC performance, potential analytic applications, and further innovations using a bionanotechnology approach to analyse cell-electrode interactions. High nitrate removal rate of more than 95% was successfully achieved by using a MFC system modified with carbon nanomaterials.

  14. MODIFIED SCREEN-PRINTED CARBON ELECTRODES WITH TYROSINASE FOR DETERMINATION OF PHENOLIC COMPOUNDS IN SMOKED FOOD

    Directory of Open Access Journals (Sweden)

    V. Dragancea

    2010-12-01

    Full Text Available A screen-printed carbon electrode modified with tyrosinase (SPCE-Tyr/Paa/Glut has been developed for the determination of phenol concentration in real samples. The resulting SPCE-Tyr/Paa/Glut was prepared in a one-step procedure, and was then optimized as an amperometric biosensor operating at 0 mV versus Ag/AgCl for phenol determination in flow injection mode. Phenol detection was realized by electrochemical reduction of quinone produced by tyrosinase activity. The possibility of using the developed biosensor to determine phenol concentrations in various smoked products (bacon, ham, chicken and salmon was also evaluated. Gas chromatography (GC method was used for result validation obtained in flow injection mode using amperometric biosensor. The result showed good correlation with those obtained by flowinjection analysis (FIA.

  15. Self-regeneration of activated carbon modified with palladium catalyst for electrochemical.dechlorination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Catalyst regeneration and the retention of high catalytic activity are still the critical issues in environmental application. A novel fluidized gas-liquid-solid electrochemical reactor was developed to simultaneously remove chlorinated pollutants and in situ regenerate the spent catalyst. Activated carbon modified with palladium catalyst (AC-Pd) was prepared for electrochemical dechlorination. For the 4-chlorophenol wastewater of initial concentration 200 mg L-1, the removal efficiency could nearly reach 100% in less than 30 min. Catalytic activity of AC-Pd catalyst was preserved effectively even in consecutive cycling run without special regeneration. *OH radicals, generated by electrochemical reaction, played a critical role in self-regeneration of AC-Pd. High catalytic activity of spent AC-Pd catalyst provided an attractive alternative in wastewater treatment.

  16. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    Science.gov (United States)

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  17. Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas

    Indian Academy of Sciences (India)

    Jahan Bakhsh Raoof; Fereshteh Chekin; Vahid Ehsani

    2015-02-01

    A simple procedure was developed to prepare cobalt oxide nanoparticles (nano-CoO) on multiwall carbon nanotube-modified glassy carbon electrode (MWNT/GCE). Scanning electron microscopy revealed the electrodeposition of nano-CoO with an average particle size of 25 nm onto MWNT/GCE. Also, the presence of nano-CoO was revealed by energy dispersive X-ray spectra. The electrocatalytic activity of nano-CoO and MWNT composite-modified GCE (CoO–MWNT/GCE) has been examined towards the oxygen evolution reaction (OER) by linear sweep voltammetry. The OER is significantly enhanced at CoO–MWNT/GCE, as demonstrated by a negative shift in the polarization curves at the CoO–MWNT/GCE compared with that obtained at the CoO–GCE and GCE. Optimization of the operating experimental conditions (i.e., solution pH and loading level of nano-CoO) has been achieved to maximize the electrocatalytic activity of CoO–MWNT/GCE. The maximum electrocatalytic activity towards the OER was obtained in alkaline media (pH = 13). The electrocatalytic activity of CoO–MWNT/GCE increased with the number of potential cycles employed for the CoO deposition till a certain loading (20 cycles) beyond which an adverse effect is observed. The fabricated CoO–MWNT/GCE exhibited a good stability and durability. The value of energy saving per gram of oxygen gas at a current density of 10 mA cm-2 is 19.3 kWh kg-1.

  18. Electrocatalytic behavior of modified carbon paste electrode with Ni(ii-zeolite for oxidation of methanol in a basic solution

    Directory of Open Access Journals (Sweden)

    Maryam Abrishamkar

    2014-12-01

    Full Text Available In this research, the electrochemical behavior of Ni-zeolite modified carbon paste electrode in the form of Ni/NiZSM-5/CPE and unmodified carbon paste electrode were studied using cyclic voltammetry and chronoamperometric techniques. It was found that methanol was oxidized by NiOOH generated with further electrooxidation of Ni ions which were doped in modified electrode during the anodic sweep. Also, the rate constant for the catalytic reaction (K of methanol was calculated 2.64* 10⁵cm³s⁻¹mol⁻¹ via Cottrell equation.

  19. Electrocatalytic behavior of modified carbon paste electrode with Ni(ii)-zeolite for oxidation of methanol in a basic solution

    OpenAIRE

    Maryam Abrishamkar; Nassrin Kiamehr

    2014-01-01

    In this research, the electrochemical behavior of Ni-zeolite modified carbon paste electrode in the form of Ni/NiZSM-5/CPE and unmodified carbon paste electrode were studied using cyclic voltammetry and chronoamperometric techniques. It was found that methanol was oxidized by NiOOH generated with further electrooxidation of Ni ions which were doped in modified electrode during the anodic sweep. Also, the rate constant for the catalytic reaction (K) of methanol was calculated 2.64* 10⁵cm³s⁻¹mo...

  20. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    Science.gov (United States)

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision.

  1. Chiral recognition of alanine across modified carbon electrodes with 3,4-dihydroxyphenylalanine

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700 Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx; Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700 Pedro Escobedo, Queretaro (Mexico); Rangel-Reyes, G.; Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)

    2009-11-01

    3,4-Dihydroxyphenylalanine (DOPA) was covalently grafted onto a glassy carbon electrode (GCE) by the formation of an amine cation radical in the electro-oxidation of the amino-containing compound. Cyclic voltammetric experiments proved that the DOPA was formed on the GCE as a monolayer. Its electron transfer over the GCE surface at different pH values was studied by cyclic voltammetry. Changes in solution pH resulted in the variation of the charge state of the terminal group and the surface pK{sub a} was estimated on the basis of these results. Because of electrostatic interactions between the negatively charged groups on the electrode surface and the alanine (Ala) in solution, the modified electrode was used as an enantioselective sensor. The peak current for D(+) or L(-)DOPA over the modified electrode decreased as a result of the chiral recognition across the blocking interaction with the respective enantiomer of L(-) or D(+)Ala. The recognition was verified with the protection of L(-)DOPA with a Fmoc group.

  2. Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Wencheng Wang

    2016-09-01

    Full Text Available In this paper nitrogen-doped graphene (NG nanosheets were used as the modifier on the surface of glassy carbon electrode (GCE. The modified electrode (NG/GCE was further applied to the sensitive detection of dopamine (DA by voltammetric method. Due to the unique properties of NG such as large surface area and excellent electrocatalytic activity, electrochemical response of DA was greatly enhanced on NG/GCE with a pair of well-defined redox peaks appeared on cyclic voltammogram. Electrochemical behaviors of DA on NG/GCE were carefully investigated with the electrochemical parameters calculated. Under the selected conditions the oxidation peak currents of DA had a good linear relationship with its concentration in the range from 8.0×10–7 mol L–1 to 8.0×10–4 mol L–1 with a detection limit of 2.55×10–7 mol L–1 (3σ. The proposed method was further applied to the DA injection samples determination with satisfactory results. This work is licensed under a Creative Commons Attribution 4.0 International License.

  3. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes.

    Science.gov (United States)

    Sacchetti, Cristiano; Liu-Bryan, Ru; Magrini, Andrea; Rosato, Nicola; Bottini, Nunzio; Bottini, Massimo

    2014-12-23

    Osteoarthritis (OA) is a common and debilitating degenerative disease of articular joints for which no disease-modifying medical therapy is currently available. Inefficient delivery of pharmacologic agents into cartilage-resident chondrocytes after systemic administration has been a limitation to the development of anti-OA medications. Direct intra-articular injection enables delivery of high concentrations of agents in close proximity to chondrocytes; however, the efficacy of this approach is limited by the fast clearance of small molecules and biomacromolecules after injection into the synovial cavity. Coupling of pharmacologic agents with drug delivery systems able to enhance their residence time and cartilage penetration can enhance the effectiveness of intra-articularly injected anti-OA medications. Herein we describe an efficient intra-articular delivery nanosystem based on single-walled carbon nanotubes (SWCNTs) modified with polyethylene glycol (PEG) chains (PEG-SWCNTs). We show that PEG-SWCNTs are capable to persist in the joint cavity for a prolonged time, enter the cartilage matrix, and deliver gene inhibitors into chondrocytes of both healthy and OA mice. PEG-SWCNT nanoparticles did not elicit systemic or local side effects. Our data suggest that PEG-SWCNTs represent a biocompatible and effective nanocarrier for intra-articular delivery of agents to chondrocytes.

  4. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.

  5. Methionine – Au Nanoparticle Modified Glassy Carbon Electrode: a Novel Platform for Electrochemical Detection of Hydroquinone

    Directory of Open Access Journals (Sweden)

    Jiahong HE

    2014-12-01

    Full Text Available A high sensitive electrochemical sensor based on methionine/gold nanoparticles (MET/AuNPs modified glassy carbon electrode (GCE was fabricated for the quantitative detection of hydroquinone (HQ. The as-modified electrode was characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The electrochemical performance of the sensor to HQ was investigated by using cyclic and differential pulse voltammetry, which revealed its excellent electrocatalytic activity and reversibility towards HQ. The separation of anodic and cathodic peak (∆Ep was decreased from 471 mV to 75 mV. The anodic peak current achieved under the optimum conditions was linear with the HQ concentration ranging from 8 μM to 400 μM with the detection limit 0.12 μM (3σ. The as-fabricated sensor also showed a good selectivity towards HQ without demonstrating interference from other coexisting species. Furthermore, the sensor showed a good performance for HQ detection in environmental water, which suggests its potential practical application. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6477

  6. Carbon Nanotube Coating on Titanium Substrate Modified with TiO2 Nanotubes

    Institute of Scientific and Technical Information of China (English)

    BAI Yu; PARK Ilsong; BAE Taesung; KLM Kyounga; WATARI Fumio; UO Motohiro; LEE Minho

    2011-01-01

    A combination of carbon nanotubes (CNTs) and titanium (Ti) modified with TiO2 nanotubes (TiO2 NTs) was fulfilled with the aim of improving bioactivity of Ti implant.First,well-ordered TiO2 NTs were prepared by the electrochemical anodization of Ti in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 50 min,followed by annealing.Then,the carboxylated CNTs were coated onto the TiO2NTs using electrophoretic deposition (EPD) technique.The growth of hydroxyapatite (HA) on the samples was investigated by soaking them in simulated body fiuid (SBF).The result showed the CNTs-coated Ti with the modification of TiO2 NTs (CNTs-TiO2 NTs) was more efficient to induce HA formation than the CNTs-coated smooth Ti (CNTs-Ti).The vitro cell response was evaluated using osteoblast cells (MC3T3-El).The good cell proliferation and strong cell adhesion could be obtained on the CNTs-TiO2 NTs.These results indicated that CNT coating on the Ti modified with TiO2 NTs could be potentially useful for the periodontal ligament combination on dental implants.

  7. Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol.

    Science.gov (United States)

    Afzali, Daryoush; Zarei, Somaye; Fathirad, Fariba; Mostafavi, Ali

    2014-10-01

    In the present study, a carbon paste electrode chemically modified with gold nanoparticles was used as a sensitive electrochemical sensor for determination of eugenol. The differential pulse voltammetric method was employed to study the behavior of eugenol on this modified electrode. The effect of variables such as percent of gold nanoparticles, pH of solution, accumulation potential and time on voltammogram peak current were optimized. The proposed electrode showed good oxidation response for eugenol in 0.1 mol L(-1) phosphate buffer solution (pH8) and the peak potential was about +285 mV (vs. Ag/AgCl). The peak current increased linearly with the eugenol concentration in the range of 5-250 μmol L(-1). The detection limit was found to be 2.0 μmol L(-1) and the relative standard deviation was 1.2% (n=7). The effect of interferences on the eugenol peak current was studied. The method has been applied to the determination of eugenol in different real samples, spiked recoveries were in the range of 96%-99%.

  8. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  9. Microwave-Assisted Polyol Synthesis of Water Dispersible Red-Emitting Eu3+-Modified Carbon Dots

    Directory of Open Access Journals (Sweden)

    Hailong Dong

    2016-12-01

    Full Text Available Eu3+-modified carbon dots (C-dots, 3–5 nm in diameter, were prepared, functionalized, and stabilized via a one-pot polyol synthesis. The role of Eu2+/Eu3+, the influence of O2 (oxidation and H2O (hydrolysis, as well as the impact of the heating procedure (conventional resistance heating and microwave (MW heating were explored. With the reducing conditions of the polyol at the elevated temperature of synthesis (200–230 °C, first of all, Eu2+ was obtained resulting in the blue emission of the C-dots. Subsequent to O2-driven oxidation, Eu3+-modified, red-emitting C-dots were realized. However, the Eu3+ emission is rapidly quenched by water for C-dots prepared via conventional resistance heating. In contrast to the hydroxyl functionalization of conventionally-heated C-dots, MW-heating results in a carboxylate functionalization of the C-dots. Carboxylate-coordinated Eu3+, however, turned out as highly stable even in water. Based on this fundamental understanding of synthesis and material, in sum, a one-pot polyol approach is established that results in H2O-dispersable C-dots with intense red Eu3+-line-type emission.

  10. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode.

    Science.gov (United States)

    Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A

    2016-11-15

    A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  11. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran)

    2008-08-15

    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of {beta}/{beta} crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. In CV studies, in the presence of methanol NiCu alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of methanol was found to be 2 x 10{sup -6} cm{sup 2} s{sup -1} in agreement with the values obtained from CV measurements. (author)

  12. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes.

    Science.gov (United States)

    Sales, Fernanda C P F; Iost, Rodrigo M; Martins, Marccus V A; Almeida, Maria C; Crespilho, Frank N

    2013-02-01

    An intravenous implantable glucose/dioxygen hybrid enzyme-Pt micro-biofuel cell (BFC) was investigated. In this miniaturized BFC, a flexible carbon fiber (FCF) microelectrode modified with neutral red redox mediator and glucose oxidase was used as the bioanode, and an FCF modified with platinum nanoparticles stabilized on PAMAM-G4 dendrimer was used as the cathode. In vitro experiments conducted using the BFC in a phosphate buffer solution (50 mmol L(-1), pH = 7.2) and glucose (47 mmol L(-1)) showed high electrocatalytic performance with an open circuit voltage (OCV) of 400 mV, a maximum current density of 2700 μA cm(-2) at 0.0 V and a maximum output power of 200 μW cm(-2) at 250 mV. Under physiological conditions, glucose from rat blood is used as a fuel in anodic reactions and dissolved molecular oxygen is used as the oxidizing agent on the cathode. For in vivo experiments, the BFC was inserted into the jugular vein of a living rat (Rattus novergicus) using a catheter (internal diameter 0.5 mm). The power density of the implantable BFC was evaluated over a period of 24 h, and an OCV of 125 mV with a maximum power density of 95 μW cm(-2) was obtained at 80 mV.

  13. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.

    Science.gov (United States)

    Ziyatdinova, Guzel; Kozlova, Ekaterina; Budnikov, Herman

    2016-04-01

    Phenolic antioxidants of wine were electrochemically oxidized on multi-walled carbon nanotubes modified glassy carbon electrode (MWNT/GCE) in phosphate buffer solution. Three oxidation peaks were observed at 0.39, 0.61 and 0.83V for red dry wine and 0.39, 0.80 and 1.18 V for white dry wine, respectively, using differential pulse voltammetry at pH 4.0. The oxidation potentials for individual phenolic antioxidants confirmed the integral nature of the analytical signals for the wines examined. A one-step chronocoulometric method at 0.83 and 1.18 V for red and white wines, respectively, has been developed for the evaluation of wine antioxidant capacity (AOC). The AOC is expressed in gallic acid equivalents per 1L of wine. The AOC of white wine was significantly less than red wine (386 ± 112 vs. 1224 ± 184, pwine and total antioxidant capacity, based on coulometric titration with electrogenerated bromine (r=0.8957 at n=5 and r=0.8986 at n=4 for red and white wines, respectively).

  14. Carbonate sediment dynamics and compartmentalisation of a highly modified coast: Geraldton, Western Australia

    Science.gov (United States)

    Tecchiato, Sira; Collins, Lindsay; Stevens, Alexandra; Soldati, Michela; Pevzner, Roman

    2016-02-01

    The coastal zone off Geraldton in temperate Midwestern Australia was investigated to identify sediment dynamics and sediment budget components of two main embayments. An integrated analysis of hydrodynamics, geomorphology, sediments and habitat data was required to overcome a lack of previous examinations of sediment dynamics in the region. The seaward extent of the nearshore transport system was assessed. An improved understanding of coastal sediment dynamics and its relationship to coastal stability and assets was also achieved. The system is complex, with biogenic sediment input, as well as carbonate dune and river-derived sediments. Coastal erosion at Geraldton is mitigated by nourishment activities which require sand bypassing. Natural and artificial sediment sinks were identified, and are mainly located in the northern embayment where beach erosion is more significant. A dredged shipping channel needed to provide access to port facilities modifies the local sediment dynamics. This study provides new information for managing the Geraldton coast, which may be applicable to similar regions of Western Australia and carbonate coasts elsewhere.

  15. Development of carbon paste electrodes modified by molecularly imprinted polymer as potentiometry sensor of uric acid

    Science.gov (United States)

    Khasanah, Miratul; Darmokoesoemo, Handoko; Widayanti, Nesti; Kadmi, Yassine; Elmsellem, Hicham; Kusuma, Heri Septya

    The development of carbon paste electrodes modified by molecularly imprinted polymer (MIP) for the potentiometric analysis of uric acid was carried out in this study. The aim of the study was to determine the optimum composition of the electrode constituent material, the optimum pH of the uric acid solution, and the performance of the electrode, which was measured by its response time, measurement range, Nernst factor, detection limits, selectivity coefficient, precision, accuracy, and life time. MIP was made from methyl methacrylate as the monomer, ethylene glycol dimethacrylate as the cross-linker, and uric acid as the template. Electrodes that give optimum performance were produced from carbon, MIP, and paraffin with a ratio of 40:25:35 (% w/w). The obtained results show that the measurement of uric acid solution gives optimum results at pH 5, Nernst factor of 30.19 mV/decade, and a measurement range of 10-6-10-3 M. The minimum detection limit of this method was 3.03.10-6 M, and the precision and accuracy toward uric acid with concentration of 10-6-10-3 M ranged between 1.36-2.03% and 63.9-166%. The selectivity coefficient value was less than 1, which indicated that the electrode was selective against uric acid and not interfered with by urea. This electrode has a response time of less than 2 min; its life time is 8 weeks with 104 usage times.

  16. Electrochemical Behavior and Determination of Rutin on Modified Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Pavla Macikova

    2012-01-01

    Full Text Available The performances of ionic liquid (1-hexyl-3-methylimidazolium-bis(trifluoromethylsulfonylimide, IL/CPE and iron phthalocyanine (IP/CPE modified carbon paste electrodes in electroanalytical determinations of rutin were evaluated and compared to the performance of unmodified carbon paste electrode (CPE. Cyclic voltammetry (CV, differential pulse voltammetry (DPV, differential pulse adsorptive stripping voltammetry (DPAdSV, and amperometry were used for rutin analysis. The best current responses of rutin were obtained at pH 4.0 for all tested techniques. IL/CPE electrode was found to perform best with DPAdSV technique, where a detection limit (LOD as low as 5 nmol L-1 of rutin was found. On the other hand, IP/CPE showed itself to be an optimum choice for DPV technique, where LOD of 80 nmol L-1 was obtained. Analytical applicability of newly prepared electrodes was demonstrated on determination of rutin in the model samples and the extracts of buckwheat seeds. To find an optimum method for buckwheat seeds extraction, a boiling water extraction (BWE, Soxhlet extraction (SE, pressurized solvent extraction (PSE, and supercritical fluid extraction (SFE were tested.

  17. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers

    Directory of Open Access Journals (Sweden)

    Susana Campuzano

    2016-12-01

    Full Text Available Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers.

  18. Electrochemical behavior of labetalol at an ionic liquid modified carbon paste electrode and its electrochemical determination

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Mei

    2013-01-01

    Full Text Available Electrochemical behavior of labetalol (LBT at carbon paste electrode (CPE and an ionic liquid1-benzyl-3-methylimidazolehexafluorophosphate([BnMIM]PF6modified carbon paste electrode([BnMIM]PF6/CPEin Britton-Robinson buffer solution (pH 2.0 was investigated by cyclic voltammetry (CV and square wave voltammetric (SWV. The experimental results showed that LBT at both the bare CPE and [BnMIM]PF6/CPEshowed an irreversible oxidation process, but at [BnMIM]PF6/CPE its oxidation peak current increased greatly and the oxidation peak potential shifted negatively. The electrode reaction process is a diffusion-controlled process involving one electron transferring accompanied by a participation of one proton at [BnMIM]PF6/CPE. At the same time, the electrochemical kinetic parameters were determined. Under the optimized electrochemical experimental conditions, the oxidation peak currents were proportional to LBT concentration in the range of 7.0 x 10-6-1.0 x 10-4 mol L-1 with the limit of detection(LOD, S/N=3 of 4.810 x 10-8 mol L-1and the limit of quantification(LOQ, S/N=10 of 1.60 x 10-7 mol L-1, respectively. The proposed method was successfully applied in the determination of LBT content in commercial tablet samples.

  19. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José M.

    2016-01-01

    Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers. PMID:28035946

  20. Coulometric determination of dissolved hydrogen with a multielectrolytic modified carbon felt electrode-based sensor

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Matsuura; Yosuke Yamawaki; Kosuke Sasaki; Shunichi Uchiyama

    2013-01-01

    A multielectrolytic modified carbon electrode (MEMCE) was fabricated by the electrolytic-oxidation/reduction processes.First,the functional groups containing nitrogen atoms such as amino group were introduced by the electrode oxidation of carbon felt electrode in an ammonium carbamate aqueous solution,and next,this electrode was electroreduced in sulfuric acid.The redox waves between hydrogen ion and hydrogen molecule at highly positive potential range appeared in the cyclic voltammogram obtained by MEMCE.A coulometric cell using MEMCE with a catalytic activity of electrooxidation of hydrogen molecule was constructed and was used for the measurement of dissolved hydrogen.The typical current vs.time curve was obtained by the repetitive measurement of the dissolved hydrogen.These curves indicated that the measurement of dissolved hydrogen was finished completely in a very short time (ca.10sec).A linear relationship was obtained between the electrical charge needed for the electrooxidation process of hydrogen molecule and dissolved hydrogen concentration.This indicates that the developed coulometfic method can be used for the determination of the dissolved hydrogen concentration.

  1. New materials based on polylactide modified with silver and carbon ions

    Science.gov (United States)

    Kurzina, I. A.; Pukhova, I. V.; Botvin, V. V.; Davydova, D. V.; Filimoshkin, A. G.; Savkin, K. P.; Oskomov, K. V.; Oks, E. M.

    2015-11-01

    An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1.1014, 1.1015 and 1.1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced.

  2. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid.

    Science.gov (United States)

    Du, Jiao; Yue, Ruirui; Ren, Fangfang; Yao, Zhangquan; Jiang, Fengxing; Yang, Ping; Du, Yukou

    2014-03-15

    A novel and sensitive carbon fiber electrode (CFE) modified by graphene flowers was prepared and used to simultaneously determine ascorbic acid (AA), dopamine (DA) and uric acid (UA). SEM images showed that beautiful and layer-petal graphene flowers homogeneously bloomed on the surface of CFE. Moreover, sharp and obvious oxidation peaks were found at the obtained electrode when compared with CFE and glassy carbon electrode (GCE) for the oxidation of AA, DA and UA. Also, the linear calibration plots for AA, DA and UA were observed, respectively, in the ranges of 45.4-1489.23 μM, 0.7-45.21 μM and 3.78-183.87 μM in the individual detection of each component. By simultaneously changing the concentrations of AA, DA and UA, their oxidation peaks appeared at -0.05 V, 0.16 V and 2.6 V, and the good linear responses ranges were 73.52-2305.53 μM, 1.36-125.69 μM and 3.98-371.49 μM, respectively. In addition, the obtained electrode showed satisfactory results when applied to the determination of AA, DA and UA in urine and serum samples.

  3. CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection.

    Science.gov (United States)

    Kan, Xianwen; Zhang, Tingting; Zhong, Min; Lu, Xiaojing

    2016-03-15

    A dual-signal strategy was developed in the present work for quercetin (QR) electrochemical recognition and detection. Mercapto-β-cyclodextrin (HS-β-CD) self-assembled on gold nanoparticles and multi-walled carbon nanotubes modified electrode surface to fabricate an electrochemical sensor. Scanning electron microscope, electrochemical impedance spectroscopy, and cyclic voltammetry were employed to characterize the preparation process of the sensor. Hydroquinone (HQ) was chosen as an electrochemical marker for QR detection due to its small molecular size for the formation of inclusion with HS-β-CD. The results of UV-vis and differential pulse voltammetry demonstrate that the added QR can replace the included HQ in CD cavities, resulting in the dual-signal in electrochemical experiments composed of the decrease of oxidized current of HQ and the increase of oxidized current of QR. Compared with the sensor for QR detection in the absence of HQ, the sensor based dual-signal strategy exhibited a higher sensitivity with a wider detection range from 5.0 × 10(-9) to 7.0 × 10(-6)mol/L. With good selectivity, reproducibility, and stability, the sensor was applied for real samples detection with satisfactory results. The proposed dual-signal strategy can be readily extended to the selective recognition and sensitive detection of other molecules.

  4. KINETICS OF QUERCETIN NITRATIO N BY HORSERADISH PEROXIDASE

    Directory of Open Access Journals (Sweden)

    Andrija Šmelcerović

    2013-03-01

    Full Text Available In this study we investigated the kinetics of the nitration of quercetin by horseradish peroxidase. Quercetin nitration reaction was followed by recording the spectral changes over the time at 380 nm. The reaction rate increases with increasing of the quercetin concentration and follows the Michaelis-Menten type kinetics. Kinetic parameters of the studied enzymatic reaction were determined.

  5. Chronic quercetin exposure affects fatty acid catabolism in rat lung

    NARCIS (Netherlands)

    Boer, de V.C.J.; Schothorst, van E.M.; Dihal, A.A.; Woude, van der H.; Arts, I.C.W.; Rietjens, I.M.C.M.; Hollman, P.C.H.; Keijer, J.

    2006-01-01

    Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. Previously, we identified rat lung as a quercetin target tissue. To assess relevant in vivo health effects of quercetin, we analyzed mechanisms of effect in

  6. Production of 3-O-xylosyl quercetin in Escherichia coli

    DEFF Research Database (Denmark)

    Pandey, Ramesh Prasad; Malla, Sailesh; Simkhada, Dinesh

    2013-01-01

    Quercetin, a flavonol aglycone, is one of the most abundant flavonoids with high medicinal value. The bioavailability and pharmacokinetic properties of quercetin are influenced by the type of sugars attached to the molecule. To efficiently diversify the therapeutic uses of quercetin, Escherichia ...

  7. Chronic quercetin exposure affects fatty acid catabolism in rat lung

    NARCIS (Netherlands)

    Boer, de V.C.J.; Schothorst, van E.M.; Dihal, A.A.; Woude, van der H.; Arts, I.C.W.; Rietjens, I.M.C.M.; Hollman, P.C.H.; Keijer, J.

    2006-01-01

    Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. Previously, we identified rat lung as a quercetin target tissue. To assess relevant in vivo health effects of quercetin, we analyzed mechanisms of effect in ra

  8. Electroless deposition of bis(4'-(4-Pyridyl)-2,2':6',2''-terpyridine)iron(II) thiocyanate complex onto carbon nanotubes modified glassy carbon electrode: application to simultaneous determination of ascorbic acid, dopamine and uric acid

    OpenAIRE

    Kamyabi,M. A; Narimani,O; Monfared,H. H

    2011-01-01

    A glassy carbon (GC) electrode modified by multi-walled carbon nanotubes (MWNTs) and bis(pyterpy)iron(II) thiocyanate complex (pyterpy = 4'-(4-pyridyl)-2,2':6',2''-terpyridine) was investigated by voltammetric methods in acetate buffer solution (pH 5). Performances of the iron(II)-complex/MWNTs modified electrode were evaluated with differential pulse voltammetry and scanning electron microscopy (SEM). The modified glassy carbon electrode shows an excellent electrochemical response for ascorb...

  9. Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin.

    Science.gov (United States)

    Veerapandian, Murugan; Seo, Yeong-Tai; Yun, Kyusik; Lee, Min-Ho

    2014-08-15

    A direct electrochemical detection of quercetin based on functionalized graphene oxide modified on gold-printed circuit board chip was demonstrated in this study. Functionalized graphene oxide materials are prepared by the covalent reaction of graphene oxide with silver@silica-polyethylene glycol nanoparticles (~12.35nm). Functionalized graphene oxide electrode shows a well-defined voltammetric response in phosphate buffered saline and catalyzes the oxidation of quercetin to quinone without the need of an enzyme. Significantly, the functionalized graphene oxide modified electrode exhibited a higher sensitivity than pristine gold-printed circuit board and graphene oxide electrodes, a wide concentration range of 7.5 to 1040nM and detection limit of 3.57nM. Developed biosensor platform is selective toward quercetin in the presence of an interferent molecule.

  10. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes.

    Science.gov (United States)

    Rezaei-Sadabady, Rogaie; Eidi, Akram; Zarghami, Nosratollah; Barzegar, Abolfazl

    2016-01-01

    Quercetin (3,5,7,3',4'-pentahydroxyflavone) is a natural bio-flavonoid originating from fruits, vegetables, seeds, berries, and tea. The antioxidant activity of quercetin and its protective effects against cardiovascular disorders, anti-cancer, anti-inflammatory, and anti-viral activities have been extensively documented; however, the clinical request of quercetin in cancer treatment is significantly limited due to its very poor delivery features. In order to increase the hydrophilicity and drug delivery capability, we encapsulated quercetin into liposomes. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be used as an effective antioxidant for ROS protection within the polar cytoplasm, and the nano-sized quercetin encapsulated by liposomes enhanced the cellular uptake (cancer cell human MCF_7). Quercetin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of quercetin in polar solvents by a comparative study using reduction of ferric iron in aqueous medium, intracellular ROS/toxicity assays, and reducing DPPH assays. Cell viability and ROS assays demonstrated that quercetin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and deadly belongings of cumene hydroperoxide. The purpose of this study was to determine whether a liposomal formulation of quercetin can suggestively improve its solubility and bioavailability and can be a possible request in the treatment of tumor. The authors encapsulated quercetin in a liposomal delivery system. They studied the in vitro effects of this compound on proliferation using human MCF-7 carcinoma cells. The activity of liposomal quercetin was equal to or better than that of free quercetin at equimolar concentrations. Our data indicated that liposomal quercetin can significantly improve the

  11. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadnezhad, Gholamhossein, E-mail: mohammadnezhad@cc.iut.ac.ir; Dinari, Mohammad, E-mail: dinari@cc.iut.ac.ir; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-08-15

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA.

  12. Theoretical Design and Experimental Evaluation of Molten Carbonate Modified LSM Cathode for Low Temperature Solid Oxide Fuel Cells

    Science.gov (United States)

    2015-01-06

    EDUCATION & URTLAM REPORT 2012-2014 Theoretical Design and Experimental Evaluation of Molten Carbonate Modified LSM Cathode for Low Temperature...to participate in the funded projects. Students were trained in both modeling and experimental techniques. Their hard work led to several

  13. Precipitation polymerization of hydrophobically modified polyelectrolyte poly(AA-co-ODA) in supercritical carbon dioxide and solution rheology properties

    Science.gov (United States)

    Zhang, Huaiping; Li, Wei; Cao, Qing; Chen, Mingcai

    2014-05-01

    Hydrophobically modified (HM) polyelectrolytes were prepared by using precipitation polymerization of acrylic acid (AA) and octadecyl acrylate (ODA) in various molar ratios in supercritical carbon dioxide. The product was obtained in the form of a white powder and the micrographs show aggregates of primary particles properties.

  14. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    Directory of Open Access Journals (Sweden)

    Brown Dan

    2005-01-01

    Full Text Available Abstract Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p p > 0.05. Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p p Conclusions The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods.

  15. A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor.

    Science.gov (United States)

    Deng, Liu; Guo, Shaojun; Zhou, Ming; Liu, Ling; Liu, Chang; Dong, Shaojun

    2010-06-15

    We present here a facile and efficient route to prepare silk derived carbon mat modified with Au@Pt urchilike nanoparticles (Au@Pt NPs) and develop an Escherichia coli (E. coli)-based electrochemical sensor using this material. Silk is a natural protein fiber, and it is abundant with kinds of functionalities which are important in the development of the derived material. The S-derived carbon fiber mat have amino, pyridine and carbonyl functional groups, these natural existent functionalities allow the Au@Pt NPs to self-assemble on the carbon fiber surface and provide a biocompatible microenvironment for bacteria. The Au@Pt NPs modified S-derived carbon fiber is sensitive to detect the E. coli activities with a low detection limit, where glucose is used as a prelimiltary substrate to evaluate them. The performance of Au@Pt/carbon fiber mat based biosensor is much better than that of commercial carbon paper based biosensor. The high sensitivity of this biosensor stems from the unique electrocatalytic properties of Au@Pt urchilike NPs and quinone groups presented in S-derived carbon fiber. This biosensor is also tested for detection of organophosphate pesticides, fenamiphos. The relative inhibition of E. coli activity is linear with -log[fenamiphos] at the concentration range from 0.5mg/L to 36.6 mg/L with lowest observable effect concentration (LOEC) of 0.09 mg/L. The Au@Pt NPs modified S-derived carbon fiber mat possesses high conductivity, biocompatibility and high electrocatalytic activity and be can used as advanced electrode materials for microbial biosensor improvement. The microbial biosensor based on this material shows potential applications in environmental monitoring.

  16. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping HONG; Yah ZHU; Yan-zhen ZHANG

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoⅡTAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described.This electrode showed a very attractive performance by combining the advantages of Co11TAPc,MWCNTs,and Nafion.Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode,the electrocatalytic activity of poly(CoⅡTAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential,high current responses,and good anti-fouling performance.The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L.

  17. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model

    Science.gov (United States)

    Lee, Hyun Jung; Park, Jiae; Yoon, Ok Ja; Kim, Hyun Woo; Lee, Do Yeon; Kim, Do Hee; Lee, Won Bok; Lee, Nae-Eung; Bonventre, Joseph V.; Kim, Sung Su

    2011-02-01

    Stroke results in the disruption of tissue architecture and is the third leading cause of death in the United States. Transplanting scaffolds containing stem cells into the injured areas of the brain has been proposed as a treatment strategy, and carbon nanotubes show promise in this regard, with positive outcomes when used as scaffolds in neural cells and brain tissues. Here, we show that pretreating rats with amine-modified single-walled carbon nanotubes can protect neurons and enhance the recovery of behavioural functions in rats with induced stroke. Treated rats showed less tissue damage than controls and took longer to fall from a rotating rod, suggesting better motor functions after injury. Low levels of apoptotic, angiogenic and inflammation markers indicated that amine-modified single-walled carbon nanotubes protected the brains of treated rats from ischaemic injury.

  18. Characteristics of a novel calix[8]arene modified with carbon nanotubes thin films for metal cations detection

    Science.gov (United States)

    Supian, Faridah Lisa; Bakar, Suriani Abu; Azahari, Noor Azyyati; Richardson, Tim H.

    2013-05-01

    This study focuses on the properties of a novel calix[8]arene that have been modified with carbon nanotubes (CNT) as ion sensor application. Calix[8]arene modified with carbon nanotubes were done by mixing CNT (Calix8A-CNT) with a novel calix[8]arene in a long ultrasonication process. This study is interesting due to the process on the attaching of the functionalization of the calixarene on the carbon nanotubes outer wall. Morphological and spectroscopic studies of Calix8A-CNT were done using Π-A isotherm, Surface Potential Probe (S-Pot), Field mission scanning electron microscopy (FE-SEM) and Raman spectroscopy in order to understand the behavior in the molecular level. This water-soluble supramolecular hybrid materials have potential as metal cations detection and nanoelectronics applications, yet the CNT provide the thermal stability to the polymers.

  19. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    Science.gov (United States)

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  20. Toluidine blue adsorbed on alcohol dehydrogenase modified glassy carbon electrode for voltammetric determination of ethanol.

    Science.gov (United States)

    Periasamy, Arun Prakash; Umasankar, Yogeswaran; Chen, Shen-Ming

    2011-01-15

    A novel toluidine blue O (TBO) adsorbed alcohol dehydrogenase (ADH) biocomposite film have been prepared through simple adsorption technique with the help of electrostatic interaction between oppositely charged layers. Nafion (NF) coating was made on top of the biocomposite film modified glassy carbon electrode (GCE) to protect ADH from leaching. The fabricated ADH/TBO/NF biocomposite electrode remains highly stable in the pH range from 4 to 13. More facile electron transfer process occurs at ADH/TBO/NF biocomposite than at TBO/NF film, which is obvious from the six folds increase in k(s) value. Maximum surface coverage concentration (Γ) of TBO is noticed at ADH/TBO/NF film, which is 82% higher than at TBO/NF and 15% higher than at ADH/TBO film modified GCEs. Electrochemical impedance spectroscopy studies reveal that ADH has been well immobilized in the biocomposite film. Scanning electron microscopy studies confirm the discriminate surface morphology of various components present in the biocomposite film. Cyclic voltammetry studies validate that ADH/TBO/NF biocomposite film exhibits excellent electrocatalytic activity for ethanol oxidation at low over potential (I(pa)=-0.14 V). The same studies show biocomposite film possesses a good sensitivity of 7.91 μAM(-1)cm(-2) for ethanol determination. This above sensitivity value is 17.40% higher than the sensitivity obtained for TBO/NF film (6.74 μAM(-1)cm(-2)). Further, using differential pulse voltammetry, a sensitivity of 1.70 μAM(-1)cm(-2) has been achieved for ADH/TBO/NF biocomposite film. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  2. Sensitive Voltammetric Determination of Captopril Using a Carbon Paste Electrode Modified with Nano-TiO2/Ferrocene Carboxylic Acid

    Institute of Scientific and Technical Information of China (English)

    Jahan Bakhsh RAOOF; Reza OJANI; Mehdi BAGHAYERI

    2011-01-01

    A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix.The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods.The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values.Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV.The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques.A calibration curve in the range of 0.03 to 2400μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3σ) under the optimized conditions.The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.

  3. Therapeutic effect of quercetin in collagen-induced arthritis.

    Science.gov (United States)

    Haleagrahara, Nagaraja; Miranda-Hernandez, Socorro; Alim, Md Abdul; Hayes, Linda; Bird, Guy; Ketheesan, Natkunam

    2017-03-22

    Quercetin, a bioactive flavonoid with anti-inflammatory, immunosuppressive, and protective properties, is a potential agent for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) is the most commonly used animal model for studying the pathogenesis of RA. This study analysed the therapeutic role of quercetin in collagen-induced arthritis in C57BL/6 mice. The animals were allocated into five groups that were subjected to the following treatments: negative (untreated) control, positive control (arthritis-induced), arthritis+methotrexate, arthritis+quercetin, and arthritis+methotrexate+quercetin. Assessments of weight, oedema, joint damage, and cytokine production were used to determine the therapeutic effect of quercetin. This study demonstrated for the first time the anti-inflammatory and protective effects of quercetin in vivo in CIA. The results also showed that the concurrent administration of quercetin and methotrexate did not offer greater protection than the administration of a single agent. The use of quercetin as a monotherapeutic agent resulted in the lowest degree of joint inflammation and the highest protection. The reduced severity of the disease in animals treated with quercetin was associated with decreased levels of TNF-α, IL-1β, IL-17, and MCP-1. In conclusion, this study determined that quercetin, which was non-toxic, produced better results than methotrexate for the protection of joints from arthritic inflammation in mice. Quercetin may be an alternative treatment for RA because it modulates the main pathogenic pathways of RA.

  4. The flavonoid quercetin reverses pulmonary hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Daniel Morales-Cano

    Full Text Available Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH.

  5. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    Science.gov (United States)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  6. Adsorption Isotherms of Quercetin and Catechin Compounds on Quercetin-MIP

    Institute of Scientific and Technical Information of China (English)

    JIN Yin-zhe; ROW Kyung Ho

    2007-01-01

    A molecular imprinted polymer(MIP) was prepared with quercetin as the template and methacrylic acid(MAA)as the functional monomer. Acetonitrile and methanol were used as the porogen with ethylene glycol dimethacrylate(EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The experimental parameters of the equilibrium isotherms were estimated via linear and nonlinear regression analyses. The linear equation as the functions of the adsorption concentration of the single compound in its solution and the competitive adsorption of the single compound in its mixed compounds solution was then expressed, and the adsorption equilibrium data were correlated to Langmnir and Freundlich isotherm models. The mixture compounds show competitive adsorption on the specific binding sites of quercetin-MIP. Furthermore, the competitive Langmuir isotherms were applied to the mixture compounds. The adsorption concentrations of quercetin, ( + )catechin( + C), and ( - )epicatechin(EC) on the quercetin molecular imprinted polymer were compared. The quercetin-imprinted polymer shows extraordinarily higher adsorption ability for quercetin than for the two catechin compounds that were also assessed.

  7. Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems.

    Science.gov (United States)

    Sánchez Arribas, Alberto; Bermejo, Esperanza; Chicharro, Manuel; Zapardiel, Antonio; Luque, Guillermina L; Ferreyra, Nancy F; Rivas, Gustavo A

    2007-07-23

    This work reports the advantages of using glassy carbon electrodes (GCEs) modified with multi-wall carbon nanotubes (CNT) dispersed in polyethylenimine (PEI) as detectors in flow injection and capillary electrophoresis. The presence of the dispersion of CNT in PEI at the electrode surface allows the highly sensitive and reproducible determination of hydrogen peroxide, different neurotransmitters (dopamine (D) and its metabolite dopac, epinephrine (E), norepinephrine (NE)), phenolic compounds (phenol (P), 3-chlorophenol (3-CP) and 2,3-dichlorophenol (2,3CP)) and herbicides (amitrol). Sensitivities enhancements of 150 and 140 folds compared to GCE were observed for hydrogen peroxide and amitrol, respectively. One of the most remarkable properties of the resulting electrode is the antifouling effect of the CNT/PEI layer. No passivation was observed either for successive additions (30) or continuous flow (for 30 min) of the compounds under investigation, even dopac or phenol. A critical comparison of the amperometric and voltammetric signal of these different analytes at bare- and PEI-modified glassy carbon electrodes and pyrolytic graphite electrodes is also included, demonstrating that the superior performance of CNT is mainly due to their unique electrochemical properties. Glassy carbon electrodes modified with CNT-PEI dispersion also show an excellent performance as amperometric detector in the electrophoretic separation of phenolic compounds and neurotransmitters making possible highly sensitive and reproducible determinations.

  8. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@uok.ac.i [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Mahdioun, Monierosadat; Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Amir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111 (Iran, Islamic Republic of); Ghavami, Raoof [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2011-03-30

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k{sub s}) of immobilized Mn-complex were approximately 1.58 x 10{sup -10} mole cm{sup -2} and 48.84 s{sup -1}. The modified electrode showed excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Detection limit, sensitivity, linear concentration range and k{sub cat} for H{sub 2}O{sub 2} were, 0.2 {mu}M and 692 nA {mu}M{sup -1} cm{sup -2}, 1 {mu}M to 1.5 mM and 7.96({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  9. Bio-modified carbon nanoparticles loaded with methotrexate Possible carrier for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, Thangavelu [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India); Prabhavathi, Sundaram [Department of Biotechnology, SRM University, Kattankulathur, Chennai 603 203 (India); Chamundeeswari, Munusamy [St. Joseph' s College of Engineering, Sholinganallur, Chennai 600119 (India); Sastry, Thotapalli Parvathaleswara, E-mail: sastrytp@hotmail.com [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India)

    2014-03-01

    The modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM). Scanning electron microscopy (SEM) and atomic force microscope (AFM) pictures have exhibited the spherical nature of the composite and coating of the proteins on CNPs. The prepared CBM biocomposite has exhibited a sustained release of drug. MTT assay using A549 lung cancer cell lines has revealed 83% cell death at 150 μg/ml concentration of CBM. These results indicate that CNPs based biocomposites may be tried as therapeutic agents in treatment of cancer like diseases. - Highlights: • It's a cost effective method with maximum anticancer activity. • Maximum drug loading (methotrexate) and release have been achieved. • The prepared CBM was found to be biocompatible and hemocompatible. • About 83% of A549 lung cancer cell line apoptosis was observed with CBM.

  10. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zheng, Di; Zhang, Yitao

    2016-10-01

    A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N2 adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the -NO2 has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  11. Ultrasensitive Determination of Piroxicam at Diflunisal-Derived Gold Nanoparticle-Modified Glassy Carbon Electrode

    Science.gov (United States)

    Shaikh, Tayyaba; uddin, SiraJ; Talpur, Farah N.; Khaskeli, Abdul R.; Agheem, Muhammad H.; Shah, Muhammad R.; Sherazi, Tufail H.; Siddiqui, Samia

    2017-10-01

    We present a simple and green approach for synthesis of gold nanoparticles (AuNps) using analgesic drug diflunisal (DF) as capping and stabilizing agent in aqueous solution. Characterization of the synthesized diflunisal-derived gold nanoparticles (DF-AuNps) was performed by ultraviolet-visible (UV-Vis) spectroscopy, revealing the surface plasmon absorption band at 520 nm under optimized experimental conditions. Fourier-transform infrared (FTIR) spectroscopy established the effective interaction of the capping agent with the AuNps. Topographical features of the synthesized DF-AuNps were assessed by atomic force microscopy (AFM), revealing average particle height of 29 nm to 32 nm. X-ray diffractometry was used to study the crystalline nature, revealing that the synthesized DF-AuNps possessed excellent crystalline properties. The synthesized DF-AuNps were employed to modify the surface of glassy carbon electrode (GCE) for selective determination of piroxicam (PX) using differential pulse voltammetry technique. The fabricated Nafion/DF-AuNps/GCE sensor exhibited high sensitivity compared with bare GCE. The current response of the fabricated sensor was found to be linear in the PX concentration range of 0.5 μM to 50 μM, with limit of detection (LOD) and limit of quantification (LOQ) of 50 nM and 150 nM, respectively. The proposed sensor was successfully utilized for sensitive and rapid determination of PX in human serum, urine, and pharmaceutical samples.

  12. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid

    Indian Academy of Sciences (India)

    Fereshteh Chekin; Samira Bagheri; Sharifah Bee Abd Hamid

    2015-12-01

    A simple approach for the preparation of gelatin functionalized reduced graphene oxide nanosheet (Gel-RGONS) by chemical reduction of graphene oxide (GO) using gelatin as both reducing agent and stabilizing agent in an aqueous solution was developed. The morphology and structure of the Gel-RGONS were examined by X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy and Raman spectroscopy. Gelatin acted as a functionalizing reagent to guarantee good dispersibility and stability of the r in distilled water. Moreover, a new electrochemical sensor was developed based on Gel-RGONS modified glassy carbon electrode (Gel-RGONS/GCE). Gel-r exhibits excellent electrocatalytic activity to gallic acid (GA) oxidation. The experimental conditions such as pH, adsorption time and scan rate were optimized for the determination of GA. Under optimum conditions, the sensor responded linearly to GA in the concentration of 1.0 × 10−6 to 1.1 × 10−4 M with detection limit of 4.7 × 10−7 M at 3 using linear sweep voltammetry (LSV). The method has been successfully applied to the determination of GA in sample of black tea.

  13. Transition metal-modified polyoxometalates supported on carbon as catalyst in 2-(methylthio)-benzothiazole sulfoxidation

    Indian Academy of Sciences (India)

    Romina A Frenzel; Gustavo P Romanelli; Mirta N Blanco; Luis R Piz

    2015-01-01

    Polyoxometalates with lacunary Keggin structure modified with transition metal ions [PW11O39M(H2O)]5−, where M = Ni2+, Co2+, Cu2+ or Zn2+, were synthesized and supported on activated carbon to obtain the PW11MC catalysts. Using FT-IR and DTA-TGA it was concluded that the [PW11O39M(H2O)]5− species are interacting with the functional groups of the support, and that thermal treatment leads to the loss of the coordinatively bonded water molecules without any noticeable anion degradation. The activity and selectivity of the catalysts in the sulfoxidation reaction of 2-(methylthio)-benzothiazole, an emerging environmental pollutant, were evaluated. The reaction was carried out in acetonitrile as solvent using H2O2 35% p/v as a clean oxidant. The conversion values decreased in the following order: PW11NiC > PW11CuC > PW11CoC > PW11ZnC, with selectivity to sulfoxide higher than 69%. The catalyst could be reused without appreciable loss of the catalytic activity at least three times. The materials were found to be efficient and recyclable catalysts for 2-(methylthio)-benzothiazole sulfoxidation in order to obtain a more biodegradable product than the corresponding substrate.

  14. Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    João Restivo; Raquel P. Rocha; Adrián M. T. Silva; José J. M. Órfão; Manuel F. R. Pereira; José L. Figueiredo

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in or-der to incorporate different heteroatoms on the surface. O-, S-and N-containing groups were suc-cessfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation pro-cesses:catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.

  15. Enhanced electrochemical detection of ketorolac tromethamine at polypyrrole modified glassy carbon electrode.

    Science.gov (United States)

    Santhosh, Padmanabhan; Senthil Kumar, Nagarajan; Renukadevi, Murugesan; Gopalan, Anantha Iyengar; Vasudevan, Thiyagarajan; Lee, Kwang-Pill

    2007-04-01

    A glassy carbon electrode modified with a coating of polypyrrole (Ppy) exhibited an attractive performance for the detection and determination of a non-steroidal and non-narcotic analgesic compound, ketorolac tromethamine (KT). Cyclic voltammetry, differential pulse and square wave voltammetry were used in a combined way to identify the electrochemical characteristics and to optimize the conditions for detection. For calibrating and estimating KT, square-wave voltammetry was mainly used. The drug shows a well-defined peak at -1.40 V vs. Ag/AgCl in the acetate buffer (pH 5.5). The existence of Ppy on the surface of the electrode gives higher electrochemical active sites at the electrode for the detection of KT and preconcentrate KT by adsorption. The square-wave stripping voltammetric response depends on the excitation signal and the accumulation time. The calibration curve is linear in the range 1 x 10(-11) to 1 x 10(-7) M with a detection limit of 1.0 x 10(-12) M. Applicability to serum samples was also demonstrated. A detection limit of 1.0 ng ml for serum was observed. Square-wave voltammetry shows superior performance over UV spectroscopy and other techniques.

  16. Studies on the Electrochemistry of Dopamine at a Pyrocatechol Sulfonephthalein Modified Glassy Carbon electrode

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The electrochemical response of dopamine(DA)at a pyrocaterchol fulfonephthalein modified glassy carbon(PS/GC)electrode is reported.The electrode can be used as a detector for the determination of dopamine with a high stability and a good sensitivity.The cyclic voltammetric results indicated that there was a couple of well-defined redox peakds for dopamine at the PS/GC electrode with Epa=200mV,Epc=mV and the formal potential E0'=157.5 mV(vs.SCE) at 100 mV/s in the buffer solution of pH7.0. The PS/GC electrode can also be used to separate the electrochemical responses of ascorbic acid and DA by 54 mV with the differential pulse voltammetry.Under the selected conditions,the oxidation peak currents are linear with DA concetration in the range of 5.0×10-6 to 5.0×10-4 mol/L,and the detection limit is 1.0×10-6mol/L at S/N=3.Normalized with concentration,the Relative sensitivity of dopamine to ascorbic acid reaches ca.30.8:1.

  17. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    Science.gov (United States)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  18. Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs

    Directory of Open Access Journals (Sweden)

    Robert Piech

    2015-01-01

    Full Text Available A glassy carbon electrode modified with a Nafion/MWCNTs composite is shown to enable the determination of codeine using differential pulse voltammetry in phosphate buffer of pH 3.0. At a preconcentration time of 15 s, the calibration graph is linear in the 0.5 µM (0.15 mg·L−1 to 15 µM (4.5 mg·L−1 concentration range with a correlation coefficient of 0.998. The detection limit at a preconcentration time of 120 s is as low as 4.5 μg·L−1. The repeatability of the method at a 0.6 μg·L−1 concentration level, expressed as the RSD, is 3.7% (for n=5. The method was successfully applied and validated by analyzing codeine in drug, human plasma, and urine samples.

  19. Effect of composition on mechanical behaviour of diamond-like carbon coatings modified with titanium

    Energy Technology Data Exchange (ETDEWEB)

    Caschera, D., E-mail: daniela.caschera@ismn.cnr.i [Institute for the Study of Nanostructured Materials, ISMN - CNR, P.O. Box 10, 00015 Monterotondo Stazione (Italy); Federici, F.; Pandolfi, L.; Kaciulis, S. [Institute for the Study of Nanostructured Materials, ISMN - CNR, P.O. Box 10, 00015 Monterotondo Stazione (Italy); Sebastiani, M.; Bemporad, E. [Dip.to di Ingegneria Industriale e Meccanica, Universita di Roma Tre, Via Vasca Navale 84, 00146 Roma (Italy); Padeletti, G. [Institute for the Study of Nanostructured Materials, ISMN - CNR, P.O. Box 10, 00015 Monterotondo Stazione (Italy)

    2011-03-01

    In this study, diamond-like carbon (DLC) films modified with titanium were deposited by plasma decomposition of metallorganic precursor, titanium isopropoxide in CH{sub 4}/H{sub 2}/Ar gas atmosphere. The obtained films were composed of amorphous titanium oxide and nanocrystalline titanium carbide, embedded in an amorphous hydrogenated (a-C:H) matrix. The TiC/TiO{sub 2} ratio in the DLC matrix was found to be dependent on the deposition parameters. The dependence of the films chemical composition on gas mixture and substrate temperature was investigated by X-ray photoelectron spectroscopy, whereas the crystallinity of TiC nanoparticles and their dimension were evaluated by X-ray diffraction. The size of TiC crystallites varied from 10 to 35 nm, depending on the process parameters. The intrinsic hardness of 10-13 GPa, elastic modulus of 170-200 GPa and hardness-to-modulus ratio of obtained coatings were measured by the nanoindentation technique. Obtained results demonstrated a correlation of mechanical properties with the chemical composition and the ratio of amorphous/crystalline phases in the films. In particular, the formation of nanocrystalline TiC with atomic concentration not exceeding 10% and with grain size between 10 nm and 15 nm resulted in significantly enhanced mechanical properties of composite material in comparison with ordinary DLC films.

  20. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay.

    Science.gov (United States)

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel; Reitzel, Kasper

    2016-06-15

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La-P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock(®)). Short term (7 days) P adsorption studies revealed a significant negative effect of added DOC on the P sequestration of Phoslock(®), whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state (31)P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P binding did not change in the presence of DOC. (31)P MAS NMR also reveals that up to 26% of the sequestered phosphate is as loosely bound redox-sensitive P species on the surface of rhabdophane (LaPO4 · nH2O, n ≤ 3). The ratio between the loosely bound P and lanthanum phosphate did not change with time, however both NMR and La LIII-extended x-ray absorption fine structure (EXAFS) spectroscopy shows a transformation of lanthanum phosphate from the initially formed rhabdophane towards the more stable monazite (LaPO4). Furthermore, the effect of natural DOC on the P binding capacity was tested using water and pore water from 16 Danish lakes. Whilst DOC has an immediate negative impact on P binding in the lake water, with time this effect is reduced.

  1. Carbon nanotubes paste sensor modified with bismuth film for determination of metallic ions in ethanol fuel

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Gorla

    2015-05-01

    Full Text Available In the present study an anodic stripping voltammetric method using a bismuth film modified carbon nanotubes paste electrode for simultaneous determination of metals Zn2+, Cd2+and Pb2+in ethanol fuel is described. The metallic ions were preconcentrated on the bismuth film in the time and deposition potential of 500 s and -1.2 V and the stripping step was carried out by square wave voltammetry (frequency of 15 Hz, pulse amplitude of 25 mV and potential step of 5 mV. Acetate buffer at 0.1 mol L-1concentration and pH 4.5 was used as support electrolyte. The method showed linearity including the analytical blank up to 48.39 ?g L-1 for the metals and the obtained limits of detection were 3.36, 0.32 and 0.47 ?g L-1for Zn2+, Cd2+and Pb2+, respectively. The proposed method was applied in ethanol fuel samples.

  2. Stripping Voltammetric Determination of Analgesics in Their Pharmaceuticals Using Nano-Riboflavin-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Gopu

    2011-01-01

    Full Text Available Cyclic voltammetric behaviors of three analgesics, acetaminophen (AAP, acetylsalicylic acid (ASA, and dipyrone (DP, were studied using nano-riboflavin-modified glassy carbon electrode. One well-defined oxidation peak each for AAP and ASA and three oxidation peaks for DP were observed. The influence of pH, scan rate, and concentration reveals irreversible diffusion controlled reaction. The SEM analysis confirmed good accumulation of the drugs on the electrode surface. Calibration was made under the maximum peak current conditions. The concentration range studied for the determination of drugs was 0.02 to 0.4 μg mL−1 for AAP and ASA and 0.025 to 0.4 μg mL−1 for DP. The lower limit of detection observed for AAP, ASA, and DP was 0.016, 0.007 μg mL−1, and 0.013 μg mL−1, respectively. The suitability of the method for the determination of these analgesics in pharmaceutical preparations and urine samples was also ascertained.

  3. Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Pereira; Zanoni, Maria Valnice Boldrin; Bergamini, Marcio Fernando [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual Paulista, Caixa Postal 355, 14800-900 Araraquara, S.P. (Brazil); Chiorcea-Paquim, Ana-Maria; Diculescu, Victor Constantin [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal); Oliveira Brett, Ana-Maria [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)], E-mail: brett@ci.uc.pt

    2008-04-20

    Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks.

  4. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways.

    Science.gov (United States)

    Li, Xi; Jin, Qianwen; Yao, Qunyan; Xu, Beili; Li, Zheng; Tu, Chuantao

    2016-11-02

    This study aimed to investigate the effects of quercetin on liver fibrogenesis in mice and to elucidate the underlying molecular mechanisms. Mice were administered with carbon tetrachloride (CCl4) for eight weeks to induce liver fibrosis and concomitantly orally treated with quercetin (50mgkg(-1)day(-1)). Here, we demonstrated that quercetin dramatically ameliorated liver injury, inflammation, and hepatic fibrogenesis induced by CCl4. Quercetin also inhibited the activation of hepatic stellate cells (HSC) in vivo and in vitro, as evaluated by α-smooth muscle actin (α-SMA) expression, which is a specific marker of HSC activation. Moreover, reduced fibrosis was associated with decreased high-mobility group box 1 (HMGB1), toll like receptor (TLR) 2 and TLR4 genes, and protein expression. Quercetin also inhibited the cytoplasmic translocation of HMGB1 in hepatocytes of fibrotic livers. Further investigation demonstrated that quercetin treatment significantly attenuated CCl4-induced nuclear translocation of the nuclear factor-κB (NF-κB) p65 and inhibited degradation of IκBα (an inhibitor of NF-κB) expression in the liver compared with vehicle-treated fibrotic mice. Considered together, our data indicate that quercetin has hepatoprotective and anti-fibrotic effects in animal models of liver fibrosis, the mechanism of which may be involved in modulating the HMGB1-TLR2/4-NF-κB signaling pathways.

  5. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  6. Enhanced Growth and Redox Characteristics of Some Conducting Polymers on Carbon Nanotube Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    R.Saraswathi

    2007-01-01

    1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...

  7. Morphology-dependent NiO modified glassy carbon electrode surface for lead(II) and cadmium(II) detection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuewu [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wen, Hao [School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Fu, Qiang; Peng, Dai [Wuhan Institute of Marine Electric Propulsion, Wuhan 430070 (China); Yu, Jingui [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Zhang, Qiaoxin, E-mail: qiaoxinzhang1220@163.com [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Huang, Xingjiu [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2016-02-15

    Graphical abstract: Glassy carbon electrode surfaces have been modified with rods NiO, flakes NiO and balls NiO prepared via hydrothermal synthesis method for Pb(II) and Cd(II) detection by using the square wave anodic stripping voltammetry, among which the balls NiO modified electrode can achieve the optimal electrochemical detection ability for its enhanced electron transfer capacity, large BET surface area and strong adsorption capacity on surface. - Highlights: • Glassy carbon electrode surface was modified with NiO for lead(II) and cadmium(II) detection. • Surface detection effect was evaluated by detection limit, sensitivity and linear relativity. • Balls NiO modified electrode showed better electrochemical detection ability. • Lager BET surface area of NiO made electrode surface excellent electron transfer capacity. • Balls NiO modified electrode exhibited superior adsorption capacity and detection stability. - Abstract: Glassy carbon electrode (GCE) surfaces have been modified with different NiO morphologies consisting of rods NiO, flakes NiO and balls NiO prepared via the hydrothermal synthesis method for Pb(II) and Cd(II) detection by using the square wave anodic stripping voltammetry (SWASV). Meanwhile, the typical cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), BET surface area and adsorption property of the modified electrode surfaces have been investigated to evaluate their electrochemical detection effect. Results show that balls NiO modified GCE can get the optimal detection ability for its highest detection sensitivity to Pb(II) (13.46 A M{sup −1}) and Cd(II) (5.10 A M{sup −1}), the lowest detection limit (DL) to Pb(II) (0.08 μM) and Cd(II) (0.07 μM) as well as the superior linear relativity. In addition, an enhanced current at redox peaks, lower electron transfer resistance, larger BET surface area and stronger adsorption capacity have been confirmed for the balls NiO modified GCE surface. Finally, excellent

  8. Electrochemical detection of E. coli O157:H7 using porous pseudo-carbon paste electrode modified with carboxylic multi-walled carbon nanotubes, glutaraldehyde and 3-aminopropyltriethoxysilane.

    Science.gov (United States)

    Xu, Lijian; Du, Jingjing; Deng, Yan; He, Nongyue

    2012-12-01

    Fabrication of three different electrodes based on functional porous pseudo-carbon paste electrodes (PPCPEs) was described. PPCPEs were modified with carboxylic multi-walled carbon nanotubes (PPCPE-COOH), glutaraldehyde (PPCPE-CHO) and 3-aminopropyltriethoxysilane (PPCPE-NH2). The modified electrodes were applied in detection of E. coli O157:H7, it was showed that the electrochemical signal of PPCPE-CHO was the strongest among those three kinds of electrodes. A linear relationship between the anodic stripping peak current and the concentration of E. coli O157:H7 from 1.0 x 10(3) to 1.0 x 10(7) cells/mL and a limit of detection as low as 8.0 x 10(2) cells/mL were obtained when PPCPE-CHO was used.

  9. Simultaneous determination of nitrophenol isomers at the single-wall carbon nanotube compound conducting polymer film modified electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zhenhui; ZHOU Shuping

    2005-01-01

    Based on the molecular recognition ability of conductive polymer and the peculiar properties of carbon nanotubes, a novel single wall nanotubes (SWNTs) compound poly(4- aminopyridine) modified electrode (SWNTs/POAPE) is prepared at glass carbon electrode (GCE). The electrochemistry response of nitrophenol isomers is studied at the SWNTs/POAPE. The result indicates that o-, m- and p-nitrophenol are separated entirely at the SWNTs/POAPE interface. The electrode present here can be easily used to determine nitrophenol isomers simultaneously with higher sensitivity.

  10. Electrocatalytic oxidation and determination of homocysteine at carbon nanotubes modified paste electrode using dopamine as a mediator

    OpenAIRE

    Mohammadzadeh Safoora; Fouladgar Masoud

    2013-01-01

    A carbon paste electrode modified with multiwall carbon nanotubes (MWCNTPE) was prepared to study the electrocatalytic activity of dopamine (DP) in the presence of homocysteine (HCy) and it was used for determination of HCy. The diffusion coefficient of HCy (D = 6.79×10−6 cm2 s−1), and the kinetic parameters of its oxidation such as electron transfer coefficient (α = 0.46), and rate constant (kh = 7.44×102 dm3 mol-1 s-1) were also determined using electroch...

  11. Direct Electrochemistry of Cytochrome C on the Glassy Carbon Electrode Modified with 1-Pyrenebutyric Acid/MWNTs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    With 1-Pyrenebutyric acid (PBA) and multiwalled carbon nanotubes (MWNTs), glassy carbon electrode modified was successfully prepared. In phosphate buffer solution (pH 7.0), the direct electrochemistry of cytochrome C (Cyt C) was realized. In the cyclic voltammetry experiment two pairs of redox peaks of Cyt C were observed at 0.018 V and -0.314 V (vs. SCE),respectively. The redox reaction at 0.018 V was diffusion controlled, while the redox reaction at -0.314 V was adsorption controlled.

  12. TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation.

    Science.gov (United States)

    Kim, Young-Ho; Lee, Yong J

    2007-03-01

    TNF-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrated that human prostate cancer cells, but not normal prostate cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by quercetin. Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. We have shown that quercetin can potentiate TRAIL-induced apoptotic death. Human prostate adenocarcinoma DU-145 and LNCaP cells were treated with various concentrations of TRAIL (10-200 ng/ml) and/or quercetin (10-200 microM) for 4 h. Quercetin, which caused no cytotoxicity by itself, promoted TRAIL-induced apoptosis. The TRAIL-mediated activation of caspase, and PARP (poly(ADP-ribose) polymerase) cleavage were both enhanced by quercetin. Western blot analysis showed that combined treatment with TRAIL and quercetin did not change the levels of TRAIL receptors (death receptors DR4 and DR5, and DcR2 (decoy receptor 2)) or anti-apoptotic proteins (FLICE-inhibitory protein (FLIP), inhibitor of apoptosis (IAP), and Bcl-2). However, quercetin promoted the dephosphorylation of Akt. Quercetin-induced potent inhibition of Akt phosphorylation. Taken together, the present studies suggest that quercetin enhances TRAIL-induced cytotoxicity by activating caspases and inhibiting phosphorylation of Akt.

  13. Effect of quercetin on colon contractility and L-type Ca(2+) channels in colon smooth muscle of guinea-pig.

    Science.gov (United States)

    Huang, Wei-Feng; Ouyang, Shou; Li, Shi-Ying; Lin, Yan-Fei; Ouyang, Hui; Zhang, Hui; Lu, Chun-Jing

    2009-12-25

    The aim of the present study was to investigate the effects of quercetin on colon contractility and voltage-dependent Ca(2+) channels in the single smooth muscle cell isolated from the proximal colon of guinea-pig and to clarify whether its effect on L-type Ca(2+) current (I(Ca,L)) would be related to its myorelaxing properties. Colon smooth muscle strips were used to take contractile tension recordings. Smooth muscle cells were freshly isolated from the proximal colon of guinea-pig by means of papain treatment. I(Ba,L) (barium instead of calcium as current carrier) was measured by using whole-cell patch-clamp techniques. The results showed that quercetin relaxed colon muscle strips in a concentration-dependent manner and antagonized the contractile effect of acetylcholine and neostigmine. Preincubation with indomethcin [cyclooxygenase (COX) inhibitor] and methylene blue [guanylate cyclase (GC) inhibitor] significantly attenuated the relaxing effect of quercetin, respectively. Quercetin increased I(Ba,L) in a concentration- [EC(50)= (7.59+/-0.38) mumol/L] and voltage-dependent pattern, and shifted the maximum of the current-voltage curve by 10 mV in the depolarizing direction without modifying the threshold potential for Ca(2+) influx. Quercetin shifted the steady-state inactivation curve toward more positive potentials by approximately 3.75 mV without affecting the slope of activation and inactivation curve. H-89 (PKA inhibitor) abolished quercetin-induced I(Ba,L) increase, while cAMP enhanced the quercetin-induced I(Ba,L) increase. The patch-clamp results proved that quercetin increased I(Ba,L) via PKA pathway. It is therefore suggested that the relaxing effect of quercetin attributes to the interaction of GC and COX stimulation, as well as the antagonism effect on acetylcholine, which hierarchically prevails over the increase in the Ca(2+) influx to be expected from I(Ca,L) stimulation.

  14. Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Nader Sheibani

    2013-07-01

    Full Text Available Direct electron transfer of hemoglobin (Hb was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs and gold nanoparticles (AuNPs nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis, transmission electron microscopy (TEM and Fourier transform infrared (FTIR methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.

  15. A simple and sensitive method for the determination of 4-n-octylphenol based on multi-walled carbon nanotubes modified glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    Qiaoli Zheng; Ping Yang; He Xu; Jianshe Liu; Litong Jin

    2012-01-01

    A simple and sensitive electroanalytical method was presented for the determination of 4-n-octylphenol (OP) based on multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE).OP was directly oxidized on the MWCNTs/GCE,and the electrochemical oxidation mechanism was demonstrated by a one-electron and one-proton process in the reaction.The oxidation peak current of OP was significantly enhanced by the use of MWCNTs/GCE compared with those of bare glassy carbon electrode; suggesting that the modified electrode can remarkably improve the performance for OP determination.Factors influencing the detection processes were optimized.Under these optimal conditions,a linear relationship between concentration of OP and current response was obtained in the range of 5 × 10-8 to 1 × 10-5 mol/L with a detection limit of 1.5 × 10-8 mol/L and correlation coeffìcient 0.9986.The modified electrode showed good selectivity,sensitivity,reproducibility and high stability.

  16. Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode

    Institute of Scientific and Technical Information of China (English)

    Ali Taherkhani; Hassan Karimi-Maleh; Ali A.Ensafi; Hadi Beitollahi; Ahmad Hosseini; Mohammad A.Khalilzadeh; Hassan Bagheri

    2012-01-01

    A carbon paste electrode (CPE) chemically modified with multiwall carbon nanotubes and ferrocene (FC) was used as a selective electrochemical sensor for the simultaneous determination of trace amounts of cysteamine (CA) and folic acid (FA).This modified electrode showed very efficient electrocatalytic activity for the anodic oxidation of CA.The peak current of differential pulse voltammograms of CA and FA increased linearly with their concentration in the ranges of 0.7-200 μmol/L CA and 5.0-700 μmol/L FA.The detection limits for CA and FA were 0.3 μmol/L and 2.0 μ mol/L,respectively.The diffusion coefficient (D) and transfer coefficient (α) of CA were also determined.These conditions are sufficient to allow determination of CA and FA both individually and simultaneously.

  17. Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes.

    Science.gov (United States)

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2014-06-01

    Voltammetric behavior of dopamine was studied on a glassy carbon electrode (GCE) modified-NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. Impedance spectroscopy and cyclic voltammetry were used to characterize the behavior of dopamine at the surface of modified-GCE. The modified electrode showed a synergic effect toward the oxidation of dopamine. The oxidation peak current is increased linearly with the dopamine concentration (at pH7.0) in wide dynamic ranges of 0.05-6.0 and 6.0-100μmolL(-1) with a detection limit of 0.02μmolL(-1), using differential pulse voltammetry. The selectivity of the method was studied and the results showed that the modified electrode is free from interference of organic compounds especially ascorbic acid, uric acid, cysteine and urea. Its applicability in the determination of dopamine in pharmaceutical, urine samples and human blood serum was also evaluated. The proposed electrochemical sensor has appropriate properties such as high selectivity, low detection limit and wide linear dynamic range when compared with that of the previous reported papers for dopamine detection.

  18. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide.

    Science.gov (United States)

    Reanpang, Preeyaporn; Themsirimongkon, Suwaphid; Saipanya, Surin; Chailapakul, Orawon; Jakmunee, Jaroon

    2015-11-01

    Various metal nanoparticles (NPs) decorated on carbon nanotube (CNT) was modified on the home-made screen printed carbon electrode (SPCE) in order to enhances sensitivity of hydrogen peroxide (H2O2) determination. The simple casting method was used for the electrode modification. The monometallic and bimetallic NPs modified electrodes were investigated for their electrochemical properties for H2O2 reduction. The Pd-CNT/SPCE is appropriated to measure the H2O2 reduction at a potential of -0.3 V, then this modified electrode was incorporated with a home-made flow through cell and applied in a simple flow injection amperometry (FI-Amp). Some parameters influencing the resulted modified electrode and the FI-Amp system were studied. The proposed detection system was able to detect H2O2 in the range of 0.1-1.0 mM, with detection limit of 20 µM. Relative standard deviation for 100 replicated injections of 0.6 mM H2O2 was 2.3%. The reproducibility of 6 electrodes preparing in 3 different lots was 8.2%. It was demonstrated for determination of H2O2 in disinfectant, hair colorant and milk samples. Recoveries in the range of 90-109% were observed. The developed system provided high stability, good repeatability, high sample throughput and low reagent consumption.

  19. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Energy Technology Data Exchange (ETDEWEB)

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan, E-mail: dheerawan.b@cmu.ac.th [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  20. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  1. Enhanced hydrogen production of PbTe-PbS/TNAs electrodes modified with ordered mesoporous carbon.

    Science.gov (United States)

    Gao, Shiyuan; Wang, Bin; Liu, Zhongqing

    2017-10-15

    PbTe-PbS/TiO2 nanotube arrays (PbTe-PbS/TNAs) were synthesized by the successive ionic layer adsorption and reaction (SILAR) followed by linear sweep voltammetry (LSV). Using Nafion as a binder, ordered mesoporous carbon was cast on these materials to generate the modified electrodes OMC/PbTe-PbS/TNAs. It was demonstrated that the electrode modification with OMC could enhance the charge transfer between the electrode surface and the electrolyte solution, improve the energy band bending of the electrode/electrolyte interface, increase the active electrochemical surface area of the electrode, and reduce the overpotential of the electrode reactions. Under ambient conditions, the short circuit current density (37.84mAcm(-)(2)) and the active electrochemical surface area (29mFcm(-)(2)) of the OMC/PbTe-PbS/TNAs electrode were 27.49% and 36.79% higher than that of PbTe-PbS/TNAs (29.68mAcm(-)(2) and 21.2mFcm(-)(2)), respectively. A particularly important feature of the OMC modification is that the hot electron extraction capability of the PbTe-PbS/TNAs electrode remained in the new system to provide rapid enhancement of short circuit current density upon increasing temperature. The OMC/PbTe-PbS/TNAs electrode registered a hydrogen generation rate of 11mLcm(2)h(-)(1), with an energy efficiency of 98.79% and a heat efficiency of 43.03% under cell voltage of 1.0V at 55°C. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Manganese-modified activated carbon fiber (Mn-ACF): Novel efficient adsorbent for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhumei; Yu, Yichang; Pang, Shiyu; Du, Dongyun, E-mail: dydu666@yahoo.com.cn

    2013-11-01

    In this paper, a novel adsorbent, manganese-modified activated carbon fiber (Mn-ACF), was prepared and used for removal of As(V) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Adsorption of As(V) onto the as-prepared adsorbent from aqueous solutions was investigated and discussed. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second order, respectively. The experimental results indicate that the pseudo-second-order kinetic equation can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of As(V) on the as-prepared adsorbent were analyzed by Langmuir and Freundlich models, which suggested that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (q{sub max}) of As(V) on Mn-ACF at various temperatures, determined using the Langmuir equation, are 23.77, 33.23 and 36.53 mg g{sup −1} at 303, 313 and 323 K, respectively. To the best of our knowledge, this adsorption capacity for As(V) is much larger than those reported in literatures (7.50–16.58 mg g{sup −1}). Notably, the q{sub max} increases with increasing temperature, suggesting that adsorption of As(V) on Mn-ACF surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The effect of experimental parameters such as pH and dosage of adsorbent on adsorption of As(V) were also studied. The present work will be useful in purification of groundwater.

  3. Manganese-modified activated carbon fiber (Mn-ACF): Novel efficient adsorbent for Arsenic

    Science.gov (United States)

    Sun, Zhumei; Yu, Yichang; Pang, Shiyu; Du, Dongyun

    2013-11-01

    In this paper, a novel adsorbent, manganese-modified activated carbon fiber (Mn-ACF), was prepared and used for removal of As(V) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Adsorption of As(V) onto the as-prepared adsorbent from aqueous solutions was investigated and discussed. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second order, respectively. The experimental results indicate that the pseudo-second-order kinetic equation can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of As(V) on the as-prepared adsorbent were analyzed by Langmuir and Freundlich models, which suggested that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (qmax) of As(V) on Mn-ACF at various temperatures, determined using the Langmuir equation, are 23.77, 33.23 and 36.53 mg g-1 at 303, 313 and 323 K, respectively. To the best of our knowledge, this adsorption capacity for As(V) is much larger than those reported in literatures (7.50-16.58 mg g-1). Notably, the qmax increases with increasing temperature, suggesting that adsorption of As(V) on Mn-ACF surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The effect of experimental parameters such as pH and dosage of adsorbent on adsorption of As(V) were also studied. The present work will be useful in purification of groundwater.

  4. Fresh meat packaging: consumer acceptance of modified atmosphere packaging including carbon monoxide.

    Science.gov (United States)

    Grebitus, Carola; Jensen, Helen H; Roosen, Jutta; Sebranek, Joseph G

    2013-01-01

    Consumers' perceptions and evaluations of meat quality attributes such as color and shelf life influence purchasing decisions, and these product attributes can be affected by the type of fresh meat packaging system. Modified atmosphere packaging (MAP) extends the shelf life of fresh meat and, with the inclusion of carbon monoxide (CO-MAP), achieves significant color stabilization. The objective of this study was to assess whether consumers would accept specific packaging technologies and what value consumers place on ground beef packaged under various atmospheres when their choices involved the attributes of color and shelf life. The study used nonhypothetical consumer choice experiments to determine the premiums that consumers are willing to pay for extended shelf life resulting from MAP and for the "cherry red" color in meat resulting from CO-MAP. The experimental design allowed determination of whether consumers would discount foods with MAP or CO-MAP when (i) they are given more detailed information about the technologies and (ii) they have different levels of individual knowledge and media exposure. The empirical analysis was conducted using multinomial logit models. Results indicate that consumers prefer an extension of shelf life as long as the applied technology is known and understood. Consumers had clear preferences for brighter (aerobic and CO) red color and were willing to pay $0.16/lb ($0.35/kg) for each level of change to the preferred color. More information on MAP for extending the shelf life and on CO-MAP for stabilizing color decreased consumers' willingness to pay. An increase in personal knowledge and media exposure influenced acceptance of CO-MAP negatively. The results provide quantitative measures of how packaging affects consumers' acceptance and willingness to pay for products. Such information can benefit food producers and retailers who make decisions about investing in new packaging methods.

  5. Chemically modified carbon paste ion-selective electrodes for determination of atorvastatin calcium in pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Salwa Fares Rassi

    2017-06-01

    Full Text Available A simple, rapid and sensitive method for the determination of atorvastatin calcium in pharmaceutical preparations using two modified carbon paste electrodes was developed. One electrode (sensor A is based on ion-pair of atorvastatin with 5,6-diaminouracil hydrochloride (ATS-DAUH and the other (sensor B is based on atorvastatin with picric acid (ATS-PC. Among three different solvent mediators tested, dioctylphthalate (DOPH exhibited a proper behavior including Nernstian slopes of the calibration curve at 58.76 ± 0.8 and 57.48±1 mV per decade for sensors A and B. The response times were 10 and 12 s, detection limits 1.3 × 10−6 and 2.2 × 10−6 M; the concentration range 2.5 × 10−6-7.9 × 10−2 M and 3.0 × 10−6 to 7.9 × 10−2 M respectively. The present electrodes show good discrimination of atorvastatin calcium from several inorganic, organic ions, sugars and some common excipients. The sensors were applied for the determination of atorvastatin calcium in pharmaceutical preparations using standard addition and the calibration curve methods. The results obtained were satisfactory with excellent percentage recovery comparable and sometimes better than those obtained by other routine methods for the assay. The proposed potentiometric methods offer the advantages of simplicity, accuracy, automation feasibility and applicability to turbid and colored sample solutions.

  6. Quercetin attenuates TNF-induced inflammation in hepatic cells by inhibiting the NF-κB pathway.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Ángeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2012-01-01

    The dietary flavonoid quercetin is an antioxidant that possesses antiinflammatory and anticarcinogenic properties and may modulate signaling pathways. Inflammation is considered to play a pivotal role in carcinogenesis by triggering activation of transcription factors such as nuclear factor kappa B (NF-κB), functionally dependent on cellular redox status. This study aims to investigate the antiinflammatory effect of quercetin and its role on the NF-κB pathway, and cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases modulation in a human hepatoma cell line (HepG2). Quercetin alone did not modify any of the parameters analyzed but protected cells against activation of the NF-κB route induced by tumor necrosis factor-α. This inhibitory effect of quercetin was mediated, at least in part, by extracellular regulated kinase, c-jun amino-terminal kinase, and reactive oxygen species, and it was accompanied by reduced COX-2 levels. These observations suggest that quercetin may contribute as an antiinflammatory agent in the liver and provide evidences about its role in the prevention of diseases associated with inflammation, including cancer.

  7. Enhanced Salt-removal Percentage in Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes by HNO3

    Science.gov (United States)

    Ainun Nisa, Diani; Endarko

    2017-07-01

    Carbon electrodes for desalination system have successfully been synthesized with and/or without modified activated carbon by chemically activated using HNO3. The freezing-thawing method was used to synthesize the carbon electrodes. In this study, 5 cycles of freezing-thawing were applied in the synthesized carbon electrodes (1 cycle is 12 hours for freezing and 6 hours for thawing). Electrochemical properties of the synthesized carbon electrodes with and/or without modified activated carbon were characterized and observed by cyclic voltammetry (CV) and Electrical impedance spectroscopy (EIS). The salt-removal percentage experiments were conducted to evaluate the performance of capacitive deionization (CDI) cell using the two pairs of carbon electrodes with each pair consisting of two parallel electrodes that separated by a spacer. The result showed that the salt removal percentage of the carbon electrodes with modified activated carbon has greater than the carbon electrodes without modified activated carbon, with reduction level at 55.7 and 24.8%, respectively.

  8. Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; ZHENG Jianfeng; PENG Jinfang; HE Liping; ZHU Minhao

    2010-01-01

    The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear

  9. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia.

    Science.gov (United States)

    He, Yuanzhou; Cao, Xiaopei; Guo, Pujian; Li, Xiaochen; Shang, Huihui; Liu, Jin; Xie, Min; Xu, Yongjian; Liu, Xiansheng

    2017-02-01

    Quercetin, an important dietary flavonoid has been demonstrated to potentially reverse or even prevent pulmonary arterial hypertension (PAH) progression. However, the effects of quercetin on apoptosis and autophagy in pulmonary arterial smooth muscle cells (PASMCs) have not yet been clearly elucidated. The current study found that quercetin significantly induce the apoptotic and autophagic capacities of PASMCs in vitro and in vivo in hypoxia. In addition, we found that quercetin increases FOXO1 (a major mediator in autophagy regulation) expression and transcriptional activity. Moreover, FOXO1 knockdown by siRNAs inhibited the phosphorylation of mTOR and 4E-BPI, which is downstream of P70-S6K, and markedly blocked quercetin-induced autophagy. We also observed that FOXO1-mediated autophagy was achieved via SESN3 not Rictor upregulation and after mTOR suppression. Furthermore, Treatment with autophagy-specific inhibitors could markedly enhance quercetin-induced apoptosis in PASMCs under hypoxia. Finally, quercetin in combination with autophagy inhibition treatment could enhance the therapeutic effects of quercetin in hypoxia-associated PAH in vivo. Taken together, quercetin could enhance hypoxia-induced autophagy through the FOXO1-SENS3-mTOR pathway in PASMCs. Combining quercetin and autophagy inhibitors may be a novel therapeutic strategy for treating hypoxia-associated PAH. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Gadhari, Nayan S.; Sanghavi, Bankim J. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Srivastava, Ashwini K., E-mail: aksrivastava@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India)

    2011-10-03

    Highlights: {yields} Potentiometric stripping analysis (PSA) employed for the determination of antimony. {yields} Hexathia-18C6 and rice husk modified carbon paste electrode developed for the analysis. {yields} Lowest detection limit obtained for the determination of Sb(III) using PSA. {yields} Analysis of Sb in pharmaceutical formulations, human hair, blood serum, urine and sea water. {yields} Rice husk used as a modifier for the first time in electrochemistry. - Abstract: An electrochemical method based on potentiometric stripping analysis (PSA) employing a hexathia 18C6 (HT18C6) and rice husk (RH) modified carbon paste electrode (HT18C6-RH-CPE) has been proposed for the subnanomolar determination of antimony. The characterization of the electrode surface has been carried out by means of scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry. By employing HT18C6-RH-CPE, a 12-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s V{sup -1}) was proportional to the Sb(III) concentration in the range of 1.42 x 10{sup -8} to 6.89 x 10{sup -11} M (r = 0.9944) with the detection limit (S/N = 3) of 2.11 x 10{sup -11} M. The practical analytical utilities of the modified electrode were demonstrated by the determination of antimony in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limit and excellent reproducibility. Moreover, the results obtained for antimony analysis in commercial and real samples using HT18C6-RH-CPE and those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES) are in agreement at the 95% confidence level.

  11. Supercritical Antisolvent Precipitation of Microparticles of Quercetin

    Institute of Scientific and Technical Information of China (English)

    刘学武; 李志义; 韩冰; 苑塔亮

    2005-01-01

    Supercritical antisolvent (SAS) process is a recently developed technology to produce micro- and nanoparticles. This paper presents a continuous apparatus to conduct experiment of SAS process. With the apparatus,the effects of pressure, temperature and flow ratio of CO2 to the solution on the shape and size of particles are studied for the quercetin-ethanol-CO2 system. Spherical quercetin microparticles with diameters ranging form i μm to 6μm can be obtained while ethanol is used as organic solvent. The most effective fact on the shape and size of particles is pressure, the next is temperature and the last is the flow ratio of CO2 to solution.

  12. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  13. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode.

    Science.gov (United States)

    Zhang, Lei; Tian, Dan-Bi; Zhu, Jun-Jie

    2008-11-01

    TiO(2) nanoparticles were homogeneously coated on multiwalled carbon nanotubes (MWCNTs) by hydrothermal deposition, and this nanocomposite might be a promising material for myoglobin (Mb) immobilization in view of its high biocompatibility and large surface. The glassy carbon (GC) electrode modified with Mb-TiO(2)/MWCNTs films exhibited a pair of well-defined, stable and nearly reversible cycle voltammetric peaks. The formal potential of Mb in TiO(2)/MWCNTs film was linearly varied in the range of pH 3-10 with a slope of 48.65 mV/pH, indicating that the electron transfer was accompanied by single proton transportation. The electron transfer between Mb and electrode surface, k(s) of 3.08 s(-1), was greatly facilitated in the TiO(2)/MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were also studied, and the apparent Michaelis-Menten constant is calculated to be 83.10 microM, which shows a large catalytic activity of Mb in the TiO(2)/MWCNTs film to H(2)O(2). The modified GC electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant Mb-TiO(2)/MWCNTs modified glassy carbon electrode exhibited fast amperometric response to hydrogen peroxide reduction, long term life and excellent stability. Finally the activity of the sensor for nitric oxide reduction was also investigated.

  14. Chemiresistive sensor based on polythiophene-modified single-walled carbon nanotubes for detection of NO2

    Science.gov (United States)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In the present investigation, a chemiresistive sensor based on conducting polythiophene-modified single-walled carbon nanotubes (SWNTs) for NO2 detection has been reported. The SWNTs were aligned across 3 μm gap between two gold microelectrodes on Si/SiO2 substrate. Alignment of SWNTs was carried out by using AC dielectrophoretic technique and it was confirmed by current-voltage (I-V) measurement. Aligned SWNTs were modified by conducting polythiophene using charge controlled potentiostatic deposition and it was confirmed by field-effect transistor (FET) and electrochemical measurements. Polythiophene-modified SWNT devices were used for the NO2 detection in chemiresistive modality. This sensor exhibited very good linear response range from 10 ppb to 10 ppm.

  15. Quercetin Treatment Ameliorates Systemic Oxidative Stress in Cirrhotic Rats

    Science.gov (United States)

    Vieira, Emanuelle Kerber; Bona, Silvia; Di Naso, Fábio Cangeri; Porawski, Marilene; Tieppo, Juliana; Marroni, Norma Possa

    2011-01-01

    Our aim was to investigate whether the antioxidant quercetin protects against liver injury and ameliorates the systemic oxidative stress in rats with common bile duct ligation. Secondary biliary cirrhosis was induced through 28 days of bile duct obstruction. Animals received quercetin (Q) after 14 days of obstruction. Groups of control (CO) and cirrhotic (CBDL) animals received a daily 50 mg/kg body weight i.p. injection of quercetin (CO + Q; CBDL + Q) or vehicle (CO; CBDL). Quercetin corrected the reduction in superoxide dismutase (SOD), catalase CAT, and glutathione peroxidase GPx activities and prevented the increase of thiobarbituric acid reactive substances (TBARS), aminotransferases, and alkaline phosphatase in cirrhotic animals. Quercetin administration also corrected the reduced total nitrate concentration in the liver and prevented liver fibrosis and necrosis. These effects suggest that quercetin might be a useful agent to preserve liver function and prevent systemic oxidative stress. PMID:21991520

  16. Synthesis and CO2 adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite

    Science.gov (United States)

    Ullah, Sami; Bustam, M. A.; Shariff, A. M.; Elkhalifah, Ali E. I.; Murshid, G.; Riaz, Nadia

    2014-10-01

    MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO2 adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO2 adsorption. The result had showed that the modified MOF-5 enhanced the CO2 adsorption compared to the pure MOF-5. The increment in the CO2 uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO2 sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g-1 at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO2 adsorption followed by the modified MOF-5@ EG and lastly, MOF-5.

  17. Glassy carbon electrode modified with poly(taurine/TiO2-graphene composite film for determination of acetaminophen and caffeine

    Directory of Open Access Journals (Sweden)

    Xiong Xiao-Qin

    2013-01-01

    Full Text Available A novel electrochemical sensor poly(taurine/TiO2-graphene nanocomposite modified glassy carbon electrode (PT/TiO2-Gr/GCE was fabricated. This sensor was based on an electrochemically polymerized taurine layer on a TiO2-graphene modified glassy carbon electrode. The electrochemical behaviors of acetaminophen and caffeine at the modified electrode were studied by cyclic voltammetry and differential pulse voltammetry. The results showed that the oxidation peak currents of acetaminophen and caffeine were linear with their concentrations in the range of 1×10-7-9×10-5 M and 2.5×10-5-2×10-4 M, respectively. The detection limits of acetaminophen and caffeine were 3.4×10-8 M and 5.0×10-7 M, respectively (S/N=3. This modified electrode showed good sensitivity and stability, which had promising potential applications in electrochemical sensors and biosensors design.

  18. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  19. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  20. Multi-walled carbon nanotube/poly(glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals.

    Science.gov (United States)

    Thomas, Tony; Mascarenhas, Ronald J; Swamy, B E Kumara; Martis, Praveen; Mekhalif, Zineb; Sherigara, B S

    2013-10-01

    A modified carbon paste electrode (CPE) for the selective detection of dopamine (DA) in presence of large excess of ascorbic acid (AA) and uric acid (UA) at physiological pH has been fabricated by bulk modification of CPE with multi-walled carbon nanotubes (MWCNTs) followed by electropolymerization of glycine (Gly). The surface morphology is compared using SEM images. The presence of nitrogen was confirmed by the energy dispersion X-ray spectroscopy (EDS) indicating the polymerization of Gly on the surface of the modified electrode. The impedance study indicates a better charge transfer kinetics for DA at CPE modified with MWCNT/polyglycine electrode. The presence of MWCNTs in carbon paste matrix triggers the extent of electropolymerization of Gly and imparts more selectivity towards DA by electrochemically not sensing AA below a concentration of 3.1×10(-4)M. Due to the exclusion of the signal for AA, the interference of AA in the determination of DA is totally ruled out by DPV method which is used for its detection at lower concentrations. Large peak separation, good sensitivity, reproducibility and stability allow this modified electrode to analyze DA individually and simultaneously along with AA and UA. Detection limit of DA was determined from differential pulse voltammetric (DPV) study and found to be 1.2×10(-8)M with a linear dynamic range of 5.0×10(-7)M to 4.0×10(-5)M. The practical analytical application of this electrode was demonstrated by measurement of DA content in dopamine hydrochloride injection and human blood serum.

  1. Quercetin and Its Anti-Allergic Immune Response

    OpenAIRE

    Jiri Mlcek; Tunde Jurikova; Sona Skrovankova; Jiri Sochor

    2016-01-01

    Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inf...

  2. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2016-01-01

    Full Text Available Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent.

  3. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine.

    Science.gov (United States)

    Nam, Ju-Suk; Sharma, Ashish Ranjan; Nguyen, Lich Thi; Chakraborty, Chiranjib; Sharma, Garima; Lee, Sang-Soo

    2016-01-19

    Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent.

  4. Carbon nanotubes and graphene modified screen-printed carbon electrodes as sensitive sensors for the determination of phytochelatins in plants using liquid chromatography with amperometric detection.

    Science.gov (United States)

    Dago, Àngela; Navarro, Javier; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2015-08-28

    Nanomaterials are of great interest for the development of electrochemical sensors. Multi-walled carbon nanotubes and graphene were used to modify the working electrode surface of different screen-printed carbon electrodes (SPCE) with the aim of improving the sensitivity of the SPCE and comparing it with the conventional glassy carbon electrode. To assay the usability of these sensors, a HPLC methodology with amperometric detection was developed to analyze several phytochelatins in plants of Hordeum vulgare and Glycine max treated with Hg(II) or Cd(II) giving detection limits in the low μmolL(-1) range. Phytochelatins are low molecular weight peptides with the general structure γ-(Glu-Cys)n-Gly (n=2-5) which are synthesized in plants in the presence of heavy metal ions. These compounds can chelate heavy metal ions by the formation of complexes which, are transported to the vacuoles, where the toxicity is not threatening. For this reason phytochelatins are essential in the detoxification of heavy metal ions in plants. The developed HPLC method uses a mobile phase of 1% of formic acid in water with KNO3 or NaCl (pH=2.00) and 1% of formic acid in acetonitrile. Electrochemical detection at different carbon-based electrodes was used. Among the sensors tested, the conventional glassy carbon electrode offers the best sensitivity although modification improves the sensitivity of the SPCE. Glutathione and several isoforms of phytochelatin two were found in plant extracts of both studied species.

  5. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    Science.gov (United States)

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  6. Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration☆

    Institute of Scientific and Technical Information of China (English)

    Qin Lu; Haiyan Wu; Haoyan Li; Dianhai Yang

    2015-01-01

    A pilot-scale modified carbon source division anaerobic anoxic oxic (AAO) process with pre-concentration of returned activated sludge (RAS) was proposed in this study for the enhanced biological nutrient removal (BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60%and 50%, respectively, with an inner recycling ratio of 100%under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L−1 with a removal efficiency of 63%and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.

  7. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berrios, Cristhian [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile); Marco, Jose F.; Gutierrez, Claudio [Instituto de Quimica Fisica ' Rocasolano' , CSIC, C. Serrano, 119, 28006, Madrid (Spain); Ureta-Zanartu, Maria Soledad [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile)], E-mail: soledad.ureta@usach.cl

    2009-11-01

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH{sub 2} or -SO{sub 3}{sup -}) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH){sub 2} clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH){sub 2} clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH){sub 2} clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  8. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  9. Determination of Dopamine in the Presence of Ascorbic Acid by Nafion and Single-Walled Carbon Nanotube Film Modified on Carbon Fiber Microelectrode

    Directory of Open Access Journals (Sweden)

    Haesang Jeong

    2008-11-01

    Full Text Available Carbon fiber microelectrode (CFME modified by Nafion and single-walled carbon nanotubes (SWNTs was studied by voltammetric methods in phosphate buffer saline (PBS solution at pH 7.4. The Nafion-SWNTs/CFME modified microelectrode exhibited strongly enhanced voltammetric sensitivity and selectivity towards dopamine (DA determination in the presence of ascorbic acid (AA. Nafion-SWNTs film accelerated the electron transfer reaction of DA, but Nafion film as a negatively charged polymer restrained the electrochemical response of AA. Voltammetric techniques separated the anodic peaks of DA and AA, and the interference from AA was effectively excluded from DA determination. Linear calibration plots were obtained in the DA concentration range of 10 nM - 10 μM and the detection limit of the anodic current was determined to be 5 nM at a signal-to-noise ratio of 3. The study results demonstrate that DA can be determined without any interference from AA at the modified microelectrode, thereby increasing the sensitivity, selectivity, and reproducibility and stability.

  10. Determination of serotonin on a glassy carbon electrode modified by electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin and single walled carbon nanotubes.

    Science.gov (United States)

    Kim, Seul Ki; Ahmed, Mohammad Shamsuddin; Jeong, Haesang; You, Jung-Min; Jeon, Seungwon

    2011-03-01

    A chemically modified electrode [poly(TAPP)-SWNT/GCE] was prepared by electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP)-single walled carbon nanotubes (SWNT) on the surface of a glassy carbon electrode (GCE). This modified electrode was employed as an electrochemical biosensor for the determination of serotonin concentration and exhibited a typical enhance effect on the current response of serotonin and lower oxidation overpotential. The biosensor was very effective to determined 5-HT in a mixture. The linear response was in the range 2.0 x 10(-7) to 1.0 x 10(-5) M, with a correlation coefficient of 0.999 [i(p)(microA) = 3.406 C (microM)+0.132] on the anodic current, with a detection limit of 1 x 10(-9) M. Due to the relatively low currents and different potentials in the electrochemical responses to ascorbic acid and dopamine, the modified electrode is a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of ascorbic acid and dopamine.

  11. Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand [2.2.1]and multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Gadhari, Nayan S.; Sanghavi, Bankim J. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098 (India); Karna, Shashi P. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, ATTN: RDRL-WM, Aberdeen Proving Ground, MD 21005-5069 (United States); Srivastava, Ashwini K., E-mail: aksrivastava@chem.mu.ac.i [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098 (India)

    2010-12-30

    An electrochemical method based on potentiometric stripping analysis (PSA) employing a cryptand [2.2.1](CRY) and carbon nanotube (CNT) modified paste electrode (CRY-CNT-PE) has been proposed for the subnanomolar determination of bismuth. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). It was observed that by employing CRY-CNT-PE, a 9-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s/V) was proportional to the Bi(III) concentration in the range of 5.55 x 10{sup -8} to 9.79 x 10{sup -11} M (r = 0.9990) with the detection limit (S/N = 3) of 3.17 x 10{sup -11} M. The practical analytical utilities of the modified electrode were demonstrated by the determination of bismuth in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as a simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. Moreover, the results obtained for bismuth analysis in commercial and real samples using CRY-CNT-PE and those obtained by atomic absorption spectroscopy (AAS) are in agreement at the 95% confidence level.

  12. Electrocatalytic oxidation of thioglycolic acid at carbon paste electrode modified with cobalt phthalocyanine: application as a potentiometric sensor

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed; Yazdani, Javad

    2003-12-15

    The voltammetric behavior of thioglycolic acid (TGA) was studied at a carbon paste electrode modified with cobalt phthalocyanine (CoPc). The CoPc-modified electrode shows high electrocatalytic activity toward oxidation of TGA, lowering substantially the overpotential of anodic reaction. Results of the cyclic voltammetry show that TGA undergoes a two-step oxidation (each step with one electron) resulting the dimer of thiol. Enhancement of the rate of electron transfer results in a near-Nernstian behavior of modified electrode to the concentration of TGA and makes it as a suitable potentiometric sensor for the detection of this compound. This electrode shows a near-Nernstian response in a wide linear range of the concentration TGA ({approx}4 orders of magnitude). The modified electrode was used successfully for the determination of TGA and its salts in hair-treatment products and also in culture media. The modified electrode exhibited a fast response time (<10 s), very good stability, and had an extended lifetime.

  13. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.

    Science.gov (United States)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2015-06-15

    In the present work, an enhanced electrochemical sensor for dopamine (DA) was developed based on palladium nanoparticles decorated activated fullerene-C60 (AC60/PdNPs) composite modified screen printed carbon electrode (SPCE). The scanning electron microscopy and elemental analysis confirmed the formation of PdNPs on AC60. The fabricated AC60/PdNPs composite modified electrode exhibited an enhanced electrochemical response to DA with a lower oxidation potential than that of SPCE modified with PdNPs and C60, indicating the excellent electrooxidation behavior of the AC60/PdNPs composite modified electrode. The electrochemical studies confirmed that the electrooxidation of DA at the composite electrode is a diffusion controlled electrochemical process. The differential pulse voltammetry was employed for the determination of DA; under optimum conditions, the electrochemical oxidation signal of DA increased linearly at the AC60/PdNPs composite from 0.35 to 133.35 μM. The limit of detection was found as 0.056 μM with a sensitivity of 4.23 μA μM(-1) cm(-2). The good recovery of DA in the DA injection samples further revealed the good practicality of AC60/PdNPs modified electrode.

  14. Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization.

    Science.gov (United States)

    Hu, Po; Huang, Cheng Zhi; Li, Yuan Fang; Ling, Jian; Liu, Yu Ling; Fei, Liang Run; Xie, Jian Ping

    2008-03-01

    In this contribution, we design a visual sensor for DNA hybridization with DNA probe-modified magnetic particles (MPs) and multiwalled carbon nanotubes (MWNTs) without involving a visual recognition element such as fluorescent/chemiluminescent reagents. It was found that DNA probe-modified MWNTs, which could be dispersed in aqueous medium and have strong light scattering signals under the excitation of a light beam in the UV-vis region, could connect with DNA probe-modified MPs together in the presence of perfectly complementary target DNA and form a sandwich structure. In a magnetic field, the formed MP-MWNT species can easily be removed from the solution, resulting in a decrease of light scattering signals. Thus, a magnetic particle-based sandwich sensor could be developed to detect DNA hybridization by measuring the light scattering signals with DNA-modified MWNTs as recognition elements. Experiments showed that the DNA-modified MPs sensor could be reused at least 17 times and was stable for more than 6 months.

  15. Preparation of glass carbon electrode modified with nanocrystalline nickel-decorated carbon nanotubes and electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanocrystalline nickel with an average diameter of about 16 nm and a face-centered cubic (fcc)structure was uniformly attached to the surface of carbon nanotubes (CNT) by wet chemistry.The sample was characterized by X-ray powder diffraction and transmission electron microscopy (TEM).A glass carbon electrode modified with nickel-modified multi-wall carbon nanotubes (MWCNTs-Ni/GCE) was prepared.The electrochemical behavior of the MWCNTs-Ni/GCE and the electrocatalytic oxidation of methanol at the MWCNTsNi/GCE were investigated by cyclic voltammetry in 1.0 mol/L NaOH solution.The cyclic voltammograms showed that the electron transfer between β-Ni(OH)2 and β-NiOOH is mainly a diffusion-controlled quasireversible process,and that the electrode has high catalytic activity for the electrooxidation of methanol in alkaline medium,revealing its potential application in alkaline rechargeable batteries and fuel cells.

  16. Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage

    CSIR Research Space (South Africa)

    Khawula, TNY

    2016-03-01

    Full Text Available Molybdenum disulfide-modified carbon nanospheres (MoS(sub2)/CNS) with two different morphologies (spherical and flower-like) have been synthesized using hydrothermal techniques and investigated as symmetric pseudocapacitors in an aqueous electrolyte...

  17. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells

    Science.gov (United States)

    Chang, Shih-Hang; Liou, Jyun-Sian; Liu, Jung-Liang; Chiu, Yi-Fan; Xu, Chang-Han; Chen, Bor-Yann; Chen, Jian-Zhang

    2016-12-01

    This study investigated the surface and electrochemical properties of carbon cloth electrodes surface-modified by using atmospheric pressure plasma jets (APPJs) for applications involving microbial fuel cells (MFCs). APPJ treatment made the carbon cloth highly hydrophilic and did not introduce any observable cracks or flaws. MFCs configured with APPJ-treated carbon cloth electrodes exhibited electrochemical performance (maximum power density of 7.56 mW m-2) superior to that of MFCs configured with untreated carbon cloth electrodes (maximum power density of 2.38 mW m-2). This boost in performance can be attributed to the formation of abundant carboxyl and ammonium functional groups on the surface of APPJ-treated carbon cloth, which promoted the formation of anodic biofilms and the adhesion of bacteria, while facilitating the transfer of electrons from the bacteria to the electrodes. APPJ surface modification is non-toxic and environmentally friendly (no exogenous chemicals are required), which is particularly beneficial as the introduction of toxins might otherwise inhibit bacterial growth and metabolism. The APPJ surface modification process is rapid, cost-effective, and applicable to substrates covering a large area, making it ideal for the fabrication of large-scale MFCs and bioelectrochemical bioenergy devices.

  18. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Meixia; Gao, Feng [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Cai, Xili [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Jiang, Shulian; Huang, Lizhang [Zhangzhou Product Quality Supervision and Inspection Institute, Zhangzhou 363000 (China); Gao, Fei [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2013-04-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k{sub s}), diffusion coefficient (D) and the surface adsorption amount (Γ{sup ⁎}) of ACOP on GR–CS/GCE were determined to be 0.25 s{sup −1}, 3.61 × 10{sup −5} cm{sup 2} s{sup −1} and 1.09 × 10{sup −9} mol cm{sup −2}, respectively. Additionally, a 2e{sup −}/2H{sup +} electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10{sup −6} to 1.0 × 10{sup −4} M with a low detection limit of 3.0 × 10{sup −7} M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied.

  19. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    Science.gov (United States)

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min(-1)) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10(5) UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  20. Carbon nanotube embedded poly 1,5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations.

    Science.gov (United States)

    Yadav, Saurabh K; Choubey, Pravir K; Agrawal, Bharati; Goyal, Rajendra N

    2014-01-01

    An electrochemically conductive single-walled carbon nanotube (SWCNT) embedded poly 1,5-diaminonapthalene (DAN) modified sensor has been developed for the determination of sulfacetamide (SFA). The surface morphology of the modified sensor has been characterized by FE-SEM, which revealed good dispersion of the carbon nanotube in polymer matrix. SFA was quantified using square wave voltammetry in phosphate buffer of pH 7.2, which acted as supporting electrolyte during analysis. The modified sensor exhibited an effective catalytic response towards the oxidation of SFA with excellent reproducibility and stability. The peak current of SFA was found to be linear in the concentration range of 0.005-1.5 mM and detection limit and sensitivity of 0.11 μM (S/N=3) and 23.977 µA mM(-1), respectively were observed. The analytical utility of method was checked by determining the SFA in various pharmacological dosage forms. The results obtained from the voltammetry were validated by comparing the results with those obtained from HPLC. The proposed method is sensitive, simple, rapid and reliable and is useful for the routine analysis of SFA in pharmaceutical laboratories.

  1. Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes.

    Science.gov (United States)

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2013-02-15

    The use of glassy carbon electrodes (GCEs) modified with multi-walled carbon nanotube (CNT) films for the continuous monitoring of polyphenols in flow systems has been examined. The performance of these modified electrodes was evaluated and compared to bare GCE by cyclic voltammetry experiments and by flow injection analysis (FIA) with amperometric detection monitoring the response of gallic, caffeic, ferulic and p-coumaric acids in 0.050 M acetate buffer pH 4.5 containing 100 mM NaCl. The GCE modified with CNT dispersions in polyethyleneimine (PEI) provided lower overpotentials, higher sensitivity and much higher signal stability under a dynamic regime than bare GCEs. These properties allowed the estimation of the total polyphenol content in red and white wines with a remarkable long-term stability in the measurements despite the presence of potential fouling substances in the wine matrix. In addition, the versatility of the electrochemical methodology allowed the selective estimation of the easily oxidisable polyphenol fraction as well as the total polyphenol content just by tuning the detection potential at +0.30 or 0.70 V, respectively. The significance of the electrochemical results was demonstrated through correlation studies with the results obtained with conventional spectrophotometric assays for polyphenols (Folin-Ciocalteu, absorbance at 280 nm index and colour intensity index). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Electrocatalytic oxidation and determination of homocysteine at carbon nanotubes modified paste electrode using dopamine as a mediator

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh Safoora

    2013-01-01

    Full Text Available A carbon paste electrode modified with multiwall carbon nanotubes (MWCNTPE was prepared to study the electrocatalytic activity of dopamine (DP in the presence of homocysteine (HCy and it was used for determination of HCy. The diffusion coefficient of HCy (D = 6.79×10−6 cm2 s−1, and the kinetic parameters of its oxidation such as electron transfer coefficient (α = 0.46, and rate constant (kh = 7.44×102 dm3 mol-1 s-1 were also determined using electrochemical approaches. Under the optimum pH of 5.0, the peak current of oxidation of HCy at MWCNTPE in the presence of DP occurs at a potential about 530 mV and the results showed that the oxidation peak current of HCy at the modified carbon nanotubes electrode was higher than on unmodified electrode. The peak current of differential pulse voltammograms of HCy solutions increased linearly in the range of 3.0-600.0 μM HCy with the detection limit of 2.08 μM HCy. This method was also examined for determination of HCy in physiological serum and urine samples.

  3. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    Science.gov (United States)

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Novel Electrochemical Sensor for Probing Doxepin Created on a Glassy Carbon Electrode Modified with Poly(4-Amino- benzoic Acid/Multi-Walled Carbon Nanotubes Composite Film

    Directory of Open Access Journals (Sweden)

    Ji-Lie Kong

    2010-09-01

    Full Text Available A novel electrochemical sensor for sensitive detection of doxepin was prepared, which was based on a glassy carbon electrode modified with poly(4-aminobenzoic acid/multi-walled carbon nanotubes composite film [poly(4-ABA/MWNTs/GCE]. The sensor was characterized by scanning electron microscopy and electrochemical methods. It was observed that poly(4-ABA/MWNTs/GCE showed excellent preconcentration function and electrocatalytic activities towards doxepin. Under the selected conditions, the anodic peak current was linear to the logarithm of doxepin concentration in the range from 1.0 ´ 10−9 to 1.0 ´ 10−6 M, and the detection limit obtained was 1.0 × 10−10 M. The poly(4-ABA/MWNTs/GCE was successfully applied in the measurement of doxepin in commercial pharmaceutical formulations, and the analytical accuracy was confirmed by comparison with a conventional ultraviolet spectrophotometry assay.

  5. Gold Nanoparticle-based Layer-by-Layer Enhancement of DNA Hybridization Electrochemical Signal at Carbon Nanotube Modified Carbon Paste Electrode

    Institute of Scientific and Technical Information of China (English)

    Li Bo NIE; Jian Rong CHEN; Yu Qing MIAO; Nong Yue HE

    2006-01-01

    Colloid gold nanoparticle-based layer-by-layer amplification approach was applied to enhance the electrochemical detection sensitivity of DNA hybridization at carbon nanotube modified carbon paste electrodes (CNTPEs). Streptavidin was immobilized onto the surface of CNTPEs, and the conjugation of biotin labeled target oligonucleotides to the above immobilized streptavidin was performed, followed by the hybridization of target oligonucleotides with the gold nanoparticle-labeled DNA probe and then the layer-by-layer enhanced connection of gold nanoparticles, on which oligonucleotides complementary to the DNA probe were attached, to the hybridization system. The differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the layer-by-layer colloidal gold DPV detection enhanced the sensitivity by about one order of magnitude compared with that of one-layer detection. One-base mismatched DNA and complementary DNA could be distinguished clearly.

  6. Determination of tryptophan and kynurenine in human plasma by liquid chromatography-electrochemical detection with multi-wall carbon nanotube-modified glassy carbon electrode.

    Science.gov (United States)

    Liu, Lihong; Chen, Ying; Zhang, Yulin; Wang, Fang; Chen, Zilin

    2011-08-01

    A novel method was developed for the simultaneous determination of kynurenine and tryptophan by high-performance liquid chromatography with electrochemical detection at multi-wall carbon nanotube (MWCNT)-modified glassy carbon electrode. The separation and detection conditions were optimized. The typical HPLC experiments were conducted by using a reversed-phase ODS column with a mobile phase consisting of stock acetate buffer (pH 5)-methanol (4:1, v/v) using an isocratic elution at the flow rate of 1.0 mL/min. The obtained LODs for kynurenine and tryptophane were 0.5 and 0.4 µmol/L, respectively. The analytical method for human plasma samples was validated and confirmed by LC-UV and LC-MS. The recoveries were in the range of 84.8-110%, and the precision was lower than 5.9%. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Laboratory study of property-modified prebaked carbon anode and application in large aluminum electrolysis cells

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; LI Jie; YE Shao-long; LAI Yan-qing; LIU Ye-xiang

    2005-01-01

    A kind of complex additive mainly containing Al, Mg, F, and O was prepared. The synthetical performances of the property-modified prebaked anodes containing additives were tested in laboratory. On the basis of ideal testing results obtained, a large number of industrial prebaked property-modified anodes are prepared in a large-scale aluminum company. Further more, they are all used in 160 kA prebaked anode aluminum electrolysis cells. The statistic result show that, compared with common anodes, the property-modified ones enhance current by 11.6 kg per ton aluminum averagely.

  8. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  9. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  10. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A

    2014-04-11

    Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents.

  11. Quercetin reduces Ehrlich tumor-induced cancer pain in mice.

    Science.gov (United States)

    Calixto-Campos, Cassia; Corrêa, Mab P; Carvalho, Thacyana T; Zarpelon, Ana C; Hohmann, Miriam S N; Rossaneis, Ana C; Coelho-Silva, Leticia; Pavanelli, Wander R; Pinge-Filho, Phileno; Crespigio, Jefferson; Bernardy, Catia C F; Casagrande, Rubia; Verri, Waldiceu A

    2015-01-01

    Cancer pain directly affects the patient's quality of life. We have previously demonstrated that the subcutaneous administration of the mammary adenocarcinoma known as Ehrlich tumor induces pain in mice. Several studies have shown that the flavonoid quercetin presents important biological effects, including anti-inflammatory, antioxidant, analgesic, and antitumor activity. Therefore, the analgesic effect and mechanisms of quercetin were evaluated in Ehrlich tumor-induced cancer pain in mice. Intraperitoneal (i.p.) treatments with quercetin reduced Ehrlich tumor-induced mechanical and thermal hyperalgesia, but not paw thickness or histological alterations, indicating an analgesic effect without affecting tumor growth. Regarding the analgesic mechanisms of quercetin, it inhibited the production of hyperalgesic cytokines IL-1β and TNFα and decreased neutrophil recruitment (myeloperoxidase activity) and oxidative stress. Naloxone (opioid receptor antagonist) inhibited quercetin analgesia without interfering with neutrophil recruitment, cytokine production, and oxidative stress. Importantly, cotreatment with morphine and quercetin at doses that were ineffective as single treatment reduced the nociceptive responses. Concluding, quercetin reduces the Ehrlich tumor-induced cancer pain by reducing the production of hyperalgesic cytokines, neutrophil recruitment, and oxidative stress as well as by activating an opioid-dependent analgesic pathway and potentiation of morphine analgesia. Thus, quercetin treatment seems a suitable therapeutic approach for cancer pain that merits further investigation.

  12. Kaempferol and quercetin glycosides from Rubus idaeus L. leaves.

    Science.gov (United States)

    Gudej, Jan

    2003-01-01

    Quercetin 3-0-beta-D-glucoside (I), quercetin and kaempferol 3-0-beta-D-galactosides (II, III), kaempferol 3-0-beta-L-arabinopyranoside (IV), kaempferol 3-0-beta-D-(6''-E-p-coumaroyl)-glucoside (tiliroside) (V) and methyl gallate (VI) were isolated from Rubus idaeus L. subspecies culture of Norna leaves and fully characterized.

  13. Quercetin protection against ciprofloxacin induced liver damage in rats.

    Science.gov (United States)

    Taslidere, E; Dogan, Z; Elbe, H; Vardi, N; Cetin, A; Turkoz, Y

    2016-01-01

    Ciprofloxacin is a common, broad spectrum antibacterial agent; however, evidence is accumulating that ciprofloxacin may cause liver damage. Quercetin is a free radical scavenger and antioxidant. We investigated histological changes in hepatic tissue of rats caused by ciprofloxacin and the effects of quercetin on these changes using histochemical and biochemical methods. We divided 28 adult female Wistar albino rats into four equal groups: control, quercetin treated, ciprofloxacin treated, and ciprofloxacin + quercetin treated. At the end of the experiment, liver samples were processed for light microscopic examination and biochemical measurements. Sections were prepared and stained with hematoxylin and eosin, and a histopathologic damage score was calculated. The sections from the control group appeared normal. Hemorrhage, inflammatory cell infiltration and intracellular vacuolization were observed in the ciprofloxacin group. The histopathological findings were reduced in the group treated with quercetin. Significant differences were found between the control and ciprofloxacin groups, and between the ciprofloxacin and ciprofloxacin + quercetin groups. Quercetin administration reduced liver injury caused by ciprofloxacin in rats. We suggest that quercetin may be useful for preventing ciprofloxacin induced liver damage.

  14. Covalent binding of the flavonoid quercetin to human serum albumin

    NARCIS (Netherlands)

    Kaldas, M.I.; Walle, U.K.; Woude, van der H.; McMillan, J.M.; Walle, T.

    2005-01-01

    Quercetin is an abundant flavonoid in the human diet with numerous biological activities, which may contribute to the prevention of human disease but also may be potentially harmful. Quercetin is oxidized in cells to products capable of covalently binding to cellular proteins, a process that may be

  15. Estimation of Quercetin, an Anxiolytic Constituent, in Elaeocarpus ganitrus.

    Directory of Open Access Journals (Sweden)

    Mohan Pal S. Ishar

    2013-03-01

    Full Text Available Having established quercetin as the anxiolytic constituent of Elaeocarpus ganitrus, it was decided to use it as marker to standardize the plant material. Quercetin was used as an external standard for determining its content in E. ganitrus beads by TLC densitometry. An HPTLC densitometric method has been developed to estimate quercetin inE. ganitrus beads so that plant can be standardized on the basis of its bioactive marker. Two methods were followed for preparing the test samples for determining the quercetin content. Initially, quercetin was determined in the ethanol extract of the plant material. It was also determined in the acid hydrolyzed ethanol extract, in order to free quercetin from its O-glycoside. Quercetin content in the hydrolyzed ethanol extract (0.11% w/w of E. ganitrus beads was found to be about 4 times more than in the ethanol extract prepared by direct method (0.03% w/w. Results showed that quercetin occurs in E. ganitrus beads in the form of glycoside.

  16. Direct DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength

    Directory of Open Access Journals (Sweden)

    Hossain Ali Rafiee Pour

    2016-07-01

    Full Text Available Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalized carbon nanotubes modified glassy carbon electrode. To do this, we first modified the glassy carbon electrode surface with MWCNT-COOH. The immersion of MWCNT-COOH/GCE in ss-DNA probe solution, with different pH and ionic strength, was followed by suitable interaction between amine group of ss-DNA bases and carboxylic groups of MWCNT-COOH. This interaction leads to successful ss-DNA immobilization on MWCNT-COOH that was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy. Immobilization of ss-DNA on the modified electrode increased the charge transfer resistant but decreased the peak current of redox probe ([Fe(CN6]3-/4-. The result of cyclic voltammograms implicates that enhancements in the DNA immobilization are possible by adroit choice of low pH and high ionic strength. The standard free-energy of adsorption (ΔG°ads was calculated from electrochemical impedance spectroscopy data (-47.75 kJ mol-1 and was confirmed covalent bond formation. atomic force microscopy topographic images demonstrate increased surface roughness after ss-DNA immobilization. Results offer a simple, rapid and low-cost of DNA immobilization strategy can be opportunities to design of novel nucleic acid biosensors.

  17. Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin.

    Science.gov (United States)

    Manasa, G; Mascarenhas, Ronald J; Satpati, Ashis K; D'Souza, Ozma J; Dhason, A

    2017-04-01

    Free radicals are formed as byproducts of metabolism, and are highly unstable due to the presence of unpaired electrons. They readily react with other important cellular components such as DNA causing them damage. Antioxidants such as (+)-catechin (CAT), neutralize free radicals in the blood stream. Hence there is a need for detection and quantification of catechin concentration in various food sources and beverages. Electro-oxidative properties of catechin were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A carbon paste working electrode modified by electropolymerizing methylene blue (MB) was fabricated. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) techniques were used to study the surface morphology of the electrode. Quasi-reversible electron transfer reaction occurred at +0.260V through a diffusion controlled process. In comparison to the bare carbon paste electrode (CPE), there was a significant 5.3 times increment in anodic current sensitivity at the modified electrode at physiological pH. Our findings indicate that for the electro-oxidation of CAT, CPE is a better base material for electropolymerization of MB compared to glassy carbon electrode (GCE). Nyquist plot followed the theoretical shape, indicating low interfacial charge transfer resistance of 0.095kΩ at the modified electrode. Calibration plots obtained by DPV were linear in two ranges of 1.0×10(-3) to 1.0×10(-6) and 1.0×10(-7) to 0.1×10(-8)M. The limit of detection (LOD) and limit of quantification (LOQ) was 4.9nM and 14nM respectively. Application of the developed electrode was demonstrated by detecting catechin in green tea and spiked fruit juice with satisfactory recoveries. The sensor was stable, sensitive, selective and reproducible. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinchun [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Chen Zuanguang, E-mail: chenzg@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Zhong Yuwen, E-mail: yu0106@163.com [Center for Disease Control and Prevention of Guangdong Province, 176 Xingangxi, Guangzhou 510300 (China); Yang Fan; Pan Jianbin; Liang Yajing [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. Black-Right-Pointing-Pointer Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. Black-Right-Pointing-Pointer An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. Black-Right-Pointing-Pointer Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 {mu}M (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and

  19. Evaluation of assemblies based on carbon materials modified with dendrimers containing platinum nanoparticles for PEM-fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma-Garcia, J.; Barbosa, R.; Chapman, T.W.; Arriaga, L.G.; Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C. Parque Tecnologico Queretaro-Sanfandila, 76703 Pedro Escobedo, Qro. (Mexico)

    2009-02-15

    Polyamidoamine (PAMAM) dendrimer-encapsulated Pt nanoparticles (G4OHPt) are synthesized by chemical reduction and characterized by transmission electronic microscopy. An H{sub 2}-O{sub 2} fuel cell has been constructed with porous carbon electrodes modified with the dendrimer nanocomposites. Electrochemical and physical impregnation methods of electrocatalyst immobilization are compared. The modified surfaces are used as electrodes and gas-diffusion layers in the construction of three different membrane-electrode assemblies (MEAs). The MEAs have been tested in a single polymer-electrolyte membrane-fuel cell at 30 C and 20 psig. The fuel cell is, then characterized by electrochemical impedance spectroscopy and cyclic voltammetry, and its performance evaluated in terms of polarization curves and power profiles. The highest fuel cell performance is reached in the MEA constructed by physical impregnation method. The results are compared with a 32 cm{sup 2} prototype cell using commercial electrocatalyst operated at 80 C, obtaining encouraging results. (author)

  20. Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine.

    Science.gov (United States)

    Wen, Jingxia; Zhou, Li; Jin, Litong; Cao, Xuni; Ye, Bang-Ce

    2009-07-01

    Overoxidized polypyrrole/multi-walled carbon nanotubes (OPPy/MWNTs) modified electrode has been developed for sensitively detecting dopamine (DA). OPPy films developed outside MWNTs might have a porous morphology. Thus, OPPy/MWNTs films developed by this method do not reject ascorbic acid (AA). However, OPPy/MWNTs modified electrode shows largely enhancing oxidative current responses of DA. When combined with liquid chromatography, it not only obtains a low detection limit of 7.5 x 10(-10) mol L(-1) for DA, but also improves the selectivity of DA detection. Mechanisms for the enhancement are also well discussed in this paper. With this approach, microdialysis has been employed for successful assessment of DA in rat striatum.

  1. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2015-12-01

    Full Text Available By using the hydrothermal method, carbon microspheres (CMS were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ. The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors.

  2. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Di Li

    2017-07-01

    Full Text Available A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR, transmission electron microscopy (TEM, and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G and adenine (A. The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA.

  3. Notched Long-Period Fiber Grating with an Amine-Modified Surface Nanostructure for Carbon Dioxide Gas Sensing

    Directory of Open Access Journals (Sweden)

    Janw-Wei Wu

    2015-07-01

    Full Text Available This paper presents the fabrication and application of a notched long-period fiber grating (NLPFG with an amine-modified surface nanostructure for carbon dioxide (CO2 gas sensing. The NLPFG with the modified surface nanostructure was fabricated by using inductively coupled plasma (ICP etching with an Ag nanoparticle etching barrier. The experimental results show that the spectra were changed with the CO2 gas flow within 12 min. Thereafter, the spectra of the NLPFG remained steady and unchanged. During the absorption process, the transmission loss was decreased by approximately 2.019 dB, and the decreased rate of transmission loss was 0.163 dB/min. The sensitivity was about −0.089 dB/%. These results demonstrate that the NLPFG CO2 gas sensor has the advantages of steady performance, repeatability, and low cost. Therefore, the NLPFG can be utilized as a reliable CO2 gas sensor.

  4. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Science.gov (United States)

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  5. Electrochemical detection of hydrogen peroxide at a waxed graphite electrode modified with platinum-decorated carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    SHI Qiao-cui; ZENG Wen-fang; ZHU Yunu

    2009-01-01

    Platinum-decorated carbon nanotubes (CNT-Pt) were produced by the chemical reduction method. A novel modified electrode was fabricated by intercalated CNT-Pt in the surface of waxed graphite, which provided excellent electro-catalytic activity and selectivity for both oxidation and reduction of hydrogen peroxide. The current response of the modified electrode for hydrogen peroxide was very rapid and the detection limits in amperometry are 2.5×10-6 mol/L at reduction potential and 4.8×10-6 mol/L at oxidation potential. It was desmonstrated that the electrode with high electro-activity was a suitable basic electrode for preparing enzyme electrode.

  6. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  7. A novel poly(cyanocobalamin) modified glassy carbon electrode as electrochemical sensor for voltammetric determination of peroxynitrite.

    Science.gov (United States)

    Wang, Yan; Chen, Zhen-zhen

    2010-07-15

    This report described the direct voltammetric detection of peroxynitrite (ONOO(-)) at a novel cyanocobalamin modified glassy carbon electrode prepared by electropolymeriation method. The electrochemical behaviors of peroxynitrite at the modified electrode were studied by cyclic voltammetry. The results showed that this new electrochemical sensor exhibited an excellent electrocatalytic activity to oxidation of peroxynitrite. The mechanism of catalysis was discussed. Based on electrocatalytic oxidation of peroxynitrite at the poly(cyanocobalamin) modified electrode, peroxynitrite was sensitively detected by differential pulse voltammetry. Under optimum conditions, the anodic peak current was linear to concentration of peroxynitrite in the range of 2.0x10(-6) to 3.0x10(-4) mol L(-1) with a detection limit of 1.0x10(-7) mol L(-1) (S/N of 3). The proposed method has been applied to determination of peroxynitrite in human serum with satisfactory results. This poly(cyanocobalamin) modified electrode showed high selectivity and sensitivity to peroxynitrite determination, which could be used in quantitative detection of peroxynitrite in vivo and in vitro. Copyright 2010 Elsevier B.V. All rights reserved.

  8. The natural diatomite from caldiran-van (Turkey): electroanalytical application to antimigraine compound naratriptan at modified carbon paste electrode.

    Science.gov (United States)

    Calışkan, Necla; Sögüt, Eda; Saka, Cafer; Yardım, Yavuz; Sentürk, Zuhre

    2010-09-01

    This paper is the first report describing the characterization of local diatomite of Caldiran-Van region (Eastern Anatolia, Turkey). Special attention was paid to the ability of its electroanalytical performance at modified electrodes and to the potential application of diatomite-modified electrode. For this purpose, the determination of Naratriptan which is a novel oral triptan (5-hydroxytryptamine receptor agonist) in migraine treatment, by means of a carbon paste electrode modified with 10% (w/w) of diatomite was studied using cyclic and square-wave voltammetry. The experimental conditions that affect the electrode reaction process were studied in terms of pH of the supporting electrolyte, scan rate, accumulation variables, modifier composition and square-wave parameters. Using square-wave stripping mode, the drug yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 4.0 at 0.84 V (vs. Ag/AgCl) (a pre-concentration step being carried out with an open circuit at 120 s). The process could be used to determine Naratriptan concentrations in the range 5x10(-7)-9x10(-7) M, with a detection limit of 1.25x10(-7) M (46.5 mug L(-1)). The applicability of the method to spiked human urine samples was illustrated.

  9. Thermodynamics of Modifying Effect of Rare Earth Oxide on Inclusions in Hardfacing Metal of Medium—High Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 赵研辉; 等

    2002-01-01

    The modifying effect of rare earth(RE)oxide on inclusions in hardfacing metals of medium-high carbon steel was investigated by means of thermodynamics,The thermodynamic analsys for inclusion formation shows that RE oxide can be reduced to RE element by carbon,then the RE element can react with oxygen and sulfur to form the RE oxide,RE sulfide and RE oxide-sulfide in hardfacing molten pool.The deoxidization and the desulphurization can be carried otu and the liquid metal can be purified.In addition,RE oxide can also react with sulfur to form RE oxide-sulfide dirdctly.Therefore,the harmful effect of sulfur can be decreased.

  10. Determination of Patulin Using Amperometric Tyrosinase Biosensors Based on Electrodes Modified with Carbon Nanotubes and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    R.M. Varlamova

    2016-06-01

    Full Text Available New amperometric biosensors based on platinum screen printed electrodes modified with multi-walled carbon nanotubes, gold nanoparticles, and immobilized enzyme – tyrosinase have been developed for determination of patulin in the concentrations of 1·10–6 – 8·10–12 mol/L with an error of no more than 0.063. The best conditions for obtaining gold nanoparticles have been chosen. The conditions for immobilization of multi-walled carbon nanotubes and gold nanoparticles on the surface of the planar electrode have been revealed. The conditions for functioning of the proposed biosensors have been identified. The results have been used to control the content of patulin in food products within and lower than the maximum allowable levels.

  11. Choline-sensing carbon paste electrode containing polyaniline (pani)-silicon dioxide composite-modified choline oxidase.

    Science.gov (United States)

    Özdemir, Merve; Arslan, Halit

    2014-02-01

    In this study, a novel carbon paste electrode (CPE) was prepared using the salt form of polyaniline (pani)-silicon dioxide composite that is sensitive to choline. Choline oxidase (ChO) enzyme was immobilized to modified carbon paste electrode (MCPE) by cross-linking with glutaraldehyde. Determination of choline was carried out by the oxidation of enzymatically produced H2O2 at 0.4 V vs. Ag/AgCl. The effects of pH and temperature were investigated, and the optimum parameters were found to be 6.0 and 60°C, respectively. The linear working range of the electrode was 5.0 × 10(-7)-1.0 × 10(-5) M, R(2) = 0.922. The storage stability and operation stability of the enzyme electrode were also studied.

  12. Advances in preparation of modified activated carbon and its applications in the removal of chromium (VI) from aqueous solutions

    Science.gov (United States)

    Deng, Z. L.; Liang, M. N.; Li, H. H.; Zhu, Z. J.

    2016-08-01

    The wastewater in which Cr(VI) is not fully treated has drawn environment researchers’ attention increasingly, due to its environmental pollution and harms to human health. Thus a high efficiency of modified activated carbon (MAC) to remove Cr(VI) has become one of the hot topics among environmental material research. This paper introduces the modification methods from the physical structure features and chemical properties of the activated carbon (AC) surface. At the same time, it briefly analyses the chemical characteristics of Cr(VI) in aqueous solutions, and on the basis of the aforementioned introduces the modification methods of the surface chemical characteristics of AC, such as: oxidation modification, reduction modification, loaded metal modification, and microwave modification. Combining studies on removing Cr(VI) from aqueous solutions by MAC in recent years, this paper anticipates the new trends of preparing MAC and the points in absorption research, offering some suggestions for future studies.

  13. Nanoscale characterization of carbazole-indole copolymers modified carbon fiber surfaces.

    Science.gov (United States)

    Sarac, A Sezai; Serantoni, Marina; Tofail, Syed A M; Cunnane, Vincent J

    2005-10-01

    Polycarbazole, carbazole and indole containing copolymers were electrochemically coated onto carbon fiber. The resulting polymers and copolymers were characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Characterization of the thin polymer films were performed on the polymer-coated surface of the carbon fiber. Therefore, the results obtained could elucidate the relationship between the initial feed monomer ratio, the resulting polymer/copolymer film morphology and the surface structure formed. The thickness increase (in diameter) was 0.3 and 0.9 microm, for two different composition of carbazole/indole on the carbon fiber. The carbon fibers coated with copolymer thin films were from 6.5 to 8.2 microm in diameter (from AFM measurement).

  14. Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory.

    Science.gov (United States)

    Fakhrabadi, Mir Masoud Seyyed; Rastgoo, Abbas; Ahmadian, Mohammad Taghi

    2013-01-01

    The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes.

  15. A hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on natural nano-structure attapulgite modified glassy carbon electrode.

    Science.gov (United States)

    Chen, Huihui; Zhang, Zhe; Cai, Dongqing; Zhang, Shengyi; Zhang, Bailin; Tang, Jilin; Wu, Zhengyan

    2011-10-30

    A novel strategy to fabricate hydrogen peroxide (H(2)O(2)) sensor was developed by electrodepositing Ag nanoparticles (NPs) on a glassy carbon electrode modified with natural nano-structure attapulgite (ATP). The result of electrochemical experiments showed that such constructed sensor had a favorable catalytic ability to reduce H(2)O(2). The good catalytic activity of the sensor was ascribed to the ATP that facilitated the formation and homogenous distribution of small Ag NPs. The resulted sensor achieved 95% of the steady-state current within 2s and had a 2.4 μM detection limit of H(2)O(2).

  16. An efficient visible-light photocatalyst prepared by modifying AgBr particles with a small amount of activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Desong, E-mail: dswang06@126.com; Zhao, Mangmang; Luo, Qingzhi; Yin, Rong; An, Jing; Li, Xueyan

    2016-04-15

    Highlights: • An efficient visible-light photocatalyst was prepared by modifying AgBr particles. • A small amount of activated carbon was used to modify AgBr particles. • The modified AgBr exhibited improved visible-light photocatalytic performances. - Abstract: An efficient visible-light photocatalyst was successfully prepared by modifying AgBr particles with a small amount of activated carbon (AC) via a simple chemical precipitation approach. The AC/AgBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis diffuse reflection spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy. The photocatalytic performances of the AC/AgBr composite were investigated by evaluating photodegradation of methyl orange (MO) and phenol under visible light irradiation, and the effects of the AC content in the composite, concentrations of AC/AgBr composite and MO, carrier scavengers on MO photodegradation rate were systematically investigated. The results indicated that the modification of AC can hardly change the crystalline and crystal size of AgBr particles, while significantly improve their specific surface areas, visible-light absorption and separation efficiency of photogenerated electron–hole pairs. Compared with pure AgBr, the AC/AgBr composite exhibited drastically enhanced visible-light photocatalytic activity and stability. The photogenerated electrons and holes, hydroxyl radicals are responsible to the photodegradation of organic pollutants, and the photogenerated holes are the main active species. On the basis of the results and the properties of AC and AgBr, the visible-light photocatalytic mechanism of the AC/AgBr composite was discussed.

  17. Carbon-Pt nanoparticles modified TiO2 nanotubes for simultaneous detection of dopamine and uric acid.

    Science.gov (United States)

    Mahshid, Sara; Luo, Shenglian; Yang, Lixia; Mahshid, Sahar Sadat; Askari, Masoud; Dolati, Abolghasem; Cai, Qingyun

    2011-08-01

    The present work describes sensing application of modified TiO2 nanotubes having carbon-Pt nanoparticles for simultaneous detection of dopamine and uric acid. The TiO2 nanotubes electrode was prepared using anodizing method, followed by electrodeposition of Pt nanoparticles onto the tubes. Carbon was deposited by decomposition of polyethylene glycol in a tube furnace to improve the conductivity. The C-Pt-TiO2 nanotubes modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The modified electrode displayed high sensitivity towards the oxidation of dopamine and uric acid in a phosphate buffer solution (pH 7.00). The electro-oxidation currents of dopamine and uric acid were linearly related to the concentration over a wide range of 3.5 x 10(-8) M to 1 x 10(-5) M and 1 x 10(-7) M to 3 x 10(-5) M respectively. The limit of detection was determined as 2 x 10(-10) M for dopamine at signal-to-noise ratio of 3. The interference of uric acid was also investigated. Electro-oxidation currents of dopamine in the presence of fix amount of uric acid represented a linear behaviour towards successive addition of dopamine in range of 1 x 10(-7) M to 1 x 10(-5) M. Furthermore, in a solution containing dopamine, uric acid and ascorbic acid the overlapped oxidation peaks of dopamine and ascorbic acid could be easily separated by using C-Pt-TiO2 nanotubes modified electrode.

  18. Evaluation of quercetin as a potential drug in osteosarcoma treatment.

    Science.gov (United States)

    Berndt, Kersten; Campanile, Carmen; Muff, Roman; Strehler, Emanuel; Born, Walter; Fuchs, Bruno

    2013-04-01

    Osteosarcoma is the most common malignant bone tumor in children and young adults. Since the introduction of chemotherapy, the 5-year survival rate of patients with non-metastatic osteosarcoma is ~70%. The main problems in osteosarcoma therapy are the occurrence of metastases, severe side-effects and chemoresistance. Antiproliferative and apoptotic effects of quercetin were shown in several types of cancers, including breast cancer and lung carcinoma. The present study investigates the cytotoxic potential of quercetin, a dietary flavonoid, in a highly metastasizing human osteosarcoma cell line, 143B. We found that quercetin induces growth inhibition, G2/M phase arrest, and apoptosis in the 143B osteosarcoma cell line. We also observed impaired adhesion and migratory potential after the addition of quercetin. Since quercetin has already been shown to have low side effects in a clinical phase I trial in advanced cancer patients, this compound may have considerable potential for osteosarcoma treatment.

  19. Evaluation of the effects of quercetin on damaged salivary secretion.

    Directory of Open Access Journals (Sweden)

    Ayako Takahashi

    Full Text Available With the aim of discovering an effective method to treat dry mouth, we analyzed the effects of quercetin on salivary secretion and its mechanism of action. We created a mouse model with impaired salivary secretion by exposure to radiation and found that impaired secretion is suppressed by quercetin intake. Moreover, secretion levels were enhanced in quercetin-fed normal mice. To elucidate the mechanisms of these effects on salivary secretion, we conducted an analysis using mouse submandibular gland tissues, a human salivary gland epithelial cell line (HSY, and mouse aortic endothelial cells (MAECs. The results showed that quercetin augments aquaporin 5 (AQP5 expression and calcium uptake, and suppresses oxidative stress and inflammatory responses induced by radiation exposure, suggesting that quercetin intake may be an effective method to treat impaired salivary secretion.

  20. Multifunctional hybrid nanocomposites based on carbon nanotubes and chemically modified graphene

    OpenAIRE

    Bosch Navarro, Concepcion

    2013-01-01

    La Tesis trata del desarrollo de materiales híbridos multifuncionales basados en nanotubos de carbono y grafeno con interés en magnetismo molecular y electrónica molecular This Thesis deals with the chemistry and development of new hybrid multifunctional systems based on carbon nanotubes (CNTs) and graphene (G). To introduce both types of carbon nanoforms a brief historical overview of these systems has been briefly given at the Preface. Next and prior to the presentation of ...

  1. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Science.gov (United States)

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  2. [Removal of nitrate from aqueous solution using cetylpyridinium chloride (CPC)-modified activated carbon as the adsorbent].

    Science.gov (United States)

    Zheng, Wen-Jing; Lin, Jian-Wei; Zhan, Yan-Hui; Fang, Qiao; Yang, Meng-Juan; Wang, Hong

    2013-11-01

    Surfactant-modified activated carbon (SMAC) was prepared by loading cetylpyridinium chloride (CPC) onto activated carbon and used as adsorbents to remove nitrate from aqueous solution. The SMAC was effective for removing nitrate from aqueous solution. The SMAC exhibited much higher nitrate adsorption capacity than that of the unmodified activated carbon. The nitrate adsorption capacity for SMAC increased with increasing the CPC loading. The adsorption kinetics of nitrate on SMAC followed a pseudo-second-order kinetic model. The equilibrium adsorption data of nitrate on SMAC could be described by the Langmuir isotherm model. Based on the Langmuir isotherm model, the maximum nitrate adsorption capacity for SMAC with CPC loading amount of444 mmol per 1 kg activated carbon was determined to be 16.1 mg x g(-1). The nitrate adsorption capacity for SMAC decreased with the increasing solution pH. The presence of competing anions such as chloride, sulfate and bicarbonate reduced the nitrate adsorption capacity. The nitrate adsorption capacity for SMAC slightly decreased with the increasing reaction temperature. Almost 95% of nitrate molecules adsorbed on SMAC could be desorbed in 1 mol x L(-1) NaCl solution. The main mechanisms for the adsorption of nitrate on SMAC are anionic exchange and electrostatic attraction. The results of this work indicate that SMAC is a promising adsorbent for removing nitrate from aqueous solution.

  3. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Feng Dong

    2016-12-01

    Full Text Available In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM and Brunauer-Emmett-Teller (BET tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS and cyclic voltammetry (CV results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV and electrochemical impedance spectroscopy (EIS results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  4. Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes.

    Science.gov (United States)

    Sharma, Deepti; Lim, Yeongjin; Lee, Yunjeong; Shin, Heungjoo

    2015-08-19

    We present a novel electrochemical glucose sensor employing an interdigitated array (IDA) of 1:1 aspect ratio carbon nanoelectrodes for the electrochemical-enzymatic redox cycling of redox species (ferricyanide/ferrocyanide) between glucose oxidase (GOx) and the two comb-shaped nanoelectrodes of the IDA. The carbon nanoelectrodes were fabricated using a simple, cost-effective, reproducible microfabrication technology known as the carbon-microelectromechanical-systems (C-MEMS) process. One comb (comb 1) of the IDA was selectively modified with GOx via the electrochemical reduction of an aryl diazonium salt, while the other comb (comb 2) remained unmodified; this facilitates electrochemically more active surface of comb 2, resulting in sensitive glucose detection. Ferricyanide is reduced to ferrocyanide by the GOx in the presence of glucose, and ferrocyanide diffuses to both combs of the IDA where it is oxidized. The limited electrochemical current collection at the surface-modified comb 1 is counterbalanced by the efficient redox cycling between the enzyme sites at comb 1 and the bare carbon surface of comb 2. Reducing the electrode-to-electrode gap between the two combs (gap = 1.9 μm) increases the diffusion flux of redox species at comb 2 hence, enhanced the sensitivity and limit of detection of the glucose sensor by ∼2.3 and ∼295 times, respectively at comb 2 compared to comb 1. The developed IDA-based glucose sensor demonstrated good amperometric response to glucose, affording two linear ranges from 0.001 to 1 mM and from 1 to 10 mM, with limits of detection of 0.4 and 61 μM and sensitivities of 823.2 and 70.0 μA mM(-1) cm(-2), respectively.

  5. Adopting a modified pressure calcimeter with temperature compensation for testing total carbonates in soils

    Science.gov (United States)

    Barouchas, Pantelis; Koulos, Vasilios

    2016-04-01

    The total carbonates content of the soil is an important soil quality indicator highly related with soil carbon sequestration and a tool for understanding biogeochemical processes or liming practices. A portable digital pressure calcimeter with multisensory technology was used in order to test total carbonates in soil samples. The concept of the measurement is based on the simultaneous measurement of pressure and temperature after the sample reaction with hydrochloric acid in a closed vessel and a built-in module for automatic temperature compensation, so that performs measurements with higher accuracy. For these purposes two stages of analysis followed in order to document the precision of the methodology: (i) Total carbonates testing in Sand/CaCO3 mixtures and (ii) Total carbonates testing in soil samples. The instrument has a typical mean error of ± 0.3% calcium carbonates content of the soil sample and a recovery more than 98% comparing to certified inter-laboratory soil samples (proficiency tests) for quality assurance. The methodology adopts portable capabilities with soil moisture correction in situ, providing to the end-user the advantages of automatic analysis, fast testing operation, fast re-samples for analysis and productivity.

  6. A multi-walled carbon nanotube-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of paracetamol and tramadol in pharmaceutical preparations and biological fluids

    OpenAIRE

    Babaei, Ali; Taheri,Ali Reza; Afrasiabi,Mohammad

    2011-01-01

    A chemically modified electrode was constructed based on a multi-walled carbon nanotube-modified glassy carbon electrode (MWCNTs/GCE). It was demonstrated that this sensor can be used for the simultaneous determination of the pharmaceutically important compounds paracetamol (PAR) and tramadol (TRA). The measurements were carried out by the application of differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry (CA) methods. Application of the DPV method demonstrated...

  7. Adsorption of organic vapors on the Carbopack Y carbon adsorbent modified with heptakis-(2,3,6-tri- O-methyl)-β-cyclodextrin

    Science.gov (United States)

    Kudryashov, S. Yu.; Kopytin, K. A.; Pavlov, M. Yu.; Onuchak, L. A.; Kuraeva, Yu. G.

    2010-03-01

    The adsorption of organic vapors on the Carbopack Y carbon adsorbent modified with a mono-molecular layer of heptakis-(2,3,6-tri- O-methyl)-β-cyclodextrin was studied by gas chromatography. The deposition of the macrocyclic modifier on the carbon substrate substantially strengthened the adsorbate—adsorbent intermolecular interactions and led to localization of adsorption due to the inclusion of adsorbate molecules, irrespectively of their polarity, in the macrocyclic voids of the modifier molecules. As a consequence, the thermodynamic characteristics of adsorption were greatly affected by the sizes and spatial structure of adsorbate molecules.

  8. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression.

    Science.gov (United States)

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-10-01

    Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. © 2014 The British Pharmacological Society.

  9. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression

    Science.gov (United States)

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-01-01

    Background and Purpose Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Experimental Approach Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. Key Results In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Conclusions and Implications Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. PMID:24902966

  10. Determination of Lead Ion by a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs and Ligand (N-(4-Hydroxyphenyl Ethanamide

    Directory of Open Access Journals (Sweden)

    Marzieh Bagheri

    2015-06-01

    Full Text Available The preparation of a new modified carbon paste electrode (CPE to measure lead ion has been reported in this study. Lead is a highly toxic element which can have a negative impact on the environment. Therefore, measurement of lead in aquatic environments is very important. Although several methods have been developed for determination of lead ion in aquatic environments, there is no a cheap, simple, accurate and rapid method to measure this ion. Aim of this study is to develop a new method to measure the lead based on using multi walls carbon nanotubes (MWCNTs and Paracetamol as an ionophore for modification of a CPE. The optimum composition of modified CPE was determined as 64% of graphite powder, 20% of paraffin oil, 12% of nanotube and 4% of ionophore. This optimum composition was shown high selectivity, with appropriate Nernestian slope (-29.73 mV/decade, linear range (from 1.0×10-1to 1.0×10-8M, low lead concentration detection limit (7.5×10-9M and good response time (equal of 25 sec.The results of this study to introduce a cheap, accurate and simple method for determination of lead ion in aquatic environments.

  11. Determination of Lead Ion by a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs andLigand (N-(4-Hydroxyphenyl Ethanamide

    Directory of Open Access Journals (Sweden)

    Marzieh Bagheri

    2015-06-01

    Full Text Available The preparation of a new modified carbon paste electrode (CPEto measure lead ion has been reported in this study. Lead is a highly toxic element which can have a negative impact on the environment. Therefore, measurement of lead in aquatic environments is very important. Although several methods have been developed for determination of lead ion in aquatic environments, there is no a cheap, simple, accurate and rapid method to measure this ion. Aim of this study is to develop a new method to measure the lead based on using multi walls carbon nanotubes (MWCNTs and Paracetamol as an ionophore for modificationof a CPE.The optimum composition of modified CPE was determined as 64% of graphite powder, 20% of paraffin oil, 12% of nanotube and 4% of ionophore.This optimum composition was shown high selectivity, with appropriate Nernestian slope (-29.73 mV/decade, linear range (from 1.0×10-1to 1.0×10-8M, low lead concentration detection limit (7.5×10-9M and good response time (equal of 25 sec.The results of this study to introduce a cheap, accurate and simple method for determination of lead ion in aquatic environments.

  12. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid.

    Science.gov (United States)

    Afraz, Ahmadreza; Rafati, Amir Abbas; Najafi, Mojgan

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was