WorldWideScience

Sample records for quench protection system

  1. The LHC quench protection system

    CERN Multimedia

    2009-01-01

    The new quench protection system (QPS) has the crucial roles of providing an early warning for any part of the superconducting coils and busbars that develop high resistance, as well as triggering the switch-off of the machine. Over 2000 new detectors will be installed around the LHC to make sure every busbar segment between magnets is monitored and protected. One of the major consolidation activities for the LHC is the addition of two new detectors to the quench protection system. A magnet quench occurs when part of the superconducting cable becomes normally-conducting. When the protection system detects an increased resistance the huge amount of energy stored in the magnet chains is safely extracted and ‘dumped’ into specially designed resistors. In the case of the main dipole chain, the stored energy in a single LHC sector is roughly the same as the kinetic energy of a passenger jet at cruising speed. The first new detector is designed to monitor the superconducting...

  2. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  3. LHC magnet quench protection system

    Science.gov (United States)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  4. LHC magnet quench protection system

    International Nuclear Information System (INIS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-01-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called ''cold diode'' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements--so called ''cold diodes''. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a ''natural'' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages

  5. Design and operation of the quench protection system for the Fermilab tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1989-01-01

    The operation of a superconducting accelerator, in addition to cryogenic requirements, introduces a new complexity not present in a conventional accelerator. A method is required for protecting the magnets from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature so that they are no longer superconducting. The development of that system is the topic of this chapter. Any quench protection system has two very important ingredients. First, it must be designed with sufficient integrity to remain functional even under abnormal circumstances. The magnets must be protected during power failures, for example. Quenches involving a large number of components can also be hazardous because of the redistribution of voltages during the quench. Some of the system integrity can be achieved through redundancy. Frequent testing of critical elements of the system also assures the overall integrity. Second, the quench protection system must protect against damage from quenches regardless of their location or the excitation current at the time. It is not sufficient to protect just the magnet coils; either the leads between magnets must be fully stabilized or the quench protection system must protect them. The next section presents a brief discussion of the basic properties of superconductors and the phenomenon of quench propagation. 10 references, 13 figures

  6. Simulation of quenches in SSC magnets with passive quench protection

    International Nuclear Information System (INIS)

    Koepke, K.

    1985-06-01

    The relative ease of protecting an SSC magnet following a quench and the implications of quench protection on magnet reliability and operation are necessary inputs in a rational magnet selection process. As it appears likely that the magnet selection will be made prior to full scale prototype testing, an alternative means is required to ascertain the surviveability of contending magnet types. This paper attempts to provide a basis for magnet selection by calculating the peak expected quench temperatures in the 3 T Design C magnet and the 6 T Design D magnet as a function of magnet length. A passive, ''cold diode'' protection system has been assumed. The relative merits of passive versus active protection systems have been discussed in a previous report. It is therefore assumed that - given the experience gained from the Tevatron system - that an active quench protection system can be employed to protect the magnets in the eventuality of unreliable cold diode function

  7. Quench Protection System Optimization for the High Luminosity LHC Nb $_3$Sn Quadrupoles

    CERN Document Server

    Ravaioli, E; Auchmann, B; Ferracin, P; Maciejewski, M; Rodriguez-Mateos, F; Sabbi, GL; Todesco, E; Verweij, A P

    2017-01-01

    The upgrade of the large hadron collider to achieve higher luminosity requires the installation of twenty-four 150 mm aperture, 12 T, $Nb_3Sn$ quadrupole magnets close to the two interaction regions at ATLAS and CMS. The protection of these high-field magnets after a quench is particularly challenging due to the high stored energy density, which calls for a fast, effective, and reliable protection system. Three design options for the quench protection system of the inner triplet circuit are analyzed, including quench heaters attached to the coil's outer and inner layer, Coupling-Loss Induced Quench (CLIQ), and combinations of those. The discharge of the magnet circuit and the electromagnetic and thermal transients occurring in the coils are simulated by means of the TALES and LEDET programs. The sensitivity to strand parameters and the effects of several failure cases on the coil's hot-spot temperature and peak voltages to ground are assessed. A protection system based only on quench heaters attached to the o...

  8. Design and operation of the quench protection system for the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1986-05-01

    A method is required to protect the magnets of a superconducting accelerator from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature such that they are no longer superconducting. A brief discussion of the basic properties of superconductors and the phenomenon of quench propagation is given, followed by the configuration of a quench protection system for the Fermilab Tevatron

  9. Development of quench protection system for HTS coils by active power method

    International Nuclear Information System (INIS)

    Nanato, N.; Tsumiyama, Y.; Kim, S.B.; Murase, S.; Seong, K.-C.; Kim, H.-J.

    2007-01-01

    Recently, HTS coils have been developed for electric power apparatuses. In superconducting coils, local and excessive joule heating may give damage to the superconducting windings when a quench occurs and therefore it is essential that the quench is detected quickly and precisely so that the coils can be safely discharged. Resistive voltage measurement method is universally used for the quench detection, however, it is vulnerable to an electromagnetic noise which causes insufficient quench detection and at least needs a central voltage tap in windings. In a large superconducting coil, a lead-wire from the central voltage tap may cause a short-circuit when high voltage will be applied. In this paper, we present a quench protection system based on the active power method which detects a quench by measuring the instantaneous active power generated in a superconducting coil. The protection system based on this method is very strong against to the noise and no more needs a central voltage tap. The performance of system developed by us is confirmed by using test coil wound with Bi-2223 HTS tapes

  10. Reliability of the Quench Protection System for the LHC Superconducting Elements

    OpenAIRE

    Vergara-Fernández, A; Rodríguez-Mateos, F

    2003-01-01

    The huge energy stored in the Large Hadron Collider (LHC) could potentially cause severe damage when the superconducting state disappears (quench) if precautions are not taken. Most of the superconducting elements in this accelerator require protection in case of resistive transition. The reliability of the Quench Protection System will have a very important impact on the overall LHC performance. Existing high energy accelerators were conceived as prototypes whose main objective was not the e...

  11. An FPGA-Based Quench Detection and Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Carcagno, Ruben H; Lamm, Michael J; Makulski, Andrzej; Nehring, Roger; Orris, Darryl; Pishchalnikov, Yu M; Tartaglia, M

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed at the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commerically available, integrated hardware and software components. It provides most of the functionality of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and has a more powerful user interface and analysis tools. First applications of the new system will be for testing corrector coil packages. In this paper we describe the new system and present results of testing LHC Interaction Region Quadrupole (IRQ) correctors.

  12. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; Fermilab

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results

  13. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  14. Reliability of the quench protection system for the LHC superconducting elements

    International Nuclear Information System (INIS)

    Vergara Fernandez, A.; Rodriguez-Mateos, F.

    2004-01-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed

  15. Reliability of the quench protection system for the LHC superconducting elements

    Science.gov (United States)

    Vergara Fernández, A.; Rodríguez-Mateos, F.

    2004-06-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.

  16. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  17. The quench detector on magnetic modulator for the UNK quench protection system

    International Nuclear Information System (INIS)

    Bolotin, I.M.; Enbaev, A.V.; Erokhin, A.N.; Gridasov, V.I.; Priyma, M.V.; Sychev, V.A.; Vasiliev, L.M.

    1992-01-01

    When designing and constructing superconducting high energy accelerators, the development of the Quench Detection System (QDS) for superconducting (SC) magnets becomes an important and critical problem. At present there is experience in developing such systems for the Tevatron (FNAL, USA) and HERA (Hamburg, Germany). The machines for more than 3 TeV-the UNK (Russia) and SSC (USA), which are presently under construction, have very large circumferences, 21 and 87 km, respectively. The QDS's, similar to those of the Tevatron, require a larger part of the active components of the electronic equipment be placed in the machine tunnel close to the magnets, and protected from irradiation or additional surface buildings will have to be constructed. In either case the cost of such a QDS increases. In addition the former ones reliability decreases and maintenance becomes more difficult. For such machines, a QDS in which the quench signal, in each superconducting magnet (SCM) or groups of SCM'S, is extracted with the help of a bridge circuit (BC) appears to be more suitable. The half coils of SCM's are connected as two arms of the bridge and the resistors placed in the vacuum vessels of the magnet cryostats are connected to the other two. The off-balance signal of each BC is enhanced with the help of magnetic amplifiers. This note describes the experimental prototype of a bridge-type Quench Detector (QD) based on a magnetic amplifier Magnetic Modulator (MM) type, allowing one not only to detect a quench in a SCM, but also making feasible a wider system capability, namely: to record the signals from all SC elements during a quench for further analysis of its causes; to check the presence of short circuits of the ring electromagnet bus relative to the cryostats and to localize their position

  18. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Anyang (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level.

  19. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    International Nuclear Information System (INIS)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk; Lee, Woo Seung; Kang, Hyoung Ku

    2017-01-01

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level

  20. Architecture of a software quench management system

    International Nuclear Information System (INIS)

    Jerzy M. Nogiec et al.

    2001-01-01

    Testing superconducting accelerator magnets is inherently coupled with the proper handling of quenches; i.e., protecting the magnet and characterizing the quench process. Therefore, software implementations must include elements of both data acquisition and real-time controls. The architecture of the quench management software developed at Fermilab's Magnet Test Facility is described. This system consists of quench detection, quench protection, and quench characterization components that execute concurrently in a distributed system. Collaboration between the elements of quench detection, quench characterization and current control are discussed, together with a schema of distributed saving of various quench-related data. Solutions to synchronization and reliability in such a distributed quench system are also presented

  1. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  2. Superconducting synchrotron power supply and quench protection scheme

    International Nuclear Information System (INIS)

    Stiening, R.; Flora, R.; Lauckner, R.; Tool, G.

    1978-01-01

    The power supply and quench protection scheme for the proposed Fermilab 6 km circumference superconducting synchrotron is described. Specifically, the following points are discussed: (1) the 46 MW thyristor power supply; (2) the 3 x 10 8 J emergency energy dump; (3) the distributed microprocessing system for the detection of quenches; (4) the thyristor network for shunting current around quenched magnets; and (5) the heaters internal to the magnets which cause rapid propagation of quenches. Test results on prototype systems are given

  3. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  4. Development of quench detection/protection system based on active power method for superconducting magnet by using capacitor circuit

    International Nuclear Information System (INIS)

    Nanato, N.; Otsuka, T.; Hesaka, S.; Murase, S.

    2013-01-01

    Highlights: ► The authors have presented an active power method for quench detection. ► A method for improving its characteristics using a capacitor circuit was proposed. ► Quench detection/protection test for a Bi2223 superconducting coil was carried out. ► The proposed method was more useful than the conventional one. -- Abstract: When a quench occurs in a superconducting magnet, excessive joule heating in normal region may damage the magnet. It is necessary to detect the quench as soon as possible and discharge magnetic energy stored in the magnet. The authors have presented a quench detection/protection system based on an active power method which detects the quench regardless of a self-inductive and mutual-inductive voltages and electromagnetic noise. In the conventional active power method, the inductive voltages are removed by cancel coils. In this paper, the authors propose a method to cancel an inductive voltage using a capacitor circuit. The quench detection/protection system becomes more precise and smaller than the conventional system through the capacitor circuit

  5. Quench detection/protection of an HTS coil by AE signals

    International Nuclear Information System (INIS)

    Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.

    2011-01-01

    A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.

  6. Energy saver/doubler quench protection monitor system

    International Nuclear Information System (INIS)

    Flora, R.; Saarivirta, J.; Tool, G.; Voy, D.

    1981-01-01

    The microprocessor based system to detect quenches in the superconducting magnets is described. Tests conducted over the past two years using a string of twenty superconducting magnets have yielded results having major impact on the design of this system. A network of twenty-four 16-bit microprocessors will monitor the integrated voltage across magnet protection units every 60 Hz line period using isolated voltage to frequency converters. These measurements are compared with the inductive voltage expected. Under transient conditions, the distributed L-C nature of the magnets delays signal propagation as in a transmission line. To achieve the required sensitivity of resistive voltage detection, the inductive voltage for each magnet cell is calculated using two of the six measured dI/dt signals. 5 refs

  7. Review of quench simulations for the protection of LHC main dipole magnets

    CERN Document Server

    Sonnemann, F

    1999-01-01

    The simulation program QUABER [1] allows studying the quench process of superconducting magnets for the LHC. The performance of the protection system of the LHC main dipole magnets was simulated under various parameter dependencies at different magnet excitation currents. This simulation study was motivated to complement measurement results in order to help preparing and understanding experiments of the quench propagation and magnet protection. The influence of the quench propagation velocity and the time for a quench propagation between adjacent turns was studied. The different copper plating cycles of the quench heater strips were simulated. Experimental measurement results [2] were used to calibrate the input parameters. The performance of the protection system for various quench detection thresholds was investigated and different failure modes of the system were considered. The maximum voltages and values of the quench load are discussed. The values given are obtained using conservatively chosen parameter...

  8. Quench propagation and protection analysis of the ATLAS Toroids

    OpenAIRE

    Dudarev, A; Gavrilin, A V; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the inte...

  9. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    International Nuclear Information System (INIS)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-01-01

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  10. Quench protection system for 1 MJ superconducting magnet coil for SMES Project at VECC, Kolkata

    International Nuclear Information System (INIS)

    Thakur, S.K.; Bera, A.; Kumar, Y.; Bhunia, U.; Pradhan, J.; Saha, S.

    2012-01-01

    This paper describes the indigenous development of a system which is used for quench detection, protection and monitoring the parameters of superconducting coil of superconducting magnetic energy storage (SMES) system. Resistive voltage measurement method is used for detecting the quench. The voltage across each current lead is also monitored and over voltage across the current lead is detected by comparing it with a set voltage limit. By using isolation amplifier and timer circuit, false quench trigging due to noise and spikes are minimized. If quench is detected a relay operated to turn-off the SMES power supply followed by the release of stored energy of the magnet to the external dump resistance by closing a switch. (author)

  11. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  12. Logic of quench protection assembly for BEPC II interaction region superconducting magnet

    International Nuclear Information System (INIS)

    Chen Fusan; Cheng Jian

    2006-01-01

    Two superconducting magnet complexes are used in BEPC II interaction region. The corresponding quench protection system divides all related faults into two classes and takes different protection actions according to the urgency degree. Since BEPC II has two operating modes and the superconducting magnets use different power supplies in different operating modes, the quench protection system must take the mode switching into consideration. (authors)

  13. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    CERN Document Server

    Schwerg, N; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the feasibility of a self-protected magnet surviving a powering cycle with an undetected quench and without quench heater firing or energy-extraction system.

  14. Review of quench simulations for the protection of LHC main dipole magnets

    OpenAIRE

    Sonnemann, F; Danner, A

    1999-01-01

    The simulation program QUABER [1] allows studying the quench process of superconducting magnets for the LHC. The performance of the protection system of the LHC main dipole magnets was simulated under various parameter dependencies at different magnet excitation currents. This simulation study was motivated to complement measurement results in order to help preparing and understanding experiments of the quench propagation and magnet protection. The influence of the quench propagation velocity...

  15. Protecting a full-scale Nb3Sn magnet with CLIQ, the new coupling-loss-induced quench system

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Bajas, H.; Datskov, V.I.; Desbiolles, V.; Feuvrier, J.; Kirby, G.; Maciejewski, M.; Sabbi, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2015-01-01

    A new protection system for superconducting magnets called coupling-loss induced quench system (CLIQ) has been recently developed at CERN. Recent tests on Nb-Ti coils have shown that CLIQ is a valid, efficient, and promising method for the protection of high-magnetic-field superconducting magnets.

  16. Superconducting Magnet Power Supply and Hard-Wired Quench Protection at Jefferson Lab for 12 GeV Upgrade

    International Nuclear Information System (INIS)

    Ghoshal, Probir K.; Bachimanchi, Ramakrishna; Fair, Ruben J.; Gelhaar, David; Kumar, Onish

    2017-01-01

    The superconducting magnet system in Hall B being designed and built as part of the Jefferson Lab 12 GeV upgrade requires powering two conduction cooled superconducting magnets - a torus and a solenoid. The torus magnet is designed to operate at 3770 A and solenoid at 2416 A. Failure Modes and Effects Analysis (FMEA) determined that voltage level thresholds and dump switch operation for magnet protection should be tested and analyzed before incorporation into the system. The designs of the quench protection and voltage tap sub-systems were driven by the requirement to use a primary hard-wired quench detection sub-system together with a secondary PLC-based protection. Parallel path voltage taps feed both the primary and secondary quench protection sub-systems. The PLC based secondary protection is deployed as a backup for the hard-wired quench detection sub-system and also acts directly on the dump switch. Here, we describe a series of tests and modifications carried out on the magnet power supply and quench protection system to ensure that the superconducting magnet is protected for all fault scenarios.

  17. Quench protection and safety of the ATLAS central solenoid

    CERN Document Server

    Makida, Y; Haruyama, T; ten Kate, H H J; Kawai, M; Kobayashi, T; Kondo, T; Kondo, Y; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A; Yamaoka, H

    2002-01-01

    Fabrication of the ATLAS central solenoid was completed and the performance test has been carried out. The solenoid was successfully charged up to 8.4 kA, which is 10% higher than the normal operational current of 7.6 kA. Two methods for quench protection, pure aluminum strips accelerating quench propagation and quench protection heaters distributing normal zones, are applied in order to safely dissipate the stored energy. In this paper, quench characteristics and protection methods of the ATLAS central solenoid are described. (14 refs).

  18. Quench detection, protection and simulation studies on SST-1 magnets

    International Nuclear Information System (INIS)

    Sharma, Aashoo N.; Khristi, Yohan; Pradhan, Subrata; Doshi, Kalpesh; Prasad, Upendra; Banaudha, Moni; Varmora, Pankaj; Praghi, Bhadresh R.

    2015-01-01

    Steady-state Superconducting Tokamak-1 (SST-1) is India's first tokamak with superconducting toroidal field (TF) and Poloidal Field (PF) magnets. These magnets are made with NbTi based Cable-In-Conduit-Conductors. The quench characteristic of SST-1 CICC has been extensively studied both analytically and using simulation codes. Dedicated experiments like model coil test program, TF coil test program and laboratory experiments were conducted to fully characterize the performance of the CICC and the magnets made using this CICC. Results of quench experiments performed during these tests have been used to design the SST-1 quench detection and protection system. Simulation results of TF coil quenches and slow propagation quench of TF busbars have been used to further optimize these systems during the SST-1 tokamak operation. Redundant hydraulic based quench detection is also proposed for the TF coil quench detection. This paper will give the overview of these development and simulation activities. (author)

  19. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Chlachidze, Guram [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Karppinen, Mikko [CERN

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  20. Quench Detection and Magnet Protection Study for MFTF. LLL final review

    International Nuclear Information System (INIS)

    1979-06-01

    The results of a Quench Detection and Magnet Protection Study for MFTF are summarized. The study was directed toward establishing requirements and guidelines for the electronic package used to protect the MFTF superconducting magnets. Two quench detection schemes were analyzed in detail, both of which require a programmable quench detector. Hardware and software recommendations for the quench detector were presented as well as criteria for dumping the magnet energy in the event of a quench. Overall magnet protection requirements were outlined in a detailed Failure Mode Effects and Criticality analysis, (FMECA). Hardware and software packages compatible with the FMECA were recommended, with the hardware consisting of flexible, dedicated intelligent modules specifically designed for magnet protection

  1. CLIQ. A new quench protection technology for superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele

    2015-01-01

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling

  2. Quench Protection Studies of the 11-T $Nb_3Sn$ Dipole for LHC Upgrades

    CERN Document Server

    Izquierdo Bermudez, Susana; BAJAS, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; Willering, Gerard; Zlobin, Alexander

    2016-01-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb$_{3}$Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb$_{3}$Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb$_{3}$Sn dipole models. The validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.

  3. Quench protection studies of 11T 2-in-1 Nb$_{3}$Sn dipole models for LHC upgrades

    OpenAIRE

    Zlobin, AV; Chlachidze, G; Nobrega, F; Novitski, I; Karppinen, M

    2014-01-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil ...

  4. Quench protection studies of 11T 2-in-1 Nb$_{3}$Sn dipole models for LHC upgrades

    CERN Document Server

    Zlobin, AV; Nobrega, F; Novitski, I; Karppinen, M

    2014-01-01

    CERN and FNAL are developing 11 T Nb$_{3}$Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb$_{3}$Sn dipole coil tested in a magnetic mirror configuration.

  5. Towards an optimized coupling-loss induced quench protection system (CLIQ) for quadrupole magnets (Proc. 25th ICEC & ICMC2014 conference)

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, Vladimir I.; Desbiolles, Vincent; Feuvrier, Jerome; Kirby, Glyn; Maciejewski, Michal; Sperin, Kevin A.; ten Kate, Herman H.J.; Verweij, Arjan P.; Willering, G.

    2015-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Its simple and robust electrical design, its lower failure rate, and its more

  6. Quench Detection and Protection for High Temperature Superconducting Transformers by Using the Active Power Method

    Science.gov (United States)

    Nanato, N.; Kobayashi, Y.

    AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.

  7. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  8. Quench Protection and Magnet Powe Supply Requirements for the MICE Focusing and Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched

  9. First experience with the new Coupling Loss Induced Quench system

    CERN Document Server

    Ravaioli, E; Dudarev, A V; Kirby, G; Sperin, K A; ten Kate, H H J; Verweij, A P

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A new protection system called Coupling-Loss Induced Quench (CLIQ) was recently, developed and tested at CERN. This method provokes a fast change in the magnet transport current by means of a capacitive discharge. The resulting change in the local magnetic field induces inter-filament and inter-strand coupling losses which heat up the superconductor and eventually initiate a quench in a large fraction of the coil winding pack. The method is extensively tested on a Nb-Ti single-wire test solenoid magnet in the CERN Cryogenic Laboratory in order to assess its performance, optimize its operating parameters, and study new electrical configurations. Each parameter is thoroughly analyzed and its impact on the quench effi...

  10. Quench protection analysis integrated in the design of dipoles for the Future Circular Collider

    Directory of Open Access Journals (Sweden)

    Tiina Salmi

    2017-03-01

    Full Text Available The EuroCirCol collaboration is designing a 16 T Nb_{3}Sn dipole that can be used as the main bending magnet in a 100 km long 100 TeV hadron-hadron collider. For economic reasons, the magnets need to be as compact as possible, requiring optimization of the cable cross section in different magnetic field regions. This leads to very high stored energy density and poses serious challenges for the magnet protection in case of a quench, i.e., sudden loss of superconductivity in the winding. The magnet design therefore must account for the limitations set by quench protection from the earliest stages of the design. In this paper we describe how the aspect of quench protection has been accounted for in the process of developing different options for the 16 T dipole designs. We discuss the assumed safe values for hot spot temperatures and voltages, and the efficiency of the protection system. We describe the developed tools for the quench analysis, and how their usage in the magnet design will eventually ensure a secure magnet operation.

  11. Energy Extracting and Quench Protection System in the LHC

    CERN Document Server

    Abu Siam, Mansour

    2016-01-01

    quadrupole magnets. The electromagnets are built of special cables that operate in superconducting state by cooling them to 1.9K (-271.3℃); the superconducting magnets of the LHC are powered in about 1700 electrical circuits. A phenomenon called quench can spontaneously occur in superconducting magnets, which means that the superconductivity is lost in part of their windings. The energy stored within the magnet, up to 1.3 GJ, can cause severe damage. In order to protect the superconducting elements after a resistive transition, the energy is dissipated into a dump resistor installed in series with the magnet chain that is switched into the circuit by opening circuit breakers. The system described above is utilized for magnets installed in the LHC that operate under currents ranging from 600A up to 13kA. For the next LHC upgrade (High Luminosity) there is a need for circuit breakers capable of interrupting high DC currents in a solely inductive circuit within one millisecond and under development of very hig...

  12. Quench protection challenges in long nb3sn accelerator magnets

    Science.gov (United States)

    Salmi, Tiina-Mari; Ambrosio, G.; Caspi, S.; Chlachidze, Guram; Dhallé, Marc; Felice, Helene; Ferracin, Paolo; Marchevsky, M.; Sabbi, G. L.; ten Kate, H. H. J.

    2012-06-01

    The quench protection of the several meter long, large aperture high-field Nb3Sn quadrupoles that the LARP collaboration is developing for the LHC interaction region upgrade, requires efficient protection heaters to quickly generate large resistive segments across the windings. To support the protection design, experiments in the recently tested LARP R&D magnets are aimed to characterize the coil response to different protection schemes. In particular, the delay to quench and the final hotspot temperatures are evaluated after firing the heaters at different powering regimes and coverage. Also, the contribution of external energy extraction is investigated. Based on the performed studies and computer simulations, it seems that if the same protection efficiency per unit length that is measured in a 1 m long model magnet can be scaled to a 3.6 m long magnet, and the heater coverage can be improved, about 1 MJ/m of stored energy can be absorbed in the magnet after a quench. However, significant technology developments are needed to scale the protection heater efficiency to longer magnets and to increase the coverage.

  13. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  14. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1993-05-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures -- detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot -- protection. The temperature rise is diluted by firing heaters along the length of the magnet to insure that the dissipated energy is spread. To develop a reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, we followed an iterative top-down approach. First we defined the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then we further optimize the system through iterative upgrading based on our signal and noise character findings

  15. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  16. Selection of a quench detection system for the ITER CS magnet

    International Nuclear Information System (INIS)

    Coatanea, Marc; Duchateau, Jean-Luc; Lacroix, Benoit; Nicollet, Sylvie; Rodriguez-Mateos, Felix; Topin, Frederic

    2011-01-01

    At variance with most of the existing superconducting systems operating in the world, the ITER central solenoid (CS) magnet is a fast pulsed system. This peculiarity creates a specific situation regarding the quench detection system, as a small resistive signal associated with a quench has to be discriminated from the high inductive signals imposed by the plasma scenario. The quench detection is based on an inductive compensation built from three adjacent double pancakes. The ITER protection rules for a superconducting magnet impose to respect the so-called maximum hot spot temperature criterion of 250 K in the quenched cable at the end of the fast discharge. A careful analysis of the residual inductive signals in the detection voltage shows that a blanking of the quench detection cannot be avoided during the early times of the plasma discharge (i.e. during 3.5 s). It is demonstrated that this blanking is, however, acceptable while fulfilling the hot spot criterion because the plasma initiation phase (PIP) is very similar to a fast safety discharge and corresponds to a fast decrease of the modules currents, which is favourable for the magnet protection.

  17. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1994-01-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures - Detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot - Protection. The temperature rise is diluted by firing heaters along the length of the magnet to ensure that the dissipated energy is spread. It is interesting that there is not a significant amount of published research on detection. To afford a more reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, the authors followed an iterative top-down approach. First they defend the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then they further optimize the system through iterative upgrading based on their signal and noise character findings

  18. Quench Protection and Powering in a String of Superconducting Magnets for the Large Hadron Collider

    CERN Document Server

    Krainz, G

    1997-01-01

    Practical experience has been attained on the LHC Test String (String~1), composed of one 3~m long superconducting twin-aperture prototype quadrupole and three 10~m long superconducting twin-aperture prototype dipoles. The protection diodes are housed in the cold mass of the short straight section. The quench protection system acts on the half-cell level. During the operation of the LHC Test String, magnet quenches have been provoked manually by firing the quench heaters or occured manually by exceeding the critical temperature or critical current density of the superconductor. Most of the data could be measured while some parameters (magnet current, diode current, average temperature, etc.) cannot be directly measured. A simulation progam has been developed to calculate the missing data. The validation of the model has been performed by comparing measured and simulated data. The modelling of the quench behaviour of the final version of the LHC magnets show that hot-spot temperatures and voltages to ground ca...

  19. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider

    Science.gov (United States)

    Zhao, Junjie; Prioli, Marco; Stenvall, Antti; Salmi, Tiina; Gao, Yuanwen; Caiffi, Barbara; Lorin, Clement; Marinozzi, Vittorio; Farinon, Stefania; Sorbi, Massimo

    2018-07-01

    Protecting the magnets in case of a quench is a challenge for the 16 T superconducting dipole magnets presently designed for the 100 TeV: Future Circular Collider (FCC). These magnets are driven to the foreseen technological limits in terms of critical current, mechanical strength and quench protection. The magnets are protected with CLIQ (Coupling-Loss Induced Quench) system, which is a recently developed quench protection method based on discharging a capacitor bank across part of the winding. The oscillation of the magnet currents and the dissipation of the high stored energy into the windings cause electrodynamic forces and thermal stresses, which may need to be considered in the magnet mechanical design. This paper focuses on mechanical stress analysis during a quench of the 16 T cos-θ and block type dipole magnets. A finite element model allowed studying the stress due to the non-uniform temperature and current distribution in the superconducting coils. Two different CLIQ configurations were considered for the cos-θ design and one for the block type magnet. The analyses of the mechanical behavior of two magnets during a quench without or with hot spot turn were separately carried out. The simulation results show that the stress related to a quench should be considered when designing a high field magnet.

  20. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  1. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  2. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  3. The Inductive Coupling of the Magnets in MICE and its Effect on Quench Protection

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    The inductive coupling between various MICE magnet circuits is described. The consequences of this coupling on magnet charging and quenching are discussed. Magnet quench protection is achieved through the use of quench-back. Calculations of the quenching of a magnet due to quench-back resulting from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. This report describes how the MICE magnet channel will react when magnets in that channel are quenched

  4. Quench protection in superconducting magnets

    International Nuclear Information System (INIS)

    Shajii, A.; Freidberg, J.P.

    1993-01-01

    The purpose of this obviously non-plasma physics research is to demonstrate that many of the powerful and sophisticated theoretical techniques widely used by the plasma physics community can be applied to engineering problems of direct interest to the magnetic fusion program. Quench protection is such a problem. If a sudden pulse of energy is delivered (usually by accident) to a small section of a superconducting magnet, it may go normal. Under such conditions, the magnet current flows in the surrounding copper matrix, which is essentially in parallel with the superconductor. Although the copper is a good conductor, it still dissipates ohmic power, further adding to the energy input. It is important to detect the quench as early as possible in order to shut off the current, thereby preventing irreversible damage to the conductor. This a non-trivial problem since the cables comprising a coil can be as long as one kilometer. The theory presented here starts with a set of multi-dimensional Navier-Stokes and heat transport equations for the coupled system of helium coolant, superconducting/copper cable, and surrounding jacket. A combination of multiple time scale expansions and asymptotic analysis reduces the problem to a nonlinear fourth order system of 1-D plus time equations. A code has been written whose numerical results are in excellent agreement with more complex engineering codes. There is at least an order of magnitude savings in CPU over the existing codes where a typical run requires one hour Cray CPU. By investigating a number of different cases the authors have been able to introduce further analytic approximations which reduce the problem to quasi-analytic form, a set of three ODE's in time. The results here too are in excellent agreement with the engineering code and requires only several seconds of CPU time. More important, the critical dimensionless parameters have been identified, as well as practical scaling information for the magnet design

  5. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    Science.gov (United States)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  6. Modelling of the Quench Process for the Optimisation of the Design and Protection of Superconducting Busbars for the LHC

    OpenAIRE

    Schmidt, R; Sonnemann, F

    2000-01-01

    The superconducting busbars powering the LHC magnets are highly stabilised with copper to reduce the probability of a quench starting in a busbar and to avoid excessive temperatures after a quench during current discharge. In order to determine the required copper stabilisation and the parameters of the protection system a finite difference program has been developed. The program numerically approximates the heat balance equation and evaluates the temperature profile after a quench as a funct...

  7. Processing of the quench detection signals in W7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko; Petry, Klaus; Ebersoldt, Andreas

    2009-01-01

    The Wendelstein 7-X (W7-X) project uses superconductive coils for generation of the magnetic field to keep the plasma. One of the important safety systems is the protection against quench events. The quench detection system of W7-X protects the superconducting coils, the superconducting bus bar sections and the high temperature superconductor of the current leads against the damage because of a quench and against the high stress by a fast discharge of the magnet system. Therefore, the present design of the quench detection system (QDS) uses a two-stage safety concept for discharging the magnetic system. This paper describes the present design of the system assembly from the quench detection unit (QDU) for the detection of the quench to the quench detection interface (QDI) to implement the two-stage safety concept.

  8. High-Field Quench Behavior and Protection of $Bi_2 Sr_2 Ca Cu_2 O_x$ Coils: Minimum and Maximum Quench Detection Voltages

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming [Fermilab; Ye, Liyang [NCSU, Raleigh; Turrioni, Daniele [Fermilab; Li, Pei [Fermilab

    2015-01-01

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.

  9. A new hybrid protection system for high-field superconducting magnets

    CERN Document Server

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coil's conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnet's coil.

  10. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Bitterling, Oliver

    2017-01-01

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10 -10 cm 2 which is one order of magnitude lower than the target set during the development of this system.

  11. Quench Detection and Protection of the MQT Type Magnet

    CERN Document Server

    Teng, M

    1998-01-01

    The LHC design as from version 5 is equipped with tuning, trim and skew quadrupoles with similar cross-section designs (MQT). To qualify the quench detection and magnet protection needs, several compu tational methods have been applied. They range from global calculation of a uniform adiabatic temperature rise to more refined simulations, including the Quaber simulation package which is also applie d for quench calculations on the main magnets. A very important parameter is the quench propagation velocity, on which the Quaber simulations rely. An attempt was made to simulate the physics of the p ropagation itself, taking into account the temperature dependence of the wire parameters with the Quenchprop algorithm described in this report. The calculated results were compared with those from ex periments on a single wire. Further results of measurements on prototype magnets will allow fine-tuning of the program parameters.

  12. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  13. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bitterling, Oliver

    2017-04-03

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10{sup -10} cm{sup 2} which is one order of magnitude lower than the target set during the development of this system.

  14. Development of Quench Detection System for W7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Rummel, Thomas; Fricke, Marko; Petry, Klaus; Demattio, Horst

    2007-01-01

    The Quench Detection System of W7-X will consist of nearly 400 Quench Detection Units (QDU) for the fast and reliable supervision of the 70 superconducting coils and the 120 superconducting bus bar sections. There will be five control racks with about 80 QDU, a data acquisition unit, an ac-dc power supply with integrated dc UPS unit in each of the racks and a PC based data management system as an overlay structure. Each QDU will have a special analogue input circuit realised as a programmable half bridge front end with different polarity-sensing and limiting functions for suppressing high dynamic voltages. Special filter design is included for noise-suppression and over voltage protection. A reconfigurable control/arithmetic unit offers possibilities of future expansions (e.g. all digital evaluation). The QDU acquires and checks the differential voltages of the superconductors permanently. In case of a quench it triggers the fast discharge of the coils and the storage of the voltage signals on the memory unit. The quench signals are in the mV range and have to be clearly identified within a noisy and a high-voltage background within a few milliseconds. Each QDU transfers the stored signal dates via a high-speed RS485 serial interface with 20 kV optical isolation barrier to an industrial type data acquisition unit. A second optically isolated RS485-network enables interconnection of each QDU in the control rack (Compound-Mode of QDU). The QDU are designed with an internal failsafe, programmable self-test and redundancy feature, broken wire check of the quench detection cables and connectors inside and outside of the cryostat of W7-X. All QDU will be fed via an UPS supported 24 V dc bus through a high voltage isolated dc-dc transformer on each unit. The design of the Quench Detection System allows operation under high voltage levels of up to 8 kV and under magnetic stray field levels up to 30 mT. The front end is very well isolated and the outputs of the QDU are

  15. Beam loss monitor system for machine protection

    CERN Document Server

    Dehning, B

    2005-01-01

    Most beam loss monitoring systems are based on the detection of secondary shower particles which depose their energy in the accelerator equipment and finally also in the monitoring detector. To allow an efficient protection of the equipment, the likely loss locations have to be identified by tracking simulations or by using low intensity beams. If superconducting magnets are used for the beam guiding system, not only a damage protection is required but also quench preventions. The quench levels for high field magnets are several orders of magnitude below the damage levels. To keep the operational efficiency high under such circumstances, the calibration factor between the energy deposition in the coils and the energy deposition in the detectors has to be accurately known. To allow a reliable damage protection and quench prevention, the mean time between failures should be high. If in such failsafe system the number of monitors is numerous, the false dump probability has to be kept low to keep a high operation...

  16. First experience with the new coupling loss induced quench system

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Dudarev, A.V.; Kirby, G.; Sperin, K.A.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A

  17. Quench detection and behaviour in case of quench in the ITER magnet systems

    International Nuclear Information System (INIS)

    Coatanea-Gouachet, M.

    2012-02-01

    The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection, which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code. Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters, which are the voltage threshold (in the range of 0.1 V - 0.55 V) and the holding time (in the range of 1-1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench, which is a classical problem. (author)

  18. Quench protection test results and comparative simulations on the first 10 meter prototype dipoles for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Gerin, G.; Marquis, A.

    1996-01-01

    The first 10 meter long dipole prototypes made by European Industry within the framework of the R and D program for the Large Hadron Collider (LHC) have been tested at CERN. As a part of the test program, a series of quench protection tests have been carried out in order to qualify the basic protection scheme foreseen for the LHC dipoles (quench heaters and cold diodes). Results are presented on the quench heater performance, and on the maximum temperatures and voltages observed during quenches under the so-called machine conditions. Moreover, an update of the quench simulation package specially developed at CERN (QUABER 2) has been recently made. Details on this new version of QUABER are given. Simulation runs have been made specifically to validate the model with the results from the measurements on quench protection mentioned above

  19. Quench and protection characteristics of the GEM test coil

    International Nuclear Information System (INIS)

    Chaniotakis, E.A.; Marston, P.G.

    1994-01-01

    The GEM test coil, will be wound from 70 m of conductor identical to that used in the full scale magnet. The coil configuration will duplicate the field distribution of the full scale magnet and current control will duplicate full scale current decay characteristics. Therefore, quench/protection analysis of this coil will reveal very important information about the behavior of the full scale model. Due to the uncertainty associated with the contact between the cable, the conduit and the sheath, a parametric analysis has been performed in order to determine and bracket the behavior. With no electrical contact the quench evolves normally until, due to heat transfer from the sheath into the cable, the superconductor temperature becomes critical and the entire length becomes normal

  20. The quench detection system of Wendelstein 7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko

    2011-01-01

    The Quench Detection System of Wendelstein W7-X has been developed, pretested and manufactured during the last four years. This safety subsystem of the superconducting magnet power supply will guarantee the safe operating of the whole magnet system. The main targets of the Quench Detection System are the complete data acquisition of all the voltages along the superconducting components, i.e. non planar and planar coils, and bus bars, the evaluation of this data and the control of the magnet system safety discharges. The Quench Detection System is generating control commands for the magnet power supply control system and the electrical status of the superconducting components of W7-X. The Quench Detection System consists of nearly 580 Quench Detection Units (QDU) located in 10 QD-subsystems, 8 racks in each, one host system and two special interfaces for evaluation of the quench control commands and the failure signals. The operating software suite of the QD System allows the configuration, the operation and the maintenance of the whole system.

  1. Design and implementation of quench detection instrumentation for TF magnet system of SST-1

    International Nuclear Information System (INIS)

    Khristi, Y.; Sharma, A.N.; Doshi, K.; Banaudha, M.; Prasad, U.; Varmora, P.; Patel, D.; Pradhan, S.

    2014-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in engineering validation phase. The assembled Toroidal Field (TF) magnet system of SST-1 will be operated at 10 kA of nominal current at helium cooled condition of 4.5 K. A reliable and fail proof quench detection (QD) system is essential for the safety and the investment protection requirements of the magnets. This QD system needs to continuously monitor all the superconducting coils, which include 16 TF magnets, return-loop, bus bars and current leads. In case of any event initiating the normal resistive zone and reaching thermal run-away, the QD system needs to trigger the magnet protection circuits. Precision instrumentation and control system with 204 signal channels had been developed for detection of quench anywhere in the entire TF magnet system. In the present configuration of quench detection scheme, the voltage drop across each double pancake (DP) of each TF coil are compared with its two adjacent DPs for the detection of normal zone and cancelation of inductive couples. Two identical redundant systems with one out of two configurations are successfully commissioned and tested at IPR. This paper describes the design and implementation of the QD system, Installation experience, validation test and initial results from the recent SST-1 magnet system charging

  2. Quench propagation and quench detection in the TF system of JT-60SA

    International Nuclear Information System (INIS)

    Lacroix, Benoit; Duchateau, Jean-Luc; Meuris, Chantal; Ciazynski, Daniel; Nicollet, Sylvie; Zani, Louis; Polli, Gian-Mario

    2013-01-01

    Highlights: • The JT-60SA primary quench detection system will be based on voltage measurements. • The early quench propagation was studied in the JT-60SA TF conductor. • The impact of the conductor jacket on the hot spot criterion was quantified. • The detection parameters were investigated for different quench initiations. -- Abstract: In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages. The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code. The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation

  3. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  4. The preliminary study of the quench protection of an MgB2

    Science.gov (United States)

    Juster, F. P.; Berriaud, C.; Bonelli, A.; Pasquet, R.; Przybilski, H.; Schild, T.; Scola, L.

    2014-01-01

    In the framework of general studies currently carried out at CEA/Saclay in collaboration with Sigmaphi Company on dry MgB2 magnet operating at 10 K and medium range field, 1 T up to 4 T., we plan to build a prototype-coil with a commercial MgB2 wire. This coil, the nominal axial magnetic field of which is 1 tesla, will be placed in a 3 teslas background field generated by a classical NbTi coil. This paper deals with the preliminary quench protection studies including stability and quench propagation modeling.

  5. Optimization of a quench detection system for superconducting magnets

    International Nuclear Information System (INIS)

    Borlein, M.

    2004-12-01

    Subject of this report is the detection of a quench in a superconducting magnet. For the safe operation of superconducting magnets one of the most important issues is the quench detection system which controls the superconducting state of the magnet and triggers a safety discharge if necessary. If it comes to a breakdown of the superconductivity (quench), the magnet has to be discharged very quickly to avoid any damage or danger for the magnet or its environment. First an introducing overview is given. Next different methods of quench detection will be presented, partially on the basis of existing quench detection systems and the applicability of these methods in different states of the magnet operation will be shown. The different quench detection methods are compared and evaluated partially by using test experiments described in the appendix. As an application example this report contains a proposal for the quench detection system for the Wendelstein 7-X facility, actually built by the Institute for Plasma Physics, Garching [de

  6. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  7. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  8. Study of passive and active protection system for the SSC [Superconducting Super Collider] R ampersand D dipole magnet

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-06-01

    A comparative study of Passive versus Active Protection Systems is made using the computer programs SSC*, designed especially for this proposal. These programs track the quench evolution of each conductor independently, the axial quench velocity is given by a modified expression which correctly fits the experimental data, the phenomenological turn-to-turn transversal quench propagation is considered as an input parameter of the programs. The results of the simulations for a 40 mm dipole indicate that a single dipole is widely self-protected, which suggests that a Cold Diode Passive Protection System is a safe method to protect the magnet (no heaters are needed), and also that two or three magnets (Conceptual Design) will be a safe Active Protection System is the heater-time-delay to cause other quenching is sufficiently brief (τ h < 50 ms). Assuming the same turn-to-turn quench propagation for the 50 mm SSC R ampersand D Dipole Magnet, the predictions for this magnet will have much lower axial quench velocity and the above results will be still valid for this new magnet. 10 refs., 30 figs

  9. Study of electromagnetic interference on quench detecting system of HTS current leads for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Ji, Zhenshan; Zhu, C.M.; Zhen, L.G.; Xiao, Y.Z.

    2013-01-01

    Highlights: • EAST HTS superconducting magnet system shall be operating in a very noisy environment. • Voltage taps will have a lot of inductive voltage induced on them which makes quench detection very difficult. • The noise comes from the coupling between rapid pulsed poloidal coils, and radiation coupling interference associated with EAST heating systems;. • A series of related electromagnetic compatibility simulation tests have been carried out. • Electromagnetic noises are well restrained by choosing proper anti-interference means. -- Abstract: High temperature superconducting (HTS) material B-2223/Ag-Au has been used for EAST poloidal field (PF) coil current leads for reducing construction and operation cost of cryogenic system. The quench propagation velocity of HTS superconducting material is several orders of magnitude lower than that of normal low temperature current leads. It is difficult to detect weak signal of quench which is easily influenced by strong electromagnetic interference (EMI). In this paper, the sources of EMI from quench detecting system of high temperature current leads have been introduced. And we have chosen reasonable methods for good transformation and protection on the basis of electromagnetic compatibility simulation diagnosis experiments. Recent experimental results showed that the restraint of EMI has been achieved and has met the requirements of experiment

  10. Automatic quench compensation for liquid scintillation counting system

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    A method of automatic quench compensation is provided, where a reference measure of quench is taken on a sample prior to taking a sample count. The measure of quench is then compared with a reference voltage source which has been established to vary in proportion to the variation of the measure of quench with the level of a system parameter required to restore at least one isotope spectral energy endpoint substantially to a selected counting window discriminator level in order to determine the amount of adjustment of the system parameter required to restore the endpoint. This is followed by the appropriate adjustment of the system parameter required to restore the relative position of the discriminator windows and the sample spectrum and is followed in turn by taking a sample count

  11. Quench simulation results for a 12-T twin-aperture dipole magnet

    Science.gov (United States)

    Cheng, Da; Salmi, Tiina; Xu, Qingjin; Peng, Quanling; Wang, Chengtao; Wang, Yingzhe; Kong, Ershuai; Zhang, Kai

    2018-06-01

    A 12-T twin-aperture subscale dipole magnet is being developed for SPPC pre-study at the Institute of High Energy Physics (IHEP). The magnet is comprised of 6 double-pancake coils which include 2 Nb3Sn coils and 4 NbTi coils. As the stored energy of the magnet is 0.452 MJ and the operation margin is only about 20% at 4.2 K, a quick and effective quench protection system is necessary during the test of this high field magnet. For the design of the quench protection system, attention was not only paid to the hotspot temperature and terminal voltage, but also the temperature gradient during the quench process due to the poor mechanical characteristics of the Nb3Sn cables. With the adiabatic analysis, numerical simulation and the finite element simulation, an optimized protection method is adopted, which contains a dump resistor and quench heaters. In this paper, the results of adiabatic analysis and quench simulation, such as current decay, hot-spot temperature and terminal voltage are presented in details.

  12. Generalized thermalization for integrable system under quantum quench.

    Science.gov (United States)

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  13. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  14. Reliability analysis for the quench detection in the LHC machine

    CERN Document Server

    Denz, R; Vergara-Fernández, A

    2002-01-01

    The Large Hadron Collider (LHC) will incorporate a large amount of superconducting elements that require protection in case of a quench. Key elements in the quench protection system are the electronic quench detectors. Their reliability will have an important impact on the down time as well as on the operational cost of the collider. The expected rates of both false and missed quenches have been computed for several redundant detection schemes. The developed model takes account of the maintainability of the system to optimise the frequency of foreseen checks, and evaluate their influence on the performance of different detection topologies. Seen the uncertainty of the failure rate of the components combined with the LHC tunnel environment, the study has been completed with a sensitivity analysis of the results. The chosen detection scheme and the maintainability strategy for each detector family are given.

  15. Electronic Systems for the Protection of Superconducting Devices in the LHC

    CERN Document Server

    Denz, R; Mess, K H

    2008-01-01

    The Large Hadron Collider LHC [1] incorporates an unprecedented amount of superconducting components: magnets, bus-bars, and current leads. Most of them require active protection in case of a transition from the superconducting to the resistive state, the so-called quench. The electronic systems ensuring the reliable quench detection and further protection of these devices have been developed and produced over the last years and are currently being put into operation

  16. A new hybrid protection system for high-field superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Kirby, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A

  17. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Initial Validation Procedures

    International Nuclear Information System (INIS)

    Jaskierny, W.; Hance, R.

    1998-01-01

    This note presents the inspection and tests to be performed on the DZERO solenoid energization, controls, interlocks and quench protection system before it is energized for the first time. This test is to be performed with a 5000A jumper at the end of the bus instead of the solenoid. This system is based in DZERO room 511. A copy of this note shall be annotated, signed and dated by the person coordinating the procedure; and filed with the system maintenance records. Annotations shall include comments about any aspect of the procedure that is abnormal or unsuccessful. The following inspections and tests shall be performed by persons knowledgeable about the system. Each individual test step should be reviewed and understood before proceeding with that step.

  18. Quench simulations for superconducting elements in the LHC accelerator

    Science.gov (United States)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  19. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  20. Modelling of the quenching process in complex superconducting magnet systems

    International Nuclear Information System (INIS)

    Hagedorn, D.; Rodriguez-Mateos, F.

    1992-01-01

    This paper reports that the superconducting twin bore dipole magnet for the proposed Large Hadron Collider (LHC) at CERN shows a complex winding structure consisting of eight compact layers each of them electromagnetically and thermally coupled with the others. This magnet is only one part of an electrical circuit; test and operation conditions are characterized by different circuits. In order to study the quenching process in this complex system, design adequate protection schemes, and provide a basis for the dimensioning of protection devices such as heaters, current breakers and dump resistors, a general simulation tool called QUABER has been developed using the analog system analysis program SABER. A complete set of electro-thermal models has been crated for the propagation of normal regions. Any network extension or modification is easy to implement without rewriting the whole set of differential equations

  1. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  2. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  3. Quench in a conduction-cooled Nb3Sn SMES magnet

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto; Perälä, Raine

    2003-11-01

    Due to the rapid development of cryocoolers, conduction-cooled Nb3Sn devices are nowadays enabled. A 0.2 MJ conduction-cooled Nb3Sn SMES system has been designed and constructed. The nominal current of the coil was 275 A at 10 K. The quench tests have been performed and in this paper the experimental data are compared to the computational one. Due to a slow normal zone propagation, Nb3Sn magnets are not necessarily self-protective. In conduction-cooled coils, a thermal interface provides a protection method known as a quench back. The temperature rise in the coil during a quench was measured with a sensor located on the inner radius of the coil. The current decay was also monitored. The measured temperature increased for approximately 15 s after the current had already decayed. This temperature rise is due to the heat conduction from the hot spot. Thus, the measured temperature does not represent the hot-spot temperature. A computational quench model which takes into account quench back and heat conduction after the current decay was developed in order to understand the measured temperatures. According to the results, a quench back due to the eddy current induced heating of the thermal interface of an LTS coil was an adequate protection method.

  4. Quench protection analysis of the Mu2e production solenoid

    International Nuclear Information System (INIS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions

  5. Quench protection analysis of the Mu2e production solenoid

    Science.gov (United States)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  6. Instrumentation and Quench Protection for LARP Nb3Sn Magnets

    International Nuclear Information System (INIS)

    Felice, H.; Ambrosio, G.; Chlachidize, G.; Ferracin, P.; Hafalia, R.; Hannaford, R.C.; Joseph, J.; Lietzke, A.; McInturff, A.; Muratore, J.; Prestemon, S.; Sabbi, G.L.; Schmalzle, J.; Wanderer, P.; Wang, X.

    2008-01-01

    The US LHC Accelerator Research Program (LARP) is developing Nb 3 Sn prototype quadrupoles for the LHC interaction region upgrades. Several magnets have been tested within this program and understanding of their behavior and performance is a primary goal. The instrumentation is consequently a key consideration, as is protection of the magnet during quenches. In all LARP magnets, the flexible circuits traces combine the instrumentation and the protection heaters. Their fabrication relies on printed circuit technology based on a laminate made of a 45-micron thick kapton sheet and a 25-micron thick foil of stainless steel. This paper reviews the protection heaters designs used in the TQ (Technology Quadrupole) and LR (Long Racetrack) series as well as the one used in LBNL HD2a high field dipole and presents the design of the traces for the Long Quadrupole (LQ), addressing challenges associated with the stored energy and the length of the magnet.

  7. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  8. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  9. "Super-quenching" state protects Symbiodinium from thermal stress - Implications for coral bleaching.

    Science.gov (United States)

    Slavov, Chavdar; Schrameyer, Verena; Reus, Michael; Ralph, Peter J; Hill, Ross; Büchel, Claudia; Larkum, Anthony W D; Holzwarth, Alfred R

    2016-06-01

    The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching. Copyright © 2016. Published by Elsevier B.V.

  10. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  11. Analysis of the Dependability of the LHC Quench Detection System During LHC Run 2 and Further System Evolution

    OpenAIRE

    Podzorny, Tomasz; Calcoen, Daniel; Denz, Reiner; Siemko, Andrzej; Spasic, Jelena; Steckert, Jens

    2017-01-01

    The quench detection system (QDS) of the LHC superconducting circuits is an essential part of the LHC machine protection and ensures the integrity of key elements of the accelerator. The large amount of hardwired and software interlock channels of the QDS requires a very high system dependability in order to reduce the risk of affecting the successful operation of the LHC. This contribution will present methods and tools for systematic fault tracking and analysis, and will discuss recent resu...

  12. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  13. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  14. Considerations of coil protection and electrical connection schemes in large superconducting toroidal magnet system

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1976-03-01

    A preliminary comparison of several different coil protection and electrical connection schemes for large superconducting toroidal magnet systems (STMS) is carried out. The tentative recommendation is to rely on external dump resistors for coil protection and to connect the coils in the toroidal magnet in several parallel loops (e.g., every fourth coil is connected into a single series loop). For the fault condition when a single coil quenches, the quenched coil should be isolated from its loop by switching devices. The magnet, as a whole, should probably be discharged if more than a few coils have quenched

  15. Quench detection of fast plasma events for the JT-60SA central solenoid

    International Nuclear Information System (INIS)

    Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Kamiya, Koji; Takahashi, Yoshikazu; Yoshida, Kiyoshi

    2012-01-01

    Highlights: ► Pick-up coil method is used for the quench detection of JT-60SA magnet system. ► Disk-shaped pick-up coils are inserted in CS module to compensate inductive voltage. ► Applicability of pick-up coil is evaluated by two dimensional analysis. ► Pick-up coil is applicable whenever disruption, mini collapse and other plasma event. - Abstract: The JT-60 is planned to be modified to a full-superconducting tokamak referred to as the JT-60 Super Advanced (JT-60SA). The maximum temperature of the magnet during its quench might reach the temperature of higher than several hundreds Kelvin that will damage the superconducting magnet itself. The high precision quench detection system, therefore, is one of the key technologies in the superconducting magnet protection system. The pick-up coil method, which is using voltage taps to detect the normal voltage, is used for the quench detection of the JT-60SA superconducting magnet system. The disk-shaped pick-up coils are inserted in the central solenoid (CS) module to compensate the inductive voltage. In the previous study, the quench detection system requires a large number of pick-up coils. The reliability of quench detection system would be higher by simplifying the detection system such as reducing the number of pick-up coils. Simplifying the quench detection system is also important to reduce the total cost of the protection system. Hence the design method is improved by increasing optimizing parameters. The improved design method can reduce the number of pick-up coils without reducing the sensitivity of detection; consequently the protection system can be designed with higher reliability and lower cost. The applicability of the disk-shaped pick-up coil for quench detection system is evaluated by the two dimensional analysis. In the previous study, however, the analysis model only took into account the CS, EF (equilibrium field) coils and plasma. Therefore, applicability of the disk-shaped pick-up coil for

  16. Performance of the MAGCOOL-subcooler cryogenic system after SSC quadrupole quenches

    International Nuclear Information System (INIS)

    Wu, K.C.

    1993-01-01

    The subcooler assembly installed in the MAGCOOL magnet test area at Brookhaven National Laboratory has been used for testing SSC dipoles, quadrupoles and a spool piece since 1989. A detailed description of the system, its steady state capacity and the performance after quenches of a 50 mm SSC dipole were given. Subsequent studies on low current quenches of the SSC dipoles and quenches of the RHIC dipoles were also carried out. In this paper, the performance of the subcooler after quenches of the SSC quadrupole QCC404 is presented. Pressures, temperatures and flow rates in the magnet cooling loop after magnet quenches are given as a function of time. The cooling rates and total energy removed by cooling during quench recovery have been calculated for quench currents between 2000 and 7952 amperes. Because the inductance of the quadrupole is about one tenth that of a SSC dipole, the stored energy released is small and the impact on the system is mild. The cooling loop pressure never exceeds 12 atmospheres and the cryogenic system recovers in less than 15 minutes. As in all past studies, the peak pressure and temperature in the magnet cooling loop are linearly proportional to the energy released during a quench and excellent agreement between the total cooling provided and the magnetic stored energy is found

  17. Quench simulations for superconducting elements in the LHC accelerator

    CERN Document Server

    Sonnemann, F

    2000-01-01

    The design of he protection system for he superconducting elements in an accel- erator such as the Large Hadron Collider (LHC),now under construction at CERN, requires a detailed understanding of the hermo-hydraulic and electrodynamic pro- cesses during a quench.A numerical program (SPQR -Simulation Program for Quench Research)has been developed o evaluate temperature and voltage dis ri- butions during a quench as a func ion of space and ime.The quench process is simulated by approximating the heat balance equation with the finite di fference method in presence of variable cooling and powering conditions.The simulation predicts quench propagation along a superconducting cable,forced quenching with heaters,impact of eddy curren s induced by a magnetic field change,and heat trans- fer hrough an insulation layer in o helium,an adjacen conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequ...

  18. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  19. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    OpenAIRE

    Schwerg, N; Auchman, B; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the fe...

  20. 40 CFR 1065.675 - CLD quench verification calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD quench verification calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.675 CLD quench verification calculations. Perform CLD quench-check calculations as follows: (a) Perform a CLD analyzer quench...

  1. Quench studies of YBCO insulated and non-insulated pancake coils

    OpenAIRE

    Glowa Natalia; Wesche Rainer; Bruzzone Pierluigi

    2014-01-01

    As a result of extremely high upper critical fields Bc2 high temperature superconductors (HTSs) have the potential to be used as high field insert coils in magnet systems where the background field is provided by low temperature superconductors (LTS). However due to low quench propagation velocity in HTS as compared to LTS the issue of developing a fast and reliable quench detection and protection scheme for such magnet systems remains a serious challenge. In order to provide a stable operati...

  2. Computational quench model applicable to the SMES/CICC

    Science.gov (United States)

    Luongo, Cesar A.; Chang, Chih-Lien; Partain, Kenneth D.

    1994-07-01

    A computational quench model accounting for the hydraulic peculiarities of the 200 kA SMES cable-in-conduit conductor has been developed. The model is presented and used to simulate the quench on the SMES-ETM. Conclusions are drawn concerning quench detection and protection. A plan for quench model validation is presented.

  3. Entropy of isolated quantum systems after a quench.

    Science.gov (United States)

    Santos, Lea F; Polkovnikov, Anatoli; Rigol, Marcos

    2011-07-22

    A diagonal entropy, which depends only on the diagonal elements of the system's density matrix in the energy representation, has been recently introduced as the proper definition of thermodynamic entropy in out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and spinless fermions, and after a local chemical potential quench in a system of hard-core bosons in a superlattice potential. The former systems have a chaotic regime, where the diagonal entropy becomes equivalent to the equilibrium microcanonical entropy, coinciding with the onset of thermalization. The latter system is integrable. We show that its diagonal entropy is additive and different from the entropy of a generalized Gibbs ensemble, which has been introduced to account for the effects of conserved quantities at integrability.

  4. submitter Quench Protection Heater Study With the 2-m Model Magnet of Beam Separation Dipole for the HL-LHC Upgrade

    CERN Document Server

    Suzuki, Kento; Higashi, Norio; Iida, Masahisa; Ikemoto, Yukiko; Kawamata, Hiroshi; Kimura, Nobuhiro; Nakamoto, Tatsushi; Ogitsu, Toru; Ohata, H; Okada, Naoki; Okada, Ryutaro; Sugano, Michinaka; Musso, Andrea; Todesco, Ezio

    2018-01-01

    The beam separation dipole magnet (D1), which is being operated in the large hadron collider (LHC), has to be replaced in accordance with upgrade to the high-luminosity LHC. The new D1 will be equipped with several circuits of heaters by which most of the stored energy is dissipated in the whole of the magnet during its quench, thereby avoiding localization of hot spots. Prior to construction of the production magnet, the 2-m mechanical short model is fabricated, and performance of this quench protection heater is evaluated through a series of the cold tests. As a result, we confirm that the maximum hot spot temperature obtained in the measurement reaches the practical limit of 300 K, and determine to design a new heater circuit. In this paper, we report the heater studies together with the prospect for future design of the quench protection heater.

  5. Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a quench.

    Science.gov (United States)

    Khatami, Ehsan; Pupillo, Guido; Srednicki, Mark; Rigol, Marcos

    2013-08-02

    We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilibrium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices with dipolar interactions whose strength is changed during the quench. We find indications that fluctuation-dissipation relations hold if the system is nonintegrable after the quench, as well as if it is integrable after the quench if the initial state is an equilibrium state of a nonintegrable Hamiltonian. On the other hand, we find indications that they fail if the system is integrable both before and after quenching.

  6. Development of Industrially Produced Composite Quench Heaters for the LHC Superconducting Lattice Magnets

    CERN Document Server

    Szeless, Balázs; Calvone, F

    1996-01-01

    The quench heaters are vital elements for the protection of the LHC superconducting lattice magnets in the case of resistive transitions of the conductor. The basic concept of magnet protection and technical solutions are briefly presented. The quench heater consists of partially copper clad stainless steel strips sandwiched in between electric insulating carrier foils with electrical and mechanical properties such as to withstand high voltages, low temperatures, pressures and ionizing radiation. Testing of some commercial available electric insulation foils, polyimide (PI), polyetheretherketon (PEEK) and polyarylate (PA) and combinations of adhesive systems which are suitable for industrial processing are described. Possible industrial methods for series production for some 80 km of these composite quench heaters are indicated.

  7. Exact solution for the quench dynamics of a nested integrable system

    Science.gov (United States)

    Mestyán, Márton; Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale

    2017-08-01

    Integrable models provide an exact description for a wide variety of physical phenomena. For example nested integrable systems contain different species of interacting particles with a rich phenomenology in their collective behavior, which is the origin of the unconventional phenomenon of spin-charge separation. So far, however, most of the theoretical work in the study of non-equilibrium dynamics of integrable systems has focussed on models with an elementary (i.e. not nested) Bethe ansatz. In this work we explicitly investigate quantum quenches in nested integrable systems, by generalizing the application of the quench action approach. Specifically, we consider the spin-1 Lai-Sutherland model, described, in the thermodynamic limit, by the theory of two different species of Bethe-ansatz particles, each one forming an infinite number of bound states. We focus on the situation where the quench dynamics starts from a simple matrix product state for which the overlaps with the eigenstates of the Hamiltonian are known. We fully characterize the post-quench steady state and perform several consistency checks for the validity of our results. Finally, we provide predictions for the propagation of entanglement and mutual information after the quench, which can be used as signature of the quasi-particle content of the model.

  8. MD290: Q4 IP6 Quench Level

    CERN Document Server

    Bednarek, Mateusz Jakub; Lechner, Anton; CERN. Geneva. ATS Department

    2016-01-01

    The detailed program proposed for the LHC Machine Development concerning a quench induced by fast losses on the MQY.4L6 quadrupole is presented. The merit of the MD, the necessary modifications of the machine protection systems are presented together with a preliminary analysis of the MD results.

  9. Electronic Systems for the Protection of Superconducting Elements in the LHC

    CERN Document Server

    Denz, R

    2006-01-01

    The Large Hadron Collider LHC, currently under construction at CERN, will incorporate an unprecedented number of superconducting magnets, busbars and current leads. As most of these elements depend on active protection in case of a transition from the superconducting to the resistive state, the so-called quench, a protection system based on modern, state of the art electronics has been developed.

  10. Study of Quench Protection for the Nb$_3$Sn Low-β Quadrupole for the LHC Luminosity Upgrade (HiLumi-LHC)

    CERN Document Server

    Todesco, E; Bellomo, G; Sorbi, M; Ambrosio, G; Chlachidze, G; Felice, H; Marchevsky, M; Salmi, T

    2015-01-01

    The HiLumi program is aiming to develop and build new Nb$_{3}$Sn, high-field (12 T) and large aperture (150 mm) superconducting quadrupoles, which will be inserted in the LHC interaction regions and will provide the final focusing of the beam, in the program of the luminosity upgrade. The quench protection of these magnets is one of the most challenging aspects, mainly because of the large value of the magnet inductance (160 mH for the configuration with two 8 m long magnets in series), of the large value of the stored magnetic energy density in the coils (0.12 J/mm3, a factor 2 larger than in the conventional NbTi quadrupoles) and of the use of Nb$_{3}$Sn as conductor, which has never been used for large accelerator magnets. Previous works have demonstrated that a “standard” conservative analysis, assuming quench heaters only on the coils outer layer, gives high hot spot temperature, close to the design limit (350 K). In this paper, a new study of quench protection is presented. The benefic effects of la...

  11. Quench protection of the LHC inner triplet quadrupoles built at Fermilab

    CERN Document Server

    Bauer, P; Chiesa, L; Di Marco, J; Fehér, S; Lamm, M J; McInturff, A D; Nobrega, A; Orris, D; Tartaglia, M; Tompkins, J C; Zlobin, A V

    2001-01-01

    High gradient quadrupoles are being developed by the US-LHC Accelerator project for the LHC interaction region inner triplets. These 5.5 m long magnets have a single 70 mm aperture and operate in superfluid helium at a peak gradient of 215 T/m. Through the construction and test of eight 2 meter long model quadrupoles, strip heaters of various geometries and insulation thicknesses have proven to be effective in protecting the magnets from excessively high coil temperatures and coil voltages to ground. This paper reports on the results of the model program to optimize the heater performance within the context of the LHC inner triplet electrical power and quench detection scheme. (6 refs).

  12. Thermal-hydraulic behaviour of the ITER TF system during a quench development

    International Nuclear Information System (INIS)

    Nicollet, S.; Lacroix, B.; Bessette, D.; Copetti, R.; Duchateau, J.L.; Coatanea-Gouachet, M.; Rodriguez-Mateos, F.

    2011-01-01

    In order to ensure the safety of the ITER TF magnets, a primary quench detection system has been foreseen, based on voltage detection. In addition, a secondary quench detection could rely on signals of thermo-hydraulic nature. As a matter of fact, the development of a quench in a CICC leads to significant variations of pressure and mass flow at the quenched pancake extremities. Analyses of the quench development have thus been performed using the coupled GANDALF and FLOWER codes. This tool allows to simulate the thermo-hydraulic behaviour of one CICC with a model of the external cryogenic circuit. The study has focused on the first seconds of the quench development, supposing that the quench has not been detected earlier by the primary detector. It is shown that signals regarding pressure, mass flow and temperature reach significant high values especially in the connecting feeder associated with the helium inlet. More detailed studies will be needed to select a secondary detector in this region.

  13. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  14. New, coupling loss induced, quench protection system for superconducting accelerator magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Giloux, C.; Kirby, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet in the CERN magnet test facility. The method relies on a capacitive discharge system inducing during a few periods an oscillation of the transport

  15. System and method for quench and over-current protection of superconductor

    Science.gov (United States)

    Huang, Xianrui; Laskaris, Evangelos Trifon; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas; Fogarty, James Michael; Steinbach, Albert Eugene

    2005-05-31

    A system and method for protecting a superconductor. The system may comprise a current sensor operable to detect a current flowing through the superconductor. The system may comprise a coolant temperature sensor operable to detect the temperature of a cryogenic coolant used to cool the superconductor to a superconductive state. The control circuit is operable to estimate the superconductor temperature based on the current flow and the coolant temperature. The system may also be operable to compare the estimated superconductor temperature to at least one threshold temperature and to initiate a corrective action when the superconductor temperature exceeds the at least one threshold temperature.

  16. Quench protection diodes for the large hadron collider LHC at CERN

    International Nuclear Information System (INIS)

    Hagedorn, D.; Naegele, W.

    1992-01-01

    For the quench protection of the main ring dipole and quadrupole magnets for the proposed Large Hadron Collider at CERN two lines of approach have been pursued for the realization of a suitable high current by-pass element and liquid helium temperature. Two commercially available diodes of the HERA type connected in parallel can easily meet the requirements if a sufficient good current sharing is imposed by current balancing elements. Design criteria for these current balancing elements are derived from individual diode characteristics. Single diode elements of thin base region, newly developed in industry, have been successfully tested. The results are promising and, if the diodes can be made with reproducible characteristics, they will provide the preferred solution especially in view of radiation hardness

  17. Universality in the equilibration of quantum systems after a small quench

    International Nuclear Information System (INIS)

    Campos Venuti, Lorenzo; Zanardi, Paolo

    2010-01-01

    A sudden change in the Hamiltonian parameter drives a quantum system out of equilibrium. For a finite-size system, expectations of observables start fluctuating in time without converging to a precise limit. A new equilibrium state emerges only in the probabilistic sense, when the probability distribution for the observable expectations over long times concentrates around their mean value. In this paper we study the full statistic of generic observables after a small quench. When the quench is performed around a regular (i.e., noncritical) point of the phase diagram, generic observables are expected to be characterized by Gaussian distribution functions ('good equilibration'). Instead, when quenching around a critical point a new, universal, double-peaked distribution function emerges for relevant perturbations. Our analytic predictions are numerically checked for a nonintegrable extension of the quantum Ising model.

  18. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  19. Porous debris behavior modeling of QUENCH-02, QUENCH-03 and QUENCH-09 experiments

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2006-01-01

    The heat-up, melting, relocation, hydrogen generation phenomena, relevant for high-temperature stages both in a reactor case and small-scale integral tests like QUENCH, are governed in particular by heat and mass transfer in porous debris and molten pools which are formed in the core region. Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03, QUENCH-09) plays a considerable role and its adequate modeling is important for thermal analysis. In particular, the analysis of QUENCH experiments shows that the major hydrogen release takes place in debris and melt regions formed in the upper part of the fuel assembly. The porous debris model was implemented in the Russian best estimate numerical code RATEG/SVECHA/HEFEST developed for modelling thermal hydraulics and severe accident phenomena in a reactor. The original approach for debris evolution is developed in the model from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (author)

  20. Design and preliminary test results of the quench detection system for IFSMTF

    International Nuclear Information System (INIS)

    Shen, S.S.; Walstrom, P.L.; Wilson, C.T.; Goddard, J.S.

    1985-01-01

    A unique quench detection system was designed for the International Fusion Superconducting Magnet Test Facility (IFSMTF), where a simultaneous test of six large superconducting toroidal field magnets will be carried out. The scheme was based on analog subtraction of self and neighboring pickup winding voltage from the coil voltage to yield a compensated signal proportional to a normal-zone voltage. The compensated signals were input to quench detection modules that give a quench output signal to discharge the coil if the compensated signals exceed preset thresholds for preset time durations. This paper summarizes the design and analysis of the system and presents the experimental results of the simulation tests, two-coil charging-discharging tests, and the normal-zone recovery tests

  1. Upgrade of the protection system for superconducting circuits in the LHC

    CERN Document Server

    Denz, R; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J

    2010-01-01

    Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.

  2. Upgrade of the protection system for superconducting circuits in the LHC

    OpenAIRE

    Denz, R; Dahlerup-Petersen, K; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J

    2009-01-01

    Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.

  3. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Operating Procedures

    International Nuclear Information System (INIS)

    Hance, R.

    1998-01-01

    This procedure is used when it is necessary to operate the solenoid energization, controls, interlocks and quench detection system. Note that a separate procedure exists for operating the solenoid 'cryogenic' systems. Only D0 Control Room Operators or the Project Electrical Engineer are qualified to execute these procedures or operate the solenoid system. This procedure assumes that the operator is familiar with using the Distributed Manufacturing Automation and Control Software (DMACS).

  4. Radiation resistant quench protection diodes for the LHC

    International Nuclear Information System (INIS)

    Hagedorn, D.; Coull, L.

    1994-01-01

    The quench protection diodes for the proposed Large Hadron Collider at CERN will be located inside the He-II vessel of the short straight section of one half cell, where they could be exposed to a radiation dose of about 50 kGy and a total neutron fluence of about 10 15 n/cm 2 over 10 years at temperatures of about 2 K. To investigate the influence of irradiation on the electrical characteristics of the diodes, newly developed diodes of thin base region of the diffusion type and of the epitaxial type have been submitted to irradiation tests at liquid nitrogen temperature in a target area of the SPS accelerator at CERN. The degradation of the electrical characteristics of the diodes for a radiation dose up to about 20 kGy and neutron fluence of up to about 5 10 14 n/cm 2 and the effect of carrier injection and thermal annealing after irradiation have been measured. The test results show that only the thin base diodes of the epitaxial type are really radiation resistant. A compromise must be found between required blocking characteristics and radiation resistance. Annealing by carrier injection and occasional warm up to room temperature can extend the service life of irradiated diodes quite substantially

  5. Quench Detection and Instrumentation for the Tokamak Physics Experiment magnets

    International Nuclear Information System (INIS)

    Chaplin, M.R.; Hassenzahl, W.V.; Schultz, J.H.

    1993-01-01

    The design of the Local Instrumentation ampersand Control (I ampersand C) System for the Tokamak Physics Experiment (TPX) superconducting PF ampersand TF magnets is presented. The local I ampersand C system monitors the status of the magnet systems and initiates the proper control sequences to protect the magnets from any foreseeable fault. Local I ampersand C also stores magnet-system data for analysis and archiving. Quench Detection for the TPX magnets must use a minimum of two independent sensing methods and is allowed a detection time of one second. Proposed detection methods include the measurement of; (1) normal-zone resistive voltage, (2) cooling-path helium flow, (3) local temperature in the winding pack, (4) local pressure in the winding pack. Fiber-optic based isolation systems are used to remove high common-mode magnet voltages and eliminate ground loops. The data acquisition and fault-detection systems are computer based. The design of the local I ampersand C system incorporates redundant, fault-tolerant, and/or fail-safe features at all component levels. As part of a quench detection R ampersand D plan, a Quench Detection Model Coil has been proposed to test all detection methods. Initial cost estimates and schedule for the local I ampersand C system are presented

  6. Development of radiation tolerant components for the Quench Protection System at CERN

    Science.gov (United States)

    Bitterling, O.; Denz, R.; Steckert, J.; Uznanski, S.

    2016-01-01

    This paper describes the results of irradiation campaigns with the high resolution Analog to Digital Converter (ADC) ADS1281. This ADC will be used as part of a revised quench detection circuit for the 600 A corrector magnets at the CERN Large Hadron Collider (LHC) . To verify the radiation tolerance of the ADC an irradiation campaign using a proton beam, applying doses up to 3,4 kGy was conducted. The resulting data and an analysis of the found failure modes is discussed in this paper. Several mitigation measures are described that allow to reduce the error rate to levels acceptable for operation as part of the LHC QPS.

  7. Development of radiation tolerant components for the Quench Protection System at CERN

    International Nuclear Information System (INIS)

    Bitterling, O.; Denz, R.; Steckert, J.; Uznanski, S.

    2016-01-01

    This paper describes the results of irradiation campaigns with the high resolution Analog to Digital Converter (ADC) ADS1281. This ADC will be used as part of a revised quench detection circuit for the 600 A corrector magnets at the CERN Large Hadron Collider (LHC) . To verify the radiation tolerance of the ADC an irradiation campaign using a proton beam, applying doses up to 3,4 kGy was conducted. The resulting data and an analysis of the found failure modes is discussed in this paper. Several mitigation measures are described that allow to reduce the error rate to levels acceptable for operation as part of the LHC QPS

  8. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  9. Study of electromagnetic noise influence on quench detection system under different discharge conditions for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Shen, Biao; Lv, Huanyu; Xiao, Y.Z.

    2013-01-01

    Highlights: ► Reliable quench detection in EAST is a key issue for steady-state operation. ► The electromagnet noise interference associated with detection signals under different discharge conditions are evaluated. ► The effective measures have been realized on detection systems. ► Recently upgrade work has been done, especially for the optimization of ACS and false FSDS were reduced greatly. -- Abstract: EAST is the first Tokamak device whose toroidal and poloidal magnet are superconducting. The enormous magnetic field energy stored in the magnet system will transfer into thermal energy and cause the damage of superconducting magnet, if a quench happened. Therefore, reliable quench detection is a key issue for steady-state operation. In addition to electromagnetic noise from poloidal magnet fields and plasma current which will experience fast current ramp rate, radio frequency noise from heating system also have some interference on quench detection system to a certain degree. The most difficult point for quench detection system is required to have more detail evaluation on electromagnetic noise interference. Recently experiments have been carried out successfully in EAST device. The steady-state operation with 1 MA of plasma current and more than 100-s plasma duration has been obtained. In the paper, the electromagnetic noise interference on quench detection system under different discharge conditions are analyzed and relative process methods are also introduced. The technological experience and experimental data are significant for the constructing ITER and similar superconducting device have been mentioned which will supply significant technological experience and experimental data for constructing ITER and similar superconducting device

  10. Quench Detection and Protection of an HTS Coil

    Science.gov (United States)

    Sheehan, Evan; Pfotenhauer, John; Miller, Franklin; Christianson, Owen

    2017-12-01

    A pulsed, modular HTS magnet for energy storage applications was constructed and tested. Charge and discharge pulses were accomplished in about 1 second. A recuperative cryogenic cooling system supplies 42 to 80 Kelvin helium gas to the magnet. A practical solution to overvoltage and overcurrent protection has been implemented digitally using LabVIEW. Voltages as little as 46 μV greater than the expected value trigger the protection system, which stops the pulse profile and begins an immediate current ramp down to zero over 1 second. The protection system has displayed its effectiveness in HTS transition detection and damage prevention. Experimentation has demonstrated that current pulses on the order of seconds with amplitudes of up to 110 Amps can be achieved for extended periods. Higher currents produce joint heating in excess of the available cooling from the existing cryogenic system.

  11. Amide proton solvent protection in amylin fibrils probed by quenched hydrogen exchange NMR.

    Directory of Open Access Journals (Sweden)

    Andrei T Alexandrescu

    Full Text Available Amylin is an endocrine hormone that accumulates in amyloid plaques in patients with advanced type 2 diabetes. The amyloid plaques have been implicated in the destruction of pancreatic β-cells, which synthesize amylin and insulin. To better characterize the secondary structure of amylin in amyloid fibrils we assigned the NMR spectrum of the unfolded state in 95% DMSO and used a quenched hydrogen-deuterium exchange technique to look at amide proton solvent protection in the fibrils. In this technique, partially exchanged fibrils are dissolved in 95% DMSO and information about amide proton occupancy in the fibrils is determined from DMSO-denatured monomers. Hydrogen exchange lifetimes at pH 7.6 and 37°C vary between ∼5 h for the unstructured N-terminus to 600 h for amide protons in the two β-strands that form inter-molecular hydrogen bonds between amylin monomers along the length of the fibril. Based on the protection data we conclude that residues A8-H18 and I26-Y37 comprise the two β-strands in amylin fibrils. There is variation in protection within the β-strands, particularly for strand β1 where only residues F15-H18 are strongly protected. Differences in protection appear to be due to restrictions on backbone dynamics imposed by the packing of two-layers of C2-symmetry-related β-hairpins in the protofilament structure, with strand β1 positioned on the surface and β2 in the interior.

  12. Quenching behaviour of hot zircaloy tube

    International Nuclear Information System (INIS)

    Chinchole, A.S.; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    The quenching process plays a very important role in case of safety of nuclear reactors. During large break Loss of Coolant Accident in a nuclear reactor, the cooling water from the system is lost. Under this condition, cold water is injected from emergency core cooling system. Quenching behaviour of such heated rod bundle is really complex. It is well known that nanofluids have better heat removal capability and high heat transfer coefficient owing to enhanced thermal properties. Alumina nano-particles result in better cooling abilities compared with the traditionally used quenching media. In this paper, the authors have carried out experiments on quenching behaviour of hot zircaloy tube with demineralized water and nanofluids. It was observed that, the tube got quenched within few seconds even with the presence of decay heat and shows slightly reduced quenching time compared with DM water. (author)

  13. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  14. Design of FPGA-based radiation tolerant quench detectors for LHC

    Science.gov (United States)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  15. Design of FPGA-based radiation tolerant quench detectors for LHC

    International Nuclear Information System (INIS)

    Steckert, J.; Skoczen, A.

    2017-01-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  16. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  17. Development of Quench Detection Units for W7-X

    International Nuclear Information System (INIS)

    Birus, D.; Rummel, T.; Fricke, M.; Petry, K.; Demattio, H.

    2006-01-01

    The Quench Detection System of W7-X will consist of nearly 400 Quench Detection Units (QDU) for the fast and reliable supervision of the 70 superconducting coils and the 120 superconducting bus bar sections. There will be five control racks with about 80 QDU, a data acquisition unit, an AC-DC power supply with integrated DC-UPS unit in each of the racks and a PC based data management system as an overlay structure. Each QDU will have a special analogue input circuit realised as a programmable half bridge front end with different polarity-sensing and limiting functions for suppressing high dynamic voltages. Special filter design is included for noise-suppression and over voltage protection. A reconfigurable control/arithmetic unit offers possibilities of future expansions (e.g. all digital evaluation). The QDU acquires and checks the differential voltages of the superconductors permanently. In case of a quench it triggers the fast discharge of the coils and the storage of the voltage signals on the memory unit. The quench signals are in the mV range and have to be clearly identified within a noisy and a high-voltage background within a few milliseconds. Each QDU transfers the stored signal dates via a high-speed RS-485 serial interface with 20 KV optical isolation barrier to the data acquisition unit, an industrial system. A second optically isolated RS-485-network enables interconnection of each QDU in the control rack (Compound-Mode of QDU). The QDU are designed with an internal failsafe, programmable self test and redundancy feature, broken wire check of the quench detection cables and connectors inside and outside of the cryostat of W7-X. All QDU will be fed via an UPS supported 24 V DC bus through a high voltage isolated DC-DC transformer on each unit. The design of the QDU allows operation under high voltage levels of up to 8 kV and under magnetic stray field levels up to 30 mT. The front end is very well isolated and the outputs of the QDU are strictly

  18. Quench and safety tests on a toroidal field coil of Tore Supra

    International Nuclear Information System (INIS)

    Ciazynski, D.; Cure, C.; Duchateau, J.L.

    1987-01-01

    As a part of the safety analysis of the magnet, three quenches have been initiated in one of the TF coils in the Saclay test facility. While transporting a given current, the coil is insulated from the refrigerator: the temperatures of the helium and of the coil increase slowly on account of thermal losses. At the current sharing temperature a quench rapidly propagates and the protection system makes the coil discharge in the dump resistor. At three levels of current, electrical, thermal and hydraulic measurements have been performed. All these results are taken into account for the safety design of TORE SUPRA

  19. High-field quench behavior and dependence of hot spot temperature on quench detection voltage threshold in a Bi2Sr2CaCu2Ox coil

    International Nuclear Information System (INIS)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele; Li, Pei

    2015-01-01

    Small insert solenoids have been built using a multifilamentary Ag/Bi 2 Sr 2 CaCu 2 O x round wire insulated with a mullite sleeve (∼100 μm in thickness) and characterized in background fields to explore the quench behaviors and limits of Bi 2 Sr 2 CaCu 2 O x superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage should be greater than 50 mV in order not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increased from ∼40–∼80 K while increasing the operating wire current density J o from 89 A mm −2 to 354 A mm −2 , whereas for the voltage to reach 1 V, it increased from ∼60–∼140 K. This shows the increasing negative impact of slow normal zone propagation on quench detection with increasing J o and the need to limit the quench detection voltage to <1 V. These measurements, coupled with an analytical quench model, were used to assess the impact of the maximum allowable detection voltage and temperature upon quench detection on the quench protection, assuming a limit of the hot spot temperature to <300 K. (paper)

  20. Quench Heater Experiments on the LHC Main Superconducting Magnets

    OpenAIRE

    Rodríguez-Mateos, F; Pugnat, P; Sanfilippo, S; Schmidt, R; Siemko, A; Sonnemann, F

    2000-01-01

    In case of a quench in one of the main dipoles and quadrupoles of CERN's Large Hadron Collider (LHC), the magnet has to be protected against excessive temperatures and high voltages. In order to uniformly distribute the stored magnetic energy in the coils, heater strips installed in the magnet are fired after quench detection. Tests of different quench heater configurations were performed on various 1 m long model and 15 m long prototype dipole magnets, as well as on a 3 m long prototype quad...

  1. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  2. Electrical and Quench Performance of the First MICE Coupling Coil

    International Nuclear Information System (INIS)

    Tartaglia, M. A.; Carcagno, R.; Makulski, A.; Nogiec, Jerzy; Orris, D.; Pilipenko, R.; Sylvester, C.; Caspi, S.; Pan, H.; Prestemon, S.; Virostek, S.

    2014-01-01

    The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet

  3. Quench calculations for the superconducting dipole magnet of CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Kurilkin, P.; Akishin, P.; Bychkov, A.; Gusakov, Yu.; Ladygin, V.; Malakhov, A.; Shabunov, A.; Toral, F.; Floch, E.; Moritz, G.; Ramakers, H.; Senger, P.; Szwangruber, P.

    2016-01-01

    The scientific mission of the Compressed Baryonic Matter (CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. It will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. This paper presents quench modeling and evaluation of candidate protection schemes for the CBM dipole magnet. Two quench programs based on finite-difference method were used in simulation. One of them is currently used at GSI, and the other based on CIEMAT (Madrid, Spain) was modified to perform quench calculation for the CBM magnet. (paper)

  4. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting

    International Nuclear Information System (INIS)

    Cassette, Philippe

    2016-01-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ"2 minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. - Highlights: • The program “QUENCH” is devoted to the interpolation of quenching curves in LSC. • Functions are fitted to experimental data with uncertainties in both quenching and efficiency. • The parameters of the fitting function and the associated covariance matrix are evaluated. • The detection efficiency and uncertainty corresponding to a given quenching index is calculated.

  5. Forced synchronization and asynchronous quenching in a thermo-acoustic system

    Science.gov (United States)

    Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman

    2017-11-01

    Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.

  6. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  7. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    Science.gov (United States)

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Density of kinks just after a quench in an underdamped system

    OpenAIRE

    Dziarmaga, Jacek

    1998-01-01

    A quench in an underdamped one dimensional $\\phi^4$ model is studied by analytical methods. The density of kinks just after the transition is proportional to the square root of the rate of the quench for slow quenches. If the quench is shorter that the relaxation time, then the density scales like the third root of the rate.

  9. Vol. 34 - Optimization of quench protection heater performance in high-field accelerator magnets through computational and experimental analysis

    CERN Document Server

    Salmi, Tiina

    2016-01-01

    Superconducting accelerator magnets with increasingly hi gh magnetic fields are being designed to improve the performance of the Large Hadron Collider (LHC) at CERN. One of the technical challenges is the magnet quench p rotection, i.e., preventing damage in the case of an unexpected loss of superc onductivity and the heat generation related to that. Traditionally this is d one by disconnecting the magnet current supply and using so-called protection he aters. The heaters suppress the superconducting state across a large fraction of the winding thus leading to a uniform dissipation of the stored energy. Preli minary studies suggested that the high-field Nb 3 Sn magnets under development for the LHC luminosity upgrade (HiLumi) could not be reliably protected using the existing heaters. In this thesis work I analyzed in detail the present state-of-the-art protection heater technology, aiming to optimize its perfo rmance and evaluate the prospects in high-field magnet protection. The heater efficiency analyses ...

  10. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    Quenches can be divided into two categories; conductor-limited and energy-deposited quenches. A conductor-limited quench occurs when the current in the magnet exceeds the capacity of the superconductor; it is characterized by a strong correlation with temperature. An energy-deposited quench occurs when a disturbance releases enough energy to trigger a quench; the main disturbances during magnet energization are frictional movements of the conductor due to increasing Lorentz forces. The current level of the conductor-limited quenches defines the limit of the magnet performance, and can only be surpassed by lowering the operating temperature; the occurrence of a constant current at quench during the magnetic testing is called a plateau. Usually it takes a few energy-deposited quenches of increasing currents to reach the plateau; these first few steps are called the magnet's training. The goal in designing a magnet is to be able to energize it and to reliably operate it at the design current without training. This can be achieved by optimizing the magnet's operating margin, that is, by designing and building the magnet in such a way that the sizes of the mechanical disturbances needed to trigger a quench are much larger than the achievable mechanical tolerances. (N.K.) 112 refs

  11. 40 CFR 1065.370 - CLD CO2 and H2O quench verification.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD CO2 and H2O quench verification....370 CLD CO2 and H2O quench verification. (a) Scope and frequency. If you use a CLD analyzer to measure NOX, verify the amount of H2O and CO2 quench after installing the CLD analyzer and after major...

  12. Dynamical singularities of glassy systems in a quantum quench.

    Science.gov (United States)

    Obuchi, Tomoyuki; Takahashi, Kazutaka

    2012-11-01

    We present a prototype of behavior of glassy systems driven by quantum dynamics in a quenching protocol by analyzing the random energy model in a transverse field. We calculate several types of dynamical quantum amplitude and find a freezing transition at some critical time. The behavior is understood by the partition-function zeros in the complex temperature plane. We discuss the properties of the freezing phase as a dynamical chaotic phase, which are contrasted to those of the spin-glass phase in the static system.

  13. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  14. Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics.

    Science.gov (United States)

    Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli

    2007-11-16

    We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.

  15. Critical behavior of spin systems with quenched disorder

    International Nuclear Information System (INIS)

    Murtazaev, Akai K.; Kamilov, Ibragimkhan K.; Babaev, Albert B.

    2006-01-01

    A static critical behavior of three-dimensional diluted quenched Ising model on a cubic lattice is studied by Monte-Carlo methods. The static critical exponents of a specific heat α, susceptibility γ, magnetization β and exponent of correlation radius ν in a wide interval of change the values of spin concentrations p are calculated on the basis of the finite-size scaling theory using the common technique. The problem about universality classes of critical behavior for three-dimensional diluted systems is considered

  16. Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems.

    Science.gov (United States)

    Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert

    2013-06-14

    A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.

  17. Analyses of the impact of connections’ layout on the coil transient voltage at the Quench Protection Circuit intervention in JT-60SA

    International Nuclear Information System (INIS)

    Maistrello, Alberto; Gaio, Elena; Novello, Luca; Matsukawa, Makoto; Yamauchi, Kunihito

    2015-01-01

    The transient overvoltages associated to the interruption of high direct currents with high current derivative, at the base of the operation of a Quench Protection System for Superconducting Coils, have been studied, with particular reference to the JT-60SA project, which adopt edge technology solutions for current interruption: a Hybrid mechanical-static Circuit Breaker as main circuit breaker in series with a PyroBreaker as backup protection. The paper reports in particular on the analyses of the intervention of the backup circuit breaker in the final circuital conditions, considering the actual power connections that will be implemented on Site. The key elements which influence the peak value of the voltage and the relation existing among the different stray impedances of the circuit are identified, thus giving general guidelines for the design of the layout of the power connections. The specific case of JT-60SA is considered, but general criteria can be derived.

  18. Quench limits

    International Nuclear Information System (INIS)

    Sapinski, M.

    2012-01-01

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  19. Hotspot temperature calculation and quench analysis on ITER busbar

    International Nuclear Information System (INIS)

    Rong, J.; Huang, X.Y.; Song, Y.T.; Wu, S.T.

    2014-01-01

    Highlights: • The hotspot temperature is calculated in the case of different extra copper in this paper. • The MQE (minimum quench energy) is carried out as the external heating to trigger a quench in busbar. • The temperature changes after quench is analyzed by Gandalf code in the case of different extra copper and no helium. • The normal length is carried out in the case of different extra copper by Gandalf code. - Abstract: This paper describes the analysis of ITER feeder busbar, the hotspot temperature of busbar is calculated by classical method in the case of 0%, 50%, 75% and 100% extra copper (copper strands). The quench behavior of busbar is simulated by 1-D Gandalf code, and the MQE (minimum quench energy) is estimated in classical method as initial external heat in Gandalf input file. The temperature and the normal length of conductor are analyzed in the case of 0%, 50% and 100% extra copper and no helium. By hotspot temperature, conductor temperature and normal length are contrasted in different extra copper cases, it is shown that the extra copper play an important role in quench protecting

  20. Numerical simulation for quenching meshes with TONUS platform

    International Nuclear Information System (INIS)

    Bin, Chen; Hongxing, Yu

    2009-01-01

    For mitigation of hydrogen risks during severe accidents to protect the integrity of containment, PAR and ignitors are used in current advanced nuclear power plants. But multiple combustions induced by ignitors and consequent DDT phenomena are not practically eliminated. An innovative design call 'quenching meshes' is considered to confine hydrogen flame within one compartment by metallic meshes, so that hazardous flame propagation can be prevented. The numerical simulation results based on discretization of the full Navier-Stokes equations with global one-step reaction represented by Arrhenius laminar combustion model have shown the possibility of flame quenching 'numerically'. This is achieved via multiplication of the combustion rate expression by a Heaviside function having an ignition temperature as a parameter. Qualitative behavior of the computed flow shows that the flame velocity diminishes while passing through a quenching mesh, while qualitative analysis based on the energy balance reveals the mechanism of flame quenching. All the above analysis has been performed for a stoichiometric mixture and normal initial pressure and temperature for initial conditions. For further research we would like to suggest the investigation of the influence of the mixture composition, initial pressure and/or temperature on the quenching criteria

  1. Introduction of fuzzy logic theorem for quench detection in the superconducting coil system of a Large Helical Device

    International Nuclear Information System (INIS)

    Adachi, Yamato; Ninomiya, Akira; Uriu, Yoshihisa; Ishigohka, Takeshi; Mito, Toshiyuki; Imagawa, Shinsaku; Yanagi, Nagato; Sekiguchi, Haruo; Yamada, Shuichi

    2005-01-01

    We have analyzed the state of the superconducting coil system in a LHD at NIFS (National Institute of Fusion Science) using a fuzzy logic theorem to detect quenching at an early stage. In this method, the 'warning coefficient' of the coil system is calculated. As for the fuzzy variables, 'effective stored heat' in the coil is introduced in addition to the voltage signal in order to improve quench detection and state estimation. The 'effective stored heat' is an integrated value of the heat generated in the coil on the assumption that instantaneous heat in the conductor is continuously cooled by liquid helium. Experiments conducted using the LHD coils confirmed that quench alarm signals can be issued with sufficient lead time before quenching. On the other hand, in the case of small local disturbances, the system shows only a small increase in the caution level. (author)

  2. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  3. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  4. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    In this paper, I shall discuss the quench origins. I shall first establish a method of classification and introduce the notions of conductor-limited and energy-deposited quenches. Next the paper will be devoted to the study of conductor-limited quenches, and I shall introduce the notions of plateau and of fraction of short sample. Also the paper will be devoted to the study of energy-deposited quenches, and I shall introduce the notions of training and of minimum energy deposit; I shall then review the possible causes of energy release. Lastly, I shall introduce the notion of operating margin, and I shall indicate how to optimize the operating margin in order to limit the risk of premature quenching. 112 refs., 14 figs

  5. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  6. QPS upgrade and machine protection during LS1

    International Nuclear Information System (INIS)

    Denz, R.

    2012-01-01

    The presentation will explain all the proposed changes and discuss the impact on other shutdown activities. The upgrade of the LHC Quench Protection System QPS during LS1 with respect to radiation to electronics will concern the re-location of equipment and installation of new radiation tolerant hardware. The mid-term plan for further R2E upgrades will be addressed. The protection systems for insertion region magnets and inner triplets will be equipped with a dedicated bus-bar splice supervision including some additional modifications in order to improve the EMC immunity. The extension of the supervision capabilities of the QPS will concern the quench heater circuits, the earth voltage feelers and some tools to ease the system maintenance. The protection of the undulators will be revised in order to allow more transparent operation. The installation of snubber capacitors and arc chambers for the main quad circuits will complete the upgrade of the energy extraction systems. Finally the re-commissioning of the protection systems prior to the powering tests will be addressed. (author)

  7. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  8. Passive quench arrest by a chimney induced deluge at every quench front

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1984-01-01

    This chapter describes a magnet in which a growing quench stops itself spontaneously within a fraction of one winding turn because vapor in quench-heated channels generates a progressively increasing downflow of liquid in advance of each of the quench fronts. The downflow eventually becomes a deluge as the quench grows. The design of the multiple arrested quench magnet is discussed. It is shown how to construct a magnet so that if an arrested quench arises when it is at its highest operating current, peak nucleate boiling will exist in all quenching channels

  9. Quenching behaviour for a singular predator–prey model

    International Nuclear Information System (INIS)

    Ducrot, Arnaud; Guo, Jong-Shenq

    2012-01-01

    In this paper, we study the quenching behaviour for a system of two reaction–diffusion equations arising in the modelling of the spatio-temporal interaction of prey and predator populations in fragile environment. We first provide some sufficient conditions on the initial data to have finite time quenching. Then we classify the initial data to distinguish type I quenching and type II quenching, by introducing a delicate energy functional along with the help of some a priori estimates. Finally, we present some results on the quenching set. It can be a singleton, the whole domain, or a compact subset of the domain

  10. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    International Nuclear Information System (INIS)

    Maximenko, Yulia; Segatskov, Dmitri A.

    2011-01-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problem to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.

  11. Electrical protection of superconducting magnet systems

    International Nuclear Information System (INIS)

    Sutter, D.F.; Flora, R.H.

    1975-01-01

    The problem of dissipating the energy stored in the field of a superconducting magnet when a quench occurs has received considerable study. However, when the magnet becomes a system 4 miles in length whose normal operation is an ac mode, some re-examination of standard techniques for dissipating energy outside the magnets is in order. Data accumulated in the Fermilab Energy Doubler magnet development program shows that heating associated with the temporal and spatial development of quenches is highly localized and can result in temperatures damaging to the superconducting wire. The design and operation are discussed for several energy dumping schemes, compatible with the operation of ac superconducting magnets, wherein more than 70 percent of the stored energy can be dissipated outside the magnet. Instrumentation to detect quenches early in their development and circuits for dumping the field energy are described, and representative operating performance data for the dump circuits and data showing temporal development of quenches are presented. (auth)

  12. lessons learned from the QUENCH program at FZK

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Grosse, M.; Sepold, L.; Stuckert, J.

    2011-01-01

    The paper gives an overview on the main outcome of the QUENCH program at FZK, including complementary bundle experiments and separate-effects tests. The major objective of the program is to deliver experimental and analytical data to support development and validation of quench and quench-related models as used in code systems. So far, 15 integral bundle QUENCH experiments with 21-31 electrically heated fuel rod simulators of 2.5 m length have been conducted. The following parameters and their influence on bundle degradation and reflood have been investigated: degree of pre-oxidation, temperature at initiation of reflood, flooding rate, influence of neutron absorber materials (B 4 C, AgInCd), air ingress, and the influence of the type of cladding alloy. In six tests reflood of the bundle caused a temporary temperature excursion connected with the release of a significant amount of hydrogen, typically 2 orders of magnitude greater than in those tests with 'successful' quenching in which cool-down was immediately achieved. Comprehensive formation, relocation, and oxidation of melt were observed in all tests with escalation. The temperature boundary between rapid cooldown and temperature escalation was typically 2100-2200 K in the 'normal' quench tests, i.e. tests without absorber and/or steam starvation. Tests with absorber and/or steam starvation were found to lead to temperature escalations at lower temperatures. All phenomena occurring in the bundle tests have been additionally investigated in parametric and more systematic separate-effects tests. Oxidation kinetics of various cladding alloys, including advanced ones, have been determined over a wide temperature range (873-1773 K) in different atmospheres (steam, oxygen, air, and their mixtures). Hydrogen absorption by different zirconium alloys was investigated in detail, recently also using neutron radiography as non-destructive method for determination of hydrogen distribution in claddings

  13. Simulation of the Quench-06 experiment with Scdapsim; Simulacion del experimento Quench-06 con Scdapsim

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, E. del; Nunez C, A.; Amador G, R. [CNSNS, Dr. Barragan No. 779, 03020 Mexico D.F. (Mexico)]. e-mail: edangelm@cnsns.gob.mx

    2003-07-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  14. submitter Quench Protection of Very Large, 50-GJ-Class, and High-Temperature-Superconductor-Based Detector Magnets

    CERN Document Server

    Mentink, Matthias; Mulder, Tim; Van Nugteren, Jeroen; ten Kate, Herman

    2016-01-01

    An investigation is performed on the quench behavior of a conceptual 50-GJ 8-T high-temperature-superconductor-based solenoid. In this design, a 50-kA conductor-on-round-core cable-in-conduit conductor utilizing ReBCO technology is envisioned, operating at 40 K. Various properties such as resistivity, thermal conductivity, and heat capacity are very different at this temperature, which affects the quench behavior. It is found that the envisioned conductor is very stable with a minimum quench energy of about 2 kJ. However, the quench propagation velocity is typically about 20 mm/s, so that creating a wide-spread normal zone throughout the coil is very challenging. Moreover, an extraction voltage exceeding 20 kV would be required to ensure a hot-spot temperature below 100 K once a thermal runaway occurs. A novel concept dubbed “rapid quench transformation” is proposed whereby the superconducting conductor is co-wound with a normal conductor to achieve a high degree of inductive coupling. This geometry allow...

  15. Test and Simulation Results for Quenches Induced by Fast Losses on a LHC Quadrupole

    CERN Document Server

    Bracco, Ch; Bartmann, W; Bednarek, M; Lechner, A; Sapinski, M; Vittal Shetty, N; Schmidt, R; Solfaroli Camillocci, M; Verweij, A

    2014-01-01

    A test program for beam induced quenches was started in the LHC in 2011 in order to reduce as much as possible BLM-triggered beam dumps, without jeopardising the safety of the superconducting magnets. A first measurement was performed to asses the quench level of a quadrupole located in the LHC injection region in case of fast (ns) losses. It consisted in dumping single bunches onto an injection protection collimator located right upstream of the quadrupole, varying the bunch intensity up to 3×1010 protons and ramping the quadrupole current up to 2200 A. No quench was recorded at that time. The test was repeated in 2013 with increased bunch intensity (6.5×1010 protons); a quench occurred when powering the magnet at 2500 A. The comparison between measurements during beam induced and quench heaters induced quenches is shown. Results of FLUKA simulations on energy deposition, calculations on quench behaviour using the QP3 code and the respective estimates of quench levels are also presented.

  16. The role of quench rate in colloidal gels.

    Science.gov (United States)

    Royall, C Patrick; Malins, Alex

    2012-01-01

    Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.

  17. Asymmetries in the spectral density of an interaction-quenched Luttinger liquid

    Science.gov (United States)

    Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.

    2018-03-01

    The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.

  18. Superconductive magnet having shim coils and quench protection circuits

    International Nuclear Information System (INIS)

    Schwall, R.E.

    1987-01-01

    A superconductive magnet is described comprising: a first persistent current loop comprising a first superconductor and a main coil connected to the first superconductor, the main coil being operative in response to superconduction therein to generate a primary magnetic field; a second persistent current loop comprising a second superconductor and a shim coil connected thereto, the shim coil being operative in response to superconduction therein to generate a corrective field for correcting aberrations in a predetermined gradient in the primary magnetic field, the shim coil having fewer turns than the main coil and being inductively coupled therewith whereby small changes in the current in the main coil cause much greater changes in the current in the shim coil. The magnet is characterized by an improvement which consists of: a first heater connected across the second persistent loop in parallel with the shim coil, the first heater being normally inoperative to carry current while the shim coil and the second superconductor are superconducting, the first heater being operative in response to current therein to heat the shim coil to a resistive state; and protective circuit means comprising a second heater connected to the main coil for carrying current from the main coil upon quenching of the main coil, the second heater being disposed in thermal contact with the second superconductor to heat the second superconductor to a resistive state in response to the current from the main coil to thereby divert current in the second persistent loop through the second heater causing it to heat the shim coil to a resistive state and resistively dissipate energy therein

  19. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  20. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  1. Quenches after LS1

    International Nuclear Information System (INIS)

    Verweij, A.P.

    2012-01-01

    In this paper I will give an overview of the different types of quenches that occur in the LHC, followed by an estimate of the number of quenches that we can expect after LS1. Beam-induced quenches and false triggering of the QPS will be the main cause of those quenches that cause a beam dump. Possibly in total up to 10-20 per year. After consolidation of the 13 kA joints, the approach for the BLM settings can be less conservative than in 2010-2012 in order to maximize beam time. This will cause some quenches but, anyhow, a beam.induced quench is not more risky than a quench provoked by false triggering. It is not easy to predict the number of BLM triggered beam dumps, needed to avoid magnet quenches, because it is not sure how to scale beam losses and UFO's from 3.5 TeV to 6.5 TeV, and it is not sure if the thresholds at 3.5 TeV are correct. Quench events will be much more massive (ex: RB quench at 6 kA → 2 MJ, RB quench at 11 kA → 6-20 MJ), and as a result cryo recuperation much longer. There will also be more ramp induced quenches after a FPA in other circuits due to higher ramp rates and smaller temperature margins (mutual coupling)

  2. Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes

    International Nuclear Information System (INIS)

    Toprak, Mahmut; Meryem Aydin, Burcu; Arik, Mustafa; Onganer, Yavuz

    2011-01-01

    The fluorescence quenching of fluorescein (FL) by merociyanine 540 (MC540) was examined in L-egg lecithin phosphatidycholine (PC) liposomes using spectroscopic methods. The type of quenching mechanism (dynamic or static) was evaluated using the Stern-Volmer plots. Findings were also supported by the temperature studies and florescence decay measurements. The Stern-Volmer equation was utilized to calculate bimolecular quenching constants (K q ). Furthermore, the bimolecular quenching constant of the quencher in the liposomes (K SV ), partition coefficient (K p ), binding constant (K), and corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated. The quenching property was also used in determining quantitatively (K p ) the partition coefficient of Merociyanini 540 in PC liposome.The obtained data indicated that static quenching occurred in the system and the K SV values decreased with increasing lipid concentration. In addition, thermodynamic analysis suggested that van der Waals interactions and hydrogen bonding were the main acting forces between fluorescein and merociyanine 540 molecules in the medium. - Highlights: → Fluorescence quenching of FL by MC540 in liposome system was analyzed. → Fluorescence quenching mechanism of FL by MC540 was consistent with the static model. → Binding FL to MC540 was spontaneous and carried out by hydrogen bond and van der Waals forces.

  3. Analysis on operation characteristics and power burdens of the double quench trigger type SFCLs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung Taek; Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    To protect the power systems from fault current, the rated protective equipment should be installed. However growth of power system scale and concentration of loads caused the large fault current in power transmission system and distribution system. The capacities of installed protective equipment have been exceeded the due to increase of fault current. This increase is not temporary phenomenon but will be steadily as long as the industry develops. The power system operator need a counter-measurement for safety, so superconducting fault current limiter (SFCL) has been received attention as effective solutions to reduce the fault current. For the above reasons various type SFCLs have been studied recently. In this paper, operation characteristics and power burden of trigger type SFCL is studied. The trigger type SFCL has been used for real system research in many countries. Another trigger type SFCL (double quench trigger type SFCL) is also studied. For this paper, short circuit test is performed.

  4. Quench Modeling in High-field Nb3Sn Accelerator Magnets

    Science.gov (United States)

    Bermudez, S. Izquierdo; Bajas, H.; Bottura, L.

    The development of high-field magnets is on-going in the framework of the LHC luminosity upgrade. The resulting peak field, in the range of 12 T to 13 T, requires the use Nb3Sn as superconductor. Due to the high stored energy density (compact winding for cost reduction) and the low stabilizer fraction (to achieve the desired margins), quench protection becomes a challenging problem. Accurate simulation of quench transientsin these magnets is hence crucial to the design choices, the definition of priority R&D and to prove that the magnets are fit for operation. In this paper we focus on the modelling of quench initiation and propagation, we describe approaches that are suitable for magnet simulation, and we compare numerical results with available experimental data.

  5. Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    International Nuclear Information System (INIS)

    Leinweber, Derek B.

    2004-01-01

    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation

  6. Quench detector and analyser for a UNK superconducting string

    International Nuclear Information System (INIS)

    Augueres, J.L.; Kircher, F.; Molinie, F.; Sellier, J.C.; Andriichine, A.; Prima, M.; Vassiliev, L.; Yerachin, A.

    1992-01-01

    In a close collaboration between physicists and engineers from IHEP and CEN Saclay, a system for quench detection on a UNK superconducting string (from 4 to 100 magnets) has been designed and is now under construction at Saclay; this system also enables the data analysis in normal conditions or in case of a quench. The paper describes the architectural design of the system, the hardware (microprocessors are used for the whole system) and the software. Emphasis will be put on the main problems of construction friability, quench detection at a low level and in a very short time, high voltages, data transmission on long distances and integration in the general system of the accelerator

  7. Quenching rate for a nonlocal problem arising in the micro-electro mechanical system

    Science.gov (United States)

    Guo, Jong-Shenq; Hu, Bei

    2018-03-01

    In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except the constant limit depends on the solution itself.

  8. Spectral analysis of colour-quenched and chemically quenched C 14 samples

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guillearrd, P.E.

    1987-01-01

    Pairs of pulse height distribution curves, of C-14 samples, colour quenched and chemically quenched were obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (author). 7 figs., 7 refs

  9. Spectral analysis of colour-quenched and chemically quenched C-14 samples

    International Nuclear Information System (INIS)

    Scott, P. E.; Grau, A.

    1987-01-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs

  10. Universality of fast quenches from the conformal perturbation theory

    Science.gov (United States)

    Dymarsky, Anatoly; Smolkin, Michael

    2018-01-01

    We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.

  11. ITER Side Correction Coil Quench model and analysis

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Ciazynski, D.; Duchateau, J. L.; Gauthier, F.; Lacroix, B.

    2016-12-01

    Previous thermohydraulic studies performed for the ITER TF, CS and PF magnet systems have brought some important information on the detection and consequences of a quench as a function of the initial conditions (deposited energy, heated length). Even if the temperature margin of the Correction Coils is high, their behavior during a quench should also be studied since a quench is likely to be triggered by potential anomalies in joints, ground fault on the instrumentation wires, etc. A model has been developed with the SuperMagnet Code (Bagnasco et al., 2010) for a Side Correction Coil (SCC2) with four pancakes cooled in parallel, each of them represented by a Thea module (with the proper Cable In Conduit Conductor characteristics). All the other coils of the PF cooling loop are hydraulically connected in parallel (top/bottom correction coils and six Poloidal Field Coils) are modeled by Flower modules with equivalent hydraulics properties. The model and the analysis results are presented for five quench initiation cases with/without fast discharge: two quenches initiated by a heat input to the innermost turn of one pancake (case 1 and case 2) and two other quenches initiated at the innermost turns of four pancakes (case 3 and case 4). In the 5th case, the quench is initiated at the middle turn of one pancake. The impact on the cooling circuit, e.g. the exceedance of the opening pressure of the quench relief valves, is detailed in case of an undetected quench (i.e. no discharge of the magnet). Particular attention is also paid to a possible secondary quench detection system based on measured thermohydraulic signals (pressure, temperature and/or helium mass flow rate). The maximum cable temperature achieved in case of a fast current discharge (primary detection by voltage) is compared to the design hot spot criterion of 150 K, which includes the contribution of helium and jacket.

  12. Modern precise high-power water-cooling systems for press quenching

    OpenAIRE

    A. Patejuk; J. Piwnik; M. Plata

    2009-01-01

    Demand for extrusions in transport applications is increasing rapidly. The extrusions must be strong, light, crashworthy and may have to undergo hydroforming. This implies low wall thicknesses (1-2½ mm) in strong alloys that need very fast quenching to obtain the required T4 temper. Crashworth iness – the ability to absorb a lot of energy in crushing deformation – demands very uniform properties throughout the section, and so does hydroforming. Various systems of water or air/water jets, with...

  13. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  14. Thermo hydraulic and quench propagation characteristics of SST-1 TF coil

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Patel, D.; Tanna, V.L. [Institute for Plasma Research, Gandhinagar (India)

    2014-02-15

    Highlights: • Details of SST-1 TF coils, CICC. • Details of SST-1 TF coil cold test. • Quench analysis of TF magnet. • Flow changes following quench. • Predictive analysis of assembled magnet system. - Abstract: SST-1 toroidal field (TF) magnet system is comprising of sixteen superconducting modified ‘D’ shaped TF coils. During single coil test campaigns spanning from June 10, 2010 till January 24, 2011; the electromagnetic, thermal hydraulic and mechanical performances of each TF magnet have been qualified at its respective nominal operating current of 10,000 A in either two-phase or supercritical helium cooling conditions. During the current charging experiments, few quenches have initiated either as a consequence of irrecoverable normal zones or being induced in some of the TF magnets. Quench evolution in the TF coils have been analyzed in detail in order to understand the thermal hydraulic and quench propagation characteristics of the SST-1 TF magnets. The same were also simulated using 1D code Gandalf. This paper elaborates the details of the analyses and the quench simulation results. A predictive quench propagation analysis of 16 assembled TF magnets system has also been reported in this paper.

  15. Structure of partly quenched molten copper chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-09-01

    The structural modifications induced in a model of molten CuCl by quenching the chlorine component into a microporous disordered matrix are evaluated using the hypernetted-chain closure in Ornstein-Zernike relations for the pair distribution functions in random systems. Aside from obvious changes in the behaviour of long-wavelength density fluctuations, the main effect of partial quenching is an enhanced delocalization of the Cu + ions. The model suggests that the ionic mobility in a superionic glass is enhanced relative to the melt at the same temperature and density. Only very minor quantitative differences are found in the structural functions when the replica Ornstein-Zernike relations derived by Given and Stell for a partly quenched system are simplified to those given earlier by Madden and Glandt. (author). 19 refs, 6 figs

  16. Testing of high current by-pass diodes for the LHC magnet quench protection

    International Nuclear Information System (INIS)

    Berland, V.; Hagedorn, D.; Rodriguez-Mateos, F.

    1996-01-01

    Within the framework of the Large Hadron Collider (LHC) R and D program, CERN is performing experiments to establish the current carrying capability of irradiated diodes at liquid Helium temperatures for the superconducting magnet protection. Even if the diodes are degraded by radiation dose and neutron fluence, they must be able to support the by-pass current during a magnet quench and the de-excitation of the superconducting magnet ring. During this discharge, the current in the diode reaches a maximum value up to 13 kA and decreased with an exponential time constant of 100 s. Two sets of 75 mm wafer diameter epitaxial diodes, one irradiated and one non-irradiated, were submitted to this experiment. The irradiated diodes have been exposed to radiation in the accelerator environment up to 20 kGy and then annealed at room temperature. After the radiation exposure the diodes had shown a degradation of forward voltage of 50% which reduced to about 14% after the thermal annealing. During the long duration high current tests, one of the diodes was destroyed and the other two irradiated diodes showed a different behavior compared with non-irradiated diodes

  17. Color quench correction for low level Cherenkov counting.

    Science.gov (United States)

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  18. Critical scaling of a jammed system after a quench of temperature.

    Science.gov (United States)

    Otsuki, Michio; Hayakawa, Hisao

    2012-09-01

    Critical behavior of soft repulsive particles after quench of temperature near the jamming transition is numerically investigated. It is found that the plateau of the mean-square displacement of tracer particles and the pressure satisfy critical scaling laws. The critical density for the jamming transition depends on the protocol to prepare the system, while the values of the critical exponents which are consistent with the prediction of a phenomenology are independent of the protocol.

  19. Detection of AE signals from a HTS tape during quenching in a solid cryogen-cooling system

    International Nuclear Information System (INIS)

    Kim, K.J.; Song, J.B.; Kim, J.H.; Lee, J.H.; Kim, H.M.; Kim, W.S.; Na, J.B.; Ko, T.K.; Lee, H.G.

    2010-01-01

    The acoustic emission (AE) technique is suitable for detecting the presence of thermal and mechanical stress in superconductors, which have adverse effects on the stability of their application systems. However, the detection of AE signals from a HTS tape in a bath of liquid cryogen (such as liquid nitrogen, LN 2 ) has not been reported because of its low signal to noise ratio due to the noise from the boiling liquid cryogen. In order to obtain the AE signals from the HTS tapes during quenching, this study carried out repetitive quench tests for YBCO coated conductor (CC) tapes in a cooling system using solid nitrogen (SN 2 ). This paper examined the performance of the AE sensor in terms of the amplitudes of the AE signals in the SN 2 cooling system.

  20. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  1. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    Science.gov (United States)

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  2. effects of various effects of various quenching media on quenching

    African Journals Online (AJOL)

    eobe

    ABSTRACT. Evaluation of palm kernel oil, cotton seed oil and olive oil as quenching media of 0.509Wt%C medium carbon steel ... Quenching is an essential element in developing the .... machine, heat treatment furnace, Avery Denison Izod.

  3. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Kari, Jeppe; Borch, Kim

    2017-01-01

    of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100 ms. The general performance was verified by alkali...

  4. Methods for the evaluation of quench temperature profiles and their application for LHC superconducting short dipole magnets

    Science.gov (United States)

    Sanfilippo, S.; Siemko, A.

    2000-08-01

    This paper presents a study of the thermal effects on quench performance for several large Hadron collider (LHC) single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.

  5. In-pile behavior of controlled beta-quenched fuel channels

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Andreas; Pflaum, Wolfgang; Cremer, Ingo [AREVA NP GmbH, Erlangen (Germany); Zbib, Ali A. [AREVA NP Inc., Richland, WA (United States)

    2011-07-01

    Dimensional stability during in-reactor service is the major requirement that is put on fuel channels to provide good moderation and power distribution, and to guarantee unrestricted movement of the control blades during operation. High corrosion resistance and low hydrogen pick-up are required as well. The latter are usually not considered to be life limiting, but may contribute to channel deformation since increased oxide layers due to shadow corrosion on the control blade sides of a channel result in differential oxide thickness and differential volume expansion due to hydride formation. This would be in addition to the well known effects of irradiation induced channel deformation, especially channel growth and bow. In order to meet the trend toward increased fuel assembly discharge burnup levels and the industry wide need for improved dimensional stability of fuel channels, AREVA NP has developed the Controlled Beta-Quenching of fuel channels. The process combines the positive effect of randomization of the crystallographic texture by beta-quenching with the optimization of the microstructure for good corrosion resistance by providing intermetallic phase particles in the optimum size range. The Controlled Beta-Quenching is a continuous heat treatment operation. Its key features are the two-step induction heating to uniformly reach the target temperature, the tight control of the quench rate by cooling the fuel channel from the outer surface using a controlled argon mass flow for quenching, and the protection of the inner surface from oxidation by providing an argon atmosphere. Due to the utilization of argon, the surfaces of the channels remain metal bright after beta-quenching. All in all, the Controlled Beta-Quenching provides an overall 'clean' and environment friendly operation without the need of additional surface conditioning. The first set of beta-quenched fuel channels, exhibiting these optimized material properties, were inserted in the core

  6. Time evolution and dynamical phase transitions at a critical time in a system of one-dimensional bosons after a quantum quench.

    Science.gov (United States)

    Mitra, Aditi

    2012-12-28

    A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.

  7. Collimation quench test with 6.5 TeV proton beams

    CERN Document Server

    Salvachua Ferrando, Belen Maria; Bruce, Roderik; Hermes, Pascal Dominik; Holzer, Eva Barbara; Jacquet, Delphine; Kalliokoski, Matti; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Skordis, Eleftherios; Valentino, Gianluca; Valloni, Alessandra; Wollmann, Daniel; Zerlauth, Markus; CERN. Geneva. ATS Department

    2016-01-01

    We show here the analysis of the MD test that aimed to quench the superconducting magnets in the dispersion suppressor region downstream of the main betatron collimation system. In Run I there were several attempts to quench the magnets in the same region. This was done by exciting the Beam 2 in a controlled way using the transverse damper and generating losses leaking from the collimation cleaning. No quench was achieved in 2013 with a maximum of 1 MW of beam power loss absorbed by the collimation system at 4 TeV beam energy. In 2015 a new collimation quench test was done at 6.5 TeV aiming at similar power loss over longer period, 5-10 s. The main outcome of this test is reviewed.

  8. Topological Rényi entropy after a quantum quench.

    Science.gov (United States)

    Halász, Gábor B; Hamma, Alioscia

    2013-04-26

    We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.

  9. Defect production in nonlinear quench across a quantum critical point.

    Science.gov (United States)

    Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi

    2008-07-04

    We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.

  10. Thermal quench at finite 't Hooft coupling

    Directory of Open Access Journals (Sweden)

    H. Ebrahim

    2016-03-01

    Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite 't Hooft coupling limit.

  11. Quenching of the He/sub μ/ +(2s) atom

    International Nuclear Information System (INIS)

    Russell, J.E.

    1986-01-01

    Quenching of the metastable 2s state of the He/sub μ/ + atom in helium gas is discussed. The first part of the discussion, which is devoted entirely to processes occurring after the He/sub μ/ + has become bound to one or more ordinary helium atoms, is based partly on Cohen's calculations of rates of vibrational quenching and partly on estimates obtained in the present paper of rates of Burbidge--de Borde quenching and Ruderman quenching. It is concluded that Burbidge--de Borde quenching or Ruderman quenching, or both, are likely to be more effective than Cohen quenching if the vibrational level of the bound system is low. A recent experiment by von Arb et al. is then analyzed in the light of this conclusion. The analysis is based on the reported absence, or near absence, of Auger electrons accompanying 2s quenching. While it is agreed that the Cohen mechanism occurring in the molecular ion HeHe/sub μ/ + remains the most likely explanation of the experiment, it is concluded that the quenching occurs in comparatively high levels. It is then argued that this conclusion is in accord with some theoretical investigations of three-body association reactions and also with some elementary considerations regarding the relaxation of highly excited diatomic molecules, and it is further concluded that the quenching is most likely to occur in states with very low rotational quantum number and vibrational quantum number 8≤v≤14

  12. Successful magnet quench test for CAST.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    The CERN Axion Solar Telescope (CAST) consists of a prototype LHC dipole magnet with photon detectors at each end. It searches for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The telescope, located at Point 8, can move vertically within its wheeled platform, which travels horizontally along tracks in the floor. In this way, the telescope can view the Sun at sunrise through one end and at sunset through the other end. It has been cooled down to below 1.8 K and reached ~95% of its final magnetic field of 9 tesla before a quench was induced to test the whole cryogenic system under such conditions. The cryogenic system responded as expected to the magnet quench and CAST is now ready to start its three-year search for solar axions. Photos 01 & 02 : Members of the LHC cryogenics team pose in front of the axion telescope on the day of the first quench test, together with some of the CAST collaboration.

  13. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  14. Magnet Quench 101

    OpenAIRE

    Bottura, L.

    2014-01-01

    This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet. This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet.

  15. Quenching experiments on niobium

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    High-purity niobium wire specimens have been quenched in superfluid helium from near the melting point in order to obtain information on vacancies in this material. The quenched-in resistivity Δsub(pQ) for a quench from 2600 K was very small (approximately 0.3 x 10 -12 Ω m) and near the limit of detection. It is assumed that large quenching losses are responsible for the small quenched-in resistance. From the experimental cooling curve estimates have been made for the formation and migration enthalpies (Hsub(1V)sup(F), Hsub(1V)sup(M)), where Hsub(1V)sup(M)+Hsub(1V)sup(F)=Qsub(1V)sup(SD)=3.62 ev. For Ssub(1V)sup(F), the formation entropy, two different values were assumed. (author)

  16. A novel approach to quench detection for high temperature superconducting coils

    International Nuclear Information System (INIS)

    Song, W.J.; Fang, X.Y.; Fang, J.; Wei, B.; Hou, J.Z.; Liu, L.F.; Lu, K.K.; Li, Shuo

    2015-01-01

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  17. A novel approach to quench detection for high temperature superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.J., E-mail: songwenjuan@bjtu.edu.cn [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); China Electric Power Research Institute, Beijing (China); Fang, X.Y. [Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2 (Canada); Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Wei, B.; Hou, J.Z. [China Electric Power Research Institute, Beijing (China); Liu, L.F. [Guangzhou Metro Design & Research Institute Co., Ltd, Guangdong (China); Lu, K.K. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Shuo [College of Information Science and Engineering, Northeastern University, Shenyang (China)

    2015-11-15

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  18. Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing

    International Nuclear Information System (INIS)

    Chan, W K; Schwartz, J; Flanagan, G

    2013-01-01

    One of the key remaining challenges to safe and reliable operation of large, high temperature superconductor (HTS)-based magnet systems is quench detection and protection. Due to the slow quench propagation in HTS systems, the conventional discrete voltage-tap approach developed for NbTi and Nb 3 Sn magnets may not be sufficient. In contrast, a distributed temperature profile, generated by a distributed temperature sensor and facilitating continuous monitoring of the temperature at any monitored locations within a magnet with high spatial resolution, may be required. One such distributed temperature sensing option is the use of Rayleigh-based fiber optic sensors (FOS), which are immune to electromagnetic interference. The detection of a quench via Rayleigh-based FOS relies on converting the spectral shifts in the Rayleigh scattering spectra into temperature variations. As a result, the higher the spatial sampling resolution the larger the data processing volume, and thus the lower the temporal sampling resolution. So, for effective quench detection, which requires the quick and accurate identification of a hot spot, it is important to find a balance between the spatial and temporal resolutions executable on a given data acquisition and processing (DAQ) system. This paper discusses a method for finding an appropriate DAQ technology that matches the characteristic of a superconducting coil, and determining the acceptable resolutions for efficient and safe quench detection. A quench detection algorithm based on distributed temperature sensing is proposed and its implementation challenges are discussed. (paper)

  19. Control dynamics of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  20. Quenching of liquid scintillator fluorescence by chloroalkanes and chloroalkenes

    International Nuclear Information System (INIS)

    Hariharan, Chithra; Mishra, A.K.

    2000-01-01

    The fluorescence quenching of 2,5-diphenyloxazole (PPO) by a series of chloroalkanes and chloroalkenes including carbon tetrachloride, chloroform, dichloroethane, tetrachloroethane, dichloroethylene, trichloroethylene and tetrachloroethylene was studied in toluene as solvent at room temperature. CCl 4 was found to be the most efficient quencher in the series. The quenching was found to be appreciable and a positive deviation from linearity was observed in the Stern-Volmer (SV) plots for all the quenchers in the concentration range studied. From the studies of effect of temperature, solvent viscosity and excitation wavelength dependence for the PPO-CCl 4 system, it was inferred that non-linearity is due to the presence of a minor static quenching component in an overall dynamic quenching. The static (K S ) and the dynamic (K D ) quenching constants were calculated from the modified SV equation using quadratic least square fits. Fluorescence quenching experiments with CCl 4 were done for four other scintillators (POPOP, α-NPO, BBO and PBBO). The mechanism of quenching was established to be via charge-transfer, with the direction of transfer being from the scintillators to the chloroalkanes and chloroalkenes

  1. Fate of Majorana fermions and Chern numbers after a quantum quench.

    Science.gov (United States)

    Sacramento, P D

    2014-09-01

    In the sequence of quenches to either nontopological phases or other topological phases, we study the stability of Majorana fermions at the edges of a two-dimensional topological superconductor with spin-orbit coupling and in the presence of a Zeeman term. Both instantaneous and slow quenches are considered. In the case of instantaneous quenches, the Majorana modes generally decay, but for a finite system there is a revival time that scales to infinity as the system size grows. Exceptions to this decaying behavior are found in some cases due to the presence of edge states with the same momentum in the final state. Quenches to a topological Z(2) phase reveal some robustness of the Majorana fermions in the sense that even though the survival probability of the Majorana state is small, it does not vanish. If the pairing is not aligned with the spin-orbit Rashba coupling, it is found that the Majorana fermions are fairly robust with a finite survival probability. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number fluctuates between increasing values. The effect of varying the rate of change in slow quenches is also analyzed. It is found that the defect production is nonuniversal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.

  2. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  3. Assessing the Nonequilibrium Thermodynamics in a Quenched Quantum Many-Body System via Single Projective Measurements

    Directory of Open Access Journals (Sweden)

    L. Fusco

    2014-08-01

    Full Text Available We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.

  4. Studies of quench propagation in a superconducting window frame magnet

    International Nuclear Information System (INIS)

    Allinger, J.; Carroll, A.; Danby, G.; DeVito, B.; Jackson, J.; Leonhardt, M.; Prodell, A.; Stoehr, R.

    1981-01-01

    During the testing of a meter long, superconducting window frame magnet, information from many spontaneously generated quenches have been recorded by an on-line computer system. Nearly every layer in an eleven layer dipole had a voltage tap and for some layers this subdivided into two halves. This allowed us to study development of the quenches in some detail. Knowledge of the resistances throughout the magnet also allowed the temperature distributions in the superconducting windings to be determined. A qualitative picture of the quench was developed and quantitative values of quench propagation velocities were compared to heat transfer calculations

  5. Short initial length quench on CICC of ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bessette, D.; Rodriguez-Mateos, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Coatanea-Gouachet, M. [ELC Engineering, 350 chemin du Verladet, F-13290 Les Milles (France); Gauthier, F. [Soditech Ingenierie, 4 bis allée des Gabians, ZI La Frayère, 06150 Cannes (France)

    2014-01-29

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.

  6. Short initial length quench on CICC of ITER TF coils

    International Nuclear Information System (INIS)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B.; Bessette, D.; Rodriguez-Mateos, F.; Coatanea-Gouachet, M.; Gauthier, F.

    2014-01-01

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed

  7. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  8. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  9. Introduction to Machine Protection

    CERN Document Server

    Schmidt, R

    2016-01-01

    Protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent, although there was one paper that discussed beam-induced damage for the SLAC linac (Stanford Linear Accelerator Center) as early as in 1967. It is related to the increasing beam power of high-power proton accelerators, to the emission of synchrotron light by electron-positron accelerators and to the increase of energy stored in the beam. Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping ...

  10. Lessons learned from the quench-11 training exercise

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2007-01-01

    16 organizations in 12 countries are participating in a RELAP/SCDAPSIM training exercise based on the Quench 11 experiment performed at Karlsruhe (Germany) in 2005. This exercise is being conducted in parallel to an International Standard Problem (ISP). Both the ISP and the RELAP/SCDAPSIM training exercise included a 'semi-blind' portion that was completed in the fall of 2006 and an 'open' portion that is to be completed in the summer of 2007. The RELAP/SCDAPSIM training exercise is coordinated by Innovative Systems Software with support by the International SCDAP Development and Training Program (SDTP). The Quench-11 experiment is based on an electrically heated fuel rod bundle representative of a PWR design. The bundle was subjected to a boil down transient, heat-up, and quenching with peak temperatures exceeding the melting point of the Zircaloy cladding. This experiment was chosen by the European Union as an International Benchmark exercise to compare the effectiveness of quenching models in the severe accident computer codes used today for accident analysis. This paper briefly describes (a) RELAP/SCDAPSIM/MOD3.4, (b) the Quench facility and experiments used in the training exercise, and (c) the training guidelines provided to the participants followed by a more detailed description of the lessons learned from the initial 'semi-blind' portion. The representative results demonstrate that good analysts can still have a difficult time predicting the thermal hydraulic response of a relative simple transient in a complex system

  11. The mass dependence of satellite quenching in Milky Way-like haloes

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Tollerud, Erik

    2015-02-01

    Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass (M⋆ = 108.5-1010.5 M⊙), with only ˜20 per cent of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive haloes quench their satellites more efficiently. These results extend trends seen previously in more massive host haloes and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about 108 M⊙ are uniformly resistant to environmental quenching, with the relative harshness of the host environment likely serving as the primary driver of satellite quenching. At lower stellar masses (<108 M⊙), however, observations of the Local Group suggest that the vast majority of satellite galaxies are quenched, potentially pointing towards a characteristic satellite mass scale below which quenching efficiency increases dramatically.

  12. Quench and recovery characteristics of Au/YBCO thin film type SFCL

    International Nuclear Information System (INIS)

    Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.; Sim, J.

    2007-01-01

    Although, a superconducting fault current limiter (SFCL) guarantees the fast limiting operation, it usually needs a considerably long time to recover to superconducting state after the quench. Considering the reclosing time in the protection coordination of power systems, the time required for the recovery should be investigated clearly. In this study, the quench and recovery characteristics of Au/YBCO thin films designed as an SFCL element with a bi-spiral pattern were investigated. The quench development of the SFCL was measured by two kinds of methods. Firstly, after applying the fault current of 5.5 cycles, we measured the resistance of the YBCO by a small current flowing through the pattern of Au/YBCO thin film. The temperature variation above the critical temperature, 85 K, was investigated indirectly from the resistance variation. Secondly, in order to measure the temperature from 85 K to 77 K, a meander line shape of Au thin film was evaporated on the back side and used as a temperature detecting sensor. The temperature variations detected by both methods were compared and analyzed. For the investigation of the recovery characteristics, the required time for the recovery of the superconductivity was measured for various magnitude and duration of the applied voltages. In addition, for the purpose of examining the dependence of the line impedance on the recovery time, resistors of various resistances were inserted in the fault current testing circuit and the recovery time was measured and analyzed

  13. Entanglement dynamics after quantum quenches in generic integrable systems

    Directory of Open Access Journals (Sweden)

    Vincenzo Alba, Pasquale Calabrese

    2018-03-01

    Full Text Available The time evolution of the entanglement entropy in non-equilibrium quantum systems provides crucial information about the structure of the time-dependent state. For quantum quench protocols, by combining a quasiparticle picture for the entanglement spreading with the exact knowledge of the stationary state provided by Bethe ansatz, it is possible to obtain an exact and analytic description of the evolution of the entanglement entropy. Here we discuss the application of these ideas to several integrable models. First we show that for non-interacting systems, both bosonic and fermionic, the exact time-dependence of the entanglement entropy can be derived by elementary techniques and without solving the dynamics. We then provide exact results for interacting spin chains that are carefully tested against numerical simulations. Finally, we apply this method to integrable one-dimensional Bose gases (Lieb-Liniger model both in the attractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement entropy due to the absence of a maximum velocity of excitations.

  14. Simulation of the Quench-06 experiment with Scdapsim

    International Nuclear Information System (INIS)

    Angel M, E. del; Nunez C, A.; Amador G, R.

    2003-01-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  15. Entanglement and thermodynamics after a quantum quench in integrable systems.

    Science.gov (United States)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-07-25

    Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.

  16. Tryptophan and ATTO 590: mutual fluorescence quenching and exciplex formation.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Beck, Christie; Winter, Arthur; Wells, Carson; Petrich, Jacob W

    2014-07-24

    Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.

  17. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  18. Machine Protection

    International Nuclear Information System (INIS)

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an interlock system providing the glue between these systems. The most recent accelerator, the LHC, will operate with about 3 × 10 14 protons per beam, corresponding to an energy stored in each beam of 360 MJ. This energy can cause massive damage to accelerator equipment in case of uncontrolled beam loss, and a single accident damaging vital parts of the accelerator could interrupt operation for years. This article provides an overview of the requirements for protection of accelerator equipment and introduces the various protection systems. Examples are mainly from LHC, SNS and ESS

  19. Machine protection systems

    CERN Document Server

    Macpherson, A L

    2010-01-01

    A summary of the Machine Protection System of the LHC is given, with particular attention given to the outstanding issues to be addressed, rather than the successes of the machine protection system from the 2009 run. In particular, the issues of Safe Machine Parameter system, collimation and beam cleaning, the beam dump system and abort gap cleaning, injection and dump protection, and the overall machine protection program for the upcoming run are summarised.

  20. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.

    Science.gov (United States)

    Dreuw, Andreas; Wormit, Michael

    2008-03-01

    Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.

  1. Collapse and revival in holographic quenches

    International Nuclear Information System (INIS)

    Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-01-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  2. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  3. Quantum quench in one dimension: coherent inhomogeneity amplification and "supersolitons".

    Science.gov (United States)

    Foster, Matthew S; Yuzbashyan, Emil A; Altshuler, Boris L

    2010-09-24

    We study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator. As an illustration, we consider the traveling density waves launched from an initial localized density bump. While these waves exhibit a particular rigid shape, their amplitudes grow without bound.

  4. A fluorescence quenching test for the detection of flavonoid transformation.

    Science.gov (United States)

    Schoefer, L; Braune, A; Blaut, M

    2001-11-13

    A novel fluorescence quenching test for the detection of flavonoid degradation by microorganisms was developed. The test is based on the ability of the flavonoids to quench the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH). Several members of the anthocyanidins, flavones, isoflavones, flavonols, flavanones, dihydroflavanones, chalcones, dihydrochalcones and catechins were tested with regard to their quenching properties. The anthocyanidins were the most potent quenchers of DPH fluorescence, while the flavanones, dihydroflavanones and dihydrochalcones, quenched the fluorescence only weakly. The catechins had no visible impact on DPH fluorescence. The developed test allows a quick and easy differentiation between flavonoid-degrading and flavonoid-non-degrading bacteria. The investigation of individual reactions of flavonoid transformation with the developed test system is also possible.

  5. Dynamical predictive power of the generalized Gibbs ensemble revealed in a second quench.

    Science.gov (United States)

    Zhang, J M; Cui, F C; Hu, Jiangping

    2012-04-01

    We show that a quenched and relaxed completely integrable system is hardly distinguishable from the corresponding generalized Gibbs ensemble in a dynamical sense. To be specific, the response of the quenched and relaxed system to a second quench can be accurately reproduced by using the generalized Gibbs ensemble as a substitute. Remarkably, as demonstrated with the transverse Ising model and the hard-core bosons in one dimension, not only the steady values but even the transient, relaxation dynamics of the physical variables can be accurately reproduced by using the generalized Gibbs ensemble as a pseudoinitial state. This result is an important complement to the previously established result that a quenched and relaxed system is hardly distinguishable from the generalized Gibbs ensemble in a static sense. The relevance of the generalized Gibbs ensemble in the nonequilibrium dynamics of completely integrable systems is then greatly strengthened.

  6. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    Karasik, A.S.

    1982-01-01

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru

  7. Fluorescence quenching of uric acid solubilized in bicontinuous microemulsion by nitrobenzene

    Directory of Open Access Journals (Sweden)

    Maurice O. Iwunze

    2013-02-01

    Full Text Available Abstract: Uric Acid is known to be practically insoluble in aqueous and alcoholic media. However, it exhibits a reasonable solubility in a Bicontinuous Microemulsion system – a 15-fold or more increase in solubility in this system compared to its solubility in water. The bicontinuous microemulsion is made up of three components –Dodecane-Surfactant-water. Uric acid solubilized in this system is quenched by nitrobenzene. The obtained fluorescence data do not obey the Stern-Volmer equation when plotted accordingly. Therefore, the modified Stern-Volmer equation was used to analyze the data. It was observed that only one third (1/3 of uric acid is accessible to quenching in this medium and the reaction is diffusion-limited. The Stern-Volmer quenching constant, KSV, was calculated to be 130 M-1 and the fluorescence lifetime, 0, the quantum yield,, and the bimolecular quenching rate constant, kq, were calculated as 10.6 nanoseconds, 0.06 and 1.231010 M-1s-1, respectively.

  8. Critical current degradation of short YBa2Cu3O7-δ coated conductor due to an unprotected quench

    International Nuclear Information System (INIS)

    Wang, X; Trociewitz, U P; Schwartz, J

    2011-01-01

    The critical current of a short YBa 2 Cu 3 O 7-δ (YBCO) coated conductor sample degrades in an unprotected quench performed in a nearly adiabatic environment at 30 K. The conductor has Cu stabilizers on both surfaces. The quench is initiated by a heater attached to the sample surface. The amplitude of the transport current is fixed as 91% of the sample's initial critical current. The duration of the current is increased to simulate an unprotected quench and to reach increasing and controlled voltage and temperature levels. A peak temperature of 490 ± 50 K and a heating rate of 1800 K s -1 are measured when the critical current degrades by ∼ 5%. The applied thermal strain on the YBCO layer from 30 to 490 K is estimated to be 0.31% and is applied at a strain rate of ∼ 1% s -1 . The rate of temperature change and the time to reach a certain peak temperature, determined by the current density in the Cu stabilizer, are estimated assuming adiabatic conditions based on the short sample case. For a Cu stabilizer current density ranging from 1000 to 2000 A mm -2 , achieved in commercial conductors currently available, the quench detection and protection requires a response time -2 may challenge the existing detection and protection techniques for the same 200 K limit. Integrating the substrate as part of the stabilizer may help reduce the stabilizer current density to gain more time for quench detection and protection while maintaining the engineering current density.

  9. Thermal and mechanical effects of quenches on Nb3Sn high field hadron collider magnets

    International Nuclear Information System (INIS)

    Ryuji, Yamada

    2001-01-01

    Thermal and its resulting mechanical stress due to quenches inside short and long epoxy impregnated Nb 3 Sn high field magnets are studied with a quench simulation program, Kuench, and ANSYS program. For the protection of a long high field magnet, we have to use heaters to dump the stored energy uniformly inside the magnet, after detection of a spontaneous quench. The time delay of starting a forced quench with heaters, is estimated using ANSYS. Using this information, the thermal distribution in two-dimensional magnet cross section is studied. First a one meter model magnet with a dump resistor is used to estimate the effects and then a 10 meter long magnet is studied. The two-dimensional temperature distributions in the magnet cross sections are recorded every 5 ms, and visually displayed. With this visual animation displays we can understand intuitively the thermal and quench propagation in 2-dimensional field. The quenching cables get heated locally much more than the surrounding material and non-quenching conductor cables. With a one meter magnet with a dump resistor of 30 mOmega, typically only the quench starting cables and its neighbor cables get heated up to 100 K without significant effects from the heaters. With a10 meter magnet, heaters cause the quenches to most of the conductor blocks. The quench initiating cables get up to 250 to 300 K in 100 ms, but the surrounding and wedges are not heated up significantly. This causes the excessive stress in the quenching conductors and in their insulation material locally. The stress and strain in the conductor as well as in the insulation become excessive, and they are studied using the ANSYS stress analysis, using Von Mises criterion. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for the extended ten meter long magnet [1

  10. TASK 2: QUENCH ZONE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  11. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  12. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  13. The Quench Action

    Science.gov (United States)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  14. O2(a1Δ) Quenching In The O/O2/O3 System

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-10-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ)+O+M→2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2a1Δ-X3∑ transition. Fast quenching of O2(a1Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  15. O2(a1Δ) Quenching In The O/O2/O3 System

    International Nuclear Information System (INIS)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-01-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O 2 (a 1 Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O 2 (a 1 Δ)+O+M→2O 2 +M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O 2 (a 1 Δ) in O( 3 P)/O 2 /O 3 /CO 2 /He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O 2 (a 1 Δ) quenching were followed by observing the 1268 nm fluorescence of the O 2 a 1 Δ-X 3 Σ transition. Fast quenching of O 2 (a 1 Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  16. Increasing the Useful Life of Quench Reliefs with Inconel Bellows

    Energy Technology Data Exchange (ETDEWEB)

    Soyars, W. M. [Fermilab

    1999-01-01

    Reliable quench relief valves are an important part of superconducting magnet systems. Fermilab developed bellows-actuated cryogenic quench reliefs which have been in use since the early l 980's. The original design uses a stainless steel bellows. A high frequency, low amplitude vibration during relieving events has resulted in fatigue failures in the original design. To take advantage of the improved resistance to fatigue of Inconel, a nickel-chromium alloy, reliefs using Inconel 625 bellows were made. Design, development, and testing of the new version reliefs will be discussed. Tests show that relief valve lifetimes using Inconel bellows are more than five times greater than when using the original stainless steel bellows. Inconel bellows show great promise in increasing the lifetime of quench relief valves, and thus the reliability of accelerator cryogenic systems.

  17. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    International Nuclear Information System (INIS)

    Bagan, H.; Tarancon, A.; Rauret, G.; Garcia, J.F.

    2008-01-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14 C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach

  18. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  19. Superconducting toroidal field coil power supply and protection system for NET

    International Nuclear Information System (INIS)

    Hicks, J.B.

    1986-01-01

    A power supply and quench protection system is proposed in which alternate coils are connected in series to produce two separate circuits, each with 8 coils. Both circuits are provided with power supplies comprising rectifier transformers and thyristor equipped Graetz bridges, which are operated at maximum forward voltage (125 V) to charge the coils to 24 kA, 17.75 GJ in ≅ 2 hours and are fully inverted for scheduled discharges. Pulsed firing of the thyristors allows the same power supplies to be used to maintain the currents against resistive losses, without increasing the reactive power consumption or harmonic current generation. Rapid discharges are initiated by opening d.c. circuit breakers to introduce discharge resistors between the coils of each circuit. The maximum possible value of peak voltage-to-ground is then limited to 2.25 times the discharge voltage applied to each coil. A 5 kV discharge voltage allows the coils to be discharged with a time constant of 18.5 s, which is sufficiently rapid to limit the quench ''hot spot'' temperature to 68 K. The coil connections impose sufficient symmetry on the coil current distribution to ensure that no out-of-plane forces are produced on the coils. Even if one circuit breaker fails to interrupt, the variation of coil currents is sufficiently small that the resulting symmetric variation of radial centring forces is acceptable

  20. Concentration quenching in Nd-doped glasses

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-01-01

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made

  1. Quench dynamics of topological maximally entangled states.

    Science.gov (United States)

    Chung, Ming-Chiang; Jhu, Yi-Hao; Chen, Pochung; Mou, Chung-Yu

    2013-07-17

    We investigate the quench dynamics of the one-particle entanglement spectra (OPES) for systems with topologically nontrivial phases. By using dimerized chains as an example, it is demonstrated that the evolution of OPES for the quenched bipartite systems is governed by an effective Hamiltonian which is characterized by a pseudospin in a time-dependent pseudomagnetic field S(k,t). The existence and evolution of the topological maximally entangled states (tMESs) are determined by the winding number of S(k,t) in the k-space. In particular, the tMESs survive only if nontrivial Berry phases are induced by the winding of S(k,t). In the infinite-time limit the equilibrium OPES can be determined by an effective time-independent pseudomagnetic field Seff(k). Furthermore, when tMESs are unstable, they are destroyed by quasiparticles within a characteristic timescale in proportion to the system size.

  2. Quench detection by fluid dynamic means in cable-in-conduit superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    The tight confinement of the helium in cable-in-conduit superconductors creates protection problems because of the pressure rise that can occur during a quench. But the same pressure rise offers the possibility of a non-electrical means of detecting incipient quenches by monitoring the outflow from the various hydraulic paths of the magnet. If the method is to work, the signal must be large enough to be detected unambiguously at an early time, and must not depend too strongly on the length, Joule power density, or rate of growth of the initial normal zone. This paper explores by calculation the degree to which these conditions can be met. The Westinghouse Large Coil Task coil is used as an example

  3. Defect production due to quenching through a multicritical point

    International Nuclear Information System (INIS)

    Divakaran, Uma; Mukherjee, Victor; Dutta, Amit; Sen, Diptiman

    2009-01-01

    We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/τ, where τ is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble–Zurek scaling form n∼1/τ dν/(zν+1) , where d is the spatial dimension, and ν and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n∼1/τ d/(2z 2 ) , where the exponent z 2 determines the behavior of the off-diagonal term of the 2 × 2 Landau–Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point

  4. Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2016-04-01

    In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature tests, receiving calculation results with the evaluated range of uncertainties.

  5. Quenching and recovery experiments on molybdenum

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    Quenching experiments in superfluid helium have been performed on high-purity wire specimens obtained from a Mo single crystal with a residual resistance ratio of 40 000. Quenching from various temperatures near the melting point to 1.5 K resulted in quenched-in resistivities which are interpreted in terms of quenched-in vacancies. The following parameters were derived: Hsub(1V)sup(F) = 3.2 eV (formation enthalpy of monovacancies) and Ssub(1V)sup(F) = 1.5 k (formation entropy). The recovery of the quenched-in resistivity showed a recovery stage at 520 K, which is compatible with a migration enthalpy of Hsub(1V)sup(M) = 1.35 eV. The results are compared with recently published positron annihilation data. (author)

  6. Phase diagram and quench dynamics of the cluster-XY spin chain.

    Science.gov (United States)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  7. The quench action approach to out-of-equilibrium quantum integrable models

    NARCIS (Netherlands)

    Wouters, B.M.

    2015-01-01

    In this PhD thesis quantum quenches to 1D quantum integrable models are studied by means of the quench action approach. Using the large-system-size scaling of overlaps between the initial state and Bethe states as basic input, this method gives an exact description in the thermodynamic limit of the

  8. Quantum quenches in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  9. Polyfluorophore Labels on DNA: Dramatic Sequence Dependence of Quenching

    Science.gov (United States)

    Teo, Yin Nah; Wilson, James N.

    2010-01-01

    We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynu-cleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl-labeled complementary strand resulted in strong quenching of fluorescence in 85% of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1 × 104 and 4.3 × 105M−1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence. PMID:19780115

  10. Flux quench in a system of interacting spinless fermions in one dimension

    Science.gov (United States)

    Nakagawa, Yuya O.; Misguich, Grégoire; Oshikawa, Masaki

    2016-05-01

    We study a quantum quench in a one-dimensional spinless fermion model (equivalent to the XXZ spin chain), where a magnetic flux is suddenly switched off. This quench is equivalent to imposing a pulse of electric field and therefore generates an initial particle current. This current is not a conserved quantity in the presence of a lattice and interactions, and we investigate numerically its time evolution after the quench, using the infinite time-evolving block decimation method. For repulsive interactions or large initial flux, we find oscillations that are governed by excitations deep inside the Fermi sea. At long times we observe that the current remains nonvanishing in the gapless cases, whereas it decays to zero in the gapped cases. Although the linear response theory (valid for a weak flux) predicts the same long-time limit of the current for repulsive and attractive interactions (relation with the zero-temperature Drude weight), larger nonlinearities are observed in the case of repulsive interactions compared with that of the attractive case.

  11. Machine Protection for the Experiments of the LHC

    CERN Document Server

    Appleby, R B

    2010-01-01

    The LHC stored beam contains 362 MJ of energy at the top beam energy of 7 TeV/c, presenting a significant risk to the components of the machine and the detectors. In response to this threat, a sophisticated system of machine protection has been developed to minimize the danger, and detect potentially dangerous situations. In this paper, the protection of the experiments in the LHC from the machine is considered, focusing on pilot beam strikes on the experiments during injection and on the dynamics of hardware failure with a circulating beam, with detailed time-domain calculations performed for LHC ring power converter failures and magnet quenches. The prospects for further integration of the machine protection and experimental protection systems are considered, along with the risk to nearbeam detectors from closed local bumps.

  12. Aging and coarsening in isolated quantum systems after a quench: Exact results for the quantum O(N) model with N → ∞.

    Science.gov (United States)

    Maraga, Anna; Chiocchetta, Alessio; Mitra, Aditi; Gambassi, Andrea

    2015-10-01

    The nonequilibrium dynamics of an isolated quantum system after a sudden quench to a dynamical critical point is expected to be characterized by scaling and universal exponents due to the absence of time scales. We explore these features for a quench of the parameters of a Hamiltonian with O(N) symmetry, starting from a ground state in the disordered phase. In the limit of infinite N, the exponents and scaling forms of the relevant two-time correlation functions can be calculated exactly. Our analytical predictions are confirmed by the numerical solution of the corresponding equations. Moreover, we find that the same scaling functions, yet with different exponents, also describe the coarsening dynamics for quenches below the dynamical critical point.

  13. Dynamic Study of Feed-Effluent Heat Exchanger Addition on Double Bed Configuration Ammonia Reactor System within Varied Quenching Ratio

    Directory of Open Access Journals (Sweden)

    Adhi Tri Partono

    2018-01-01

    Full Text Available Ammonia is one of the most important industrial commodity due to its wide function. Ammonia synthesis reaction is an exotermic reaction. Therefore, Feed-Effluent Heat Exchanger (FEHE is added to increase thermal efficiency. However, FEHE could lead the process to experience hysteresis phenomenon due to interaction between equipments as one steady state T feed could result several T outlet. Hysteresis phenomenon may result asset losses like explosion, leakage, and loosing material integrity. Double bed reactor configuration allows us to use several operating parameters as variation to overcome hysteresis. In this review, quenching ratio was chosen to be that varied parameter. This study aims to determine how quenching ratio affects hysteresis zone by utilizing Aspen Hysys® V8.8 as simulation tool. Simulation showed that quenching ratio would narrow hysteresis zone yet increased extinction temperature that lower the conversion. Conversion profile showed that 0.2 quenching ratio got the highest conversion for system with bed volume ratio 2:1 while total volume was 30 m3. However, the feed temperature was fallen at hysteresis zone. Dynamic simulation showed that highest conversion feed temperature (10%ΔTf above extinct temperature was still able to preserve stability with descending temperature approach. Hysteresis itself started to occur at 1.7%ΔTf above extinct temperature

  14. Oscillation and decay of particle current due to a quench and dephasing in an interacting fermionic system

    OpenAIRE

    Choo, Kenny; Bissbort, Ulf; Poletti, Dario

    2017-01-01

    We study the response of a particle current to dissipative dephasing in an interacting, few-body fermionic lattice system. The particles are prepared in the ground state in presence of an artificial magnetic gauge field, which is subsequently quenched to zero. The initial current decays non-trivially in the dissipative environment and we explore the emerging dynamics and its dependence on various system parameters.

  15. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  16. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  17. Exact infinite-time statistics of the Loschmidt echo for a quantum quench.

    Science.gov (United States)

    Campos Venuti, Lorenzo; Jacobson, N Tobias; Santra, Siddhartha; Zanardi, Paolo

    2011-07-01

    The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.

  18. Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter

    2016-05-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  19. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  20. FPGA-Based Plant Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee; Ha, Jae Hong; Kim, Hang Bae [KEPCO E and C, Daejeon (Korea, Republic of)

    2011-08-15

    This paper relates to a plant protection system which detects non-permissible conditions and determines initiation of protective actions for nuclear power plants (NPPs). Conventional plant protection systems were designed based on analog technologies. It is well known that existing protection systems for NPPs contain many components which are becoming obsolete at an increasing rate. Nowadays maintenance and repair for analog-based plant protection systems may be difficult as analog parts become obsolete or difficult to obtain. Accordingly, as an alternative to the analog technology, the digitalisation of the plant protection system was required. Recently digital plant protection systems which include programmable logic controllers (PLCs) and/or computers have been introduced. However PLC or computer-based plant protection systems use an operating system and application software, and so they may result in a common mode failure when a problem occurs in the operating system or application software. Field Programmable Gate Arrays (FPGAs) are highlighted as an alternative to conventional protection or control systems. The paper presents the design of a four-channel plant protection system whose protection functions are implemented in FPGAs without any central processing unit or operating system.

  1. FPGA-Based Plant Protection System

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Ha, Jae Hong; Kim, Hang Bae

    2011-01-01

    This paper relates to a plant protection system which detects non-permissible conditions and determines initiation of protective actions for nuclear power plants (NPPs). Conventional plant protection systems were designed based on analog technologies. It is well known that existing protection systems for NPPs contain many components which are becoming obsolete at an increasing rate. Nowadays maintenance and repair for analog-based plant protection systems may be difficult as analog parts become obsolete or difficult to obtain. Accordingly, as an alternative to the analog technology, the digitalisation of the plant protection system was required. Recently digital plant protection systems which include programmable logic controllers (PLCs) and/or computers have been introduced. However PLC or computer-based plant protection systems use an operating system and application software, and so they may result in a common mode failure when a problem occurs in the operating system or application software. Field Programmable Gate Arrays (FPGAs) are highlighted as an alternative to conventional protection or control systems. The paper presents the design of a four-channel plant protection system whose protection functions are implemented in FPGAs without any central processing unit or operating system

  2. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  3. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  4. Quench/reflood modeling in MELCOR

    International Nuclear Information System (INIS)

    Gauntt, R.O.

    2001-01-01

    The authors describe the reactor accident simulation model MELCOR. It comprises hydrodynamic investigations on reactor core quenching, hydrogen generation in the reactor core vessel, quench front advances. Preliminary comparisons to data are reasonable but need further validation. (uke)

  5. Quantum quenches to the attractive one-dimensional Bose gas: exact results

    Directory of Open Access Journals (Sweden)

    Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler

    2016-09-01

    Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.

  6. Depth protection system

    International Nuclear Information System (INIS)

    Arita, Setsuo; Izumi, Shigeru; Suzuki, Satoru; Noguchi, Atomi.

    1988-01-01

    Purpose: To previously set a nuclear reactor toward safety side by the reactor scram if an emergency core cooling system is failed to operate. Constitution If abnormality occurs in an emergency core cooling system or an aqueous boric acid injection system, a reactor protection system is operated and, if the reactor protection system shows an abnormal state, a control rod withdrawal inhibition system is operated as a fundamental way. For instance, when the driving power source voltage for the emergency core cooling system is detected and, if it is lower than a predetermined value, the reactor protection system is operated. Alternatively, if the voltage goes lower than the predetermined value, the control rod withdrawal is inhibited. In addition, stopping for the feedwater system is inhibited. Further, integrity of the driving means for the emergency core cooling system is positively checked and the protection function is operated depending on the result of check. Since the nuclear reactor can be set toward the safety side even if the voltage for the driving power source of the aqueous boric acid injection system is lower than a predetermined value, the reactor safety can further be improved. (Horiuchi, T.)

  7. Quantum quenches in the Luttinger model and its close relatives

    Science.gov (United States)

    Cazalilla, M. A.; Chung, Ming-Chiang

    2016-06-01

    A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.

  8. System level ESD protection

    CERN Document Server

    Vashchenko, Vladislav

    2014-01-01

    This book addresses key aspects of analog integrated circuits and systems design related to system level electrostatic discharge (ESD) protection.  It is an invaluable reference for anyone developing systems-on-chip (SoC) and systems-on-package (SoP), integrated with system-level ESD protection. The book focuses on both the design of semiconductor integrated circuit (IC) components with embedded, on-chip system level protection and IC-system co-design. The readers will be enabled to bring the system level ESD protection solutions to the level of integrated circuits, thereby reducing or completely eliminating the need for additional, discrete components on the printed circuit board (PCB) and meeting system-level ESD requirements. The authors take a systematic approach, based on IC-system ESD protection co-design. A detailed description of the available IC-level ESD testing methods is provided, together with a discussion of the correlation between IC-level and system-level ESD testing methods. The IC-level ESD...

  9. Voltage Quench Dynamics of a Kondo System.

    Science.gov (United States)

    Antipov, Andrey E; Dong, Qiaoyuan; Gull, Emanuel

    2016-01-22

    We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.

  10. The electronic quenching rates of NO(A2Σ+, v'=0-2)

    International Nuclear Information System (INIS)

    Nee, J.B.; Juan, C.Y.; Hsu, J.Y.; Yang, J.C.; Chen, W.J.

    2004-01-01

    The electronic quenching rates of NO(A 2 Σ + , v ' =0-2) are measured for the gases He, Ar, Xe, N 2 , O 2 , CO 2 , N 2 O, and SF 6 . The variations of the fluorescence intensity were measured for the (0,0), (1,0), and (2,0) bands of the γ band system when the quencher gases were added. The quenching rates were determined by using the Stern-Volmer plots with the known radiative lifetimes of the excited states. The electronic quenching rate constants are fast for the group of gases of O 2 , CO 2 , N 2 O, and SF 6 , whose quenching rate constants are in the order of 10 -10 cm 3 /s. The quenching rate constants are slow for the group of gases including He, Ar, Xe, and N 2 whose rate constants are in the order of 10 -14 cm 3 /s. For the slow group, the quenching rate constants increase rapidly for v ' =2 compared with those of v ' =0 and 1. The charge transfer model and collision complex model are used to understand the quenching mechanism. For the fast group which mainly consists of gases with positive electron affinities, the charge transfer model adequately describes the mechanism. For the slow quenching group, a theoretical background is provided by consider the coupling of initial and final states in the complex potential surfaces

  11. Quantum quenches in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)

    2017-04-10

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.

  12. 1.8K conditioning (non-quench training) of a model SSC dipole

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Hassenzahl, W.V.

    1986-09-01

    The accepted hypothesis is that training quenches are caused by heat generation when conductors move under Lorentz force. Afterwards no conductor motion will occur until a higher field and greater Lorentz force acts. If superior heat transfer and/or greater temperature margin is provided by operating at lower bath temperature, one might expect that the heat generated by conductor motion will not cause a runaway temperature increase, or quench. To test this hypothesis, the central dipole field in SSC model magnets was ramped at 1.8 K to 7.1 tesla without the magnets' quenching. The bath was then raised to 4.4 K and the magnets quenched at their short sample limits of 6.6 tesla or higher. Comparison with similar magnets trained in He I at 4.4 K is made and the significance of the non-quench training on system operation is discussed

  13. 1. 8K conditioning (non-quench training) of a model SSC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.S.; Hassenzahl, W.V.

    1986-09-01

    The accepted hypothesis is that training quenches are caused by heat generation when conductors move under Lorentz force. Afterwards no conductor motion will occur until a higher field and greater Lorentz force acts. If superior heat transfer and/or greater temperature margin is provided by operating at lower bath temperature, one might expect that the heat generated by conductor motion will not cause a runaway temperature increase, or quench. To test this hypothesis, the central dipole field in SSC model magnets was ramped at 1.8 K to 7.1 tesla without the magnets' quenching. The bath was then raised to 4.4 K and the magnets quenched at their short sample limits of 6.6 tesla or higher. Comparison with similar magnets trained in He I at 4.4 K is made and the significance of the non-quench training on system operation is discussed.

  14. Analyses of quenching process during turn-off of plasma electrolytic carburizing on carbon steel

    International Nuclear Information System (INIS)

    Wu, Jie; Liu, Run; Xue, Wenbin; Wang, Bin; Jin, Xiaoyue; Du, Jiancheng

    2014-01-01

    Highlights: • Cooling rate of carburized steel at the end of PEC treatment is measured. • The quench hardening in the fast or slow turn-off mode hardly takes place. • Decrease of the surface roughness during slow turn-off process is found. • A slow turn-off mode is recommended to replace the conventional turn-off mode. - Abstract: Plasma electrolytic carburizing (PEC) under different turn-off modes was employed to fabricate a hardening layer on carbon steel in glycerol solution without stirring at 380 V for 3 min. The quenching process in fast turn-off mode or slow turn-off mode of power supply was discussed. The temperature in the interior of steel and electron temperature in plasma discharge envelope during the quenching process were evaluated. It was found that the cooling rates of PEC samples in both turn-off modes were below 20 °C/s, because the vapor film boiling around the steel sample reduced the cooling rate greatly in terms of Leidenfrost effect. Thus the quench hardening hardly took place, though the slow turn-off mode slightly decreased the surface roughness of PEC steel. At the end of PEC treatment, the fast turn-off mode used widely at present cannot enhance the surface hardness by quench hardening, and the slow turn-off mode was recommended in order to protect the electronic devices against a large current surge

  15. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  16. Energy and Heat Fluctuations in a Temperature Quench

    Energy Technology Data Exchange (ETDEWEB)

    Zannetti, M.; Corberi, F. [Dipartimento di Fisica “E. Caianiello”, and CNISM, Unità di Salerno, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Italy); Gonnella, G. [Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Piscitelli, A., E-mail: mrc.zannetti@gmail.com, E-mail: corberi@sa.infn.it, E-mail: gonnella@ba.infn.it, E-mail: antps@hotmial.it [Division of Physical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 (Singapore)

    2014-10-15

    Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large N model quenched below the critical temperature T{sub c}. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose—Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction. (general)

  17. N-acetylcysteine induced quenching of red fluorescent oligonucleotide-stabilized silver nanoclusters and the application in pharmaceutical detection

    International Nuclear Information System (INIS)

    Wang, Xinyi; Lin, Ruoyun; Xu, Zhihan; Huang, Hongduan; Li, Limei; Liu, Feng; Li, Na; Yang, Xiaoda

    2013-01-01

    Graphical abstract: -- Highlights: •A new method for nanomolar NAC determination with LOD of 50 nM was reported. •The combined mechanism for NAC quenching with static dominating was suggested. •DNA-Ag NC structure changed with addition of NAC, proved by spectroscopic studies. -- Abstract: In this work, we reported a new, simple and sensitive method for determination of N-acetylcysteine (NAC) based on quenching of the red fluorescence of oligonuleotide-protected silver nanoculsters (Ag NCs) with the quantum yield of 68.3 ± 0.3%. This method was successfully used for the assay of NAC granules presenting a linear range from 100 nM to 1200 nM (LOD of 50 nM) with minimal interferences from potential coexisting substances. It is for the first time that quenching performance of the thiol-containing compound was found to follow a non-linear Stern–Volmer profile, indicative of a complicated quenching mechanism with static quenching dominating, in which DNA-template of Ag NCs was partly replaced by NAC, as elucidated by spectral investigations. This study extended the analytical application of silver nanoclusters as well as provided a more insightful understanding of the quenching mechanism of thiol-compounds on the fluorescence of Ag NCs

  18. Interaction quantum quenches in the one-dimensional Fermi-Hubbard model

    Science.gov (United States)

    Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano

    2016-05-01

    We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.

  19. On-off QD switch that memorizes past recovery from quenching by diazonium salts.

    Science.gov (United States)

    Liras, Marta; González-Béjar, María; Scaiano, J C

    2010-09-07

    The understanding of the interaction of CdSe/ZnS semiconductor quantum dots (QD) with their chemical environment is fundamental, yet far from being fully understood. p-Methylphenyldiazonium tetrafluoroborate has been used to get some insight into the effect of diazonium salts on the spectroscopy of QD. Our study reveals that the surface of CdSe/ZnS quantum dots can be modified by diazonium salts (although not functionalized), showing and on-off fluorescence behaviour that memorizes past quenching recoveries. Facile modification of the surface confers protection against quenching by new molecules of diazonium salt and other known quenchers such as 4-amino-TEMPO. The reaction mechanism has been explored in detail by using different spectroscopic techniques. At the first time after addition of diazonium salt over QD the fluorescent is turned off with Stern-Volmer behaviour; the fluorescence recovers following irradiation. Subsequent additions of diazonium salts do not cause the same degree of quenching. We have noted that the third addition (following two cycles of addition and irradiation) is unable to quench the fluorescence. Monitoring the process using NMR techniques reveals the formation of p-difluoroborane toluene as a result of the irradiation of diazonium-treated QD; the treatment leads to the fluorination of the QD surface.

  20. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  1. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas

    OpenAIRE

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2014-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...

  2. Quenching effects in photon production

    International Nuclear Information System (INIS)

    Durand, M.

    1989-01-01

    Contraints on the photon production calculated by kinetic approaches are studied by means of sum-rules a finite temperature for simple quantum system. For the square-well potential the exact production rate is compared with its semi-classical limit in order to introduce the principle problem. For the scattering of hard spheres the photon production cross section is derived exactly by partial wave expansion. This serves to study the more realistic example of a gas of hard spheres. The corresponding kinetic photon production rates are found to violate the sum-rules, due to a singular behaviour at small gamma energies. Thus the hypothesis of incoherent free scattering is not valid in that range because of destructive interferences which quench the production rates significantly. For the application to nuclear collisions at intermediate energies these quenching effects are found to be important for gamma energies even up to a few hundred MeV. (orig.)

  3. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  4. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  5. Experimental methods for quenching structures in lunar-analog silicate melts - Variations as a function of quench media and composition

    International Nuclear Information System (INIS)

    Dyar, M.D.

    1984-01-01

    Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses

  6. Detecting a many-body mobility edge with quantum quenches

    Directory of Open Access Journals (Sweden)

    Piero Naldesi, Elisa Ercolessi, Tommaso Roscilde

    2016-10-01

    Full Text Available The many-body localization (MBL transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations to "localized" (exhibiting area-law scaling of entanglement and fluctuations. The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

  7. Advanced active quenching circuit for ultra-fast quantum cryptography.

    Science.gov (United States)

    Stipčević, Mario; Christensen, Bradley G; Kwiat, Paul G; Gauthier, Daniel J

    2017-09-04

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  8. Three dimensional numeric quench simulation of Super-FRS dipole test coil for FAIR project

    International Nuclear Information System (INIS)

    Wu Wei; Ma Lizhen; He Yuan; Yuan Ping

    2013-01-01

    The prototype of superferric dipoles for Super-FRS of Facility for Antiprotons and Ion Research (FAIR) project was designed, fabricated, and tested in China. To investigate the performance of the superconducting coil, a so-called test coil was fabricated and tested in advance. A 3D model based on ANSYS and OPERA 3D was developed in parallel, not only to check if the design matches the numerical simulation, but also to study more details of quench phenomena. The model simplifies the epoxy impregnated coil into an anisotropic continuum medium. The simulation combines ANSYS solver routines for nonlinear transient thermal analysis, the OPERA 3D for magnetic field evaluation and the ANSYS script language for calculations of Joule heat and differential equations of the protection circuits. The time changes of temperature, voltage and current decay, and quench propagation during quench process were analyzed and illustrated. Finally, the test results of the test coil were demonstrated and compared with the results of simulation. (authors)

  9. A new method of quench monitoring in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1978-01-01

    The quench level of different liquid scintillation counting samples is measured by comparing the responses (pulse heights) produced by the same energy electrons in each sample. The electrons utilized in the measurements are those of the maximum energy (Esub(max)) which are produced by the single Compton scattering process for the same energy gamma-rays in each sample. The Esub(max) response produced in any sample is related to the Esub(max) response produced in an unquenched, sealed standard. The difference in response on a logarithm response scale is defined as the ''H Number''. The H number is related to the counting efficiency of the desired radionuclide by measurement of a set of standards of known amounts of the radionuclide and different amounts of quench (standard quench curve). The concept of the H number has been shown to be theoretically valid. Based upon this proof, the features of the H number concept as embodied in the Beckman LS-8000 Series Liquid Scintillation Systems have been demonstrated. It has been shown that one H number is unique; it provides a method of instrument calibration and wide dynamic quench range measurements. Further, it has been demonstrated that the H number concept provides a universal quench parameter. Counting efficiency vs. H number plots are repeatable within the statistical limits of +-1% counting efficiency. By the use of the H number concept a very accurate method of automatic quench compensation (A.Q.C.) is possible. (T.G.)

  10. Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh

    International Nuclear Information System (INIS)

    Kudriakov, S.; Studer, E.; Bin, C.

    2011-01-01

    Recent studies of J.H. Song et al., and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size. Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment, in particular, the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter). In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically. (authors)

  11. State of the art and future challenges for Machine Protection Systems

    CERN Document Server

    Wenninger, J

    2014-01-01

    Current frontier accelerators explore regimes of increasing power and stored energy, with beam energies spanning more than three orders of magnitude from the GeV to theTeV scale. In many cases the high beam power has to cohabit with superconducting equipment in the form of magnets or RF cavities requiring careful control of losses and of halos to mitigate quenches. Despite their large diversity in physics goals and operation modes, all facilities depend on their Machine Protection Systems (MPS) for safe and efficient running. This presentation will aim to give an overview of current MPS and on how the MPS act on or control the beams. Lessons from the LHC and other accelerators show that ever tighter monitoring of accelerator equipment and of beam parameters is required in the future. Such new monitoring systems must not only be very accurate but also be extremely reliable to minimize false alarms. Novel MPS ideas and concepts for linear colliders, high intensity hadron accelerators and to other high power acc...

  12. Power system protection

    International Nuclear Information System (INIS)

    Venkata, S.S.; Damborg, M.J.; Jampala, A.K.

    1991-01-01

    Power systems of the 21st century will be more modern, and complex, utilizing the latest available technologies. At the same time, generating plants will have to operate with minimal spinning margins and energy transportation has to take place at critical levels due to environmental and economical constraints. These factors dictate that the power systems be protected with optimum sensitivity, selectivity and time of operation to assure maximum reliability, and security at minimal cost. With an increasing role played by digital computers in every aspect of protection, it is important to take a critical and fresh look at the art and science of relaying and protection. The main objective of this paper is to review the past, present and future of power system protection from a software point of view

  13. Quenches in the superconducting magnet CELLO

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1979-01-01

    The superconducting magnet CELLO was tested with currents up to 3200 A at Saclay and has been installed at DESY in Hamburg where it will be used for particle physics experiments requiring colliding beams of electrons and positrons. The testing of this unique, large, one-layer solenoid provides an excellent opportunity to evaluate the theory of quench propagation under adiabatic conditions, that is, in a coil in which the conductors are not in direct contact with helium. In an early test of this coil, quenches that occurred, gives the details of the damaged conductor, and includes an analysis of the quenches. Observed axial quench velocities are compared to the calculated values based on both measurements and calculations of the thermal conductivity of the fabricated coil

  14. Wave form of current quench during disruptions in tokamaks

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Gribov, Yuri; Shimada, Michiya; Lukash, Victor; Kawano, Yasunori; Yoshino, Ryuji; Miki, Nobuharu; Ohmori, Junji; Khayrutdinov, Rustam

    2003-01-01

    The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electro-magnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential. (author)

  15. Propagation and quenching in a reactive Burgers–Boussinesq system

    International Nuclear Information System (INIS)

    Constantin, Peter; Ryzhik, Lenya; Roquejoffre, Jean-Michel; Vladimirova, Natalia

    2008-01-01

    We investigate the qualitative behaviour of solutions of a Burgers–Boussinesq system—a reaction–diffusion equation coupled via gravity to a Burgers equation—by a combination of numerical, asymptotic and mathematical techniques. Numerical simulations suggest that when the gravity ρ is small the solutions decompose into a travelling wave and an accelerated shock wave moving in opposite directions. There exists ρ cr1 so that, when ρ > ρ cr1 , this structure changes drastically, and the solutions become more complicated. The solutions are composed of three elementary pieces: a wave fan, a combustion travelling wave and an accelerating shock, the whole structure travelling in the same direction. There exists ρ cr2 so that when ρ > ρ cr2 , the wave fan catches up with the accelerating shock wave and the solution is quenched, no matter how large the support of the initial temperature. We prove that the three building blocks (wave fans, combustion travelling waves and shocks) exist and we construct asymptotic solutions made up of these three elementary pieces. We finally prove, in a mathematically rigorous way, a quenching result irrespective of the size of the region where the temperature was above ignition—a major difference from what happens in advection–reaction–diffusion equations where an incompressible flow is imposed

  16. Fluids in porous media. IV. Quench effect on chemical potential.

    Science.gov (United States)

    Qiao, C Z; Zhao, S L; Liu, H L; Dong, W

    2017-06-21

    It appears to be a common sense to measure the crowdedness of a fluid system by the densities of the species constituting it. In the present work, we show that this ceases to be valid for confined fluids under some conditions. A quite thorough investigation is made for a hard sphere (HS) fluid adsorbed in a hard sphere matrix (a quench-annealed system) and its corresponding equilibrium binary mixture. When fluid particles are larger than matrix particles, the quench-annealed system can appear much more crowded than its corresponding equilibrium binary mixture, i.e., having a much higher fluid chemical potential, even when the density of each species is strictly the same in both systems, respectively. We believe that the insight gained from this study should be useful for the design of functionalized porous materials.

  17. Protection of the 6 T YBCO insert in the 13 T Nb$_{3}$Sn Fresca II dipole

    CERN Document Server

    Stenvall, A.; Fazilleau, Ph.; Devaux, M.; Durante, M.; Lecrevisse, T.; Rey, J. -M.; Fleiter, J.; Sorbi, M.; Volpini, G.; Tixador, P.

    2013-01-01

    In the EuCARD project, we aim to construct a dipole magnet in YBCO producing 6 T in the background field of a 13 T Nb$_{3}$Sn dipole FRESCA II. This paper reviews the quench analysis and protection of the YBCO coil. In addition, a recommendation for the protection system of the YBCO coil is presented.

  18. Hamiltonian truncation approach to quenches in the Ising field theory

    Directory of Open Access Journals (Sweden)

    T. Rakovszky

    2016-10-01

    Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.

  19. Nonequilibrium forces following quenches in active and thermal matter

    Science.gov (United States)

    Rohwer, Christian M.; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias

    2018-03-01

    Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.

  20. Process for the automatic compensation of spectral displacement based on quenching processes in a liquid scintillation counter

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    In measurements in a liquid scintillation counter, the tritium or C 14 isotope to be examined is situated in a scintillator solution. It is excited according to the energy of the β particle to emit light. An electrical signal is proportional to the light signal, and from the former, selective counting in the β spectrum can be undertaken in an impulse height analyser. The influence of the quenching effects by colour quenching or chemical quenching would reduce the gain of the counter. To compensate for the displacement of the spectrum, the required adjustment of a system parameter is carried out by calibration with a sample of low quenching effect. The calibration process is directly set for the energy end-point of the spectrum. Well known processes can be used to determine the quenching effect of the quenching represented by the sample. For example, the system parameters can be the discriminator level of the counter window. (DG) 891 HP [de

  1. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin–orbit coupling

    International Nuclear Information System (INIS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems. (paper)

  2. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    Science.gov (United States)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  3. Severe fuel damage experiments performed in the QUENCH facility with 21-rod bundles of LWR-type

    International Nuclear Information System (INIS)

    Sepold, L.; Hering, W.; Schanz, G.; Scholtyssek, W.; Steinbrueck, M.; Stuckert, J.

    2006-01-01

    The objective of the QUENCH experimental program at the Karlsruhe Research Center is to investigate core degradation and the hydrogen source term that results from quenching/flooding an uncovered core, to examine the physical/chemical behavior of overheated fuel elements under different flooding conditions, and to create a data base for model development and improvement of severe fuel damage (SFD) code systems. The large-scale 21-rod bundle experiments conducted in the QUENCH out-of-pile facility are supported by an extensive separate-effects test program, by modeling activities as well as application and improvement of SFD code systems. International cooperations exist with institutions mainly within the European Union but e.g. also with the Russian Academy of Science (IBRAE, Moscow) and the CSARP program of the USNRC. So far, eleven experiments have been performed, two of them with B 4 C absorber material. Experimental parameters were: the temperature at initiation of reflood, the degree of peroxidation, the quench medium, i.e. water or steam, and its injection rate, the influence of a B 4 C absorber rod, the effect of steam-starved conditions before quench, the influence of air oxidation before quench, and boil-off behavior of a water-filled bundle with subsequent quenching. The paper gives an overview of the QUENCH program with its organizational structure, describes the test facility and the test matrix with selected experimental results. (author)

  4. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  5. Fate of a gray soliton in a quenched Bose-Einstein condensate

    Science.gov (United States)

    Gamayun, O.; Bezvershenko, Yu. V.; Cheianov, V.

    2015-03-01

    We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the nonlinearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η -1 solitons. For noninteger η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for similar quenches in any classical integrable system.

  6. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERA-p beam-loss-monitor system

    International Nuclear Information System (INIS)

    Wittenburg, K.

    1994-01-01

    The beam-loss-monitors (BLMs) in the HERA-Proton-ring (HERAp) must fulfil the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System. (orig.)

  7. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  8. Work and safety managements for on-site installation, commissioning, tests by EU of quench protection circuits for JT-60SA

    International Nuclear Information System (INIS)

    Yamauchi, Kunihito; Okano, Jun; Shimada, Katsuhiro; Ohmori, Yoshikazu; Terakado, Tsunehisa; Matsukawa, Makoto; Koide, Yoshihiko; Kobayashi, Kazuhiro; Ikeda, Yoshitaka; Fukumoto, Masahiro; Kushita, Kouhei N.

    2016-03-01

    The superconducting Satellite Tokamak machine “JT-60SA” under construction in Naka Fusion Institute is an international collaborative project between Japan Atomic Energy Agency (JAEA) as the Implementing Agency (IA) of Japan (JA) and Fusion for Energy (F4E) as the IA of Europe (EU). The contributions for this project are based on the supply of components, and thus European manufacturer shall conduct the installation, commissioning and tests on Naka site under the general supervision by F4E via the designated institute in each EU nation. This means that JAEA had an issue to manage the works by European workers and their safety although there is no direct contract. This report describes the approaches for the work and safety managements, which were agreed with EU after the negotiation, and the completed on-site works for Quench Protection Circuits (QPC) as the first experience for EU in JT-60SA project. (author)

  9. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  10. Metastability versus collapse following a quench in attractive Bose-Einstein condensates

    Science.gov (United States)

    Golde, Jake; Ruhl, Joanna; Olshanii, Maxim; Dunjko, Vanja; Datta, Sumita; Malomed, Boris A.

    2018-05-01

    We consider a Bose-Einstein condensate (BEC) with attractive two-body interactions in a cigar-shaped trap, initially prepared in its ground state for a given negative scattering length, which is quenched to a larger absolute value of the scattering length. Using the mean-field approximation, we compute numerically, for an experimentally relevant range of aspect ratios and initial strengths of the coupling, two critical values of quench. One corresponds to the weakest attraction strength, the quench to which causes the system to collapse before completing even a single return from the narrow configuration (pericenter) in its breathing cycle. The other is a similar critical point for the occurrence of collapse before completing two returns. In the latter case, we also compute the limiting value, as we keep increasing the strength of the postquench attraction towards its critical value, of the time interval between the first two pericenters. We also use a Gaussian variational model to estimate the critical quenched attraction strength below which the system is stable against the collapse for long times. These time intervals and critical attraction strengths, apart from being fundamental properties of nonlinear dynamics of self-attractive BECs, may provide clues to the design of upcoming experiments that are trying to create robust BEC breathers.

  11. An NMR-based quenched hydrogen exchange investigation of model amyloid fibrils formed by cold shock protein A.

    Science.gov (United States)

    Alexandrescu, A T

    2001-01-01

    Acid-denatured cold shock protein A (CspA) self-assembles into polymers with properties typical of amyloid fibrils. In the present work, a quenched hydrogen exchange experiment was used to probe the interactions of CspA fibrils with solvent. Exchange was initiated by incubating suspensions of fibrils in D2O, and quenched by flash freezing. Following lyophilization, exchange-quenched samples were dissolved in 90% DMSO/10% D2O, giving DMSO-denatured monomers. Intrinsic exchange rates for denatured CspA in 90% DMSO/10% D2O (pH* 4.5) were sufficiently slow (approximately 1 x 10(-3) min-1) to enable quantification of NMR signal intensity decays due to H/D exchange in the fibrils. Hydrogen exchange rate constants for CspA fibrils were found to vary less than 3-fold from a mean value of 5 x 10(-5) min-1. The uniformity of rate constants suggests that exchange is in the EX1 limit, and that the mechanism of exchange involves a cooperative dissociation of CspA monomers from fibrils, concomitant with unfolding. Previous studies indicated that the highest protection factors in native CspA are approximately 10(3), and that protection factors for the acid-denatured monomer precursors of CspA fibrils are close to unity. Because exchange in is in the EX1 regime, it is only possible to place a lower limit of at least 10(5) on protection factors in CspA fibrils. The observation that all amide protons are protected from exchange indicates that the entire CspA polypeptide chain is structured in the fibrils.

  12. Quench dynamics near a quantum critical point: Application to the sine-Gordon model

    International Nuclear Information System (INIS)

    De Grandi, C.; Polkovnikov, A.; Gritsev, V.

    2010-01-01

    We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter λ(t) changes in time as λ(t)∼υt r , based on the adiabatic expansion of the excitation probability in powers of υ. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility χ 2r+2 (λ), which for sudden quenches (r=0) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.

  13. Quench characteristics of a two-strand superconducting cable and the influence of its length

    NARCIS (Netherlands)

    Mulder, G.B.J.; Mulder, G.B.J.; Krooshoop, Hendrikus J.G.; Vysotski, V.S.; Vysotski, V.S.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1992-01-01

    The quench process of a multi-strand cable was investigated using the simplest system: two twisted wires. Several properties of the quench, such as the commutation of currents, the time scale, the resistance rate, and the maximum voltage, were determined experimentally or by calculation. Particular

  14. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  15. Quenching of p-Cyanophenylalanine Fluorescence by Various Anions.

    Science.gov (United States)

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  16. Buffer moisture protection system

    International Nuclear Information System (INIS)

    Ritola, J.; Peura, J.

    2013-11-01

    With the present knowledge, bentonite blocks have to be protected from the air relative humidity and from any moisture leakages in the environment that might cause swelling of the bentonite blocks during the 'open' installation phase before backfilling. The purpose of this work was to design the structural reference solution both for the bottom of the deposition hole and for the buffer moisture protection and dewatering system with their integrated equipment needed in the deposition hole. This report describes the Posiva's reference solution for the buffer moisture protection system and the bottom plate on basis of the demands and functional requirements set by long-term safety. The reference solution with structural details has been developed in research work made 2010-2011. The structural solution of the moisture protection system has not yet been tested in practice. On the bottom of the deposition hole a copper plate which protects the lowest bentonite block from the gathered water is installed straight to machined and even rock surface. The moisture protection sheet made of EPDM rubber is attached to the copper plate with an inflatable seal. The upper part of the moisture protection sheet is fixed to the collar structures of the lid which protects the deposition hole in the disposal tunnel. The main function of the moisture protection sheet is to protect bentonite blocks from the leaking water and from the influence of the air humidity at their installation stage. The leaking water is controlled by the dewatering and alarm system which has been integrated into the moisture protection liner. (orig.)

  17. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  18. Quench propagation study for the BNL-built, full-length, 50mm aperture SSC model dipoles

    International Nuclear Information System (INIS)

    Muratore, J.; Anerella, M.; Cottingham, G.

    1993-01-01

    As part of the program to build and test SSC 50mm aperture prototype dipole magnets, a series of seven full-length dipoles were built and tested at BNL. Important part of the testing program was the study of quench propagation velocity and hot spot temperature over a range of experimental conditions in order to characterize the safety of the conductor during quenches experienced under different circumstances. Such studies are important tools in design, implementation, and verification of quench protection strategies in superconducting accelerator magnets. This investigation was facilitated by artificially inducing quenches under controlled experimental conditions with spot heaters placed at carefully chosen locations on the magnet coils. Such studies were done as part of the 15m-long magnet test program and were performed on five of the magnets in the series. All were equipped with spot heaters on an inner coil, and two of these also had spot heaters on an outer coil. Therefore, in addition to the studies in the inner coils, it was also possible to study quench propagation in the outer coils, where slower quench velocities and higher conductor temperatures are expected, in comparison to that in the inner coils. In spontaneous quenches, where there may be no voltage taps, it is not possible to measure the conductor hot spot temperature. It is straightforward to measure the number of MIITs generated, since only the magnet current and voltage need be measured. The concept of MIITs then becomes a valuable diagnostic tool which can characterize the temperature behavior of a conductor during quench and can be used to determine limits for safe operation of the coil. With spot heaters placed at known locations and closely bracketed by voltage taps, hot spot temperature can be measured. Research such as is described in this paper is therefore important in order to determine the validity of the MIITs approach and to establish a correlation between temperature and MIITs

  19. Classification of quench-dynamical behaviors in spinor condensates

    Science.gov (United States)

    Daǧ, Ceren B.; Wang, Sheng-Tao; Duan, L.-M.

    2018-02-01

    Thermalization of isolated quantum systems is a long-standing fundamental problem where different mechanisms are proposed over time. We contribute to this discussion by classifying the diverse quench-dynamical behaviors of spin-1 Bose-Einstein condensates, which includes well-defined quantum collapse and revivals, thermalization, and certain special cases. These special cases are either nonthermal equilibration with no revival but a collapse even though the system has finite degrees of freedom or no equilibration with no collapse and revival. Given that some integrable systems are already shown to demonstrate the weak form of eigenstate thermalization hypothesis (ETH), we determine the regions where ETH holds and fails in this integrable isolated quantum system. The reason behind both thermalizing and nonthermalizing behaviors in the same model under different initial conditions is linked to the discussion of "rare" nonthermal states existing in the spectrum. We also propose a method to predict the collapse and revival time scales and find how they scale with the number of particles in the condensate. We use a sudden quench to drive the system to nonequilibrium and hence the theoretical predictions given in this paper can be probed in experiments.

  20. Quench behavior of Sr{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}/Ag tapes with AC and DC transport currents at different temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Institute of Science, Information Engineering University, Zhengzhou 450001 (China); Zhang, Guomin, E-mail: gmzhang@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Hua [Institute of Science, Information Engineering University, Zhengzhou 450001 (China); Li, Zhenming; Liu, Wei [China Electric Power Research Institute, Beijing 100192 (China); Jing, Liwei [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yu, Hui; Liu, Guole [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China)

    2016-09-15

    Highlights: • Quench behavior of Sr{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}/ Ag tape with AC transport current was reported for the first time. • The measurement are performed as a function of different temperature (20 K–30 K), transport current (AC and DC) and operating frequency (50 Hz–250 Hz). • The study is concentrated on the research of quench development, and the discussions of NZPV and MQE values. - Abstract: In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K–30 K), varying transport current and operating frequency (50 Hz–250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  1. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  2. Fluorescence quenching of fluoroquinolones by gold nanoparticles with different sizes and its analytical application

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, Mohammad, E-mail: amjadi@tabrizu.ac.ir; Farzampour, Leila

    2014-01-15

    The interaction of some fluoroquinolones including norfloxacin, ciprofloxacin, danofloxacin and ofloxacin with gold nanoparticles (AuNPs) of different sizes (8, 20 and 75 nm) was studied. In the studied systems, fluoroquinolones are noncovalently adsorbed onto the surface of AuNPs, which results in severe quenching of fluoroquinolones fluorescence possibly as a result of fluorescence resonance energy transfer. Stern–Volmer quenching constants were obtained and found to increase with an increase in the size of AuNPs. Moreover, the interactions between some thiols and fluoroquinolone-adsorbed AuNPs were investigated to explore the analytical applicability of the systems. It was found that upon the addition of thiols to fluoroquinolone-AuNPs systems the fluorescence of fluoroquinolones switches to “turn-on” due to the strong binding of thiols to AuNPs and removal of quinolines from NP surface. Under the optimum conditions, the fluorescence enhancement showed a linear relationship with the concentration of thiols, indicating the analytical usefulness of the system. -- Highlights: • Interaction of fluoroquinolones with AuNPs of different sizes was investigated. • The fluorescence of fluoroquinolones is efficiently quenched by AuNPs. • The fluorescence quenching efficiency increases by increasing NP size. • Fluoroquinolone-AuNPs systems can be used as sensitive turn-on sensors for thiols. • Danofloxacin-20-nm AuNPs system exhibits the highest sensitivity for thiols.

  3. Quenched disorder and spin-glass correlations in XY nematics

    International Nuclear Information System (INIS)

    Petridis, L; Terentjev, E M

    2006-01-01

    We present a theoretical study of the equilibrium ordering in a 3D XY nematic system with quenched random disorder. Within this model, treated with the replica trick and Gaussian variational method, the correlation length is obtained as a function of the local nematic order parameter Q and the effective disorder strength Γ. These results, ξ ∼ Q 2 e 1/Q 2 and ξ ∼ (1/Γ) e -Γ , clarify what happens in the limiting cases of diminishing Q and Γ, that is near a phase transition of a pure system. In particular, it is found that quenched disorder is irrelevant as Q → 0 and hence does not change the character of the continuous XY nematic-isotropic phase transition. We discuss how these results compare with experiments and simulations

  4. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  5. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following

  6. Modern precise high-power water-cooling systems for press quenching

    Directory of Open Access Journals (Sweden)

    A. Patejuk

    2009-04-01

    Full Text Available Demand for extrusions in transport applications is increasing rapidly. The extrusions must be strong, light, crashworthy and may have to undergo hydroforming. This implies low wall thicknesses (1-2½ mm in strong alloys that need very fast quenching to obtain the required T4 temper. Crashworth iness – the ability to absorb a lot of energy in crushing deformation – demands very uniform properties throughout the section, and so does hydroforming. Various systems of water or air/water jets, with and without scanning, with and withoutarrangements for precisely aiming the jets, have proved effective for less difficult alloys in wall thicknesses down to 3 mm. These areunsuitable for the new types of transport extrusions, either inducing physical distortion or non-uniform mechanical properties. A novelcooling system that satisfies the new requirements uses laminar water jets of 50-250 μm diameter in a densely packed array of up to10/cm2. These are arranged in modules whose position and direction of aim can be adjusted relative to the part of the extrusion they cool,assuring linear cooling of all parts of the section at up to 500 K/s. The array of modules is very compact and not expensive. A sophisticated system of water microfiltration ensures that the fine nozzles do not become blocked.

  7. Quantum Quenches in a Spinor Condensate

    International Nuclear Information System (INIS)

    Lamacraft, Austen

    2007-01-01

    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the ''light-cone'' correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al

  8. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...

  9. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb$_{3}$Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb$_{3}$Sn magnets with different heater ge...

  10. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  11. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1999-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  12. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1998-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  13. Autocorrelation exponent of conserved spin systems in the scaling regime following a critical quench.

    Science.gov (United States)

    Sire, Clément

    2004-09-24

    We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.

  14. Reactor protection system

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Lesniak, L.M.; Orgera, E.G.

    1977-10-01

    The report describes the reactor protection system (RPS-II) designed for use on Babcock and Wilcox 145-, later 177-, and 205-fuel assembly pressurized water reactors. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low-pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, a description of the software programmed in the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W

  15. Quench-free concentration measurements in high-temperature systems by picosecond LIF

    International Nuclear Information System (INIS)

    Buelter, A.; Rahmann, U.; Brockhinke, A.

    2001-01-01

    In the present work, a picosecond laser is used in conjunction with an intensified streak camera to study energy transfer processes in OH and to obtain quench-free results from the time-resolved spectra. Quantitative concentration profiles for OH and H are presented in a counterflow burner interacting with a vortex

  16. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project

    International Nuclear Information System (INIS)

    Breschi, M; Cavallucci, L; Ribani, P L; Gavrilin, A V; Weijers, H W

    2016-01-01

    A 32 T all-superconductive magnet with high field REBCO inner coils is under development at the National High Magnetic Field Laboratory, Tallahassee, Florida, USA. As part of the development activity, two prototype coils with full scale radial dimensions and final design features, but with reduced axial length were constructed. The prototype coils consist of six dry-wound double pancakes modules with uninsulated conductor and insulated stainless steel cowind. Quench studies on one of the prototype coils at 4.2 K in self-field and in a background magnetic field of 15 T were performed by activating a set of quench protection heaters. In this paper, we present a numerical analysis of the experimental results of the quench tests of one of the prototype coils. The numerical analysis was carried out through a coupled electro-thermal FEM model developed at the University of Bologna. The model is based on the coupling with distributed contact resistances of the coil pancakes described as 2D elements. A homogenization procedure of the REBCO tape and other coil materials is presented, which allows reducing the number of degrees of freedom and the computational effort. The model is applied to the analysis of the current and voltage evolutions during the experimental quench tests on the prototype coil. (paper)

  17. Flavonoids protecting food and beverages against light.

    Science.gov (United States)

    Huvaere, Kevin; Skibsted, Leif H

    2015-01-01

    Flavonoids, which are ubiquitously present in the plant kingdom, preserve food and beverages at the parts per million level with minor perturbation of sensory impressions. Additionally, they are safe and possibly contribute positive health effects. Flavonoids should be further exploited for the protection of food and beverages against light-induced quality deterioration through: (1) direct absorption of photons as inner filters protecting sensitive food components; (2) deactivation of (triplet-)excited states of sensitisers like chlorophyll and riboflavin; (3) quenching of singlet oxygen from type II photosensitisation; and (iv) scavenging of radicals formed as reaction intermediates in type I photosensitisation. For absorption of light, combinations of flavonoids, as found in natural co-pigmentation, facilitate dissipation of photon energy to heat thus averting photodegradation. For protection against singlet oxygen and triplet sensitisers, chemical quenching gradually decreases efficiency hence the pathway to physical quenching should be optimised through product formulation. The feasibility of these protection strategies is further supported by kinetic data that are becoming available, allowing for calculation of threshold levels of flavonoids to prevent beer and dairy products from going off. On the other hand, increasing understanding of the interplay between light and matrix physicochemistry, for example the effect of aprotic microenvironments on phototautomerisation of compounds like quercetin, opens up for engineering better light-to-heat converting channels in processed food to eventually prevent quality loss. © 2014 Society of Chemical Industry.

  18. Simulation of the fuel rod bundle test QUENCH-03 using the system codes ASTEC and ATHLET-CD

    International Nuclear Information System (INIS)

    Kruse, P.; Koch, M.K.

    2011-01-01

    The QUENCH-03 test was performed on the 21. of January 1999 at FZK (Forschungszentrum Karlsruhe) to investigate the behaviour on reflood of PWR (Pressurized Water Reactor) fuel rods with little oxidation. This paper presents the results of the simulation of QUENCH-03 performed with the version V1.3 of the integral code ASTEC (Accident Source Term Evaluation Code) which is being developed by IRSN (France) in cooperation with GRS (Germany) and with the program version 2.1A of the mechanistic code ATHLET-CD (Analysis of Thermal-hydraulics of Leaks and Transients - Core Degradation) which is under development by GRS. At first the QUENCH test facility and the QUENCH test program in general are described. The test conduct of the test QUENCH-03 follows as well as a description of the used codes ASTEC and ATHLET-CD with the associated modeling of the test section. The results of this calculation show that during the heat-up and transient phase both codes can calculate bundle and shroud temperatures as well as the hydrogen production in good approximation to the experimental data. During the quench phase and up to the end of the test only the oxidation model PRATER of ASTEC simulates the hydrogen production very well, the other oxidation models of ASTEC cannot calculate to some extent the measured amount of hydrogen. ATHLET-CD underestimates the integral amount at the end of the test. In the ASTEC calculations the temperatures during the quench phase show qualitatively good results, only time delays on some elevations of the bundle could be noticed. ATHLET-CD reproduces the thermal behaviour up to the first temperature escalation very well, after that the temperatures are partly over-estimated. The time delay recognized in the ASTEC calculations are seen as well. The results of the integral code ASTEC emphasize that the calculation of QUENCH-03 is possible and leading to good results concerning hydrogen release and corresponding temperatures. Because the QUENCH-03 test was

  19. Systems approach to tamper protection

    International Nuclear Information System (INIS)

    Myre, W.C.; Eaton, M.J.

    1980-01-01

    Tamper-protection is a fundamental requirement of effective containment and surveillance systems. Cost effective designs require that the tamper protection requirements be considered early in the design phase and at the system level. A discussion of tamper protection alternatives as well as an illustrative example system is presented

  20. Calculating Quench Propagation with ANSYS(regsign)

    International Nuclear Information System (INIS)

    Caspi, S.; Chiesa, L.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.; Hinkins, R.; Lietzke, A.F.; Prestemon, S.

    2002-01-01

    A commercial Finite-Element-Analysis program, ANSYS(reg s ign), is widely used in structural and thermal analysis. With the program's ability to include non-linear material properties and import complex CAD files, one can generate coil geometries and simulate quench propagation in superconducting magnets. A 'proof-of-principle' finite element model was developed assuming a resistivity that increases linearly from zero to its normal value at a temperature consistent with the assumed B magnetic field. More sophisticated models could easily include finer-grained coil, cable, structural, and circuit details. A quench is provoked by raising the temperature of an arbitrary superconducting element above its T c . The time response to this perturbation is calculated using small time-steps to allow convergence between steps. Snapshots of the temperature and voltage distributions allow examination of longitudinal and turn-to-turn quench propagation, quench-front annihilation, and cryo-stability. Modeling details are discussed, and a computed voltage history was compared with measurements from a recent magnet test.

  1. The fate of a gray soliton in a quenched Bose-Einstein condensate

    Science.gov (United States)

    Gamayun, Oleksandr; Bezvershenko, Yulia; Cheianov, Vadim

    2015-03-01

    We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the non-linearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η - 1 solitons. For non-integer η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out-state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for the similar quenches in any classical integrable system.

  2. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  3. Observation of symmetry-protected topological band with ultracold fermions

    Science.gov (United States)

    Song, Bo; Zhang, Long; He, Chengdong; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2018-01-01

    Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems. PMID:29492457

  4. Specific heat measurement set-up for quench condensed thin superconducting films.

    Science.gov (United States)

    Poran, Shachaf; Molina-Ruiz, Manel; Gérardin, Anne; Frydman, Aviad; Bourgeois, Olivier

    2014-05-01

    We present a set-up designed for the measurement of specific heat of very thin or ultra-thin quench condensed superconducting films. In an ultra-high vacuum chamber, materials of interest can be thermally evaporated directly on a silicon membrane regulated in temperature from 1.4 K to 10 K. On this membrane, a heater and a thermometer are lithographically fabricated, allowing the measurement of heat capacity of the quench condensed layers. This apparatus permits the simultaneous thermal and electrical characterization of successively deposited layers in situ without exposing the deposited materials to room temperature or atmospheric conditions, both being irreversibly harmful to the samples. This system can be used to study specific heat signatures of phase transitions through the superconductor to insulator transition of quench condensed films.

  5. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  6. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  7. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-01-01

    The design of an effective physical protection system includes the determination of physical protection system objectives, initial design of a physical protection system, design evaluation, and probably a redesign or refinement. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the physical protection system, that is, open-quotes what to protect against whom.close quotes The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control elements, procedures, communication devices, and protective forces personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. This paper reviews the physical protection system design and methodology mentioned above. Examples of the steps required and a brief introduction to some of the technologies used in modem physical protections system are given

  8. Quench characterization and thermo hydraulic analysis of SST-1 TF magnet busbar

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Tanna, V.L.; Patel, D.; Panchal, A. [Institute for Plasma Research, Gandhinagar (India)

    2015-01-15

    Highlights: • Details of SST-1 TF busbar quench detection. • Simulation of slow propagating normal zone. • Thermo hydraulic analyses of TF busbar in current feeder system. - Abstract: Toroidal field (TF) magnet system of steady-state superconducting tokamak-1 (SST-1) has 16 superconducting coils. TF coils are cooled with forced flow supercritical helium at 0.4 MPa, at 4.5 K and operate at nominal current of 10,000 A. Prior to TF magnet system assembly in SST-1 tokamak, each TF coil was tested individually in a test cryostat. During these tests, TF coil was connected to a pair of conventional helium vapor cooled current leads. The connecting busbar was made from the same base cable-in-conduit-conductor (CICC) of SST-1 superconducting magnet system. Quenches experimentally observed in the busbar sections of the single coil test setups have been analyzed in this paper. A steady state thermo hydraulic analysis of TF magnet busbar in actual SST-1 tokamak assembly has been done. The experimental observations of quench and results of relevant thermo hydraulic analyses have been used to predict the safe operation regime of TF magnet system busbar during actual SST-1 tokamak operational scenarios.

  9. Quench behavior of a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Garber, M.; Dahl, P.F.

    1980-01-01

    Data are presented on the minimum energy required to cause quenches to propagate in an accelerator dipole magnet. The amount of stored energy dissipated into the magnet was measured as a function of dipole excitation current. This in turn determines the maximum coil temperature reached in a given magnet. Quench velocities in the longitudinal direction of the conductor were as high as 11m/sec. The azimuthal velocities or turn to turn velocities were found to be a function of the number of fiberglass layers of insulation that the quench had to cross and were on the order of a few tens of centimeters/sec. The field shape of a given magnet was found to be unchanged for more than 100 quenches. The coil to coil connection and inter-coil splice resistances were found to be less than a namo-ohm and therefore of litle consequence in the cryogenic load considerations. No definitive answers were found on how to decrease the rate of training (130 Gauss/Quench average) required from 4.OT to 5.1T

  10. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  11. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  12. (Talk) Investigating The Star Formation Quenching Across Cosmic Time - A Methodology To Select Galaxies Just After The Quenching Of Star Formation

    Science.gov (United States)

    Citro, Annalisa; Pozzetti, Lucia; Quai, Salvatore; Moresco, Michele; Vallini, Livia; Cimatti, Andrea

    2017-06-01

    We propose a method aimed at identifing galaxies in the short evolutionary phase in which they quench their star-formation (SF). We rely on high- to low-ionization emission line ratios, which rapidly disappear after the SF halt due to the softening of the UV ionizing radiation. In particular, we focus on [O III] 5007/Halpha and [Ne III] 3869/[O II] 3727, simulating their time evolution by means of the CLOUDY photoionization code. We find that these two emission line ratios are able to trace the quenching on very short time-scales (i.e. 10-80 Myr), depending on if a sharp or a smoother SF quenching is assumed. We adopt the [N II] 6584/[O II] 3727 ratio as metallicity diagnostic to mitigate the metallicity degeneracy which affects our method. Using a Sloan Digital Sky Survey galaxy sample, we identify 11 examples of extreme quenching candidates within the [O III] 5007/Halpha vs. [N II] 6584/[O II] 3727 plane, characterized by faint [Ne III] 3869, blue dust-corrected spectra and blue (u-r) colours, as expected if the quenching occurred in the recent past. Our results also suggest that the observed fractions of quenching candidates can be used to constrain the quenching mechanism at work and its time-scales.

  13. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  14. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  15. Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e., a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential...

  16. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    Science.gov (United States)

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  17. SMART core protection system design

    International Nuclear Information System (INIS)

    Lee, J. K.; Park, H. Y.; Koo, I. S.; Park, H. S.; Kim, J. S.; Son, C. H.

    2003-01-01

    SMART COre Protection System(SCOPS) is designed with real-tims Digital Signal Processor(DSP) board and Network Interface Card(NIC) board. SCOPS has a Control Rod POSition (CRPOS) software module while Core Protection Calculator System(CPCS) consists of Core Protection Calculators(CPCs) and Control Element Assembly(CEA) Calculators(CEACs) in the commercial nuclear plant. It's not necessary to have a independent cabinets for SCOPS because SCOPS is physically very small. Then SCOPS is designed to share the cabinets with Plant Protection System(PPS) of SMART. Therefor it's very easy to maintain the system because CRPOS module is used instead of the computer with operating system

  18. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  19. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2018-03-01

    The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH = 7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.

  20. Evolution of the radiation protection system; L'evolution du systeme de protection radiologique

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.H. [International Commission on Radiological Protection, Stockholm (Sweden); Schieber, C.; Cordoliani, Y.S. [Societe Francaise de Radioprotection, 92 - Fontenay aux Roses (France); Brechignac, F. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, Dept. de Protection de l' Environnement, 13 - Saint Paul Lez Durance (France)

    2003-07-01

    The evolution of the system of radiological protection: justification for new ICRP recommendations, thoughts of the SFRP work group about the evolution of the system of radiation protection proposed by the ICRP, protection of environment against ionizing radiations seen by the ICRP are the three parts of this chapter. (N.C.)

  1. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system.

    Science.gov (United States)

    Gao, Xue; Niu, Lu; Su, Xingguang

    2012-01-01

    This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.

  2. Quench antenna for superconducting particle accelerator magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Devred, A.; Kim, K.

    1993-10-01

    We report on the design, fabrication, and test of an assembly of stationary pickup coils which can be used to localize quench origins. After describing the pickup coils configuration, we develop a simple model of current redistribution which allows interpretation of the measured voltages and determination of the turn of the magnet coil in which the quench started. The technique is illustrated by analyzing the data from a quench of a 5-cm-aperture, 15-m-long SSC dipole magnet prototype

  3. Application of AE technique for on-line monitoring of quenching in racetrack superconducting coil at cryogenic environment

    International Nuclear Information System (INIS)

    Lee, Jun Hyun; Lee, Min Rae; Shon, Myung Hwan; Kwon, Young Kil

    1998-01-01

    An acoustic emission(AE) technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2 K. The ultimate goal is to ensure the safety and reliability of large superconducting magnet systems by being able to identity and locate the sources of quench in superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. It was found in this study that there was good correlation between quench current and AE parameters. The source location of quenching in superconducting magnet was also discussed on the hashing of correlation between magnet voltage and AE energy.

  4. Impact of the Voltage Transients after a Fast Power Abort on the Quench Detection System in the LHC Main Dipole Chain

    CERN Document Server

    Ravaioli, E; Formenti, F; Montabonnet, V; Pojer, M; Schmidt, R; Siemko, A; Solfaroli Camillocci, A; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    A Fast Power Abort in the LHC superconducting main dipole circuit consists in the switch-off of the power converter and the opening of the two energy-extraction switches. Each energy-extraction unit is composed of redundant electromechanical breakers, which are opened to force the current through an extraction resistor. When a switch is opened arcing occurs in the switch and a voltage of up to 1 kV builds up across the extraction resistor with a typical ramp rate of about 80 kV/s. The subsequent voltage transient propagates through the chain of 154 dipoles and superposes on the voltage waves caused by the switch-off of the power converter. The resulting effect caused intermittent triggering of the quench protection systems along with heater firings in the magnets when the transient occurred during a ramp of the current. A delay between power converter switch-off and opening of the energy-extraction switches was introduced to prevent this effect. Furthermore, the output filters of the power converters were mod...

  5. Digital integrated protection system

    International Nuclear Information System (INIS)

    Savornin, M.; Furet, M.

    1978-01-01

    As a result of technological progress it is now possible to achieve more elaborate protection functions able to follow more closely the phenomena to be supervised. For this reason the CEA, Framatome and Merlin/Gerin/CERCI have undertaken in commonn to develop a Digital Integrated Protection System (D.I.P.S.). This system is designed with the following aims: to improve the safety of the station, . to improve its availability, . to facilitate installation, . to facilitate tests and maintenance. The main characteristics adopted are: . possibilities of obtaining more elaborate monitoring and protection algorithm treatments, . order 4 redundancy of transducers, associated instruments and signal processing, . possibility of inhibiting part of the protection system, . standardisation of equipment, physical and electrical separation of redundant units, . use of multiplexed connections, . automation of tests. Four flow charts are presented: - DIPS with four APUP (Acquisition and Processing Unit for Protection) - APUP - LSU (Logic Safeguard Unit), number LSU corresponding to number fluidic safeguard circuits, - structure of a function unit, - main functions of the APUP [fr

  6. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-04-01

    Full Text Available In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing, others are interrupting the communication (quorum quenching, thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.

  7. Heating the quenched Eguchi-Kawai model

    Energy Technology Data Exchange (ETDEWEB)

    Klinkhamer, F.R. (Rijksuniversiteit Leiden (Netherlands). Sterrewacht)

    1983-05-30

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent.

  8. Exciplex formation accompanied with excitation quenching.

    Science.gov (United States)

    Fedorenko, Stanislav G; Burshtein, Anatoly I

    2010-04-08

    The competence of the reversible exciplex formation and parallel quenching of excitation (by electron or energy transfer) was considered using a non-Markovian pi-forms approach, identical to integral encounter theory (IET). General equations accounting for the reversible quenching and exciplex formation are derived in the contact approximation. Their general solution was obtained and adopted to the most common case when the ground state particles are in great excess. Particular cases of only photoionization or just exciplex formation separately studied earlier by means of IET are reproduced. In the case of the irreversible excitation quenching, the theory allows specifying the yields of the fluorescence and exciplex luminescence, as well as the long time kinetics of excitation and exciplex decays, in the absence of quenching. The theory distinguishes between the alternative regimes of (a) fast equilibration between excitations and exciplexes followed by their decay with a common average rate and (b) the fastest and deep excitation decay followed by the weaker and slower delayed fluorescence, backed by exciplex dissociation.

  9. [A study on the concentration quenching of Tm3+ upconversion luminescence].

    Science.gov (United States)

    Chen, B; Wang, H; Huang, S

    2001-06-01

    In this work, we have a designation and preparation of MFT glasses for upconversion, the glasses consisted of TeO2 and fluoride: PbF2, AlF3, BaF2, NaF and the impurity Tm2O3. In this glass system the oxide improve forming ability, the fluorides improve the microscopic environment around RE ions in glasses. In this glass host the content of Tm2O3 achieves to 4% mol and crystallization no occurred. A detail study on the concentration quenching of upconversion luminescence for 1G4-->3H6 and 1D2-->3H4 transitions was completed. The experimental results directed that the quenching concentration was 0.6 mol.% and higher 3 times than in other glasses materials. The cross relaxation and mechanism of concentration quenching were discussed.

  10. Electrical supply for MFTF-B superconducting magnet system

    International Nuclear Information System (INIS)

    Shimer, D.W.; Owen, E.W.

    1985-01-01

    The MFTF-B magnet system consists of 42 superconducting magnets which must operate continuously for long periods of time. The magnet power supply system is designed to meet the operational requirements of accuracy, flexibility, and reliability. The superconducting magnets require a protection system to protect against critical magnet faults of quench, current lead overtemperature, and overcurrent. The protection system is complex because of the large number of magnets, the strong coupling between magnets, and the high reliability requirement. This paper describes the power circuits and the components used in the design

  11. Investigation of an overheated PWR-type fuel rod simulator bundle cooled down by steam. Pt. 1: experimental and calculational results of the QUENCH-04 test. Pt. 2: application of the SVECHA/QUENCH code to the analysis of the QUENCH-01 and QUENCH-04 bundle tests

    International Nuclear Information System (INIS)

    Sepold, L.; Hofmann, P.; Homann, C.

    2002-04-01

    The QUENCH experiments are to investigate the hydrogen source term that results from the water injection into an uncovered core of a light-water reactor (LWR). The test bundle is made of 21 fuel rod simulators with a length of approximately 2.5 m. 20 fuel rod simulators are heated over a length of 1024 mm, the one unheated fuel rod simulator is located in the center of the test bundle. Heating is carried out electrically using 6-mm-diameter tungsten heating elements installed in the center of the rods and surrounded by annular ZrO 2 pellets. The rod cladding is identical to that used in LWRs: Zircaloy-4, 10.75 mm outside diameter, 0.725 mm wall thickness. The test bundle is instrumented with thermocouples attached to the cladding and the shroud at 17 different elevations with an axial distance between the thermocouples of 100 mm. During the entire test up to the cooldown phase, superheated steam together with the argon as carrier gas enters the test bundle at the bottom end and leaves the test section at the top together with the hydrogen that is produced in the zirconium-steam reaction. The hydrogen is analyzed by three different instruments: two mass spectrometers and a ''Caldos 7 G'' hydrogen measuring device (based on the principle of heat conductivity). Part I of this report describes the results of test QUENCH-04 performed in the QUENCH test facility at the Forschungszentrum Karlsruhe on June 30, 1999. The objective of the experiment QUENCH-04 was to investigate the reaction of the non-preoxidized rod cladding on cooldown by steam rather than quenching by water. Part II of the present report deals with the results of the SVECHA/QUENCH (S/Q) code application to the FZK QUENCH bundle tests. The adaptation of the S/Q code to such kind of calculations is described. The numerical procedure of the recalculation of the temperature test data, and the preparation for the S/Q code input is presented. In particular, the results of the QUENCH-01 and QUENCH-04 test

  12. Effect of Remote Back-Up Protection System Failure on the Optimum Routine Test Time Interval of Power System Protection

    Directory of Open Access Journals (Sweden)

    Y Damchi

    2013-12-01

    Full Text Available Appropriate operation of protection system is one of the effective factors to have a desirable reliability in power systems, which vitally needs routine test of protection system. Precise determination of optimum routine test time interval (ORTTI plays a vital role in predicting the maintenance costs of protection system. In the most previous studies, ORTTI has been determined while remote back-up protection system was considered fully reliable. This assumption is not exactly correct since remote back-up protection system may operate incorrectly or fail to operate, the same as the primary protection system. Therefore, in order to determine the ORTTI, an extended Markov model is proposed in this paper considering failure probability for remote back-up protection system. In the proposed Markov model of the protection systems, monitoring facility is taken into account. Moreover, it is assumed that the primary and back-up protection systems are maintained simultaneously. Results show that the effect of remote back-up protection system failures on the reliability indices and optimum routine test intervals of protection system is considerable.

  13. Forced convective post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.

    1980-01-01

    This paper discusses mechanisms in the post-CHF region which provide understanding and qualitative prediction capability for several current forced convective heat transfer problems. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may appear to be either hydrodynamically or thermodynamically controlled. Finally, the results of a parametric study of the effects of the mechanisms upon the LOFT L2-3 hotpin calculation are presented

  14. Heating the quenched Eguchi-Kawai model

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1983-01-01

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent. (orig.)

  15. Study of piezo-actuators for the improvement of the frequency tuning and setup of a quench locating system for the accelerating structures of the S-DALINAC

    International Nuclear Information System (INIS)

    Sievers, Sven Thorsten

    2013-01-01

    The intention of this doctoral thesis was to find a replacement for the magnetostrictive fine tuners of the superconducting accelerating cavities of the S-DALINAC and to enlarge the range of diagnostics for these cavities. For these purposes a vertical bath cryostat has been assembled and put into operation. Within the framework of this thesis that cryostat was used (i) to test stroke and reliability of modern piezo actuators in liquid helium at 4 and 2 K and (ii) to set up a newly developed system for the localization of quenches in superconducting cavities based on second sound in superfluid helium. The negative impact of magnetic fields on the quality factor of superconducting cavities make the operation of magnetostrictive tuners nearby the cavities disadvantageous. In order to avoid a decrease of the quality factor of the cavities the magnetostrictive tuners should be replaced by non-magnetic ones. For that purpose modern piezo actuators were tested within this doctoral thesis relating to their stroke at cryogenic temperatures, their compatibility with the RF-control system of the S-DALINAC and their operational reliability in superfluid helium. The results indicate the possibility of operation of these actuators. Because piezo actuators of the same stroke only have the seventh part of length of a magnetostrictive tuner, it is possible to operate several piezo actuators at every cavity. This increases not only the range of the tuning system but also its reliability. Already tiny defects at the inner surface of superconducting cavities can cause quenching before the designed field intensity is reached. A quench results in waves of second sound in superfluid helium. The second sound can be measured by special microphones, so called Oscillating Superleak Transducers (OST), and the location of quenching can be calculated via triangulation. Such a system has been built up and tested successfully in the context of this doctoral thesis. The visual examination of the

  16. Quench start localization in full-length SSC R ampersand D dipoles

    International Nuclear Information System (INIS)

    Devred, A.; Chapman, M.; Cortella, J.; Desportes, A.; Kaugerts, J.; Kirk, T.; Mirk, K.; Schermer, R.; Tompkins, J.C.; Turner, J.; Bleadon, M.; Brown, B.C.; Hanft, R.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peoples, J.; Strait, J.; Tool, G.; Caspi, S.; Gilbert, W.; Meuser, R.; Peters, C.; Rechen, J.; Royet, J.; Scanlan, R.; Taylor, C.; Zbasnik, J.

    1989-04-01

    Full-length SSC R ampersand D dipole magnets instrumented with four voltage taps on each turn of the inner quarter coils have been tested. These voltage taps enable accurate location of the point at which the quenches start and detailed studies of quench development in the coil. Attention here is focused on localizing the quench source. After recalling the basic mechanism of a quench (why it occurs and how it propagates), the method of quench origin analysis is described: the quench propagation velocity on the turn where the quench occurs is calculated, and the quench location is then verified by reiterating the analysis on the adjacent turns. Last, the velocity value, which appears to be higher than previously measured, is discussed

  17. Modelling of QUENCH-03 and QUENCH-06 Experiments Using RELAP/SCDAPSIM and ASTEC Codes

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2014-01-01

    Full Text Available To prevent total meltdown of the uncovered and overheated core, the reflooding with water is a necessary accident management measure. Because these actions lead to the generation of hydrogen, which can cause further problems, the related phenomena are investigated performing experiments and computer simulations. In this paper, for the experiments of loss of coolant accidents, performed in Forschungszentrum Karlsruhe, QUENCH-03 and QUENCH-06 are modelled using RELAP5/SCDAPSIM and ASTEC codes. The performed benchmark allowed analysing different modelling features. The recommendations for the model development are presented.

  18. Quorum Quenching in Culturable Phyllosphere Bacteria from Tobacco

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhuang

    2013-07-01

    Full Text Available Many Gram-negative plant pathogenic bacteria employ a N-acylhomoserine lactone (AHL-based quorum sensing (QS system to regulate their virulence traits. A sustainable biocontrol strategy has been developed using quorum quenching (QQ bacteria to interfere with QS and protect plants from pathogens. Here, the prevalence and the diversity of QQ strains inhabiting tobacco leaf surfaces were explored. A total of 1177 leaf-associated isolates were screened for their ability to disrupt AHL-mediated QS, using the biosensor Chromobacterium violaceum CV026. One hundred and sixty-eight strains (14% are capable of interfering with AHL activity. Among these, 106 strains (63% of the culturable quenchers can enzymatically degrade AHL molecules, while the remaining strains might use other QS inhibitors to interrupt the chemical communication. Moreover, almost 79% of the QQ strains capable of inactivating AHLs enzymatically have lactonase activity. Further phylogenetic analysis based on 16S rDNA revealed that the leaf-associated QQ bacteria can be classified as Bacillus sp., Acinetobacter sp., Lysinibacillus sp., Serratia sp., Pseudomonas sp., and Myroides sp. The naturally occurring diversity of bacterial quenchers might provide opportunities to use them as effective biocontrol reagents for suppressing plant pathogen in situ.

  19. Partially quenched gauge theories and an application to staggered fermions

    International Nuclear Information System (INIS)

    Bernard, C.W.; Golterman, M.F.L.

    1994-01-01

    We extend our Lagrangian technique for chiral perturbation theory for quenched QCD to include theories in which only some of the quarks are quenched. We discuss the relationship between the partially quenched theory and a theory in which only the unquenched quarks are present. We also investigate the peculiar infrared divergences associated with the η' in the quenched approximation, and find the conditions under which such divergences can appear in a partially quenched theory. We then apply our results to staggered fermion QCD in which the square root of the fermion determinant is taken, using the observation that this should correspond to a theory with four quarks, two of which are quenched

  20. Adaptive protection algorithm and system

    Science.gov (United States)

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  1. Investigation of thermal quenching and abnormal thermal quenching in mixed valence Eu co-doped LaAlO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingjing [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Zhao, Yang [China academy of civil aviation science and technology, Beijing 100028 (China); Mao, Zhiyong, E-mail: mzhy1984@163.com [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Wang, Dajian [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Bie, Lijian, E-mail: ljbie@tjut.edu.cn [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-06-15

    Temperature dependent luminescence of mixed valence Eu co-doped LaAlO{sub 3} phosphors are deeply investigated in this work. Different temperature properties of Eu{sup 2+} and Eu{sup 3+} luminescence are observed as the phosphor excited by different incident light. Eu{sup 3+} luminescence shows normal thermal quenching when excited at 320 nm and abnormal thermal quenching as the excitation light changed into 365 nm, while Eu{sup 2+} luminescence exhibits a normal thermal quenching independent on the incident excitation lights. The origin of these novel normal/abnormal thermal quenching phenomena are analyzed and discussed by the excitation-emission processes in terms of the configuration coordinate model. The presented important experimental and analysis results give insights into the temperature properties of phosphors.

  2. Advanced Worker Protection System

    International Nuclear Information System (INIS)

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs

  3. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    International Nuclear Information System (INIS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    Highlight: ► Comparison of quench and fault-current-limiting behavior of SFCLs by Tr type. -- Abstract: The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1–5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle

  4. Protection of industrial power systems

    CERN Document Server

    DAVIES, T

    2006-01-01

    The protection which is installed on an industrial power system is likely to be subjected to more difficult conditions than the protection on any other kind of power system. Starting with the many simple devices which are employed and covering the whole area of industrial power system protection, this book aims to help achieve a thorough understanding of the protection necessary.Vital aspects such as the modern cartridge fuse, types of relays, and the role of the current transformer are covered and the widely used inverse definite-minimum time overcurrent relay, the theory of the M

  5. Quench propagation across the copper wedges in SSC dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1986-01-01

    The effect of copper wedges on quench propagation in SSC windings has been studied. The results indicate that the turn-to-turn quench transit time for conductors separated by an insulated copper wedge can be predicted with reasonable accuracy from the bulk quench properties and the mean wedge thickness

  6. Effects of quenching and partial quenching on penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2001-01-01

    In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises

  7. Relay protection coordination with generator capability curve, excitation system limiters and power system relay protections settings

    Directory of Open Access Journals (Sweden)

    Buha Danilo

    2016-01-01

    Full Text Available The relay protection settings performed in the largest thermal powerplant (TE "Nikola Tesla B" are reffered and explained in this paper. The first calculation step is related to the coordination of the maximum stator current limiter settings, the overcurrent protection with inverse characteristics settings and the permitted overload of the generator stator B1. In the second calculation step the settings of impedance generator protection are determined, and the methods and criteria according to which the calculations are done are described. Criteria used to provide the protection to fulfill the backup protection role in the event of malfunction of the main protection of the transmission system. are clarified. The calculation of all protection functions (32 functions of generator B1 were performed in the project "Coordination of relay protection blocks B1 and B2 with the system of excitation and power system protections -TENT B".

  8. Studies of cold protection diodes

    International Nuclear Information System (INIS)

    Carcagno, R.; Zeigler, J.

    1990-01-01

    The feasibility of a passive quench protection system for the Superconducting Supercollider (SSC) main ring magnets depends on the radiation resistance and reliability of the diodes used as current bypass elements. These diodes would be located inside the magnet cryostat, subjecting them to liquid helium temperature and a relatively high radiation flux. Experimental and theoretical efforts have identified a commercially available diode which appears to be capable of surviving the cryogenic temperature and radiation environment of the accelerator. High current IV measurements indicate that the usable lifetime of this diode, based on an estimate of the peak junction temperature during a quench pulse, is an order of magnitude greater then than the expected lifetime of the SSC itself. However, an unexpected relationship was discovered between the diode turn-on voltage at 5 K and the most recent reverse voltage or temperature excursion. This turn-on voltage as a function of radiation exposure appears to be erratic and indicates a need for further investigation. 14 refs., 8 figs., 2 tabs

  9. Studies of cold protection diodes

    International Nuclear Information System (INIS)

    Carcagno, R.; Zeigler, J.

    1990-03-01

    The feasibility of a passive quench protection system for the Superconducting Supercollider (SSC) main ring magnets depends on the radiation resistance and reliability of the diodes used as current bypass elements. These diodes would be located inside the magnet cryostat, subjecting them to liquid helium temperature and a relatively high radiation flux. Experimental and theoretical efforts have identified a commercially available diode which appears to be capable of surviving the cryogenic temperature and radiation environment of the accelerator. High current 4 measurements indicate that the usable lifetime of this diode, based on an estimate of the peak junction temperature during a quench pulse, is an order of magnitude greater then than the expected lifetime of the SSC itself. However, an unexpected relationship was discovered between the diode turn-on voltage at 5 K and the most recent reverse voltage or temperature excursion. This turn-on voltage as a function of radiation exposure appears to be erratic and indicates a need for further investigation. 11 refs., 8 figs., 2 tabs

  10. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  11. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Science.gov (United States)

    2010-07-01

    ... any flow rate into the reaction chamber. This includes, but is not limited to, sample capillary, ozone... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new...

  12. Rapid and accurate determination of Stern-Volmer quenching constants

    International Nuclear Information System (INIS)

    Goodpaster, John V.; McGuffin, Victoria L.

    1999-01-01

    In this work, a novel system has been designed, characterized, and validated for the determination of fluorescence quenching constants. Capillary flow injection methods are used to automate the preparation and mixing of the fluorophore and quencher solutions. Because of the small diameter of the capillary (75-200 μm), fluorescence measurements can be made without corrections for primary and secondary absorbance effects. The fluorescence spectrometer is equipped with a charge-coupled device (CCD) that has a detection limit of 3.0x10 -9 M (2.3 ppb) and a linear dynamic range of 10 5 for integration times of 0.01-10 s. This spectrometer has a 300 nm spectral range with 1 nm resolution, allowing the fluorescence quenching constants to be calculated at single wavelengths or over integrated wavelength ranges. This system was validated by comparison to traditional methods for the determination of Stern-Volmer constants for alternant and nonalternant polycyclic aromatic hydrocarbons with nitromethane and triethylamine. (c) 2000 Society for Applied Spectroscopy

  13. Universal post-quench prethermalization at a quantum critical point

    Science.gov (United States)

    Orth, Peter P.; Gagel, Pia; Schmalian, Joerg

    2015-03-01

    We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive non-equilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are a powerlaw rise of order and correlations after an initial collapse of the equilibrium state and a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches. [1] P. Gagel, P. P. Orth, J. Schmalian, Phys.Rev. Lett. (in press) arXiv:1406.6387

  14. Smooth and fast versus instantaneous quenches in quantum field theory

    Science.gov (United States)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  15. History of Giant Resonances and Quenching

    CERN Document Server

    Arima, A

    1999-01-01

    The history of nuclear magnetic moments and Gamow-Teller transitions is reviewed. The importance of configuration mixing and core polarization to explain the quenching phenomena is shown, and discussed in the context of the recent measurement of the Gamow-Teller strength in sup 9 sup 0 Nb. It is confirmed that the contribution of the DELTA-hole excitation to the quenching of spin matrix elements is small.

  16. Protective and Catching Safety Systems In Construction

    Directory of Open Access Journals (Sweden)

    Kuzhin Marat

    2017-01-01

    Full Text Available In the article is described application of protective and catching systems in construction. Classification of similar systems, their types and purpose are listed. Dangerous zones on construction site and events to for limiting their influence or protection from the factors. Protective and catching systems is one of the most effective technical equipment, applied in recent time. Protective fences and catching systems are important part in the problem solution. Protective fences protect workers from falling from height. Protective and catching systems allows avoid injuries by workers, also catch debris, fallen from constructing buildings. In regard with continuing development in technical and technological solutions, protective and catching systems require adaptation to a new requirements of construction industry and requirements of normative documents. Technical regulations in the appliance sphere of protective and catching systems requires actualization and aligning with modern normatives. Important role should be given to developing organizational and technological documentation for application of the systems. Scientific studying of technical parameters of fences and protective catching nets also has great interest.

  17. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  18. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    Science.gov (United States)

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  19. A study on quench phenomena during reflood phase, 1

    International Nuclear Information System (INIS)

    Murao, Yoshio; Sudoh, Takashi

    1977-03-01

    Based on the observation with an outside-heated quartz tube experiment of the reflood phase, three quench modes for bottom flooding are proposed : 1) liquid column type, 2) dryout type, 3) droplet-rewetting type. Using Blair's correlation for quench velocity, the approximate correlation for maximum liquid superheat, the assumption that the heat transfer upstream of the quench front is a function of the local liquid subcooling and the data of PWR-FLECHT experiments, the correlation for quench velocity of the liquid column type and of the dryout type are obtained. The quench temperature for the droplet-rewetting type is also derived. These relations are compared with the results of PWR-FLECHT Group 1 experiments and of Piggott and Porthouse's experiments. The agreements among them are fairly good. (auth.)

  20. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  1. A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES

    International Nuclear Information System (INIS)

    Geha, M.; Blanton, M. R.; Yan, R.; Tinker, J. L.

    2012-01-01

    We demonstrate that dwarf galaxies (10 7 stellar 9 M ☉ , –12 > M r > –18) with no active star formation are extremely rare ( Hα stellar 9 M ☉ below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1σ upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 × 10 9 M ☉ , ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.

  2. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  3. Quench detector for large pulsed coils and quench analysis for the LASL/Westinghouse 20 MJ coil

    International Nuclear Information System (INIS)

    Hennessy, M.J.; Heintz, A.W.; Eckels, P.W.

    1981-01-01

    A detection scheme has been devised for use in the test of the 20 Mj Induction Heating Coil. This scheme allows the sensing of plus or minus voltages less than 320 mv resistive in magnitude in coils which will have inductive voltage components as high as /plus or minus/2.5 kv. The network which achieves this sensitivity is stable to less than 12.8 ppm. This method adopted involves the bucking out of the inductive voltage with two secondary co-wound flux sensing coils tapped at locations adjacent to voltage taps in the main superconducting coil. The detection scheme is recommended if large ripple or control voltages exist subsequent to the coil pulse. The most severe event which might quench the coil and/or damage the winding is exposure of the coil to gaseous cooling through lack of proper liquid level control. The detection scheme will protect the coil against this and other abnormal conditions that could damage the coil

  4. The QUENCH programme at Forschungszentrum Karlsruhe (FZK)

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Schanz, G.; Sepold, L.; Stuckert, J.; Hering, W.; Homann, C.; Miassoedov, A.

    2004-01-01

    The QUENCH programme at FZK was launched to investigate the hydrogen source term during reflood of an overheated reactor core. It consists of large scale bundle experiments, separate-effects tests, modelling activities and application and validation of severe fuel damage (SFD) code systems. The paper describes the experimental part of the programme, namely the experimental facilities and test rigs as well as selected results obtained during the recent years. (author)

  5. Smart machine protection system

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.

    1992-01-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerators to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is complied into a logical decision tree for the 68030 processor. (author)

  6. Smart Machine Protection System

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.; Spencer, N.; Hutchinson, D.; Olsen, J.; Millsom, D.; White, G.; Gromme, T.; Allison, S.; Underwood, K.; Zelazny, M.; Kang, H.

    1991-11-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerator to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is compiled into a logical decision tree for the 68030 processor. 3 figs

  7. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  8. Temperature profile evolution in quenching high-Tc ...

    Indian Academy of Sciences (India)

    Abstract. Irreversible normal zones leading to quench is an important aspect of high-temperature superconductors (HTS) in all practical applications. As a consequence of quench, transport current gets diverted to the matrix stabilizer material of the high-Tc composite and causes Joule heating till the original conditions are ...

  9. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Science.gov (United States)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  10. Smooth and fast versus instantaneous quenches in quantum field theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-01-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δt, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies http://dx.doi.org/10.1103/PhysRevLett.112.171601 and http://dx.doi.org/10.1007/JHEP02(2015)167 highlighted that the two protocols remain distinct in the limit δt→0 because of the relation of the quench rate to the UV cut-off, i.e., 1/δt≪Λ always holds in the fast smooth quenches while 1/δt∼Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δt, the correlator scales universally with δt, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δt drops out. The excess energy density is finite (for finite mδt) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδt→0 for d≥4, just as in an instantaneous quench, where it is UV divergent for d≥4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ>d/2.

  11. Eddy current and quench loads and stress of SSC collider 4-K liner and the bore tube during magnet quench

    International Nuclear Information System (INIS)

    Leung, K.K.; Shu, Q.S.

    1993-07-01

    This paper describes the response of the eddy current and quench loads on a proposed Superconducting SuperCollider 4-K liner system. The liner within a bore tube is designed to remove the radiated power and the photodesorbed gas that impair the beam tube vacuum. The bimetallic liner tube is subjected to cooldown and eddy current loads. The square liner tube is a two-shell laminated Nitronic-40 steel is used for strength and a copper inner layer for low impedance to the image currents. Perforated holes are used to remove the photodesorbed gases for vacuum maintenance. The holes are located in a low-stress area of the liner. Rectangular holes in a four-pole symmetry pattern are required for beam dynamic stability. The liner is conductivity cooled by the round steel bore tube with a 2-mm wall. The copper layer must not be stressed over the yield strength limit because copper properties such as conductivity are known to change when the copper is stressed over yield strength. This analysis will address liner system response under thermal, eddy current, and vaporized liquid helium loads in a quenching dipole magnet

  12. A Conceptual Development of Quench Prediction App build on LSTM and ELQA framework

    OpenAIRE

    Mertik, Matej; Wielgosz, Maciej; Skoczeń, Andrzej

    2016-01-01

    This article presents a development of web application for quench prediction in \\gls{te-mpe-ee} at CERN. The authors describe an ELectrical Quality Assurance (ELQA) framework, a platform which was designed for rapid development of web integrated data analysis applications for different analysis needed during the hardware commissioning of the Large Hadron Collider (LHC). In second part the article describes a research carried out with the data collected from Quench Detection System by means of...

  13. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  14. A sensitive fluorescence quenching method for determination of bismuth with tiron

    Energy Technology Data Exchange (ETDEWEB)

    Taher, Mohammad Ali; Rahimi, Mina [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Fazelirad, Hamid, E-mail: hamidfazelirad@gmail.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Department of Chemistry, Science and Research Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Young Researchers Society, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman (Iran, Islamic Republic of)

    2014-01-15

    We describe a fluorescence quenching method for determination of bismuth with tiron. The method is based on the reaction of tiron by bismuth(III) in acidic media. The influence of variables such as the pH, type of buffer, tiron concentration, reaction time and temperature were investigated. Under optimized conditions, the fluorescence quenching extent is proportional to the concentration of bismuth for Bi–tiron system at the range 0.13–2.09 μg mL{sup −1} and the detection limit is 0.05 μg mL{sup −1}. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=±0.498%) for 11 replicates. This sensitive, rapid and accurate method has been successfully applied to the determination of trace bismuth(III) in water and hair samples and certified reference materials. -- Highlights: • No previous paper report on use of fluorescence quenching for determination of Bi. • Fluorescence quenching of trion is a sensitive method for determination of Bi(III). • Under the optimum conditions the detection limit is very low (0.05 μg mL{sup −1}). • The procedure is simple and safe and has high tolerance limit to interferences.

  15. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system

  16. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system. 8 refs

  17. Criterion for the onset of quench for low-flow reflood

    International Nuclear Information System (INIS)

    Hsu, Y.Y.; Young, M.W.

    1982-07-01

    This study provides a criterion for the onset of quench for low flow reflood. The criterion is a combination of two conditions: T/sub clad/ < T/sub limiting quench/ where T = Temperature, and α < 0.95 where α = void fraction. This criterion was obtained by examining temperature data from tests simulating PWR reflood, such as FLECHT, THTF, PBF, CCTF, and FEBA tests, with void fraction data from CCTF, FEBA, and FLECHT low flood tests. The data show that quenching initiated at α = 0.95 and that the majority of quench occurred at void fractions near 0.85. The results show that rods can be completely quenched by entrained droplets even if the collapsed liquid level does not advance. A thorough discussion of the analysis which supports this quench criterion is given in the text of this report

  18. Characterization of oil based nanofluid for quench medium

    Science.gov (United States)

    Mahiswara, E. P.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Kresnodrianto

    2018-01-01

    The choice of quench medium depends on the hardenability of the metal alloy, the thickness of the component, and the geometry of the component. Some of these will determine the cooling rate required to obtain the desired microstructure and material properties. Improper quench media will cause the material to become brittle, suffers from geometric distortion, or having a high undesirable residual stresses in the components. In heat treatment industries, oil and water are frequently used as the quench media. Recently, nanofluid as a quench medium has also been studied using several different fluids as the solvent. Examples of frequently used solvents include polymers, vegetable oils, and mineral oil. In this research, laboratory-grade carbon powder were used as nanoparticle. Oil was used as the fluid base in this research as the main observation focus. To obtain nanoscale carbon particles, planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. This method was used to lower the cost for nanoparticle synthesis. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which annealed at 1000°C. Hardness testing and metallography observation were then conducted to further examine the effect of different quench medium in steel samples.

  19. Characterization of water based nanofluid for quench medium

    Science.gov (United States)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub

  20. Numerical estimation on balance coefficients of central difference averaging method for quench detection of the KSTAR PF coils

    International Nuclear Information System (INIS)

    Kim, Jin Sub; An, Seok Chan; Ko, Tae Kuk; Chu, Yong

    2016-01-01

    A quench detection system of KSTAR Poloidal Field (PF) coils is inevitable for stable operation because normal zone generates overheating during quench occurrence. Recently, new voltage quench detection method, combination of Central Difference Averaging (CDA) and Mutual Inductance Compensation (MIK) for compensating mutual inductive voltage more effectively than conventional voltage detection method, has been suggested and studied. For better performance of mutual induction cancellation by adjacent coils of CDA+MIK method for KSTAR coil system, balance coefficients of CDA must be estimated and adjusted preferentially. In this paper, the balance coefficients of CDA for KSTAR PF coils were numerically estimated. The estimated result was adopted and tested by using simulation. The CDA method adopting balance coefficients effectively eliminated mutual inductive voltage, and also it is expected to improve performance of CDA+MIK method for quench detection of KSTAR PF coils

  1. Time evolution of a quenched binary alloy: computer simulation of a three-dimensional model system

    International Nuclear Information System (INIS)

    Marro, J.; Bortz, A.B.; Kalos, M.H.; Lebowitz, J.L.; Sur, A.

    1976-01-01

    Results are presented of computer simulation of the time evolution for a model of a binary alloy, such as ZnAl, following quenching. The model system is a simple cubic lattice the sites of which are occupied either by A or B particles. There is a nearest neighbor interaction favoring segregation into an A rich and a B rich phase at low temperatures, T less than T/sub c/. Starting from a random configuration, T much greater than T/sub c/, the system is quenched to and evolves at a temperature T less than T/sub c/. The evolution takes place through exchanges between A and B atoms on nearest neighbor sites. The probability of such an exchange is assumed proportional to e/sup -βΔU/ [1 + e/sup -βΔU/] -1 where β = (k/sub B/T) -1 and ΔU is the change in energy resulting from the exchange. In the simulations either a 30 x 30 x 30 or a 50 x 50 x 50 lattice is used with various fractions of the sites occupied by A particles. The evolution of the Fourier transform of the spherically averaged structure function S(k,t), the energy, and the cluster distribution were computed. Comparison is made with various theories of this process and with some experiments. It is found in particular that the results disagree with the predictions of the linearized Cahn-Hilliard theory of spinodal decomposition. The qualitative form of the results appear to be unaffected if the change in the positions of the atoms takes place via a vacancy mechanism rather than through direct exchanges

  2. Characteristics of current quenches during disruptions in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zhang, Y; Chen, Z Y; Fang, D; Jin, W; Huang, Y H; Wang, Z J; Yang, Z J; Chen, Z P; Ding, Y H; Zhang, M; Zhuang, G

    2012-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electro-magnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. The characteristics of current quenches in spontaneous disruptions in the J-TEXT tokamak have been investigated. It is shown that the waveforms for the fastest current quenches are more accurately fitted by linear current decays than exponential, although neither is a good fit in many slower cases. The minimum current quench time is about 2.4 ms for the J-TEXT tokamak. The maximum instantaneous current quench rate is more than seven times the average current quench rate in J-TEXT. (paper)

  3. Coarsening of stripe patterns: variations with quench depth and scaling.

    Science.gov (United States)

    Tripathi, Ashwani K; Kumar, Deepak

    2015-02-01

    The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.

  4. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  5. Novel quench detection methods for the superconducting magnets in ITER and TPX

    International Nuclear Information System (INIS)

    Schultz, J.H.; Pourrahimi, S.; Diatchenko, N.; Guss, W.; Chaniotakis, E.; Pillsbury, R.D. Jr.; Smith, S.; Wang, P.W.; Citrolo, J.; Chaplin, M.; Zbasnik, J.

    1995-01-01

    The US is providing novel sensors to Japan to be used in the conductor for QUELL, the ITER Quench Experiment on Long-Lengths to be performed in the SULTAN magnet in 1995. These include cowound voltage sensors, fiber optic thermometers, cowound and conventional pressure sensors, and flow meters. TPX has a redundant quench detection system using cowound voltage sensors, fiber-optic temperaure sensors, conventional voltage taps, and flow meters. Sensors are extracted only at joint regions, but are terminated every two pancakes, providing high signal-noise ratios through differencing techniques. (orig.)

  6. Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer.

    Science.gov (United States)

    Zeisser-Labouèbe, Magali; Mattiuzzo, Marc; Lange, Norbert; Gurny, Robert; Delie, Florence

    2009-09-01

    Photodynamic therapy has emerged as a promising alternative to current cancer treatment. However, conventional photosensitizers have several limitations due to their unsuitable pharmaceutical formulations and lack of selectivity. Our strategy was to exploit the advantages of nanoparticles and the quenching-induced deactivation of the model photosensitizer hypericin to produce "activatable" drug delivery systems. Efficient fluorescence and activity quenching were achieved by increasing the drug-loading rate of nanoparticles. In vitro assays confirmed the reversibility of hypericin deactivation, as the hypericin fluorescence and photodynamic activity were recovered upon cell internalization.

  7. Active quenching circuit for a InGaAs single-photon avalanche diode

    International Nuclear Information System (INIS)

    Zheng Lixia; Wu Jin; Xi Shuiqing; Shi Longxing; Liu Siyang; Sun Weifeng

    2014-01-01

    We present a novel gated operation active quenching circuit (AQC). In order to simulate the quenching circuit a complete SPICE model of a InGaAs SPAD is set up according to the I–V characteristic measurement results of the detector. The circuit integrated with aROIC (readout integrated circuit) is fabricated in an CSMC 0.5 μm CMOS process and then hybrid packed with the detector. Chip measurement results show that the functionality of the circuit is correct and the performance is suitable for practical system applications. (semiconductor integrated circuits)

  8. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  9. Reactor protection and shut-down system

    International Nuclear Information System (INIS)

    Klar

    1980-01-01

    The reactor protection system being a part of the reactor safety system. The requirements on the reactor protection system are: high safety with regard to signal processing, high availability, self-reporting of faults etc. The functional sections of the reactor protection system are the analog section, the logic section and the generating of output signals. Description of the operation characteristics and of the extension of function. (orig.)

  10. Quench detection on a superconducting radio-frequency cavity

    OpenAIRE

    Lai, Ru-Yu; Spirn, Daniel

    2017-01-01

    We study quench detection in superconducting accelerator cavities cooled with He-II. A rigorous mathematical formula is derived to localize the quench position from dynamical data over a finite time interval at a second sound detector.

  11. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching

    NARCIS (Netherlands)

    van Oort, Bart; Roy, Laura M; Xu, Pengqi; Lu, Yinghong; Karcher, Daniel; Bock, Ralph; Croce, Roberta

    2018-01-01

    Photoprotective nonphotochemical quenching (NPQ) of absorbed solar energy is vital for survival of photosynthetic organisms, and NPQ modifications significantly improve plant productivity. However, the exact NPQ quenching mechanism is obscured by discrepancies between reported mechanisms, involving

  12. Corrosion fatigue in nitrocarburized quenched and tempered steels

    Science.gov (United States)

    Khani, M. Karim; Dengel, D.

    1996-05-01

    In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-μm-thick electroless Ni-P layer, in order to compare corrosion fatigue behavior between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 108 cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The beneficial effect of nitrocarburizing followed by oxidation treatment on cor-rosion fatigue life results from the protection rendered by the compound layer by means of a well-sealed oxide layer, whereby the pores present in the compound layer fill up with oxides. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.

  13. A micellar model system for the role of zeaxanthin in the non-photochemical quenching process of photosynthesis--chlorophyll fluorescence quenching by the xanthophylls.

    Science.gov (United States)

    Avital, Shlomo; Brumfeld, Vlad; Malkin, Shmuel

    2006-07-01

    To get an insight to the mechanism of the zeaxanthin-dependent non-photochemical quenching in photosystem II of photosynthesis, we probed the interaction of some xanthophylls with excited chlorophyll-a by trapping both pigments in micelles of triton X-100. Optimal distribution of pigments among micelles was obtained by proper control of the micelle concentration, using formamide in the reaction mixture, which varies the micellar aggregation number over three orders of magnitude. The optimal reaction mixture was obtained around 40% (v/v) formamide in 0.2-0.4% (v/v) triton X-100 in water. Zeaxanthin in the micellar solution exhibited initially absorption and circular dichroism spectral features corresponding to a J-type aggregate. The spectrum was transformed over time (half-time values vary-an average characteristic figure is roughly 20 min) to give features representing an H-type aggregate. The isosbestic point in the series of spectral curves favors the supposition of a rather simple reaction between two pure J and H-types dimeric species. Violaxanthin exhibited immediately stable spectral features corresponding to a mixture of J-type and more predominately H-type dimers. Lutein, neoxanthin and beta-carotene did not show any aggregated spectral forms in micelles. The spectral features in micelles were compared to spectra in aqueous acetone, where the assignment to various aggregated types was established previously. The specific tendency of zeaxanthin to form the J-type dimer (or aggregate) could be important for its function in photosynthesis. The abilities of five carotenoids (zeaxanthin, violaxanthin, lutein, neoxanthin and beta-carotene) to quench chlorophyll-a fluorescence were compared. Zeaxanthin, in its two micellar dimeric forms, and beta-carotene were comparable good quenchers of chlorophyll-a fluorescence. Violaxanthin was a much weaker quencher, if at all. Lutein and neoxanthin rather enhanced the fluorescence. The implications to non

  14. Mechanical design and protection of superconducting magnets

    CERN Document Server

    Asner, Alfred M

    1978-01-01

    The principles of the mechanical design of superconducting magnets of concentric configuration, with iron low-temperature and room- temperature screening, are outlined. Measures for protection of such magnets against quench forces, are considered. (4 refs).

  15. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Directory of Open Access Journals (Sweden)

    A. M. de Paor

    1998-01-01

    Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.

  16. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  17. Regulatory control of physical protection systems

    International Nuclear Information System (INIS)

    Rajdeep; Mayya, Y.S.

    2017-01-01

    The safety of facilities in BARC is under the regulatory oversight of BSC. The security architecture for these facilities incorporates multiple layers of Physical Protection Systems. The demands of safety may sometimes conflict with the needs of security. Realizing the need to identify these interfaces and extend the regulatory coverage to Physical Protection Systems, a Standing Committee named Physical Protection System Review Committee (PPSRC) has been constituted as a 2"n"d tier entity of BSC. PPSRC includes experts from various domains concerned with nuclear security, viz. physical protection systems, cyber security, radiation safety, security operations, technical services and security administration

  18. Self-quenching streamer discharge in a wire chamber

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Kruglov, V.V.; Khazins, D.M.

    1982-01-01

    A summary is given of the investigation of a new mode of operation of a wire chamber involving a self-quenching streamer discharge. The history of the question is briefly discussed. The main characteristics of the self-quenching mode and the influence of the composition and pressure of the gas mixture and the geometrical parameters of the chamber on the characteristics are described. The mechanism of a self-quenching streamer discharge is analyzed. Detectors working in this mode are described, and the prospects for its future use are discussed

  19. Simulation of jet quenching at RHIC and LHC

    International Nuclear Information System (INIS)

    Lokhtin, I P; Snigirev, A M

    2007-01-01

    A model to simulate the jet quenching effect in ultrarelativistic heavy ion collisions is presented. The model is the fast Monte Carlo tool implemented to modify a standard PYTHIA jet event. The model has been generalized to the case of the 'full' heavy ion event (the superposition of soft, hydro-type state and hard multi-jets) using a simple and fast simulation procedure for soft particle production. The model is capable of reproducing the main features of the jet quenching pattern at RHIC and is applied to analyse novel jet quenching features at LHC

  20. Distributed Supervisory Protection Interlock System

    International Nuclear Information System (INIS)

    Walz, H.V.; Agostini, R.C.; Barker, L.; Cherkassky, R.; Constant, T.; Matheson, R.

    1989-03-01

    The Distributed Supervisory Protection Interlock System, DSPI, is under development at the Stanford Linear Accelerator Center for requirements in the areas of personnel protection, beam containment and equipment protection interlocks. The DSPI system, distributed over the application site, consists of segments with microprocessor-based controller and I/O modules, local area networks for communication, and a global supervisor computer. Segments are implemented with commercially available controller and I/O modules arranged in local interlock clusters, and associated software. Segments provide local interlock data acquisition, processing and control. Local area networks provide the communication backbone between segments and a global supervisor processor. The supervisor processor monitors the overall system, reports detail status and provides human interfaces. Details of an R and D test system, which will implement the requirements for personnel protection of 4 typical linear accelerator sectors, will be described. 4 refs., 2 figs

  1. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    Science.gov (United States)

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  2. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Directory of Open Access Journals (Sweden)

    Ramesh Gopalan

    2011-01-01

    Full Text Available Abstract The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  3. Power system protection 2 systems and methods

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  4. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  5. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    International Nuclear Information System (INIS)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel; Dekel, Avishai; Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J.; Muzzin, Adam; Franx, Marijn; Brammer, Gabriel B.; Marchesini, Danilo; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.

    2014-01-01

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M * /M ☉ = 6.5 × 10 10 ) to nearby massive ellipticals (M * /M ☉ = 1.5 × 10 11 ). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M * /M ☉ = 6.5 × 10 9 ). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10 12 and 10 13 M ☉ , consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  6. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Patel, Shannon G.; Quadri, Ryan F. [Carnegie Observatories, Pasadena, CA 91101 (United States); Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa); Wake, David A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Whitaker, Katherine E., E-mail: tal@ucolick.org [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-10

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  7. Study on quench effects in liquid scintillation counting during tritium measurements

    International Nuclear Information System (INIS)

    Ivana Jakonic; Jovana Nikolov; Natasa Todorovic; Miroslav Veskovic; Branislava Tenjovic

    2014-01-01

    Quench effects can cause a serious reduction in counting efficiency for a given sample/cocktail mixture in liquid scintillation counting (LSC) experiments. This paper presents a simple experiment performed in order to test the influence of quenching on the LSC efficiency of 3 H. The aim of this study was to investigate the behavior of several quench agents with different quench strengths (nitromethane, nitric acid, acetone, dimethyl-sulfoxide) added in different amounts to tritiated water in order to obtain standard sets for quench calibration curves. The OptiPhase HiSafe 2 and OptiPhase HiSafe 3 scintillation cocktails were used in this study in order to compare their quench resistance. Measurements were performed using a low-level LS counter (Wallac, Quantulus 1220). (author)

  8. Quench detection of superconducting magnet by dual-core optical fiber

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kawai, K.; Kokubun, Y.; Takao, T.

    1988-01-01

    A quench-detecting technique using two single-mode optical cores in one fiber has been developed. The technique can detect quench from a temperature rise of 1.0 K at 4.2 K. An electromagnetic force-stress to the fiber did not deteriorate quench detection sensitivity. A quench detector using this method was immune from electromagnetic noise and free from troubles caused by high voltage tension. Problems arising when applying this method to a large scale magnet and possible improvements in the instrumentation are discussed

  9. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  10. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A. [RRC ' Kurchatov Inst.' , Nuclear Fusion Inst., Moscow (Russian Federation); Bi, Y.F.; Cheng, S.M.; He, Y.X. [Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics

    1998-07-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied byconversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  11. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A.; Bi, Y.F.; Cheng, S.M.; He, Y.X.

    1998-01-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied by conversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  12. A study of point defects in quenched stainless steels

    International Nuclear Information System (INIS)

    Kheloufi, Khelifa.

    1977-07-01

    Thin foils of stainless steels (18%Cr, 14%Ni) containing boron (50x10 -6 ) and stabilised with titanium have been quenched at different rates in order to observe secondary defects by transmission electron microscopy. A rapid quenching in gallium has not given any secondary defects either before or after annealing. But samples quenched from temperatures greater than 800 0 C-900 0 C exhibit a dislocation density approximately 10 9 cm/cm 3 . A vacancy concentration less than 10 -6 has been observed by positron annihilation technique. After a moderate quenching, any secondary defects has been observed. It is thus clear that boron does not favour the secondary defects formation as does phosphorus [fr

  13. Comparison of the quench experiments CORA-12, CORA-13, CORA-17

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1996-08-01

    The CORA quench experiments 12, 13 (PWR) und 17 (BWR) are in agreement with the inpile tests LOFT LP-FP-2 and PBF SFD-ST and the TMI accident: Flooding of hot Zircaloy clad fuel rods does not result in an immediate cooldown of the bundle, but produces a remarkable temporary temperature increase connected to a strong peak in hydrogen production. For the preparation of new quench bundle tests, necessary for the understanding of the mechanisms governing the quench process and support for validation of future quench models in SFD codes the three tests are compared to each other and to the relevant non-quench tests CORA-29 (PWR) and CORA-16 (BWR). The PWR tests CORA-12 and CORA-13 are of the same geometrical arrangement and test conduct. An exception is the shorter time between power shutdown and quench initiation for CORA 13, resulting in a higher temperature of the bundle at start of quenching. The BWR test CORA-17 used B 4 C absorber and Zircaloy channel box walls, but was in respect to the delay time between power shutdown and start of quenching similar to test CORA-12. (orig./GL) [de

  14. Implicit time-dependent finite different algorithm for quench simulation

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)

  15. Many-Particle Dephasing after a Quench

    Science.gov (United States)

    Kiendl, Thomas; Marquardt, Florian

    2017-03-01

    After a quench in a quantum many-body system, expectation values tend to relax towards long-time averages. However, temporal fluctuations remain in the long-time limit, and it is crucial to study the suppression of these fluctuations with increasing system size. The particularly important case of nonintegrable models has been addressed so far only by numerics and conjectures based on analytical bounds. In this work, we are able to derive analytical predictions for the temporal fluctuations in a nonintegrable model (the transverse Ising chain with extra terms). Our results are based on identifying a dynamical regime of "many-particle dephasing," where quasiparticles do not yet relax but fluctuations are nonetheless suppressed exponentially by weak integrability breaking.

  16. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    Science.gov (United States)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  17. Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations

    International Nuclear Information System (INIS)

    Martelli, Emanuele; Kreutz, Thomas; Carbo, Michiel; Consonni, Stefano; Jansen, Daniel

    2011-01-01

    Highlights: → We aim at defining the preferred IGCC design for dry feed gasifiers with CO 2 capture. → Multiple options of syngas cooling, humidification, and WGS are considered. → Plants are designed, modeled, numerically optimized and costs are carefully assessed. → Partial water quench has poor efficiency but low capital cost, then good performance. → Gas quench with the ECN staged WGS design has the best thermo-economic performance. -- Abstract: The Shell coal integrated gasification combined cycle (IGCC) based on the gas quench system is one of the most fuel flexible and energy efficient gasification processes because is dry feed and employs high temperature syngas coolers capable of rising high pressure steam. Indeed the efficiency of a Shell IGCC with the best available technologies is calculated to be 47-48%. However the system looses many percentage points of efficiency (up to 10) when introducing carbon capture. To overcome this penalty, two approaches have been proposed. In the first, the expensive syngas coolers are replaced by a 'partial water quench' where the raw syngas stream is cooled and humidified via direct injection of hot water. This design is less costly, but also less efficient. The second approach retains syngas coolers but instead employs novel water-gas shift (WGS) configurations that requires substantially less steam to obtain the same degree of CO conversion to CO 2 , and thus increases the overall plant efficiency. We simulate and optimize these novel configurations, provide a detailed thermodynamic and economic analysis and investigate how these innovations alter the plant's efficiency, cost and complexity.

  18. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Rodriguez, R.; Ramirez, E.

    2010-08-14

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient {cflx q} extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting {cflx q} to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  19. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); Fries, R.J., E-mail: rjfries@comp.tamu.ed [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ramirez, E. [Physics Department, University of Texas El Paso, El Paso, TX 79968 (United States)

    2010-09-27

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient q extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting q to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  20. Design Of Photovoltaic Powered Cathodic Protection System

    Directory of Open Access Journals (Sweden)

    Golina Samir Adly

    2017-07-01

    Full Text Available The corrosion caused by chemical reaction between metallic structures and surrounding mediums such as soil or water .the CP cathodic protection system is used to protect metallic structure against corrosion. Cathodic protection CP used to minimize corrosion by utilizing an external source of electrical current which forces the entire structure to become a cathode. There are two Types of cathodic protection system Galvanic current Impressed current.the Galvanic current is called a sacrificial anode is connected to the protected structure cathode through a DC power supply. In Galvanic current system a current passes from the sacrificing anode to the protected structure .the sacrificial anode is corroded rather than causing the protected structure corrosion .protected structure requires a constant current to stop the corrosion which determined by area structure metal and the surrounding medium. The rains humidity are decrease soil resistivity and increase the DC current .The corrosion and over protection resulting from increase in the DC current is harmful for the metallic structure. This problem can be solved by conventional cathodic protection system by manual adjustment of DC voltage periodically to obtain a constant current .the manual adjustment of DC voltage depends on experience of the technician and using the accuracy of the measuring equipment. The errors of measuring current depend on error from the technician or error from the measuring equipment. the corrosion of structure may occur when the interval between two successive adjustment is long .An automatically regulated cathodic protection system is used to overcome problems from conventional cathodic protection system .the regulated cathodic protection system adjust the DC voltage of the system automatically when it senses the variations of surrounding medium resistivity so the DC current is constant at the required level.