WorldWideScience

Sample records for quenched chiral perturbation

  1. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    1998-01-01

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe

  2. Quenched chiral perturbation theory to one loop

    NARCIS (Netherlands)

    Colangelo, Gilberto; Pallante, Elisabetta

    1998-01-01

    We calculate the divergences of the generating functional of quenched chiral perturbation theory at one loop, and renormalize the theory by an appropriate definition of the counterterms. We show that the quenched chiral logarithms can be accounted for by defining a renormalized B0 parameter which, a

  3. A numerical study of non-perturbative corrections to the Chiral Separation Effect in quenched finite-density QCD

    CERN Document Server

    Puhr, M

    2016-01-01

    We use exactly chiral overlap lattice fermions to investigate the Chiral Separation Effect in quenched QCD at finite density. We employ a recently developed numerical method which allows, for the first time, to address the transport properties of exactly chiral lattice fermions with non-zero chemical potential. Studying the axial current along the external magnetic field, we find a linear dependence consistent with the free fermion result for topologically trivial gauge field configurations. However, for configurations with nontrivial topology in the confinement regime the axial current is strongly suppressed due to contributions of topological modes of the Dirac operator, which suggests that non-perturbative corrections to the Chiral Separation Effect have topological origin.

  4. Chiral Logs in Quenched QCD

    CERN Document Server

    Dong, S J; Horváth, I; Lee, F X; Liu, K F; Mathur, N; Zhang, J B

    2003-01-01

    The quenched chiral logs are examined on a $16^3 \\times 28$ lattice with Iwasaki gauge action and overlap fermions. The pion decay constant $f_{\\pi}$ is used to set the lattice spacing, $a = 0.200(3)$ fm. With pion mass as low as $\\sim 180 {\\rm MeV}$, we see the quenched chiral logs clearly in $m_{\\pi}^2/m$ and $f_P$, the pseudoscalar decay constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory ($\\chi$PT) to apply. With the constrained curve fitting, we are able to extract the quenched chiral log parameter $\\delta$ together with the chiral cutoff $\\Lambda_{\\chi}$ and other parameters. Only for $m_{\\pi} \\leq 300 {\\rm MeV}$ do we obtain a consistent and stable fit with a constant $\\delta$ which we determine to be 0.23(2). By comparing to the $12^3 \\times 28$ lattice, we estimate the finite volume effect to be about 1.8% for the smallest pion mass. We also study the quenched non-analytic terms in the nucleon and the $\\rho$ masses...

  5. Evidence for hard chiral logarithms in quenched lattice QCD

    CERN Document Server

    Kim, S; Kim, Seyong; Sinclair, D K

    1995-01-01

    We present the first direct evidence that quenched QCD differs from full QCD in the chiral (m_q \\rightarrow 0) limit, as predicted by chiral perturbation theory, from our quenched lattice QCD simulations at \\beta = 6/g^2 = 6.0. We measured the spectrum of light hadrons on 16^3 \\times 64, 24^3 \\times 64 and 32^3 \\times 64, using staggered quarks of masses m_q=0.01, m_q=0.005 and m_q=0.0025. The pion masses showed clear evidence for logarithmic violations of the PCAC relation m_{\\pi}^2 \\propto m_q, as predicted by quenched chiral perturbation theory. The dependence on spatial lattice volume precludes this being a finite size effect. No evidence was seen for such chiral logarithms in the behaviour of the chiral condensate \\langle\\bar{\\psi}\\psi\\rangle.

  6. Applications Of Chiral Perturbation Theory

    CERN Document Server

    Mohta, V

    2005-01-01

    Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...

  7. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  8. Quenched QCD near the chiral limit

    CERN Document Server

    Göckeler, M; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G

    2000-01-01

    A numerical study of quenched QCD for light quarks is presented using O(a)improved fermions. Particular attention is paid to the possible existence anddetermination of quenched chiral logarithms. A `safe' region to use for chiralextrapolations appears to be at and above the strange quark mass.

  9. Chiral Perturbation Theory and Unitarization

    CERN Document Server

    Ruiz-Arriola, E; Nieves, J; Peláez, J R

    2000-01-01

    We review our recent work on unitarization and chiral perturbation theory both in the $\\pi\\pi$ and the $\\pi N$ sectors. We pay particular attention to the Bethe-Salpeter and Inverse Amplitude unitarization methods and their recent applications to $\\pi\\pi$ and $\\pi N$ scattering.

  10. Testing chiral effective theory with quenched lattice QCD

    CERN Document Server

    Giusti, Leonardo; Necco, S; Peña, C; Wennekers, J; Wittig, H

    2008-01-01

    We investigate two-point correlation functions of left-handed currents computed in quenched lattice QCD with the Neuberger-Dirac operator. We consider two lattice spacings a~0.09,0.12 fm and two different lattice extents L~ 1.5, 2.0 fm; quark masses span both the p- and the epsilon-regimes. We compare the results with the predictions of quenched chiral perturbation theory, with the purpose of testing to what extent the effective theory reproduces quenched QCD at low energy. In the p-regime we test volume and quark mass dependence of the pseudoscalar decay constant and mass; in the epsilon-regime, we investigate volume and topology dependence of the correlators. While the leading order behaviour predicted by the effective theory is very well reproduced by the lattice data in the range of parameters that we explored, our numerical data are not precise enough to test next-to-leading order effects.

  11. Testing chiral effective theory with quenched lattice QCD

    Science.gov (United States)

    Giusti, L.; Hernández, P.; Necco, S.; Pena, C.; Wennekers, J.; Wittig, H.

    2008-05-01

    We investigate two-point correlation functions of left-handed currents computed in quenched lattice QCD with the Neuberger-Dirac operator. We consider two lattice spacings a simeq 0.09,0.12 fm and two different lattice extents L simeq 1.5,2.0 fm; quark masses span both the p- and the epsilon-regimes. We compare the results with the predictions of quenched chiral perturbation theory, with the purpose of testing to what extent the effective theory reproduces quenched QCD at low energy. In the p-regime we test volume and quark mass dependence of the pseudoscalar decay constant and mass; in the epsilon-regime, we investigate volume and topology dependence of the correlators. While the leading order behaviour predicted by the effective theory is very well reproduced by the lattice data in the range of parameters that we explored, our numerical data are not precise enough to test next-to-leading order effects.

  12. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  13. Chiral Random Matrix Theory and Chiral Perturbation Theory

    CERN Document Server

    Damgaard, P H

    2011-01-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  14. Chiral Random Matrix Theory and Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2011-04-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  15. $B_K$ from quenched QCD with exact chiral symmetry

    CERN Document Server

    Garron, N; Hölbling, C; Lellouch, L P; Rebbi, C; Garron, Nicolas; Giusti, Leonardo; Hoelbling, Christian; Lellouch, Laurent; Rebbi, Claudio

    2004-01-01

    We present a calculation of the standard model Delta S=2 matrix element relevant to indirect CP violation in K->pipi decays which uses Neuberger's chiral formulation of lattice fermions. The computation is performed in the quenched approximation on a 16^3x32 lattice that has a lattice spacing asim 0.1 fm. The resulting bare matrix element is renormalized non-perturbatively. Our main result is B_K^{RGI}=0.87(8)^{+2+14}_{-1-14}, where the first error is statistical, the second is systematic and the third is an estimate of the uncertainty associated with the quenched approximation and with the fact that our kaons are composed of degenerate s and d quarks with masses sim m_s/2.

  16. Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    CERN Document Server

    Aubin, C

    2007-01-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\\schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \\schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass depende...

  17. Explaining jet quenching with perturbative QCD alone

    CERN Document Server

    Zapp, Korinna C; Wiedemann, Urs A

    2011-01-01

    We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.

  18. Nonequilibrium chiral perturbation theory and disoriented chiral condensates

    CERN Document Server

    Nicola, A G

    1999-01-01

    We analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, we let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.

  19. Chiral Perturbation Theory With Lattice Regularization

    CERN Document Server

    Ouimet, P P A

    2005-01-01

    In this work, alternative methods to regularize chiral perturbation theory are discussed. First, Long Distance Regularization will be considered in the presence of the decuplet of the lightest spin 32 baryons for several different observables. This serves motivation and introduction to the use of the lattice regulator for chiral perturbation theory. The mesonic, baryonic and anomalous sectors of chiral perturbation theory will be formulated on a lattice of space time points. The consistency of the lattice as a regulator will be discussed in the context of the meson and baryon masses. Order a effects will also be discussed for the baryon masses, sigma terms and magnetic moments. The work will close with an attempt to derive an effective Wess-Zumino-Witten Lagrangian for Wilson fermions at non-zero a. Following this discussion, there will be a proposal for a phenomenologically useful WZW Lagrangian at non-zero a.

  20. Chiral Loops and Ghost States in the Quenched Scalar Propagator

    Energy Technology Data Exchange (ETDEWEB)

    W. Bardeen; A. Duncan; E. Eichten; N. Isgur; H. Thacker

    2001-06-01

    The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the eta' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an eta'-pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.

  1. Vector Meson Masses in Chiral Perturbation Theory

    CERN Document Server

    Bijnens, J; Talavera, P

    1997-01-01

    We discuss the vector meson masses within the context of Chiral Perturbation Theory performing an expansion in terms of the momenta, quark masses and 1/Nc. We extend the previous analysis to include isospin breaking effects and also include up to order p^4. We discuss vector meson chiral perturbation theory in some detail and present a derivation from a relativistic lagrangian. The unknown coefficients are estimated in various ways. We also discuss the relevance of electromagnetic corrections and the implications of the present calculation for the determination of quark masses.

  2. Chiral and continuum extrapolation of partially quenched lattice results

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Allton; W. Armour; D.B. Leinweber; A.W. Thomas; R.D. Young

    2005-04-01

    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretization, finite-volume and partial quenching artifacts are treated in a unified chiral effective field theory analysis of the lattice simulation results.

  3. A perturbative framework for jet quenching

    CERN Document Server

    Zapp, Korinna C; Wiedemann, Urs A

    2013-01-01

    We present a conceptually new framework for describing jet evolution in the dense medium produced in ultra-relativistic nucleus-nucleus collisions using perturbative QCD and its implementation into the Monte Carlo event generator JEWEL. The rescattering of hard partons in the medium is modelled by infrared continued pQCD matrix elements supplemented with parton showers. The latter approximate higher order real-emission matrix elements and thus generate medium-induced gluon emissions. The interplay between different emissions is governed by their formation times. The destructive interference between subsequent scattering processes, the non-Abelian version of the Landau-Pomeranchuk-Migdal effect, is also taken into account. In this way the complete radiation pattern is consistently treated in a uniform way. Results obtained within this minimal and theoretically well constrained framework are compared with a variety of experimental data susceptible to jet-quenching effects at both RHIC and the LHC. Overall, a go...

  4. Gluonic Lorentz violation and chiral perturbation theory

    Science.gov (United States)

    Noordmans, J. P.

    2017-04-01

    By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.

  5. Baryon form factors in chiral perturbation theory

    CERN Document Server

    Kubis, B; Kubis, Bastian; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the \\Sigma^- charge radius and the \\Lambda-\\Sigma^0 transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.

  6. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  7. A perturbative framework for jet quenching

    Science.gov (United States)

    Zapp, Korinna C.; Krauss, Frank; Wiedemann, Urs A.

    2013-03-01

    We present a conceptually new framework for describing jet evolution in the dense medium produced in ultra-relativistic nucleus-nucleus collisions using perturbative QCD and its implementation into the Monte Carlo event generator Jewel. The rescattering of hard partons in the medium is modelled by infrared continued pQCD matrix elements supplemented with parton showers. The latter approximate higher order real-emission matrix elements and thus generate medium-induced gluon emissions. The interplay between different emissions is governed by their formation times. The destructive interference between subsequent scattering processes, the non-Abelian version of the Landau-Pomeranchuk-Migdal effect, is also taken into account. In this way the complete radiation pattern is consistently treated in a uniform way. Results obtained within this minimal and theoretically well constrained framework are compared with a variety of experimental data susceptible to jet-quenching effects at both RHIC and the LHC. Overall, a good agreement between data and simulation is found. This new framework also allows to identify and quantify the dominant uncertainties in the simulation, and we show some relevant examples for this.

  8. A primer for Chiral Perturbative Theory

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics

    2012-07-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  9. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  10. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-08-23

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  11. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-08-23

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  12. Tests of Chiral perturbation theory with COMPASS

    Directory of Open Access Journals (Sweden)

    Friedrich Jan M.

    2014-06-01

    Full Text Available The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In the same experimental data taking, reactions with neutral and charged pions in the final state are measured and analyzed in the context of chiral perturbation theory.

  13. Properties of hyperons in chiral perturbation theory

    CERN Document Server

    Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente

    2009-01-01

    The development of chiral perturbation theory in hyperon phenomenology has been troubled due to power-counting subtleties and to a possible slow convergence. Furthermore, the presence of baryon-resonances, e.g. the lowest-lying decuplet, complicates the approach, and the inclusion of their effects may become necessary. Recently, we have shown that a fairly good convergence is possible using a renormalization prescription of the loop-divergencies which recovers the power counting, is covariant and consistent with analyticity. Moreover, we have systematically incorporated the decuplet resonances taking care of both power-counting and $consistency$ problems. A model-independent understanding of diferent properties including the magnetic moments of the baryon-octet, the electromagnetic structure of the decuplet resonances and the hyperon vector coupling $f_1(0)$, has been successfully achieved within this approach. We will briefly review these developments and stress the important role they play for an accurate d...

  14. Transport coefficients in Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Fraile, D.; Gomez Nicola, A. [Universidad Complutense, Departamentos de Fisica Teorica I y II, Madrid (Spain)

    2007-03-15

    We present recent results on the calculation of transport coefficients for a pion gas at zero chemical potential in Chiral Perturbation Theory (ChPT) using the Linear Response Theory (LRT). More precisely, we show the behavior of DC conductivity and shear viscosity at low temperatures. To compute transport coefficients, the standard power counting of ChPT has to be modified. The effects derived from imposing unitarity are also analyzed. As physical applications in relativistic heavy-ion collisions, we show the relation of the DC conductivity to soft-photon production and phenomenological effects related to a non-zero shear viscosity. In addition, our values for the shear viscosity to entropy ratio satisfy the KSS bound. (orig.)

  15. Semileptonic Kaon Decay in Staggered Chiral Perturbation Theory

    CERN Document Server

    Bernard, C; Gámiz, E

    2013-01-01

    The determination of $\\vert V_{us}\\vert$ from kaon semileptonic decays requires the value of the form factor $f_+(q^2=0)$, which can be calculated precisely on the lattice. We provide the one-loop partially quenched staggered chiral perturbation theory expressions that may be employed to analyze staggered simulations of $f_+(q^2)$ with three light flavors. We consider both the case of a mixed action, where the valence and sea sectors have different staggered actions, and the standard case where these actions are the same. The momentum transfer $q^2$ of the form factor is allowed to have an arbitrary value. We give results for the generic situation where the $u$, $d$, and $s$ quark masses are all different, $N_f=1+1+1$, and for the isospin limit, $N_f=2+1$. The expression we obtain for $f_+(q^2)$ is independent of the mass of the (valence) spectator quark. In the limit of vanishing lattice spacing, our results reduce to the one-loop continuum partially quenched expression for $f_+(q^2)$, which has not previous...

  16. Hadronic Lorentz violation in chiral perturbation theory

    Science.gov (United States)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2017-03-01

    Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.

  17. Properties of hyperons in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Camalich, J. Martin; Geng, L.S. [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain); Alvarez-Ruso, L. [Departamento de Fisica, Universidade de Coimbra (Portugal); Vacas, M.J. Vicente [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain)

    2010-04-01

    The development of chiral perturbation theory in hyperon phenomenology has been troubled due to power-counting subtleties and to a possible slow convergence. Furthermore, the presence of baryon-resonances, e.g. the lowest-lying decuplet, complicates the approach, and the inclusion of their effects may become necessary. Recently, we have shown that a fairly good convergence is possible using a renormalization prescription of the loop-divergencies which recovers the power counting, is covariant and consistent with analyticity. Moreover, we have systematically incorporated the decuplet resonances taking care of both power-counting and consistency problems. A model-independent understanding of different properties including the magnetic moments of the baryon-octet, the electromagnetic structure of the decuplet resonances and the hyperon vector coupling f{sub 1}(0), has been successfully achieved within this approach. We will briefly review these developments and stress the important role they play for an accurate determination of the Cabibbo-Kobayashi-Maskawa matrix element V{sub us} from hyperon semileptonic decay data.

  18. Correlators of left charges and weak operators in finite volume chiral perturbation theory

    Science.gov (United States)

    Hernández, Pilar; Laine, Mikko

    2003-01-01

    We compute the two-point correlator between left-handed flavour charges, and the three-point correlator between two left-handed charges and one strangeness violating DeltaI = 3/2 weak operator, at next-to-leading order in finite volume SU(3)L × SU(3)R chiral perturbation theory, in the so-called epsilon-regime. Matching these results with the corresponding lattice measurements would in principle allow to extract the pion decay constant F, and the effective chiral theory parameter g27, which determines the Delta I = 3/2 amplitude of the weak decays K to pipi as well as the kaon mixing parameter BK in the chiral limit. We repeat the calculations in the replica formulation of quenched chiral perturbation theory, finding only mild modifications. In particular, a properly chosen ratio of the three-point and two-point functions is shown to be identical in the full and quenched theories at this order.

  19. Hyperon decay form factors in chiral perturbation theory

    CERN Document Server

    Lacour, Andre; Meißner, Ulf-G

    2007-01-01

    We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p^4).

  20. One-loop Chiral Perturbation Theory with two fermion representations

    CERN Document Server

    DeGrand, Thomas; Neil, Ethan T; Shamir, Yigal

    2016-01-01

    We develop Chiral Perturbation Theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a non-anomalous singlet $U(1)_A$ symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.

  1. Nucleon polarizabilities in the perturbative chiral quark model

    CERN Document Server

    Dong, Y; Gutsche, T; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Shen, P; Faessler, Amand; Gutsche, Th.

    2006-01-01

    The nucleon polarizabilities alpha(E) and beta(M) are studied in the context of the perturbative chiral quark model. We demonstrate that meson cloud effects are sufficient to explain the electric polarizability of nucleon. Contributions of excite quark states to the paramagnetic polarizability are dominant and cancel the diamagnetic polarizability arising from the chiral field. The obtained results are compared to data and other theoretical predictions.

  2. Non-perturbative QCD amplitudes in quenched and eikonal approximations

    Science.gov (United States)

    Fried, H. M.; Grandou, T.; Sheu, Y.-M.

    2014-05-01

    Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD.

  3. Chiral perturbation theory with tensor sources

    Energy Technology Data Exchange (ETDEWEB)

    Cata, Oscar; Cata, Oscar; Mateu, Vicent

    2007-05-21

    We construct the most general chirally-invariant Lagrangian for mesons in the presence of external sources coupled to the tensor current \\bar psi sigma_mu nu psi. In order to have only even terms in the chiral expansion, we consider the new source of O(p2). With this choice, we build the even-parity effective Lagrangian up to the p6-order (NLO). While there are only 4 new terms at the p4-order, at p6-order we find 78 terms for n_f=2 and 113 terms for n_f=3. We provide a detailed discussion on the different mechanisms that ensure that our final set of operators is complete and non-redundant. We also examine the odd-parity sector, to conclude that the first operators appear at the p8-order (NNLO).

  4. Testing Lorentz Symmetry using Chiral Perturbation Theory

    CERN Document Server

    Noordmans, J P

    2016-01-01

    We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.

  5. Vector and Axial Currents in Wilson Chiral Perturbation Theory

    CERN Document Server

    Aoki, Sinya; Sharpe, Stephen R

    2009-01-01

    We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory (WChPT), the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two flavor theory. Our result differs from previously published ones.

  6. Non-perturbative QCD amplitudes in quenched and eikonal approximations

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H.M. [Physics Department, Brown University, Providence, RI 02912 (United States); Grandou, T., E-mail: Thierry.Grandou@inln.cnrs.fr [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France); Sheu, Y.-M., E-mail: ymsheu@alumni.brown.edu [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France)

    2014-05-15

    Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.

  7. Meson-Baryon Interactions in Unitarized Chiral Perturbation Theory

    CERN Document Server

    García-Recio, C; Ruiz-Arriola, E; Vacas, M J V

    2003-01-01

    Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The $s-$wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), $\\Lambda (1405)$ and $\\Lambda(1670)$ resonances which compare well with accepted numbers.

  8. SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Vacas, M J Vicente

    2009-01-01

    We calculate the SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ up to $\\mathcal{O}(p^4)$ in covariant baryon chiral perturbation theory with dynamical octet and decuplet contributions. We find that the decuplet contributions are of similar or even larger size than the octet ones. Combining both, we predict positive SU(3)-breaking corrections to all the four independent $f_1(0)$'s (assuming isospin symmetry), which are consistent, within uncertainties, with the latest results form large $N_c$ fits, chiral quark models, and quenched lattice QCD calculations.

  9. Chiral perturbation theory of muonic hydrogen Lamb shift: polarizability contribution

    CERN Document Server

    Alarcón, Jose Manuel; Pascalutsa, Vladimir

    2013-01-01

    The proton polarizability effect in the muonic-hydrogen Lamb shift comes out as a prediction of baryon chiral perturbation theory at leading order and our calculation yields for it: $\\Delta E^{(\\mathrm{pol})} (2P-2S) = 8^{+3}_{-1}\\, \\mu$eV. This result is consistent with most of evaluations based on dispersive sum rules, but is about a factor of two smaller than the recent result obtained in {\\em heavy-baryon} chiral perturbation theory. We also find that the effect of $\\Delta(1232)$-resonance excitation on the Lamb-shift is suppressed, as is the entire contribution of the magnetic polarizability; the electric polarizability dominates. Our results reaffirm the point of view that the proton structure effects, beyond the charge radius, are too small to resolve the `proton radius puzzle'.

  10. Automated Methods in Chiral Perturbation Theory on the Lattice

    CERN Document Server

    Borasoy, B; Krebs, H; Lewis, R; Borasoy, Bugra; Hippel, Georg M. von; Krebs, Hermann; Lewis, Randy

    2005-01-01

    We present a method to automatically derive the Feynman rules for mesonic chiral perturbation theory with a lattice regulator. The Feynman rules can be output both in a human-readable format and in a form suitable for an automated numerical evaluation of lattice Feynman diagrams. The automated method significantly simplifies working with improved or extended actions. Some applications to the study of finite-volume effects will be presented.

  11. Radiative four-meson amplitudes in chiral perturbation theory

    CERN Document Server

    D'Ambrosio, G; Isidori, Gino; Neufeld, H

    1996-01-01

    We present a general discussion of radiative four--meson processes to O(p^4) in chiral perturbation theory. We propose a definition of ``generalized bremsstrahlung'' that takes full advantage of experimental information on the corresponding non--radiative process. We also derive general formulae for one--loop amplitudes which can be applied, for instance, to \\eta \\ra 3\\pi\\gamma, \\pi \\pi \\ra \\pi \\pi \\gamma and K \\ra 3\\pi\\gamma.

  12. Radiative four-meson amplitudes in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    D`Ambrosio, G. [Naples Univ. (Italy). Dip. di Scienze Fisiche]|[INFN, Naples (Italy); Ecker, G.; Neufeld, H. [Wien Univ. (Austria). Inst. fuer Theoretische Physik; Isidori, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-03-01

    This paper presents a general discussion of radiative four-meson processes to O(p{sup 4}) in chiral perturbation theory. A definition of `generalized Bremsstrahlung` that takes full advantage of experimental information on the corresponding non-radiative process is proposed. General formulae for one-loop amplitudes which can be applied, for instance, to {eta}{yields}3{pi}{gamma}, {pi}{pi}{yields}{pi}{pi}{gamma} and K{yields}3{pi}{gamma}.

  13. Chiral perturbation theory approach to hadronic weak amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, E. de (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique 2)

    1989-07-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing {Delta}S=1 and {Delta}S=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3){sub Left}xSU(3){sub Right} rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI).

  14. \\pi N scattering in relativistic baryon chiral perturbation theory revisited

    CERN Document Server

    Alarcon, J M; Oller, J A; Alvarez-Ruso, L

    2011-01-01

    We have analyzed pion-nucleon scattering using the manifestly relativistic covariant framework of Infrared Regularization up to {\\cal O}(q^3) in the chiral expansion, where q is a generic small momentum. We describe the low-energy phase shifts with a similar quality as previously achieved with Heavy Baryon Chiral Perturbation Theory, \\sqrt{s}\\lesssim1.14 GeV. New values are provided for the {\\cal O}(q^2) and {\\cal O}(q^3) low-energy constants, which are compared with previous determinations. This is also the case for the scattering lengths and volumes. Finally, we have unitarized the previous amplitudes and as a result the energy range where data are reproduced increases significantly.

  15. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Science.gov (United States)

    Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2017-02-01

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.

  16. Quenched Chiral Logarithm Diverge in Very Light Quark Region from the Overlap Lattice Quantum Chromodynamics

    Institute of Scientific and Technical Information of China (English)

    应和平; 董绍静; 张剑波

    2003-01-01

    With an exact chiral symmetry, overlap fermions allow us to reach very light quark region. In the minimummps = 179 MeV, the quenched chiral logarithm diverge is examined. The chiral logarithm parameter δ is calculatedfrom both the pseudo-scalar meson mass mp2s diverge channel and the pseudo-scalar decay constant f p channel.In both the cases, we obtain δ = 0.25 ± 0.03. We also observe that the quenchedchiral logarithm diverge occursonly in the mps ≤400 MeV region.

  17. $K_{\\ell3}$ decays in Chiral Perturbation Theory

    CERN Document Server

    Bijnens, J; Bijnens, Johan; Talavera, Pere

    2003-01-01

    The process $K_{\\ell3}$ is calculated to two-loop order ($p^6$) in Chiral Perturbation Theory (ChPT) in the isospin conserved case. We use expressions suitable for use with previous work in two-loop CHPT where the order $p^4$ parameters ($L_i^r$) were determined from experiment. We point out that all the order $p^6$ parameters ($C_i^r$) that appear in the value of $f_+(0)$ relevant for the determination of $|V_{us}|$ can be determined from $K_{\\ell3}$ measurements via the slope and the curvature of the scalar form-factor.

  18. Chiral Perturbation Theory with Virtual Photons and Leptons

    CERN Document Server

    Knecht, M; Rupertsberger, H W; Talavera, P

    2000-01-01

    We construct a low-energy effective field theory which allows the full treatment of isospin-breaking effects in semileptonic weak interactions. To this end, we enlarge the particle spectrum of chiral perturbation theory with virtual photons by including also the light leptons as dynamical degrees of freedom. Using super-heat-kernel techniques, we determine the additional one-loop divergences generated by the presence of virtual leptons and give the full list of associated local counterterms. We illustrate the use of our effective theory by applying it to the decays pi -> l nu_{l} and K -> l nu_{l}.

  19. Masses and Sigma Terms of Pentaquarks in Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    Assuming that the recently θ+ and other exotic resonances belong to the pentaquark (-1-0) of SU(3)f with JP= 1/2, we constructed a relativistic effective lagrangian in the frame work of baryon chiral perturbation theory.The masses of pentaquarks under isospin symmetry is determined by calculating the propagator to one loop, where the extended on-mass-shell renormalization scheme is applied. Using the experimental data for masses of θ+, (I) and N, we estimated the mass of Σ. And the σ terms.

  20. SIMP model at NNLO in chiral perturbation theory

    DEFF Research Database (Denmark)

    Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.

    2015-01-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles....... By performing a consistent next-to-leading and next-to-next-to-leading order chiral perturbative investigation we demonstrate that the leading order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher order corrections substantially increase the tension...

  1. Non-perturbative renormalization of four-quark operators and B_K with Schroedinger functional scheme in quenched domain-wall QCD

    CERN Document Server

    Nakamura, Y

    2007-01-01

    We present non-perturbative renormalization factors for $\\Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schroedinger functional method. Non-perturbative renormalization factor for $B_K$ is evaluated at hadronic scale. Combined with the non-perturbative RG running obtained by the Alpha collaboration, our result yields renormalization factor which converts lattice bare $B_K$ to the renormalization group invariant one. We apply the renormalization factor to bare $B_K$ previously obtained by the CP-PACS collaboration with the quenched domain-wall QCD(DWQCD). We compare our result with previous ones obtained by perturbative renormalization factors, different renormalization schemes or different quark actions. We also show that chiral symmetry breaking effects in the renormalization factor are numerically small.

  2. The relation between random matrix theory, chiral perturbation theory and lattice-QCD; Die Beziehungen zwischen Random-Matrix-Theorie, chiraler Stoerungstheorie und Gitter-QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hehl, H.

    2002-07-01

    This thesis has studied the range of validity of the chiral random matrix theory in QCD on the example of the quenched staggered Dirac operator. The eigenvalues of this operator in the neighbourhood of zero are essential for the understanding of the spontaneous breaking of the chiral symmetry and the phase transition connected with this. The phase transition cannot be understood in the framework of perturbation theory, so that the formulation of QCD on the lattice has been chosen as the only non-perturbative approach. In order to circumvent both the problem of the fermion doubling and to study chiral properties on the lattice with acceptable numerical effort, quenched Kogut-Susskind fermions have been applied. The corresponding Dirac operator can be completely diagonalized by the Lanczos procedure of Cullum and Willoughby. Monte carlo simulations on hypercubic lattice have been performed and the Dirac operators of very much configurations diagonalized at different lattice lengths and coupling constants. The eigenvalue correlations on the microscopic scale are completely described by the chiral random matrix theory for the topological sector zero, which has been studied by means of the distribution of the smallest eigenvalue, the microscopic spectral density and the corresponding 2-point correlation function. The found universal behaviour shows, that on the scale of the lowest eigenvalue only completely general properties of the theory are important, but not the full dynamics. In order to determine the energy scale, from which the chiral random matrix theory losses its validity, - the Thouless energy - with the scalar susceptibilities observables have been analyzed, which are because of their spectral mass dependence sensitive on this. For each combination of the lattice parameter so the deviation point has been identified.

  3. QCD $\\theta$-vacua from the chiral limit to the quenched limit

    CERN Document Server

    Mameda, Kazuya

    2014-01-01

    We investigate the dependence of the QCD vacuum structure on $\\theta$-angle and quark mass, using the Veneziano$-$Di-Vecchia model. Although the Veneziano$-$Di-Vecchia model is a chiral effective model, it contains the topological property of the pure Yang$-$Mills theory. It is shown that within this model, the ground state energies for all $\\theta$ are continuous functions of quark mass from the chiral limit to the quenched limit, including the first order phase transition at $\\theta = \\pi$ for arbitrary finite mass. Besides, based on this effective model, we discuss (i) how the ground state depends on quark mass, and (ii) why the phase transition at $\\theta = \\pi$ is caused both in the chiral and quenched limit. In order to analyze the relation between quark mass and $\\theta$-vacua, we calculate chiral condensate as a function of quark mass. We also give a unified understanding of the phase transitions at $\\theta = \\pi$ in the chiral and quenched limit, making reference to the metastable states included inn...

  4. The chirally rotated Schroedinger functional. Theoretical expectations and perturbative tests

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Vilaseca, Pol [Istituto Nazionale di Fisica Nucleare, Sezione di Roma (Italy)

    2016-03-15

    The chirally rotated Schroedinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schroedinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  5. Topics on heavy baryon chiral perturbation theory in the large N_c limit

    CERN Document Server

    Flores-Mendieta, R

    2002-01-01

    We compute nonanalytical pion-loop corrections to baryon masses in a combined expansion in chiral symmetry breaking and 1/N_c, where N_c is the number of colors. Specifically, we compute flavor-27 baryon mass splittings at leading order in chiral perturbation theory. Our results, at the physical value N_c=3, are compared with the expressions obtained in heavy baryon chiral perturbation theory with no 1/N_c expansion.

  6. Numerical Study of Nonperturbative Corrections to the Chiral Separation Effect in Quenched Finite-Density QCD

    Science.gov (United States)

    Puhr, Matthias; Buividovich, P. V.

    2017-05-01

    We demonstrate the nonrenormalization of the chiral separation effect (CSE) in quenched finite-density QCD in both confinement and deconfinement phases using a recently developed numerical method which allows us, for the first time, to address the transport properties of exactly chiral, dense lattice fermions. This finding suggests that CSE can be used to fix renormalization constants for axial current density. Explaining the suppression of the CSE which we observe for topologically nontrivial gauge field configurations on small lattices, we also argue that CSE vanishes for self-dual non-Abelian fields inside instanton cores.

  7. Applications Of Chiral Perturbation Theory To Lattice Qcd

    CERN Document Server

    Van de Water, R S

    2005-01-01

    Quantum chromodynamics (QCD) is the fundamental theory that describes the interaction of quarks and gluons. Thus, in principle, one should be able to calculate all properties of hadrons from the QCD Lagrangian. It turns out, however, that such calculations can only be performed numerically on a computer using the nonperturbative method of lattice QCD, in which QCD is simulated on a discrete spacetime grid. Because lattice simulations use unphysically heavy quark masses (for computational reasons), lattice results must be connected to the real world using expressions calculated in chiral perturbation theory (χPT), the low-energy effective theory of QCD. Moreover, because real spacetime is continuous, they must be extrapolated to the continuum using an extension of χPT that includes lattice discretization effects, such as staggered χPT. This thesis is organized as follows. We motivate the need for lattice QCD and present the basic methodology in Chapter 1. We describe a common approximat...

  8. Chiral perturbation theory analysis of baryon temperature mass shifts

    CERN Document Server

    Bedaque, P F

    1995-01-01

    We compute the finite temperature pole mass shifts of the octet and decuplet baryons using heavy baryon chiral perturbation theory and the 1/N_c expansion, where N_c is the number of QCD colors. We consider the temperatures of the order of the pion mass m_\\pi, and expand truncate the chiral and 1/N_c expansions assuming that m_\\pi \\sim 1/N_c. There are three scales in the problem: the temperature T, the pion mass m_\\pi, and the octet--decuplet mass difference. Therefore, the result is not simply a power series in T. We find that the nucleon and \\Delta temperature mass shifts are opposite in sign, and that their mass difference changes by 20% in the temperature range 90 MeV < T < 130 MeV, that is the range where the freeze out in relativistic heavy ion collisions is expected to occur. We argue that our results are insensitive to the neglect of 1/N_c- supressed effects; the main purpose of the 1/N_c expansion in this work is to justify our treatment of the decuplet states.

  9. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)

    2017-02-15

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)

  10. A Review of Heavy-Quark and Chiral Perturbation Theory

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this paper we discuss the relations between various decays that can be obtained by combining heavy-quark perturbation theory and chiral perturbation theory for the emission of soft pseudoscalar particles. In the heavy-quark limit of QCD the interactions of the heavy quark Q are simplified because of a new set of symmetries not manifestly present in the full QCD. This fact is usually used in the construction of the new effective theory where the heavy-quark mass goes to infinity $(m_Q\\gg \\Lambda_{QCD})$ with its four-velocity fixed. The spin-flavor symmetry group of this new theory with N heavy quarks is SU(2N) because the interactions of the heavy quarks are independent of their spins and flavors. This fact is widely used in the description of the semileptonic decays of $B$ mesons to $D$ and $D^\\ast$ mesons where heavy-quark symmetry allows a parameterization of the decay amplitudes in terms of the single Isgur-Wise function [1].

  11. Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Science.gov (United States)

    Azimi, M.; Sekania, M.; Mishra, S. K.; Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.

    2016-08-01

    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: ultrashort terahertz excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations, we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, and the pairwise and many-body entanglement. If the characteristic frequencies of the generated states are noncommensurate, then a partial loss of pair concurrence occurs. Increasing the system size, this effect becomes even more pronounced. Many-particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and the Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of the Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench-induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.

  12. SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Vacas, M J Vicente

    2009-01-01

    We report on a recent study of the SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ up to $\\mathcal{O}(p^4)$ in covariant baryon chiral perturbation theory with dynamical octet and decuplet contributions. The decuplet contributions are taken into account for the first time in a covariant ChPT study and are found of similar or even larger size than the octet ones. We predict positive SU(3)-breaking corrections to all the four independent $f_1(0)$'s (assuming isospin symmetry), which are consistent, within uncertainties, with the latest results from large $N_c$ fits, chiral quark models, and quenched lattice QCD calculations. We also discuss briefly the implications of our results for the extraction of $V_{us}$ from hyperon decay data.

  13. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  14. The theory and phenomenology of perturbative QCD based jet quenching

    NARCIS (Netherlands)

    Majumder, A.; van Leeuwen, M.

    2010-01-01

    The study of the structure of strongly interacting dense matter via hard jets is reviewed. High momentum partons produced in hard collisions produce a shower of gluons prior to undergoing the non-perturbative process of hadronization. In the presence of a dense medium this shower is modified due to

  15. Leading logarithms in N-flavour mesonic Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, S 223 62 Lund (Sweden); Kampf, Karol, E-mail: karol.kampf@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-18000 Prague (Czech Republic); Lanz, Stefan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, S 223 62 Lund (Sweden); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2013-08-01

    We extend earlier work on leading logarithms in the massive nonlinear O(n) sigma model to the case of SU(N)×SU(N)/SU(N) which coincides with mesonic Chiral Perturbation Theory for N flavours of light quarks. We discuss the leading logarithms for the mass and decay constant to six loops and for the vacuum expectation value 〈q{sup ¯}q〉 to seven loops. For dynamical quantities the expressions grow extremely large much faster such that we only quote the leading logarithms to five loops for the vector and scalar form factor and for meson–meson scattering. The last quantity we consider is the vector–vector to meson–meson amplitude where we quote results up to four loops for a subset of quantities, in particular for the pion polarizabilities. As a side result we provide an elementary proof that the factors of N appearing at each loop order are odd or even depending on the order and the remaining traces over external flavours.

  16. Chiral-scale perturbation theory about an infrared fixed point

    Directory of Open Access Journals (Sweden)

    Crewther R.J.

    2014-06-01

    Full Text Available We review the failure of lowest order chiral SU(3L ×SU(3R perturbation theory χPT3 to account for amplitudes involving the f0(500 resonance and O(mK extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500 resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.

  17. Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.

  18. Ultraviolet finiteness of Chiral Perturbation Theory for two-dimensional Quantum Electrodynamics

    CERN Document Server

    Paston, S A; Franke, V A

    2003-01-01

    We consider the perturbation theory in the fermion mass (chiral perturbation theory) for the two-dimensional quantum electrodynamics. With this aim, we rewrite the theory in the equivalent bosonic form in which the interaction is exponential and the fermion mass becomes the coupling constant. We reformulate the bosonic perturbation theory in the superpropagator language and analyze its ultraviolet behavior. We show that the boson Green's functions without vacuum loops remain finite in all orders of the perturbation theory in the fermion mass.

  19. Axial form factor of the nucleon in the perturbative chiral quark model

    CERN Document Server

    Khosonthongkee, K; Faessler, Amand; Gutsche, T; Lyubovitskij, V E; Pumsa-ard, K; Yan, Y

    2004-01-01

    We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).

  20. Extending Chiral Perturbation Theory with an Isosinglet Scalar

    DEFF Research Database (Denmark)

    Hansen, Martin; Langaeble, Kasper; Sannino, Francesco

    2017-01-01

    We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology...

  1. The Kaon B-parameter in Mixed Action Chiral Perturbation Theory

    CERN Document Server

    Aubin, C; De van Water, R S; Laiho, Jack; Water, Ruth S. Van de

    2006-01-01

    We calculate the kaon B-parameter, B_K, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a^2) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B_K by an amount of O(a^2). This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B_K for pure G-W lattice fermions. We also present a numerical study of the mixed B_K expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.

  2. The Kaon B-parameter in mixed action chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, C.; /Columbia U.; Laiho, Jack; Van de Water, Ruth S.; /Fermilab

    2006-09-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}). This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.

  3. Extending chiral perturbation theory with an isosinglet scalar

    Science.gov (United States)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2017-02-01

    We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.

  4. Extending Chiral Perturbation Theory with an Isosinglet Scalar

    CERN Document Server

    Hansen, Martin; Sannino, Francesco

    2016-01-01

    We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.

  5. The B-meson mass splitting from non-perturbative quenched lattice QCD

    CERN Document Server

    Grozin, A G; Marquard, P; Meyer, H B; Piclum, J H; Sommer, R; Steinhauser, M

    2007-01-01

    We perform the non-perturbative (quenched) renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory and its three-loop matching to QCD. At order 1/m of the expansion, the operator is responsible for the mass splitting between the pseudoscalar and vector B-mesons. These new computed factors are affected by an uncertainty negligible in comparison to the known bare matrix element of the operator between B-states. Furthermore, they push the quenched determination of the spin splitting for the Bs-meson much closer to its experimental value than the previous perturbatively renormalized computations. The renormalization factor for three commonly used heavy quark actions and the Wilson gauge action and useful parametrizations of the matching coefficient are provided.

  6. $\\gamma\\gamma$ \\to $\\pi\\pi\\pi$ to one loop in chiral perturbation theory

    CERN Document Server

    Talavera, P; Bijnens, J; Bramon, A; Cornet, F

    1995-01-01

    The \\gamma\\gamma \\to \\pi^0 \\pi^0 \\pi^0 and \\gamma\\gamma \\to \\pi^+ \\pi^- \\pi^0 amplitudes are discussed in the general context of Chiral Perturbation Theory (ChPT) to O(p^6). Chiral loops are found to play a major role. This makes these processes a good test of ChPT, mainly in its anomalous sector. We correct earlier numerical results at tree level and determine the one-loop results as well.

  7. The magnetic moments and electromagnetic form factors of the decuplet baryons in chiral perturbation theory

    CERN Document Server

    Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2016-01-01

    We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.

  8. The epsilon regime of chiral perturbation theory with Wilson-type fermions

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Liverpool Univ. (United Kingdom). Theoretical Physics Division

    2009-11-15

    In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)

  9. Improved Unitarized Heavy Baryon Chiral Perturbation Theory for $\\pi N $ Scattering

    CERN Document Server

    Nicola, A G; Peláez, J R; Ruiz-Arriola, E

    2000-01-01

    We show how the unitarized description of pion nucleon scattering within Heavy Baryon Chiral Perturbation Theory can be considerably improved, by a suitable reordering of the expansion over the nucleon mass. Within this framework, the $\\Delta$ resonance and its associated pole can be recovered from the chiral parameters obtained from low-energy determinations. In addition, we can obtain a good description of the six $S$ and $P$ wave phase shifts in terms of chiral parameters with a natural size and compatible with the Resonance Saturation Hypothesis.

  10. SU(3)-breaking corrections to the baryon-octet magnetic moments in chiral perturbation theory

    CERN Document Server

    Camalich, J Martin; Geng, L S; Vacas, M J Vicente

    2009-01-01

    We report a calculation of the baryon magnetic moments using covariant chiral perturbation theory within the extended-on-mass-shell renormalization scheme including intermediate octet and decuplet contributions. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. We compare with previous attempts at the same order using heavy-baryon and covariant infrared chiral perturbation theory, and discuss the source of the differences.

  11. Gold-plated moments of nucleon structure functions in baryon chiral perturbation theory

    CERN Document Server

    Lensky, Vadim; Pascalutsa, Vladimir

    2014-01-01

    We obtain leading- and next-to-leading order predictions of chiral perturbation theory for several prominent moments of nucleon structure functions. These free-parameter free results turn out to be in overall agreement with the available empirical information on all of the considered moments, in the region of low-momentum transfer ($Q^2 < 0.3$ GeV$^2$). Especially surprising is the situation for the $\\delta_{LT}$ moment, which thus far was not reproducible for proton and neutron simultaneously in chiral perturbation theory. This problem, known as the "$\\delta_{LT}$ puzzle," is not seen in the present calculation.

  12. Perturbative versus non-perturbative aspects of jet quenching: in-medium breaking of color coherence

    CERN Document Server

    Beraudo, A

    2012-01-01

    The quenching of jets (and high-pT particle spectra) observed in heavy-ion collisions is interpreted as due to the energy lost by hard partons crossing the Quark Gluon Plasma. Here we review recent efforts to include in its modeling important qualitative features of QCD, like the correlations in multiple gluon emissions and the color-flow pattern in parton branchings. In particular, the modification of color connections among the partons of a shower developing in the presence of a medium is a generic occurrence accompanying parton energy-loss. We show how this effect can leave its fingerprints at the hadronization stage, leading by itself to a softening of hadron spectra and to an enhanced production of soft particles in jet-fragmentation.

  13. Chiral Symmetry Breaking for Domain Wall Fermions in Quenched Lattice QCD

    CERN Document Server

    Wu, L

    2001-01-01

    The domain wall fermion formulation exhibits full chiral symmetry for finite lattice spacing except for the effects of mixing between the domain walls. Close to the continuum limit these symmetry breaking effects should be described by a single residual mass. We determine this mass from the conservation law obeyed by the conserved axial current in quenched simulations with beta=5.7 and 6.0 and domain wall separations varying between 12 and 48 on 8^3x32 and 16^3x32 lattices. Using the resulting values for the residual mass we perform two complete and independent calculations of the pion decay constant. Good agreement is found between these two methods and with experiment.

  14. Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-06-15

    We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)

  15. Matching pion-nucleon Roy-Steiner equations to chiral perturbation theory

    CERN Document Server

    Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G

    2015-01-01

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the \\Delta(1232) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  16. Subtraction of power counting breaking terms in chiral perturbation theory: spinless matter fields

    CERN Document Server

    Du, Meng-Lin; Meißner, Ulf-G

    2016-01-01

    When matter fields are included in chiral perturbation theory, the nonvanishing mass in the chiral limit introduces a new energy scale so that the loop diagrams including such matter field propagators spoil the usual power counting. However, the power counting breaking terms can be absorbed into counterterms in the chiral Lagrangian. In this paper, we systematically derive these terms to leading one-loop order (next-to-next-to leading order in the chiral expansion) at once by calculating the generating functional using the path integral. They are then absorbed by counterterms in the next-to-leading order Lagrangian. The method can be extended to calculating power counting breaking terms for other matter fields.

  17. Charmless chiral perturbation theory for N_f=2+1+1 twisted mass lattice QCD

    CERN Document Server

    Bar, Oliver

    2014-01-01

    The chiral Lagrangian describing the low-energy behavior of N_f=2+1+1 twisted mass lattice QCD is constructed through O(a^2). In contrast to existing results the effects of a heavy charm quark are consistently removed, leaving behind a charmless 3-flavor Lagrangian. This Lagrangian is used to compute the pion and kaon masses to one loop in a regime where the pion mass splitting is large and taken as a leading order effect. In comparison with continuum chiral perturbation theory additional chiral logarithms are present in the results. In particular, chiral logarithms involving the neutral pion mass appear. These predict rather large finite volume corrections in the kaon mass which roughly account for the finite volume effects observed in lattice data.

  18. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory

    Science.gov (United States)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2015-11-01

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  19. Chiral perturbation theory study of the axial $N\\to\\Delta(1232)$ transition

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We have performed a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in covariant baryon chiral perturbation theory within a formalism in which the unphysical spin-1/2 components of the $\\Delta$ fields are decoupled.

  20. The electric dipole form factor of the nucleon in chiral perturbation theory to subleading order

    NARCIS (Netherlands)

    Mereghetti, E; de Vries, Jordy; Hockings, W.H.; Maekawa, C.M.; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD ¯ term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution

  1. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  2. Chiral symmetry breaking from Ginsparg-Wilson fermions

    Science.gov (United States)

    Hernándes, Pilar; Jansen, Karl; Lellouch, Laurent

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter Σ, up to a multiplicative renormalization.

  3. HQET at order 1/m. Pt. 1. Non-perturbative parameters in the quenched approximation

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Garron, Nicolas [Universidad Autonoma de Madrid (Spain). Dept. Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Edinburgh Univ. (United Kingdom). School of Physics and Astronomy - SUPA; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-01-15

    We determine non-perturbatively the parameters of the lattice HQET Lagrangian and those of heavy-light axial-vector and vector currents in the quenched approximation. The HQET expansion includes terms of order 1/m{sub b}. Our results allow to compute, for example, the heavy-light spectrum and B-meson decay constants in the static approximation and to order 1/m{sub b} in HQET. The determination of the parameters is separated into universal and non-universal parts. The universal results can be used to determine the parameters for various discretizations. The computation reported in this paper uses the plaquette gauge action and the ''HYP1/2'' action for the b-quark described by HQET. The parameters of the currents also depend on the light-quark action, for which we choose non-perturbatively O(a)-improved Wilson fermions. (orig.)

  4. Hadron masses and decay constants in quenched QCD

    CERN Document Server

    Göckeler, M; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G; Stephenson, P

    2000-01-01

    We present results for the mass spectrum and decay constants using non-perturbatively O(a) improved Wilson fermions. Three values of beta and 30 different quark masses are used to obtain the chiral and continuum limits. Special emphasis will be given to the question of taking the chiral limit and the existence of non-analytic behavior predicted by quenched chiral perturbation theory (qxPT).

  5. Perturbative and nonperturbative aspects of jet quenching in near-critical quark-gluon plasmas

    Science.gov (United States)

    Xu, Jiechen

    In this thesis, we construct two QCD based energy loss models to perform quantitative analysis of jet quenching observables in ultra-relativistic nucleus-nucleus collisions at RHIC and the LHC. We first build up a perturbative QCD based CUJET2.0 jet flavor tomography model that couples the dynamical running coupling DGLV opacity series to bulk data constrained relativistic viscous hydrodynamic backgrounds. It solves the strong heavy quark energy loss puzzle at RHIC and explains the surprising transparency of the quark-gluon plasma (QGP) at the LHC. The observed azimuthal anisotropy of hard leading hadrons requires a path dependent jet-medium coupling in CUJET2.0 that implies physics of nonperturbative origin. To explore the nonperturbative chromo-electric and chromo-magnetic structure of the strongly-coupled QGP through jet probes, we build up a new CUJET3.0 framework that includes in CUJET2.0 both Polyakov loop suppressed semi-QGP chromo-electric charges and emergent chromo-magnetic monopoles in the critical transition regime. CUJET3.0 quantitatively describes the anisotropic hadron suppression at RHIC and the LHC. More significantly, it provides a robust connection between the long wavelength ``perfect fluidity'' of the QGP and the short distance jet transport in the QGP. This framework paves the way for ``measuring'' both perturbative and nonperturbative properties of the QGP, and more importantly for probing color confinement through jet quenching.

  6. Forward virtual Compton scattering and the Lamb shift in chiral perturbation theory

    CERN Document Server

    Nevado, David

    2007-01-01

    We compute the spin-independent structure functions of the forward virtual-photon Compton tensor of the proton at one loop using heavy baryon chiral perturbation theory and dispersion relations. We study the relation between both approaches. We use these results to generalize some sum rules to virtual photon transfer momentum and relate them with sum rules in deep inelastic scattering. We then compute the leading chiral term of the polarizability correction to the Lamb shift of the hydrogen and muonic hydrogen. We obtain -87.05/n^3 Hz and -0.148/n^3 meV for the correction to the hydrogen and muonic hydrogen Lamb shift respectively.

  7. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  8. Properties of the ground-state baryons in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Martin Camalich, J., E-mail: camalich@ific.uv.e [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain); Geng, L.S., E-mail: lisheng.geng@ph.tum.d [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Physik Department, Technische Universitaet Muenchen, D-85747 Garching (Germany); Vicente Vacas, J.M., E-mail: vicente@ific.uv.e [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain)

    2010-10-15

    We review recent progress in the understanding of low-energy baryon structure by means of chiral perturbation theory. In particular, we discuss the application of this formalism to the description of various properties such as the baryon-octet magnetic moments, the electromagnetic structure of decuplet resonances and the hyperon vector coupling f{sub 1}(0). Moreover, we present the results on the chiral extrapolation of recent lattice QCD results on the lowest-lying baryon masses and we predict the corresponding baryonic sigma-terms.

  9. Properties of the ground-state baryons in chiral perturbation theory

    CERN Document Server

    Martin-Camalich, J; Vacas, M J Vicente

    2010-01-01

    We review recent progress in the understanding of low-energy baryon structure by means of chiral perturbation theory. In particular, we discuss the application of this formalism to the description of various properties such as the baryon-octet magnetic moments, the electromagnetic structure of decuplet resonances and the hyperon vector coupling $f_1(0)$. Moreover, we present the results on the chiral extrapolation of recent lattice QCD results on the lowest-lying baryon masses and we predict the corresponding baryonic sigma-terms.

  10. Elastic Pion-Nucleon Scattering to $O(p^{3})$ in Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Mojzis, M

    1997-01-01

    The elastic pi-N scattering amplitude in the isospin limit is calculated in the framework of heavy baryon chiral perturbation theory, up to the third order. Threshold parameters like scattering lengths, volumes, effective ranges, etc. are compared with data. All relevant low energy constants are fixed from the available pion-nucleon data. A clear improvement in the description of data is observed, when going from the first two orders in the chiral expansion to the third one. The importance of even higher orders is suggested by the result.

  11. The neutron electric dipole form factor in the perturbative chiral quark model

    CERN Document Server

    Dib, C; Gutsche, T; Kovalenko, S; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Dib, Claudio; Faessler, Amand; Gutsche, Thomas; Kovalenko, Sergey; Kuckei, Jan; Lyubovitskij, Valery E.; Pumsa-ard, Kem

    2006-01-01

    We calculate the electric dipole form factor of the neutron in a perturbative chiral quark model, parameterizing CP-violation of generic origin by means of effective electric dipole moments of the constituent quarks and their CP-violating couplings to the chiral fields. We discuss the relation of these effective parameters to more fundamental ones such as the intrinsic electric and chromoelectric dipole moments of quarks and the Weinberg parameter. From the existing experimental upper limits on the neutron EDM we derive constraints on these CP-violating parameters.

  12. The thermal evolution of nuclear matter at zero temperature and definite baryon number density in chiral perturbation theory

    CERN Document Server

    Li, Xiao-ya; Wang, Bin; Sun, Win-min; Zong, Hong-shi

    2008-01-01

    The thermal properties of cold dense nuclear matter are investigated with chiral perturbation theory. The evolution curves for the baryon number density, baryon number susceptibility, pressure and the equation of state are obtained. The chiral condensate is calculated and our result shows that when the baryon chemical potential goes beyond $1150 \\mathrm{MeV}$, the absolute value of the quark condensate decreases rapidly, which indicates a tendency of chiral restoration.

  13. Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel; Pascalutsa, Vladimir [Johannes Gutenberg-Universitaet, Cluster of Excellence PRISMA Institut fuer Kernphysik, Mainz (Germany); Lensky, Vadim [University of Manchester, Theoretical Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2014-04-15

    The proton polarizability effect in the muonic-hydrogen Lamb shift comes out as a prediction of baryon chiral perturbation theory at leading order and our calculation yields ΔE{sup (pol)}(2P - 2S) = 8{sub -1}{sup +3}μeV. This result is consistent with most of evaluations based on dispersive sum rules, but it is about a factor of 2 smaller than the recent result obtained in heavy-baryon chiral perturbation theory.We also find that the effect of Δ(1232)-resonance excitation on the Lamb shift is suppressed, as is the entire contribution of the magnetic polarizability; the electric polarizability dominates. Our results reaffirm the point of view that the proton structure effects, beyond the charge radius, are too small to resolve the 'proton radius puzzle'. (orig.)

  14. Electromagnetic structure of the low-lying baryons in covariant chiral perturbation theory

    CERN Document Server

    Camalich, J Martin; Geng, L S; Vacas, M J Vicente

    2009-01-01

    We report a calculation of the low-lying baryon magnetic moments using covariant chiral perturbation theory within the extended-on-mass-shell renormalization scheme including intermediate octet and decuplet contributions. For the case of the baryon octet, we succeed to improve the Coleman-Glashow description by including the leading SU(3)$_F$-breaking effects coming from the lowest-order loops. We compare with previous attempts at the same order using heavy-baryon and covariant infrared chiral perturbation theory, and discuss the source of the differences. For the case of the decuplet-baryons we fix the only unknown LEC with the well measured magnetic dipole moment of the $\\Omega^-$ and predict the corresponding ones of the $\\Delta(1232)$ isospin multiplet. In particular we obtain $\\mu_{\\Delta^{++}}=6.0(6) \\mu_N$ and $\\mu_{\\Delta^{+}}=2.84(34) \\mu_N$ that compare well with the current experimental information.

  15. The lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory

    CERN Document Server

    Martin-Camalich, J; Vacas, M J Vicente

    2010-01-01

    We present an analysis of the baryon-octet and -decuplet masses using covariant SU(3)-flavor chiral perturbation theory up to next-to-leading order. Besides the description of the physical masses we address the problem of the lattice QCD extrapolation. Using the PACS-CS collaboration data we show that a good description of the lattice points can be achieved at next-to-leading order with the covariant loop amplitudes and phenomenologically determined values for the meson-baryon couplings. Moreover, the extrapolation to the physical point up to this order is found to be better than the linear one given at leading-order by the Gell-Mann-Okubo approach. The importance that a reliable combination of lattice QCD and chiral perturbation theory may have for hadron phenomenology is emphasized with the prediction of the pion-baryon and strange-baryon sigma terms.

  16. Baryon chiral perturbation theory extended beyond the low-energy region

    CERN Document Server

    Epelbaum, E; Meißner, Ulf-G; Yao, De-Liang

    2015-01-01

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.

  17. Chiral Perturbation Theory and the $pp \\to pp \\pi^0$ Reaction Near Threshold

    CERN Document Server

    Sato, T; Myhrer, F; Kubodera, K

    1997-01-01

    A chiral-perturbative consideration of the near-threshold pp -> pp pi0 reaction indicates that the pion-rescattering term has a substantial energy and momentum dependence. The existing calculations that incorporate this dependence give pion rescattering contributions significantly larger than those of the conventional treatment, and this enhanced rescattering term interferes destructively with the one-body impulse term, leading to theoretical cross sections that are much smaller than the observed values. However, since the existing calculations are based on coordinate-space representation, they involve a number of simplifying assumptions about the energy-momentum flow in the rescattering diagram, even though the delicate interplay between the one-body and two-body terms makes it desirable to avoid these kinematical assumptions. We carry out here a momentum-space calculation that retains the energy-momentum dependence of the vertices as predicted by chiral perturbation theory. Our improved treatment increases ...

  18. Hyperon forward spin polarizability gamma0 in baryon chiral perturbation theory

    CERN Document Server

    Blin, Astrid Hiller; Ledwig, Tim; Lyubovitskij, Valery E

    2015-01-01

    We present the calculation of the hyperon forward spin polarizability gamma0 using manifestly Lorentz covariant baryon chiral perturbation theory including the intermediate contribution of the spin 3/2 states. As at the considered order the extraction of gamma0 is a pure prediction of chiral perturbation theory, the obtained values are a good test for this theory. After including explicitly the decuplet states, our SU(2) results have a very good agreement with the experimental data and we extend our framework to SU(3) to give predictions to the hyperons' gamma0 values. Prominent are the Sigma^- and Xi^- baryons as their photon transition to the decuplet is forbidden in SU(3) symmetry and therefore they are not sensitive to the explicit inclusion of the decuplet in the theory.

  19. $K_{l3}$ form factors at order $p^{6}$ of chiral perturbation theory

    CERN Document Server

    Post, P; 10.1007/s10052-002-0967-1

    2002-01-01

    This paper describes the calculation of the semileptonic K/sub l3/ decay form factors at order p/sup 6/ of chiral perturbation theory, which is the next-to-leading order correction to the well-known p/sup 4/ result achieved by Gasser and Leutwyler. At order p/sup 6/ the chiral expansion contains one- and two-loop diagrams which are discussed in detail. The irreducible two-loop graphs of the sunset topology are calculated numerically. In addition, the chiral Lagrangian L/sup (6)/ produces direct couplings with the W bosons. Due to these unknown couplings, one can always add linear terms in q /sup 2/ to the predictions of the form factor f/sub -/(q/sup 2/). For the form factor f/sub +/(q/sup 2/), this ambiguity involves even quadratic terms. Making use of the fact that the pion electromagnetic form factor involves the same q/sup 4/ counterterm, the q/sup 4/ ambiguity can be resolved. Apart from the possibility of adding an arbitrary linear term in q/sup 2/ our calculation shows that chiral perturbation theory c...

  20. Aspects of meson-baryon scattering in three- and two-flavor chiral perturbation theory

    CERN Document Server

    Mai, Maxim; Kubis, Bastian; Meißner, Ulf-G

    2009-01-01

    We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon and pion-cascade scattering that can be tested in lattice simulations.

  1. Determination of low-energy constants of Wilson chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Herdoiza, Gregorio [Mainz Univ. (Germany). Inst fuer Kernphysik, PRISMA Cluster of Excellence; Univ. Autonoma de Madrid, Contoblanco (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Univ. Cyprus, Nicosia (Cyprus). Dept. of Physics; Michael, Chris [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen und Kernphysik; Univ. Bonn (Germany). Bethe Center for Theoretical Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W{sub 6}{sup '}, W{sub 8}{sup '} and their linear combination c{sub 2}. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.

  2. Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J

    2012-01-01

    We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.

  3. Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.

  4. Electromagnetic form factors of the baryon octet in the perturbative chiral quark model

    CERN Document Server

    Cheedket, S; Gutsche, T; Faessler, A; Pumsa-ard, K; Yan, Y; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics(weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.

  5. Electromagnetic nucleon-delta transition in the perturbative chiral quark model

    CERN Document Server

    Pumsa-ard, K; Gutsche, T; Faessler, A; Cheedket, S; Gutsche, Th.; Faessler, Amand

    2003-01-01

    We apply the perturbative chiral quark model to the gamma N -> Delta transition. The four momentum dependence of the respective transverse helicity amplitudes A(1/2) and A(3/2) is determined at one loop in the pseudoscalar Goldstone boson fluctuations. Inclusion of excited states in the quark propagator is shown to result in a reasonable description of the experimental values for the helicity amplitudes at the real photon point.

  6. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    Science.gov (United States)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  7. Equation of state of imbalanced cold matter from chiral perturbation theory

    CERN Document Server

    Carignano, Stefano; Mannarelli, Massimo

    2016-01-01

    We study the thermodynamic properties of matter at vanishing temperature for non-extreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading order pressure obtained by maximizing the static chiral Lagrangian density we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the chiral perturbation energy density and the Stefan-Boltzmann energy density as well as for the isospin chemical potential at the peak in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For $\\mu_I \\gtrsim 2 m_\\pi$ the leading order chiral perturbation theory breaks down; as an example it underestimates the energy density of the system and leads to a wron...

  8. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    Science.gov (United States)

    Ananthanarayan, B.; Das, Diganta; Sentitemsu Imsong, I.

    2012-10-01

    Ampcalculator (AMPC) is a Mathematica © based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O( p 4) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27. Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.

  9. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayan, B.; Sentitemsu Imsong, I. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India); Das, Diganta [The Institute of Mathematical Sciences Taramani, Chennai (India)

    2012-10-15

    Ampcalculator (AMPC) is a Mathematica {sup copyright} based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p {sup 4})) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G{sub 27}. Another illustrative set of amplitudes at tree level we provide is in the context of {tau}-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics. (orig.)

  10. Chiral Perturbation Theory and the $\\bar B \\bar B$ Strong Interaction

    CERN Document Server

    Liu, Zhan-Wei; Zhu, Shi-Lin

    2012-01-01

    We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to $O(\\epsilon^2)$ with the heavy meson chiral perturbation theory. We take into account the contributions from the football, triangle, box, and crossed diagrams with the 2$\\phi$ exchange and one-loop corrections to the contact terms. We notice that the total 2$\\phi$-exchange potential alone is attractive in the small momentum region in the channel ${\\bar B \\bar B}^{I=1}$, ${\\bar B_s \\bar B_s}^{I=0}$, or ${\\bar B \\bar B_s}^{I=1/2}$, while repulsive in the channel ${\\bar B \\bar B}^{I=0}$. Hopefully the analytical chiral structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice QCD simulation.

  11. S=--1 Meson-Baryon Scattering in Coupled Channel Unitarized Chiral Perturbation Theory

    CERN Document Server

    García-Recio, C; Ruiz-Arriola, E; Vacas, M J V

    2003-01-01

    The $s-$wave meson-baryon scattering amplitude is analyzed for the strangeness $S=-1$ and isospin I=0 sector in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry. Four two-body channels have been considered: $\\bar K N$, $\\pi \\Sigma $, $\\eta \\Lambda $, $ K \\Xi$. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behaviour is parameterized in terms of low energy constants, which outnumber those assumed in previous works and provide a better fit to the data. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths of the $\\Lambda (1405)$ and $\\Lambda(1670)$ resonances which compare well with accepted numbers.

  12. S=-1 meson-baryon scattering in coupled-channel unitarized Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Recio, C.; Nieves, J.; Ruiz Arriola, E. [Departamento de Fisica Moderna, Universidad de Granada, E-18071, Granada (Spain); Vicente Vacas, M. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Ap. Correos 22085, E-46071, Valencia (Spain)

    2003-11-01

    The s-wave meson-baryon scattering amplitude is analyzed for the strangeness S=-1 and isospin I=0 sector in a Bethe-Salpeter coupled-channel formalism incorporating Chiral Symmetry. Four two-body channels have been considered: anti K N, {pi}{sigma}, {eta}{lambda}, K {xi}. The needed two-particle irreducible matrix amplitude is taken from lowest-order Chiral Perturbation Theory in a relativistic formalism. Off-shell behaviour is parameterized in terms of low-energy constants, which outnumber those assumed in previous works and provide a better fit to the data. The position of the complex poles in the second Riemann sheet of the scattering amplitude determines masses and widths of the {lambda}(1405) and {lambda}(1670) resonances which compare well with accepted numbers. (orig.)

  13. The baryon axial current in large $N_c$ chiral perturbation theory

    CERN Document Server

    Hernandez-Ruiz, Maria A

    2014-01-01

    In this thesis we calculate the baryon axial current within the combined framework of the $1/N_c$ expansion and chiral perturbation theory, where $N_c$ is the number of colors. This calculation shall consider Feynman diagrams to order of one-loop, octet and decuplet intermediaries states. We obtain corrections due to one-loop and perturbative SU(3) symmetry breaking. The first corrections come from Feynman diagrams, then talk about a broken chiral symmetry in the implicit limit $m_q \\rightarrow 0$, where $m_q$ is the quark mass and the second corrections are obtained by ignoring isospin breaking and in that case the SU(3) symmetry breaking a first-order perturbation is included, leading an explicit break symmetry. The matrix elements of the spatial components of the axial operator between the states of the spin flavor symmetry, give the typical values of the axial vector coupling. For the baryon octet, links axial vector are $g_A$, just as they are defined in experiments of baryon semileptonic decays, where $...

  14. An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Hebbar, Aditya [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); University of Delaware, Department of Physics and Astronomy, Newark, DE (United States)

    2016-12-15

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper. (orig.)

  15. T-odd correlations in radiative K_l3^+ decays and Chiral Perturbation Theory

    CERN Document Server

    Müller, E H; Meißner, Ulf G; Kubis, Bastian; Müller, Eike H; Mei{\\ss}ner, Ulf-G.

    2006-01-01

    The charged kaon decay channel K_l3gamma^+ allows for studies of direct CP violation, possibly due to non-standard mechanisms, with the help of T-odd correlation variables. In order to be able to extract a CP-violating signal from experiment, it is necessary to understand all possible Standard Model phases that also produce T-odd asymmetries. We complement earlier studies by considering strong interaction phases in hadronic structure functions that appear at higher orders in Chiral Perturbation Theory, and compare our findings to other potential sources of asymmetries.

  16. Two-point Functions at Two Loops in Three Flavour Chiral Perturbation Theory

    CERN Document Server

    Amorós, G; Talavera, P; Amoros, Gabriel; Bijnens, Johan; Talavera, Pere

    2000-01-01

    The vector and axial-vector two-point functions are calculated to next-to-next-to-leading order in Chiral Perturbation Theory for three light flavours. We also obtain expressions at the same order for the masses, $m_\\pi^2$, $m_K^2$ and $m_\\eta^2$, and the decay constants, $F_\\pi$, $F_K$ and $F_\\eta$. We present some numerical results after a simple resonance estimate of some of the new ${\\cal O}(p^6)$ constants.

  17. Leading-order decuplet contributions to the baryon magnetic moments in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, L.S. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain); Camalich, J. Martin [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain)], E-mail: camalich@ific.uv.es; Vacas, M.J. Vicente [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain)

    2009-06-01

    We extend an earlier study of the baryon magnetic moments in chiral perturbation theory by the explicit inclusion of the spin-3/2 decuplet resonances. We find that the corrections induced by these heavier degrees of freedom are relatively small in a covariant framework where unphysical spin-1/2 modes are removed. Consequently, implementing the leading SU(3)-breaking corrections given by both the baryon and decuplet contributions, we obtain a description of the baryon-octet magnetic moments that is better than the Coleman-Glashow relations. Finally, we discuss the uncertainties and compare between heavy baryon and covariant approaches.

  18. Leading SU(3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory.

    Science.gov (United States)

    Geng, L S; Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-11-28

    We calculate the baryon magnetic moments using covariant chiral perturbation theory (chiPT) within the extended-on-mass-shell renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3)-breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using heavy-baryon chiPT and covariant infrared chiPT. We also analyze the source of this improvement with particular attention to the comparison between the covariant results.

  19. Leading-order decuplet contributions to the baryon magnetic moments in Chiral Perturbation Theory

    CERN Document Server

    Geng, L S; Vacas, M J Vicente

    2009-01-01

    We extend an earlier study of the baryon magnetic moments in chiral perturbation theory by the explicit inclusion of the spin-3/2 decuplet resonances. We find that the corrections induced by these heavier degrees of freedom are relatively small in a covariant framework where unphysical spin-1/2 modes are removed. Consequently, implementing the leading SU(3)-breaking corrections given by both the baryon and decuplet contributions, we obtain a description of the baryon-octet magnetic moments that is better than the Coleman-Glashow relations. Finally, we discuss the uncertainties and compare between heavy baryon and covariant approaches.

  20. Baryon chiral perturbation theory up to next-to-leading order

    CERN Document Server

    Bos, J W; Lee, S C; Lin, Y C; Shih, H H; Bos, J W; Chang, D W; Lee, S C; Lin, Y C; Shih, H H

    1995-01-01

    We examine the general lagrangian for baryon chiral perturbation theory with SU(3) flavor symmetry, up to the next-to-leading order. We consider both the strong and the weak interaction. The inverse of the baryon mass is treated as an additional small expansion parameter, and heavy fermion effective field theory techniques are employed to provide a consistent expansion scheme. A detailed account is given on the restrictions imposed on the lagrangian by the various symmetries. Corrections due to the finite baryon mass are also discussed.

  1. Pion-nucleon scattering in chiral perturbation theory II: Fourth order calculation

    CERN Document Server

    Fettes, N

    2000-01-01

    We analyze elastic pion-nucleon scattering to fourth order in heavy-baryon chiral perturbation theory, extending the third-order study published in Nucl. Phys. A 640 (1998) 199. We use various partial-wave analyses to pin down the low-energy constants from data in the physical region. The S-wave scattering lengths are consistent with recent determinations from pionic hydrogen and deuterium. We find an improved description of the P-waves. We also discuss the pion-nucleon sigma term and problems related to the prediction of the subthreshold parameters.

  2. Proton radius from electron-proton scattering and chiral perturbation theory

    CERN Document Server

    Horbatsch, Marko; Pineda, Antonio

    2016-01-01

    We determine the root-mean-square proton charge radius, $R_{\\rm p}$, from a fit to low-$Q^2$ electron-proton elastic scattering cross section data with the higher moments fixed (within uncertainties) to the values predicted by chiral perturbation theory. We obtain $R_{\\rm p}=0.844(12)$ fm. This number is perfectly consistent with the value obtained from muonic hydrogen analyses and disagrees with the CODATA value (based upon atomic hydrogen spectroscopy and electron-proton scattering determinations) by more than two standard deviations.

  3. The Inverse Amplitude Method in $\\pi\\pi$ Scattering in Chiral Perturbation Theory to Two Loops

    CERN Document Server

    Nieves, J; Ruiz-Arriola, E

    2002-01-01

    The inverse amplitude method is used to unitarize the two loop $\\pi\\pi$ scattering amplitudes of SU(2) Chiral Perturbation Theory in the $I=0,J=0$, $I=1,J=1$ and $I=2,J=0$ channels. An error analysis in terms of the low energy one-loop parameters $\\bar l_{1,2,3,4,}$ and existing experimental data is undertaken. A comparison to standard resonance saturation values for the two loop coefficients $\\bar b_{1,2,3,4,5,6} $ is also carried out. Crossing violations are quantified and the convergence of the expansion is discussed.

  4. New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory

    CERN Document Server

    Walker-Loud, A

    2008-01-01

    I will review heavy baryon chiral perturbation theory for the nucleon delta degrees of freedom and then examine the recent dynamical lattice calculations of the nucleon mass from the BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD and RBC/UKQCD Collaborations. Performing the chiral extrapolations of these results, one finds remarkable agreement with the physical nucleon mass, from each lattice data set. However, a careful examination of the lattice data and the resulting extrapolation functions reveals some unexpected results, serving to highlight the significant challenges in performing chiral extrapolations of baryon quantities. All the N_f=2+1 dynamical results can be quantitatively described by theoretically unmotivated fit function linear in the pion mass with m_pi ~ 750 -190 MeV. When extrapolated to the physical point, the results are in striking agreement with the physical nucleon mass. I will argue that knowledge of each lattice datum of the nucleon mass is required at the 1-2% level, includ...

  5. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    Science.gov (United States)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  6. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    CERN Document Server

    Siemens, D; Epelbaum, E; Gasparyan, A; Krebs, H; Meißner, Ulf-G

    2016-01-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant $\\beta$-functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide a clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the $\\Delta$-resonance. The explicit inclusion of the leading contributions of the $\\Delta$-isobar is demonstrat...

  7. The chirally rotated Schrödinger functional: theoretical expectations and perturbative tests

    Energy Technology Data Exchange (ETDEWEB)

    Brida, Mattia Dalla [NIC, DESY,Platanenallee 6, 15738 Zeuthen (Germany); Sint, Stefan [School of Mathematics, Trinity College Dublin,Dublin 2 (Ireland); Vilaseca, Pol [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,P.le A. Moro 2, I-00185, Roma (Italy)

    2016-08-17

    The chirally rotated Schrödinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schrödinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  8. The chirally rotated Schrödinger functional: theoretical expectations and perturbative tests

    Science.gov (United States)

    Brida, Mattia Dalla; Sint, Stefan; Vilaseca, Pol

    2016-08-01

    The chirally rotated Schrödinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schrödinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O( a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O( a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  9. Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory

    CERN Document Server

    Geng, L S; Vacas, M J Vicente

    2009-01-01

    We present a calculation of the leading SU(3)-breaking $\\mathcal{O}(p^3)$-corrections to the electromagnetic moments and charge radius (CR) of the lowest-lying decuplet resonances in covariant chiral perturbation theory. In particular, the magnetic dipole moment (MDM) of the members of the decuplet is predicted fixing the only low-energy constant (LEC) present up to this order with the well measured MDM of the $\\Omega^-$. We predict $\\mu_\\Delta^{++}=6.04(13)$ and $\\mu_\\Delta^+=2.84(2)$ which agree well with the current experimental information. For the electric quadrupole moment (EQM) and the CR we use state-of-the-art lattice QCD results to determine the corresponding LECs, whereas for the magnetic octupole moment (MOM) there is no unknown LEC up to the order considered here and we obtain a pure prediction. We compare our results with those reported in large $N_c$, lattice QCD, heavy-baryon chiral perturbation theory and other models.

  10. Consistency between SU(3) and SU(2) covariant baryon chiral perturbation theory for the nucleon mass

    Science.gov (United States)

    Ren, Xiu-Lei; Alvarez-Ruso, L.; Geng, Li-Sheng; Ledwig, Tim; Meng, Jie; Vicente Vacas, M. J.

    2017-03-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the 19 low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order [1] is supported by comparing the effective parameters (the combinations of the 19 couplings) with the corresponding low-energy constants in the SU(2) sector [2]. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref. [2] that the SU(2) baryon chiral perturbation theory can be applied to study nf = 2 + 1 lattice QCD simulations as long as the strange quark mass is close to its physical value.

  11. Kicking the rugby ball: perturbations of 6D gauged chiral supergravity

    Science.gov (United States)

    Burgess, C. P.; de Rham, C.; Hoover, D.; Mason, D.; Tolley, A. J.

    2007-02-01

    We analyse the axially symmetric scalar perturbations of 6D chiral gauged supergravity compactified on the general warped geometries in the presence of two source branes. We find that all of the conical geometries are marginally stable for normalizable perturbations (in disagreement with some recent calculations) and the non-conical ones for regular perturbations, even though none of them are supersymmetric (apart from the trivial Salam Sezgin solution, for which there are no source branes). The marginal direction is the one whose presence is required by the classical scaling property of the field equations, and all other modes have positive squared mass. In the special case of the conical solutions, including (but not restricted to) the unwarped 'rugby-ball' solutions, we find closed-form expressions for the mode functions in terms of Legendre and hypergeometric functions. In so doing we show how to match the asymptotic near-brane form for the solution to the physics of the source branes, and thereby how to physically interpret perturbations which can be singular at the brane positions.

  12. The Fubini-Furlan-Rosetti sum rule and related aspects in light of covariant baryon chiral perturbation theory

    CERN Document Server

    Bernard, V; Meißner, Ulf G; Kubis, Bastian; Mei{\\ss}ner, Ulf-G.

    2005-01-01

    We analyze the Fubini-Furlan-Rosetti sum rule in the framework of covariant baryon chiral perturbation theory to leading one-loop accuracy and including next-to-leading order polynomial contributions. We discuss the relation between the subtraction constants in the invariant amplitudes and certain low-energy constants employed in earlier chiral perturbation theory studies of threshold neutral pion photoproduction off nucleons. In particular, we consider the corrections to the sum rule due to the finite pion mass and show that below the threshold they agree well with determinations based on fixed-t dispersion relations. We also discuss the energy dependence of the electric dipole amplitude E_{0+}.

  13. K^0-\\bar K^0 mixing beyond the standard model and CP-violating electroweak penguins in quenched QCD with exact chiral symmetry

    CERN Document Server

    Babich, R; Hölbling, C; Howard, J; Lellouch, L; Rebbi, C; Babich, Ronald; Garron, Nicolas; Hoelbling, Christian; Howard, Joseph; Lellouch, Laurent; Rebbi, Claudio

    2006-01-01

    We present results for the \\Delta S=2 matrix elements which are required to study neutral kaon mixing in the standard model (SM) and beyond (BSM). We also provide leading chiral order results for the matrix elements of the electroweak penguin operators which give the dominant \\Delta I=3/2 contribution to direct CP violation in K->\\pi\\pi decays. Our calculations were performed with Neuberger fermions on two sets of quenched Wilson gauge configurations at inverse lattice spacings of approximately 2.2 GeV and 1.5 GeV. All renormalizations were implemented non-perturbatively in the RI/MOM scheme, where we accounted for sub-leading operator product expansion corrections and discretization errors. We find ratios of non-SM to SM matrix elements which are roughly twice as large as in the only other dedicated lattice study of these amplitudes. On the other hand, our results for the electroweak penguin matrix elements are in good agreement with two recent domain-wall fermion calculations. As a by-product of our study, ...

  14. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    CERN Document Server

    Ren, Xiu-Lei; Geng, Li-Sheng; Ledwig, T; Meng, Jie; Vacas, M J Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~\\cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~\\cite{Alvarez-Ruso:2013fza}.

  15. Leading SU(3)-breaking corrections to the baryon magnetic moments in Chiral Perturbation Theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We calculate the baryon magnetic moments using covariant Chiral Perturbation Theory ($\\chi$PT) within the Extended-on-mass-shell (EOMS) renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using Heavy Baryon (HB) $\\chi$PT and covariant Infrared (IR) $\\chi$PT. We also analyze the source of this improvement with particular attention on the comparison between the covariant results, and conclude that SU(3) baryon $\\chi$PT coverges better within the EOMS renormalization scheme.

  16. One-loop divergences in chiral perturbation theory and right-invariant metrics on SU(3)

    Energy Technology Data Exchange (ETDEWEB)

    Esposito-Farese, G. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique)

    1991-04-01

    In the framework of chiral perturbation theory, we compute the one-loop divergences of the effective Lagrangian describing strong and non-leptonic weak interactions of pseudoscalar mesons. We use the background field method and the heat-kernel expansion, and underline the geometrical meaning of the different terms, showing how the right-invariance of the metrics on SU(3) allows to clarify and simplify the calculations. Our results are given in terms of a minimal set of independent counterterms, and shorten previous ones of the literature, in the particular case where the electromagnetic field is the only external source which is considered. We also show that a geometrical construction of the effective Lagrangian at order O(p{sup 4}) allows to derive some relations between the finite parts of the coupling constants. These relations do not depend on the scale {mu} used to renormalize. (orig.).

  17. SU(2) chiral perturbation theory low-energy constants from staggered 2+1 flavor simulations

    CERN Document Server

    Scholz, Enno E; Durr, Stephan; Fodor, Zoltan; Katz, Sandor D; Krieg, Stefan; Schafer, Andreas; Szabo, Kalman K

    2011-01-01

    We measure the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration, and extract the NLO low-energy constants l_3 and l_4 of SU(2) chiral perturbation theory. The data are generated in 2+1 flavor simulations with Symanzik glue and 2-fold stout-smeared staggered fermions, with pion masses varying from 135 MeV to 400 MeV, lattice scales between 0.7 GeV and 2.0 GeV, and m_s kept at its physical value. Furthermore, by excluding the lightest mass points, we are able to test the reliability of SU(2) chPT as a tool to extrapolate towards the physical point from higher pion masses.

  18. Chirality of tensor perturbations for complex values of the Immirzi parameter

    CERN Document Server

    Bethke, Laura

    2011-01-01

    In this paper we generalise previous work on tensor perturbations in a de Sitter background in terms of Ashtekar variables to cover all complex values of the Immirzi parameter gamma (previous work was restricted to imaginary gamma). Particular attention is paid to the case of real gamma. Following the same approach as in the imaginary case, we can obtain physical graviton states by invoking reality and torsion free conditions. The Hamiltonian in terms of graviton states has the same form whether gamma has a real part or not; however changes occur for the vacuum energy and fluctuations. Specifically, we observe a gamma dependent chiral asymmetry in the vacuum fluctuations only if gamma has an imaginary part. Ordering prescriptions also change this asymmetry. We thus present a measurable result for CMB polarisation experiments that could shed light on the workings of quantum gravity.

  19. Chiral perturbation theory for generalized parton distributions and baryon distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Wein, Philipp

    2016-05-06

    In this thesis we apply low-energy effective field theory to the first moments of generalized parton distributions and to baryon distribution amplitudes, which are both highly relevant for the parametrization of the nonperturbative part in hard processes. These quantities yield complementary information on hadron structure, since the former treat hadrons as a whole and, thus, give information about the (angular) momentum carried by an entire parton species on average, while the latter parametrize the momentum distribution within an individual Fock state. By performing one-loop calculations within covariant baryon chiral perturbation theory, we obtain sensible parametrizations of the quark mass dependence that are ideally suited for the subsequent analysis of lattice QCD data.

  20. Upper Energy Limit of Heavy Baryon Chiral Perturbation Theory in Neutral Pion Photoproduction

    CERN Document Server

    Fernandez-Ramirez, C

    2013-01-01

    We assess the energy limit up to which Heavy Baryon Chiral Perturbation Theory can be accurately applied to the process of neutral pion photoproduction from the proton by analyzing the latest data from the A2 and CB-TAPS collaborations at Mainz. We find that, within the current experimental status, the theory works up to $\\sim$170 MeV. Above this energy the data call for further improvement in the theory such as the explicit inclusion of the $\\Delta$(1232). We also find that data and multipoles can be well described up to $\\sim$185 MeV with Taylor expansions in the partial waves up to first order in pion energy.

  1. Mass Spectra of Heavy-Light Mesons in Heavy Hadron Chiral Perturbation Theory

    CERN Document Server

    Alhakami, Mohammad H

    2016-01-01

    We study the masses of the low-lying charm and bottom mesons within the framework of heavy- hadron chiral perturbation theory. We work to third order in the chiral expansion, where meson loops contribute. In contrast to previous approaches, we use physical meson masses in evaluating these loops. This ensures that their imaginary parts are consistent with the observed widths of the D-mesons. The lowest odd- and even-parity, strange and nonstrange charm mesons provide enough constraints to determine only certain linear combinations of the low-energy constants (LECs) in the effective Lagrangian. We comment on how lattice QCD could provide further information to disentangle these constants. Then we use the results from the charm sector to predict the spectrum of odd- and even-parity of the bottom mesons. The predicted masses from our theory are in good agreement with experimentally measured masses for the case of the odd-parity sector. For the even-parity sector, the B-meson states have not yet been observed; thu...

  2. Intrinsic Optical Activity and Environmental Perturbations: Solvation Effects in Chiral Building Blocks

    Science.gov (United States)

    Lemler, Paul M.; Vaccaro, Patrick

    2016-06-01

    The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.

  3. Convergence properties of η → 3π decays in chiral perturbation theory

    Science.gov (United States)

    Kolesár, Marián; Novotný, Jiří

    2017-01-01

    The convergence of the decay widths and some of the Dalitz plot parameters of the decay η → 3π seems problematic in low energy QCD. In the framework of resummed chiral perturbation theory, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters a and d can be described very well too. When the parameters b and α are concerned, we find a mild tension for the whole range of the free parameters, at less than 2σ C.L. This can be interpreted in two ways - either some of the higher order corrections are indeed unexpectedly large or there is a specific configuration of the remainders, which is, however, not completely improbable.

  4. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    CERN Document Server

    Yao, De-Liang; Bernard, V; Epelbaum, E; Gasparyan, A M; Gegelia, J; Krebs, H; Meißner, Ulf-G

    2016-01-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the $S$- and $P$-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the $D$ and $F$ waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in ...

  5. Equation of state of imbalanced cold matter from chiral perturbation theory

    Science.gov (United States)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo

    2016-03-01

    We study the thermodynamic properties of matter at vanishing temperature for nonextreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading-order pressure obtained by maximizing the static chiral Lagrangian density, we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the energy density and the Stefan-Boltzmann energy density and for the isospin chemical potential at the peak, both in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For μI≳2 mπ, the leading-order chiral perturbation theory breaks down; for example, it underestimates the energy density of the system and leads to a wrong asymptotic behavior.

  6. The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order

    NARCIS (Netherlands)

    Mereghetti, E.; de Vries, J.; Hockings, W. H.; Maekawa, C. M.; van Kolck, U.

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD (theta) over bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analyti

  7. The lowest-lying spin-1/2 and spin-3/2 baryon magnetic moments in chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J

    2010-01-01

    We review some recent progress in our understanding of the lowest-lying spin-1/2 and spin-3/2 baryon magnetic moments (MMs) in terms of Chiral Perturbation Theory (ChPT). In particular, we show that at next-to-leading-order ChPT can describe the MMs of the octet baryons quite well. We also make predictions for the decuplet MMs at the same chiral order. Among them, the MMs of the $\\Delta^{++}$ and $\\Delta^+$ are found to agree well with data within the experimental uncertainties.

  8. Non-perturbative renormalization of four-quark operators and B_K with Schroedinger functional scheme in quenched domain-wall QCD

    OpenAIRE

    Nakamura, Yousuke; Taniguchi, Yusuke; Collaboration, for CP-PACS

    2007-01-01

    We present non-perturbative renormalization factors for $\\Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schroedinger functional method. Non-perturbative renormalization factor for $B_K$ is evaluated at hadronic scale. Combined with the non-perturbative RG running obtained by the Alpha collaboration, our result yields renormalization factor which converts lattice bare $B_K$ to the renormalization group invariant one. We apply the renormalization factor to bare $B_K$ pre...

  9. Nuclear structure with accurate chiral perturbation theory nucleon-nucleon potential: Application to 6Li and 10B

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Caurier, E

    2003-10-14

    The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.

  10. Chiral Perturbation Theory, the 1/N_c expansion and Regge behavior determine the structure of the lightest scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, J. R. [Univ. Complutense Madrid (Spain); Pennington, Michael R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); de Elvira, J. Ruiz [Univ. Complutense Madrid (Spain); Wilson, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-11-01

    The leading 1/N{sub c} behavior of Unitarized Chiral Perturbation Theory distinguishes the nature of the {rho} and the {sigma}. At one loop order the {rho} is a {bar q}q meson, while the {sigma} is not. However, semi-local duality between resonances and Regge behaviour cannot be satisfied for larger N{sub c}, if such a distinction holds. While the {sigma} at N{sub c}= 3 is inevitably dominated by its di-pion component, Unitarised Chiral Perturbation Theory beyond one loop order reveals that as N{sub c} increases above 6-8, the {sigma} has a sub-dominant {bar q}q fraction up at 1.2 GeV. Remarkably this ensures semi-local duality is fulfilled for the range of N{sub c} {approx}< 15-30, where the unitarization procedure adopted applies.

  11. Analysis of Dalitz decays with intrinsic parity violating interactions in resonance chiral perturbation theory

    CERN Document Server

    Kimura, Daiji; Umeeda, Hiroyuki

    2016-01-01

    Transition form factors and partial decay widths are investigated for Dalitz decays of $V\\to Pl^+l^-$ and $P\\to \\gamma l^+l^-$ $(V=1^-, P=0^-)$ in a model of resonance chiral perturbation theory. The differential decay width of $P\\to\\pi^+\\pi^-\\gamma$ and the partial widths of $V\\to 3P, V\\to P\\gamma, \\eta^\\prime\\to V\\gamma, \\phi\\to\\omega\\pi^0$ and $P\\to2\\gamma$ are also analyzed. The model contains octet and singlet fields as representation of SU(3). 1-loop order counter terms are introduced, based on the discussion of superficial degree of divergence. Intrinsic parity violating interactions are considered with singlet fields. We give the result of numerical analysis, and find a parameter region consistent with experimental data of transition form factors for $V\\to Pl^+l^-$. Predictions of the model are presented for transition form factors of $P\\to\\gamma l^+l^-$, differential decay width of $P\\to\\pi^+\\pi^-\\gamma$ and so forth. Furthermore, in the vicinity of resonance regions, the transition form factors of $...

  12. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  13. Low-energy pi-pi and pi-K scatterings revisited in three-flavour resummed chiral perturbation theory

    CERN Document Server

    Descotes-Genon, S

    2007-01-01

    Chiral symmetry breaking may exhibit significantly different patterns in two chiral limits: N_f=2 massless flavours (m_u=m_d=0, m_s physical) and N_f=3 massless flavours (m_u=m_d=0=m_s=0). Such a difference may arise due to vacuum fluctuations of s-bar{s} pairs related to the violation of the Zweig rule in the scalar sector, and could yield a numerical competition between contributions counted as leading order and next-to-leading in the chiral expansions of observables. We recall and extend Resummed Chiral Perturbation Theory (ReChPT), a framework that we introduced previously to deal with such instabilities: it requires a more careful definition of the relevant observables and their one-loop chiral expansions. We analyse the amplitudes for low-energy pi-pi and pi-K scatterings within ReChPT, which we match in subthreshold regions with dispersive representations obtained from the solutions Roy and Roy-Steiner equations. Using a frequentist approach, we constrain the quark mass ratio as well as the quark conde...

  14. Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder.

    Science.gov (United States)

    Tönjes, Ralf; Blasius, Bernd

    2009-01-01

    The Kuramoto phase-diffusion equation is a nonlinear partial differential equation which describes the spatiotemporal evolution of a phase variable in an oscillatory reaction-diffusion system. Synchronization manifests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity, the synchronization frequency. The formation of concentric waves can be explained by local impurities of higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analysis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies in the system. The nonlinearity in the form of dispersion leads to an overall acceleration of the oscillation for which the expected value can be calculated from the second-order perturbation terms. We apply the theory to simple topologies, like a line or sphere, and deduce the dependence of the synchronization frequency on the size and the dimension of the oscillatory medium. We show that our theory can be extended to include rotating waves in a medium with periodic boundary conditions. By changing a system parameter, the synchronized state may become quasidegenerate. We demonstrate how perturbation theory fails at such a critical point.

  15. Results from the MILC collaboration's SU(3) chiral perturbation theory analysis

    CERN Document Server

    Bazavov, A; DeTar, C; Du, X; Freeman, W; Gottlieb, Steven; Heller, Urs M; Hetrick, J E; Laiho, J; Levkova, L; Oktay, M B; Osborn, J; Sugar, R; Toussaint, D; Van de Water, R S

    2009-01-01

    We present the status of the MILC collaboration's analysis of the light pseudoscalar meson sector with SU(3) chiral fits. The analysis includes data from new ensembles with smaller lattice spacing, smaller light quark masses and lighter than physical strange quark masses. Our fits include the NNLO chiral logarithms. We present results for decay constants, quark masses, Gasser-Leutwyler low energy constants, and condensates in the two- and three-flavor chiral limits.

  16. Electromagnetic pion production in manifestly Lorentz invariant baryonic chiral perturbation theory; Elektromagnetische Pionproduktion in manifest Lorentz-invarianter baryonischer chiraler Stoerungstheorie

    Energy Technology Data Exchange (ETDEWEB)

    Lehnhart, B.C.

    2007-05-15

    This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q{sup 4}), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E{sub 0+} and L{sub 0+} (using results up to chiral order O(q{sup 3})) are calculated in the threshold region

  17. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory

    CERN Document Server

    Birse, Michael C

    2012-01-01

    We calculate the amplitude T_1 for forward doubly-virtual Compton scattering in heavy-baryon chiral perturbation theory, to fourth order in the chiral expansion and with the leading contribution of the gammaNDelta form factor. This provides a model-independent expression for the amplitude in the low-momentum region, which is the dominant one for its contribution to the Lamb shift. It allows us to significantly reduce the theoretical uncertainty in the proton polarisability contributions to the Lamb shift in muonic hydrogen. We also stress the importance of consistency between the definitions of the Born and structure parts of the amplitude. Our result leaves no room for any effect large enough to explain the discrepancy between proton charge radii as determined from muonic and normal hydrogen.

  18. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Birse, M.C.; McGovern, J.A. [University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom)

    2012-09-15

    We calculate the amplitude T{sub 1} for forward doubly virtual Compton scattering in heavy-baryon chiral perturbation theory, to fourth order in the chiral expansion and with the leading contribution of the {gamma}N{Delta} form factor. This provides a model-independent expression for the amplitude in the low-momentum region, which is the dominant one for its contribution to the Lamb shift. It allows us to significantly reduce the theoretical uncertainty in the proton polarisability contributions to the Lamb shift in muonic hydrogen. We also stress the importance of consistency between the definitions of the Born and structure parts of the amplitude. Our result leaves no room for any effect large enough to explain the discrepancy between proton charge radii as determined from muonic and normal hydrogen. (orig.)

  19. Improved description of the πN-scattering phenomenology in covariant baryon chiral perturbation theory

    Directory of Open Access Journals (Sweden)

    Alarcón Jose Manuel

    2014-06-01

    Full Text Available We highlight some of the recent advances in the application of chiral effective field theory (chiral EFT with baryons to the πN scattering process. We recall some problems that cast doubt on the applicability of chiral EFT to πN and show how the relativistic formalism, once the Δ(1232-resonance is included as an explicit degree of freedom, solves these issues. Finally it is shown how this approach can be used to extract the σ-terms from phenomenological information.

  20. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim, E-mail: lensky@itep.ru [Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz, 55128, Mainz (Germany); Institute for Theoretical and Experimental Physics, 117218, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow (Russian Federation); Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, M13 9PL, Manchester (United Kingdom); McGovern, Judith A. [Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, M13 9PL, Manchester (United Kingdom); Pascalutsa, Vladimir [Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz, 55128, Mainz (Germany)

    2015-12-19

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, {α_E_1, β_M_1}{sub p}={11.2(0.7), 3.9(0.7)}×10{sup -4} fm{sup 3}, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: {α_E_2, β_M_2}{sub p}={17.3(3.9), -15.5(3.5)}×10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub p}={-1.3(1.0), 7.1(2.5)}×10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1,γ_E_1_M_2, γ_M_1_E_2}{sub p}={-3.3(0.8), 2.9(1.5), 0.2(0.2),1.1(0.3)}×10{sup -4} fm{sup 4}. The results for the scalar polarisabilities are in significant disagreement with semi-empirical analyses based on dispersion relations; however, the results for the spin polarisabilities agree remarkably well. Results for proton Compton-scattering multipoles and polarised observables up to the Delta(1232) resonance region are presented too. The asymmetries Σ{sub 3} and Σ{sub 2x} reproduce the experimental data from LEGS and MAMI. Results for Σ{sub 2z} agree with a recent sum rule evaluation in the forward kinematics. The asymmetry Σ{sub 1z} near the pion production threshold shows a large sensitivity to chiral dynamics, but no data is available for this observable. We also provide the predictions for the polarisabilities of the neutron, the numerical values being {α_E_1, β_M_1}{sub n}={13.7(3.1), 4.6(2.7)}×10{sup -4} fm{sup 3}, {α_E_2, β_M_2}{sub n}={16.2(3.7), -15.8(3.6)}×10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub n}={0.1(1.0), 7.2(2.5)}×10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub n}={-4.7(1.1),2.9(1.5), 0.2(0.2), 1.6(0.4)}×10{sup -4} fm{sup 4}. The neutron dynamical polarisabilities and multipoles are examined too. We also discuss subtleties related to matching the dynamical and static polarisabilities.

  1. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); University of Manchester, Theoretical Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); McGovern, Judith A. [University of Manchester, Theoretical Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Pascalutsa, Vladimir [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2015-12-15

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, {α_E_1, β_M_1}{sub p} = {11.2(0.7), 3.9(0.7)} x 10{sup -4} fm{sup 3}, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: {α_E_2, β_M_2}{sub p} = {17.3(3.9),.15.5(3.5)} x 10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub p} = {-1.3(1.0), 7.1(2.5)} x 10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub p} = {-3.3(0.8), 2.9(1.5), 0.2(0.2), 1.1 (0.3)} x 10{sup -4} fm{sup 4}. The results for the scalar polarisabilities are in significant disagreement with semi-empirical analyses based on dispersion relations; however, the results for the spin polarisabilities agree remarkably well. Results for proton Compton-scattering multipoles and polarised observables up to the Delta(1232) resonance region are presented too. The asymmetries Σ{sub 3} and Σ{sub 2x} reproduce the experimental data from LEGS and MAMI. Results for Σ{sub 2z} agree with a recent sum rule evaluation in the forward kinematics. The asymmetry Σ{sub 1z} near the pion production threshold shows a large sensitivity to chiral dynamics, but no data is available for this observable. We also provide the predictions for the polarisabilities of the neutron, the numerical values being {α_E_1, β_M_1}{sub n} = {13.7(3.1), 4.6(2.7)} x 10{sup -4} fm{sup 3}, {α_E_2, β_M_2}{sub n} = {16.2(3.7),.15.8(3.6)} x 10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub n} = {0.1(1.0), 7.2(2.5)} x 10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub n} = {-4.7(1.1), 2.9(1.5), 0.2(0.2), 1.6(0.4)} x 10{sup -4} fm{sup 4}. The neutron dynamical polarisabilities and multipoles are examined too. We also discuss subtleties related to matching the dynamical and static polarisabilities. (orig.)

  2. Trace Formulae of Characteristic Polynomial and Cayley-Hamilton's Theorem, and Applications to Chiral Perturbation Theory and General Relativity

    Institute of Scientific and Technical Information of China (English)

    WANG Peng-Zhou; ZHANG Hong-Hao; ZHANG Shun-Li; YAN Wen-Bin; LI Xue-Song

    2008-01-01

    By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, which yields the trace formulae of the Cayley-Hamilton's theorem with all coefficients explicitly given. This implies a byproduct, a complete expression for the determinant of any finite-dimensional matrix in terms of the traces of its successive powers.And we discuss some of their applications to chiral perturbation theory and general relativity.

  3. Jet quenching parameter of quark-gluon plasma in strong magnetic field: perturbative QCD and AdS/CFT correspondence

    CERN Document Server

    Li, Shiyong; Yee, Ho-Ung

    2016-01-01

    We compute the jet quenching parameter $\\hat q$ of QCD plasma in the presence of strong magnetic field in both weakly and strongly coupled regimes. In weakly coupled regime, we compute $\\hat q$ in perturbative QCD at complete leading order (that is, leading log as well as the constant under the log) in QCD coupling constant $\\alpha_s$, assuming the hierarchy of scales $\\alpha_s eB\\ll T^2\\ll eB$. We consider two cases of jet orientations with respect to the magnetic field: 1) the case of jet moving parallel to the magnetic field, 2) the case jet moving perpendicular to the magnetic field. In the former case, we find $\\hat q\\sim \\alpha_s^2 (eB)T\\log(1/\\alpha_s)$, while in the latter we have $\\hat q\\sim \\alpha_s^2 (eB)T\\log(T^2/\\alpha_seB)$. In both cases, this leading order result arises from the scatterings with thermally populated lowest Landau level quarks. In strongly coupled regime described by AdS/CFT correspondence, we find $\\hat q\\sim \\sqrt{\\lambda}(eB)T$ or $\\hat q\\sim\\sqrt{\\lambda}\\sqrt{eB}T^2$ in the...

  4. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    Science.gov (United States)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  5. Low-Energy Photon-Photon Fusion into Three Pions in Generalized Chiral Perturbation Theory

    CERN Document Server

    Ametller, L; Knecht, M; Talavera, P

    1999-01-01

    The processes $\\gamma\\gamma\\to\\pi^0\\pi^0\\pi^0$ and $\\gamma\\gamma\\to \\pi^+ of their potential sensitivity to the mechanism of spontaneous breaking of chiral symmetry and to various counterterms. The amplitudes are computed up to order ${\\cal O}(p^6)$. The event production rates are estimated for the Daphne

  6. Chiral primaries in the Leigh-Strassler deformed N=4 SYM -- a perturbative study

    CERN Document Server

    Madhu, K; Madhu, Kallingalthodi; Govindarajan, Suresh

    2007-01-01

    We look for chiral primaries in the general Leigh-Strassler deformed N=4 super Yang-Mills theory by systematically computing the planar one-loop anomalous dimension for single trace operators up to dimension six. The operators are organised into representations of the trihedral group, \\Delta(27), which is a symmetry of the Lagrangian. We find an interesting relationship between the U(1)_R-charge of chiral primaries and the representation of \\Delta(27) to which the operator belongs. Up to scaling dimension \\Delta_0=6 (and conjecturally to all dimensions) the following holds: The planar one-loop anomalous dimension vanishes only for operators that are in the singlet or three dimensional representations of \\Delta(27). For other operators, the vanishing of the one-loop anomalous dimension occurs only in a sub-locus in the space of couplings.

  7. The chirally rotated Schr\\"odinger functional: theoretical expectations and perturbative tests

    CERN Document Server

    Brida, Mattia Dalla; Vilaseca, Pol

    2016-01-01

    The chirally rotated Schr\\"odinger functional ($\\chi$SF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schr\\"odinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O($a$) improvement to be operational in the $\\chi$SF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the $\\chi$SF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to t...

  8. Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory

    CERN Document Server

    Entem, D R; Machleidt, R; Nosyk, Y

    2014-01-01

    We present the two- and three-pion exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-next-to-leading order (N4LO, fifth order) of chiral effective field theory, and calculate nucleon-nucleon scattering in peripheral partial waves with L>=3 using low-energy constants that were extracted from pi-N analysis at fourth order. While the net three-pion exchange contribution is moderate, the two-pion exchanges turn out to be sizeable and prevailingly repulsive, thus, compensating the excessive attraction characteristic for NNLO and N3LO. As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception of the 1F3 wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the NN interaction.

  9. Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    Energy Technology Data Exchange (ETDEWEB)

    C. Kao; D. Drechsel; S. Kamalov; M. Vanderhaeghen

    2003-11-01

    The third moment d{sub 2} of the twist-3 part of the nucleon spin structure function g{sub 2} is generalized to arbitrary momentum transfer Q{sup 2} and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order {Omicron}(p{sup 4}) and in a unitary isobar model (MAID). We show how to link d{sub 2} as well as higher moments of the nucleon spin structure functions g{sub 1} and g{sub 2} to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f{sub 2} which appears in the 1/Q{sup 2} suppressed term in the twist expansion of the spin structure function g{sub 1} for proton and neutron.

  10. {Delta}I = 3/2 and {Delta}S = 2 Hyperon decays in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [University of Melbourne, Parkville, VIC (Australia). School of Physics; Valencia, G. [Iowa State University, Ames, Iowa (United States). Department of Physics and Astronomy

    1997-05-01

    We study the| {Delta}I| = 3/2 and |{Delta}S| = 2 amplitudes for hyperon decays of the form B {yields} B`{pi} at lowest order in chiral perturbation theory. At this order, the {Delta}I = 3/2 amplitudes depend on only one constant. We extract the value of this constant from experiment and find a reasonable description of these processes within experimental errors. The same constant determines the {Delta}S = 2 transitions which, in the standard model, are too small to be observed. We find that new physics with parity odd {Delta}S = 2 interactions can produce observable rates in hyperon decays while evading the bounds from K{sup 0} - K-bar{sup 0} mixing. (authors) 10 refs., 3 tabs.

  11. Perturbative renormalization of $\\Delta F = 2$ four-fermion operators with the chirally rotated Schr\\"odinger functional

    CERN Document Server

    Brida, Mattia Dalla; Vilaseca, Pol

    2016-01-01

    The chirally rotated Schr\\"odinger functional ($\\chi$SF) renders the mechanism of automatic $O(a)$ improvement compatible with Schr\\"odinger functional (SF) renormalization schemes. Here we define a family of renormalization schemes based on the $\\chi$SF for a complete basis of $\\Delta F = 2$ parity-odd four-fermion operators. We compute the corresponding scale-dependent renormalization constants to one-loop order in perturbation theory and obtain their NLO anomalous dimensions by matching to the $\\overline{\\textrm{MS}}$ scheme. Due to automatic $O(a)$ improvement, once the $\\chi$SF is renormalized and improved at the boundaries, the step scaling functions (SSF) of these operators approach their continuum limit with $O(a^{2})$ corrections without the need of operator improvement.

  12. Chiral Algebras of (0,2) Sigma Models: Beyond Perturbation Theory - II

    CERN Document Server

    Tan, Meng-Chwan

    2008-01-01

    We extend our analysis in [arXiv:0801.4782] and show that the chiral algebras of (0,2) sigma models are totally trivialized by worldsheet instantons for all complete flag manifolds of compact semisimple Lie groups. Consequently, supersymmetry is spontaneously broken. Our results verify Stolz's idea that there are no harmonic spinors on the loop spaces of these flag manifolds. Moreover, they also imply that the kernels of certain twisted Dirac operators on these spaces will be empty under a "quantum" deformation of their geometries.

  13. Resumming QCD vacuum fluctuations in three-flavour Chiral Perturbation Theory

    CERN Document Server

    Descotes-Genon, S; Girlanda, L; Stern, J

    2003-01-01

    Due to its light mass of order Lambda_QCD, the strange quark can play a special role in Chiral Symmetry Breaking (ChSB): differences in the pattern of ChSB in the limits N_f=2 (m_u,m_d->0, m_s physical) and N_f=3 (m_u,m_d,m_s->0) may arise due to vacuum fluctuations of s-bar s pairs, related to the violation of the Zweig rule in the scalar sector and encoded in particular in the O(p^4) low-energy constants L_4 and L_6. In case of large fluctuations, we show that the customary treatment of SU(3)xSU(3) chiral expansions generate instabilities upsetting their convergence. We develop a systematic program to cure these instabilities by resumming nonperturbatively vacuum fluctuations of s-bar s pairs, in order to extract information about ChSB from experimental observations even in the presence of large fluctuations. We advocate a Bayesian framework for treating the uncertainties due to the higher orders. As an application, we present a three-flavour analysis of the low-energy pi-pi scattering and show that the rec...

  14. Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory

    Science.gov (United States)

    Entem, D. R.; Kaiser, N.; Machleidt, R.; Nosyk, Y.

    2015-01-01

    We present the two- and three-pion-exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-next-to-leading order (N4LO , fifth order) of chiral effective field theory and calculate nucleon-nucleon scattering in peripheral partial waves with L ≥3 by using low-energy constants that were extracted from π N analysis at fourth order. While the net three-pion-exchange contribution is moderate, the two-pion exchanges turn out to be sizable and prevailingly repulsive, thus compensating the excessive attraction characteristic for next-to-next-to-leading order and N3LO . As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception being the 1F3 wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the N N interaction.

  15. Non-perturbative studies of QCD at small quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Wennekers, J.

    2006-07-15

    We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)

  16. Convergence properties of $\\eta\\to 3\\pi$ decays in chiral perturbation theory

    CERN Document Server

    Kolesar, Marian

    2016-01-01

    Theoretical efforts to describe and explain the $\\eta\\to 3\\pi$ decays reach far back in time. Even today, the convergence of the decay widths and some of the Dalitz plot parameters seems problematic in low energy QCD. In the framework of resummed CHPT, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series, where NNLO remainders are assumed to be small. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters $a$ and $d$ can be described very well too. When the parameters $b$ and $\\alpha$ are concerned, we find a mild tension for the whole range of the free parameter...

  17. Pion-nucleon scattering in chiral perturbation theory; 2, Fourth order calculation

    CERN Document Server

    Fettes, N; Fettes, Nadia; Meissner, Ulf-G.

    2000-01-01

    We analyse elastic-pion nucleon scattering to fourth order in heavy baryonchiral perturbation theory, extending the third order study published in Nucl.Phys. A640 (1998) 199. We use various partial wave analyses to pin down thelow-energy constants from data in the physical region. The S-wave scatteringlengths are consistent with recent determinations from pionic hydrogen anddeuterium. We find an improved description of the P-waves. We also discuss thepion-nucleon sigma term and problems related to the prediction of thesubthreshold parameters.

  18. Bethe-Salpeter Approach for the $P_{33}$ Elastic Pion-Nucleon Scattering in Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Nieves, J

    2001-01-01

    Heavy Baryon Chiral Perturbation Theory (HBChPT) to leading order provides a kernel to solve the Bethe-Salpeter equation for the $P_{33}$ ($\\Delta(1232)$-channel) $\\pi-N$ system, in the infinite nucleon mass limit. Crossed Born terms include, when iterated within the Bethe-Salpeter equation, both {\\it all} one- and {\\it some} two-pion intermediate states, hence preserving elastic unitarity below the two-pion production threshold. This suggests searching for a solution with the help of dispersion relations and suitable subtraction constants, when all in-elasticities are explicitly neglected. The solution allows for a successful description of the experimental phase shift from threshold up to $\\sqrt{s}=1500$ MeV in terms of four subtraction constants. Next-to-leading order HBChPT calculations are also used to estimate the unknown subtraction constants which appear in the solution. Large discrepancies are encountered which can be traced to the slow convergence rate of HBChPT.

  19. Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q{sup 4})

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Beane; M. Malheiro; J.A. McGovern; D.R. Phillips; U. van Kolck

    2004-03-01

    We study Compton scattering in systems with A=1 and 2 using chiral perturbation theory up to fourth order. For the proton we fit the two undetermined parameters in the O(Q{sup 4}) {gamma}p amplitude of McGovern to experimental data in the region {omega}, {radical}|t| {le} 180 MeV, obtaining a {chi}{sup 2}/d.o.f. of 133/113. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: {alpha}{sub p} = (12.1 {+-} 1.1 (stat.)){sub -0.5}{sup +0.5} (theory) and {beta}{sub p} = (3.4 {+-} 1.1 (stat.)){sub -0.1}{sup +0.1} (theory), both in units of 10{sup -4} fm{sup 3}. We also compute Compton scattering on deuterium to O(Q{sup 4}). The {gamma}d amplitude is a sum of one- and two-nucleon mechanisms, and contains two undetermined parameters, which are related to the isoscalar nucleon polarizabilities. We fit data points from three recent {gamma}d scattering experiments with a {chi}{sup 2}/d.o.f. = 26.3/20, and find {alpha}{sub N} = 8.9 {+-} 1.5 (stat.){sub -0.9}{sup +4.7} (theory) and {beta}{sub N} = 2.2 {+-} 1.5 (stat.){sub -0.9}{sup +1.2} (theory), again in units of 10{sup -4} fm{sup 3}.

  20. Chiral extrapolation beyond the power-counting regime

    CERN Document Server

    Hall, J M M; Leinweber, D B; Liu, K F; Mathur, N; Young, R D; Zhang, J B

    2011-01-01

    Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately i...

  1. An analysis of the nucleon spectrum from lattice partially-quenched QCD

    Energy Technology Data Exchange (ETDEWEB)

    Armour, W. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Allton, C.R., E-mail: c.allton@swan.ac.u [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Leinweber, D.B. [Special Research Centre for the Subatomic Structure of Matter (CSSM), School of Chemistry and Physics, University of Adelaide, 5005 (Australia); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Ave., Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States); Young, R.D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-09-01

    The chiral extrapolation of the nucleon mass, M{sub n}, is investigated using data coming from 2-flavour partially-quenched lattice simulations. A large sample of lattice results from the CP-PACS Collaboration is analysed using the leading one-loop corrections, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite-range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of M{sub n} in agreement with experiment. Furthermore, determinations of the low energy constants of the nucleon mass's chiral expansion are in agreement with previous methods, but with significantly reduced errors. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.

  2. Low-energy analysis of the nucleon electromagnetic form factors 12.39.Fe; 13.40.Gp; 14.20.Dh; Nucleon electromagnetic form factors; Chiral perturbation theory

    CERN Document Server

    Kubis, B

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q sup 2 approx =0.4 GeV sup 2.

  3. An analysis of the nucleon spectrum from lattice partially-quenched QCD

    Energy Technology Data Exchange (ETDEWEB)

    Armour, W. [Swansea University, Swansea, SA2 8PP, Wales, U.K.; Allton, C. R. [Swansea University, Swansea, SA2 8PP, Wales, U.K.; Leinweber, Derek B. [Univ. of Adelaide, SA (Australia); Thomas, Anthony W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Young, Ross D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-09-01

    The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.

  4. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  5. Chiral symmetry breaking in continuum QCD

    Science.gov (United States)

    Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2015-03-01

    We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronization in the nonperturbative functional renormalization group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular, we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.

  6. Finite-Volume Partially-Quenched Two-Pion Amplitudes in the I=0 Channel

    CERN Document Server

    Lin, C J D; Pallante, E; Sachrajda, Christopher T C; Villadoro, Giovanni

    2004-01-01

    We present a study of the finite-volume two-pion matrix elements and correlation functions of the I=0 scalar operator, in full and partially quenched QCD, at one-loop order in chiral perturbation theory. In partially quenched QCD, when the sea and valence light quark masses are not equal, the lack of unitarity leads to the same inconsistencies as in quenched QCD and the matrix elements cannot be determined. It is possible, however, to overcome this problem by requiring the masses of the valence and sea quarks to be equal for the u and d quarks while keeping the strange quark (s) quenched (or partially quenched), but only in the kinematic region where the two-pion energy is below the two-kaon threshold. Although our results are obtained at NLO in chiral perturbation theory, they are more general and are also valid for non-leptonic kaon decays (we also study the matrix elements of (8,1) operators, such as the QCD penguin operator Q6). We point out that even in full QCD, where any problems caused by the lack of ...

  7. Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goity, Jose Luis [JLAB; Calle Cordon, Alvaro [JLAB

    2013-08-01

    In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.

  8. Renormalization Constants of Quark Operators for the Non-Perturbatively Improved Wilson Action

    CERN Document Server

    Becirevic, D; Lubicz, V; Martinelli, G; Papinutto, Mauro; Reyes, J

    2004-01-01

    We present the results of an extensive lattice calculation of the renormalization constants of bilinear and four-quark operators for the non-perturbatively O(a)-improved Wilson action. The results are obtained in the quenched approximation at four values of the lattice coupling by using the non-perturbative RI/MOM renormalization method. Several sources of systematic uncertainties, including discretization errors and final volume effects, are examined. The contribution of the Goldstone pole, which in some cases may affect the extrapolation of the renormalization constants to the chiral limit, is non-perturbatively subtracted. The scale independent renormalization constants of bilinear quark operators have been also computed by using the lattice chiral Ward identities approach and compared with those obtained with the RI-MOM method. For those renormalization constants the non-perturbative estimates of which have been already presented in the literature we find an agreement which is typically at the level of 1%...

  9. Probing the chiral regime of Nf=2 QCD with mixed actions

    CERN Document Server

    Bernardoni, Fabio; Garron, Nicolas; Necco, Silvia; Pena, Carlos

    2011-01-01

    We report on our first experiences with a mixed action setup with overlap valence quarks and non-perturbatively O(a) improved Wilson sea quarks. For the latter we employ CLS Nf=2 configurations with light sea quark masses at small lattice spacings. Exact chiral symmetry allows to consider very light valence quarks and explore the matching to (partially quenched) Chiral Perturbation Theory (ChPT) in a mixed epsilon/p-regime. We compute the topological susceptibility and the low-lying spectrum of the massless Neuberger-Dirac operator for three values of the sea quark mass, and compare the sea quark mass dependence to NLO ChPT in the mixed regime. This provides two different determinations of the chiral condensate, as well as information about some NLO low-energy couplings. Our results allow to test the consistency of the mixed-regime approach to ChPT, as well as of the mixed action framework.

  10. Kaon matrix elements and CP violation from quenched lattice QCD

    Science.gov (United States)

    Cristian, Calin-Radu

    We report the results of a calculation of the K → pipi matrix elements relevant for the DeltaI = 1/2 rule and epsilon '/epsilon in quenched lattice QCD using domain wall fermions at a fixed lattice spacing of a-1 ˜ 2 GeV. Working in the three-quark effective theory, where only the u, d and s quarks enter and which is known perturbatively to next-to-leading order; we calculate the lattice K → pi and K → |0> matrix elements of dimension six, four-fermion operators. Through lowest order chiral perturbation theory these yield K → pipi matrix elements, which we then normalize to continuum values through a non-perturbative renormalization technique. For the Delta I = 1/2 rule we find a value of 25.3 +/- 1.8 (statistical error only) compared to the experimental value of 22.2, with individual isospin amplitudes 10--20% below the experimental values. For epsilon '/epsilon; using known central values for standard model parameters, we calculate (-4.0 +/- 2.3) x 10-4 (statistical error only) compared to the current experimental average of (17.2 +/- 1.8) x 10-4. Because we find a large cancellation between the I = 0 and I = 2 contributions to epsilon'/epsilon, the result may be very sensitive to the approximations employed. Among these are the use of: quenched QCD, lowest order chiral perturbation theory and continuum perturbation theory below 1.3 GeV. We have also calculated the kaon B parameter, BK and find BK(2 GeV) = 0.532(11). Although currently unable to give a reliable systematic error; we have control over statistical errors and more simulations will yield information about the effects of the approximations on this first-principles determination of these important quantities.

  11. Chiral symmetry breaking, instantons, and monopoles

    CERN Document Server

    Di Giacomo, Adriano

    2015-01-01

    The purpose of this study is to show that monopoles induce the chiral symmetry breaking. In order to indicate the evidence, we add one pair of monopoles with magnetic charges to the quenched SU(3) configurations by a monopole creation operator, and investigate the propaties of the chiral symmetry breaking using the Overlap fermion. We show that instantons are created by the monopoles. The pseudoscalar meson mass and decay constant are computed from the correlation functions, and the renormalization constant $Z_{S}$ is determined by the non perturbative method. The renormalization group invariant chiral condensate in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV] is evaluated by the Gell-Mann-Oakes-Renner formula, and the random matrix theory. Finally, we estimate the renormalization group invariant quark masses $\\bar{m} = (m_{u} + m_{d})/2$, and $m_{s}$ in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV]. The preliminary results indicate that the chiral condensate decreases and the quark masses become slightly heavy by inc...

  12. Non-perturbative test of the Witten-Veneziano formula from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Goethe-Universität, Institut für Theoretische Physik,Max-von-Laue-Straße 1, Frankfurt a.M., D-60438 (Germany); NIC, DESY,Platanenallee 6, Zeuthen, D-15738 (Germany); Adam Mickiewicz University, Faculty of Physics,Umultowska 85, Poznan, 61-614 (Poland); Garcia-Ramos, Elena [NIC, DESY,Platanenallee 6, Zeuthen, D-15738 (Germany); Humboldt Universität zu Berlin,Newtonstr. 15, Berlin, D-12489 (Germany); Jansen, Karl [NIC, DESY,Platanenallee 6, Zeuthen, D-15738 (Germany); Ottnad, Konstantin [Institut für Strahlen- und Kernphysik (Theorie),Nussallee 14-16, Bonn 53115 Germania (Germany); Urbach, Carsten [Institut für Strahlen- und Kernphysik (Theorie),Nussallee 14-16, Bonn 53115 Germania (Germany); Bethe Center for Theoretical Physics,Nussallee 12, Universität Bonn, Bonn, D-53115 (Germany); Collaboration: The ETM collaboration

    2015-09-03

    We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with N{sub f}=2+1+1 dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the SU(2) chiral limits we compare both sides and find good agreement within uncertainties.

  13. Non-perturbative test of the Witten-Veneziano formula from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Collaboration: The ETM collaboration

    2015-10-15

    We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with N{sub f}=2 +1+1 dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the SU(2) chiral limits we compare both sides and find good agreement within uncertainties.

  14. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  15. Quantum quenches during inflation

    CERN Document Server

    Carrilho, Pedro

    2016-01-01

    We propose a new technique to study fast transitions during inflation, by studying the dynamics of quantum quenches in an $O(N)$ scalar field theory in de Sitter spacetime. We compute the time evolution of the system using a non-perturbative large-$N$ limit approach. We derive the self-consistent mass equation for several physically relevant transitions of the parameters of the theory, in a slow motion approximation. Our computations reveal that the effective mass after the quench evolves in the direction of recovering its value before the quench, but stopping at a different asymptotic value, in which the mass is strictly positive. Furthermore, we tentatively find situations in which the effective mass can be temporarily negative, thus breaking the $O(N)$ symmetry of the system for a certain time, only to then come back to a positive value, restoring the symmetry. We argue the relevance of our new method in a cosmological scenario.

  16. Probing the chiral regime of Nf=2 QCD with mixed actions

    Science.gov (United States)

    Bernardoni, F.; Garron, N.; Hernández, P.; Necco, S.; Pena, C.

    2011-03-01

    We report on our first experiences with a mixed action setup with overlap valence quarks and nonperturbatively O(a) improved Wilson sea quarks. For the latter we employ CLS Nf=2 configurations with light sea-quark masses at small lattice spacings. Exact chiral symmetry allows to consider very light valence quarks and explore the matching to (partially-quenched) Chiral Perturbation Theory (ChPT) in a mixed γ/p-regime. We compute the topological susceptibility and the low-lying spectrum of the massless Neuberger-Dirac operator for three values of the sea-quark mass, and compare the sea-quark mass dependence to NLO ChPT in the mixed regime. This provides two different determinations of the chiral condensate, as well as information about some NLOlow-energy couplings. Our results allow to test the consistency of the mixed-regime approach to ChPT, as well as of the mixed action framework.

  17. Fermion propagator in quenched QED3 in the light of the Landau-Khalatnikov-Fradkin tranformation

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, A. [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-82, Morelia, Michoacan 58040 (Mexico); Raya, A. [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Col. Villa San Sebastian, Colima, Colima 28045 (Mexico)

    2005-04-15

    We study the gauge dependence of the fermion propagator in quenched QED3, with and without dynamical symmetry breaking, in the light of its Landau-Khalatnikov-Fradkin transformation (LKFT). In the former case, starting with the massive bare propagator in the Landau gauge, we obtain non perturbative propagator in an arbitrary covariant gauge. Carrying out a perturbative expansion of this result, it yields correct wavefunction renormalization and the mass function up to the terms independent of the gauge parameter. Also, we obtain valuable information for the higher order perturbative expansion of the propagator. As for the case of dynamical chiral symmetry breaking, we start by approximating the numerical solution in Landau gauge in the rainbow approximation in terms of analytic functions. We then use LKFT to obtain the dynamically generated fermion propagator in an arbitrary covariant gauge. We find that the results obtained have all the required qualitative features. We also go beyond the rainbow and encounter similar desirable qualitative features.

  18. Orientifold Planar Equivalence: The Chiral Condensate

    CERN Document Server

    Armoni, A; Patella, A; Pica, C

    2008-01-01

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms in $1/N$ are needed for describing the data for the symmetric and antisymmetric representation at $N$=3. Possible lesson...

  19. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  20. Holographic quenches and anomalous transport

    CERN Document Server

    Ammon, Martin; Jimenez-Alba, Amadeo; Macedo, Rodrigo P; Melgar, Luis

    2016-01-01

    We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e.,~residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. ...

  1. Non-perturbative renormalization of the quark condensate in Ginsparg-Wilson regularizations

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Wittig, H; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent; Wittig, Hartmut

    2001-01-01

    We present a method to compute non-perturbatively the renormalization constant of the scalar density for Ginsparg-Wilson fermions. It relies on chiral symmetry and is based on a matching of renormalization group invariant masses at fixed pseudoscalar meson mass, making use of results previously obtained by the ALPHA Collaboration for O(a)-improved Wilson fermions. Our approach is quite general and enables the renormalization of scalar and pseudoscalar densities in lattice regularizations that preserve chiral symmetry and of fermion masses in any regularization. As an application we compute the non-perturbative factor which relates the renormalization group invariant quark condensate to its bare counterpart, obtained with overlap fermions at beta=5.85 in the quenched approximation.

  2. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    Institute of Scientific and Technical Information of China (English)

    PENG Jin-Song; ZHOU Li-Juan; MENG Cheng-Ju; PAN Ji-Huan; MA Wei-Xing; YUAN Tong-Quan

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory,we study the ratio of the strange quark mass ms to up or down quark mass mu,d.The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron.An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications.We begin with a brief introduction to the non-perturbation QCD theory,and then study the mass ratio in the framework of the chiral perturbation theory (xPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data.Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD,instanton model,QCD sum rules and the empirical values used widely in the literature.As a by-product of this study,our theoretical results,together with other predictions of physical quantities that used this quark propagator in our previous publications,clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.

  3. Transient Loschmidt echo in quenched Ising chains

    Science.gov (United States)

    Lupo, Carla; Schiró, Marco

    2016-07-01

    We study the response to sudden local perturbations of highly excited quantum Ising spin chains. The key quantity encoding this response is the overlap between time-dependent wave functions, which we write as a transient Loschmidt Echo. Its asymptotics at long time differences contain crucial information about the structure of the highly excited nonequilibrium environment induced by the quench. We compute the echo perturbatively for a weak local quench but for arbitrarily large global quench, using a cumulant expansion. Our perturbative results suggest that the echo decays exponentially, rather than power law as in the low-energy orthogonality catastrophe, a further example of quench-induced decoherence already found in the case of quenched Luttinger liquids. The emerging decoherence scale is set by the strength of the local potential and the bulk excitation energy.

  4. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  5. The quenched generating functional for hadronic weak interactions

    NARCIS (Netherlands)

    Pallante, E.

    1999-01-01

    The ultraviolet behaviour of the generating functional for hadronic weak interactions with |ΔS| = 1, 2 is investigated to one loop for a generic number of flavours and in the quenched approximation. New quenched chiral logarithms generated by the weak interactions can be accounted for via a redefin

  6. Chiral Dynamics With Wilson Fermions

    CERN Document Server

    Splittorff, K

    2012-01-01

    Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.

  7. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi

    2009-01-01

    The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.

  8. Exploring the structure of the quenched QCD vacuum with overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Koller, K. [Muenchen Univ. (Germany). Sektion Physik; Koma, Y. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Streuer, T. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics and Astronomy; Weinberg, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Freie Univ. Berlin (Germany). Inst. fuer Theoretische Physik

    2007-05-15

    Overlap fermions have an exact chiral symmetry on the lattice and are thus an appropriate tool for investigating the chiral and topological structure of the QCD vacuum. We study various chiral and topological aspects of quenched gauge field configurations. This includes the localization and chiral properties of the eigenmodes, the local structure of the ultraviolet filtered field strength tensor, as well as the structure of topological charge fluctuations. We conclude that the vacuum has a multifractal structure. (orig.)

  9. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  10. Determination of the $\\Delta S = 1$ weak Hamiltonian in the SU(4) chiral limit through topological zero-mode wave functions

    CERN Document Server

    Hernández, P; Peña, C; Torro, E; Wennekers, J; Wittig, H

    2008-01-01

    A new method to determine the low-energy couplings of the $\\Delta S=1$ weak Hamiltonian is presented. It relies on a matching of the topological poles in $1/m^2$ of three-point correlators of two pseudoscalar densities and a four-fermion operator, measured in lattice QCD, to the same observables computed in the $\\epsilon$-regime of chiral perturbation theory. We test this method in a theory with a light charm quark, i.e. with an SU(4) flavour symmetry. Quenched numerical measurements are performed in a 2 fm box, and chiral perturbation theory predictions are worked out up to next-to-leading order. The matching of the two sides allows to determine the weak low-energy couplings in the SU(4) limit. We compare the results with a previous determination, based on three-point correlators containing two left-handed currents, and discuss the merits and drawbacks of the two procedures.

  11. Manifestly Gauge Covariant Treatment of Lattice Chiral Fermion

    CERN Document Server

    Suzuki, H

    1997-01-01

    We propose a lattice formulation of the chiral fermion which maximally respects the gauge symmetry and simultaneously is free of the unwanted species doublers. This is achieved by directly dealing with the lattice fermion propagator and the composite operators, rather than the lattice action and the fermionic determinant. The latter is defined as a functional integral of the expectation value of the gauge current operator with respect to the background gauge field. The gauge anomaly is characterized as a non-integrability of this integration process and, the determinant is defined only for anomaly free cases. Gauge singlet operators on the other hand are always regularized gauge invariantly. Some perturbative check is performed to confirm the gauge covariance and the absence of the doublers. This formulation can be applied rather straightforwardly to numerical simulations in the quenched approximation.

  12. Holographic quenches and anomalous transport

    Science.gov (United States)

    Ammon, Martin; Grieninger, Sebastian; Jimenez-Alba, Amadeo; Macedo, Rodrigo P.; Melgar, Luis

    2016-09-01

    We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e., residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. We show that the existence of these resonances induces, among others, a long-lived AC electric current once the electric field is switched off.

  13. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  14. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  15. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  16. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  17. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  18. Chiral nucleon-nucleon forces in nuclear structure calculations

    CERN Document Server

    Coraggio, L; Holt, J W; Itaco, N; Machleidt, R; Marcucci, L E; Sammarruca, F

    2016-01-01

    Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  19. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  20. Harnessing the Power of Chiral Perturbation Theory

    Science.gov (United States)

    Isgur, Nathan

    2001-12-01

    I have enjoyed noticing the puzzled looks around the conference this week as some participants carefully labelled themselves High Energy Physicists, taking some offense if they are called Nuclear Physicists, and vice versa. This is partly a trivial issue associated with US funding sources, but it also reflects some very deeply-held feelings about Quantum Chromodynamics (QCD): a High Energy Physicist finds the strong interactions a nuisance and is studying QCD to be able to eliminate them, while a Nuclear Physicist believes that the nature and origin of the strong interactions is one of the most important unsolved problems in the Standard Model and studies QCD to be able to explain them...

  1. Chiral dynamics with (non)strange quarks

    Science.gov (United States)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  2. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  3. Random matrix model approach to chiral symmetry

    CERN Document Server

    Verbaarschot, J J M

    1996-01-01

    We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.

  4. The Vector Meson Mass in Chiral Effective Field Theory

    CERN Document Server

    Hall, Jonathan M M

    2014-01-01

    A brief overview of Quantum Chromodynamics (QCD) as a non-Abelian gauge field theory, including symmetries and formalism of interest, will precede a focused discussion on the use of an Effective Field Theory (EFT) as a low energy perturbative expansion technique. Regularization schemes involved in Chiral Perturbation Theory (\\c{hi}PT) will be reviewed and compared with EFT. Lattices will be discussed as a useful procedure for studying large mass particles. An Effective Field Theory will be formulated, and the self energy of the \\r{ho} meson for a Finite-Range Regulated (FRR) theory will be calculated. This will be performed in both full QCD and the simpler quenched approximation (QQCD). Finite-volume artefacts, due to the finite box size on the lattice, will be quantified. Currently known lattice results will be used to calculate the \\r{ho} meson mass, and the possibility of unquenching will be explored. The aim of the research was to determine whether a stable unquenching procedure for the \\r{ho} meson could...

  5. Chiral liquids

    Directory of Open Access Journals (Sweden)

    Zakharov V.I.

    2015-01-01

    Full Text Available We review briefly properties of chiral liquids, or liquids with massless fermionic constituents. We concentrate on three effects, namely, the low ratio of viscosity η to entropy density s, chiral magnetic and vortical effects. We sketch standard derivations of these effects in the hydrodynamic approximation and then concentrate on possibile unifying approach which is based on consideration of the (anomalously conserved axial current. The point is that the conservation of chirality is specific for the microscopic, field-theoretic description of massless fermions and their interactions. On the macroscopic side, the standard hydrodynamic equations are not consistent, generally speaking, with conservation of a helical macroscopic motion. Imposing extra constraints on the hydrodynamics might resolve this “clash-of-symmetries” paradox.

  6. Investigating jet quenching on the lattice

    CERN Document Server

    Panero, Marco; Schäfer, Andreas

    2014-01-01

    Due to the dynamical, real-time, nature of the phenomenon, the study of jet quenching via lattice QCD simulations is not straightforward. In this contribution, however, we show how one can extract information about the momentum broadening of a hard parton moving in the quark-gluon plasma, from lattice calculations. After discussing the basic idea (originally proposed by Caron-Huot), we present a recent study, in which we estimated the jet quenching parameter non-perturbatively, from the lattice evaluation of a particular set of gauge-invariant operators.

  7. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  8. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  9. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    NgSeikWng; HUSheng-Zhi

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  10. Chiral behavior of light meson form factors in 2+1 flavor QCD with exact chiral symmetry

    CERN Document Server

    Kaneko, T; Cossu, G; Feng, X; Fukaya, H; Hashimoto, S; Noaki, J; Onogi, T

    2016-01-01

    We present a study of chiral behavior of light meson form factors in QCD with three flavors of overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses down to 300 MeV. The pion and kaon electromagnetic form factors and the kaon semileptonic form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral behavior using the next-to-next-to-leading order chiral perturbation theory.

  11. Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Higa, R; Valderrama, M Pavon; Arriola, E Ruiz

    2007-06-14

    The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.

  12. Nuclear electromagnetic charge and current operators in Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  13. Chiral corrections to the Adler-Weisberger sum rule

    Science.gov (United States)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  14. Stegosaurus chirality

    OpenAIRE

    Cameron, R.P.; Cameron, J. A.; Barnett, S. M.

    2016-01-01

    We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...

  15. Radiative neutron-proton capture in effective chiral lagrangians

    CERN Document Server

    Park, T S; Rho, M; Park, Tae Sun; Min, Dong Pil; Rho, Mannque

    1994-01-01

    We calculate the cross-section for the thermal n+p\\rightarrow d+\\gamma process in chiral perturbation theory to next-to-next-to-leading order using heavy-fermion formalism. The exchange current correction is found to be (4.5\\pm 0.3)~\\% in amplitude and the chiral perturbation at one-loop order gives the cross section \\sigma_{th}^{np}=(334\\pm 2)\\ {\\mbox mb} which is in agreement with the experimental value (334.2\\pm 0.5)\\ {\\mbox mb}. Together with the axial charge transitions, this provides a strong support for the power of chiral Lagrangians for nuclear physics.

  16. Compton scattering from chiral dynamics with unitarity and causality

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, A.M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); SSC RF ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Lutz, M.F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Pasquini, B. [Dipartimento di Fisica Nucleare e Teorica, Universita degli Studi di Pavia and INFN, Sezione di Pavia, Pavia (Italy)

    2011-09-15

    Proton Compton scattering is analyzed with the chiral Lagrangian. Partial-wave amplitudes are obtained by an analytic extrapolation of subthreshold reaction amplitudes computed in chiral perturbation theory, where the constraints set by electromagnetic-gauge invariance, causality and unitarity are used to stabilize the extrapolation. We present and discuss predictions for various spin observables and polarizabilities of the proton. While for the transition polarizabilities {gamma}{sub E1M2}, {gamma}{sub M1E2} we recover the results of strict chiral perturbation theory, for the diagonal {gamma}{sub E1E1}, {gamma}{sub M1M1} elements we find significant effects from rescattering.

  17. Building a non-perturbative quark-gluon vertex from a perturbative one

    Science.gov (United States)

    Bermudez, Rocio

    2016-10-01

    The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.

  18. From enemies to friends chiral symmetry on the lattice

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2002-01-01

    The physics of strong interactions is invariant under the exchange of left-handed and right-handed quarks, at least in the massless limit. This invariance is reflected in the chiral symmetry of quantum chromodynamics. Surprisingly, it has become clear only recently how to implement this important symmetry in lattice formulations of quantum field theories. We will discuss realizations of exact lattice chiral symmetry and give an example of the computation of a physical observable in quantum chromodynamics where chiral symmetry is important. This calculation is performed by relying on finite size scaling methods as predicted by chiral perturbation theory.

  19. Calculation of Non-Leptonic Kaon Decay Amplitudes from $K\\to\\pi$ Matrix Elements in Quenched Domain-Wall QCD

    CERN Document Server

    Noaki, J I; Aoki, Y; Burkhalter, R; Ejiri, S; Fukugita, M; Hashimoto, S; Ishizuka, N; Iwasaki, Y; Izubuchi, T; Kanaya, K; Kaneko, T; Kuramashi, Y; Lesk, V I; Nagai, K I; Okawa, M; Taniguchi, Y; Ukawa, A; Yoshié, T

    2001-01-01

    We explore application of the domain wall fermion formalism of lattice QCD to calculate the $K\\to\\pi\\pi$ decay amplitudes in terms of the $K\\to\\pi$ and $K\\to 0$ hadronic matrix elements through relations derived in chiral perturbation theory. Numerical simulations are carried out in quenched QCD using domain-wall fermion action for quarks and an RG-improved gauge action for gluons on a $16^3\\times 32\\times 16$ and $24^3\\times 32\\times 16$ lattice at $\\beta=2.6$ corresponding to the lattice spacing $1/a\\approx 2$GeV. Quark loop contractions which appear in Penguin diagrams are calculated by the random noise method, and the $\\Delta I=1/2$ matrix elements which require subtractions with the quark loop contractions are obtained with a statistical accuracy of about 10%. We confirm the chiral properties required of the $K\\to\\pi$ matrix elements. Matching the lattice matrix elements to those in the continuum at $\\mu=1/a$ using the perturbative renormalization factor to one loop order, and running to the scale $\\mu=m...

  20. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric...

  1. Chiral Corrections to Vector Meson Decay Constants

    CERN Document Server

    Bijnens, J; Talavera, P; Bijnens, Johan; Gosdzinsky, Peter; Talavera, Pere

    1998-01-01

    We calculate the leading quark mass corrections of order $m_q\\log(m_q)$, $m_q$ and $m_q^{3/2}$ to the vector meson decay constants within Heavy Vector Meson Chiral Perturbation Theory. We discuss the issue of electromagnetic gauge invariance and the heavy mass expansion. Reasonably good fits to the observed decay constants are obtained.

  2. Perturbing PLA

    CERN Document Server

    Kozma, Gady

    2012-01-01

    We proved earlier that every measurable function on the circle, after a uniformly small perturbation, can be written as a power series (i.e. a series of exponentials with positive frequencies), which converges almost everywhere. Here we show that this result is basically sharp: the perturbation cannot be made smooth or even H\\"older. We discuss also a similar problem for perturbations with lacunary spectrum.

  3. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  4. Helicity, assembly, and circularly polarised luminesence of chiral AIEgens

    Science.gov (United States)

    Li, Hongkun; Li, Bing Shi; Tang, Ben Zhong

    2016-09-01

    As opposed to most fluorophores that suffer from aggregation-caused quenching (ACQ), aggregation-induced emissive luminogens (AIEgens) possess very weak fluorescence in solution, but show strong emission upon aggregation due to restriction of intramolecular motion (RIM). Since AIEgens are often comprised of propeller-shaped structures, i.e. polyphenylsiloles or tetraphenylethylene (TPE), the attachment of chiral units has recently proven a powerful tool to fabricate chiral AIEgens exhibiting strong circularly-polarized luminescence (CPL) signal upon aggregation. Different chiral moieties lead to various assembled structures, such as helical nanoribbons, superhelical ropes, hollow and solid micro-/nanospheres. Generally, these structures exhibit enhanced chiroptical properties when compared to their monomeric counterpart. In this context, we report on the tetraphenylsilole and TPE derivatives with side-chains bearing an enantiomerically pure chiral units readily assembled into superhelical ropes upon aggregation, which displayed large CPL dissymmetry factors (gem) of -0.32 - a record for purely organic chiral materials.

  5. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  6. Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes

    OpenAIRE

    Yasukochi, S.; Murai, T.; Moritsubo, S.; Shimada, T.; Chiashi, S.; Maruyama, S.; Kato, Y. K.

    2011-01-01

    Gate-voltage effects on photoluminescence spectra of suspended single-walled carbon nanotubes are investigated. Photoluminescence microscopy and excitation spectroscopy are used to identify individual nanotubes and to determine their chiralities. Under an application of gate voltage, we observe slight blueshifts in the emission energy and strong quenching of photoluminescence. The blueshifts are similar for different chiralities investigated, suggesting extrinsic mechanisms. In addition, we f...

  7. Chiral Nanoscience and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Dibyendu S. Bag

    2008-09-01

    Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685

  8. Non-perturbative renormalization in kaon decays

    CERN Document Server

    Donini, Andrea; Martinelli, G; Rossi, G C; Talevi, M; Testa, M; Vladikas, A

    1996-01-01

    We discuss the application of the MPSTV non-perturbative method \\cite{NPM} to the operators relevant to kaon decays. This enables us to reappraise the long-standing question of the $\\Delta I=1/2$ rule, which involves power-divergent subtractions that cannot be evaluated in perturbation theory. We also study the mixing with dimension-six operators and discuss its implications to the chiral behaviour of the $B_K$ parameter.

  9. Quenching: fact or fiction?

    Science.gov (United States)

    Basketter, D

    2000-11-01

    Fragrance chemicals are a frequently reported cause of allergic contact dermatitis (ACD), a matter which has recently come into considerable prominence, to the point that legislation in Europe is under serious consideration. Certain skin-sensitizing fragrance chemicals have been reported by the producing industry to be rendered safe (quenched), at least in terms of ACD, when they are used in the presence of a specific quenching agent. Accordingly, it seemed timely to review this apparent quenching phenomenon, considering the available data and potential mechanistic hypotheses that might be used to explain it. If it is correct, it should be a phenomenon of potentially enormous value in the elimination of the allergenic properties of at least a proportion of common skin sensitizers. Whilst there is some evidence in man for the occurrence of quenching during the induction of skin sensitization, a much more substantial body of work has failed to find supportive evidence in various animals models, at a chemical level or at elicitation in human subjects with existing allergy. On balance, it is concluded that quenching of fragrance allergens is a phenomenon still awaiting positive evidence of existence.

  10. Chiral symmetry breaking with the Curtis-Pennington vertex

    NARCIS (Netherlands)

    Atkinson, D.; Gusynin, V. P.; Maris, P.

    1992-01-01

    Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c

  11. Inhomogeneous Thermal Quenches

    CERN Document Server

    Sohrabi, Kiyoumars A

    2015-01-01

    We describe holographic thermal quenches that are inhomogeneous in space. The main characteristic of the quench is to take the system far from its equilibrium configuration. Except special extreme cases, the problem has no analytic solution. Using the numerical holography methods, we study different observables that measure thermalization such as the time evolution of the horizon, two-point Wightman function and entanglement entropy (EE). Having an extra nontrivial spacial direction, allows us to study this peculiar generalization since we categorize the problem based on whether we do the measurements along this special direction or perpendicular to it. Exciting new features appear that are absent in the common computations in the literature, the appearance of negative EE valleys surrounding the positive EE hills and abrupt quenches that occupy the whole space at their universal limit are some of the results of this paper. We have tried to provide physical explanations wherever possible. The physical picture ...

  12. The Quench Action

    Science.gov (United States)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  13. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  14. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  15. Molecular chirality at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)

    2012-11-15

    With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. On the chirally rotated Schroedinger functional with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, Jenifer

    2011-05-25

    There are many phenomena in nature, which are closely linked to the low energy regime of QCD. From a theoretical point of view, these low energy phenomena can be dealt with only by means of non-perturbative methods. It is the central goal of this thesis to provide a framework for such a nonperturbative renormalization. For that purpose, we employ a 4-dimensional lattice as a regulator of QCD. As a renormalization scheme, we propose a finite volume Schroedinger functional scheme and here in particular, the chirally rotated Schroedinger functional ({chi}SF). We first perform analytical studies of the {chi}SF at tree-level of perturbation theory, in the continuum and on the lattice. We study the eigenvalue spectrum of the continuum Dirac operator, equipped with chirally rotated SF boundary conditions, and derive the corresponding quark propagator. We then determine the tree-level quark propagator on the lattice, employing massless Wilson fermions as a regulator of the theory. Beyond tree-level, all studies are performed in the quenched approximation of QCD, as a first, computationally much simpler step to understand the properties of the newly proposed {chi}SF scheme. One of the main targets of the present work, has been to perform the non-perturbative tuning of the two required coefficients of the {chi}SF scheme, such that a well defined continuum limit can be reached. We demonstrate, as the first main result of this thesis, that the tuning is feasible and that, moreover, physical quantities are insensitive to the particular tuning condition. As in any lattice regularization with SF-like boundary conditions, there are also in the {chi}SF a couple of counterterms at the boundaries, whose coefficients need to be tuned in order to remove the O(a) discretization effects originated at the boundaries. However, besides these boundary O(a) effects, the {chi}SF is expected to be compatible with bulk automatic O(a)-improvement. We show here that, indeed, the scaling behavior

  17. Status of chiral meson physics

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE 22362 Lund (Sweden)

    2016-01-22

    This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.

  18. Chiral logarithms in the massless limit tamed.

    Science.gov (United States)

    Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei

    2008-12-31

    We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc.

  19. Chiral conducting polymers.

    Science.gov (United States)

    Kane-Maguire, Leon A P; Wallace, Gordon G

    2010-07-01

    This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).

  20. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  1. Chiral gravitational waves from chiral fermions

    Science.gov (United States)

    Anber, Mohamed M.; Sabancilar, Eray

    2017-07-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  2. Hamiltonian truncation approach to quenches in the Ising field theory

    CERN Document Server

    Rakovszky, Tibor; Collura, Mario; Kormos, Márton; Takács, Gábor

    2016-01-01

    In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while...

  3. Baryon chiral perturbation theory with Wilson fermions up to $\\mathcal{O}(a^2)$ and discretization effects of latest $n_f=2+1$ LQCD octet baryon masses

    CERN Document Server

    Ren, Xiu-Lei; Meng, Jie

    2013-01-01

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to $\\mathcal{O}(a^2)$ by taking into account discretization effects and calculate the masses up to $\\mathcal{O}(p^4)$ in the extended-on-mass-shell scheme. As an application, we study the latest $n_f=2+1$ LQCD data on the ground-state octet baryon masses form the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of one to two percent for lattice spacings up to $0.15$ fm and the pion mass up to 500 MeV.

  4. $B_{K}$ from quenched overlap QCD

    CERN Document Server

    Garron, N; Hölbling, C; Lellouch, L P; Rebbi, C

    2003-01-01

    We present an exploratory calculation of the standard model Delta S=2 matrix element relevant for indirect CP violation in K -> pi pi decays. The computation is performed with overlap fermions in the quenched approximation at beta=6.0 on a 16^3x32 lattice. The resulting bare matrix element is renormalized non-perturbatively. Our preliminary result is B_K^{NDR}(2 GeV)=0.61(7), where the error does not yet include an estimate of systematic uncertainties.

  5. Thermal mass and dispersion relations of quarks in the deconfined phase of quenched QCD

    CERN Document Server

    Kaczmarek, Olaf; Kitazawa, Masakiyo; Soeldner, Wolfgang

    2012-01-01

    Temporal quark correlation functions are analyzed in quenched lattice QCD for two values of temperature above the critical temperature (Tc) for deconfinement, T=1.5Tc and 3Tc. A two-pole ansatz for the quark spectral function is used to determine the bare quark mass and the momentum dependence of excitation spectra on large lattices of size up to 128^3x16. The dependence of the quark correlator on these parameters as well as the finite volume dependence of the excitation energies are analyzed in detail in order to examine the reliability of our analysis. Our results suggest the existence of quasi-particle peaks in the quark spectrum. We furthermore find evidence that the dispersion relation of the plasmino mode has a minimum at non-zero momentum even in the non-perturbative region near Tc. We also elaborate on the enhancement of the quark correlator near the chiral limit which is observed at T=1.5Tc on about half of the gauge configurations. We attribute this to the presence of near zero-modes of the fermion ...

  6. Nonlinear Realization of Chiral Symmetry on the Lattice

    CERN Document Server

    Chandrasekharan, S; Steffen, F D; Wiese, U J

    2003-01-01

    We formulate lattice theories in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework the fermion mass term does not break chiral symmetry. This property allows us to use the Wilson term to remove the doubler fermions while maintaining exact chiral symmetry on the lattice. Our lattice formulation enables us to address non-perturbative questions in effective field theories of baryons interacting with pions and in models involving constituent quarks interacting with pions and gluons. We show that a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering complex action problems. In our formulation one can also decide non-perturbatively if the chiral quark model of Georgi and Manohar provides an appropriate low-energy description of QCD. If so, one could understand why the non-relativistic quark model works.

  7. Invariant regularization of anomaly-free chiral theories

    CERN Document Server

    Chang, L N; Chang, Lay Nam; Soo, Chopin

    1997-01-01

    We present a generalization of the Frolov-Slavnov invariant regularization scheme for chiral fermion theories in curved spacetimes. The Lagrangian level regularization is explicitly invariant under all the local gauge symmetries of the theory, including local Lorentz invariance. The perturbative scheme works for {\\it arbitrary} representations which satisfy the chiral gauge anomaly and mixed Lorentz-gauge anomaly cancellation conditions. Anomalous theories on the other hand manifest themselves by having divergent fermion loops which remain unregularized by the scheme. Since the invariant scheme is promoted to also include local Lorentz invariance, spectator fields which do not couple to gravity cannot be, and are not, introduced. Furthermore, the scheme is truly Weyl(chiral) in that {\\it all} fields, including the regulators, are left-handed; and {\\it only the left-handed spin connection} is needed. The scheme is therefore well-suited for the perturbative study of all four known forces in a completely chiral ...

  8. Quench studies of ILC cavities

    Energy Technology Data Exchange (ETDEWEB)

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari; Dai, Jin

    2011-07-01

    Quench limits accelerating gradient in SRF cavities to a gradient lower than theoretically expected for superconducting niobium. Identification of the quenching site with thermometry and OST, optical inspection, and replica of the culprit is an ongoing effort at Jefferson Lab aimed at better understanding of this limiting phenomenon. In this contribution we present our finding with several SRF cavities that were limited by quench.

  9. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  10. Power Counting Regime of Chiral Extrapolation and Beyond

    CERN Document Server

    Leinweber, D B; Young, R D; Leinweber, Derek B; Thomas, Anthony W; Young, Ross D

    2005-01-01

    Finite-range regularised (FRR) chiral effective field theory is presented in the context of approximation schemes ubiquitous in modern lattice QCD calculations. Using FRR techniques, the power-counting regime (PCR) of chiral perturbation theory can be estimated. To fourth-order in the expansion at the 1% tolerance level, we find m_\\pi < 180 MeV for the PCR, extending only a small distance beyond the physical pion mass.

  11. Quenched effective population size

    CERN Document Server

    Sagitov, Serik; Vatutin, Vladimir

    2010-01-01

    We study the genealogy of a geographically - or otherwise - structured version of the Wright-Fisher population model with fast migration. The new feature is that migration probabilities may change in a random fashion. Applying Takahashi's results on Markov chains with random transition matrices, we establish convergence to the Kingman coalescent, as the population size goes to infinity. This brings a novel formula for the coalescent effective population size (EPS). We call it a quenched EPS to emphasize the key feature of our model - random environment. The quenched EPS is compared with an annealed (mean-field) EPS which describes the case of constant migration probabilities obtained by averaging the random migration probabilities over possible environments.

  12. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  13. Phenomenology of Holographic Quenches

    Science.gov (United States)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-10-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  14. Energy Conservation and the Chiral Magnetic Effect

    CERN Document Server

    Kaplan, David B; Sen, Srimoyee

    2016-01-01

    We analyze the chiral magnetic effect in a neutral plasma from the point of view of energy conservation, and construct an effective potential for the growth of helical perturbations of the electromagnetic field. We show that a negative curvature at the origin of the potential, indicating instability of the plasma, is induced by a chiral asymmetry in electron Fermi energy, as opposed to number density, while the potential grows at large field value. It follows that the ground state for a plasma has zero magnetic helicity; a nonzero electron mass will allow an excited state of a plasma with nonzero helicity to relax to that ground state quickly. We conclude that a chiral plasma instability triggered by weak interactions is not a viable mechanism for explaining magnetic fields in neutron stars.

  15. Vector solitons in nonlinear isotropic chiral metamaterials

    CERN Document Server

    Tsitsas, N L; Frantzeskakis, D J

    2011-01-01

    Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schr\\"{o}dinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large.We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime.

  16. Vector solitons in nonlinear isotropic chiral metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsas, N L [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Lakhtakia, A [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Frantzeskakis, D J, E-mail: dfrantz@phys.uoa.gr [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)

    2011-10-28

    Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schroedinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative-real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large. We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime. (paper)

  17. Chiral dynamics in the gamma p --> p pi0 reaction

    CERN Document Server

    Blin, A N Hiller; Vacas, M J Vicente

    2014-01-01

    We investigate the neutral pion photoproduction on the proton near threshold in covariant chiral perturbation theory with the explicit inclusion of Delta degrees of freedom. This channel is specially sensitive to chiral dynamics and the advent of very precise data from the Mainz microtron has shown the limits of the convergence of the chiral series for both the heavy baryon and the covariant approaches. We show that the inclusion of the Delta resonance substantially improves the convergence leading to a good agreement with data for a wider range of energies.

  18. Dimensional structural constants from chiral and conformal bosonization of QCD

    CERN Document Server

    Andrianov, A A; Ebert, D; Mann, T F; Mann, Th. Feld

    1997-01-01

    We derive the dimensional non-perturbative part of the QCD effective ac= tion for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of th= e chiral lagrangian are estimated using general relations which are valid i= n a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated,= and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interacti= on between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.

  19. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  20. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  1. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  2. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  3. Chiral deformations of conformal field theories

    Science.gov (United States)

    Dijkgraaf, Robbert

    1997-02-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W1+∞ algebra, that is treated in detail.

  4. Chiral Deformations of Conformal Field Theories

    CERN Document Server

    Dijkgraaf, R

    1996-01-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treated in detail.

  5. Chiral deformations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Math.

    1997-06-02

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W{sub 1+{infinity}} algebra, that is treated in detail. (orig.).

  6. Chiral Deformations of Conformal Field Theories

    OpenAIRE

    Dijkgraaf, R.

    1996-01-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treat...

  7. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; H C Chiang; C Garcia Recio; S Hirenzaki; S S Kamalov; J Nieves; Y Okumura; A Ramos; H Toki; M J Vicente Vacas

    2001-08-01

    In this talk we briefly describe some basic elements of chiral perturbation theory, , and how the implementation of unitarity and other novel elements lead to a better expansion of the -matrix for meson–meson and meson–baryon interactions. Applications are then done to the interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and - atoms, and how the meson properties are changed in a nuclear medium.

  8. Hamiltonian truncation approach to quenches in the Ising field theory

    Directory of Open Access Journals (Sweden)

    T. Rakovszky

    2016-10-01

    Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.

  9. Hamiltonian truncation approach to quenches in the Ising field theory

    Science.gov (United States)

    Rakovszky, T.; Mestyán, M.; Collura, M.; Kormos, M.; Takács, G.

    2016-10-01

    In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1 + 1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.

  10. Extrinsic electromagnetic chirality in metamaterials

    OpenAIRE

    Plum, E.; Fedotov, V. A.; Zheludev, N. I.

    2009-01-01

    Three- and two-dimensional chirality arising from the mutual orientation of non-chiral planar metamaterial structures and the incident electromagnetic wave (extrinsic chirality) lead to pronounced optical activity, circular dichroism and asymmetric transmission indistinguishable from those seen in media consisting of three- and two-dimensionally chiral molecules (intrinsic chirality).

  11. Modeling the jet quenching in hot and dense QCD matter

    CERN Document Server

    Lokhtin, I P; Petrushanko, S V; Snigirev, A M; Arsene, I; Tywoniuk, K

    2009-01-01

    One of the important perturbative ("hard") probes of hot and dense QCD matter is the medium-induced energy loss of energetic partons, so called "jet quenching", which is predicted to be very different in cold nuclear matter and in QGP, and leads to a number of phenomena which are already seen in the RHIC data on the qualitative level. The inclusion of jet quenching and other important collective effects, such as radial and elliptic flows, in the existing Monte-Carlo models of relativistic heavy ion collisions is discussed. Some issues on the corresponding physical observables at RHIC and LHC energies obtained with HYDJET++ model are presented.

  12. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  13. A Perturbative Window into Non-Perturbative Physics

    CERN Document Server

    Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun

    2002-01-01

    We argue that for a large class of N=1 supersymmetric gauge theories the effective superpotential as a function of the glueball chiral superfield is exactly given by a summation of planar diagrams of the same gauge theory. This perturbative computation reduces to a matrix model whose action is the tree-level superpotential. For all models that can be embedded in string theory we give a proof of this result, and we sketch an argument how to derive this more generally directly in field theory. These results are obtained without assuming any conjectured dualities and can be used as a systematic method to compute instanton effects: the perturbative corrections up to n-th loop can be used to compute up to n-instanton corrections. These techniques allow us to see many non-perturbative effects, such as the Seiberg-Witten solutions of N=2 theories, the consequences of Montonen-Olive S-duality in N=1* and Seiberg-like dualities for N=1 theories from a completely perturbative planar point of view in the same gauge theo...

  14. Design of Industrial Quenching Processes

    Institute of Scientific and Technical Information of China (English)

    Nikolai. I. KOBASKO; George .E. TOTTEN

    2004-01-01

    The method of designing industrial processes of quench cooling, in particular, the speed of the conveyor movement with regard to shape and sizes of parts to be quenched, thermal and physical properties of material and cooling capacity of quenchants has been developed. The suggested designing method and databases are the basis for the complete automation of industrial processes of quench cooling, especially for continuous conveyor lines, with the purpose of making high-strength materials. The process is controlled by infrared technique.

  15. Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor.

    Science.gov (United States)

    Zhang, Yonghong; Hu, Fangzhi; Wang, Bin; Zhang, Xiaomei; Liu, Chenjiang

    2015-05-06

    A novel chiral 1,10-phenanthroline-based fluorescent sensor was designed and synthesized from optical active β-amino acids. It used 1,10-phenanthroline moiety as a fluorescent signaling site and binding site, with optically active β-amino acids as a chiral barrier site. Notably, the optically active β-amino acids were obtained by a Lewis base catalyzed hydrosilylation of β-enamino esters according to our former work. The chiral sensor has been used to conduct the enantioselective recognition of chiral mono and dicarboxylic acids derivatives. Using this fluorescent sensor, a moderate "turn-off" fluorescence-diminishment response towards enantiomer of tartaric acids, and proline was observed. It found that l-enantiomers quench the chiral fluorescence sensor more efficiently than d-enantiomers due to the absolute configuration of the β-amino acid.

  16. Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-05-01

    Full Text Available A novel chiral 1,10-phenanthroline-based fluorescent sensor was designed and synthesized from optical active β-amino acids. It used 1,10-phenanthroline moiety as a fluorescent signaling site and binding site, with optically active β-amino acids as a chiral barrier site. Notably, the optically active β-amino acids were obtained by a Lewis base catalyzed hydrosilylation of β-enamino esters according to our former work. The chiral sensor has been used to conduct the enantioselective recognition of chiral mono and dicarboxylic acids derivatives. Using this fluorescent sensor, a moderate “turn-off” fluorescence-diminishment response towards enantiomer of tartaric acids, and proline was observed. It found that l-enantiomers quench the chiral fluorescence sensor more efficiently than d-enantiomers due to the absolute configuration of the β-amino acid.

  17. Chiral rotational spectroscopy

    Science.gov (United States)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  18. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  19. Emerging chirality in nanoscience.

    Science.gov (United States)

    Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu

    2013-04-07

    Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.

  20. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  1. Hydrodynamics of Sakai Sugimoto model in the quenched approximation

    Science.gov (United States)

    Benincasa, Paolo; Buchel, Alex

    2006-09-01

    We study transport properties of the finite temperature Sakai-Sugimoto model. The model represents a holographic dual to (4 + 1)-dimensional supersymmetric SU (Nc) gauge theory compactified on a circle with anti-periodic boundary conditions for fermions, coupled to Nf left-handed quarks and Nf right-handed quarks localized at different points on the compact circle. We analytically compute the speed of sound and the sound wave attenuation in the quenched approximation. Since confinement/deconfinement (and the chiral symmetry restoration) phase transitions are first order in this model, we do not see any signature of these phase transitions in the transport properties.

  2. Dipolar fluids under external perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, Sabine H L [Stranski-Laboratorium fuer Physikalische und Theoretische Chemie Sekretariat TC7, Technische Universitaet Berlin, Strasse des 17. Juni 124, D-10623 Berlin (Germany)

    2005-04-20

    We discuss recent developments and present new findings on the structural and phase properties of dipolar model fluids influenced by various external perturbations. We concentrate on systems of spherical particles with permanent (point) dipole moments. Starting from what is known about the three-dimensional systems, particular emphasis is given to dipolar fluids in different confining situations involving both simple and complex (disordered) pore geometries. Further topics concern the effect of quenched positional disorder, the influence of external (electric or magnetic) fields, and the fluid-fluid phase behaviour of various dipolar mixtures. It is demonstrated that due to the translational-orientational coupling and due to the long range of dipolar interactions even simple perturbations such as hard walls can have a profound impact on the systems. (topical review)

  3. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  4. Chiral Shock Waves

    CERN Document Server

    Sen, Srimoyee

    2016-01-01

    We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.

  5. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  6. Higher representations on the lattice: perturbative studies

    CERN Document Server

    Del Debbio, Luigi; Panagopoulos, Haralambos; Sannino, Francesco

    2008-01-01

    We present analytical results to guide numerical simulations with Wilson fermions in higher representations of the colour group. The ratio of $\\Lambda$ parameters, the additive renormalization of the fermion mass, and the renormalization of fermion bilinears are computed in perturbation theory, including cactus resummation. We recall the chiral Lagrangian for the different patterns of symmetry breaking that can take place with fermions in higher representations, and discuss the possibility of an Aoki phase as the fermion mass is reduced at finite lattice spacing.

  7. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  8. Evidence for chiral logarithms in the baryon spectrum

    CERN Document Server

    Walker-Loud, Andre

    2011-01-01

    Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...

  9. Numerical analysis of quench in coated conductors with defects

    Science.gov (United States)

    Liu, Wenbin; Yong, Huadong; Zhou, Youhe

    2016-09-01

    When the superconductor is subjected to local thermal perturbations, a large amount of joule heat may be generated in the conductor, which may lead to a quench. In a quench event, a normal zone irreversibly spreads throughout the conductor leading to failure of the superconducting device. In this paper, we will discuss the one-dimensional quench behavior in the coated conductors with internal defects or interface defects. Based on the numerical procedure given in the previous works, the normal zone propagation is studied by using the finite difference method. The numerical results are presented to discuss the normal zone propagation. We consider the effect of internal defect on the nonuniform temperature propagation. For the conductor with interface defects, it can be found that the normal zone propagation velocity is increased by defects.

  10. Numerical analysis of quench in coated conductors with defects

    Directory of Open Access Journals (Sweden)

    Wenbin Liu

    2016-09-01

    Full Text Available When the superconductor is subjected to local thermal perturbations, a large amount of joule heat may be generated in the conductor, which may lead to a quench. In a quench event, a normal zone irreversibly spreads throughout the conductor leading to failure of the superconducting device. In this paper, we will discuss the one-dimensional quench behavior in the coated conductors with internal defects or interface defects. Based on the numerical procedure given in the previous works, the normal zone propagation is studied by using the finite difference method. The numerical results are presented to discuss the normal zone propagation. We consider the effect of internal defect on the nonuniform temperature propagation. For the conductor with interface defects, it can be found that the normal zone propagation velocity is increased by defects.

  11. Nuclear chiral dynamics and thermodynamics

    CERN Document Server

    Holt, J W; Weise, W

    2013-01-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic des...

  12. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    comparing these results with many-body perturbation theory (MBPT), we can study the perturbative convergence of local chiral interactions. We have shown that soft, low-cutoff potentials converge well and can be reliably used in MBPT, while harder potentials are less perturbative and have to be treated within AFDMC. We have also derived consistent local chiral 3N interactions and study these forces in detail. Our results show that local regulators lead to less repulsion from 3N forces compared to nonlocal 3N forces. Finally, we present the neutron-matter equation of state based on local chiral NN and 3N interactions using the AFDMC method as well as results for light nuclei and neutron drops. This work paves the way for systematic QMC calculations with chiral EFT interactions for nuclei and nucleonic matter.

  13. Quantum Monte Carlo calculations with chiral effective field theory interactions.

    Science.gov (United States)

    Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A

    2013-07-19

    We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

  14. Chiral logs in twisted mass lattice QCD with large isospin breaking

    CERN Document Server

    Bar, Oliver

    2010-01-01

    The pion masses and the pion decay constant are calculated to 1-loop order in twisted mass Wilson chiral perturbation theory, assuming a large pion mass splitting and tuning to maximal twist. Taking the large mass splitting at leading order in the chiral expansion leads to significant modifications in the chiral logarithms. For example, the result for the charged pion mass contains a chiral logarithm that involves the neutral pion mass instead of the charged one. Similar modifications appear in the results for the neutral pion mass and the decay constant. These new results are used in fits to lattice data obtained recently by the European twisted mass collaboration. The data can be fitted well, in general better than with the standard chiral perturbation theory expressions that ignore the mass splitting. The impact on the extraction of low-energy couplings is briefly discussed.

  15. Chiral current generation in QED by longitudinal photons

    CERN Document Server

    Avalo, J L Acosta

    2016-01-01

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even for vanishing chemical potential. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral...

  16. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  17. Chiral analysis of baryon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Gail, T.A.

    2007-11-08

    This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)

  18. Chiral interpolation in a finite volume

    CERN Document Server

    Fukaya, H; Hashimoto, S; Kaneko, T; Matsufuru, H; Noaki, J; Onogi, T; Yamada, N

    2011-01-01

    A simulation of lattice QCD at (or even below) the physical pion mass is feasible on a small lattice size of \\sim 2 fm. The results are, however, subject to large finite volume effects. In order to precisely understand the chiral behavior in a finite volume, we develop a new computational scheme to interpolate the conventional epsilon and p regimes within chiral perturbation theory. In this new scheme, we calculate the two-point function in the pseudoscalar channel, which is described by a set of Bessel functions in an infra-red finite way as in the epsilon regime, while chiral logarithmic effects are kept manifest as in the p regime. The new ChPT formula is compared to our 2+1- flavor lattice QCD data near the physical up and down quark mass, mud \\sim 3 MeV on an L \\sim 1.8 fm lattice. We extract the pion mass = 99(4) MeV, from which we attempt a chiral "interpolation" of the observables to the physical point.

  19. Large Nc volume reduction and chiral random matrix theory

    CERN Document Server

    Lee, Jong-Wan; Yamada, Norikazu

    2013-01-01

    Motivated by recent progress on the understanding of the Eguchi-Kawai (EK) volume equivalence and growing interest in conformal window, we simultaneously use the large-Nc volume reduction and Chiral Random Matrix Theory (chRMT) to study the chiral symmetry breaking of four dimensional SU(Nc) gauge theory with adjoint fermions in the large Nc limit. Although some cares are required because the chRMT limit and 't Hooft limit are not compatible in general, we show that the breakdown of the chiral symmetry can be detected in large-Nc gauge theories. As a first step, we mainly focus on the quenched approximation to establish the methodology. We first confirm that heavy adjoint fermions, introduced as the center symmetry preserver, work as expected and thanks to them the volume reduction holds. Using massless overlap fermion as a probe, we then calculate the low-lying Dirac spectrum for fermion in the adjoint representation to compare to that of chRMT, and find that chiral symmetry is indeed broken in the quenched ...

  20. Response functions after a quantum quench

    Science.gov (United States)

    Marcuzzi, Matteo; Gambassi, Andrea

    2014-04-01

    The response of physical systems to external perturbations can be used to probe both their equilibrium and nonequilibrium dynamics. While response and correlation functions are related in equilibrium by fluctuation-dissipation theorems, out of equilibrium they provide complementary information on the dynamics. In the past years, a method has been devised to map the quantum dynamics of an isolated extended system after a quench onto a static theory with boundaries in imaginary time; up to now, however, the focus was entirely on symmetrized correlation functions. Here we provide a prescription which, in principle, allows one to retrieve the whole set of relevant dynamical quantities characterizing the evolution, including linear response functions. We illustrate this construction with some relevant examples, showing in the process the emergence of light-cone effects similar to those observed in correlation functions.

  1. Thermal dilepton rates from quenched lattice QCD

    CERN Document Server

    Ding, H -T; Kaczmarek, O; Karsch, F; Laermann, E; Mukherjee, S; Müller, M; Soeldner, W

    2013-01-01

    We present new lattice results on the continuum extrapolation of the vector current correlation function. Lattice calculations have been carried out in the deconfined phase at a temperature of 1.1 Tc, extending our previous results at 1.45 Tc, utilizing quenched non-perturbatively clover-improved Wilson fermions and light quark masses. A systematic analysis on multiple lattice spacings allows to perform the continuum limit of the correlation function and to extract spectral properties in the continuum limit. Our current analysis suggests the results for the electrical conductivity are proportional to the temperature and the thermal dilepton rates in the quark gluon plasma are comparable for both temperatures. Preliminary results of the continuum extrapolated correlation function at finite momenta, which relates to thermal photon rates, are also presented.

  2. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  3. Molecular model for chirality phenomena.

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  4. Non-perturbative quark mass renormalization

    CERN Document Server

    Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.

    1998-01-01

    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.

  5. Lattice Theories with Nonlinearly Realized Chiral Symmetry

    CERN Document Server

    Chandrasekharan, S; Steffen, F D; Wiese, U J

    2003-01-01

    We present the lattice formulation of effective Lagrangians in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework both the Wilson term removing unphysical doubler fermions and the fermion mass term do not break chiral symmetry. Our lattice formulation allows us to address non-perturbative questions in effective theories of baryons interacting with pions and in models involving constitutent quarks interacting with pions and gluons. With the presented methods, a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering a complex action problem. This might lead to new insights into the phase diagram of strongly interacting matter at non-zero chemical potential.

  6. Random Matrices and Chiral Symmetry in QCD

    CERN Document Server

    Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    1998-01-01

    In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).

  7. Holographic Quenches with a Gap

    CERN Document Server

    da Silva, Emilia; Mas, Javier; Serantes, Alexandre

    2016-01-01

    In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.

  8. Holographic quenches with a gap

    Science.gov (United States)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2016-06-01

    In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.

  9. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  10. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  11. Kaon Thresholds and Two-Flavor Chiral Expansions for Hyperons

    Energy Technology Data Exchange (ETDEWEB)

    Fu-Jiun Jiang, Brian C. Tiburzi, Andre Walker-Loud

    2011-01-01

    Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although one can theoretically formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of the perturbative expansion in practice. We investigate the importance of virtual kaon thresholds on hyperon properties, specifically their masses and isovector axial charges. Using a three-flavor expansion that includes SU(3) breaking effects, we uncover the underlying expansion parameter governing the description of virtual kaon thresholds. For spin-half hyperons, this expansion parameter is quite small. Consequently virtual kaon contributions are well described in the two-flavor theory by terms analytic in the pion mass-squared. For spin three-half hyperons, however, one is closer to the kaon production threshold, and the expansion parameter is not as small. Breakdown of SU(2) chiral perturbation theory is shown to arise from a pole in the expansion parameter associated with the kaon threshold. Estimating higher-order corrections to the expansion parameter is necessary to ascertain whether the two-flavor theory of spin three-half hyperons remains perturbative. We find that, despite higher-order corrections, there is a useful perturbative expansion for the masses and isovector axial charges of both spin-half and spin three-half hyperons.

  12. Criteria of backscattering in chiral one-way photonic crystals

    Science.gov (United States)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  13. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the ...

  14. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  15. Zero-momentum modes and chiral limit in compact lattice QED

    CERN Document Server

    Bogolubsky, I L; Müller-Preussker, M; Zverev, N V

    2001-01-01

    The influence of zero-momentum gauge modes on physical observables is investigated for compact lattice QED with dynamical and quenched Wilson fermions. Within the Coulomb phase, zero-momentum modes are shown to hide the critical behaviour of gauge invariant fermion observables near the chiral limit. Methods for eliminating zero-momentum modes are discussed.

  16. Color chiral solitons

    CERN Document Server

    Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri

    2002-01-01

    We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.

  17. Chiral brownian heat pump.

    Science.gov (United States)

    van den Broek, M; Van den Broeck, C

    2008-04-04

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  18. Chiral Brownian heat pump

    OpenAIRE

    Van Den Broek, Martijn; Van Den Broeck, Christian

    2007-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  19. On chiral mesons in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, Liam; McGuirk, Paul; Stout, John [Department of Physics, Cornell University,Ithaca, NY 14853 (United States)

    2014-02-05

    We analyze the spectra of non-chiral and chiral bifundamental mesons arising on intersecting D7-branes in AdS{sub 5}×S{sup 5}. In the absence of magnetic flux on the curve of intersection, the spectrum is non-chiral, and the dual gauge theory is conformal in the quenched/probe approximation. For this case we calculate the dimensions of the bifundamental mesonic operators. We then consider magnetization of the D7-branes, which deforms the dual theory by an irrelevant operator and renders the mesons chiral. The magnetic flux spoils the conformality of the dual theory, and induces a D3-brane charge that becomes large in the ultraviolet, where the non-normalizable bifundamental modes are rapidly divergent. An ultraviolet completion is therefore necessary to calculate the correlation functions in the chiral case. On the other hand, the normalizable modes are very well localized in the infrared, leading to new possibilities for local model-building on intersecting D7-branes in warped geometries.

  20. Electrodynamics of chiral matter

    Science.gov (United States)

    Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang

    2017-02-01

    Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.

  1. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  2. The quenching time scale and quenching rate of galaxies

    CERN Document Server

    Lian, Jianhui; Zhang, Kai; Kong, Xu

    2016-01-01

    The average star formation rate (SFR) in galaxies has been declining since redshift of 2. A fraction of galaxies quench and become quiescent. We constrain two key properties of the quenching process: the quenching time scale and the quenching rate among galaxies. We achieve this by analyzing the galaxy number density profile in NUV-u color space and the distribution in NUV-u v.s. u-i color-color diagram with a simple toy-model framework. We focus on galaxies in three mass bins between 10 to 10 and 10 to 10.6 solar mass. In the NUV-u v.s. u-i color-color diagram, the red u-i galaxies exhibit a different slope from the slope traced by the star-forming galaxies. This angled distribution and the number density profile of galaxies in NUV-u space strongly suggest that the decline of the SFR in galaxies has to accelerate before they turn quiescent. We model this color-color distribution with a two-phase exponential decline star formation history. The models with an e-folding time in the second phase (the quenching p...

  3. Chiral Disorder and Random Matrix Theory with Magnetism

    CERN Document Server

    Nowak, Maciej A; Zahed, Ismail

    2013-01-01

    We revisit the concept of chiral disorder in QCD in the presence of a QED magnetic field |eH|. Weak magnetism corresponds to |eH| < 1/rho^2 with rho\\approx (1/3) fm the vacuum instanton size, while strong magnetism the reverse. Asymptotics (ultra-strong magnetism) is in the realm of perturbative QCD. We analyze weak magnetism using the concept of the quark return probability in the diffusive regime of chiral disorder. The result is in agreement with expectations from chiral perturbation theory. We analyze strong and ultra-strong magnetism in the ergodic regime using random matrix theory including the effects of finite temperature. The strong magnetism results are in agreement with the currently reported lattice data in the presence of a small shift of the Polyakov line. The ultra-strong magnetism results are consistent with expectations from perturbative QCD. We suggest a chiral random matrix effective action with matter and magnetism to analyze the QCD phase diagram near the critical points under the infl...

  4. Cosmological density perturbations from perturbed couplings

    CERN Document Server

    Tsujikawa, S

    2003-01-01

    The density perturbations generated when the inflaton decay rate is perturbed by a light scalar field $\\chi$ are studied. By explicitly solving the perturbation equations for the system of two scalar fields and radiation, we show that even in low energy-scale inflation nearly scale-invariant spectra of scalar perturbations with an amplitude set by observations are obtained through the conversion of $\\chi$ fluctuations into adiabatic density perturbations. We demonstrate that the spectra depend on the average decay rate of the inflaton & on the inflaton fluctuations. We then apply this new mechanism to string cosmologies & generalized Einstein theories and discuss the conditions under which scale-invariant spectra are possible.

  5. The anomalous chiral Lagrangian of order $p^6$

    CERN Document Server

    Bijnens, J; Talavera, P

    2002-01-01

    We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-intrinsic-parity sector at order $p^6$. The Lagrangian contains 24 in principle measurable terms and no contact terms for the general case of $N_f$ light flavors, 23 terms for three and five for two flavors. In the two flavor case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated and presented as well.

  6. Dispersion relations in application to chiral two-nucleon dynamics

    Directory of Open Access Journals (Sweden)

    Gasparyan A.M.

    2014-06-01

    Full Text Available A novel scheme based on the chiral Lagrangian is applied to the nucleon-nucleon interaction close to threshold. Subthreshold partial-wave amplitudes are calculated in chiral perturbation theory and analytically extrapolated above threshold. The constraints imposed by analyticity and unitarity are used to stabilize the extrapolation. A reasonable description of the empirical phase shifts up to laboratory energies Tlab ≃ 300 MeV is obtained in terms of the parameters relevant at next-to-next-to-next-to-leading order. The convergence properties of the method and the comparison with the conventional potential approach are discussed.

  7. Approaching the chiral point in two-flavour lattice simulations

    CERN Document Server

    Lottini, Stefano

    2014-01-01

    We investigate the behaviour of the pion decay constant and the pion mass in two-flavour lattice QCD, with the physical and chiral points as ultimate goal. Measurements come from the ensembles generated by the CLS initiative using the O(a)-improved Wilson formulation, with lattice spacing down to about 0.05 fermi and pion masses as low as 190 MeV. The applicability of SU(2) chiral perturbation theory is investigated, and various functional forms, and their range of validity, are compared. The physical scale is set through the kaon decay constant, whose measurement is enabled by inserting a third, heavier valence strange quark.

  8. Phases of (Asymptotically) Safe Chiral Theories with(out) Scalars

    CERN Document Server

    Molgaard, Esben

    2016-01-01

    We unveil the dynamics of four dimensional chiral gauge-Yukawa theories featuring several scalar degrees of freedom transforming according to distinct representations of the underlying gauge group. We consider generalized Georgi-Glashow and Bars-Yankielowicz theories. We determine, to the maximum known order in perturbation theory, the phase diagram of these theories and further disentangle their ultraviolet asymptotic nature according to whether they are asymptotically free or safe. We therefore extend the number of theories that are known to be fundamental in the Wilsonian sense to the case of chiral gauge theories with scalars.

  9. Universality in fast quantum quenches

    CERN Document Server

    Das, Sumit R; Myers, Robert C

    2014-01-01

    We expand on the investigation of the universal scaling properties in the early time behaviour of fast but smooth quantum quenches in a general $d$-dimensional conformal field theory deformed by a relevant operator of dimension $\\Delta$ with a time-dependent coupling. The quench consists of changing the coupling from an initial constant value $\\lambda_1$ by an amount of the order of $\\delta \\lambda$ to some other final value $\\lambda_2$, over a time scale $\\delta t$. In the fast quench limit where $\\delta t$ is smaller than all other length scales in the problem, $ \\delta t \\ll \\lambda_1^{1/(\\Delta-d)}, \\lambda_2^{1/(\\Delta-d)}, \\delta \\lambda^{1/(\\Delta-d)}$, the energy (density) injected into the system scales as $\\delta{\\cal E} \\sim (\\delta \\lambda)^2 (\\delta t)^{d-2\\Delta}$. Similarly, the change in the expectation value of the quenched operator at times earlier than the endpoint of the quench scales as $\\langle {\\cal O}_\\Delta\\rangle \\sim \\delta \\lambda\\, (\\delta t)^{d-2\\Delta}$, with further logarithmic...

  10. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  11. $K \\to \\pi \\pi \\pi \\gamma$ in chiral perturbation theory

    CERN Document Server

    D'Ambrosio, G; Isidori, Gino; Neufeld, H

    1996-01-01

    We present a complete analysis of K -> 3 pi gamma decays to O(p^4) in the low-energy expansion of the Standard Model. We employ the notion of "generalized bremsstrahlung" to take full advantage of experimental information on the corresponding non-radiative K -> 3 pi decays.

  12. Large $N_{c}$ in chiral perturbation theory

    CERN Document Server

    Kaiser, R

    2000-01-01

    The construction of the effective Lagrangian relevant for the mesonic sector of QCD in the large N_c limit meets with a few rather subtle problems. We thoroughly examine these and show that, if the variables of the effective theory are chosen suitably, the known large N_c counting rules of QCD can unambiguously be translated into corresponding counting rules for the effective coupling constants. As an application, we demonstrate that the Kaplan-Manohar transformation is in conflict with these rules and is suppressed to all orders in 1/N_c. The anomalous dimension of the axial singlet current generates an additional complication: The corresponding external field undergoes nonmultiplicative renormalization. As a consequence, the Wess-Zumino-Witten term, which accounts for the U(3)_R x U(3)_L anomalies in the framework of the effective theory, contains pieces that depend on the running scale of QCD. The effect only shows up at nonleading order in 1/N_c, but requires specific unnatural parity contributions in the...

  13. Quenching in coupled adiabatic coils

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C.

    1985-03-01

    The prediction of the effects of a quench on stress and temperature is an important aspect of the design of superconducting magnets. Of particular interest, and the exclusive topic of this study, is the prediction of the effects of quenching in coupled adiabatic coils, such as the multi-section windings of a high field NMR spectrometer magnet. The predictive methods used here are based on the measurement of the time of propagation of quench between turns. From this measurement an approximate algorithum for the propagation time is used in a code which solves the linear differential equations for the coil currents and calculates the movement of normal zone boundaries and hence the associated winding resistance.

  14. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  15. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  16. Quarkyonic Chiral Spirals

    CERN Document Server

    Kojo, Toru; McLerran, Larry; Pisarski, Robert D

    2009-01-01

    We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...

  17. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    Science.gov (United States)

    Sharma, Sayantan; Dick, Viktor; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-12-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.

  18. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-01-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...

  19. The effects of perturbations on the flammability limits

    Science.gov (United States)

    T'Ien, J. S.

    1973-01-01

    Based on the mechanism of heat losses, the known effects of external disturbances (pressure waves or turbulences) on the flammability limits are explained. This includes the sensitivity of near-limit flames to perturbations and the flame quenching by disturbances. The significance of the unstable solution as the criterion for dynamic extinction is stressed.

  20. Stability of the Spin Glass Phase under Perturbations

    CERN Document Server

    Contucci, Pierluigi; Giberti, Claudio

    2011-01-01

    We introduce and prove a new stability property of the quenched equilibrium state for the spin glass phase and show that it implies the whole set of Ghirlanda-Guerra identities. The new stability deals with perturbations which reproduces both thermal and disorder fluctuations, thus generalizing the standard stochastic stability of disordered systems.

  1. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio

  2. Chiral fermions on the lattice

    CERN Document Server

    Jahn, O; Jahn, Oliver; Pawlowski, Jan M.

    2002-01-01

    We discuss topological obstructions to putting chiral fermions on an even dimensional lattice. The setting includes Ginsparg-Wilson fermions, but is more general. We prove a theorem which relates the total chirality to the difference of generalised winding numbers of chiral projection operators. For an odd number of Weyl fermions this implies that particles and anti-particles live in topologically different spaces.

  3. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  4. Doped Chiral Polymer Metamaterials

    Science.gov (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  5. [Chirality and drugs].

    Science.gov (United States)

    Testa, B; Reist, M; Carrupt, P A

    2000-07-01

    The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.

  6. Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady; Grinstein, Benjamin; Zupan, Jure

    2016-01-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  7. Chiral lagrangian approach to exchange vector currents in nuclei

    CERN Document Server

    Park, T S; Rho, M; Park, Tae Sun; Min, Dong Pil; Rho, Mannque

    1995-01-01

    Exchange vector currents are calculated up to one-loop order (corresponding to next-to-next-to-leading order) in chiral perturbation theory. As an illustration of the power of the approach, we apply the formalism to the classic nuclear process n+p\\rightarrow d +\\gamma at thermal energy. The exchange current correction comes out to be (4.5 \\pm 0.3) \\% in amplitude giving a predicted cross section \\sigma= (334\\pm 3)\\ {\\mbox mb} in excellent agreement with the experimental value (334.2\\pm 0.5)\\ {\\mbox mb}. Together with the axial charge transitions computed previously, this result provides a strong support for the power of chiral Lagrangians in nuclear physics. As a by-product of our results, we suggest an open problem in the application of chiral Lagrangian approach to nuclear processes that has to do with giving a physical meaning to the short-range correlations that play an important role in nuclei.

  8. Chiral effective theory of dark matter direct detection

    Science.gov (United States)

    Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure

    2017-02-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of Script O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  9. One loop divergences and anomalies from chiral superfields in supergravity

    CERN Document Server

    Butter, Daniel

    2009-01-01

    We apply the heat kernel method (using Avramidi's non-recursive technique) to the study of the effective action of chiral matter in a complex representation of an arbitrary gauge sector coupled to background U(1) supergravity. This generalizes previous methods, which restricted to 1) real representations of the gauge sector in traditional Poincar\\'e supergravity or 2) vanishing supergravity background. In this new scheme, we identify a classical ambiguity in these theories which mixes the supergravity U(1) with the gauge U(1). At the quantum level, this ambiguity is maintained since the effective action changes only by a local counterterm as one shifts a U(1) factor between the supergravity and gauge sectors. An immediate application of our formalism is the calculation of the one-loop gauge, Kahler, and reparametrization anomalies of chiral matter coupled to minimal supergravity from purely chiral loops. Our approach gives an anomaly whose covariant part is both manifestly supersymmetric and non-perturbative ...

  10. Photo- and pion electroproduction in chiral effective field theory; Photo- und Elektropionproduktion in chiraler effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Hilt, Marius

    2011-12-13

    This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.

  11. Bioanalytical Applications of Fluorenscence Quenching.

    Science.gov (United States)

    1986-02-10

    interaction of different cyclodextrin systems with the polynuclear aromatic compound, pyrene.(7 ) There are other cases where the Stern-Volmer plot deviates... encapsulated in lecithin liposomes. In this manner the fluorescence is self-quenched. When the liposomes are disrupted, the dye is released and

  12. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  13. How to quench a galaxy

    Science.gov (United States)

    Pontzen, Andrew; Tremmel, Michael; Roth, Nina; Peiris, Hiranya V.; Saintonge, Amélie; Volonteri, Marta; Quinn, Tom; Governato, Fabio

    2017-02-01

    We show how the interplay between active galactic nuclei (AGNs) and merger history determines whether a galaxy quenches star formation (SF) at high redshift. We first simulate, in a full cosmological context, a galaxy of total dynamical mass Mvir = 1012 M⊙ at z = 2. Then we systematically alter the accretion history of the galaxy by minimally changing the linear overdensity in the initial conditions. This `genetic modification' approach allows the generation of three sets of Λ CDM initial conditions leading to maximum merger ratios of 1:10, 1:5 and 2:3, respectively. The changes leave the final halo mass, large-scale structure and local environment unchanged, providing a controlled numerical experiment. Interaction between the AGN physics and mergers in the three cases leads, respectively, to a star-forming, temporarily quenched and permanently quenched galaxy. However, the differences do not primarily lie in the black hole accretion rates, but in the kinetic effects of the merger: the galaxy is resilient against AGN feedback unless its gaseous disc is first disrupted. Typical accretion rates are comparable in the three cases, falling below 0.1 M⊙ yr-1, equivalent to around 2 per cent of the Eddington rate or 10-3 times the pre-quenching star formation rate, in agreement with observations. This low level of black hole accretion can be sustained even when there is insufficient dense cold gas for SF. Conversely, supernova feedback is too distributed to generate outflows in high-mass systems, and cannot maintain quenching over periods longer than the halo gas cooling time.

  14. A numerical investigation of orientifold planar equivalence for quenched mesons

    CERN Document Server

    Lucini, Biagio; Patella, Agostino; Rago, Antonio

    2010-01-01

    We measure on the lattice the quenched pseudoscalar and vector meson masses at a fixed value of the lattice spacing for SU(N) gauge theory with fermions in the adjoint, in the symmetric and in the antisymmetric representations of the gauge group. Simulations are performed for N=3,4,6 in all those representations, with the addition of N=2 for the adjoint representation. We illustrate a strategy for separating the even from the odd-power contributions in 1/N in the masses. Using this technique, we extrapolate the vector mass to the large-N limit in the chiral region and show that at N = infty this mass is the same within errors in all the three representations, as predicted by orientifold planar equivalence. Possible implications of our investigation for studying orientifold planar equivalence in the dynamical case are discussed.

  15. Hydrodynamics of Sakai-Sugimoto model in the quenched approximation

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada) and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9 (Canada)]. E-mail: abuchel@uwo.ca

    2006-09-07

    We study transport properties of the finite temperature Sakai-Sugimoto model. The model represents a holographic dual to (4+1)-dimensional supersymmetric SU(N{sub c}) gauge theory compactified on a circle with anti-periodic boundary conditions for fermions, coupled to N{sub f} left-handed quarks and N{sub f} right-handed quarks localized at different points on the compact circle. We analytically compute the speed of sound and the sound wave attenuation in the quenched approximation. Since confinement/deconfinement (and the chiral symmetry restoration) phase transitions are first order in this model, we do not see any signature of these phase transitions in the transport properties.

  16. Hydrodynamics of Sakai-Sugimoto model in the quenched approximation

    CERN Document Server

    Benincasa, P; Benincasa, Paolo; Buchel, Alex

    2006-01-01

    We study transport properties of the finite temperature Sakai-Sugimoto model. The model represents a holographic dual to 4+1 dimensional supersymmetric SU(N_c) gauge theory compactified on a circle with anti-periodic boundary conditions for fermions, coupled to N_f left-handed quarks and N_f right-handed quarks localized at different points on the compact circle. We analytically compute the speed of sound and the sound wave attenuation in the quenched approximation. Since confinement/deconfinement (and the chiral symmetry restoration) phase transitions are first order in this model, we do not see any signature of these phase transitions in the transport properties.

  17. Chiral symmetry and the Yang--Mills gradient flow

    CERN Document Server

    Lüscher, Martin

    2013-01-01

    In the last few years, the Yang--Mills gradient flow was shown to be an attractive tool for non-perturbative studies of non-Abelian gauge theories. Here a simple extension of the flow to the quark fields in QCD is considered. As in the case of the pure-gauge gradient flow, the renormalizability of correlation functions involving local fields at positive flow times can be established using a representation through a local field theory in 4+1 dimensions. Applications of the extended flow in lattice QCD include non-perturbative renormalization and O(a) improvement as well as accurate calculations of the chiral condensate and of the pseudo-scalar decay constant in the chiral limit.

  18. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  19. Resonant quenching of Rydberg atomic states by highly polar molecules

    Science.gov (United States)

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S.

    2016-06-01

    The results of theoretical studies of the resonant quenching and ion-pair formation processes induced by collisions of Rydberg atoms with highly polar molecules possessing small electron affinities are reported. We elaborate an approach for describing collisional dynamics of both processes and demonstrate the predominant role of resonant quenching channel of reaction for the destruction of Rydberg states by electron-attaching molecules. The approach is based on the solution of the coupled differential equations for the transition amplitudes between the ionic and Rydberg covalent terms of a quasimolecule formed during a collision of particles. It takes into account the possibility of the dipole-bound anion decay in the Coulomb field of the positive ionic core and generalizes previous models of charge-transfer processes involving Rydberg atoms to the cases, when the multistate Landau-Zener approaches become inapplicable. Our calculations for {{Rb}}({nl}) atom perturbed by {{{C}}}2{{{H}}}4{{SO}}3, {{CH}}2{CHCN}, {{CH}}3{{NO}}2, {{CH}}3{CN}, {{{C}}}3{{{H}}}2{{{O}}}3, and {{{C}}}3{{{H}}}4{{{O}}}3 molecules show that the curves representing the dependence of the resonant quenching cross sections on the principal quantum number n are bell-shaped with the positions of maxima being shifted towards lower values of n and the peak values, {σ }{max}({{q})}, several times higher than those for the ion-pair formation, {σ }{max}({{i})}. We obtain a simple power relation between the energy of electron affinity of a molecule and the position of maximum in n-dependence of the resonant quenching cross section. It can be used as an additional means for determining small binding energies of dipole-bound anions from the experimental data on resonant quenching of Rydberg states by highly polar molecules.

  20. Replica symmetry breaking for anisotropic magnets with quenched disorder

    Science.gov (United States)

    Kogan, E.; Kaveh, M.

    2017-01-01

    We study critical behaviour of a magnet with cubic anisotropy and quenched scalar disorder which is taken into account by replica method. We derive to first order in ε approximation the renormalization group equations taking into account possible replica symmetry breaking. We study the stability of the replica symmetric fixed points with respect to perturbations without (in general case) replica symmetry. However, we find that if a fixed point is stable with respect to replica symmetric deviations, it is also stable with respect to deviations without replica symmetry.

  1. On chiral magnetic effect in Weyl superfluid 3He-A

    CERN Document Server

    Volovik, G E

    2016-01-01

    In the theory of the chiral anomaly in relativistic quantum field theories (RQFT) some results depend on regularization scheme at ultraviolet. In the chiral superfluid 3He-A, which contains two Weyl points and also experiences the effects of chiral anomaly, the "trans-Planckian" physics is known and the results can be obtained without regularization. We discuss this on example of the chiral magnetic effect (CME), which has been observed in 3He-A in 90's. There are two forms of the contribution of the CME to the Chern-Simons term in free energy, perturbative and non-perturbative. The perturbative term comes from the fermions living in the vicinity of the Weyl point, where the fermions are "relativistic" and obey the Weyl equation. The non-perturbative term originates from the deep vacuum, being determined by the separation of the two Weyl points. Both terms are obtained using the Adler-Bell-Jackiw equation for chiral anomaly, and both agree with the results of the microscopic calculations in the "trans-Plancki...

  2. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  3. Simplicial chiral models

    CERN Document Server

    Rossi, P; Rossi, Paolo; Tan, Chung I

    1995-01-01

    Principal chiral models on a d-1 dimensional simplex are introduced and studied analytically in the large N limit. The d = 0 , 2, 4 and \\infty models are explicitly solved. Relationship with standard lattice models and with few-matrix systems in the double scaling limit are discussed.

  4. Gauge-fixing approach to lattice chiral gauge theories

    CERN Document Server

    Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten F.L.; Shamir, Yigal

    1998-01-01

    We review the status of our recent work on the gauge-fixing approach to lattice chiral gauge theories. New numerical results in the reduced version of a model with a U(1) gauge symmetry are presented which strongly indicate that the factorization of the correlation functions of the left-handed neutral and right-handed charged fermion fields, which we established before in perturbation theory, holds also nonperturbatively.

  5. Chiral magnetic effect without chirality source in asymmetric Weyl semimetals

    CERN Document Server

    Kharzeev, Dmitri; Meyer, Rene

    2016-01-01

    We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...

  6. Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD

    CERN Document Server

    Cherman, Aleksey; Unsal, Mithat

    2016-01-01

    We show that there exists a special compactification of QCD on $\\mathbb{R}^3 \\times S^1$ in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation $m_{\\pi}^2 f_{\\pi}^2 = m_q \\langle \\bar{q} q \\rangle$. Abelian duality, monopole operators, and flavor-twisted boundary conditions, or a background flavor holonomy, play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole-instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons". We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large $S^1$, and yield strong support for adiabatic continuity between the small-$S^1$ and larg...

  7. Chiral EFT based nuclear forces: Achievements and challenges

    CERN Document Server

    Machleidt, R

    2016-01-01

    During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems---with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in {\\it ab initio} calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system includin...

  8. Quenching parameter in a holographic thermal QCD

    CERN Document Server

    Patra, Binoy Krishna

    2016-01-01

    We have calculated the quenching parameter, $\\hat{q}$ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS blackhole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover $\\hat{q}$ is usually defined in the literature from the Glauber-model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of $\\hat{q}$: $\\hat{q} L^- = 1/L^2$, where $L$ is the s...

  9. The reaction pi N-> pi pi N in chiral effective field theory with explicit Delta(1232)

    CERN Document Server

    Siemens, D; Epelbaum, E; Krebs, H; Meißner, Ulf-G

    2014-01-01

    The reaction pi N -> pi pi N is studied at tree level up to next-to-leading order in the framework of manifestly covariant baryon chiral perturbation theory with explicit Delta(1232) degrees of freedom. Using total cross section data to determine the relevant low-energy constants, predictions are made for various differential as well as total cross sections at higher energies. A detailed comparison of results based on the heavy-baryon and relativistic formulations of chiral perturbation theory with and without explicit Delta degrees of freedom is given.

  10. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Idealized data are derived for the tensile strength of quenched and tempered prestressing steel and of quenched and self-tempered reinforcing bars for fire safety design. 0.2% stresses are derived as a function of the maximum temperature and in addition, 2.0% stresses are provided. A strain of 2.......0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire....... The COLD condition is relevant for analyses of residual load bearing capacity of a structure after a fire exposure. It is also relevant for analyses of concrete structures exposed to fully developed fire courses. The reason is that compression zones of concrete are always the weakest in the cooling phase...

  11. Quench cooling under reduced gravity

    CERN Document Server

    Chatain, D; Nikolayev, V S; Beysens, D

    2013-01-01

    We report the quench cooling experiments performed with liquid O2 under different levels of gravity simulated with the magnetic gravity compensation. A copper disk is quenched from 270K to 90K. It is found that the cooling time in microgravity is very long in comparison with any other gravity level. This phenomenon is explained by the isolation effect of the gas surrounding the disk. The liquid subcooling is shown to drastically improuve the heat exchange thus reducing the cooling time (about 20 times). The effect of subcooling on the heat transfer is analyzed at different gravity levels. It is shown that such type of experiments cannot be used for the analysis of the critical heat flux (CHF) of the boiling crisis. The minimum heat flux (MHF) of boiling is analyzed instead.

  12. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Idealized data are derived for the tensile strength of quenched and tempered prestressing steel and of quenched and self-tempered reinforcing bars for fire safety design. 0.2% stresses are derived as a function of the maximum temperature and in addition, 2.0% stresses are provided. A strain of 2.......0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire....... The COLD condition is relevant for analyses of residual load bearing capacity of a structure after a fire exposure. It is also relevant for analyses of concrete structures exposed to fully developed fire courses. The reason is that compression zones of concrete are always the weakest in the cooling phase...

  13. Brane World Cosmological Perturbations

    CERN Document Server

    Casali, A G; Wang, B; Casali, Adenauer G.; Abdalla, Elcio; Wang, Bin

    2004-01-01

    We consider a brane world and its gravitational linear perturbations. We present a general solution of the perturbations in the bulk and find the complete perturbed junction conditions for generic brane dynamics. We also prove that (spin 2) gravitational waves in the great majority of cases can only arise in connection with a non-vanishing anisotropic stress. This has far reaching consequences for inflation in the brane world. Moreover, contrary to the case of the radion, perturbations are stable.

  14. TASK 2: QUENCH ZONE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  15. Jet-quenching and correlations

    Indian Academy of Sciences (India)

    Fuqiang Wang

    2015-05-01

    This article reviews recent advances in our understanding of the experimental aspects of jet-quenching and correlations in relativistic heavy-ion collisions at RHIC and LHC. Emphasis is put on correlation measurements, namely jet-like correlations with anisotropic flow subtraction in heavy-ion collisions and long-range pseudorapidity correlations in small systems. Future path on correlation studies is envisioned which may elucidate jet–medium interactions and the properties of the hot dense medium in QCD.

  16. Chiral dynamics of a1(1260) → 3π

    Science.gov (United States)

    Tegen, R.; Greiner, W.

    2003-06-01

    We calculate the sequential decays a1 rightarrow pisigma rightarrow 3pi and a1 rightarrow pirho rightarrow 3pi using chiral SU(2) otimes SU(2) current commutation relations. Proper vertices a1pisigma, sigmapipi, a1pirho, rhopipi are derived from Ward identities and yield energy-dependent decay widths Gammarhorightarrowpipi and Gammasigmarightarrowpipi necessary for the total Gammaa1rightarrow3pi decay width. Both sequential decays (via pisigma and pirho) are necessary to reproduce Gammatota1. We find evidence for a substantial quenching of the sigma rightarrow pipi decay width in a1 rightarrow pisigma rightarrow 3pi.

  17. The LHC quench protection system

    CERN Multimedia

    2009-01-01

    The new quench protection system (QPS) has the crucial roles of providing an early warning for any part of the superconducting coils and busbars that develop high resistance, as well as triggering the switch-off of the machine. Over 2000 new detectors will be installed around the LHC to make sure every busbar segment between magnets is monitored and protected. One of the major consolidation activities for the LHC is the addition of two new detectors to the quench protection system. A magnet quench occurs when part of the superconducting cable becomes normally-conducting. When the protection system detects an increased resistance the huge amount of energy stored in the magnet chains is safely extracted and ‘dumped’ into specially designed resistors. In the case of the main dipole chain, the stored energy in a single LHC sector is roughly the same as the kinetic energy of a passenger jet at cruising speed. The first new detector is designed to monitor the superconducting...

  18. How to quench a galaxy

    CERN Document Server

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V; Saintonge, Amélie; Volonteri, Marta; Quinn, Tom; Governato, Fabio

    2016-01-01

    We show how the interplay between active galactic nuclei (AGN) and merger history determines whether a galaxy quenches star formation at high redshift. We first simulate, in a full cosmological context, a galaxy of total dynamical mass $10^{12}\\,M_{\\odot}$ at $z=2$. Then we systematically alter the accretion history of the galaxy by minimally changing the linear overdensity in the initial conditions. This "genetic modification" approach allows the generation of three sets of $\\Lambda$CDM initial conditions leading to maximum merger ratios of 1:10, 1:5 and 2:3 respectively. The changes leave the final halo mass, large scale structure and local environment unchanged, providing a controlled numerical experiment. Interaction between the AGN physics and mergers in the three cases lead respectively to a star-forming, temporarily-quenched and permanently-quenched galaxy. However the differences do not primarily lie in the black hole accretion rates, but in the kinetic effects of the merger: the galaxy is resilient a...

  19. Quenched QCD with O(a) improvement; 1, the spectrum of light hadrons

    CERN Document Server

    Bowler, K C; Kenway, R D; Richards, D G; Rowland, P A; Ryan, S M; Simma, H; Michael, C; Shanahan, H P; Wittig, H

    2000-01-01

    We present a comprehensive study of the masses of pseudoscalar and vector mesons, as well as octet and decuplet baryons computed in O(a) improved quenched lattice QCD. Results have been obtained using the non-perturbative definition of the improvement coefficient c_sw, and also its estimate in tadpole improved perturbation theory. We investigate effects of improvement on the incidence of exceptional configurations, mass splittings and the parameter J. By combining the results obtained using non-perturbative and tadpole improvement in a simultaneous continuum extrapolation we can compare our spectral data to experiment. We confirm earlier findings by the CP-PACS Collaboration that the quenched light hadron spectrum agrees with experiment at the 10% level.

  20. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating rperturbative corrections to the Kaehler potential. We illustrate our general claims in an explicit example. We consider a K3-fibred Calabi-Yau with four Kaehler moduli, that is an hypersurface in a toric ambient space and admits a simple F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes. (orig.)

  1. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating rperturbative corrections to the Kaehler potential. We illustrate our general claims in an explicit example. We consider a K3-fibred Calabi-Yau with four Kaehler moduli, that is an hypersurface in a toric ambient space and admits a simple F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes. (orig.)

  2. Quantum quench and scaling of entanglement entropy

    Science.gov (United States)

    Caputa, Paweł; Das, Sumit R.; Nozaki, Masahiro; Tomiya, Akio

    2017-09-01

    Global quantum quench with a finite quench rate which crosses critical points is known to lead to universal scaling of correlation functions as functions of the quench rate. In this work, we explore scaling properties of the entanglement entropy of a subsystem in a harmonic chain during a mass quench which asymptotes to finite constant values at early and late times and for which the dynamics is exactly solvable. When the initial state is the ground state, we find that for large enough subsystem sizes the entanglement entropy becomes independent of size. This is consistent with Kibble-Zurek scaling for slow quenches, and with recently discussed ;fast quench scaling; for quenches fast compared to physical scales, but slow compared to UV cutoff scales.

  3. Quenching star formation in cluster galaxies

    CERN Document Server

    Taranu, Dan S; Balogh, Michael L; Smith, Russell J; Power, Chris; Krane, Brad

    2012-01-01

    In order to understand the processes that quench star formation within rich clusters, we construct a library of subhalo orbits drawn from lambdaCDM cosmological N-body simulations of four rich clusters. The orbits are combined with models of star formation followed by quenching in the cluster environment to predict colours and spectroscopic line indices of satellite galaxies. Simple models with only halo mass-dependent quenching and without environmental (i.e. cluster-dependent) quenching fail to reproduce the observed cluster-centric colour and absorption linestrength gradients. Models in which star formation is instantly quenched at the virial radius also fail to match the observations. Better matches to the data are achieved by more complicated bulge-disc models in which the bulge stellar populations depend only on the galaxy subhalo mass while the disc quenching depends on the cluster environment. In the most successful models quenching begins at pericentre, operating on an exponential timescale of 2 -- 3...

  4. Non-perturbative Euler-Heisenberg Lagrangian and paraelectricity in magnetized massless QED

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Efrain J. [Department of Physics, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Incera, Vivian de la, E-mail: vincera@utep.edu [Department of Physics, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Sanchez, Angel [Department of Physics, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States)

    2012-11-21

    In this paper we calculate the non-perturbative Euler-Heisenberg Lagrangian for massless QED in a strong magnetic field H, where the breaking of the chiral symmetry is dynamically catalyzed by the external magnetic field via the formation of an electro-positron condensate. This chiral condensate leads to the generation of dynamical parameters that have to be found as solutions of non-perturbative Schwinger-Dyson equations. Since the electron-positron pairing mechanism leading to the breaking of the chiral symmetry is mainly dominated by the contributions from the infrared region of momenta much smaller than {radical}(eH), the magnetic field introduces a dynamical ultraviolet cutoff in the theory that also enters in the non-perturbative Euler-Heisenberg action. Using this action, we show that the system exhibits a significant paraelectricity in the direction parallel to the magnetic field. The non-perturbative nature of this effect is reflected in the non-analytic dependence of the obtained electric susceptibility on the fine-structure constant. The strong paraelectricity in the field direction is linked to the orientation of the electric dipole moments of the pairs that form the chiral condensate. The large electric susceptibility can be used to detect the realization of the magnetic catalysis of chiral symmetry breaking in physical systems.

  5. Soldering Chiralities; 2, Non-Abelian Case

    CERN Document Server

    Wotzasek, C

    1996-01-01

    We study the non-abelian extension of the soldering process of two chiral WZW models of opposite chiralities, resulting in a (non-chiral) WZW model living in a 2D space-time with non trivial Riemanian curvature.

  6. Electronic interactions of i, i + 1 dithioamides: increased fluorescence quenching and evidence for n-to-π* interactions.

    Science.gov (United States)

    Huang, Yun; Ferrie, John J; Chen, Xing; Zhang, Yitao; Szantai-Kis, D Miklos; Chenoweth, David M; Petersson, E James

    2016-06-14

    Thioamide residues can be effective, minimally-perturbing fluorescence quenching probes for studying protein folding and proteolysis. In order to increase the level of quenching, we have here explored the use of adjacent dithioamides. We have found that they are more effective fluorescence quenchers, as expected, but we have also observed unexpected changes in the thioamide absorption spectra that may arise from n-to-π* interactions of the thiocarbonyls. We have made use of the increased quenching to improve the fluorescence turn-on of thioamide protease sensors.

  7. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  8. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  9. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  10. Free-standing chiral plasmonics

    Science.gov (United States)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  11. Jet quenching via jet collimation

    CERN Document Server

    Casalderrey-Solana, J; Wiedemann, U

    2011-01-01

    The strong modifications of dijet properties in heavy ion collisions measured by ATLAS and CMS provide important constraints on the dynamical mechanisms underlying jet quenching. In this work, we show that the transport of soft gluons away from the jet cone - jet collimation - can account for the observed dijet asymmetry with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude. Further, we show that the energy loss attained through this mechanism results in a very mild distortion of the azimuthal angle dijet distribution.

  12. Jet Quenching via Jet Collimation

    CERN Document Server

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2011-01-01

    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude.

  13. Quenching of the star formation activity in cluster galaxies

    Science.gov (United States)

    Boselli, A.; Roehlly, Y.; Fossati, M.; Buat, V.; Boissier, S.; Boquien, M.; Burgarella, D.; Ciesla, L.; Gavazzi, G.; Serra, P.

    2016-11-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the spectral energy distribution (SED) of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SEDs of the target galaxies were fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies was parametrised using a specific star formation history with two free parameters, the quenching age QA and the quenching factor QF. These two parameters are crucial for the identification of the quenching mechanism, which acts on long timescales when starvation processes are at work, but is rapid and efficient when ram pressure occurs. To be sensitive to an abrupt and recent variation of the star formation activity, we combined twenty photometric bands in the UV to far-infrared in a new way with three age-sensitive Balmer line absorption indices extracted from available medium-resolution (R 1000) integrated spectroscopy and with Hα narrow-band imaging data. The use of a truncated star formation history significantly increases the quality of the fit in HI-deficient galaxies of the sample, that is to say, in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical quenching age of the perturbed late-type galaxies is QA ≲ 300 Myr whenever the activity of star formation is reduced by 50% 80%, while that of the quiescent early-type objects is QA ≃ 1-3 Gyr. The fraction of late-type galaxies with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of 5 from the inner half virial radius of the Virgo cluster (R/Rvir 4). The efficient quenching of the star formation activity observed in Virgo suggests that the dominant stripping process is ram pressure. We discuss the implication of this result in

  14. Development of Amylose- and β-Cyclodextrin-Based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

    Directory of Open Access Journals (Sweden)

    Tomoyuki Ikai

    2016-11-01

    Full Text Available Phenylcarbamate derivatives of amylose and β-cyclodextrin show excellent chiral recognition when used as chiral stationary phases (CSPs for high-performance liquid chromatography. To open up new possibilities of carbohydrate-based materials, we developed chiral fluorescent sensors based on amylose and β-cyclodextrin (Am-1b and CyD-1b, respectively by attaching fluorescent π-conjugated units on their side chains. Their recognition abilities toward chiral analytes containing a nitrophenyl unit were evaluated by measuring the enantioselective fluorescence quenching behavior. Both sensors showed the same degree of enantioselective fluorescence response for various aromatic nitro compounds. However, in some cases, their enantioselectivities were different depending on the analytes. The difference in the chiral recognition abilities between Am-1b and CyD-1b seems to be based on the structural difference of their inherent backbones, that is, the one-handed helical structure and cyclic structure, respectively. The study on the resolution ability of the Am-1b-based CSP revealed that the terthienyl-based pendant of Am-1b provides not only a fluorescent functionality but also a different chiral recognition site from that of amylose tris(phenylcarbamate.

  15. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  16. Perturbative tests of non-perturbative counting

    Science.gov (United States)

    Dabholkar, Atish; Gomes, João

    2010-03-01

    We observe that a class of quarter-BPS dyons in mathcal{N} = 4 theories with charge vector ( Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd( Q∧ P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.

  17. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  18. Vacuum polarization and chiral lattice fermions

    Science.gov (United States)

    Randjbar-Daemi, S.; Strathdee, J.

    1996-02-01

    The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge-invariant regularization of the fermion vacuum amplitude. Its low-energy-long-wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters.

  19. Vacuum polarization and chiral lattice fermions

    CERN Document Server

    Strathdee, J A

    1995-01-01

    The vacuum polarization due to chiral fermions on a 4--dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy -- long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan--Symanzik RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson--type mass parameters.

  20. Holography, chiral Lagrangian and form factor relations

    CERN Document Server

    Zuo, Fen

    2013-01-01

    We perform a detailed study of mesonic properties in a class of holographic models of QCD, which is described by the Yang-Mills plus Chern-Simons action. By decomposing the 5 dimensional gauge field into resonances and integrating out the massive ones, we reproduce the Chiral Perturbative Theory Lagrangian up to ${\\cal O}(p^6)$ and obtain all the relevant low energy constants (LECs). The numerical predictions of the LECs show minor model dependence, and agree reasonably with the determinations from other approaches. Interestingly, various model-independent relations appear among them. Some of these relations are found to be the large-distance limits of universal relations between form factors of the anomalous and even-parity sectors of QCD.

  1. Chiral dynamics of deeply bound pionic atoms.

    Science.gov (United States)

    Kolomeitsev, E E; Kaiser, N; Weise, W

    2003-03-01

    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic 205Pb and 207Pb are well reproduced without need for a notorious "missing repulsion" in the pion-nuclear s-wave optical potential. The connection with the in-medium change of the pion decay constant is clarified.

  2. The falsification of Chiral Nuclear Forces

    CERN Document Server

    Arriola, E Ruiz; Perez, R Navarro

    2016-01-01

    Predictive power in theoretical nuclear physics has been a major concern in the study of nuclear structure and reactions. The Effective Field Theory (EFT) based on chiral expansions provides a model independent hierarchy for many body forces at long distances but their predictive power may be undermined by the regularization scheme de- pendence induced by the counterterms and encoding the short distances dynamics which seem to dominate the uncertainties. We analyze several examples including zero energy NN scattering or perturbative counterterm-free peripheral scattering where one would ex- pect these methods to work best and unveil relevant systematic discrepancies when a fair comparison to the Granada-2013 NN-database and partial wave analysis is undertaken.

  3. Optical activity of chirally distorted nanocrystals

    Science.gov (United States)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  4. Chiral baryon in the coherent pair approximation

    CERN Document Server

    Aly, T S T

    1999-01-01

    We revisit the work of K. Goeke, M. Harvey, F. Grümmer, and J. N. Urbano (Phys. Rev. {\\bf D37}, 754 (1988)) who considered a chiral model for the nucleon based on the linear sigma model with scalar-isoscalar scalar-isovector mesons coupled to quarks and solved using the coherent-pair approximation. In this way the quantum pion field can be treated in a non-perturbative fashion. In this work we review this model and the coherent pair approximation correcting several errors in the earlier work. We minimize the expectation value of the chiral hamiltonian in the ansatz coherent-pair ground state configuration and solve the resulting equations for nucleon quantum numbers. We calculate the canonical set of nucleon observables and compare with the Hedgehog model and experiment. Using the corrected equations yield slightly different values for nucleon observables but do not correct the large virial deviation in the $\\pi$-nucleon coupling. Our results therefore do not significantly alter the conclusions of Goeke, et ...

  5. Chiral methods at the electroweak scale

    CERN Document Server

    Cata, Oscar

    2015-01-01

    I review the main features of the effective field theory (EFT) behind scenarios of dynamical electroweak symmetry breaking, placing particular emphasis on the systematics and the parallels that can be drawn with Chiral Perturbation Theory. The notion of chiral dimensions will be introduced and shown to be the right tool to describe nonlinear expansions. I will also discuss why such an EFT is of interest in phenomenological studies at the LHC. The most important aspect is that the EFT is engineered to recover the Standard Model in a particular limit, and therefore provides a general framework to test the Higgs hypothesis. Additionally, I will argue that the $\\kappa$ formalism used currently by experimental collaborations to study Higgs couplings at the LHC can actually be embedded into this EFT. This not only gives the $\\kappa$ parametrization a solid QFT foundation but also shows the way to improve it systematically, and in particular how to upgrade analyses on Higgs processes from the level of rates to the l...

  6. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    Science.gov (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. © 2015 Wiley Periodicals, Inc.

  7. Generalized Supersymmetric Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    B. G(o)n(ǖ)l

    2004-01-01

    @@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.

  8. Density matrix perturbation theory.

    Science.gov (United States)

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  9. Photoproduction Enhancement from Non Equilibrium Disoriented Chiral Condensates

    CERN Document Server

    Boyanovsky, D; Holman, R; Kumar, S P

    1997-01-01

    We study photoproduction during the non-equilibrium stages of the formation of chiral condensates within the ``quench'' scenario of the chiral phase transition. The dynamics is modeled with a gauged linear sigma model. A novel quantum kinetic approach to the description of photoproduction far off equilibrium is developed. We find that non-equilibrium spinodal instabilities of long wavelength pion fluctuations are responsible for an enhanced photoproduction rate for energies $\\leq 80$ MeV at order $\\alpha$. These non-equilibrium effects lead to a larger contribution than the typical processes in the medium, including that of the anomalous neutral pion decay evolution of the dynamics throughout the phase transition, which in this scenario occurs on a time scale of about $2.5-3$ fm/c and integrate the photon yield through its evolution. The spectrum of photons produced throughout the phase transition is a non- equilibrium one. For thermal initial conditions at the time of the quench it interpolates between a the...

  10. Quenching parameter in a holographic thermal QCD

    Science.gov (United States)

    Patra, Binoy Krishna; Arya, Bhaskar

    2017-01-01

    We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.

  11. Two-flavor lattice QCD simulation in the epsilon-regime with exact chiral symmetry

    CERN Document Server

    Fukaya, H; Chiu, T W; Hashimoto, S; Kaneko, T; Matsufuru, H; Noaki, J; Ogawa, K; Okamoto, M; Onogi, T; Yamada, N

    2007-01-01

    We perform lattice simulations of two-flavor QCD using Neuberger's overlap fermion, with which the exact chiral symmetry is realized at finite lattice spacings. The epsilon-regime is reached by decreasing the light quark mass down to 3 MeV on a 16^3 32 lattice with a lattice spacing \\sim 0.11 fm. We find a good agreement of the low-lying Dirac eigenvalue spectrum with the analytical predictions of the chiral random matrix theory, which reduces to the chiral perturbation theory in the epsilon-regime. The chiral condensate is extracted as \\Sigma(2 GeV) = (251(7)(11) MeV)^3, where the errors are statistical and an estimate of the higher order effects in the epsilon-expansion.

  12. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeremy W., E-mail: jwholt.phys@gmail.com [Department of Physics, University of Washington, Seattle, 98195 (United States); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany); ECT*, Villa Tambosi, I-38123 Villazzano (Italy)

    2016-03-21

    Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: “it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme”. Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  13. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    CERN Document Server

    Holt, Jeremy W; Weise, Wolfram

    2014-01-01

    Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  14. Neural Variability Quenching Predicts Individual Perceptual Abilities.

    Science.gov (United States)

    Arazi, Ayelet; Censor, Nitzan; Dinstein, Ilan

    2017-01-04

    Neural activity during repeated presentations of a sensory stimulus exhibits considerable trial-by-trial variability. Previous studies have reported that trial-by-trial neural variability is reduced (quenched) by the presentation of a stimulus. However, the functional significance and behavioral relevance of variability quenching and the potential physiological mechanisms that may drive it have been studied only rarely. Here, we recorded neural activity with EEG as subjects performed a two-interval forced-choice contrast discrimination task. Trial-by-trial neural variability was quenched by ∼40% after the presentation of the stimulus relative to the variability apparent before stimulus presentation, yet there were large differences in the magnitude of variability quenching across subjects. Individual magnitudes of quenching predicted individual discrimination capabilities such that subjects who exhibited larger quenching had smaller contrast discrimination thresholds and steeper psychometric function slopes. Furthermore, the magnitude of variability quenching was strongly correlated with a reduction in broadband EEG power after stimulus presentation. Our results suggest that neural variability quenching is achieved by reducing the amplitude of broadband neural oscillations after sensory input, which yields relatively more reproducible cortical activity across trials and enables superior perceptual abilities in individuals who quench more.

  15. Spectral properties of quarks above $\\T_{c}$ in quenched lattice QCD

    CERN Document Server

    Karsch, Frithjof

    2007-01-01

    We analyze the quark spectral function above the critical temperature for deconfinement in quenched lattice QCD using clover improved Wilson fermions in Landau gauge. We show that the temporal quark correlator is well reproduced by a two-pole approximation for the spectral function and analyze the bare quark mass dependence of both poles as well as their residues. In the chiral limit we find that the quark spectral function has two collective modes which correspond to the normal and plasmino excitations. At large values of the bare quark mass the spectral function is dominated by a single pole.

  16. Partially quenched study of strange baryon with Nf = 2 twisted mass fermions

    CERN Document Server

    Drach, V; Carbonell, J; Alexandrou, Z L C; Korzec, T; Koutsou, G; Baron, R; Guichon, P; Pène, O; Pallante, E; Reker, S; Urbach, C; Jansen, K

    2008-01-01

    We present results on the mass of the baryon octet and decuplet using two flavors of light dynamical twisted mass fermions. The strange quark mass is fixed to its physical value from the kaon sector in a partially quenched set up. Calculations are performed for light quark masses corresponding to a pion mass in the range 270-500 MeV and lattice sizes of 2.1 fm and 2.7 fm. We check for cut-off effects and isospin breaking by evaluating the baryon masses at two different lattice spacings. We carry out a chiral extrapolation for the octet baryons and discuss results for the Omega.

  17. tt* equations, localization and exact chiral rings in 4d N=2 SCFTs

    NARCIS (Netherlands)

    Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos

    2015-01-01

    We compute exact 2- and 3-point functions of chiral primaries in four-dimensional N = 2 superconformal field theories, including all perturbative and instanton contributions. We demonstrate that these correlation functions are nontrivial and satisfy exact differential equations with respect to the c

  18. $tt^*$ equations, localization and exact chiral rings in 4d N=2 SCFTs

    NARCIS (Netherlands)

    Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos

    2015-01-01

    We compute exact 2- and 3-point functions of chiral primaries in four-dimensional N=2 superconformal field theories, including all perturbative and instanton contributions. We demonstrate that these correlation functions are nontrivial and satisfy exact differential equations with respect to the cou

  19. Chiral-loop and vector-meson contributions to $\\eta \\to \\pi \\pi \\gamma \\gamma$ decays

    CERN Document Server

    Ametller, L; Bramon, A; Talavera, P; Ametller, Ll.

    1997-01-01

    The process eta -> pi0 pi0 gamma gamma is discussed in Chiral Perturbation Theory (ChPT) extending two recent analyses. Special attention is devoted to one-loop corrections, eta-eta' mixing effects and vector-meson dominance of ChPT counter-terms. The less interesting eta -> pi^+ pi^- gamma gamma transition is briefly discussed too.

  20. Breakdown of chiral symmetry during saturation of the Tayler instability

    CERN Document Server

    Bonanno, Alfio; Del Sordo, Fabio; Mitra, Dhrubaditya

    2012-01-01

    We study spontaneous breakdown of chiral symmetry during the nonlinear evolution of the Tayler instability. We start with an initial stationary state of zero helicity. Within linearized perturbation calculations, helical perturbations of this initial state have the same growth rate for either sign of helicity. Direct numerical simulations (DNS) of the fully nonlinear equations however shows that an infinitesimal excess of one sign of helicity in the initial perturbation gives rise to a saturated helical state. We further show that this symmetry-breaking can be described by weakly nonlinear finite amplitude equations with undetermined coefficients which can be deduced solely from symmetry consideration. By fitting solutions of the amplitude equations to data from DNS we further determine the coefficients of the amplitude equations.

  1. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  2. Dileptons and Chiral Symmetry Restoration

    CERN Document Server

    Hohler, P M

    2015-01-01

    We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.

  3. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nowak, Maciej A., E-mail: maciej.a.nowak@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2016-08-15

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  4. Chiral Random Matrix Model at Finite Chemical Potential: Characteristic Determinant and Edge Universality

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  5. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Directory of Open Access Journals (Sweden)

    Yizhuang Liu

    2016-08-01

    Full Text Available We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  6. Universal Distribution of Would-be Topological Zero Modes in Coupled Chiral Systems

    CERN Document Server

    Mielke, Adam

    2016-01-01

    We consider two quenched, chiral ensembles which are coupled in such a way that a combined chiral symmetry is preserved. The coupling also links the topology of the two systems such that the number of exact zero modes in the coupled system equals the sum of the number of zero modes in the two uncoupled systems counted with sign. The canceled modes that turn non-topological due to the coupling become near-zero modes at small coupling. We analyze the distribution of these would-be zero modes using effective field theory. The distribution is universal and, in the limit of small coupling, the would-be zero modes are distributed according to a finite size chiral Gaussian ensemble, where the width of the distribution scales as the inverse square root of the volume.

  7. Chiral current generation in QED by longitudinal photons

    Directory of Open Access Journals (Sweden)

    J.L. Acosta Avalo

    2016-08-01

    Full Text Available We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone. In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  8. Chiral current generation in QED by longitudinal photons

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Avalo, J.L., E-mail: jlacosta@instec.cu [Instituto Superior de Tecnologías y Ciencias Aplicadas (INSTEC), Ave Salvador Allende, No. 1110, Vedado, La Habana 10400 (Cuba); Pérez Rojas, H., E-mail: hugo@icimaf.cu [Instituto de Cibernética, Matemática y Física (ICIMAF), Calle E esq 15, No. 309, Vedado, La Habana 10400 (Cuba)

    2016-08-15

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  9. Chiral current generation in QED by longitudinal photons

    Science.gov (United States)

    Acosta Avalo, J. L.; Pérez Rojas, H.

    2016-08-01

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  10. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  11. Observing Disoriented Chiral Condensates

    CERN Document Server

    Bjorken, James D; Taylor, C C

    1993-01-01

    We speculate that, in very high energy hadronic collisions, large fireballs may be produced with interiors which have anomalous chiral order parameters. Such a process would result in radiation of pions with distinctive momentum and isospin distributions, and may provide an explanation of Centauro and related phenomena in cosmic-ray events. The phenomenology of such events is reviewed, with emphasis on the possibility of observing such phenomena at Fermilab experiment T-864 (MiniMax), or at a Full Acceptance Detector (FAD) at the SSC.

  12. Perturbative Topological Field Theory

    Science.gov (United States)

    Dijkgraaf, Robbert

    We give a review of the application of perturbative techniques to topological quantum field theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give an introduction to graph homology and homotopy algebras and the work of Vassiliev and Kontsevich on perturbative knot invariants.

  13. Perturbing supersymmetric black hole

    CERN Document Server

    Onozawa, H; Mishima, T; Ishihara, H; Onozawa, Hisashi; Okamura, Takashi; Mishima, Takashi; Ishihara, Hideki

    1996-01-01

    An investigation of the perturbations of the Reissner-Nordstr\\"{o}m black hole in the N=2 supergravity is presented. In the extreme case, the black hole responds to the perturbation of each field in the same manner. This is possibly because we can match the modes of the graviton, gravitino, and photon using supersymmetry transformations.

  14. Jet Quenching with Parton evolution

    CERN Document Server

    Cheng, Luan

    2009-01-01

    We report the evolution effects on jet energy loss with detailed balance. The initial conditions and parton evolution based on perturbative QCD in the chemical non-equilibrated medium and Bjorken expanding medium at RHIC are determined. The parton evolution affect the jet energy loss evidently. This will increase the energy and propagating distance dependence of the parton energy loss and will affect the shape of suppression of moderately high P_{T} hadron spectra.

  15. Dynamical chiral symmetry breaking in unquenched QED3

    Science.gov (United States)

    Fischer, C. S.; Alkofer, R.; Dahm, T.; Maris, P.

    2004-10-01

    We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set of Dyson-Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward-Green-Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavors of Ncritf≈4. In the chirally symmetric phase the infrared behavior of the propagators is described by power laws with interrelated exponents. For Nf=1 and Nf=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson-Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.

  16. Frame independent cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Prokopec, Tomislav; Weenink, Jan, E-mail: t.prokopec@uu.nl, E-mail: j.g.weenink@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3585 CE Utrecht (Netherlands)

    2013-09-01

    We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.

  17. Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality

    CERN Document Server

    Alexandru, Andrei

    2012-01-01

    The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...

  18. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  19. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; J. Zhou; Koschny, Th.; Economou, E. N.; C M Soukoulis

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  20. Repulsive Casimir Force in Chiral Metamaterials

    Science.gov (United States)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  1. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  2. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  3. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  4. Chiral imbalance in QCD

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2017-01-01

    Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.

  5. Chirally extended quantum chromodynamics

    CERN Document Server

    Brower, R C; Tan, C I; Richard C Brower; Yue Shen; Chung-I Tan

    1994-01-01

    We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar %\\sigma and \\pi fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investiga...

  6. Monte Carlo Tools for Jet Quenching

    OpenAIRE

    Zapp, Korinna

    2011-01-01

    A thorough understanding of jet quenching on the basis of multi-particle final states and jet observables requires new theoretical tools. This talk summarises the status and propects of the theoretical description of jet quenching in terms of Monte Carlo generators.

  7. Thermal quenching and electron traps in LSO

    Energy Technology Data Exchange (ETDEWEB)

    Kappers, L.A. E-mail: kappers@uconnvm.uconn.edu; Bartram, R.H.; Hamilton, D.S.; Lempicki, A.; Glodo, J

    2003-05-01

    It is demonstrated by comparison of thermoluminescence and scintillation light outputs of LSO as functions of radiation time that a previously suggested thermal quenching correction is inappropriate. Approximate solutions of rate equations are employed to infer absolute trap concentrations and to explore the effects of thermal quenching on the shapes of thermoluminescence glow curves.

  8. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  9. Supersymmetry and chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Michael Luke [Dept. of Physics and Applied Physics and College of Natural Sciences, Kyung-Hee University, KyongGi, Yong-In 449-701 (Korea, Republic of)]. E-mail: m.walker@aip.org.au

    2004-12-01

    We dispute the nonperturbative non-renormalisation theorem stating that mass cannot be spontaneously generated in supersymmetric QED. Our analysis, which requires no truncation and is fully gauge and supersymmetry consistent, finds instead that there is no reason for the mass corrections to be exactly zero. We concede that an achiral solution is yet to be found. We also extend a long-standing perturbative result, that the effective potential is zero to all orders of perturbation theory, to the nonperturbative regime for arbitrary numbers of flavours. (author)

  10. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  11. Finite Element Simulation of Metal Quenching

    Institute of Scientific and Technical Information of China (English)

    方刚; 曾攀

    2004-01-01

    The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.

  12. Quench Heater Studies for the LHC Magnets

    CERN Document Server

    Rodríguez-Mateos, F

    2001-01-01

    About 2000 LHC (CERN's Large Hadron Collider) superconducting magnets will be protected with quench heaters against development of excessive voltage and overheating after a resistive transition. The quench heater strips are powered by capacitor bank discharge power supplies. The strips are made of stainless steel partially plated with copper to reduce their resistance and to allow for the connection of quench heaters in series. The strips are embedded in between two polyimide foils. The initial power density and the current decay time determine the quench heater effectiveness. Since only one type of heater power supply will be available, the copper plating cycle is adapted for the various magnet types to keep the resistance of the heater circuit constant. Different quench heater designs have been tested on various prototype magnets to optimise the copper-plating cycle and the electric insulation of the heater strip. This paper summarises the experimental results and computations that allowed to finalise the h...

  13. QUENCH STUDIES AND PREHEATING ANALYSIS OF SEAMLESS

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari [JLAB; Geng, Rongli [JLAB; Eremeev, Grigory [JLAB

    2013-09-01

    One of the alternative manufacturing technologies for SRF cavities is hydroforming from seamless tubes. Although this technology has produced cavities with gradient and Q-values comparable to standard EBW/EP cavities, a few questions remain. One of these questions is whether the quench mechanism in hydroformed cavities is the same as in standard electron beam welded cavities. Towards this effort Jefferson Lab performed quench studies on 2 9 cell seamless hydroformed cavities. These cavities include DESY's - Z163 and Z164 nine-cell cavities hydroformed at DESY. Initial Rf test results Z163 were published in SRF2011. In this report we will present post JLAB surface re-treatment quench studies for each cavity. The data will include OST and T-mapping quench localization as well as quench location preheating analysis comparing them to the observations in standard electron beam welded cavities.

  14. [A comment on chiral thin layer chromatography].

    Science.gov (United States)

    Chen, Xuexian; Yuan, Liming

    2016-01-01

    In recent eight years, authors' group has repeated a lot of experiments of chiral thin layer chromatography coming from literature. From the practical opinion, we summarized that there are nine characteristics for chiral thin layer chromatography. Some progresses of chiral thin layer chromatography are reviewed, and the enantioselectivity of a commercial chiral thin layer plate is introduced. The study of vancomycin as the chiral selector in thin layer chromatography is also reported.

  15. Chiral Dynamics in Pion-Photon Reactions Habilitation

    CERN Document Server

    Friedrich, Jan Michael

    As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...

  16. Chiral effective theory with a light scalar and lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Soto, J., E-mail: joan.soto@ub.edu [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Talavera, P., E-mail: pere.talavera@icc.ub.edu [Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Comte Urgell 187, E-08036 Barcelona (Spain); Tarrus, J., E-mail: tarrus@ecm.ub.es [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

    2013-01-21

    We extend the usual chiral perturbation theory framework ({chi}PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. We discuss the S-wave pion-pion scattering lengths, extract the average value of the two light quark masses and evaluate the impact of the dynamical singlet field in the low-energy constants l{sup Macron }{sub 1}, l{sup Macron }{sub 3} and l{sup Macron }{sub 4} of {chi}PT. We also show how to extract the mass and width of the sigma resonance from chiral extrapolations of lattice QCD data.

  17. Chiral gravity as a covariant formulation of massive gravity

    CERN Document Server

    Nibbelink, S G; Nibbelink, Stefan Groot; Peloso, Marco

    2004-01-01

    We present a covariant nonlinear completion of the Fierz-Pauli (FP) mass term for the graviton. The starting observation is that the FP mass is immediately obtained by expanding the cosmological constant term, i.e. the determinant of the vielbein, around Minkowski space to second order in the vielbein perturbations. Since this is an unstable expansion in the standard case, we consider an extended theory of gravity which describes two vielbeins that give rise to chiral spin--connections (consequently, fermions of a definite chirality only couple to one of the gravitational sectors). As for Einstein gravity with a cosmological constant, a single fine-tuning is needed to recover a Minkowski background; the two sectors then differ only by a constant conformal factor. The spectrum of this theory consists of a massless and a massive graviton, with FP mass term. The theory possesses interesting limits in which only the massive graviton is coupled to matter at the linearized level.

  18. Constraining the Higgs boson mass: A non-perturbative lattice study

    CERN Document Server

    Jansen, Karl; Nagy, Attila

    2012-01-01

    We present non-perturbatively obtained results for upper and lower Higgs boson mass bounds using a chiral invariant lattice formulation of the Higgs-Yukawa sector of the standard model. We determine the mass bounds both, for a standard model top quark mass and for a possible fourth quark generation with masses up to 700GeV.

  19. The Perturbed Puma Model

    Science.gov (United States)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  20. Coupling chiral bosons to gravity

    CERN Document Server

    Braga, N R F; Braga, N R F; Wotzasek, C

    1995-01-01

    chiral boson actions of Floreanini and Jackiw (FJ), and of McClain,Wu and Yu (MWY) have been recently shown to be different representations of the same chiral boson theory. MWY displays manifest covariance and also a (gauge) symmetry that is hidden in the FJ side, which, on the other hand, displays the physical spectrum in a simple manner. We make use of the covariance of the MWY representation for the chiral boson to couple it to background gravity showing explicitly the equivalence with the previous results for the FJ representation