WorldWideScience

Sample records for quebrachamine catalyst development

  1. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  2. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  3. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  4. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  5. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  6. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...

  7. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  8. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  9. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  10. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Investigation and development of heavy oil upgrading catalysts. 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.K.; Lee, I.C.; Yoon, W.L.; Lee, H.T.; Chung, H.; Hwang, Y.J.; Park, S.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This study aimed at the domestic development of HDS catalysts which are most fundamental and wide-used in the petroleum refinery. In this year, some experimental works were conducted for developing the effective utilization technology of the novel dispersed-catalysts in the hydro-desulfurization of heavy oils, and improving the reaction performance of alumina-supported Mo-based hydro-treating catalysts conventionally used in most of refineries. First, it was experimentally proved that the dispersed catalysts of Co-Mo could be employed for the hydro-desulfurization of a heavy atmospheric residual oil excluding the catalyst deactivation. The utilization of a carbon-expanded reactor in combination with this dispersed catalyst system exhibited an enhanced reaction performance and provided an efficient way for the separation and recovery of the dispersed catalytic component from oils. Second, the tungsten-incorporated WCoMo/{gamma}-Al{sub 2}O{sub 3} catalyst revealed the improved catalytic performance in the various hydro-treating reactions and in the initial deactivation rates for the high pressure hydro-treatment of a heavy oil as compared with the commercial CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst. This new experimental finding for the promoting role of the monomeric WO{sub 3} species in CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst may be generally applicable to the Mo-based alumina-sulfide phase, higher catalytic activity, and more extended service life. (author). 101 refs., 33 figs., 18 tabs.

  12. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Lang, X.; Chokkaram, S.; Nowicki, L.; Wei, G.; Ding, Y.; Reddy, B.; Xiao, S.

    1999-01-01

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  13. Development of polymer catalyst manufacturing technology

    International Nuclear Information System (INIS)

    Chung, Heung Seok; Kim, Yong Ik; Lee, Han Soo; Kang, Hui Seok; Seong, Ki Ung; Na, Jeong Won; An, Do Hui; Kim, Kwang Rak; Cho, Young Hyeon; Baek, Seung Uh; Jeong, Yong Won

    1993-01-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new six pressurized heavy water power plants till the year 2006. Total heavy water demand for these plants would be 3892 Mg during the period 1992-2006. Reformed hydrogen processes are considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchance was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 HD/m 3 Bed.sec. and heavy water separation processes using the catalysts were optimized. (Author)

  14. Development of radioactive platinum group metal catalysts

    International Nuclear Information System (INIS)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E.

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m 2 /g. The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs

  15. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  16. Christian Church: A Catalyst for Economic Development in Nigeria ...

    African Journals Online (AJOL)

    Christian Church: A Catalyst for Economic Development in Nigeria. ... African Research Review ... The Nigerian economy had a truncated history from independence to present times and the economy has suffered series of economic instability because of a long period of unsustained growth in the per capital real income of ...

  17. Advanced development of catalysts by using the high-brilliance synchrotron radiation in SPring-8

    International Nuclear Information System (INIS)

    2006-10-01

    The advanced development of catalysts by using the high-brilliance synchrotron radiation in SPring-8 is described: (1) the industrial use of SPring-8, (2) the analytical methods of catalyst using SPring-8 (XAFS, powder X-ray diffraction, thin film X-ray scattering, X-ray imaging, infrared analysis, X-ray fluorescence analysis, and photoelectron spectroscopy etc.), (3) the history of synchrotron radiation and catalyst investigations, (4) the new advanced measuring methods of catalyst using synchrotron radiation (various X-ray spectroscopic methods, and application of XAFS to highly-disperse systems of catalyst), and (5) the new advanced development of catalysts using synchrotron radiation and its applications (motor-car catalysts, light catalysts, fuel cells, nanotechnology, and trace amounts of catalyst in wastes). (M.H.)

  18. ECONOMIC FREEDOM – A CATALYST FOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Rozalia Iuliana KICSI

    2014-12-01

    Full Text Available Liberal doctrine, in its various attempts to find legitimacy, has exerted a real influence on the ”architecture” of the world economy. Liberal rhetoric, validated by historical reality, has shown that liberalism, through its virtues, design a proper environment for both individuals and nations development. In this equation of development the catalytic role of economic freedom and free trade was a theme of reflections during the evolution of many nations, but emphasis on the quantitative dimensions was obvious. In the last decades, attention has been focused on the quality of development too, understanding that the wealth of a nation is reflected not only in the improvement of macroeconomic indicators, but in the better quality of individuals’ life.

  19. Development of a Catalyst/Sorbent for Methane Reforming

    Energy Technology Data Exchange (ETDEWEB)

    B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

    2008-12-31

    This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all

  20. Catalysts development for Venezuelan oil industry

    International Nuclear Information System (INIS)

    1999-01-01

    Since the beginning of technical activities at PDVSA Intevep, Catalysis became a fact. As the technological affiliate of the Venezuelan Oil Industry, its rol in this area has been oriented towards the refining and petrochemical needs of that industry. In doing so, the whole set of activities dealing with basic research, development and consulting has lead to keep in force such a topic along our history. This work describes these activities, the infrastructure which supported it and the most relevant results, both those which have reached commercial level together with those holding that potential through a valid patent. As can be seen, this country relay on a corporation capable of generating catalytic technologies to satisfy its needs, within a wide range of applications. PDVSA Intevep has been exhaustively working with that orientation from the knowledge creation through the technology transfer of our products to the operational units

  1. Development of Water Detritiation Process Using the Hydrophobic Platinum Catalyst

    International Nuclear Information System (INIS)

    Ahn, D.H.; Paek, S.; Choi, H.J.; Kim, K.R.; Chung, H.; Yim, S.P.; Lee, M.S.

    2006-01-01

    Radioactive emissions and occupational doses by tritium are mainly caused by tritiated water escaping from equipment in the nuclear industry. Improving the leak-tightness of equipment is effective in reducing emissions and internal dose but is not a long-term solution. Water detritiation was consider to be the most effective tritium control option since tritium is removed right from the source. The WTRF (Wolsong Tritium Removal Facility) is under construction now with the completion date of June, 2006 in Korea. It is designed to remove tritium from tritiated heavy water in each of the existing four Candu units at Wolsong site. We developed a hydrophobic platinum catalyst (Pt/SDBC catalyst) that would be used at the LPCE (Liquid Phase Catalytic Exchange) column in the WTRF. The catalytic rate constants of the newly developed catalyst for the deuterium exchange reaction between water vapor and hydrogen gas were measured in a recycle reactor. The catalytic rate constants of the Pt/SDBC catalyst decreased with reaction time and were much greater than that required, 2.0 x 10 -4 mol (D 2 )/s/g(pellet) in the design of the WTRF. Tritium removal efficiency of the WTRF, which is important for a safe and reliable operation of the facility, depends on the design and operating variables. A theoretical model based on the design and operating variables of the LPCE process was set up, and the equations between the parameters were derived. Numerical calculation result from a computer program shows steep increase of the detritiation factor of the LPCE process with respect to temperature increase and mild increase with respect to pressure decrease. The other parametric study shows that the calculated detritiation factors increase as the catalyst efficiency, number of theoretical stages of hydrophilic packing, the detritiation factor of cryogenic distillation system and the total number of sections increase. We also proceeded with the experiments for the hydrogen isotopic exchange

  2. THE THEORY OF DEVELOPMENT OF SUPPORTED METAL-COMPLEX CATALYSTS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-06-01

    Full Text Available Some results of the investigations for the purpose of development of supported metal-complex catalysts for phosphine and carbon monoxide oxidation as well as for ozone decomposition are summarized. The activity of such catalysts has been found to depend not only on a nature of a central atom and ligands but also on a nature of supports. The theoretical model explaining mechanisms of surface complex formation taking into account the influence of physicochemical and structural-adsorption properties of the supports (SiO2, Al2O3, carbon materials, zeolites, dispersed silicas, lamellar aluminosilicates, etc. has been proposed. For quantitative description of the support effect, such a thermodynamic parameter as the adsorbed water activity assignable with the help of water vapor adsorption isotherms has been introduced. Successive stability constants of the surface metal complexes have been calculated by the kinetic method and, hence, compositions and partial catalytic activity of the latter have been determined. Taking into account the competitive adsorption of metal ions on the supports, some schemes of formation of surface bimetallic complexes have been suggested. The compositions of the supported metal-complex catalysts have been optimized to meet requirements of their use in respirators and plants for air purification from foregoing gaseous toxicants.

  3. Development of refractory ceramic using waste of petrochemical catalysts

    International Nuclear Information System (INIS)

    Pedroso, M.A.; Mymrine, V.

    2011-01-01

    The manufacturing of catalytic catalysts by the company FCC SA. for the Brazilian petrochemical industry is 25,000 tons per annum, which after going through the cracking process cannot undergo regeneration any longer, being wasted with humidity near 70%. To increase the economical and environmental efficiency of the use of this rejected catalyst, without preliminary drying, a method of using it as main raw material in composition like kaolin was developed, as well as in ash and glass for the manufacturing of common (regular) and refractory ceramic. The mixture of these components were burnt at temperatures of 1100 deg C, 1200°C, 1250°C and 1300°C. The ceramics with 30% and 40% in weight of wasted catalyst, sintered in 1250 deg C or 1300 deg C have flexion of 10,8 - 12,9 MPa. After burning the mixtures, the chemical interaction of the initial components was determined by the methods of RXD, MEV and EDS, synthesizing new minerals like Diopside Ca(Mg,Al)(Si,Al) 2 O 6 , Nepheline (K,Na)AlSiO 4 , Lazurite Na 8 [Al 2 SiO 4 ] 6 [SO 4 ,S] 2 , Magnetite Fe 3 O 4 , Albite Na Al Si 3 O 8 and high content of vitreous amorphous phase. (author)

  4. Entrepreneurship as a Catalyst for Rural Tourism Development

    Directory of Open Access Journals (Sweden)

    Md Sharif Norhafiza

    2014-01-01

    Full Text Available The tourism industry is seen as capable of being an agent of change in the landscape of economic, social and environment of a tourist destination. Tourism activity has also generated employment and entrepreneurship opportunities to the local community as well as using available resources as tourist attractions. The tourism sector has the potential to be a catalyst for the development of entrepreneurship and small business performance. Through the development of tourism, the rural community has the opportunity to offer services or sell products to the both local and foreign tourists. To fulfill this purpose, local community participation in entrepreneurship is very important in order to develope the economic potential and to determine the direction of a development in rural areas. In the context of entrepreneurship, local participation is important not only as an entrepreneur and labor in this sector as well as complementary sectors of the others, but they can serve to encourage the involvement of other residents to join together to develop this entrepreneurial. This article aims to discuss the extent of entrepreneurship as a catalyst to the development of tourism in rural areas. Through active participation among community members, rural entrepreneurship will hopefully move towards prosperity and success of rural development.

  5. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  6. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  7. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H 2 ) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H 2 /CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H 2 /CO=0.67 and 2.0 NL/g-cat/h with C 5 + selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron

  8. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Shaikh Ali, Anaam

    2016-01-01

    to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based

  9. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Burtron H. Davis

    1999-01-01

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe(sub 3)O(sub 4). Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to(epsilon)(prime)-Fe(sub 2.2)C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to(chi)-Fe(sub 5)C(sub 2) and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe(sub 3)O(sub 4); however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94%(chi)-Fe(sub 5)C(sub 2), deactivated rapidly as the carbide was oxidized to Fe(sub 3)O(sub 4). No difference in activity, stability or deactivation rate was found for(chi)-Fe(sub 5)C(sub 2) and(epsilon)(prime)-Fe(sub 2.2)C

  10. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  11. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  12. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  13. Development of styrene divinyl benzene catalyst in isotopic exchange reaction of water and hydrogen

    International Nuclear Information System (INIS)

    Morishita, Teizo; Noda, Shigeyuki; Tan, Tsutomu; Noguchi, Hiroshi

    1982-01-01

    Styrene divinyl benzene copolymer (SDBC) is hydrophobic, and porous with large specific surface area. Utilizing these properties, the SDBC was used for the carrier of catalyst in water-hydrogen exchange reaction process, and the hydrophobic platinum catalyst with very high performance was able to be developed. However, the SDBC is usually fine particles smaller than 1 mm, and is not suitable as the filling catalyst for exchange reaction towers. Therefore, in this study, using only platinum as a catalyst metal, the improvement of the property of carriers was emphatically examined, and platinum bearing was proved with an optical or electron microscope. As the result, it was found that the SDBC catalyst showed high activity practically usable as the hydrophobic catalyst for heavy water or tritium exchange reaction. The characteristics of SDBC are explained. The manufacturing processes of the catalyst by making SDBC carriers with fine particles and letting them bear platinum are described. The results of the trial manufacture of spherical, extrusion-formed and honeycomb carrier catalysts are reported. Platinum must be dispersed over the large specific surface area of SDBC carriers. (Kako, I.)

  14. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-01-30

    The effects of copper on Fischer-Tropsch activity, selectivity and water-gas shift activity were studied over a wide range of syngas conversion. Three catalyst compositions were prepared for this study: (a) 100Fe/4.6Si/1.4K, (b) 100Fe/4.6Si/0.10Cu/1.4K and (c) 100Fe/4.6Si/2.0Cu/1.4K. The results are reported in Task 2. The literature review for cobalt catalysts is approximately 90% complete. Due to the size of the document, it has been submitted as a separate report labeled Task 6.

  15. Recent Scientific Progress on Developing Supported Ni Catalysts for Dry (CO2 Reforming of Methane

    Directory of Open Access Journals (Sweden)

    Hyun Ook Seo

    2018-03-01

    Full Text Available Two major green house gases (CO2 and CH4 can be converted into useful synthetic gas (H2 and CO during dry reforming of methane (DRM reaction, and a lot of scientific efforts has been made to develop efficient catalysts for dry reforming of methane (DRM. Noble metal-based catalysts can effectively assist DRM reaction, however they are not economically viable. Alternatively, non-noble based catalysts have been studied so far, and supported Ni catalysts have been considered as a promising candidate for DRM catalyst. Main drawback of Ni catalysts is its catalytic instability under operating conditions of DRM (>700 °C. Recently, it has been demonstrated that the appropriate choice of metal-oxide supports can address this issue since the chemical and physical of metal-oxide supports can prevent coke formation and stabilize the small Ni nanoparticles under harsh conditions of DRM operation. This mini-review covers the recent scientific findings on the development of supported Ni catalysts for DRM reaction, including the synthetic methods of supported Ni nanoparticles with high sintering resistance.

  16. Development of low light-off catalyst; Teion kassei ni sugureta shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, T; Ichikawa, S; Koda, Y; Yamamoto, E; Sumida, H; Yamada, H; Shigetsu, M; Komatsu, K [Mazda Motor Corp., Tokyo (Japan)

    1997-10-01

    A new type of three way catalyst was developed in order to reduce HC, CO and NOx in cold exhaust gas. This catalyst consists of double layer, and has a base support material of alumina and oxygen storage components (OSC) loaded with active metals including platinum. palladium and rhodium. It has good light-off performance and high catalytic activity. This catalyst includes two types of OSC. One is CeO2, and the other is CePrO2 that makes possible to improve NOx conversion at high exhaust gas temperature. 8 refs., 13 figs., 2 tabs.

  17. Metalloporphyrin catalysts for oxygen reduction developed using computer-aided molecular design

    Energy Technology Data Exchange (ETDEWEB)

    Ryba, G.N.; Hobbs, J.D.; Shelnutt, J.A. [and others

    1996-04-01

    The objective of this project is the development of a new class of metalloporphyrin materials used as catalsyts for use in fuel cell applications. The metalloporphyrins are excellent candidates for use as catalysts at both the anode and cathode. The catalysts reduce oxygen in 1 M potassium hydroxide, as well as in 2 M sulfuric acid. Covalent attachment to carbon supports is being investigated. The computer-aided molecular design is an iterative process, in which experimental results feed back into the design of future catalysts.

  18. Development of supported noble metal catalyst for U(VI) to U(IV) reduction

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Varma, Salil; Bhattacharyya, K.; Tripathi, A.K.; Bharadwaj, S.R.; Jain, V.K.; Sahu, Avinash; Vincent, Tessy; Jagatap, B.N.; Wattal, P.K.

    2015-01-01

    Uranium-plutonium separation is an essential step in the PUREX process employed in spent nuclear fuel reprocessing. This partitioning in the PUREX process is achieved by selective reduction of Pu(IV) to Pu(III) using uranous nitrate as reductant and hydrazine as stabilizer. Currently in our Indian reprocessing plants, the requirement of uranous nitrate is met by electrolytic reduction of uranyl nitrate. This process, however, suffers from a major drawback of incomplete reduction with a maximum conversion of ~ 60%. Catalytic reduction of U(VI) to U(IV) is being considered as one of the promising alternatives to the electro-reduction process due to fast kinetics and near total conversion. Various catalysts involving noble metals like platinum (Adams catalyst, Pt/Al 2 O 3 , Pt/SiO 2 etc.) have been reported for the reduction. Sustained activity and stability of the catalyst under harsh reaction conditions are still the issues that need to be resolved. We present here the results on zirconia supported noble metal catalyst that is developed in BARC for reduction of uranyl nitrate to uranous nitrate. Supported noble metal catalysts with varying metal loadings (0.5 - 2 wt%) were prepared via support precipitation and noble metal impregnation. The green catalysts were reduced either by chemical reduction using hydrazine hydrate or by heating in hydrogen flow or combination of both the steps. These catalysts were characterized by various techniques such as, XRD, SEM, TEM, N 2 adsorption and H 2 chemisorption. Performance of these catalysts was evaluated for U(VI) to U(IV) reduction with uranyl nitrate feed using hydrazine as reductant. The results with the most active catalyst are named as 'BARC-CAT', which was developed in our lab. (author)

  19. Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    No-Kuk Park; Dong Cheul Han; Gi Bo Han; Si Ok Ryu; Tae Jin Lee; Ki Jun Yoon [Yeungnam University, Gyeongbuk (Republic of Korea). National Research Laboratory, School of Chemical Engineering and Technology

    2007-09-15

    Claus reaction (2H{sub 2}S + SO{sub 2} {leftrightarrow} 3/nS{sub n} + 2H{sub 2}O) was used to clean the gasified coal gas and the reactivity of several metal oxide-based catalysts on Claus reaction was investigated at various operating conditions. In order to convert H{sub 2}S contained in the gasified coal gas to elemental sulfur during Claus reaction, the catalysts having the high activity under the highly reducing condition with the moisture should be developed. CeO{sub 2}, ZrO{sub 2}, and Ce{sub 1-x}Zr{sub x}O{sub 2} catalysts were prepared for Claus reaction and their reactivity changes due to the existence of the reducing gases and H{sub 2}O in the fuel gas was investigated in this study. The Ce-based catalysts shows that their activity was deteriorated by the reduction of the catalyst due to the reducing gases at higher than 220{sup o}C. Meanwhile, the effect of the reducing gases on the catalytic activity was not considerable at low temperature. The activities of all three catalysts were degraded on the condition that the moisture existed in the test gas. Specifically, the Ce-based catalysts were remarkably deactivated by their sulfation. The Ce-Zr-based catalyst had a high catalytic activity when the reducing gases and the moisture co-existed in the simulated fuel gas. The deactivation of the Ce-Zr-based catalyst was not observed in this study. The lattice oxygen of the Ce-based catalyst was used for the oxidation of H{sub 2}S and the lattice oxygen vacancy on the catalyst was contributed to the reduction of SO{sub 2}. ZrO{sub 2} added to the Ce-Zr-based catalyst improved the redox properties of the catalyst in Claus reaction by increasing the mobility of the lattice oxygen of CeO{sub 2}. 21 refs., 14 figs.

  20. Development of a polymer catalyst for HANARO detritiation

    International Nuclear Information System (INIS)

    Chung, H.; Kang, H.S.; Paek, S.W.; Yoo, J.H.; Shon, S.H.; Kim, K.R.; Lee, S.H.; Ahn, D.H.; Lee, H.S.

    1998-01-01

    The use of heavy water as a reflector in HANARO results in the continuous exposure of deuterium oxide to neutron flux. Substantial quantities of tritium are generated by neutron activation of deuterium in the reflector. Airborne emissions and staff internal radiation doses could be caused by tritiated heavy water escaping from the system. A detritiation facility is thought to be effective in reducing the overall radiological impact. The detritiation process may consist of a catalytic exchange in the front-end and a cryogenic deuterium distillation section. In this paper, the catalyst manufacturing and its performance evaluation technology was presented. The waterproof polymer catalyst has a specific surface area larger than 400m 2 /g. It showed a high reaction rate in the hydrogen isotope exchange reaction. (author)

  1. Technology development for iron F-T catalysts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, R.R.; Gala, H.B.

    1994-08-01

    The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

  2. Development of Coke-tolerant Transition Metal Catalysts for Dry Reforming of Methane

    KAUST Repository

    Al-Sabban, Bedour E.

    2016-11-07

    Dry reforming of methane (DRM) is an attractive and promising process for the conversion of methane and carbon dioxide which are the most abundant carbon sources into valuable syngas. The produced syngas, which is a mixture of hydrogen and carbon monoxide, can be used as intermediates in the manufacture of numerous chemicals. To achieve high conversion, DRM reaction is operated at high temperatures (700-900 °C) that can cause major drawbacks of catalyst deactivation by carbon deposition, metal sintering or metal oxidation. Therefore, the primary goal is to develop a metal based catalyst for DRM that can completely suppress carbon formation by designing the catalyst composition. The strategy of this work was to synthesize Ni-based catalysts all of which prepared by homogeneous deposition precipitation method (HDP) to produce nanoparticles with narrow size distribution. In addition, control the reactivity of the metal by finely tuning the bimetallic composition and the reaction conditions in terms of reaction temperature and pressure. The highly endothermic dry reforming of methane proceeds via CH4 decomposition to leave surface carbon species, followed by removal of C with CO2-derived species to give CO. Tuning the reactivity of the active metal towards these reactions during DRM allows in principle the catalyst surface to remain active and clean without carbon deposition for a long-term. The initial attempt was to improve the resistance of Ni catalyst towards carbon deposition, therefore, a series of 5 wt.% bimetallic Ni9Pt1 were supported on various metal oxides (Al2O3, CeO2, and ZrO2). The addition of small amount of noble metal improved the stability of the catalyst compared to their monometallic Ni and Pt catalysts, but still high amount of carbon (> 0.1 wt.%) was formed after 24 h of the reaction. The obtained results showed that the catalytic performance, particle size and amount of deposited carbon depends on the nature of support. Among the tested

  3. Development of high performance catalyst for off-gas treatment system in BWR

    International Nuclear Information System (INIS)

    Kawasaki, Toru; Kawabe, Kenichi; Maeda, Kiyomitsu; Matsubara, Hirofumi; Aizawa, Motohiro; Iizuka, Hidehiro; Kumagai, Naoki

    2011-01-01

    A high performance catalyst for off-gas treatment system in boiling water reactor (BWR) has been developed. The hydrogen concentration in the outlets of off-gas recombiners increased at several BWR plants in Japan. These phenomena were caused by deactivation of catalysts for the recombiners, and we assumed two types of deactivation mechanisms. The first cause was an increase of the amount of boehmite in the catalyst support due to alternation of the manufacturing process. The other cause was catalysts being poisoned by cyclic siloxanes that were introduced from the silicone sealant used in the upstream of the off-gas recombiners. The catalysts were manufactured by Pt adhering on alumina support. The conventional catalyst (CAT-A) used the aqueous solution of the chloroplatinic acid for adhesion of Pt. A dechlorination process by autoclave was applied to prevent the equipment at the downstream of the recombiners from stress corrosion cracking, but this process caused the support material to transform into boehmite. The boehmite-rich catalysts were deactivated more easily by organic silicon than gamma alumina-rich catalysts. Therefore, the CAT-A was replaced at many Japanese BWR plants by the improved catalyst (CAT-B), and their support was transformed into more stable gamma alumina by heating at 500degC. However, the siloxanes keep being detected in the off-gas though the source of siloxane had been removed and there still remain possibilities to deactivate the catalysts. Therefore, we have been developing high performance catalyst (CAT-C) that has higher activity and durability against poisoning. We investigated the properties of CAT-C by performance tests and instrumental analyses. The dependency of thermal output of nuclear reactor, and durability against siloxane poisoning were investigated. We found that CAT-C showed higher performance and better properties than CAT-B did. Moreover, we have been developing a modeling method to evaluate the hydrogen recombination

  4. Development of New Diesel Oxidation and NH3 Slip Catalysts

    DEFF Research Database (Denmark)

    Hansen, Thomas Klint

    Diesel engines used in the transport sector and for other heavy machinery form pollutants during the combustion process. Emission of these pollutants into the atmosphere has harmful consequences on human health and the environment. In order to mitigate these harmful effects, regulations have been...... imposed by environmental protection agencies on the most significant pollutants, including CO, hydrocarbons, NOx, and particulate matter. To reduce emissions to the levels specified by the recent Euro VI regulations, it is necessary to apply catalytic exhaust gas aftertreat-ment systems. A modern diesel...... exhaust aftertreatment system commonly consists of a Pt-based diesel oxidation catalyst (DOC) to oxidize CO and unburnt hydrocarbons to CO2 and H2O, and oxidize NO to NO2. This is followed by the diesel particulate filter (DPF), which entraps particulate matter from the exhaust gas. A solution of urea...

  5. Development of catalyst for diesel engine; Diesel engine yo shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, H; Furutani, T; Nagami, T [Toyota Motor Corp., Aichi (Japan); Aono, N; Goshima, H; Kasahara, K [Cataler Industrial Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The new concept catalyst for diesel engine has been developed. When the exhaust temperature is low, SOF and HC are temporarily adsorbed by the adsorbent within the catalyst and are oxidized as the temperature rise. The process of this development have manifested as follows. (1) The coating material is important factor to govern the oxidation activity. (2) SOF is reduced by the coating material in low temperature less than 200degC. (3) The coating material, which has low SO2 adsorbing rate suppress the sulfate formation at high temperature. 2 refs., 11 figs., 1 tab.

  6. Carbon monoxide tolerant anodes for proton exchange membrane (PEM) fuel cells. 1. Catalyst development approach

    Energy Technology Data Exchange (ETDEWEB)

    Holleck, G L; Pasquariello, D M; Clauson, S L

    1998-07-01

    PEM fuel cells are highly attractive for distributed power and cogeneration systems. They are efficient and function virtually without noise or pollution. To be competitive PEM fuel cells must operate on fuel mixtures obtained by reforming of widely available natural gas or liquid hydrocarbons. Reformed fuel gas mixtures invariably contain CO, a strong poison for Pt. Therefore CO tolerant anode catalysts are essential for wide spread PEMFC introduction. It is the objective to develop effective CO tolerant fuel cell catalysts based on multi-component platinum-transition metal alloys. Towards this goal the authors have developed a novel approach for the synthesis and performance evaluation of multifunctional ternary alloy fuel cell catalysts. The alloys are prepared as well-defined thin films on standard TFE-bonded carbon substrates via a dc magnetron sputtering technique. The anodes are laminated to Nafion membranes and the electrochemical performance is measured in a representative fuel cell configuration with H{sub 2} and H{sub 2}/CO gas mixtures. The multi-target sputtering technique permits one to reproducibly synthesize true alloy films of controlled composition. The deposit morphology and electrode structure are determined by the standardized TFE bonded carbon substrate. The thin catalyst layer is concentrated at the electrode ionomer interface where it can be fully utilized in a representative fuel cell configuration. Thus, a true comparative fuel cell catalyst evaluation is possible. The effectiveness of this approach will be demonstrated with Pt, Pt-Ru and Pt-Ru-X catalyzed anodes.

  7. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  8. Strategies for catalyst development: possibilities of the ``rational approach`` illustrated with partial oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.; Schedel-Niedrig, T.; Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany). Abt. Oberflaechenphysik

    1998-12-31

    The paper discusses two petrochemical selective oxidation reactions namely the practised formation of styrene (STY) and the desired oxidative functionalisation of propane. The present knowledge about the mode of operation of oxide catalysts is critically considered. The dehydrogenation of ethylbenzene (EB) should be described by an oxidehydration with water acting as oxidant. The potential role of the coke formed during catalytic reaction as co-catalyst will be discussed. Selective oxidation is connected with the participation of lattice oxygen mechanism which transforms unselective gas phase oxygen into selective oxygen. The atomistic description of this process is still quite unclear as well as the electron structural properties of the activated oxygen atom. The Role of solid state acidity as compared to the role of lattice oxygen is much less well investigated modern multiphase-multielement oxide (MMO) catalysts. The rationale is that the significant efforts made to improve current MMO systems by chemical modifications can be very much more fruitful when in a first step the mode of action of a catalyst is clarified on the basis of suitable experiments. Such time-consuming experiments at the beginning of a campaign for catalyst improvement pay back their investment in later stages of the project when strategies of chemical development can be derived on grounds of understanding. (orig.)

  9. Recent Development of Catalysts for Removal of Volatile Organic Compounds in Flue Gas by Combustion: A Review

    Directory of Open Access Journals (Sweden)

    Marco Tomatis

    2016-01-01

    Full Text Available Volatile organic compounds (VOCs emitted from anthropogenic sources pose direct and indirect hazards to both atmospheric environment and human health due to their contribution to the formation of photochemical smog and potential toxicity including carcinogenicity. Therefore, to abate VOCs emission, the catalytic oxidation process has been extensively studied in laboratories and widely applied in various industries. This report is mainly focused on the benzene, toluene, ethylbenzene, and xylene (BTEX with additional discussion about chlorinated VOCs. This review covers the recent developments in catalytic combustion of VOCs over noble metal catalysts, nonnoble metal catalysts, perovskite catalysts, spinel catalysts, and dual functional adsorbent-catalysts. In addition, the effects of supports, coke formation, and water effects have also been discussed. To develop efficient and cost-effective catalysts for VOCs removal, further research in catalytic oxidation might need to be carried out to strengthen the understanding of catalytic mechanisms involved.

  10. Visible-Light-Responsive Catalyst Development for Volatile Organic Carbon Remediation Project

    Science.gov (United States)

    Zeitlin, Nancy; Hintze, Paul E.; Coutts, Janelle

    2015-01-01

    Photocatalysis is a process in which light energy is used to 'activate' oxidation/reduction reactions. Unmodified titanium dioxide (TiO2), a common photocatalyst, requires high-energy UV light for activation due to its large band gap (3.2 eV). Modification of TiO2 can reduce this band gap, leading to visible-light-responsive (VLR) photocatalysts. These catalysts can utilize solar and/or visible wavelength LED lamps as an activation source, replacing mercury-containing UV lamps, to create a "greener," more energy-efficient means for air and water revitalization. Recently, KSC developed several VLR catalysts that, on preliminary evaluation, possessed high catalytic activity within the visible spectrum; these samples out-performed existing commercial VLR catalysts.

  11. Development of Vanadium Phosphaate Catalysts for Methanol Production by Selective Oxidation of Methane.

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R.L.

    1997-10-01

    This DOE sponsored study of methane partial oxidation was initiated at Amax Research and Development in Golden, CO in October of 1993. Shortly thereafter the management of Amax closed this R&D facility and the PI moved to the Colorado School of Mines. The project was begun again after contract transfer via a novation agreement. Experimental work began with testing of vandyl pyrophosphate (VPO), a well known alkane selective oxidation catalyst. It was found that VPO was not a selective catalyst for methane conversion yielding primarily CO. However, promotion of VPO with Fe, Cr, and other first row transition metals led to measurable yields for formaldehyde, as noted in the summary table. Catalyst characterization studies indicated that the role of promoters was to stabilize some of the vanadium in the V{sup 5+} oxidation state rather than the V{sup 4+} state formally expected for (VO){sub 2}P{sub 2}O{sub 7}.

  12. Development of nuclear methods for determining fluid-dynamic parameters in fluid catalyst cracking reactors

    International Nuclear Information System (INIS)

    Santos, V.A. dos; Dantas, C.C.

    1986-01-01

    Flow parameters of circulating fluidized bed in a simulated Fluid Catalyst Cracking reactor were determined by means of nuclear methods. The parameters were: residence time, density, inventory, circulation rate and radial distribution, for the catalyst; residence time for the gaseous phase. The nuclear methods where the gamma attenuation and the radiotracer. Two tracer techniques were developed, one for tagging of the catalyst by the 59 Fe as intrinsic tracer and another for tagging of the gaseous phase by the CH 3 82 Br as tracer. A detailed description of each measuring technique for all the investigated parameters is included. To carry out the determination for some of parameters a combination of the two methods was also applied. The results and the nuclear data are given in a table. (Author) [pt

  13. Development of super thin foil metal supported catalyst; Chousuhaku metal tantai shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sanji, F; Takada, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to improve warm-up performance, high heat resistance and long life durability of catalysts, the reduction of the metal support heat capacity has been focused. The effects of both reducing foil thickness and lowering cell density on low heat capacity have been investigated. As a result of engine bench and vehicle test, it was apparent that the reduction of foil thickness has greater effects. Newly developed 30 {mu} m foil thickness metal supported catalyst has quicker warm-up performance, and its structural durability up to 950degC is confirmed. 3 refs., 11 figs., 1 tab.

  14. Development of Highly Nano-Dispersed NiO/GDC Catalysts from Ion Exchange Resin Templates

    Directory of Open Access Journals (Sweden)

    Angel Caravaca

    2017-11-01

    Full Text Available Novel NiO/GDC (Gadolinium-doped Ceria cermet catalysts were developed by the Weak Acid Resin (WAR method using an ion exchange resin template. In addition, the specific surface area of these tunable materials was enhanced by NiO partial dissolution in aqueous acid solution. The whole procedure highly improved the micro-structural properties of these materials compared to previous studies. Catalysts with high metal loadings (≥10%, small Ni nanoparticles (<10 nm, and high specific surface areas (>70 m2/g were achieved. These properties are promising for catalytic applications such as methane steam reforming for H2 production.

  15. Request for Information from entities interested in commercializing Laboratory-developed homogeneous catalyst technology

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Miranda Huang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-25

    Many industrial catalysts used for homogeneous hydrogenation and dehydrogenation of unsaturated substrates are derived from metal complexes that include (air-sensitive) ligands that are often expensive and difficult to synthesize. In particular, catalysts used for many hydrogenations are based on phosphorus containing ligands (in particular PNP pincer systems). These ligands are often difficult to make, are costly, are constrained to having two carbon atoms in the ligand backbone and are susceptible to oxidation at phosphorus, making their use somewhat complicated. Los Alamos researchers have recently developed a new and novel set of ligands that are based on a NNS (ENENES) skeleton (i.e. no phosphorus donors, just nitrogen and sulfur).

  16. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  17. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  18. Hydrocracking for oriented conversion of heavy oils. Recent trends for catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Bertoncini, F.; Bonduelle, A.; Simon, L.J. [IFP Energies nouvelles, Lyon Establishment, Solaize (France). Catalysis and separation Division; Raybaud, P.; Dulot, H. [IFP Energies nouvelles, Lyon Establishment, Solaize (France). Process Desing Modeling Division

    2011-07-01

    As a result of the global economic crisis since the end of 2008, HCK operators have been looking to increase the profitability of the unit by processing heavier feed streams, including sourer VGO. These feeds present the drawbacks of increased H{sub 2} consumption, lower products yields and quality, and reduction in cycle lengths. Along with optimised process parameters, catalysts manufacturers are also investigating novel formulations to deal with challenging feeds. This lecture briefly summarizes the market trends (fuel demand, refinery's product specification) and the driving forces for HCK catalyst development in order to face these new challenges. Finally, this lecture highlights the innovating trends for HCK catalyst's development. Overview of various ideas developed recently in our research laboratory about (i) rational approaches for the atomic scale design of active phases (morphology, preparation, inhibitor effects), (ii) new preparations of transition metal sulphides for maximising the hydrogenating function (precursors, activation,.), (iii) rational approaches of HCK acidic supports for maximizing the selectivity and (iv) better understanding of HCK reactions. These improvements will be discussed in term of improvement of activity and selectivity of HCK catalyst to cope with future market needs. (orig.)

  19. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  20. Development of improved iron Fischer-Tropsch catalysts. Final technical report: Project 6464

    Energy Technology Data Exchange (ETDEWEB)

    Bukur, D.B.; Ledakowicz, S.; Koranne, M. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering] [and others

    1994-02-28

    Despite the current worldwide oil glut, the United States will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer Tropsch (FT) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Texas A&M University (TAMU) with sponsorship from the US Department of Energy, Center for Energy and Mineral Resources at TAMU, Texas Higher Education Coordinating Board, and Air Products and Chemicals, Inc., has been working on development of improved iron FT catalysts and characterization of hydrodynamic parameters in two- and three-phase bubble columns with FT derived waxes. Our previous studies have provided an improved understanding of the role of promoters (Cu and K), binders (silica) and pretreatment procedures on catalyst activity, selectivity and longevity (deactivation). The objective of the present contract was to develop improved catalysts with enhanced slurry phase activity and higher selectivity to liquid fuels and wax. This was accomplished through systematic studies of the effects of pretreatment procedures and variations in catalyst composition (promoters and binders). The major accomplishments and results in each of these two main areas of research are summarized here.

  1. Development of sustainable Palladium-based catalysts for removal of persistent contaminants from drinking water

    Science.gov (United States)

    Shuai, Danmeng

    Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric

  2. Development of a wetproofed catalyst recombiner for removal of airborne tritium

    International Nuclear Information System (INIS)

    Chuang, K.T.; Quaiattini, R.J.; Thatcher, D.R.P.; Puissant, L.J.

    1985-01-01

    For cleanup of airborne tritium at tritium handling facilities, it is generally agreed that the most reliable method is to convert the tritium in a recombiner into water vapor followed by adsorption of the vapor in a molecular sieve drier. Decontamination factors of 10 3 to 10 6 have been reported. Wetproofed catalysts developed at Chalk River Nuclear Laboratories have been shown to maintain their activities when exposed to liquid water or air at 100% relative humidity. When a wetproofed catalyst recombiner is used, operation can be carried out at room temperatures thus greatly simplifying the system. Two catalysts, Pt/carbon and Pt/silica, were prepared for this study. The activity of Pt/carbon was measured with hydrogen and found to be comparable to the published results for conventional Pt/alumina catalysts at similar conditions. Experiments were carried out for the following range of operating conditions: flows from 0.3 to 3.0 m/s, pressure from 100 to 500 kPa. Tritium was added to the air stream at 1-5 MBq.m -3 (30-140 μCi.m -3 ). No significant isotope and/or pressure effects were observed. To date lifetime data of greater than four months have been obtained

  3. The development of isomerization catalysts for production of high-octane products

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, A.M. Garrido; Melo, D.M.A.; Araujo, A.S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Souza, M.J.B.; Silva, A.O.S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Engenharia Quimica

    2004-07-01

    In current petroleum industry, paraffins larger than C5 are used for catalytic reform. The catalytic reform is one of the most important processes for petroleum refine in reason of all reactions they drive to production of high-octane products. Reformate has high-octane products, but they contain 60% aromatics. Isomerization of C5- C7 can improve the octane number. The octane number of n-heptane is zero and increases after isomerization. For tri branched C7, the octane number reaches 113, which is higher than that of benzene. So, isomerization of C5-C7 is suggested to be a reasonable way to replace or partly replace the catalytic reforming process. It can decrease aromatics content with enhancement of octane number. Liquid acid catalysts were widely used in chemical industry in past decades. However, they face strong environmental challenges. The heavy corrosion of the reactor system is one of the main problems. Thus, solid acid catalysts are investigated for the isomerization reactions. The aim of this work is to develop a catalysts for the production of reformate products. Isomerization is catalyzed by metal-acid bifunctional catalysts. The metal components aid in hydrogenation, while the support, such as, zirconium, clays or zeolites, is the acidic component. (author)

  4. Oxidative coupling of methane. Still a challenge for catalyst development and reaction engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schomaecker, R.; Arnd, S.; Beck, B. [Technical Univ. of Berlin (Germany). Dept. of Chemistry] [and others

    2013-11-01

    The oxidative coupling of methane to ethylene offers great industrial potential, because it would broaden the feedstock basis for chemical industry. Because methane is the most stable hydrocarbon, its activation requires high temperatures and it is a great scientific challenge to overcome the apparent yield limit of about 25%. This barrier has never been exceeded since the beginning of OCM research more than 20 years ago. Results and Discussion: This challenge is one of the key projects of the Cluster of Excellence UNICAT and requires joined efforts and contributions from many disciplines, because this reaction shows a combined surface/gas phase reaction mechanism which results in very unusual and complex dependencies on the reaction conditions. Although dozens of materials are known to catalyze the reaction, the selection of a catalyst suitable for an industrial process is difficult, due to severe stability problems of many materials. Li/MgO was chosen by the UNICAT-team as model catalyst, because of the extended literature about it. But it shows uncontrollable deactivation, no matter what precursor and method were used for its preparation. Nevertheless, it is a suitable catalyst for fundamental studies, due to its formal chemical simplicity. A key result of the joined research activities was the disproval of the Lunsford mechanism and the elucidation of the real function of lithium as a surface modifier creating a rough and defect-rich surface. For the development of an OCM process another catalyst, Na{sub 2}WO{sub 4}/Mn/SiO{sub 2}, was chosen from the rich literature on OCM. Although less is known about its structure and the reaction mechanism at this catalyst, its stability was the most important reason to select it for further engineering studies. Kinetic isotope measurements and studies in a TAP reactor demonstrate the similarity of the reaction mechanisms at both catalysts, despite the completely different materials. The selectivity is largely controlled by

  5. Security: A Catalyst for Sustainable Development | Solomon | African ...

    African Journals Online (AJOL)

    This paper explores intricate nexus between security, and the challenges of promoting sustainable development in a volatile environment. It conceptualises security, sustainable development, and volatile environment. The paper argues that the volatile environment in the country has led to security breaches and slowed ...

  6. Tax incentive as a catalyst for economic development in Nigeria ...

    African Journals Online (AJOL)

    An empirical study using a well structured questionnaire survey, the work assesses the relationship that exists between tax incentive and economic development in Nigeria. This study was undertaken primarily to evaluate the effectiveness of tax incentive in developing the Nigerian economy. One hundred and twenty ...

  7. Mechanisms and modeling development of water transport/phase change in catalyst layers of portion exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yexiang [Dept. of Thermal Engineering, Tsinghua University Beijing (China)], email: Yexiang.Xiao@energy.lth.se; Yuan, Jinliang; Sunden, Bengt [Dept. of Energy Sciences, Faculty of Engineering, Lund University (Sweden)], email: Jinliang.yuan@energy.lth.se, email: bengt.sunden@energy.lth.se

    2011-07-01

    Research on proton exchange membrane fuel cells has shown that incorporation of nanosized catalysts can effectively increase active areas and catalyst activity and make a great contribution to development in performance and catalyst utilization. Multiphase transport processes are as significant and complicated as water generation/transfer processes which occur in nano-structured catalyst layers. A review project has been launched aimed at gaining a comprehensive understanding of the mechanisms of water generation or transport phenomena. It covers catalytic reactions and water-phase change within the catalyst layers. The review proceeds in three main stages: Firstly, it characterizes and reconstructs the nano/micro-structured pores and solid-phases; secondly, it emphasises the importance of sensitive and consistent analysis of various water-phase change and transport schemes; and thirdly, it recommends development of microscopic models for multi-phase transport processes in the pores and the solid phases.

  8. Christian Church: A Catalyst for Economic Development in Nigeria

    African Journals Online (AJOL)

    Toshiba

    The issue of economic development is of national concern. The. Nigerian economy ..... The Christian church has provided both moral and economic impetus ... posits that the church needs to concentrate on the business of creating economic ...

  9. Future Regulations – A Catalyst for Technology Development

    Science.gov (United States)

    Summary of current mobile source regulations and EPA mobile source regulatory authority with an emphasis on how EPA regulations are a driver for the development and introduction of automotive technology.

  10. Cross-departmental collaboration in strategic sourcing as a catalyst for supplier development: The case of Eskom

    Directory of Open Access Journals (Sweden)

    Mzoxolo E. Mbiko

    2017-11-01

    Conclusion: For strategic sourcing to be a catalyst of supplier development, it is essential that an integrated strategic sourcing operating model incorporating the objectives of both CS and SD&L be developed.

  11. Recent advances in the development of alkyne metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Matthias Tamm

    2011-01-01

    Full Text Available The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review.

  12. Creating a Catalyst for the Development of Knowledge Work Competence

    NARCIS (Netherlands)

    Dr. Daan Andriessen; Linda Johnson

    2006-01-01

    With the rise of the knowledge-based economy, Higher Education Institutions not only have to produce (under)graduates that are skilled in their profession but who also are competent as knowledge workers. This study focused on the enabling competences of the knowledge worker. Our aim was to develop a

  13. Development of Low Temperature Catalysts for an Integrated Ammonia PEM Fuel Cell

    OpenAIRE

    Hill, Alfred

    2014-01-01

    It is proposed that an integrated ammonia-PEM fuel cell could unlock the potential of ammonia to act as a high capacity chemical hydrogen storage vector and enable renewable energy to be delivered eectively to road transport applications. Catalysts are developed for low temperature ammonia decomposition with activity from 450 K (ruthenium and cesium on graphitised carbon nanotubes). Results strongly suggest that the cesium is present on the surface and close proximity to ruthenium nanoparticl...

  14. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2018-03-01

    Full Text Available Magnetic nanoparticles are a highly worthy reactant for the correlation of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nano catalytic systems by the immobilization of homogeneous catalysts onto magnetic nanoparticles. Catalytic fields include the use of mainly cobalt, nickel, copper, and zinc ferrites, as well as their mixed-metal combinations with Cr, Cd, Mn and sometimes some lanthanides. The ferrite nanomaterials are obtained mainly by co-precipitation and hydrothermal methods, sometimes by the sonochemical technique, micro emulsion and flame spray synthesis route. Catalytic processes with application of ferrite nanoparticles include degradation (in particular photocatalytic, reactions of dehydrogenation, oxidation, alkylation, C–C coupling, among other processes. Ferrite nano catalysts can be easily recovered from reaction systems and reused up to several runs almost without loss of catalytic activity. Finally, we draw conclusions and present a futurity outlook for the further development of new catalytic systems which are immobilized onto magnetic nanoparticles.

  15. Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction

    Science.gov (United States)

    Kang, SungYeon; Kim, HuiJung; Chung, Yong-Ho

    2018-04-01

    Developments of high efficient materials for electrocatalyst are significant topics of numerous researches since a few decades. Recent global interests related with energy conversion and storage lead to the expansion of efforts to find cost-effective catalysts that can substitute conventional catalytic materials. Especially, in the field of fuel cell, novel materials for oxygen reduction reaction (ORR) have been noticed to overcome disadvantages of conventional platinum-based catalysts. Various approaching methods have been attempted to achieve low cost and high electrochemical activity comparable with Pt-based catalysts, including reducing Pt consumption by the formation of hybrid materials, Pt-based alloys, and not-Pt metal or carbon based materials. To enhance catalytic performance and stability, numerous methods such as structural modifications and complex formations with other functional materials are proposed, and they are basically based on well-defined and well-ordered catalytic active sites by exquisite control at nanoscale. In this review, we highlight the development of nano-structured catalytic materials for ORR based on recent findings, and discuss about an outlook for the direction of future researches.

  16. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  17. Development of Hydrogen Separation Module with Structured Catalyst for Use in Membrane Reformer

    International Nuclear Information System (INIS)

    Isamu Yasuda; Tatsuya Tsuneki; Yoshinori Shirasaki; Toru Shimamori; Hidekazu Shigaki; Hiroyuki Tanaka

    2006-01-01

    A new type of hydrogen separation module for use in a membrane reformer was proposed and developed. The new module, what we call MOC (Membrane On Catalyst), was designed to have a membrane of palladium-based alloy prepared on the surface of the tubular structured catalyst that has catalytic activity for steam reforming reaction, thermal expansion matching with the membrane material, proper porosity, mechanical strength and thermal conductivity. The best composition of the structured catalyst was identified in the composites of metallic Ni and YSZ (Yttria-Stabilized Zirconia). A hydrogen separation module was manufactured by electroless plating of Pd with thickness of 7 to 15 microns on the surface of porous sintered tube of Ni-YSZ with an approximate size of 9 mm in diameter and 100 mm in length. The hydrogen permeability measurements have shown hydrogen flux of 25 to 35 cc/min at 550 to 600 C, which is higher than the permeability of the conventional modules using rolled Pd film. (authors)

  18. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jernigan, Glenn Geoffrey [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  19. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shareef

    2017-10-01

    Full Text Available This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller, SEM (Scanning Electron Microscopy, TGA (Thermal Gravimetric Analysis, XRD (X-ray diffraction spectroscopy, and FTIR (Fourier Transform Infrared Spectroscopy. Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reserved Received: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 357-363 (doi:10.9767/bcrec.12.3.762.357-363

  20. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  1. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R.L. [Colorado School of Mines, Golden, CO (United States)

    1995-12-31

    The United States has vast natural gas reserves which could contribute significantly to our energy security if economical technologies for conversion to liquid fuels and chemicals were developed. Many of these reserves are small scale or in remote locations and of little value unless they can be transported to consumers. Transportation is economically performed via pipeline, but this route is usually unavailable in remote locations. Another option is to convert the methane in the gas to liquid hydrocarbons, such as methanol, which can easily and economically be transported by truck. Therefore, the conversion of methane to liquid hydrocarbons has the potential to decrease our dependence upon oil imports by opening new markets for natural gas and increasing its use in the transportation and chemical sectors of the economy. In this project, we are attempting to develop, and explore new catalysts capable of direct oxidation of methane to methanol. The specific objectives of this work are discussed.

  2. Development of catalysts for chemical reactions driven by concentrated solar energy

    International Nuclear Information System (INIS)

    Berman, A.; Levitan, R.; Levy, M.

    1992-03-01

    The aim of this phase of the work is to study commercially available low priced catalysts, for the methanation and reforming processes in the closed-loop solar chemical heat pipe. This report summarized some long term tests of commercially available methanation catalysts and the measurement of their active surface before and after reaction. It was found that the 1%Ru on alumina stars catalysts (prepared by Englehard Company according to our request) is very active and stable at 350-750 C. The catalyst 'A' produced in Russia, is less active, however, did not lose the mechanical strength. The 50% Ni/SiO 2 catalyst is active as the 'A' catalyst but loses its activity after treatment at temperature > 600 C, its geometrical size shrinked. (authors). 25 refs., 25 figs., 36 tabs

  3. Combinatorial Development of Water Splitting Catalysts Based on the Oxygen Evolving Complex of Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Woodbury, Neal [Arizona State University

    2010-03-31

    The use of methods to create large arrays of potential catalysts for the reaction H2O ½ O2 + 2H+ on the anode of an electrolysis system were investigated. This reaction is half of the overall reaction involved in the splitting of water into hydrogen and oxygen gas. This method consisted of starting with an array of electrodes and developing patterned electrochemical approaches for creating a different, defined peptide at each position in the array. Methods were also developed for measuring the rate of reaction at each point in the array. In this way, the goal was to create and then tests many thousands of possible catalysts simultaneously. This type of approach should lead to an ability to optimize catalytic activity systematically, by iteratively designing and testing new libraries of catalysts. Optimization is important to decrease energy losses (over-potentials) associated with the water splitting reaction and thus for the generation of hydrogen. Most of the efforts in this grant period were focused on developing the chemistry and analytical methods required to create pattern peptide formation either using a photolithography approach or an electrochemical approach for dictating the positions of peptide bond formation. This involved testing a large number of different reactions and conditions. We have been able to find conditions that have allowed us to pattern peptide bond formation on both glass slides using photolithographic methods and on electrode arrays made by the company Combimatrix. Part of this effort involved generating novel approaches for performing mass spectroscopy directly from the patterned arrays. We have also been able to demonstrate the ability to measure current at each electrode due to electrolysis of water. This was performed with customized instrumentation created in collaboration with Combimatrix. In addition, several different molecular designs for peptides that bound metals (primarily Mn) were developed and synthesized and metal

  4. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Nová k, Zoltá n; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  5. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Science.gov (United States)

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  6. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  7. Development of an azanoradamantane-type nitroxyl radical catalyst for class-selective oxidation of alcohols.

    Science.gov (United States)

    Doi, Ryusuke; Shibuya, Masatoshi; Murayama, Tsukasa; Yamamoto, Yoshihiko; Iwabuchi, Yoshiharu

    2015-01-02

    The development of 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO; 1,5-dimethyl-Nor-AZADO, 2) as an efficient catalyst for the selective oxidation of primary alcohols in the presence of secondary alcohols is described. The compact and rigid structure of the azanoradamantane nucleus confers potent catalytic ability to DMN-AZADO (2). A variety of hindered primary alcohols such as neopentyl primary alcohols were efficiently oxidized by DMN-AZADO (2) to the corresponding aldehydes, whereas secondary alcohols remained intact. DMN-AZADO (2) also has high catalytic efficiency for one-pot oxidation from primary alcohols to the corresponding carboxylic acids in the presence of secondary alcohols and for oxidative lactonization from diols.

  8. Pedagogical Catalysts of Civic Competence: The Development of a Critical Epistemological Model for Community-Based Learning

    Science.gov (United States)

    Stokamer, Stephanie

    2013-01-01

    Democratic problem-solving necessitates an active and informed citizenry, but existing research on service-learning has shed little light on the relationship between pedagogical practices and civic competence outcomes. This study developed and tested a model to represent that relationship and identified pedagogical catalysts of civic competence…

  9. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  10. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2013-01-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm 2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm -2 , showing power densities up to 550 mW.cm -2 and power of 2.2 kW net per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application

  11. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  12. New catalyst developed at Argonne National Laboratory could help diesels meet NOx deadlines

    CERN Multimedia

    2003-01-01

    "A new catalyst could help auto makers meet the U.S. Environmental Protection Agency's deadline to eliminate 95 percent of nitrogen-oxide from diesel engine exhausts by 2007, while saving energy" (1 page).

  13. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    Science.gov (United States)

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  14. Brief Communication: CATALYST - a multi-regional stakeholder Think Tank for fostering capacity development in disaster risk reduction and climate change adaptation

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, C.T.H.M.; Hare, M.P.; Bers, van C.; Keur, van der P.

    2014-01-01

    This brief communication presents the work and objectives of the CATALYST project on "Capacity Development for Hazard Risk Reduction and Adaptation" funded by the European Commission (October 2011–September 2013). CATALYST set up a multi-regional think tank covering four regions (Central America and

  15. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    Science.gov (United States)

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  16. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  17. Waste into Fuel—Catalyst and Process Development for MSW Valorisation

    Directory of Open Access Journals (Sweden)

    Izabela S. Pieta

    2018-03-01

    Full Text Available The present review paper highlights recent progress in the processing of potential municipal solid waste (MSW derived fuels. These wastes come from the sieved fraction (∅ < 40 mm, which, after sorting, can differ in biodegradable fraction content ranging from 5–60%. The fuels obtained from these wastes possess volumetric energy densities in the range of 15.6–26.8 MJL−1 and are composed mainly of methanol, ethanol, butanol, and carboxylic acids. Although these waste streams are a cheap and abundant source (and decrease the fraction going to landfills, syngas produced from MSW contains various impurities such as organic compounds, nitrogen oxides, sulfur, and chlorine components. These limit its use for advanced electricity generation especially for heat and power generation units based on high temperature fuel cells such as solid oxide fuel cells (SOFC or molten carbonate fuel cells (MCFC. In this paper, we review recent research developments in the continuous MSW processing for syngas production specifically concentrating on dry reforming and the catalytic sorbent effects on effluent and process efficiency. A particular emphasis is placed on waste derived biofuels, which are currently a primary candidate for a sustainable biofuel of tomorrow, catalysts/catalytic sorbents with decreased amounts of noble metals, their long term activity, and poison resistance, and novel nano-sorbent materials. In this review, future prospects for waste to fuels or chemicals and the needed research to further process technologies are discussed.

  18. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  19. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing.

    Science.gov (United States)

    Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J

    2011-11-01

    This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics

  20. Effect of cation nature on development of Zn-, Cd- and Ca-zeolite catalysts during ethylbenzene transformations

    International Nuclear Information System (INIS)

    Tuan, K.Kh.; Berentsvejg, V.V.; Rudenko, A.P.; Tkhuan, N.T.; Topchieva, K.V.

    1984-01-01

    It is shown that in the course of ethylbenzene transformations at 650 deg, 0.25 7nY, 0.25CdY, 0.82CdY catalysts on the basis of Y-type zeolite are developed for the process of styrene formation accompanied by the accumulation of packing products (PP) and increase in styrene selectivity from 0 to 100%. It is shown that the nature of Me 2+ ion in zeolite is of great importance in the manifestation of the effect of catalyst development in the course of ethylbenzene transformations. Ions capable of PP formation and accumulation composing polymercatalyst complexes [PPxMe 2+ ] are active in this process

  1. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts

    DEFF Research Database (Denmark)

    Topsøe, Henrik; Hinnemann, Berit; Nørskov, Jens Kehlet

    2005-01-01

    structures may be present as single sulfide sheets. Thus, stacking is not an essential feature of Type II catalysts. The article illustrates how the new scientific insight has aided the introduction of the new high activity BRIM (TM) type catalysts for FCC pre-treatment and production of ultra low sulfur...... exhibiting a metallic character are observed to be involved in adsorption, hydrogenation and C-S bond cleavage. The insight is seen to provide a new framework for understanding the DDS and HYD pathways and the role of steric hindrance and poisons. Density functional theory (DFT) calculations have illustrated...... how support interactions may influence the activity of sulfided catalysts. The brim sites and the tendency to form vacancies are seen to differ in types I and II Co-Mo-S. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) studies show that the high activity Type II...

  2. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst.

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.

  3. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827

  4. Green catalysis by nanoparticulate catalysts developed for flow processing? case study of glucose hydrogenation

    NARCIS (Netherlands)

    Gericke, D.; Ott-Reinhardt, D.; Matveeva, V.; Sulman, E.M.; Aho, A.; Murzin, D.Y.; Roggan, S.; Danilova, L.; Hessel, V.; Löb, P.; Kralisch, D.

    2015-01-01

    Heterogeneous catalysis, flow chemistry, continuous processing, green solvents, catalyst immobilization and recycling are some of the most relevant, emerging key technologies to achieve green synthesis. However, a quantification of potential effects on a case to case level is required to provide a

  5. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  6. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    International Nuclear Information System (INIS)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. (focus issue review)

  7. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. PMID:27877800

  8. Development of the advanced nuclear materials -A study on the polymer catalyst process technology-

    International Nuclear Information System (INIS)

    Kook, Il Hyun; Jung, Heung Suk; Lee, Han Soo; An, Doh Heui; Kang, Heui Suk; Baek, Seung Woo; Lee, Sung Hoh; Sung, Kee Woong; Kim, Kwang Lak; Kim, Jong Hoh; Koo, Je Hyoo; Park, Tae Keun; Kim, Sang Hwan; Yoo, Ryong; Song, Myung Jae; Son, Soon Hwan; Choi, Jung Kil; Lee, Jae Choon; Jung, Moon Kyoo

    1995-07-01

    Heavy water is used as moderator and coolant in pressurized heavy water power plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water make-up for these plants would be 22 Mg/a from the year 2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m3 HD/m3 Bed.sec. and heavy water separation processes using the catalysts were optimized. 66 figs, 62 tabs, 19 refs. (Author)

  9. Development of the advanced nuclear materials -A study on the polymer catalyst process technology-

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Il Hyun; Jung, Heung Suk; Lee, Han Soo; An, Doh Heui; Kang, Heui Suk; Baek, Seung Woo; Lee, Sung Hoh; Sung, Kee Woong; Kim, Kwang Lak; Kim, Jong Hoh; Koo, Je Hyoo; Park, Tae Keun; Kim, Sang Hwan; Yoo, Ryong; Song, Myung Jae; Son, Soon Hwan; Choi, Jung Kil; Lee, Jae Choon; Jung, Moon Kyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Heavy water is used as moderator and coolant in pressurized heavy water power plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water make-up for these plants would be 22 Mg/a from the year 2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m3 HD/m3 Bed.sec. and heavy water separation processes using the catalysts were optimized. 66 figs, 62 tabs, 19 refs. (Author).

  10. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    OpenAIRE

    Ya-Li Du; Xu Wu; Qiang Cheng; Yan-Li Huang; Wei Huang

    2017-01-01

    As a favorably clean fuel, syngas (synthesis gas) production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs) precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature r...

  11. Report on surveys in fiscal 1999 on research and development of the environment harmonizing catalyst technology; 1999 nendo kankyo chowagata shokubai gijutsu no kenkyu kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper reports the surveys in fiscal 1999 on research and development of the environment harmonizing catalyst technology. The discussion subjects taken up included suppression of discharge of carbon dioxide, catalysts used when manufacturing hydrogen and technology thereof, and environment purifying catalysts to decompose harmful substances, and technology thereof. The roles of catalysts and their technologies are expected in reducing the reforming temperatures, achieving energy saving, and reducing decomposition energy. Furthermore, the catalysts are expected of high activity, long life and low cost. Three themes were selected from the emergency and importance points of view. The themes are, in the consumer field, research and development of efficiency improvement in membrane reactors for reforming low-grade hydrocarbons to structure a technology to manufacture hydrogen for small-size portable fuel cells; and in the industrial field, development of hydrogen and carbon product manufacturing technologies with which CO2 generation is suppressed by means of the catalytic decomposition process. In practice, for such discharged harmful substances as dioxins, PCB and volatile organic compounds (VOC), treating them is the urgent environmental problem, and therefore, the fundamental research was taken up for practical application of the second-generation catalysts of the ultra-violet light and visible light responding type. (NEDO)

  12. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  13. Development of an Innovative XRD-DRIFTS Prototype Allowing Operando Characterizations during Fischer-Tropsch Synthesis over Cobalt-Based Catalysts under Representative Conditions

    Directory of Open Access Journals (Sweden)

    Scalbert Julien

    2015-03-01

    Full Text Available An original system combining both X-Ray Diffraction and diffuse reflectance infrared Fourier transform spectroscopy was developed with the aim to characterize Fischer-Tropsch catalysts in relevant reaction conditions. The catalytic properties of a model PtCo/silica catalyst tested with this prototype have shown to be in the same range of those obtained in similar conditions with classical fixed-bed reactors. No bulk cobalt oxidation nor sintering were observed on operando XRD patterns. The formation of linear carbonyls and adsorbed hydrocarbons species at the surface of the catalyst was observed on operando DRIFT spectra. The surface of the catalyst was also suspected to be covered with carbon species inducing unfavorable changes in selectivity.

  14. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  15. Development of a demonstration reactor using thoria as a Fischer-Tropsch catalyst

    International Nuclear Information System (INIS)

    Colmenares, C.A.; McLean, W.

    1981-12-01

    We have demonstrated experimentally that thorium oxide may be used as a catalyst with CO + H 2 mixtures to produce either methanol or a mixture of hydrocarbons from C 1 to C 5 (saturated and unsaturated). The immunity of ThO 2 to poisoning by sulfur compounds makes its use very attractive for industrial applications. We are proposing to optimize the experimental conditions of the catalytic process using a one-inch reactor and to scope and define the experimental conditions for a pilot plant demonstration

  16. Catalyst development and systems analysis of methanol partial oxidation for the fuel processor - fuel cell integration

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Mizsey, P; Hottinger, P; Truong, T B; Roth, F von; Schucan, Th H [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Methanol partial oxidation (pox) to produce hydrogen for mobile fuel cell applications has proved initially more successful than hydrocarbon pox. Recent results of catalyst screening and kinetic studies with methanol show that hydrogen production rates have reached 7000 litres/hour/(litre reactor volume) for the dry pox route and 12,000 litres/hour/(litre reactor volume) for wet pox. These rates are equivalent to 21 and 35 kW{sub th}/(litre reactor volume) respectively. The reaction engineering problems remain to be solved for dry pox due to the significant exotherm of the reaction (hot spots of 100-200{sup o}C), but wet pox is essentially isothermal in operation. Analyses of the integrated fuel processor - fuel cell systems show that two routes are available to satisfy the sensitivity of the fuel cell catalysts to carbon monoxide, i.e. a preferential oxidation reactor or a membrane separator. Targets for individual system components are evaluated for the base and best case systems for both routes to reach the combined 40% efficiency required for the integrated fuel processor - fuel cell system. (author) 2 figs., 1 tab., 3 refs.

  17. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045 (United States)

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  18. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    International Nuclear Information System (INIS)

    Nguyen, Luan; Tao, Franklin

    2016-01-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  19. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    Directory of Open Access Journals (Sweden)

    Ya-Li Du

    2017-02-01

    Full Text Available As a favorably clean fuel, syngas (synthesis gas production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature reporting syngas production with Ni-based catalysts from HTLc precursors via methane or ethanol reforming. The discussion was initiated with catalyst preparation (including conventional and novel means, followed by subsequent thermal treatment processes, then composition design and the addition of promoters in these catalysts. As Ni-based catalysts have thermodynamic potential to deactivate because of carbon deposition or metal sintering, measures for dealing with these problems were finally summarized. To obtain optimal catalytic performances and resultantly better syngas production, based on analyzing the achievements of the references, some perspectives were finally proposed.

  20. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Harold, Michael [Univ. of Houston, TX (United States); Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States); Balakotaiah, Vemuri [Univ. of Houston, TX (United States); Luss, Dan [Univ. of Houston, TX (United States); Choi, Jae-Soon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dearth, Mark [Ford Motor Company, Dearborn, MI (United States); McCabe, Bob [Ford Motor Company, Dearborn, MI (United States); Theis, Joe [Ford Motor Company, Dearborn, MI (United States)

    2013-09-30

    alternative reductants such as propylene, representing the hydrocarbon component of diesel exhaust. First-principle models of the LNT and SCR converters, which utilized the mechanistic-based kinetics and realistic treatments of the flow and transport processes, in combination with bench-scale reactor experiments helped to identify the best designs for combining the NSR and SCR catalysts over a range of operating conditions encountered in practice. This included catalysts having multiple zones and layers and additives with the focus on determining the minimal precious metal component needed to meet emission abatement targets over a wide range of operating conditions. The findings from this study provide diesel vehicle and catalyst companies valuable information to develop more cost effective diesel emissions catalysts which helps to expand the use of more fuel efficient diesel power. The fundamental modeling and experimental tools and findings from this project can be applied to catalyst technologies used in the energy and chemical industries. Finally, the project also led to training of several doctoral students who were placed in research jobs in industry and academia.

  1. Developing Selective Oxidation Catalysts of Light Alkanes:. from Fundamental Understanding to Rational Design

    Science.gov (United States)

    Fu, Gang; Yi, Xiaodong; Huang, Chuanjing; Xu, Xin; Weng, Weizheng; Xia, Wensheng; Wan, Hui-Lin

    Selective oxidation of light alkanes remains to be a great challenge for the wider use of alkanes as feedstocks. To achieve high activity and at the same time high selectivity, some key issues have to be addressed: (1) the stability of the desired products with respect to the reactants; (2) the roles of the active components in the catalysts, the structure and the functionality of the active centers; (3) the reducibility of the metal cations, the Lewis acid sites and their synergic effects with the basic sites of the lattice oxygen anions; (4) spatial isolation of the active centers; and (5) the mechanisms for the formation and transformation of the intermediates and their kinetic controls. In this contribution, we took selective oxidation of propane to acrolein as our target reaction, and reviewed mainly our own work, trying to provide some thinking and answers to these five questions.

  2. Poly(neutral red) as a NAD{sup +} reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery

    Energy Technology Data Exchange (ETDEWEB)

    Arechederra, Marguerite N.; Addo, Paul K. [Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103 (United States); Minteer, Shelley D., E-mail: minteers@slu.ed [Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103 (United States)

    2011-01-01

    In this paper, we have established that poly(neutral red), PNR, functions as an electrocatalyst for the reduction and oxidation of NAD{sup +}/NADH in a rechargeable biobattery environment. The reversibility of this catalyst was possible only with the addition of Zn{sup 2+} for complexation to the redox polymer. The zinc ion complexation with the polymer facilitates electron and proton transfer to/from the substrate and the NAD{sup +}/NADH coenzyme without forming covalent bonds between the nicotinamide and the substrate surface. This research presents use of this reversible catalyst in a rechargeable biobattery. The rechargeable battery includes a Prussian blue cathode and a bioanode including NAD{sup +}-dependent alcohol dehydrogenase and zinc complexed PNR. This bioanode was coupled to the cathode with Nafion 212 acting as the ion exchange membrane separator between the two compartments. The biobattery has an open circuit potential of 0.545({+-}0.009) V when first assembled and 0.053({+-}0.005) V when fully discharged. However, when fully charged, the biobattery has an open circuit potential of 1.263({+-}0.051) V, a maximum power density of 16.3({+-}4.03) {mu}W cm{sup -3} and a maximum current density of 221({+-}13.2) {mu}A cm{sup -3}. The efficiency and stability of the biobattery were studied by cycling continuously at a discharging rate of 1 C and the results obtained showed reasonable stability over 50 cycles.

  3. Dosimetric properties of new formulation of PRESAGE® with tin organometal catalyst: Development of sensitivity and stability to megavoltage energy.

    Science.gov (United States)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Banaee, Nooshin; Alidokht, Eisa

    2018-01-01

    Tin-base catalyst is one of the widely used organometallic catalysts in polyurethane technology. The purpose of this study was to evaluate the effect of tin organometallic catalyst in the radiation response and radiological properties of a new formula of PRESAGE ® . In the study, two types of PRESAGE were fabricated. A very little amount of dibutyltindillaurate (DBTDL) (0.07% weight) was used as a catalyst in the fabrication of new PRESAGE (i.e., PRESAGE with catalyst), which components were: 93.93% weight polyurethane, 5% weight tetrachloride, and 1% weight leucomalachite green (LMG). For PRESAGE without catalyst, 94% weight polyurethane, 4% weight tetrachloride, and 2% weight LMG were used. Radiochromic response and postirradiation stability of PRESAGEs were determined. Also, radiological characteristics of PRESAGEs, such as mass density, electron density, mass attenuation coefficient, and mass stopping power in different photon energies were assessed and compared with water. The absorption peak of new PRESAGE compared to PRESAGE without catalyst was observed without change. Sensitivity of new PRESAGE was higher than PRESAGE without catalyst and its stability after the first 1 h was relatively constant. Also, Mass attenuation coefficient of new PRESAGE in energy ranges catalyst in very low concentration can be used in fabrication of radiochromic polymer gel to achieve high sensitivity and stability as well as good radiological properties in the megavoltage photon beam.

  4. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  5. Development of Catalysts for the Hydrogenation of the Aromatic Ring in Gasolines

    Directory of Open Access Journals (Sweden)

    L. R. Sassykova

    2018-01-01

    Full Text Available Liquid-phase hydrogenation of benzene ring in gasoline fractions of Atyrau Oil Refinery LLP (Kazakhstan was studied. Mono- and bimetallic catalysts on the basis of platinum metals on various carriers were synthesized. It was succeeded to reduce aromatic compounds content (totally for “hydrogenate” fraction to 0.6–4.64 % (in initial gasoline – 11.2 %, and also to completely exclude the content of benzene from final sample or to reduce its quantity to 0.06 % (in the initial sample – 2.54 %. For the fraction “stable catalysate” benzene content was reduced to 0.15 wt. % (in the initial sample –5.17 % wt., benzene conversion – 97 %. For the fraction “hydrogenate” aromatic compounds content was decreased from 13.70 to 2.26 wt.%. For the “stable catalysate” an amount of aromatic compounds was reduced from 51.5 to 22.96 wt.%. At catalytic hydrodearomatization of the gasoline fractions octane number was not reduced.

  6. Concentration of ions Co(II), Ni(II) at the Tokem-250 carboxylic cation exchange for catalysts development

    Science.gov (United States)

    Zharkova, Valentina; Bobkova, Ludmila; Brichkov, Anton; Kozik, Vladimir

    2017-11-01

    Sorption and catalytic properties of the cation exchanger are investigated. It was found that the Tokem-250 has a wide operating range of pH. The value of the effective ionization constant of the functional groups of the cation exchanger (pKa) is 6.59. The Tokem-250 cation exchanger exhibits selectivity to Ni2+ ions to Co2+ (D˜103). This is probably due to the stability of ion-exchange complexes detected by the method of diffuse reflectance electron spectroscopy (ESDD). According to these data, for Co2+ ions, in contrast to Ni2+, tetragonal distortion of octahedral coordination is characteristic, which has a positive effect on the stability of complexes with Co2+. To obtain spherical catalysts on the basis of Tokem-250, cobalt-containing samples of cation exchanger were used. The developed spherical materials have catalytic activity in the reactions of deep and partial oxidation of n-heptane.

  7. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  8. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  9. High-Throughput Screening as a Supplemental Tool for the Development of Advanced Emission Control Catalysts: Methodological Approaches and Data Processing

    Directory of Open Access Journals (Sweden)

    Andreas Sundermann

    2016-01-01

    Full Text Available A high-throughput (HT screening platform developed at hte with the application focus on automotive catalysis is described. hte HT units are configured for performing steady-state testing, as well as dynamic tests with fast feed switches, such as lean/rich excursions for the evaluation of NOx storage capacity and efficiency of lean NOx traps (LNT, ammonia storage capacity for selective catalytic reduction (SCR, evaluation of oxygen storage capacity (OSC, as well as lambda sweep tests for screening of three-way catalysts (TWC. Even though catalysts are screened on a rather small scale (~100 mg powder, experience showed that dosing rather complex gas mixtures in concentrations close to that found in real exhaust for the given application is mandatory to generate relevant data. The objective of this work is to give additional insight into HT technology. In the industrial research laboratory, HT screening has matured to become a reliable approach for rapid screening of both reaction parameter spaces, as well as material properties relevant for exhaust gas catalyst development. Due to the speed of optimized screening involving 48 parallel reactors, automated handling of primary data is an imported requirement. Software for data reduction, like estimation of light-off temperature, needs to be robust and handle results for diverse sample libraries in an unattended fashion. In combination with the statistical design of experiment and multivariate data analysis, HT testing has become a valuable enhancement to automotive catalyst development.

  10. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 12, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, A.H.

    1996-03-21

    The investigation of the effect of certain promoters (Fe, Pd, and Ru) on the deactivation characteristics of Co catalysts during F-T synthesis was continued during this reporting period. All catalysts were tested first at 220{degrees}C, then at higher temperatures from 240 to 280{degrees}C, while monitoring their deactivation. The choice of these promoters was based on their intrinsic ability to enhance the hydrogenation reactions while slowing down the Boudouard reaction under the conditions used in F-T synthesis. Olefin hydrogenation and CO dissociation reactions were used individually to investigate further the nature of the deactivation process of these catalyst during F-T synthesis. Hydrogenation of isobutene (IB) was carried out in the presence of CO between 120 and 180{degrees}C and atmospheric pressure. CO dissociation activities of the catalysts were measured using a pulse technique at 2.5 atm and at temperatures between 180 and 280{degrees}C with intermittent H{sub 2} bracketing at 350{degrees}C. Promotion with high loadings of Fe or Pd resulted in catalysts with relatively lower activity and higher methane selectivity. The deactivation process and rate for catalysts containing Pd or Fe were similar to those of the non-promoted or Ru-promoted alumina-supported Co catalysts tested previously. The only exception was Co.068 with 1% Pd which had adequate activity and selectivity as well as lower deactivation rate at the various temperatures tested.

  11. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  12. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  13. Dosimetric properties of new formulation of PRESAGE® with tin organometal catalyst: Development of sensitivity and stability to megavoltage energy

    Directory of Open Access Journals (Sweden)

    Davood Khezerloo

    2018-01-01

    Conclusions: Tin organometallic catalyst in very low concentration can be used in fabrication of radiochromic polymer gel to achieve high sensitivity and stability as well as good radiological properties in the megavoltage photon beam.

  14. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  15. Development and Comparison of the Substrate Scope of Pd-Catalysts for the Aerobic Oxidation of Alcohols

    Science.gov (United States)

    Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.

    2009-01-01

    Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968

  16. Follow the Yellow Brick Road: Websites as Catalysts for National Development

    Directory of Open Access Journals (Sweden)

    Pearson Broome

    2015-06-01

    Full Text Available Small-island developing states (SIDS enhance their competitiveness by advertising development initiatives that promote and encourage direct foreign inward investment opportunities in major markets. Failure to make use of information communication technologies (ICTs can undermine national development initiatives with transformative potential. Based on this logic, some Caribbean governments have followed international best practices of businesses and have moved towards the creation of websites and the establishment of portals or gateway sites on the World Wide Web to announce their presence.  One of the practical implications of such initiatives is based on the assumption that once websites are built, persons will come. Although for many, the development of a website appears to be an innocuous endeavour this mistaken perception in most cases has led to several sites being designed and commissioned as technical projects mostly employing techno-centric approaches. These policies often ignore the accompanying important socio-technical institutional considerations, such as the importance of timely and accurate information to potential business clients or prospective developers, language capabilities, and a range of standards, guidelines, rules and legislative changes. The central thesis of this conceptual paper is that if member states of the region properly conceptualise and design websites and portals they can be used to achieve strategic national and international development objectives of egovernance in its broadest meaning. The arguments are intended to stimulate thought among policy makers and the private sector alike in the Caribbean with a view to bringing about change that will promote sustainable development.

  17. Development of structural characterisation tools for catalysts; Developpement d'outils de caracterisation structurale de catalyseurs

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, J.

    1999-10-01

    Because of the diversity of their compositions and structures, and the treatments needed to render them active, heterogeneous catalysts present a major challenge in structural characterisation. Electron microscopy provides textural and structural information at the scale of the individual particle. We have been able to analyse epitaxial relationships between nanometer size particles and their support and to determine which crystal faces are most exposed. Chemical analysis can be carried out on individual particles in a bimetallic catalyst. Limitations of this technique are shown for characterisation of catalysts at the atomic scale or in reactive conditions. Here, global analysis methods based on X-ray absorption and diffraction provide more information. W-ray absorption fine structure analysis has been applied to sub-nanometer size particles in platinum based catalysts to explore interactions between the metal and reactive gases such as hydrocarbons and H{sub 2}S. Differences observed between mono-metallic and bimetallic solids lead to structural models to explain differences in catalyst reactivity. X-ray diffraction, combined with electron microscopy, shows the presence of different forms of extra-framework aluminium is steamed zeolites. Quantification of some these forms has been possible and a study of their reactivity towards different de-aluminating agents has been achieved. Work in progress shows the advantages of a combination of X-ray diffraction and absorption to study decomposition of hydrotalcites to form mixed oxides as well as possibilities in infra-red spectroscopy of adsorbed CO to determine surface sites in Fischer Tropsch catalysts. Use of in-situ analysis cells enables a detailed description of catalyst structure in reactive atmospheres and opens the possibility of correlating structure with catalytic activity. (author)

  18. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  19. Research training for teaching staff as a catalyst for professional and institutional development : a case study

    NARCIS (Netherlands)

    Crispin, Darla; Stolte, Tine; Bisschop Boele, Evert

    2015-01-01

    When an institution wishes to develop a Masters programme that combines relevance to the profession with preparation for possible 3rd cycle study, there are many things to consider: curriculum design and content, facilities, stakeholder opinion, assessment, likely student intake, etc. But at least

  20. Catalysts of Women's Talent Development in STEM: A Systematic Review

    Science.gov (United States)

    Mullet, Dianna R.; Rinn, Anne N.; Kettler, Todd

    2017-01-01

    Numbers of women in the physical sciences, mathematics, and engineering are growing, yet women are still far outnumbered by men at upper levels of those fields. The purpose of the study is to review the literature on academic women who develop exceptional talent in science, technology, engineering, and mathematics (STEM). Data sources included 18…

  1. Effective Communication as Catalyst of Developmental Local Government and Rural Development amid Threats of Overpopulation

    Directory of Open Access Journals (Sweden)

    Naledzani Rasila

    2012-09-01

    Full Text Available South Africa’s population has risen from 40.5 million in 1996  to 44.8 million in 2001 and to 51.77 in 2011. Africans are in majority making 79.2% of the whole population. About 22.3% of blacks have received no schooling with the unemployment rate of the blacks at 28.1%. Most of these unemployed and uneducated blacks are found in rural areas. This compelled government to introduce Developmental Local government. Developmental Local government refers to the layer of public service that has the capacity to deliver and account to the people in a responsive, accountable, and efficient manner. It is also described as a sphere that encourages community participation in matters of governance and developmental initiatives. However, Developmental Local government is hindered by continuous growth of population which is likely to lead to overpopulation. Overpopulation is characterised by lack of basic resources such as water and  food. Developmental Local government on the other hand is expected to deliver on these needs. Lack of fulfilment of goals of Developmental Local government is attributed to lack of effective communication between local government and community members. Although population growth is not attributed only to high birth rate, governments around the continent have introduced measures to encourage healthy reproductive life. However, this needs community members that are self-motivated to be active participants in government initiatives. This is not achievable as there is an indication of lack of effective communication. This paper’s main focus is the provision of effective communication model at local sphere which will see community members working together with government on matters of their own development including initiatives  to preserve limited resources amid the challenges of overpopulation. This paper is based on the qualitative study on effectiveness of communication in Mutale local municipality on the enhancement of

  2. Tourism as a Catalyst for Local Economic Development in the Transkei Wild Coast, South Africa

    Directory of Open Access Journals (Sweden)

    Ntonzima Lulamile

    2014-01-01

    Full Text Available The democratic dispensation of the post-1994 government in South Africa promised a better life for all. However, shortly after the establishment of new polices by government and governance institutions, the promise faced conflicting socio/politico/economic challenges. One of the key issues to be considered when deciding on the implementation of overdue promises is the question of equitable distribution of resources and how to manage this process. Despite the above explanations few benefits arose from the application of these arguments. It appears that because of challenges at the highest levels of the tourism industry, real benefits have not yet reached people who are in need. This state of affairs provided an opportunity to propose workable recommendations to improve the situation, with the intention of positively influencing the various impacts that such development would have on the relevant communities.

  3. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  4. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    International Nuclear Information System (INIS)

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Paek, S. W.; Kim, J. G.; Chung, H. S.

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale

  5. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Kim, J. G.; Chung, H. S

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale.

  6. Development and characterisation of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production.

    Science.gov (United States)

    Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin

    2012-12-01

    Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  8. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.

    Science.gov (United States)

    Mondal, Bhaskar; Neese, Frank; Ye, Shengfa

    2015-08-03

    The development of efficient catalysts with base metals for CO2 hydrogenation has always been a major thrust of interest. A series of experimental and theoretical work has revealed that the catalytic cycle typically involves two key steps, namely, base-promoted heterolytic H2 splitting and hydride transfer to CO2, either of which can be the rate-determining step (RDS) of the entire reaction. To explore the determining factor for the nature of RDS, we present herein a comparative mechanistic investigation on CO2 hydrogenation mediated by [M(H)(η(2)-H2)(PP3(Ph))](n+) (M = Fe(II), Ru(II), and Co(III); PP3(Ph) = tris(2-(diphenylphosphino)phenyl)phosphine) type complexes. In order to construct reliable free energy profiles, we used highly correlated wave function based ab initio methods of the coupled cluster type alongside the standard density functional theory. Our calculations demonstrate that the hydricity of the metal-hydride intermediate generated by H2 splitting dictates the nature of the RDS for the Fe(II) and Co(III) systems, while the RDS for the Ru(II) catalyst appears to be ambiguous. CO2 hydrogenation catalyzed by the Fe(II) complex that possesses moderate hydricity traverses an H2-splitting RDS, whereas the RDS for the high-hydricity Co(III) species is found to be the hydride transfer. Thus, our findings suggest that hydricity can be used as a practical guide in future catalyst design. Enhancing the electron-accepting ability of low-hydricity catalysts is likely to improve their catalytic performance, while increasing the electron-donating ability of high-hydricity complexes may speed up CO2 conversion. Moreover, we also established the active roles of base NEt3 in directing the heterolytic H2 splitting and assisting product release through the formation of an acid-base complex.

  9. Synthetic catalysts that separate CO.sub.2 from the atmosphere and gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lightstone, Felice C; Wong, Sergio E; Lau, Edmond Y; Satcher, Jr., Joe H; Aines, Roger D

    2015-02-24

    The creation of a catalyst that can be used for a wide variety of applications including the steps of developing preliminary information regarding the catalyst, using the preliminary information to produce a template of the catalyst, and using the template of the catalyst to produce the catalyst.

  10. Homogeneous activation of molecular hydrogen: on the development of effective catalysts for isotopic exchange in protolytic media

    International Nuclear Information System (INIS)

    Sakharovskij, Yu.A.

    1987-01-01

    Comparison of different catalytic systems for hydrogen isotopic exchange with protolytic solvent based on activation enthalpy and entropy values is carried out. Particular attention is paid to the effect of ligand environment of complex forming metallic central ion and solvent composition on free activation energy and stability of catalytic system. A conclusion is drawn on impossibility of absolutely stable and high-temperature catalyst in an isolated system

  11. Development of transition metal oxide catalysts for treatment of off-gases released during pyrolysis of organic ion exchange resins

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-08-01

    The spent IX resin wastes arising from nuclear power plants have high radiation level due to fission product 137 Cesium and activation product 60 Cobalt. The pyrolysis and oxidative pyrolysis processes have potential to minimize final waste form volumes of these wastes. The major difficulty in deploying these processes for treatment of spent IX resins is release of off-gases containing large quantities of aromatic hydrocarbons, amines, sulphur dioxide, hydrogen sulphide, carbonyl sulphide etc. As an alternative to high temperature incineration of the pyrolysis off gases, feasibility of using catalytic combustion at moderate temperatures was investigated in the laboratory. Copper chromite, copper oxide-ceric oxide and vanadium pentaoxide catalysts supported on alumina were prepared and tested for oxidation of styrene monomer, toluene, ethyl benzene and trimethyl amine at 22500 hr -1 space velocity and temperature range of 300 to 500 degC. At temperatures over 475 degC, all three catatyst gave oxidation efficiency of over 97% for these compounds over concentration range of few tens of ppm to few thousands ppm. A composite catalyst bed of three catalysts comprising principally of copper chromite is proposed for treatment of IX resin pyrolysis off-gases. (author)

  12. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  13. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  14. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  15. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  16. Advances in the catalysts development in base of mixed oxides for control reactions of N2O

    International Nuclear Information System (INIS)

    Garcia, M.A.; Perez, R.; Gomez, A.; Diaz, G.

    2000-01-01

    The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were prepared by the precipitation and coprecipitation techniques. The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were characterized by several techniques for to determine texture (BET), crystallinity (XRD), chemical composition (SEM), FTIR and it was evaluated their total acidity by the reaction with 2-propanol. It was continued with the cobalt addition by Impregnation and coprecipitation and it was evaluated its catalytic activity in the N 2 O decomposition reaction. Also it was realized the N 2 O reduction with Co using these catalysts. (Author)

  17. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support and e...

  18. FY 1980 Report on results of Sunshine Project. Research and development of coal liquefaction techniques (Development of direct hydrogenation type liquefaction plant and researches on liquefaction reactions in the presence of iron-based catalyst); 1980 nendo sekitan ekika gijutsu no kenkyu kaihatsu, chokusetsu suiten ekika plant no kaihatsu seika hokokusho. Tetsukei shokubai ni yoru ekika hanno no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This program is aimed at development of iron-based catalyst suited for direct hydrogenation type coal liquefaction by elucidating the effects of the catalyst on the liquefaction reactions. The iron-based catalyst seems to act as the radical stabilizer rather than the reaction promoter, because the increased quantity of the catalyst and increased H{sub 2} pressure share the common pattern rather than the catalyst enhances the activity, which is associated with increased reaction temperature or residence time. This is more notably observed when the coal species is changed to brown coal. In other words, recombination of the decomposition products by polycondensation is accelerated in the presence of the catalyst in decomposition of brown coal from bituminous coal, with the result that the catalyst effects are more notably observed. Whether this results from difference in age between brown coal and bituminous coal or content of specific types of ashes should be elucidated, because this point is considered to deeply relate to eventual development of the liquefaction reaction system. The FY 1980 program includes the primary screening of different types of iron compounds and tests of some iron-metal-based catalysts. (NEDO)

  19. Fiscal 2000 achievement report. Environment-conscious industrial technology research and development project (Development of environmentally-friendly catalyst technology); 2000 nendo kankyo chowagata shokubai gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development and basic studies were conducted about novel catalysts which would help reduce impact on global environments. The efforts involved the development of (1) photocatalysts and (2) selective oxidation catalysts. In domain (1), a silicon semiconductor was manufactured for an integrated hydrogen generation catalytic membrane/silicon semiconductor/oxygen generation membrane system as a hybrid multilayer photocatalyst, and a fundamental one-layer type was fabricated. As for a system using a compound semiconductor CIGS (Cu(InGa)Se{sub 2})/CdS membrane, a CIGS membrane was completed, and CdS was deposited in layers to support platinum and it was found that water was decomposed under visible light irradiation although the bias voltage load was slight. In domain (2), the methanol and formaldehyde formation rates greatly increased when some MgO powder was installed in the reaction space in the vapor phase selective oxidation of methane in the presence of a catalyst which was a very small amount of nitrogen dioxide. (NEDO)

  20. Industrial technology research and development project for global environment in fiscal 1998. Report on achievements in research and development of technologies for environment friendly catalysts; 1998 nendo kankyo chowagata shokubai gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper describes the achievements in fiscal 1998 in developing environment friendly catalyst technologies. Development was proceeded in a water decomposing hydrogen production system of double tank system utilizing visible lights. The system connects combination of visible light responding type semiconductor powders with an oxidation and reduction mediator via a membrane (consisting of a hydrogen ion permeating membrane and an electric conductor). Discovery was made on two sets of semiconductor-mediator combinations (to produce hydrogen and oxygen) that meet the requirements. A composite oxide powder catalyst of nano structure was also realized. Verification was made on water decomposing hydrogen production by using multi-layered membranes composed of a hydrogen producing catalytic membrane, a semiconductor membrane, and an oxygen producing catalytic membrane. By using selective oxidation that uses trace amount of nitrogen dioxide as a gaseous phase catalyst, such good results were obtained as conversion rate of 10%, and selection rate of 27% in methanol and 23% in formaldehyde. Selective oxidation mechanisms in iron carried silica and oxidized tin were elucidated theoretically and experimentally. It was elucidated by calculating chemistry that effect of adding nitrogen dioxide lies in draw-out of hydrogen, NO is involved in draw-out of O from CH3OO, and NOx is involved in synthesizing formaldehyde from CH3O. (NEDO)

  1. Development of CuxFe/Al2O3 catalysts for the hydrogenation of carbon monoxide guided by magnetic methods, Moessbauer and infrared spectroscopy

    International Nuclear Information System (INIS)

    Boellaard, E.; Geus, J.W.; Bruggen, J.M. van; Kraan, A.M. van der

    1993-01-01

    A copper-iron catalyst for the hydrogenation of carbon monoxide has been prepared using a supported stoichiometric cyanide complex. Conversion of the cyanide precursor to a metallic catalyst appeared to be a precious process. Copper and iron in the bimetallic particles easily separate by thermal treatment and upon exposure to carbon monoxide, as revealed from Moessbauer and infrared spectroscopy. During Fischer-Tropsch reaction the catalyst exhibits a rapid decline of activity. Magnetisation measurements on spent catalysts indicate that the deactivation is caused by a fast conversion of metallic iron to initially unstable carbides which transform ultimately to more stable carbides. (orig.)

  2. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  3. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    of a more inclusive urban life, and development of environments of cultural diversity and learning The exhibition takes us to some of the fastest growing metropolises on four continents: New York, Copenhagen Tokyo, and Rio de Janeiro. The projects in the exhibition all have a powerful, social narrative...... meaningful for everyone. The exhibited works are designed by SANAA, Diller Scofidio + Renfro, James Corner Field Operation, JBMC Arquitetura e Urbanismo, Atelier Bow-Wow, Ateliers Jean Nouvel, COBE, Transform, BIG, Topotek1, Superflex, and by visual artist Jane Maria Petersen....

  4. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  5. Photocatalytic hydrogen production on SOLECTRO {sup registered} titanium dioxide layers. Development and characterization of an efficient catalyst; Photokatalytische Wasserstoffgewinnung an SOLECTRO {sup registered} -Titandioxidschichten. Entwicklung und Charakterisierung eines geeigneten Katalysators

    Energy Technology Data Exchange (ETDEWEB)

    Saborowski, Sarah

    2010-03-03

    A catalyst for photocatalytic hydrogen production from methanol and water was developed on the basis of SOLECTRO {sup registered} titanium dioxide layers. A test facility was constructed in which several modified catalysts could be tested for this reaction. Detailed characterization of the electronic and optical characteristics of these catalysts made it possible to gain deeper insight into the processes involved in the reaction. (orig.) [German] Auf Basis der SOLECTRO {sup registered} -TiO{sub 2} -Schichten wurde ein Katalysator fuer die photokatalytische Wasserstoffdarstellung aus Methanol und Wasser entwickelt. Der Aufbau einer geeigneten Versuchsanlage ermoeglichte es, verschieden modifizierte Katalysatoren fuer diese Reaktion zu testen. Durch die ausfuehrliche Charakterisierung insbesondere der elektronischen und optischen Eigenschaften dieser Katalysatoren konnten vertiefende Erkenntnisse zu den waehrend der Reaktion ablaufenden Prozessen gewonnen werden. (orig.)

  6. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  7. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  8. Environmentally benign catalysts for clean organic reactions

    CERN Document Server

    Patel, Anjali

    2013-01-01

    Heterogeneous catalysis attracts researchers and industry because it satisfies most of green chemistry's requirements. Emphasizing the development of third generation catalysts, this book surveys trends and opportunities in academic and industrial research.

  9. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  10. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  11. Towards the computational design of solid catalysts

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Rossmeisl, Jan

    2009-01-01

    Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably...... with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts...

  12. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  13. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  14. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  15. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  16. A new catalyst for heavy water production and its prospect

    International Nuclear Information System (INIS)

    Sato, Toshio; Ohkoshi, Sumio; Takahashi, Tomiki

    1978-01-01

    The heavy water production process utilizing isotope exchange reaction between liquid water and hydrogen is the most promising method. Study was made for developing highly active and long life catalyst practically applied for this process. As platinum is used as this catalyst, catalytic activities using varieties of Polapacs and Shodexes instead of active carbon as the carriers of platinum catalyst were investigated. It became clear that the catalytic activity using Pt/Shodex 104 (3 wt %) was 1000 times as high as the activity using Pt/active carbon (1 wt %). This method is considered to be reasonable enough economically. There are many problems which must be solved hereafter for its practical use, and the further studies are required regarding the following points; forming of catalyst, life of catalyst, mass production of catalyst, most appropriate counter flow reacting device of hydrophobic catalyst, pressure and temperature effects on reaction. (Kobatake, H.)

  17. FY 2000 report on the research cooperation project - Research cooperation in developmental support for oil producing countries. Production of catalyst and development of the evaluation technology in Kuwait; 2000 nendo san'yukoku kaihatsu shien kenkyu kyoryoku jigyo seika hokokusho. Kuuweto ni okeru shokubai seizo oyobi hyoka gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    For the purpose of strengthening the economic infrastructure of Kuwait and also strengthening the relation between Japan and Kuwait by bringing up the catalyst production industry in Kuwait as one of the key industries, the research cooperation was made with Kuwait Catalyst Co. (KCC). In this research cooperation project, the following were conducted: survey of the catalyst production environment in Kuwait, survey of the actual condition of oil factories in Kuwait and the Middle East, trial production of the catalyst to meet the needs of Kuwait, evaluation of the catalyst suitable for oil factories in Kuwait and the Middle East and evaluation of the application conditions, development of technology for production/evaluation/application of the catalyst to meet the needs of Kuwait, etc. As to the trial catalyst production at KCC, the trial products for heavy oil desulfurization and light oil desulfurization stood comparison with the catalysts produced in Japan. KCC started trial operation in fall 2000, and the commercial production is smoothly continuing. In September 2001, the catalyst for heavy oil desulfurizer of KNPC, user, was delivered. The delivery to other users was also planned to be made. (NEDO)

  18. Recombination Catalysts for Hypersonic Fuels

    Science.gov (United States)

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  19. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  20. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  1. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  2. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  3. Aid as a catalyst to development? : the Case of Ghana’s Political and Economic Transformation (1957-2013)

    NARCIS (Netherlands)

    Vondee-Awortwi (Joana)

    2017-01-01

    markdownabstractGhana’s economic and political past and present show that foreign aid has provided support for infrastructural development, budget financing, macroeconomic policy reforms, institutional restructuring and political reforms. Existing literature and pronouncements by leading aid

  4. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  5. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  6. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  7. Mechanistic studies aimed at the development of single site metal alkoxide catalysts for the production of polyoxygenates from renewable resources.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Malcolm H. [The Ohio State Univ., Columbus, OH (United States)

    2015-12-15

    The work proposed herein follows on directly from the existing 3 year grant and the request for funding is for 12 months to allow completion of this work and graduation of current students supported by DOE. The three primary projects are as follows. 1.) A comparative study of the reactivity of LMg(OR) (solvent), where L= a β-diiminate or pyrromethene ligand, in the ring-opening of cyclic esters. 2.) The homopolymerization of expoxides, particularly propylene oxide and styrene oxide, and their copolymerizations with carbon dioxide or organic anhydrides to yield polycarbonates or polyesters, respectively. 3.) The development of well-defined bismuth (III) complexes for ring-opening polymerizations that are tolerant of both air and water. In each of these topics special emphasis is placed on developing a detailed mechanistic understanding of the ring-opening event and how this is modified by the employment of specific metal and ligand combinations. This document also provides a report on findings of the past grant period that are not yet in the public domain/published and shows how the proposed work will bring the original project to conclusion.

  8. Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Su, Chia-Chi; Wang, Shu-Ling; Lu, Ming-Chun

    2012-01-01

    A recyclable and reusable Ru/Al 2 O 3 catalyst is prepared for hydrogen generation from the hydrolysis process of alkaline sodium borohydride (NaBH 4 ) solution. The hydrogen generation rate by the hydrolysis and methanolysis of alkaline NaBH 4 was explored as a function of NaOH concentration. Meantime, the byproducts derived from the spent alkaline NaBH 4 solution were characterized by X-ray diffraction (XRD), scanning electro microscope/energy dispersive spectrometer (SEM/EDS) and NMR (Nuclear Magnetic Resonance). The effect of NaOH concentration on the hydrogen generation from the hydrolysis of NaBH 4 significantly depends on the type of catalysts. With increasing NaOH concentration, the hydrogen generation rates decrease when using ruthenium (Ru) composite as a catalyst. The hydrogen generation rate of the methanolysis of NaBH 4 is significantly inhibited in the presence of NaOH as compared with the hydrolysis of NaBH 4 . The durability test of the Ru/Al 2 O 3 catalyst shows that the hydrogen generation rate decreases with recycling and reuse. The XRD and NMR analysis results show that the borate hydrate (NaBO 2 H 2 O) was derived from the hydrolysis of 20 wt% and 30 wt% NaBH 4 . -- Highlights: ► A recyclable Ru/Al 2 O 3 catalyst was synthesized for hydrogen generation. ► Ru/Al 2 O 3 significantly promotes the hydrogen generation rate from alkaline NaBH 4 solution. ► The prepared Ru/Al 2 O 3 catalyst can easily collect from the spent alkaline NaBH 4 solution.

  9. The innovation catalysts.

    Science.gov (United States)

    Martin, Roger L

    2011-06-01

    A few years ago the software development company Intuit realized that it needed a new approach to galvanizing customers. The company's Net Promoter Score was faltering, and customer recommendations of new products were especially disappointing. Intuit decided to hold a two-day, off-site meeting for the company's top 300 managers with a focus on the role of design in innovation. One of the days was dedicated to a program called Design for Delight. The centerpiece of the day was a PowerPoint presentation by Intuit founder Scott Cook, who realized midway through that he was no Steve Jobs: The managers listened dutifully, but there was little energy in the room. By contrast, a subsequent exercise in which the participants worked through a design challenge by creating prototypes, getting feedback, iterating, and refining, had them mesmerized. The eventual result was the creation of a team of nine design-thinking coaches--"innovation catalysts"--from across Intuit who were made available to help any work group create prototypes, run experiments, and learn from customers. The process includes a "painstorm" (to determine the customer's greatest pain point), a "soljam" (to generate and then winnow possible solutions), and a "code-jam" (to write code "good enough" to take to customers within two weeks). Design for Delight has enabled employees throughout Intuit to move from satisfying customers to delighting them.

  10. Development of new heterogeneous catalysts for the decomposition of methanol into hydrogen and carbon monoxide applying high throughput methods; Entwicklung neuer heterogener Katalysatoren zur Spaltung von Methanol in Wasserstoff und Kohlenmonoxid mittels Hochdurchsatz-Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Torsten

    2008-07-11

    The topic of this thesis has been the development of new heterogeneous catalysts for the decomposition of methanol into hydrogen and carbon monoxide. As an important constraint here, the content of noble metals of the catalysts should be as low as possible. High-throughput-methods were applied in some of the syntheses and experiments to accelerate the development, as, for example, the use of liquid based sol-gel syntheses and the examination of catalyst libraries by spatial resolution gas chromatography. This screening technique allowed to test up to 207 different substances during one single experiment. Then, different combinatorial strategies were applied. First, these methods led to a highly active and stable catalyst in the ternary system of Cu-Ni-Zn, which showed high conversion and selectivity comparable to an industrial reference catalyst. Its activity during an 18 hour long term run was constant in contrast to the reference. Second, an additional approach starting from a broader variety of elements led to a Ce- Ru- and to a Cr-Ru-catalyst. Both of them were highly active in short term experiments, but lost their outstanding performances during long term runs. (orig.) [German] Die vorliegende Arbeit befasste sich mit der Entwicklung neuer heterogener Katalysatoren fuer die Spaltung von Methanol zu Wasserstoff und Kohlenmonoxid, die einen moeglichst geringen Gehalt an Edelmetallen aufweisen sollten. Um diesen Prozess zu beschleunigen, wurden in einem Teil der Synthesen und Experimente Hochdurchsatzmethoden verwendet. Neben der Roboter gestuetzten Sol-Gel-Synthese umfasste dies die Untersuchung von Katalysatorbibliotheken mittels ortsaufgeloester Gaschromatographie, die es ermoeglichte, in einem Experiment bis zu 207 verschiedene Substanzen auf ihre katalytische Aktivitaet zu testen. Unter Anwendung verschiedener kombinatorischer Strategien wurde zunaechst ein sehr aktiver und stabiler Katalysator im ternaeren Cu-Ni-Zn-System entdeckt. Neben Umsaetzen und

  11. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  12. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    Directory of Open Access Journals (Sweden)

    Johanna K. Dombrovskis

    2014-12-01

    Full Text Available Transition metal ion-chelating ordered mesoporous carbon (TM-OMC materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate TM-OMC catalysts in the MEA. Here, an efficient method for MEA preparation using TM-OMC catalyst materials for PEMFC is developed including effects of catalyst/ionomer loading and catalyst/ionomer-mixing and application procedures. An optimized protocol for MEA preparation using TM-OMC catalysts is described.

  13. Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping (BNL Chemistry Dept)

    2010-12-15

    Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being developed at Brookhaven Lab may be used to speed us along our roads and highways as they play a major role in solving the world’s energy challenges. During the lecture, Liu will discuss how theorists and experimentalists at BNL are working together to formulate and test new catalysts that could be used in real-life applications, such as hydrogen-fuel cells that may one day power our cars and trucks.

  14. Fiscal 1998 development report on the high-accuracy quantitative analysis technique of catalyst surfaces by electron spectroscopy; 1998 nendo denshi bunkoho ni yoru shokubai hyomen koseido teiryo bunseki gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims at development of the high-accuracy quantitative analysis technique by electron spectroscopy for surface analysis of catalysts and semiconductors. Since conventional analysis technique using an energy-fixed X-ray excitation source is inadequate to obtain satisfactory surface sensitivity and quantitative accuracy for catalysts, for development of the titled technique, this project makes experiment using energy-variable synchrotron radiation to modify the parameter on motion of low-speed electrons in solids which is obtained by Monte Carlo calculation. For establishment of the high-accuracy quantitative analysis technique of surface compositions of materials such as catalyst of which performance is dominated by utmost surface, the project studies the attenuation length of electrons in solids by electron spectroscopy using soft X-rays from synchrotron radiation. In this fiscal year, the project established the equipment and technique for high-accuracy quantitative analysis of the thickness and electron attenuation length of silicon oxide films on silicon wafers by electron spectroscopy. (NEDO)

  15. Selective Oxidations using Nanostructured Heterogeneous Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen

    and because they produce H2O as the only by-product. Chapter 1 gives a short introduction to basic concepts in heterogeneous catalysis and green chemistry. Furthermore, the chapter gives an overview of the most important strategies to synthesise functional nanostructured materials and highlights how detailed......The aim of this thesis is to investigate and develop new efficient methods to oxidise alcohols and amines using heterogeneous catalysts and either O2 or H2O2 as oxidants. From an economic and environmental point of view, these oxidants are ideal, because they are cheap and readily available...... understanding of size, shape and structure can help in the development of new and more efficient heterogeneous catalysts. The chapter is not intended to give a complete survey, but rather to introduce some of the recent developments in the synthesis of nanostructured heterogeneous catalysts. Finally...

  16. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  17. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  18. Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-02-01

    Full Text Available Nanostructured vanadium-tin oxide (V(sub2)O(sub5)/SnO(sub2)) catalysts with V(sub2)O(sub5) loading in a range of 5–20 wt% have been synthesized. The V(sub2)O(sub5)/SnO(sub2) nanostructures exhibited effective catalytic performance...

  19. A further step toward H2 in automobile : development of an efficient bi-functional catalyst for single stage water gas shift

    NARCIS (Netherlands)

    Azzam, K.G.H.

    2008-01-01

    The suitability of polymer electrolyte fuel (PEM) cells for stationary and vehicular applications initiated research in all areas of fuel processor (i.e. reformer, water-gas-shift, preferential oxidation of CO (PROX)) catalysts for hydrogen generation. Water gas shift (WGS) reaction is an essential

  20. Development of a heterogeneous catalyst for lignocellulosic biomass conversion : glucose dehydration by metal chlorides in a silica-supported ionic liquid layer

    NARCIS (Netherlands)

    Degirmenci, V.; Hensen, E.J.M.

    2014-01-01

    An attempt is made to immobilize the homogeneous metal chloride/EMIMCl catalyst for glucose dehydration to 5-hydroxymethylfurfural. To this end, ionic liquid fragments were grafted to the surface of SBA-15 to generate a heterogenized mimick of the homogeneous reaction medium. Despite a decrease in

  1. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  2. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  3. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  4. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  5. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  6. Selective catalytic oxidation of NO as a process stage in NOx separation from power plant and production systems off-gases. Catalyst development and reaction kinetics. Final report. Die selektive katalytische Oxidation des NO als Prozess-Stufe bei der Stickoxidabscheidung aus Abgasen von Kraftwerken und Produktionsanlagen. Katalysatorentwicklung und Reaktionskinetik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Seifert, J.

    1989-06-01

    The research project was to investigate the heterogeneously catalyzed oxidation of NO in flue gas using 1. metal oxide catalysts (commonly on a MnO{sub 2} basis), 2. ZSM5 zeolites (pentasil), and 3. noble metal catalysts. Apart from the reaction kinetics, also the activity and resistance to typical catalyst poisons (SO{sub 2}, HCl, HF, heavy metals) were investigated. A fully automatic, computer-controlled experimental apparatus was developed which apart from the analysis of reaction products permitted also dynamic experiments with time constants in the seconds range and experiments with cyclic variation of concentration, temperature, and time of residue. (RB).

  7. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  8. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  9. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  10. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  11. Sabatier Catalyst Poisoning Investigation

    Science.gov (United States)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  12. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  13. Walkable new urban LEED_Neighborhood-Development (LEED-ND community design and children's physical activity: selection, environmental, or catalyst effects?

    Directory of Open Access Journals (Sweden)

    Stevens, Robert B

    2011-12-01

    Full Text Available Abstract Background Interest is growing in physical activity-friendly community designs, but few tests exist of communities explicitly designed to be walkable. We test whether students living in a new urbanist community that is also a pilot LEED_ND (Leadership in Energy and Environmental Design-Neighborhood Development community have greater accelerometer-measured moderate-to-vigorous physical activity (MVPA across particular time periods compared to students from other communities. We test various time/place periods to see if the data best conform to one of three explanations for MVPA. Environmental effects suggest that MVPA occurs when individuals are exposed to activity-friendly settings; selection effects suggest that walkable community residents prefer MVPA, which leads to both their choice of a walkable community and their high levels of MVPA; catalyst effects occur when walking to school creates more MVPA, beyond the school commute, on schooldays but not weekends. Methods Fifth graders (n = 187 were sampled from two schools representing three communities: (1 a walkable community, Daybreak, designed with new urbanist and LEED-ND pilot design standards; (2 a mixed community (where students lived in a less walkable community but attended the walkable school so that part of the route to school was walkable, and (3 a less walkable community. Selection threats were addressed through controlling for parental preferences for their child to walk to school as well as comparing in-school MVPA for the walkable and mixed groups. Results Minutes of MVPA were tested with 3 × 2 (Community by Gender analyses of covariance (ANCOVAs. Community walkability related to more MVPA during the half hour before and after school and, among boys only, more MVPA after school. Boys were more active than girls, except during the half hour after school. Students from the mixed and walkable communities--who attended the same school--had similar in-school MVPA levels, and

  14. Walkable new urban LEED_Neighborhood-Development (LEED-ND) community design and children's physical activity: selection, environmental, or catalyst effects?

    Science.gov (United States)

    2011-01-01

    Background Interest is growing in physical activity-friendly community designs, but few tests exist of communities explicitly designed to be walkable. We test whether students living in a new urbanist community that is also a pilot LEED_ND (Leadership in Energy and Environmental Design-Neighborhood Development) community have greater accelerometer-measured moderate-to-vigorous physical activity (MVPA) across particular time periods compared to students from other communities. We test various time/place periods to see if the data best conform to one of three explanations for MVPA. Environmental effects suggest that MVPA occurs when individuals are exposed to activity-friendly settings; selection effects suggest that walkable community residents prefer MVPA, which leads to both their choice of a walkable community and their high levels of MVPA; catalyst effects occur when walking to school creates more MVPA, beyond the school commute, on schooldays but not weekends. Methods Fifth graders (n = 187) were sampled from two schools representing three communities: (1) a walkable community, Daybreak, designed with new urbanist and LEED-ND pilot design standards; (2) a mixed community (where students lived in a less walkable community but attended the walkable school so that part of the route to school was walkable), and (3) a less walkable community. Selection threats were addressed through controlling for parental preferences for their child to walk to school as well as comparing in-school MVPA for the walkable and mixed groups. Results Minutes of MVPA were tested with 3 × 2 (Community by Gender) analyses of covariance (ANCOVAs). Community walkability related to more MVPA during the half hour before and after school and, among boys only, more MVPA after school. Boys were more active than girls, except during the half hour after school. Students from the mixed and walkable communities--who attended the same school--had similar in-school MVPA levels, and community groups

  15. Development of Fe-Ni/YSZ-GDC electro-catalysts for application as SOFC anodes. XRD and TPR characterization, and evaluation in ethanol steam reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Electro-catalysts based on Fe-Ni alloys were prepared using physical mixture and modified Pechini methods; they were supported on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia Doped Ceria (GDC). The composites had compositions of 35% metal load and 65% support (70% wt. YSZ and 30% wt. GDC mixture) (cermets). The samples were characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in ethanol steam reforming at 650 C for six hours and in the temperature range 300 - 900 C. The XRD results showed that the bimetallic sample calcined at 800 C formed a mixed oxide (NiFe{sub 2}O{sub 4}) in spinel structure; after reducing the sample in hydrogen, Ni-Fe alloys were formed. The presence of Ni decreased the final reduction temperature of the NiFe{sub 2}O{sub 4} species. The addition of Fe to Ni anchored to YSZ-GDC increased the hydrogen production and inhibits the carbon deposition. The bimetallic 30Fe5Ni samples reached an ethanol conversion of about 95%, and a hydrogen yield up to 48% at 750 C. In general, the ethanol conversion and hydrogen production were independent of the metal content in the electro-catalyst. However, the substitution of Ni for Fe significantly reduced the carbon deposition on the electro-catalyst: 74, 31 and 9 wt. % in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. (orig.)

  16. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  17. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve

  18. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  19. Interações hiperfinas em catalisadores metálicos Hyperfine interactions in metallic catalysts

    OpenAIRE

    Henrique Saitovitch; Paulo R. J. Silva; Fabio B. Passos

    2005-01-01

    Heterogeneous catalysts are of fundamental importance in several modern chemical processes. The characterization of catalysts is an issue of very present interest as it can provide a better understanding of the fundamental aspects of the catalytic phenomena, thus helping in the development of more efficient catalysts. In order to extend and improve the characterization of catalysts, new and less conventional methods are being applied, such as nuclear spectroscopies. In this paper we focus on ...

  20. Metal-Organic-Framework mediated supported-cobalt catalysts in multiphase hydrogenation reactions

    OpenAIRE

    Sun, X.

    2017-01-01

    The production of most industrially important chemicals involves catalysis. Depending on the difference in phases between the catalysts and reactants, one distinguishes homogenous catalysis and heterogeneous catalysis, with the latter being more attractive in real applications, due to the easy separation of products from catalysts and reusing the latter. In spite of the research and development of heterogeneous catalysts for decades, the exploration for catalysts system with outstanding activ...

  1. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H. [KAERI, Taejon (Korea, Republic of)

    2005-11-15

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  2. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    International Nuclear Information System (INIS)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H.

    2005-01-01

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities

  3. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  4. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation

    OpenAIRE

    Achmad Roesyadi; Danawati Hariprajitno; Nurjannah Nurjannah; Santi Dyah Savitri

    2013-01-01

    It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and cata...

  5. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  6. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  7. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  8. Evaluation of AECL catalysts for hydrogen fuel-cell applications. Paper no. IGEC-1-073

    International Nuclear Information System (INIS)

    Li, J.; Suppiah, S.; Li, H.; Kutchcoskie, K.J.; Strikwerda, S.

    2005-01-01

    AECL has been engaged in the promotion of the nuclear-hydrogen economy, which envisions that hydrogen fuel cells will generate power using hydrogen as fuel produced by nuclear energy. Since AECL's catalysts developed for the production, upgrading and detritiation of heavy water are very similar to commercial fuel-cell catalysts, a program was initiated to evaluate AECL catalysts for fuel-cell applications. As a first step in this effort, a half-cell test facility was set up to characterize the performance of catalysts for hydrogen fuel cells. This paper outlines the results obtained from cathodic reduction of oxygen in a 0.5 M sulphuric acid solution on a rotating disc electrode at 65 o C. The performance of the catalysts was characterized using standard electrochemical methods including cyclic voltammetry, Voltammogram/Tafel plots and short-term stability plots. Several monometallic Pt and Pt-based bimetallic catalysts were tested and compared with a commercially available catalyst for fuel-cell applications. AECL's monometallic Pt catalysts showed comparable or better activities than commercial catalysts with similar Pt loading. An AECL Pt-based bimetallic catalyst has shown superior performance to a monometallic Pt catalyst with similar Pt loading. Evaluation of various catalyst formulations is ongoing on the half-cell facility at AECL. Further investigation of promising catalysts identified from half-cell test is also being carried out in single fuel cell on test stations under normal fuel-cell operating conditions. (author)

  9. New catalysts for clean environment

    Energy Technology Data Exchange (ETDEWEB)

    Maijanen, A; Hase, A [eds.; VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  10. New catalysts for clean environment

    Energy Technology Data Exchange (ETDEWEB)

    Maijanen, A.; Hase, A. [eds.] [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  11. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  12. Hydrodeoxygenation of Levulinic Acid over Supported Catalysts

    NARCIS (Netherlands)

    Luo, Wenhao|info:eu-repo/dai/nl/341385972

    2014-01-01

    Levulinic acid (LA), which can be produced from the sugar fractions of lignocellulosic biomass, is a promising sustainable platform molecule that can play a major role in future biorefineries. The work described was aimed at the development of heterogeneous catalysts for the selective conversion of

  13. Fundamental investigations of catalyst nanoparticles

    DEFF Research Database (Denmark)

    Elkjær, Christian Fink

    and economic development in the 20th century. There is however a downside to this development and we are seeing significant pollution and pressure on resources. Catalysis therefore has an increasingly important role in limiting pollution and optimizing the use of resources. This development will depend on our...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...... important that we only study intrinsic structures and phenomena and not those that may be induced by the high energy electrons used to image the specimen. This requires careful consideration of the influence of the electron beam in order to understand, control and minimize that influence. I present four...

  14. A Catalyst for Change

    DEFF Research Database (Denmark)

    Lønsmann, Dorte

    2017-01-01

    This case study of a team in an international workplace investigates processes of language socialization in a transient multilingual setting. Using interview and observational data, the analysis shows how social and linguistic norms are negotiated, with the newcomer positioned as a catalyst...... for changing language practices toward more English, with the ultimate aim of creating a 'global mindset' in the organization. Language socialization in a transient multilingual setting is shown to focus on and assign positive value to new linguistic norms that experienced members are socialized...... into in a process that hinges on new members functioning as tools for management to bring about the desired change. The article shows that while the newcomer is used as a catalyst for increased use of English and for the creation of a 'global mindset,' she is at the same time socialized into the existing Danish...

  15. Photo catalyst; Ko shokubai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    While titanium oxide is excited by the light, electrons of titanium oxide are taken away by the light energy to form positive holes. Water will be decomposed into hydrogen ion and hydroxy radical (OH) by these positive holes. This hydroxy radical is a strong reactive substance called active oxygen, it decomposes organisms. Besides this photo- catalyst function, the titanium oxide can also make surface of a substance superhydrophilic. The super hydrophilicity results in not forming water drops on the glass surface but spreading all over the surface to prevent a covering of fog on the glass surface. The published patents concerning the photo catalysts were 593 from Jan. 1998 to Jan. 1999. The applicant order is the first TOTO 143, the second Daikin Industry 19, the third Toshiba Raitech, Nitto Denko, Hitachi 17 respectively. (NEDO)

  16. Options and processes for spent catalyst handling and utilization.

    Science.gov (United States)

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  17. Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Fereshteh Samimi

    2017-11-01

    Full Text Available Carbon capture and utilization as a raw material for methanol production are options for addressing energy problems and global warming. However, the commercial methanol synthesis catalyst offers a poor efficiency in CO2 feedstock because of a low conversion of CO2 and its deactivation resulting from high water production during the process. To overcome these barriers, an efficient process consisting of three stage heat exchanger reactors was proposed for CO2 hydrogenation. The catalyst volume in the conventional methanol reactor (CR is divided into three sections to load reactors. The product stream of each reactor is conveyed to a flash drum to remove methanol and water from the unreacted gases (H2, CO and CO2. Then, the gaseous stream enters the top of the next reactor as the inlet feed. This novel configuration increases CO2 conversion almost twice compared to one stage reactor. Also to reduce water production, a water permselective membrane was assisted in each reactor to remove water from the reaction side. The proposed process was compared with one stage reactor and CR from coal and natural gas. Methanol is produced 288, 305, 586 and 569 ton/day in CR, one-stage, three-stage and three-stage membrane reactors (MR, respectively. Although methanol production rate in three-stage MR is a bit lower than three stage reactors, the produced water, as the cause of catalyst poisoning, is notably reduced in this configuration. Results show that the proposed process is a strongly feasible way to produce methanol that can competitive with a traditional synthesis process.

  18. Recycling of spent hydroprocessing catalysts: EURECAT technology

    Energy Technology Data Exchange (ETDEWEB)

    Berrebi, G.; Dufresne, P.; Jacquier, Y. (EURECAT-European Reprocessing Catalysts, La Voulte sur Rhone (France))

    1994-04-01

    Disposal of spent catalyst is a growing concern for all refiners. Environmental regulations are becoming stricter and stricter and there are State recommendations to develop disposal routes which would emphasize recycling as much as possible, and processing the wastes as near as possible to the production center. In this context, EURECAT has developed a recycling process for the hydroprocessing catalysts used in the oil refineries (NiMo, CoMo, NiW on alumina or mixed alumina silica). The process starts with a regeneration of the catalyst to eliminate hydrocarbons, carbon and sulfur. After a caustic roasting, the material is leached to obtain a solution containing mainly molybdenum (or tungsten) and vanadium, and a solid containing essentially alumina, cobalt and/or nickel. Molybdenum and vanadium are separated by an ion exchange resin technique. The solid is processed in an arc furnace to separate the alumina. Nickel and cobalt are separated by conventional solvent extraction to obtain pure metal. Alumina is disposed of as an inert slag. The strength of the process lies in the combination of proven technologies applied by companies whose reliability in their respective field is well known. The aspects concerning spent catalyst handling, packaging and transport are also discussed. 13 refs., 2 figs., 2 tabs.

  19. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  20. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  1. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  2. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  3. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  4. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts

    International Nuclear Information System (INIS)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Liu, Changye; Yan, Beibei

    2015-01-01

    Highlights: • Novel heterogeneous animal bone-based catalysts were developed. • The optimum catalyst is 30K/HAP-600. • Maximum biodiesel yield of 96.4% was achieved using the novel catalyst. • The novel catalyst can achieve a desirable recyclability. • Little deactivation was found due to K + ions leaching to the product. - Abstract: In the present study, calcined waste pig bone (CB, a solid waste from animal) derived hydroxyapatite (HAP) was served as the support for K 2 CO 3 to prepare a cost-effective solid base catalyst for biodiesel production. The catalysts were characterized by XRD, FTIR, SEM–EDS, N 2 adsorption–desorption and the Hammett indicator method. The effects of catalyst preparation conditions (such as the loading of K 2 CO 3 on the CB and the calcination temperature), reaction conditions (such as reaction time, methanol/oil molar ratio and catalyst loading) and the catalyst reusability were studied in detail. The experimental results revealed that the highest biodiesel yield of 96.4% was obtained using the 30K/HAP-600 catalyst under the optimum reaction condition (reaction time of 1.5 h, catalyst loading of 8 wt.% and methanol/oil molar ratio of 9:1) due to its highest total basicity. Moreover, after reused for more than 8 cycles, the catalyst can still possess a rather high biodiesel yield (above 90%). A little deactivation was found due to K + ions leaching to the product

  5. Visible Light Responsive Catalyst for Air Water Purification Project

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  6. Microchannel Reactors for ISRU Applications Using Nanofabricated Catalysts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and USRA propose to develop microchannel reactors for In-Situ Resources Utilization (ISRU) using nanofabricated catalysts. The proposed...

  7. Visible Light Responsive Catalyst for Air & Water Purification

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective for this project was to investigate and develop viable approaches to render the normally UV-activated titanium dioxide (TiO2) catalyst visible light...

  8. Additively Manufactured Monolithic Catalyst Bed for Green Propellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal aims to develop a low cost, high efficiency catalyst technology to address navigation and maneuver difficulties in NASA's return missions. Our approach...

  9. High-throughput heterogeneous catalyst research

    Science.gov (United States)

    Turner, Howard W.; Volpe, Anthony F., Jr.; Weinberg, W. H.

    2009-06-01

    With the discovery of abundant and low cost crude oil in the early 1900's came the need to create efficient conversion processes to produce low cost fuels and basic chemicals. Enormous investment over the last century has led to the development of a set of highly efficient catalytic processes which define the modern oil refinery and which produce most of the raw materials and fuels used in modern society. Process evolution and development has led to a refining infrastructure that is both dominated and enabled by modern heterogeneous catalyst technologies. Refineries and chemical manufacturers are currently under intense pressure to improve efficiency, adapt to increasingly disadvantaged feedstocks including biomass, lower their environmental footprint, and continue to deliver their products at low cost. This pressure creates a demand for new and more robust catalyst systems and processes that can accommodate them. Traditional methods of catalyst synthesis and testing are slow and inefficient, particularly in heterogeneous systems where the structure of the active sites is typically complex and the reaction mechanism is at best ill-defined. While theoretical modeling and a growing understanding of fundamental surface science help guide the chemist in designing and synthesizing targets, even in the most well understood areas of catalysis, the parameter space that one needs to explore experimentally is vast. The result is that the chemist using traditional methods must navigate a complex and unpredictable diversity space with a limited data set to make discoveries or to optimize known systems. We describe here a mature set of synthesis and screening technologies that together form a workflow that breaks this traditional paradigm and allows for rapid and efficient heterogeneous catalyst discovery and optimization. We exemplify the power of these new technologies by describing their use in the development and commercialization of a novel catalyst for the

  10. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  11. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  12. Characterization and Regeneration of Pt-Catalysts Deactivated in Municipal Waste Flue Gas

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Kustov, Arkadii; Due-Hansen, Johannes

    2006-01-01

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed...... that siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H-2/N-2 gas to the off-gas can completely restore...... the activity of the deactivated catalysts. (c) 2006 Elsevier B.V. All rights reserved....

  13. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  14. Novel Reforming Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, Lisa D; Haller, Gary L

    2012-10-16

    Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

  15. Catalysts for petroleum desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.; Diemann, E.; Baumann, F.W.

    1988-01-01

    In order to obtain marketable products from low-quality oils, efficient hydrogenation processes are required for removing sulfur (hydrodesulfurization, HDS), nitrogen (hydrodenitrification, HDN), and oxygen (hydrodeoxygenation, HDO), which would poison the noble metal catalysts of the downstream petrochemical processes. Hydrogenation will produce low-sulfur, low-nitrogen fuels and thus contribute to the reduction of SO/sub 2/ and NO/sub x/ emissions which is long overdue from the ecological point of view (forest decline, acidification of surface bodies of water, etc.).

  16. Influence of ni addition to a low-loaded palladium catalyst on the selective hydrogenation of 1-heptyne

    Directory of Open Access Journals (Sweden)

    Cecilia R. Lederhos

    2010-01-01

    Full Text Available Semi-hydrogenation of alkynes has industrial and academic relevance on a large scale. To increase the activity, selectivity and lifetime of monometallic catalysts, the development of bimetallic catalysts has been investigated. 1-Heptyne hydrogenation over low-loaded Pd and Ni monometallic and PdNi bimetallic catalysts was studied in liquid phase at mild conditions. XPS results suggest that nickel addition to Pd modifies the electronic state of palladium as nickel loading is increased. Low-loaded Pd catalysts showed the highest selectivities (> 95%. The most active prepared catalyst, PdNi(1%, was more selective than the Lindlar catalyst.

  17. Discovery of fuel cell anode electrocatalysts and dehydrogenation catalysts using combinatorial techniques

    Science.gov (United States)

    Chan, Benny Chun Wai

    A gas diffusion optical screening method was developed for the discovery of catalysts for the electro-oxidation of reformate gas (H2 with 100 ppm CO). The screening cell was designed to accommodate a gas diffusion layer, 715 member catalyst array, and an electrolyte container. Since protons are generated during H2 oxidation, a pH sensitive fluorphore was used to identify active compositions. The cell showed no detectable iR drop across the array and ranked activity of two commercial PtRu and one Pt catalysts. Over 95% of a given catalyst fluoresced at the initial onset potential and a 5 mV difference in onset potential of two different catalysts was statistically different. A gas diffusion half cell was designed similar to the optical screening cell to obtain current-potential curves of bulk catalysts. The screening results correlated with half cell and fuel cell data, internally validating the method. The combinatorial method was then applied to search for catalysts in the PtRuMoIrRh composition space. The catalysts on the array were prepared by hydrogen reduction of the metals salts on carbon. The most active catalysts were from the Pt enriched regions of the PtRuMoRh quaternary. Bulk catalysts were prepared from the active regions and tested in the gas diffusion half cell. The most active catalysts in the optical screening were also the most active catalysts in the half cell. When any homemade catalysts were compared to commercial PtRu, however, the performance was worse. A high surface area, high catalyst activity synthetic method is the most important factor to reliably screen catalysts for "real world" fuel cell application. High surface area catalysts were tested for direct methanol oxidation activity. The optical screening method was compared with disk electrode, high throughput fuel cell testing, and fuel cell testing. Six catalysts examined included two commercial PtRu catalysts, a Pt catalyst, and three homemade PtRu catalysts of varying activity

  18. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Mädje Katharina

    2012-01-01

    Full Text Available Abstract Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(PH. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH, presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S-1-(2-chlorophenylethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3 that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by

  19. Development physicochemical and catalytic characteristics of Mo-containing catalysts for hydrotreatment based on various supports. 1. Adsorption of molybdate anions on the support surface

    International Nuclear Information System (INIS)

    Lur'e, M.A.; Kurest, I.Z.; Krasnopol'skaya, S.M.; Reznikov, S.A.; Babikov, A.F.; Shmidt, F.K.

    1994-01-01

    The amounts of basic OH-groups were determined by means of exchange by F-ions and the adsorption of Mo from acid and alkali ammonium paramolybdate (APM) solutions was investigated on the surface of hydrated titanium dioxide, γ-Al 2 O 3 and palygorskite-montmorillonite clay. The process is adequately described by the exchange equation at pH value of APM solution in excess of the isoelectric point (IEP) of the surface. At opposite correlation between pH of the solution and IEP the Langmuir model is adaptable. They concluded, on experimental data, that in the latter case OH-groups replaced by molybdate-anion stage of synthesis of catalyst. 22 refs., 3 figs

  20. Preparation of wet-proofed catalyst for tritium removal

    International Nuclear Information System (INIS)

    Son, S-H.; Lee, G-B.; Song, M-J.

    1995-01-01

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H 2 adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs

  1. Preparation of wet-proofed catalyst for tritium removal

    Energy Technology Data Exchange (ETDEWEB)

    Son, S-H; Lee, G-B; Song, M-J [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H{sub 2} adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs.

  2. EXAFS characterization of supported metal catalysts in chemically dynamic environments

    International Nuclear Information System (INIS)

    Robota, H.J.

    1991-01-01

    Characterization of catalysts focuses on the identification of an active site responsible for accelerating desirable chemical reactions. The identification, characterization, and selective modification of such sites is fundamental to the development of structure-function relationships. Unfortunately, this goal is far from realized in nearly all catalysts, and particularly in catalysts comprised of small supported metal particles. X-ray absorption spectroscopy (XAS) has had a dramatic effect on our understanding of supported metal particles in their resting state. However, the performance of a catalyst can not be assessed from such simple resting state measurements. Among the factors which influence catalyst performance are the exact catalyst composition, including the support and any modifiers; particle size; catalyst finishing and pretreatment conditions; pressure, composition, and temperature of the operating environment; time. Gaining an understanding of how the structure of a catalytic site can change with such an array of variables requires that we begin to develop measurement methods which are effective under chemically dynamic conditions. Ideally, it should be possible to obtain a full X-ray absorption spectrum of each element thought to have a causal relationship with observed catalyst properties. From these spectra, we can optimally extract only a relatively limited amount of information which we must then piece together with information derived from other characterization methods and intuition to arrive at a hypothetical structure of the operating catalyst. Information about crystallinity, homogeneity, and general disorder can be obtained from the Debye-Waller factor. Finally, through analogy with known compounds, the electronic structure of the active atoms can be inferred from near edge absorption features

  3. Activating catalysts with mechanical force

    NARCIS (Netherlands)

    Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P.

    2009-01-01

    Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to

  4. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    Science.gov (United States)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  5. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  6. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  7. Micelle-derived catalysts for extended Schulz-Flory

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-01-01

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20[Angstrom] ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H[sub 2]. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20[Angstrom] ruthenium particles on [gamma]-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20[Angstrom] or smaller ruthenium particles according to STEM examination and a 15[Angstrom] average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  8. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2016-12-01

    Full Text Available The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction, and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.

  9. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  10. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  11. Development of Cu and Ni catalysts supported on ZrO2 for the generation of H2 by means of the reaction of reformed methanol in atmosphere oxidizer

    International Nuclear Information System (INIS)

    Lopez C, P.

    2012-01-01

    ZrO 2 was prepared by the sol-gel method and calcined at 450 C. The prepared zirconia was impregnated with an aqueous solution of Cu(CH 3 CO 2 ) 2 ·H 2 O or NiNO 3 ·6H 2 O at an appropriate concentration to yield 3 wt % of copper or nickel, respectively, in the mono metallic catalysts. Three bimetallic samples were prepared at 80% Cu and 20% Ni respectively to obtain 3 wt % of total metallic phase. Surface area of the Cu-Ni base catalysts supported on ZrO 2 oxide showed differences as a function of the metal addition. Between them, the Cu/ZrO 2 catalyst had the lowest surface area than other catalysts. X-ray diffraction patterns of the bimetallic catalysts did not show diffraction peaks of the Cu, Ni or bimetallic Cu-Ni alloys. In addition, TPR profiles of the bimetallic catalysts had the lowest reduction temperature compared with the mono metallic samples. The reactivity of the catalysts in the range of 250-350 C showed that the samples prepared by successive impregnation had the highest catalytic activity than the other catalysts studied. Also the selectivity for H 2 production was higher for these catalysts. This finding was associated to the presence of the bimetallic Cu-Ni nanoparticles, as was evidenced by Tem-EDX analysis. (Author)

  12. Catalyst Architecture:New York Copenhagen Tokyo Rio de Janeiro

    OpenAIRE

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in?Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combination of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for:sustainable adaptation of the city’s infrastructureappro...

  13. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Kapteijn, Freek [Department of Chemical Engineering, Catalysis Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2013-12-15

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  14. Catalysts development to base of Cu and Ni supported in ZrO2 for the H2 generation by the methanol reformed in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Lopez C, P.; Gutierrez, A.; Gutierrez W, C.; Mendoza A, D.; Martinez, G.; Perez H, R.

    2009-01-01

    The search of new alternating sources of energy is at the present time one of the primordial objectives to world level because of the global heating caused by the high emissions of CO 2 at the atmosphere. In this sense the employment of H 2 through the fuel cells offers a more viable alternative for the use of the energy coming from the connection H-H that can be appointed for use of mobile, industrial and homemade applications. However, to generate H 2 in enough quantities is a great challenge at technological level for the necessity of to count with highly selective and efficient catalysts to low reaction temperatures as well as a source that comes from renewable resources. Under this context the methanol reformed in oxidizing atmosphere offers great ecological as energetics and industrial advantages; inside this investigation plane, the Cu seems to be one of the suitable candidates for this reaction due to its high capacity to generate H 2 , besides the great potential of improvement in its physical-chemical properties when being worked in nano metric size and /or associated with other materials. On the other hand, it is known that the Ni addition improvement the catalytic properties because of a better material dispersion, what offers big possibilities of being applied in the H 2 generation in situ by means of the methanol reformed reaction in oxidizing atmosphere; and that the conformation of bimetallic particles Cu/Ni presented high selectivity and catalytic activity for the reaction in question. (Author)

  15. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    International Nuclear Information System (INIS)

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-01-01

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors

  16. Long time experience with deactivation and regeneration of DENOX catalysts and evaluation with the Internet database LEONID; Langzeiterfahrung mit der Deaktivierung und Regeneration von DENOX-Katalysatoren sowie Auswertung mit der Internet-Datenbank LEONID

    Energy Technology Data Exchange (ETDEWEB)

    Brandenstein, J.; Dieckmann, H.J.; Gutberlet, H. [E.ON Engineering GmbH, Gelsenkirchen (Germany)

    2008-07-01

    The paper gives an overview over the long-term catalyst deactivation and the main reasons for catalyst aging. The chemical composition of de-activated catalysts provides information on the optimum catalyst regeneration process. The long-term deactivation behaviour of regenerated catalysts is compared to new catalysts. All characteristic catalyst features are listed in an online 'LEONID'-database, developed by E.ON Engineering. The database provides the basis for long-term catalyst management of all connected SCR systems. (orig.)

  17. Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Manoj B. Gawande

    2013-10-01

    Full Text Available Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and it is possible to recover >95% of catalysts, which is again recyclable for subsequent use. Water is the ideal medium to perform the chemical reactions with magnetically recyclable nano-catalysts, as this combination adds tremendous value to the overall benign reaction process development. In this review, we highlight recent developments inthe use of water and magnetically recyclable nano-catalysts (W-MRNs for a variety of organic reactions namely hydrogenation, condensation, oxidation, and Suzuki–Miyaura cross-coupling reactions, among others.

  18. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Brik; Kustov, Arkady

    The deactivation performance of Pt-catalysts for CO oxidation has been studied in relation to use in sewage sludge municipal waste burners, where HMDS was found to poison the industrial catalyst in a similar way to the model Pt/TiO2 catalyst. A promising regeneration procedure was developed based...... on reduction with hydrogen. This procedure had negligible effect on the performance of the SCR catalyst. After treatment with 2% H2, 8% O2 in N2 for one hour, a slight better NO SCR activity was observed due to increase in the concentration V4+ sites. However, after exposure in normal NO SCR gases the activity...

  19. Hydrotreating catalyst deactivation by coke from SRC-II oil

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Y.; Kumata, F.; Massoth, F.E.

    1988-10-01

    Samples of a CoMo/Al/sub 2/O/sub 3/ catalyst were partially deactivated with SRC-II feed in an autoclave reactor to give coked samples of 5 to 18% C. The coked catalysts were analyzed for surface area, pore volume, coronene adsorption and diffusivity, and their catalytic activity determined for hydrodesulfurization (HDS), hydrodeoxygenation (HDO) and C-N hydrogenolysis (CNH) using model compounds. All of the above measurements decreased with increase in coke content. Property data indicate that some pores are blocked by coke and diffusivity results show narrowing of pore mouths with increasing coke content. Catalyst deactivation versus coke level was identical for HDS and HDO, but less for CNH. A simple model of coke deactivation was developed to relate activity to coke content. Coke is envisioned as forming wedge-like deposits in the catalyst pores. 11 refs., 5 figs., 3 tabs.

  20. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  1. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  2. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  3. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  4. Development of the Ni/Al{sub 2}O{sub 3}/ZrO{sub 2} catalyst to steam reforming of the natural gas process; Desenvolvimento do catalisador Ni/Al2O3/ZrO2 para o processo de reforma do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Neiva, Laedna Souto; Ramalho, Melanea A.F.; Costa, Ana Cristina Figueiredo de Melo; Gama, Lucianna [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Andrade, Heloysa M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Kiminami, Ruth Herta G.A. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil)

    2008-07-01

    The aim of this work is to develop catalyst of the type Ni/{alpha}-Al{sub 2}O{sub 3} modified with 0.005 mol of ZrO{sub 2} and structural, morphologic and catalytic characterizations, aiming employ in the reforming process of the natural gas. The catalytic supports were obtained by synthesis method for combustion reaction according to the concepts of the propellants chemistry. The active species of the catalyst (nickel) was deposited over the support by humid impregnation method. The catalytic supports were characterized by XRD, morphologic analysis by SEM and TEM, textural analysis by BET method before and after of the impregnation with nickel and were done catalytic tests in laboratory. The catalytic supports shows structure without any secondary phase with crystallinity elevated degree and crystal size varying between 5.7 and 7.0 nm. The catalytic test shows that these catalysts promoted a conversion percentile considerable of the natural gas in syngas. (author)

  5. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  6. Catalytic Converter Developed By Washcoat Of γ-Alumina On Nickel Oxide (Nio Catalyst In FeCrAl Substrate For Exhaust Emission Control : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Automobile exhaust emission control is one of the trending issues in automobile research field. The existing catalytic converter using the noble metals of platinum (Pt, palladium (Pd and rhodium (Rd recently were in limited supply and higher in cost. There is a need for the automotive industry to produce ultra-low emitting vehicles at a reasonable cost. The objective of this study is to investigate the effectiveness of methods of fabrication of modified catalytic converter by approaching FeCrAl as a substrate which treated using ultrasonic bath technique to improve the exhaust emission control. The modified catalytic converter preparation will involve the ultrasonic bath process of FeCrAl foil which has fabricated as metallic monolith coated by γ-Al2O3 powder. Nickel as catalyst material will be prepared using electroplating process. The oxidation test will be conducted using a tube and automatic furnace in temperature of 1100°C for 100 hours. Mitsubishi 4G93 1800cc Petrol E.F.I with a multi -gas analyzer equipped with a hydraulic dynamometer will be used for emission measurements of HC, CO, and NOx in varying speed and load for both conditions with and without catalytic converter. The result will expect the γ-Al2O3 as the washcoat material that fully embedded to FeCrAl substrate with the combination of ultrasonic and electroplating technique will effectively convert the CO, NOx and HC to CO2, NO2 and H2O which means that catalytic converter is effective to improve exhaust emission control of diesel engine. The FeCrAl substrate as a metallic catalytic converter which coated by γ-Al2O3 using ultrasonic and nickelelectroplating technique may improve the exhaust emission control.

  7. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  8. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  9. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk-Zychora, A., E-mail: amikolajczuk@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Mazurkiewicz-Pawlicka, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Ciecierska, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Zimoch, A.; Opałło, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Palladium catalyst used on the cathode DFAFC is comparable to commercial platinum catalyst. • The treatment of carbon supports in nitric acid(V) increases the electrochemically available metal surface area and the catalytic activity in oxygen reduction reaction of catalysts. - Abstract: One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  10. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  11. Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure

    Energy Technology Data Exchange (ETDEWEB)

    Bois, C.; Blayo, A.; Chaussy, D. [Laboratory of Pulp and Paper Science and Graphic Arts (LGP2) (UMR 5518 CNRS-CTP-INPG), Grenoble Institute of Technology (INP Grenoble - PAGORA), St Martin d' Heres (France); Vincent, R.; Mercier, A.G.; Nayoze, C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA)/DRT/LITEN, Laboratoire des Composants Piles a Combustible, Electrolyse et Modelisation (LCPEM), Grenoble (France)

    2012-04-15

    This article focuses on the potential of a classic printing process, flexography, for manufacturing proton exchange membrane fuel cells (PEMFCs). Gas diffusion electrodes (GDEs) are produced by deposition of a water-based catalyst ink on a gas diffusion layer (GDL). The affinity between the ink and the GDL is quantified. Thus, the strong hydrophobic character of the GDL and the poor printability of the ink are demonstrated. However, the permeability of the GDL allows developing a multilayer protocol. The deposition by superimposition of ink layers allows control of the platinum amount and to obtain catalyst layers with a similar density of platinum nanoparticles to coated samples. At similar platinum loading, flexography and coating made catalyst layers offer similar performances, which confirm the relevance of flexography in catalyst layer manufacturing. Structural characterization shows that manufacturing protocol and process has an influence on catalyst layer microstructure. However, catalyst layer cracking and aggregation are increased with the catalyst layer thickness, diminishing the charge and gas diffusion into the catalyst layer resulting in performance degradation. Consequently, a catalyst layer with 0.46 mgPt cm{sup -2} reaches similar performances to catalyst layers with 1.77 and 2.01 times less platinum loading. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts

    International Nuclear Information System (INIS)

    Xie, Wenlei; Zhao, Liangliang

    2013-01-01

    Highlights: • Heterogeneous catalysts were prepared by an impregnation method with different conditions. • The catalysts were efficient in the soybean oil transesterification. • The catalytic activity and stability of the catalyst were investigated. - Abstract: The main objective of this work was to develop an environmentally benign process for the production of biodiesel by using a stable solid base catalyst. To this purpose, different heterogeneous CaO–SnO 2 catalysts have been prepared by means of impregnation methods. Various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were applied for the catalyst characterization. The transesterification of soybean oil with methanol, to produce biodiesel, was carried out under batch conditions at refluxed methanol over the CaO–SnO 2 catalysts. The catalytic activity is found to be highly dependent on the Ca/Sn ratio and calcination temperature. The solid catalyst with the Ca/Sn molar ratio of 4:1 and calcined at a temperature of 973 K, performed the best activity, reaching the conversion to methyl esters of 89.3% after 6 h of reaction at methanol reflux temperature (343 K) when a methanol/oil molar ratio of 12:1 and catalyst dosage of 8 wt.% were employed. Further, the solid catalyst is proved to be stable and durable for the transesterification reaction

  13. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  14. Thermal and electrochemical stability of tungsten carbide catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Materials Engineering, University of British Columbia, Vancouver, BC (Canada); Campbell, S. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC (Canada)

    2007-02-10

    The thermal and electrochemical stability of tungsten carbide (WC), with and without a catalyst dispersed on it, have been investigated to evaluate the potential suitability of the material as an oxidation-resistant catalyst support. Standard techniques currently used to disperse Pt on carbon could not be used to disperse Pt on WC, so an alternative method was developed and used to disperse Pt on both commercially available WC and on carbon for comparison of stability. Electrochemical testing was performed by applying oxidation cycles between +0.6 V and +1.8 V to the support-catalyst material combinations and monitoring the activity of the supported catalyst over 100 oxidation cycles. Comparisons of activity change with cumulative oxidation cycles were made between C and WC supports with comparable loadings of catalyst by weight, solid volume, and powder volume. WC was found to be more thermally and electrochemically stable than currently used carbon support material Vulcan XC-72R. However, further optimization of the particle sizes and dispersion of Pt/WC catalyst/support materials and of comparison standards between new candidate materials and existing carbon-based supports are required. (author)

  15. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  16. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts

    Directory of Open Access Journals (Sweden)

    Shū Kobayashi

    2011-05-01

    Full Text Available Continuous flow systems for hydrogenation using polysilane-supported palladium/alumina (Pd/(PSi–Al2O3 hybrid catalysts were developed. Our original Pd/(PSi–Al2O3 catalysts were used successfully in these systems and the hydrogenation of unsaturated C–C bonds and a nitro group, deprotection of a carbobenzyloxy (Cbz group, and a dehalogenation reaction proceeded smoothly. The catalyst retained high activity for at least 8 h under neat conditions.

  17. Analysis of noble metal on automotive exhaust catalysts by radioisotope-induce x-ray fluorescence

    International Nuclear Information System (INIS)

    Elgart, M.F.

    1976-01-01

    A technique was developed for the in-situ analysis of noble metals deposited on monolithic automotive exhaust catalysts. This technique is based on radioisotope-induced x-ray fluorescence, and provides a detailed picture of the distribution of palladium and platinum on catalyst samples. The experimental results for the cross section of a monolithic exhaust catalyst, analyzed in increments of 0.2 cm 3 , are compared with analyses for palladium and platinum obtained by instrumental neutron activation analysis

  18. Metal leaching from refinery waste hydroprocessing catalyst.

    Science.gov (United States)

    Marafi, Meena; Rana, Mohan S

    2018-05-18

    The present study aims to develop an eco-friendly methodology for the recovery of nickel (Ni), molybdenum (Mo), and vanadium (V) from the refinery waste spent hydroprocessing catalyst. The proposed process has two stages: the first stage is to separate alumina, while the second stage involves the separation of metal compounds. The effectiveness of leaching agents, such as NH 4 OH, (NH 4 ) 2 CO 3 , and (NH 4 ) 2 S 2 O 8 , for the extraction of Mo, V, Ni, and Al from the refinery spent catalyst has been reported as a function of reagent concentration (0.5 to 2.0 molar), leaching time (1 to 6 h), and temperature (35 to 60°C). The optimal leaching conditions were achieved to obtain the maximum recovery of Mo, Ni, and V metals. The effect of the mixture of multi-ammonium salts on the metal extraction was also studied, which showed an adverse effect for Ni and V, while marginal improvement was observed for Mo leaching. The ammonium salts can form soluble metal complexes, in which stability or solubility depends on the nature of ammonium salt and the reaction conditions. The extracted metals and support can be reused to synthesize a fresh hydroprocessing catalyst. The process will reduce the refinery waste and recover the expensive metals. Therefore, the process is not only important from an environmental point of view but also vital from an economic perspective.

  19. Low Temperature Catalyst for NH3 Removal

    Science.gov (United States)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  20. Catalyst preactivation using EURECAT TOTSUCAT CFP technology

    Energy Technology Data Exchange (ETDEWEB)

    Brahma, N.; Alexander, R.; Robinson, J. [Eurecat US Inc., Houston, TX (United States)

    2009-07-01

    This presentation described EURECAT's newly developed and patented technology that allows the start up of a hydrotreating process without the introduction of sulphur containing chemicals. This ex-situ process known as TOTSUCAT ensures complete activation and sulphiding of the catalyst prior to loading in the reactor. The benefits of TOTSUCAT include the elimination of sour water formation; the prevention of potential exotherms; minimal hydrogen sulphide (H{sub 2}) pressure; and no need for additional hydrogen. TOTSUCAT can be used in cases where the unit has temperature limitations that prevent a complete activation of the catalyst. The TOTSUCAT cracked feed protection (CFP) is an enhanced treatment that combines the advantages of preactivation with the ability to start up a unit with cracked stocks. It eliminates the need to delay the introduction of cracked feeds for 3 to 5 days after start-up, as is typical in commercial hydroprocessing units. The acidity of the catalyst is reduced in the CFP treatment, making it suitable for early introduction of cracked stocks. As such, the technology has potential use in the field of residual hydrocracking. The technology has been successfully applied in several commercial refineries in North America. tabs., figs.

  1. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  2. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  3. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  4. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  5. Ziegler-Natta catalysts for the preparation of polypropylene clay nanocomposites from magnesium ethoxide

    International Nuclear Information System (INIS)

    Marques, Maria de Fatima V.; Silva, Micheli G. da; Ferreira, Ana Luiza R.

    2009-01-01

    In the present work, the process for the preparation of Ziegler-Natta catalysts based on MgCl 2 /TiCl 4 was evaluated on the synthesis of isotactic polypropylene. The catalysts were produced by the chemical activation process aiming the morphology control, in order to obtain catalyst particles with spherical form. The synthesis of the catalytic support was accomplished from magnesium ethoxide at different preparation conditions. Commercial clays were also added in the preparation of ZN catalysts, which were employed in propylene polymerization. The purpose was to synthesizing polypropylene nanocomposites by in situ polymerization technique. The results indicated that the developed methods of catalyst preparation were effective, since they have shown high activities and they produced PP with high melting temperatures. It was possible to verify by XRD that the catalytic components were inserted in the clays galleries and the polymers obtained by means of those catalysts are possibly exfoliated nanocomposites. (author)

  6. Determination of catalyst residues in hydrocarbon fuels by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1982-01-01

    A procedure has been developed for the determination of entrained catalytic cracking catalyst in hydrocarbon fuels. Aluminium is measured by instrumental neutron activation analysis and the amount of catalyst present is calculated from the amount of aluminium found and the known composition of the catalyst. Entrained catalyst may be determined at levels above 3 ppm with a precision of +-2%-25% according to sample composition. Only simple procedures are required. Vanadium may reduce sensitivity by dead time and pulse pile-up. No other interferences were observed. (author)

  7. Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions

    DEFF Research Database (Denmark)

    Kolenko, Yury V.; Zhang, Wei; d'Alnoncourt, Raoul Naumann

    2011-01-01

    Reliable procedures for the controlled synthesis of phase-pure MoVTeNb mixed oxides with M1 structure (ICSD 55097) and tunable crystal dimensions were developed to study the structure sensitivity of the selective oxidation of propane to acrylic acid. A series of powdered M1 catalysts...... catalysts were studied in the selective oxidation of propane to acrylic acid, revealing that active sites appear on the entire M1 surface and illustrating the high sensitivity of catalyst performance on the catalyst synthesis method....

  8. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts; Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para celula a combustivel de eletrolito polimerico condutor de protons (PEMFC) com eletrocatalisadores a base de paladio

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2013-07-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm{sup 2} single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm{sup -2}, showing power densities up to 550 mW.cm{sup -2} and power of 2.2 kW{sub net} per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary

  9. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  10. Shining X-rays on catalysts at work

    Energy Technology Data Exchange (ETDEWEB)

    Grunwaldt, J-D, E-mail: jdg@kt.dtu.d [Technical University of Denmark, Department of Chemical and Biochemical Engineering, Building 229, DK-2800 Kgs. Lyngby (Denmark)

    2009-11-15

    Structure-performance relationships gained by studying catalysts at work are considered the key to further development of catalysts underlined here by a brief overview on our research in this area. The partial oxidation of methane to hydrogen and carbon monoxide over Pt- and Rh-based catalysts and the total combustion of hydrocarbons demonstrate the importance of structural identification of catalysts in its working state and the measurement of the catalytic performance at the same time. Moreover, proper cell design is a key both here and in liquid phase reactions including preparation or high pressure reactions. In several cases structural changes during preparation, activation and reaction occur on a subminute scale or the catalyst structure varies inside a reactor as a result of temperature or concentration gradients. This, additionally, requires time and spatial resolution. Examples from time-resolved QEXAFS studies during the partial oxidation of methane over Pt- and Rh-based catalysts demonstrate some of the recent developments of the technique (use not only of Si(111) but also Si(311) crystals, angular encoder, full EXAFS spectra at subsecond recording time, and modulation excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution.

  11. Development of a catalysts technology to disclosure ultra low emission concepts for vehicles with combustion engines. Final report; Entwicklung einer Katalysatortechnologie zur Darstellung von Niedrigstemissionskonzepten an Kraftfahrzeugen mit Verbrennungsmotor. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Reizig, M.; Hirth, P.; Bergmann, A.; Hodgson, J.; Althoefer, K.; Konieczny, R.

    2002-07-01

    The goal of the research was the development of concepts that support ultra low emission concepts for vehicles with combustion engines. This has been done in the 4 subprojects 'Increase of mass transfer', 'Catalyst isolation', 'Reduction of thermal mass' and 'Homogenization of flow distribution'. In the fifth subproject 'catalyst design' the gained experiences should be used to realize the achieved results for practical applications. Phases of the project: Literature investigation - theoretical consideration and interpretation - investigations on favoured variants - durability tests - study of parameters of manufacturing process - emission tests. The gained experiences were slipped in several products that can be realized in serial production. To be mentioned: (a) The TS-Designs and the LS-Design (see subproject A), (b) the HD-Design (see subproject B, C, E), (c) and the mixing device (see subproject D). Additional know-how was gained in subproject D that was used to work out the PM-Design in a separate developement project. These substrates can be used to reduce soot emissions in vehicles with diesel engines. (orig.) [German] Ziel des Forschungsprojektes war es, in den 4 Teilprojekten 'Verbesserung des Massentransportes', 'Katalysatorisolation', 'Reduzierung der thermischen Masse' und 'Interner Stroemungsausgleich' Konzepte zu entwickeln, die Niedrigstemissionen an Kraftfahrzeugen mit Verbrennungsmotoren unterstuetzen. Im 5. Teilprojekt 'Katalysatordesign' sollten die gewonnenen Erfahrungen ganz oder teilweise genutzt weden, um die erzielten Ergebnisse praktisch umzusetzen. Projektphasen: Literaturrecherche - Theoretische Betrachtung/Auslegung - Untersuchungen an favorisierten Varianten - Dauerhaltbarkeitsuntersuchungen - Studie Fertigungsparameter - Emissionsmessungen. Die im Rahmen des Forschungsprojektes gewonnenen Erkenntnisse konnten in verschiedene Produkte

  12. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  13. Fiscal 1999 international cooperation project report. Development of high-precision quantitative analysis technology for catalyst surfaces by electron spectroscopy; 1999 nendo denshi bunkoho ni yoru shokubai hyomen koseido teiryo bunseki bijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project targets to make analysis of surface chemical phenomena of solid catalysts possible, and establish the basis of intelligent design for catalytic materials, through development of an advanced electron spectroscopy for surface analysis. In fiscal 1999, the research was promoted by using the diffraction grating and driving mechanism introduced in fiscal 1998, and by developing the measurement result on silicon oxide films by radiation beam photoelectron spectroscopy. The measurement technique was established by the optimized measurement process which can treat variable parameters as constant. The analysis result of measurement data in fiscal 1999 showed the dependence of an electron damping length in silicon oxide films on radiation photon energy. The energy dependence well agreed with a theoretically obtained inelastic mean free path of electrons qualitatively, while was smaller by nearly 30% than the latter quantitatively. Measurement was made on the damping length in oxidation-active Gd and Nd oxide films. In both cases of Si and Si oxide film substrates, oxidation of substrates or formation of silicate was observed. (NEDO)

  14. Coking of residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  15. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  16. Engineering New Catalysts for In-Process Elimination of Tars

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Larry G. [Gas Technology Inst., Des Plaines, IL (United States)

    2012-09-30

    The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposed surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported

  17. exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    ) catalysts, ... The catalyst can be easily separated by simple filtration ... surface area by the single-point N2 adsorption method ... concentration of carbonate anions (by treating the cat- .... hydrotalcite phase along with copper hydroxide and.

  18. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  19. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  20. Polymer-bound rhodium hydroformylation catalysts

    NARCIS (Netherlands)

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  1. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  2. A novel magnetically recyclable heterogeneous catalyst

    Indian Academy of Sciences (India)

    propanesultone. 1. Introduction ... O. Scheme 2. The reaction of benzaldehyde with 1-phenyl-3- ... (2 mmol), catalyst (2 mol%, except for entries 7 and 9), room temperature. bCatalyst = 1 .... The electronic supporting information can be seen in.

  3. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  4. Hydrothermal performance of catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  5. Quick Guide to Flash Catalyst

    CERN Document Server

    Elmansy, Rafiq

    2011-01-01

    How do you transform user interface designs created in Photoshop or Illustrator into interactive web pages? It's easier than you think. This guide shows you how to use Adobe Flash Catalyst to create interactive UIs and website wireframes for Rich Internet Applications-without writing a single line of code. Ideal for web designers, this book introduces Flash Catalyst basics with detailed step-by-step instructions and screenshots that illustrate every part of the process. You'll learn hands-on how to turn your static design or artwork into working user interfaces that can be implemented in Fla

  6. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  7. VOC removal by microwave, electron beam and catalyst technique

    International Nuclear Information System (INIS)

    IghigeanuI, D.; Martin, D.; OproiuI, C.; Manaila, E.; Craciun, G.; Calinescu, I.; Zissulescu, E.

    2007-01-01

    A hybrid technique, developed for VOCs removal using microwave (MW) treatment, electron beam (EB) irradiation and catalyst method, is presented. Two hybrid laboratory installations, developed for the study of air pollution control by combined EB irradiation, MW irradiation and catalyst, are described. Air loaded with toluene was treated at different MW power levels, water content, flow rates, and different irradiation modes, separately and combined with MW and EB. Also, simultaneous EB and MW irradiation method was applied to SO 2 and NO x removal. Real synergy effects between EB induced NTP, MW induced NTP and catalysis can be observed

  8. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the...

  9. Rural Colleges as Catalysts for Community Change: The RCCI Experience.

    Science.gov (United States)

    Rubin, Sarah

    2001-01-01

    The Rural Community College Initiative challenges colleges in economically distressed regions to become catalysts for economic and community development and improved access to education. Led by college-community teams, the 24 sites have experimented with strategic approaches that include leadership development, entrepreneurship education, small…

  10. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  11. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  12. Rare behaviour of a catalyst pellet catalyst dynamics

    NARCIS (Netherlands)

    Westerterp, K.R.; Loonen, R.A.; Martens, A.

    1986-01-01

    Temperature overshoots and undershoots were found for a Pd on alumina catalyst pellet in its course towards a new steady state after a change in concentration of one of the reactants ethylene or hydrogen. When cooling the pellet, after heat-up by reaction, with pure hydrogen a sudden temperature

  13. Colloidal nanoparticles as catalysts and catalyst precursors for nitrite hydrogenation

    NARCIS (Netherlands)

    Zhao, Yingnan

    2015-01-01

    The most distinguished advantage to use colloidal methods for catalyst preparation is that the size and the shape of nanoparticles can be manipulated easily under good control, which is normally difficult to achieve by using traditional methods, such as impregnation and precipitation. This

  14. Synthesis of CaO-CeO2 catalysts by soft template method for biodiesel production

    Science.gov (United States)

    Zheng, Y. C.; Yu, X. H.; Yang, J.

    2017-06-01

    Biodiesel has recently gained extensive attention. Catalysts play an important role in producing biodiesel by transesterification reaction. In this study, CaO-CeO2 catalysts are developed as the solid base catalyst. Using PDMS-PEO as a structure-directing agent, the prepared CaO-CeO2 catalysts have a three-dimensional interconnected porous structure, which benefits the transesterification reaction. While the added Ce slightly decreases the catalytic activity, the stability of the catalyst shows remarkable improvement. Considering the catalytic activity and stability, the best catalyst is determined to be catalyst 0.15-1073 (Ce/Ca molar ratio of 0.15 and calcination temperature of 1073 K). Under optimum reaction conditions, the biodiesel yield reaches to 97.5% and metal leaching is 117.7 ppm. For catalyst 0.15-1073 regenerated after four reaction cycles, the biodiesel yield is 94.1%. The results reveal that the CaO-CeO2 catalyst has good potential for application in large-scale biodiesel production in the future.

  15. Performance characterization of hydrogen isotope exchange and recombination catalysts for tritium processing

    International Nuclear Information System (INIS)

    Suppiah, S.; Ryland, D.; Marcinkowska, K.; Boniface, H.; Everatt, A.

    2010-01-01

    AECL's hydrogen isotope exchange catalyst and recombination catalysts have been successfully applied to a wide range of industrial tritium-removal applications. The catalysts are used for Liquid Phase Catalytic Exchange (LPCE) and for gas-phase and trickle-bed recombination of hydrogen isotopes and have led to process simplification, improved safety and operational advantages. Catalyst performance design equations derived from laboratory testing of these catalysts have been validated against performance under industrial conditions. In a Combined Electrolysis and Catalytic Exchange (CECE) demonstration plant analyses of LPCE and recombiner efficiency were carried out as a function of catalyst activity over a wide range of operation. A steady-state process simulation used to model and design the hydrogen-water isotopic exchange processes, such as the CECE detritiation plant, was validated using the results of this demonstration. Catalyst development for isotope-exchange and recombination applications has continued over the last decade. As a result, significant improvements in catalyst performance have been achieved for these applications. This paper outlines the uniqueness of AECL's specialized catalysts and process designs for these applications with examples from laboratory and industrial case studies.

  16. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    Science.gov (United States)

    Abney, Morgan B.; Karr, Laurel; Paley, Mark S.; Donovan, David N.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  17. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    Directory of Open Access Journals (Sweden)

    Faris A J Al-Doghachi

    Full Text Available A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  18. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    Science.gov (United States)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  19. Deactivation of hydrophobic catalysts for a hydrogen isotope exchange: Application of the time-on-stream theory

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Lee, Han Soo; Ahn, Do-Hee; Kim, Jeong-Guk; Kim, Wi-soo; Sohn, SoonHwan

    2005-01-01

    A recycle reactor was built for the purpose of characterizing newly developed hydrophobic catalysts for a hydrogen isotope exchange. The catalytic rate constants of two types of hydrophobic catalysts were measured at a 100% relative humidity. The catalytic rate constants were measured at 60 deg C for 28 days and both the catalysts showed very high initial catalytic rate constants. The measured deactivation profile showed that the catalytic rate constants of both the catalysts were almost identical for 28 days. The deactivation of the catalysts was modelled based upon the time-on-stream theory. The deactivation profiles of the catalysts were estimated by using the model for a period of three years. The results showed that both the catalysts had a good exchange capacity for hydrogen isotopes and they could be applicable to a tritium removal facility that will be built at the Wolsong nuclear power plants in the near future

  20. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  1. Supporting Statewide Implementation of the Learning School Initiative. Catalyst Schools Research Study Report

    Science.gov (United States)

    Hammer, Patricia Cahape

    2016-01-01

    This is the first in a series of reports based on a research study, Developing Effective Professional Learning Communities in Catalyst Schools, conducted between February 2015 and June 2016. "Catalyst schools" were elementary- and secondary-level schools selected to participate in a pilot project intended to explore how best to support…

  2. Confined-interface-directed synthesis of Palladium single-atom catalysts on graphene/amorphous carbon

    DEFF Research Database (Denmark)

    Xi, Jiangbo; Sun, Hongyu; Zhang, Zheye

    2018-01-01

    The maximized atomic efficiency of supported catalysts is highly desired in heterogeneous catalysis. Therefore, the design and development of active, stable, and atomic metal-based catalysts remains a formidable challenge. To tackle these problems, it is necessary to investigate the interaction b...

  3. Online screening of homogeneous catalyst performance using reaction detection mass spectrometry

    NARCIS (Netherlands)

    Martha, C.T.; Elders, N.; Krabbe, J.G.; Kool, J.; Niessen, W.M.A.; Orru, R.V.A.; Irth, H.

    2008-01-01

    An integrated online screening system was developed to rapidly screen homogeneous catalysts for activity toward a selected synthesis. The continuous-flow system comprises standard HPLC pumps for the delivery of substrates, an HPLC autosampler for the injection of homogeneous catalysts, a

  4. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    Science.gov (United States)

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  5. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  6. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  7. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  8. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  9. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  10. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  11. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu

    Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.

  12. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  13. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  14. Self-regenerative function of the intelligent automotive catalyst

    International Nuclear Information System (INIS)

    Tanaka, Hirohisa; Nishihata, Yasuo

    2007-01-01

    Intelligent catalyst, in which noble metals are used as an active part of automotive catalyst, has been considered for keeping up their sufficient activity. The noble metals have a function of cleaning up the exhaust gas as well as that of self-regeneration. In 2002, a Pd system has been put to practical use, and continuously Rh and Pt systems have been commercialized. Now the catalyst has been used in more than three million vehicles. In this report, the atomic level mechanism of the catalyst and its self-regeneration function getting from analyses using synchrotron radiation are introduced. By the analysis using the Spring-8, the mechanism of keeping the active state of the Pd Perovskite Oxide without degradation was identified. The DXAFS (Dispersive X-ray Absorption Fine Structure) analysis in the ESRF (European Synchrotron Radiation Facility) made clear the self-regeneration mechanism of the Pd Perovskite Oxide. This knowledge could lead to the practical development of the Rh and Pt systems. The catalyst technology is counted on balancing resources of the noble metal and environmental sustainability. (A.H.)

  15. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  16. Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) Over Nickel-Phosphorus-Alumina Xerogel Catalyst Prepared by a Carbon-Templating Epoxide-Driven Sol-Gel Method.

    Science.gov (United States)

    Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu

    2016-05-01

    A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

  17. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil

    International Nuclear Information System (INIS)

    Maneerung, Thawatchai; Kawi, Sibudjing; Wang, Chi-Hwa

    2015-01-01

    Highlights: • CaO catalyst was successfully developed from wood gasification bottom ash. • CaCO 3 in bottom ash can be converted to CaO catalyst by calcination. • CaO catalysts derived from bottom ash exhibited high activity towards transesterification. • CaO catalysts derived from bottom ash can be reutilized up to four times. - Abstract: The main aim of this research is to develop environmentally and economically benign heterogeneous catalysts for biodiesel production via transesterification of palm oil. For this propose, calcium oxide (CaO) catalyst has been developed from bottom ash waste arising from woody biomass gasification. Calcium carbonate was found to be the main component in bottom ash and can be transformed into the active CaO catalyst by simple calcination at 800 °C without any chemical treatment. The obtained CaO catalysts exhibit high biodiesel production activity, over 90% yield of methyl ester can be achieved at the optimized reaction condition. Experimental kinetic data fit well the pseudo-first order kinetic model. The activation energy (E a ) of the transesterification reaction was calculated to be 83.9 kJ mol −1 . Moreover, the CaO catalysts derived from woody biomass gasification bottom ash can be reutilized up to four times, offering the efficient and low-cost CaO catalysts which could make biodiesel production process more economic and environmental friendly

  18. Methane partial oxidation over a LaCr0.85Ru0.15O3 catalyst : Characterization, activity tests and kinetic modeling

    NARCIS (Netherlands)

    Melchiori, T.; Di Felice, L.; Mota, N.; Navarro, R.M.; Fierro, J.L.G.; Sint Annaland, van M.; Gallucci, F.

    2014-01-01

    A new LaCr0.85Ru0.15O3 perovskite-type catalyst for CH4 partial oxidation with a high activity and selectivity for syngas with good thermal stability and resistance against coking has been developed. In this paper, the catalyst preparation method, catalyst characterization, results of catalytic

  19. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 25, 1990--October 24, 1991: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  20. Study of the oxides nature effect of rare and rare earth elements on the aluminium-chromium catalyst properties

    International Nuclear Information System (INIS)

    Dadashev, B.A.; Abbasov, S.G.; Sarydzhanov, A.A.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1975-01-01

    Adsorption studies have shown that oxides of rare and rare earth elements REE appreciably influence the structure of aluminium-chrome catalyst. Alkaline promotors, unlike REE, contribute to the formation of developed contact surface. Electrophysical investigations show that oxides of rare elements introduced into the catalyst increase its conductivity and activation energy. As for REE oxides, they decrease the conductivity and increase the activation energy. Catalysts with developed surface and high conductivity are also more active in the reaction of isopentane dehydration

  1. Strengthening The Link Between Conservation and Sustainable Development: Can Ecotourism Be a Catalyst? The Case of Monviso Transboundary Biosphere Reserve, Italy

    OpenAIRE

    Mondino, Elena

    2017-01-01

    The dichotomy of conservation vs. sustainable development has generated numerous debates since the introduction of the latter in the late 1980s. When UNESCO introduced the Biosphere Reserve concept in the early ‘70s, it drew even more attention to the matter. In the recent past, many initiatives to address the issue gained ground not only across Europe, but worldwide. This is the case of ecotourism, a responsible (and sustainable) form of tourism that takes place in natural areas, sustains lo...

  2. In silico search for novel methane steam reforming catalysts

    International Nuclear Information System (INIS)

    Xu, Yue; Lausche, Adam C; Khan, Tuhin S; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K; Bligaard, Thomas; Wang, Shengguang

    2013-01-01

    This paper demonstrates a method for screening transition metal and metal alloy catalysts based on their predicted rates and stabilities for a given catalytic reaction. This method involves combining reaction and activation energies (available to the public via a web-based application ‘CatApp’) with a microkinetic modeling technique to predict the rates and selectivities of a prospective material. This paper illustrates this screening technique using the steam reforming of methane to carbon monoxide and hydrogen as a test reaction. While catalysts are already commercially available for this process, the method demonstrated in this paper is very general and could be applied to a wide range of catalytic reactions. Following the steps outlined herein, such an analysis could potentially enable researchers to understand reaction mechanisms on a fundamental level and, on this basis, develop leads for new metal alloy catalysts. (paper)

  3. Pretreatment of Platinum/Tin Oxide-Catalyst

    Science.gov (United States)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  4. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  5. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  6. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  7. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  8. Iron Fischer-Tropsch Catalysts Prepared by Solvent-Deficient Precipitation (SDP: Effects of Washing, Promoter Addition Step, and Drying Temperature

    Directory of Open Access Journals (Sweden)

    Kyle M. Brunner

    2015-07-01

    Full Text Available A novel, solvent-deficient precipitation (SDP method for catalyst preparation in general and for preparation of iron FT catalysts in particular is reported. Eight catalysts using a 23 factorial design of experiments to identify the key preparation variables were prepared. The catalysts were characterized by electron microprobe, N2 adsorption, TEM, XRD, and ICP. Results show that the morphology of the catalysts, i.e., surface area, pore volume, pore size distribution, crystallite sizes, and promoter distribution are significantly influenced by (1 whether or not the precursor catalyst is washed, (2 the promoter addition step, and (3 the drying condition (temperature. Consequently, the activity, selectivity, and stability of the catalysts determined from fixed-bed testing are also affected by these three variables. Unwashed catalysts prepared by a one-step method and dried at 100 °C produced the most active catalysts for FT synthesis. The catalysts of this study prepared by SDP compared favorably in activity, productivity, and stability with Fe FT catalysts reported in the literature. It is believed that this facile SDP approach has promise for development of future FT catalysts, and also offers a potential alternate route for the preparation of other catalysts for various other applications.

  9. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  10. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  11. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  12. Cobalt oxide-based catalysts deposited by cold plasma for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierski, P.; Jozwiak, L.; Sielski, J.; Tyczkowski, J., E-mail: jacek.tyczkowski@p.lodz.pl

    2015-11-02

    In proton exchange membrane fuel cells (PEMFC), both the anodic hydrogen oxidation reaction and the cathodic oxygen reduction reaction (ORR) require appropriate catalysts. So far, platinum-based catalysts are still the best option for this purpose. However, because these catalysts are too expensive for making commercially viable fuel cells, extensive research over the past decade has focused on developing noble metal-free alternative catalysts. In this paper, an approach based on cobalt oxide films fabricated by plasma-enhanced metal-organic chemical vapor deposition is presented. Such a material can be used to prepare catalysts for ORR in PEMFC. The films containing CoO{sub X} were deposited on a carbon paper thereby forming the electrode. Morphology and atomic composition of the films were investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The possibility of their application as the electro-catalyst for ORR in PEMFC was investigated and the electro-catalytic activities were evaluated by the electrochemical measurements and single cell tests. It was found that the fuel cell with Pt as the anode catalyst and CoO{sub X} deposit as the cathode catalyst was characterized by the open circuit voltage of 635 mV, Tafel slope of approx. 130 mV/dec and the maximum power density of 5.3 W/m{sup 2}. - Highlights: • Cobalt oxide catalyst for proton exchange membrane fuel cells was plasma deposited. • The catalyst exhibits activity for the oxygen reduction reaction. • Morphology and atomic composition of the catalyst were determined.

  13. Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Landis, David Dominic; Bligaard, Thomas

    2014-01-01

    The long-term stability of binary nanoparticles and clusters is one of the main challenges in the development of novel (electro-)catalysts for e.g. CO2 reduction. Here, we present a method for predicting the optimal composition and structure of alloy nanoparticles and clusters, with particular...

  14. Dynamic kinetic resolution of biaryl atropisomers by chiral dialkylaminopyridine catalysts.

    Science.gov (United States)

    Ma, Gaoyuan; Deng, Chao; Deng, Jun; Sibi, Mukund P

    2018-05-02

    The acylative dynamic kinetic resolution (DKR) of configurationally unstable biaryl atropisomers is achieved by using newly developed chiral dialkylaminopyridine catalysts with fluxional chirality. Various types of biaryl substrates containing phenolic structures were subjected to the DKR to obtain a range of acylated biaryl products with enantiomeric ratios up to 90 : 10.

  15. SunShot Catalyst Prize Competition Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2015-04-01

    This fact sheet is an overview of the Catalyst Energy Innovation Prize, an open innovation program launched in 2014 by the U.S. Department of Energy SunShot Initiative. This program aims to catalyze the rapid creation and development of products and solutions that address near-term challenges in the U.S. solar energy marketplace.

  16. Renewable feedstocks: the problem of catalyst deactivation and its mitigation

    NARCIS (Netherlands)

    Lange, Jean Paul

    2015-01-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in

  17. Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports

    Directory of Open Access Journals (Sweden)

    Hermenegildo Garcia

    2014-01-01

    Full Text Available This perspective paper summarizes the use of three nanostructured carbon allotropes as metal-free catalysts (“carbocatalysts” or as supports of metal nanoparticles. After an introductory section commenting the interest of developing metal-free catalysts and main features of carbon nanoforms, the main body of this paper is focused on exemplifying the opportunities that carbon nanotubes, graphene, and diamond nanoparticles offer to develop advanced catalysts having active sites based on carbon in the absence of transition metals or as large area supports with special morphology and unique properties. The final section provides my personal view on future developments in this field.

  18. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Kootenaei, A.H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-01-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V 2 O 5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere

  19. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Kootenaei, A.H. Shahbazi [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Towfighi, J., E-mail: towfighi@modares.ac.ir [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Khodadadi, A.; Mortazavi, Y. [Catalysis and Nanostructured Materials Laboratory, Oil and Gas Processing Center of Excellence, Department of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V{sub 2}O{sub 5} catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  20. A Critical Analysis of the Role of Moral Values as a Catalyst for Social and Political Development among People in Nigeria

    Directory of Open Access Journals (Sweden)

    Dr. Kehinde E. Obasola

    2015-02-01

    Full Text Available The modern global dispensation has had its toll on the moral lives of the people and this has brought about a dwindling in the perception of people on what constitute morality. In this regard, there has been series of criminal activities and particularly crimes and violence of different magnitude which today has been the hall-mark of the Nigerian nation. There have been cases of militancy, insurgencies and other criminal groups parading themselves around the country. Hence, this show that moral laxity has become the order of the day. Even those in government are also culpable as many of them are corrupt and inept. The situation is rather pathetic and the average Nigerian feels insecure in his own land. The purport of this is that morality which should have been the parameter for controlling these vices are no longer functioning. Therefore, this paper argues that for there to be sanity in our social and political lives as a nation, we must covet the principles enshrined in our moral values. The paper posited that there cannot be development where morality is not given prominence among the people

  1. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    Science.gov (United States)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  2. Advanced technologies in biodiesel new advances in designed and optimized catalysts

    CERN Document Server

    Islam, Aminul

    2015-01-01

    The inadequacy of fossil fuel is the main driving force of the future sustainable energy around the world. Since heterogeneous catalysis is used in chemical industry for biodiesel production, achieving optimal catalytic performance is a significant issue for chemical engineers and chemists. Enormous attention has been placed in recent years on the selection of heterogeneous catalyst in biodiesel industry, where the catalyst could be facilitated highly selective toward desired products, easily handled, separated from the reaction medium, and subsequently reused. This book stresses an overview on the contributions of tailored solid acid and base catalysts to catalytic biodiesel synthesis, and the in uences of heterogeneous catalyst properties on biodiesel yield in order to develop a better understanding of catalyst design for the green production process as well as practical applications in the biodiesel industry.

  3. The nature of the process of alkylation of isobutane by butenes in zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Patrilyak, K.I.; Bayburskiy, V.L.; Bortyshevskiy, V.A.; Galich, P.N.; Gutyrya, V.S.; Manza, I.A.

    1983-01-01

    The change in the concentration of butenes is studied in a reaction of alkylation of isobutane by butenes in a zeolite catalyst (Kt) in individual zones of a reactor relative to the length of the process. It is shown that the system is characterized by the presence of a period of development of the catalyst, whose length is a function of the conditions of catalyst activation and is from 15 to 20 minutes to 1 hour. Isomerization of butene-1 into butene-2 is discovered. It is shown that the most obvious isomerization is expressed for a catalyst sample active in nonoptimal conditions. The change in the concentration of the butenes in time in individual zones of the catalyst has a wavy nature.

  4. Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications.

    Science.gov (United States)

    Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig

    2018-05-28

    Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  6. Catalyst for Expanding Human Spaceflight

    Science.gov (United States)

    Lueders, Kathryn L.

    2014-01-01

    History supplies us with many models of how and how not to commercialize an industry. This presentation draws parallels between industries with government roots, like the railroad, air transport, communications and the internet, and NASAs Commercial Crew Program. In these examples, government served as a catalyst for what became a booming industry. The building block approach the Commercial Crew Program is taking is very simple -- establish a need, laying the groundwork, enabling industry and legal framework.

  7. Photosystem Inspired Peptide Hybrid Catalysts

    Science.gov (United States)

    2017-06-07

    materials defined at the molecular level. We propose a novel way to make hybrid catalyst composed of inorganic nanomaterials and peptides. The...Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research Laboratory Air...ORGANIZATION NAME(S) AND ADDRESS(ES) SEOUL NATIONAL UNIVERSITY SNUR&DB FOUNDATION RESEARCH PARK CENTER SEOUL, 151742 KR 8. PERFORMING ORGANIZATION REPORT

  8. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  9. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    International Nuclear Information System (INIS)

    HALGREN DL

    2008-01-01

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation

  10. Report on the evaluation of the development of the catalyst surface high accuracy quantitative analysis technology using electron spectroscopy; Denshi bunkoho ni yoru shokubai hyomen koseido teiryo bunseki gijutsu no kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    An objective evaluation from a third party was conducted on the purpose, plan, execution method, achievement, etc. of a project 'The devilment of the catalyst surface high accuracy quantitative analysis technology using electron spectroscopy.' The purpose of the project is to make the relationing possible between the analytical results of the catalyst surface and the catalyst performance which has been so far difficult by heightening the accuracy of the catalyst quantitative surface analytical accuracy using the electron spectroscopy. The purpose and significance are judged to be worth a lot. This project is an industry/university/government joint project between the two countries. The project is excellent both in connection among research institutes and leadership of chief researchers, and it is judged that the joint research system fully functioned. The term of the project was shortened from 3 years in the first plan to 2 years, and therefore, the study was finished only on silicon oxide and organic thin films. However, it was determined that the study results are to be run in the magazine 'Surface and Interface Analysis,' which indicates that the achievement was judged to be very worth in the academic viewpoint. (NEDO)

  11. Development of the first well-defined tungsten oxo alkyl derivatives supported on silica by SOMC: towards a model of WO3/SiO2 olefin metathesis catalyst

    KAUST Repository

    Mazoyer, Etienne; Merle, Nicolas; Mallmann, Aimery De; Basset, Jean-Marie; Berrier, Elise; Delevoye, Laurent; Paul, Jean Franois; Nicholas, Christopher P.; Gauvin, Ré gis M.; Taoufik, Mostafa

    2010-01-01

    A well-defined, silica-supported tungsten oxo alkyl species prepared by the surface organometallic chemistry approach displays high and sustained activity in propene metathesis. Remarkably, its catalytic performances outpace those of the parent imido derivative, underlining the importance of the oxo ligand in the design of robust catalysts. © 2010 The Royal Society of Chemistry.

  12. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    International Nuclear Information System (INIS)

    Sanap, Kiran K.; Varma, S.; Waghmode, S.B.; Bharadwaj, S.R.

    2015-01-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H_2 and O_2 reaction with initial H_2 concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO_2, CH_4, CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  13. Groningen: catalyst for Europe

    International Nuclear Information System (INIS)

    Correlje, A.F.; Odell, P.R.

    1999-01-01

    An overview of the development of the Nederlandse Aardolie Maatschappij (NAM) operated Dutch Groningen gas field from its inception in 1969 to the present is presented, and the marketing of the gas by NAM, and the natural monopoly position of Gasunie and Groningen are discussed. The emergence of alternative suppliers, the declaration that gas was a scarce commodity leading to the restraining of gas demand, the development of other supplies including those from Algeria and the UK, and finally the discarding of the fallacy that gas was scarce are examined. A 1969 estimate of NAM gas exports planned for 1975 and competition for Groningen gas in the 1970's are illustrated, and the cumulative production from 1965-1990 is plotted. The liberalisation of the Dutch gas industry with customers allowed to choose their supplier as set out in the draft 1998 Gas Law, the rejuvenation of Gasunie marketing strategy, and the benefits of liberalisation are considered. (UK)

  14. Engineered Sulfur‐Resistant Catalyst System with an Assisted Regeneration Strategy for Lean‐Burn Methane Combustion

    Science.gov (United States)

    Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika

    2018-01-01

    Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434

  15. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  16. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  17. Water detritiation: better catalysts for liquid phase catalytic exchange

    International Nuclear Information System (INIS)

    Braet, J.

    2005-01-01

    Fusion reactors are our hope for a clean nuclear energy. But as they shall handle huge amounts of tritium, 1.5 10 19 Bq GWth -1 a -1 or about 50 000 times more tritium than light water fission reactors, they need detritiation. Most tritium losses can be trapped as or can easily be transformed into tritiated water. Water detritiation is preferably based on the multiplication of the large equilibrium isotope effect during the exchange reaction of tritium between hydrogen gas and liquid water in a counter current trickle bed reactor. Such LPCE (Liquid Phase Catalytic Exchange) requires an efficient hydrophobic catalyst. SCK-CEN invented and developed such a catalyst in the past. In combination with an appropriate packing, different batches of this catalyst performed very well during years of extensive testing, allowing to develop the ELEX process for water detritiation at inland reprocessing plants. The main objectives of this study were to reproduce and possibly improve the SCK-CEN catalyst for tritium exchange between hydrogen and liquid water; and to demonstrate the high overall exchange rate and thus high detritiation factors that can be realized with it in a small and simple LPCE column under typical but conservative operating conditions

  18. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    Science.gov (United States)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949

  20. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    Science.gov (United States)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-10-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.

  1. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism.

    Science.gov (United States)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.

  2. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  3. Hydrogen production by dry reforming of methane with carbon dioxide in one-dimensional nickel-based catalysts

    International Nuclear Information System (INIS)

    Lopez U, A. C.

    2016-01-01

    The main objective of this thesis is development of nickel catalysts supported over 1D matrix of cerium oxide, to be used in dry reforming methane reaction with carbon dioxide for hydrogen production. The catalysts were characterized by: Temperature Programmed Reduction (TPR), Scanning Electronic Microscopy (Sem), Surface Area (Bet method) an X Ray Diffraction (XRD). The TPR technique allowed to define reduction temperature of the active phase in the catalyst, Sem technique showed that the CeO_2 matrix had a nano rod morphology. XRD allowed to identify the crystalline phases of the catalysts. Finally, the catalysts were tested in the dry reforming methane reaction, high catalytic activity and hydrogen production were performed at 700 degrees Celsius and the catalyst with 30 wt.% of nickel. (Author)

  4. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  5. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  6. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  7. Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Thitsartarn, Warintorn; Maneerung, Thawatchai; Kawi, Sibudjing

    2015-01-01

    In this work, Ca-doped Ce-incorporated SBA-15 (Ca/CeS) catalyst was successfully synthesized by using direct synthesis of Ce-incorporated SBA-15 followed by impregnation of CaO (calcium oxide). The maximum Si/Ce molar ratio that Ce atoms can be incorporated successfully into the mesoporous framework was found to be 5 (CeS-5). After the impregnation of 30 wt. % Ca, the obtained 30Ca/CeS-5 catalysts showed the superior catalytic performance for transesterification reaction of palm oil with methanol and also the higher catalytic activity as compared to other supported catalysts, i.e. CaO/CeO 2 and CaO–CeO 2 /SBA-15. This can be attributed to the well-dispersion of CaO on the CeS-5 support surface. Furthermore, it was found that the leaching of Si, Ce and Ca from the catalyst into biodiesel produced was negligible (i.e. <1 ppm after 7 cycles), indicating the strong interaction between CaO and CeS-5 support. As a result, the 30Ca/CeS-5 catalyst can be reused at least 15 cycles with insignificant decrease in catalytic activity, offering the efficient CaO-based catalyst for biodiesel production. - Highlights: • Mesoporous Ca-based catalyst was successfully developed for biodiesel production. • Catalyst exhibited high activity towards transesterification (FAME yield > 98%). • Catalyst can be effectively re-used at least 15 cycles. • Extremely low catalyst contaminant (<1 ppm) was presented

  8. A built-in radiotracer (24Na) for measuring circulation catalyst rates

    International Nuclear Information System (INIS)

    Domondon, D.B; Berbano, M.C.

    1975-01-01

    A local petroleum refinery intended to calibrate its catalyst flow measuring instrument (propeller blade) using the radioactive tracer technique (RTT). For this purpose, a method of incorporating a suitable radiotracer in commercial catalyst beads had to be found. Two methods of labelling are described. One method involved the incorporation of the radiotracer in a gel of the same composition as the commercial catalyst and subsequent conversion of the gel into a from like that of the commercial catalyst beads. Another method utilized the strong adsorptive properties of the commercial catalyst beads for the chosen isotopes, e.g., 144 Cs, 46 Sc. To effect quantitative adsorption, commercial catalyst beads were simply stirred in a slightly acidic (pH4) chloride solution of the radiotracers for some time. The radiotracers were found to distribute almost uniformly over the entire catalyst surface and no evidence of volatilization of the isotopes from the catalyst surface under condition of use in commercial units was observed. Another probable method was suggested by the Research and Development Division, Philippine Atomic Energy Commission. Aluminium is a major component of the ceramic catalyst beads and sodium is present as impurity. Hence, a radiotracer ( 24 Na) can be formed in the beads by the reaction 23 Na (n,gamma) 24 Na, 27 Al (n,alpha) 24 Na. This possible method of simply irradiating the commercial catalyst beads in the reactor thereby inducing the radiotracer. 24 Na in situ fulfils all the criteria for the selection of an appropriate radiotracer. The method is very simple but reliable

  9. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    amphiphilic principles used in the foldamer catalysts were extended to a few other systems, particularly to interfacially cross-linked reverse micelles and micelles. These features enabled unusual catalytic features such as basic/nucleophilic catalysis under acidic conditions. We were able to create highly active metal nanoclusters catalysts whose local environment could be tuned by the organic framework. We were even able to create a “catalytic nanomachine” that grabs the substrate to the encapsulated Au clusters, which efficiently convert the substrate to the product that is rapidly ejected due to its different binding properties. Our research has important impacts on fundamental and applied energy-related sciences. On the fundamental level, it tests important biocatalytic principles on relatively simple synthetic systems and is expected to afford deeper understanding of biological catalysis. On the practical level, the research is anticipated to lead to “smart” catalysts and open up exiting applications in chemical analysis, reaction control, and materials synthesis. Part 2. Electrochemical Reduction of CO₂ The primary objective of our research involving the electrochemical reduction of carbon dioxide is to apply a multidisciplinary approach toward developing a greater understanding of the problem of efficiently converting CO₂ to hydrocarbons through electrochemical routes. Our goal is to provide a better understanding of the principles that underlie the electrocatalytic reduction of CO₂ at electrode surfaces and the molecular pathways that lead to desired compounds. This understanding is essential for the design and development of new catalytic materials for the selective production of renewable feedstocks. The electrochemical reduction of CO₂ involves the formation of various reaction products and adsorbed intermediates whose distribution depends upon the nature of the electrode material and the electrochemical conditions, including applied potential

  10. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  11. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    Two approaches are undertaken in the present work to reduce the emission of NO{sub x}: by means of catalytic removal, and by NO absorption in ionic liquids. The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N{sub 2}. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts in the flue gas when biomass is combusted. By co-firing with large amounts of CO{sub 2}-neutral straw or wood (to meet stringent CO{sub 2} emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2}. This work, together with an introduction to the catalytic removal of NO{sub x}, are described in chapter 3. The remainder of the first part is concerned with the catalytic NO{sub x} removal (chapter 4) and it addresses the upscaling of the best catalyst candidate. The catalyst was mixed with the natural binding clay (sepiolite) to upscale the selected catalyst to the monolithic level, suitable for installation in gas stream with high flows, e.g. a flue gas duct of a power plant. A series of catalyst pellets with increasing levels of sepiolite were

  12. The Performance of the Trickle Bed Reactor Packed with the Pt/SDBC Catalyst Mixture for the CECE Process

    International Nuclear Information System (INIS)

    Seungwoo Paek; Do-Hee Ahn; Heui-Joo Choi; Kwang-Rag Kim; Hongsuk Chung; Sung-Paal Yim; Minsoo Lee; Kyu-Min Song; Soon Hwan Sohn

    2006-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE process is composed of an electrolysis cell and a LPCE (Liquid Phase Catalytic Exchange) column. This paper describes the experimental results of the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst for the development of the LPCE column of the CECE process. The hydrophobic Pt/SDBC (Styrene Divinyl Benzene Copolymer) catalyst has been developed by Korean researchers for the LPCE column of WTRF (Wolsong Tritium Removal Facility). An experimental apparatus was constructed for the various experiments with the different parameters, such as hydrogen flow rate, temperature, and the structure of the mixed catalyst column. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring). The performance of the catalyst bed was expressed as an overall rate constant Kya. To improve the performance of the trickle bed, the modification of the catalyst bed design (changing the shape of the catalyst complex and diluting with inert) has been investigated. (author)

  13. Influence of ceria on the thermally durability of Pt/Rh automotive catalyst

    International Nuclear Information System (INIS)

    Muraki, H.; Zhang, G.

    1998-01-01

    Full text: The use of cerium oxide as an oxygen storage component in automotive three-way catalysts has been well established. More recently the requirement of the three-way catalysts against the increase of the severity in emission standards has focused attention on the development of more active, durable catalysts. The thermally durability of Pt/Rh catalyst can be achieved by the utilization of thermally stable ceria as well as optimization of washcoat composition and structure in order to control the extent of interaction between PGM and ceria. In the present paper, we describe the influence of newly developed washcoat components and PGM interaction with ceria on catalytic performance. First, to clear that the interaction between PGM and ceria contributes to catalytic performance, several kinds of catalysts which have the varied interactions between PGM and ceria were prepared using engineered washcoat techniques and evaluated in the model gas reactor. It was obvious that the difference in performance among them after aging derived from a diversity of interactions between Pt, Rh, and ceria. Second, for the purpose of determining the thermally durability of the developed Pt/Rh catalyst, the catalysts including the current catalyst were aged under three different temperatures and evaluated on engine dynamometer. Result of engine dynamometer evaluation revealed that significant improvement in the thermal durability can be achieved by optimizing the PGM-ceria interaction. In conclusion, we recognize that a thermal durability of a three-way catalyst can be improved by the stabilization of proper PGM-ceria interaction after aging as well as the utilization of thermally durable ceria material

  14. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  15. High-throughput technology for novel SO2 oxidation catalysts

    International Nuclear Information System (INIS)

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO 2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO 2 to SO 3 . High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO 2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO 2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO 3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. (topical review)

  16. Novel sample preparation for operando TEM of catalysts.

    Science.gov (United States)

    Miller, Benjamin K; Barker, Trevor M; Crozier, Peter A

    2015-09-01

    A new TEM sample preparation method is developed to facilitate operando TEM of gas phase catalysis. A porous Pyrex-fiber pellet TEM sample was produced, allowing a comparatively large amount of catalyst to be loaded into a standard Gatan furnace-type tantalum heating holder. The increased amount of catalyst present inside the environmental TEM allows quantitative determination of the gas phase products of a catalytic reaction performed in-situ at elevated temperatures. The product gas concentration was monitored using both electron energy loss spectroscopy (EELS) and residual gas analysis (RGA). Imaging of catalyst particles dispersed over the pellet at atomic resolution is challenging, due to charging of the insulating glass fibers. To overcome this limitation, a metal grid is placed into the holder in addition to the pellet, allowing catalyst particles dispersed over the grid to be imaged, while particles in the pellet, which are assumed to experience identical conditions, contribute to the overall catalytic conversion inside the environmental TEM cell. The gas within the cell is determined to be well-mixed, making this assumption reasonable. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan

    2014-02-20

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  19. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.

    Science.gov (United States)

    Wan, Gang; Yu, Pengfei; Chen, Hangrong; Wen, Jianguo; Sun, Cheng-Jun; Zhou, Hua; Zhang, Nian; Li, Qianru; Zhao, Wanpeng; Xie, Bing; Li, Tao; Shi, Jianlin

    2018-04-01

    The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  1. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan; Corgié , Sté phane C.; Aneshansley, Daniel J.; Wang, Peng; Walker, Larry P.; Giannelis, Emmanuel P.

    2014-01-01

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel sample preparation for operando TEM of catalysts

    International Nuclear Information System (INIS)

    Miller, Benjamin K.; Barker, Trevor M.; Crozier, Peter A.

    2015-01-01

    A new TEM sample preparation method is developed to facilitate operando TEM of gas phase catalysis. A porous Pyrex-fiber pellet TEM sample was produced, allowing a comparatively large amount of catalyst to be loaded into a standard Gatan furnace-type tantalum heating holder. The increased amount of catalyst present inside the environmental TEM allows quantitative determination of the gas phase products of a catalytic reaction performed in-situ at elevated temperatures. The product gas concentration was monitored using both electron energy loss spectroscopy (EELS) and residual gas analysis (RGA). Imaging of catalyst particles dispersed over the pellet at atomic resolution is challenging, due to charging of the insulating glass fibers. To overcome this limitation, a metal grid is placed into the holder in addition to the pellet, allowing catalyst particles dispersed over the grid to be imaged, while particles in the pellet, which are assumed to experience identical conditions, contribute to the overall catalytic conversion inside the environmental TEM cell. The gas within the cell is determined to be well-mixed, making this assumption reasonable. - Highlights: • High in-situ conversion of CO to CO 2 achieved by a novel TEM sample preparation method. • A 3 mm fiber pellet increases the TEM sample surface area by 50×. • Operando atomic resolution is maintained by also including a 3 mm grid in the sample. • Evidence for a well-mixed gas composition inside the ETEM cell is given

  3. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  4. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  5. Study on positron annihilation spectroscopy of methanol synthesis catalyst CuO/ZnO

    International Nuclear Information System (INIS)

    Liu Qisheng; Dai Guohuan; Sun Jiying; Ding Yingru; Yao Jianhua

    1989-01-01

    A new method was developed for determining the solid solubility of a metal oxide series prepared by precipitation using the positron lifetime parameters. The positron lifetime spectra of a series of CuO/ZnO catalysts prepared by precipitation were measured, in which the CuO at % contents were different before and after reducing. The relations between the solid solubility of the catalysts and the positron lifetime parameters were obtained, from which a result of solid solubility of 12 CuO at% after reducing had been found. The viewpoint that the Cu + ion acted as the active centre in the CuO/ZnO catalyst was supported

  6. The water gas shift reaction for automotive applications: preparation and testing of non pyrophoric copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Quiney, A.S.; Germani, G.; Schuurman, Y.; Mirodatos, C. [Institut de Recherches sur la Catalyse - CNRS, 69 - Villeurbanne (France); Masset, A.S.F. [PSA Peugeot Citroen, 78 - Velizy Villacoublay (France)

    2003-09-01

    The aim of this study are: 1)to compare the performance of a non-pyrophoric catalyst (CuO/CeO{sub 2}/Al{sub 2}O{sub 3}) to that of a commercial copper catalyst (CuO/ZnO/Al{sub 2}O{sub 3}). 2)to develop a kinetic expression that fits the experimental data in order to design a WGS reactor. The comparison between the two catalysts shows that the latter (CuO/CeO{sub 2}/Al{sub 2}O{sub 3}) needs to be run at temperatures about 100 degrees Celsius higher. (O.M.)

  7. Comparison of sodium borohydride hydrolysis kinetics on Co-based nanocomposite catalysts

    International Nuclear Information System (INIS)

    Hristov, Georgi; Chorbadzhiyska, Elitsa; Mitov, Mario; Rashkov, Rashko; Hubenova, Yolina

    2011-01-01

    In this study, we compared the results, obtained with several Co-based nanocomposites (CoMnB, CoNiMnB and CoNiMoW) produced by electrodeposition on Ni-foam, as catalysts for the sodium borohydride hydrolysis reaction. Based on the comparative analyses, we propose CoNiMnB electrodeposits as most suitable catalysts for development of Hydrogen-on-Demand (HOD) system, while CoNiMoW ones as potential anodes for Direct Borohydride Fuel Cells (DBFCs). Keywords: Hydrogen-on-Demand (HOD), Nanocomposites, Hydrolysis, Catalyst, Kinetic

  8. Recent Advances in the Mechanistic Studies of Alkylaromatic Conversions over Zeolite Catalysts

    International Nuclear Information System (INIS)

    Min, Hyung-Ki; Hong, Suk Bong

    2013-01-01

    The transformation of alkylaromatic hydrocarbons using zeolite catalysts play big part in the current petrochemical industry. Here we review recent advances in the understanding of the reaction mechanisms of various alkylaromatic conversions with respect to the structural and physicochemical properties of zeolite catalysts employed. Indeed, the shape-selective nature of zeolite catalysts determines the type of reaction intermediates and hence the prevailing reaction mechanism together with the product distribution. The prospect of zeolite catalysis in the development of more efficient petrochemical processes is also described

  9. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  11. Transmission electron microscopy on live catalysts

    NARCIS (Netherlands)

    Bremmer, G.M.

    2017-01-01

    The dissertation describes TEM experiments on heterogeneous catalysts. Starting with characterization of (Ni/Co)MoS2 on Alumina and the effect of oxidation, and sequential resulfidation. After that, Co-based catalysts are used for high-resolution (S)TEM/EDX caracterization studies, and in situ

  12. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  13. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  14. The strange case of the "oscillating" catalysts

    NARCIS (Netherlands)

    Busico, [No Value; Cipullo, R; Kretschmer, W; Talarico, G; Vacatello, M; Castelli, VV

    The field of stereoselective propene polymerization has been dramatically innovated by the discovery of homogeneous metallocene-based catalysts with well-defined and tunable molecular structure. Of all, "oscillating" metallocenes are probably the most ingenious and challenging example of catalyst

  15. Isobutane alkylation over solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kozorezov, Y.I.; Lisin, V.I.

    1979-05-01

    Commercial alumina modified with 6Vertical Bar3< by wt boron trifluoride was active in isobutane alkylation with ethylene in a flow reactor at 5:1 isobutane-ethylene and 5-20 min reaction time. The reaction rate was first-order in ethylene and increased with increasing temperature (20/sup 0/-80/sup 0/C) and ethylene pressure (0.2-3 atm). The calculated activation energy was 8.4 kj. Kinetic data and the activity of tert.-butyl chloride, but not ethyl chloride as alkylating agents in place of ethylene suggested a carbonium-ion chain mechanism involving both surface and gas-phase reactions. The ethylene-based yield of the alkylate decreased from 132 to 41Vertical Bar3< by wt after nine hours on stream, and its bromine number increased from 0.2 to 1 g Br/sub 2//100 ml. This inhibition was attributed to adsorption on the active acidic sites of the reaction products, particularly C/sub 10//sup +/ olefins. Catalyst stabilization could probably be achieved by selecting an appropriate solvent that would continuously desorb the inhibiting products from the catalyst surface.

  16. Sixtieth Anniversary of Ziegler-Natta Catalysts and Stereospecific Polymerization

    Directory of Open Access Journals (Sweden)

    Janović Z.

    2015-07-01

    Full Text Available This review article highlights the history of the discoveries of organometallic catalysts and stereospecific polymerization of α-olefins, dienes and a number of vinyl monomers by Karl Ziegler and Giulio Natta sixty years ago, their developments and recent progress. As one of the most important achievements in the field of catalysis, macromolecular science and polymer materials, their inventors were awarded the Nobel Prize in Chemistry in 1963 “for their discoveries in the field of chemistry and technology of high polymers”. These discoveries have stimulated an intensive, both basic and applied research all over the world, up to the present times, leading to great development of the polymer industry. The important biographical data and scientific advancements of K. Ziegler and G. Natta are presented as well. Karl Ziegler, a German scientist, Director of Max Planck Institute for Coal Research in Mülheim, besides many scientific achievements, in 1953 discovered a new process for the polymerization of ethylene into linear polyethylene under mild conditions by using titanium chloride and alkyl aluminium catalytic system that was superior to all existing polymerization. Giulio Natta, an Italian scientist, Director of the Department of Industrial Chemistry at Polytechnic, University of Milan, besides many achievements in petrochemical processes, in 1954 obtained for the first time isotactic polypropylene and Montecatini Co. started its production already in 1958. He conducted pioneering studies on the chain microstructure of synthetic organic polymers and postulated the mechanisms of stereospecific polymerizations. Since the discovery of the Zeigler-Natta catalyst, stereospecific polymerization and processes, significant developments have occurred. The breakthrough in polymerization processes such as fluid bed, liquid phase loop reactor and reactor granule technology led to significant development and growth of polyolefin production. In the 1980s

  17. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    Science.gov (United States)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  18. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  19. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel–Crafts acylation

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn

    2016-01-15

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H{sub 3}PW{sub 12}O{sub 40} denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6–31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%. - Graphical abstract: The PTA@ZIF-67 catalysts with different PTA content were prepared by encapsulating the PTA into ZIF-67 cage and the as-synthesized catalysts exhibited good catalytic activity for the Friedel–Craft acylation of anisole with benzoyl chloride.

  20. Characterizing the structural degradation in a PEMFC cathode catalyst layer : carbon corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.; Stumper, J. [Ballard Power Systems, Burnaby, BC (Canada); Gyenge, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2009-07-01

    The structural degradation resulting from carbon corrosion of a cathode catalyst layer in a polymer electrolyte membrane fuel cell (PEMFC) was investigated in this study. In order to oxidize the catalyst carbon support, the PEMFC catalyst layer was subjected to a 30 hour accelerated stress test that cycled the cathode potential from 0.1 to 1.5 VRHE at 30 and 150 second intervals. The rate and amount of carbon loss was determined by measuring the carbon dioxide in the exhaust gas. The structural degradation of the catalyst layer was characterized and correlated to the PEMFC performance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and polarization analyses. This analysis revealed a clear thinning of the cathode catalyst layer and gas diffusion layer carbon sub-layer, and a reduction in the effective platinum surface area due to the carbon support oxidation. The thinned cathode catalyst layer changed the water management, and increased the voltage loss associated with the oxygen mass transport and catalyst layer ohmic resistance. In order to further develop and verify this methodology for other degradation mechanisms, emphasis was placed on EIS measurements.

  1. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids

    International Nuclear Information System (INIS)

    Li, Shuwen; Guo, Shujing; Yang, Honglei; Gou, Galian; Ren, Ren; Li, Jing; Dong, Zhengping; Jin, Jun; Ma, Jiantai

    2014-01-01

    Highlights: • The new catalyst was fabricated by a facile and environment-friendly approach. • The catalyst has excellent activity and reusability due to the synergistic effect. • The approach provides a green way to synthesize low cost Au-based catalysts. - Abstract: New catalyst, prepared through Au nanoparticles anchored on the Ionic Liquid of 3,4,9,10-perylene tetracarboxylic acid-noncovalent functionalized graphene (Au/PDIL-GS), was fabricated using a facile and environment-friendly approach. The information of the morphologies, sizes, dispersion of Au nanoparticles (NPs) and chemical composition for the as-prepared catalysts was verified by systematic characterizations, including transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectra, X-ray diffraction (XRD) and X-Ray photoelectron spectroscopy (XPS). As a new catalyst, the resulting Au/PDIL-GS exhibited excellent catalytic activity in the reduction of 4-nitrophenol because of the synergistic effect between the PDIL-GS and Au NPs. The facile and environment-friendly approach provides a green way to effectively synthesize low cost Au-based catalysts for 4-NP reduction and is promising for the development of other useful materials

  2. Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions.

    Science.gov (United States)

    Wolf, Matthew W; Vargas, David A; Lehnert, Nicolai

    2017-05-15

    The small, stable heme protein myoglobin (Mb) was modified through cofactor substitution and mutagenesis to develop a new catalyst for carbene transfer reactions. The native heme was removed from wild-type Mb and several Mb His64 mutants (H64D, H64A, H64V), and the resulting apoproteins were reconstituted with ruthenium mesoporphyrin IX (RuMpIX). The reconstituted proteins (RuMb) were characterized by UV-vis and circular dichroism spectroscopy and were used as catalysts for the N-H insertion of aniline derivatives and the cyclopropanation of styrene derivatives. The best catalysts for each reaction were able to achieve turnover numbers (TON) up to 520 for the N-H insertion of aniline, and 350 TON for the cyclopropanation of vinyl anisole. Our results show that RuMb is an effective catalyst for N-H insertion, with the potential to further increase the activity and stereoselectivity of the catalyst in future studies. Compared to native Mb ("FeMb"), RuMb is a more active catalyst for carbene transfer reactions, which leads to both heme and protein modification and degradation and, hence, to an overall much-reduced lifetime of the catalyst. This leads to lower TONs for RuMb compared to the iron-containing analogues. Strategies to overcome this limitation are discussed. Finally, comparison is also made to FeH64DMb and FeH64AMb, which have not been previously investigated for carbene transfer reactions.

  3. High throughput experimentation for the discovery of new catalysts

    International Nuclear Information System (INIS)

    Thomson, S.; Hoffmann, C.; Johann, T.; Wolf, A.; Schmidt, H.-W.; Farrusseng, D.; Schueth, F.

    2002-01-01

    Full text: The use of combinatorial chemistry to obtain new materials has been developed extensively by the pharmaceutical and biochemical industries, but such approaches have been slow to impact on the field of heterogeneous catalysis. The reasons for this lie in with difficulties associated in the synthesis, characterisation and determination of catalytic properties of such materials. In many synthetic and catalytic reactions, the conditions used are difficult to emulate using High Throughput Experimentation (HTE). Furthermore, the ability to screen these catalysts simultaneously in real time, requires the development and/or modification of characterisation methods. Clearly, there is a need for both high throughput synthesis and screening of new and novel reactions, and we describe several new concepts that help to achieve these goals. Although such problems have impeded the development of combinatorial catalysis, the fact remains that many highly attractive processes still exist for which no suitable catalysts have been developed. The ability to decrease the tiFme needed to evaluate catalyst is therefore essential and this makes the use of high throughput techniques highly desirable. In this presentation we will describe the synthesis, catalytic testing, and novel screening methods developed at the Max Planck Institute. Automated synthesis procedures, performed by the use of a modified Gilson pipette robot, will be described, as will the development of two 16 and 49 sample fixed bed reactors and two 25 and 29 sample three phase reactors for catalytic testing. We will also present new techniques for the characterisation of catalysts and catalytic products using standard IR microscopy and infrared focal plane array detection, respectively

  4. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.

    Science.gov (United States)

    Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A; Li, Xuebing; Lercher, Johannes A

    2010-01-21

    A simple, green, cost- and energy-efficient route for converting phenolic components in bio-oil to hydrocarbons and methanol has been developed, with nearly 100% yields. In the heterogeneous catalysts, RANEY Ni acts as the hydrogenation catalyst and Nafion/SiO(2) acts as the Brønsted solid acid for hydrolysis and dehydration.

  5. Freeze-drying for controlled nanoparticle distribution in Co/SiO 2 Fischer–Tropsch catalysts

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; Munnik, P.; Talsma, H.; de Jongh, P.E.; de Jong, K.P.

    2013-01-01

    Controlling the nanoparticle distribution over a support is considered essential to arrive at more stable catalysts. By developing a novel freeze drying method, the nanoparticle distribution was successfully manipulated for the preparation of Co/SiO2 Fischer-Tropsch catalysts using a commercial

  6. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    Science.gov (United States)

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  7. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    International Nuclear Information System (INIS)

    Handayani, Prima Astuti; Abdullah; Hadiyanto, Dan

    2015-01-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form

  8. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Prima Astuti [Department of Chemical Engineering, Diponegoro University (Indonesia); Chemical Engineering Program, Faculty of Engineering, Semarang State University (Indonesia); Abdullah; Hadiyanto, Dan, E-mail: hadiyanto@live.undip.ac.id [Department of Chemical Engineering, Diponegoro University (Indonesia)

    2015-12-29

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  9. Pd and S binding energies and Auger parameters on a model silica-supported Suzuki–Miyaura catalyst: Insights into catalyst activation

    International Nuclear Information System (INIS)

    Hanif, Mohammad A.; Ebralidze, Iraklii I.; Horton, J. Hugh

    2013-01-01

    Model Suzuki–Miyaura reaction catalysts have been developed by immobilizing palladium on a mercaptopropyltrimethoxysilane (MPTMS) functionalized Si substrate. Two types of Pd species were found on the fresh catalysts that may be attributed to a S-bound Pd (II) species and Pd nanoparticles. The binding energy of the nanoparticles is strongly size dependent, and is higher than that of metallic Pd. A sulfur species that has not been previously reported on this class of catalysts has also been observed. A systematic investigation of various palladium/sulfur complexes using XPS was carried out to identify this species, which may be assigned to high oxidation state sulfur formed by oxidation of thiol during the reduction of the Pd(OAc) 2 used to load the catalyst with Pd. Shifts in binding energy observed for both Pd and S spectra of the used catalysts were examined in order to probe the change of electronic environment of reactive palladium center and the thiol ligand during the reaction. Electron and atomic force microscopic imaging of the surfaces demonstrates the formation of Pd nanoparticles on fresh catalysts and subsequent size reduction of the Pd nano-particles following reaction.

  10. A Study of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry - Nanostructure - Performance

    Science.gov (United States)

    Workman, Michael J., Jr.

    Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed. There has been a significant amount of research effort directed toward the development of platinum-group metal free (PGM-free) catalysts, yet there is a lack of consensus on both the engineering parameters necessary to improve the technology and the fundamental science that would facilitate rational design. I have engaged in research on PGM-free catalysts based on inexpensive and abundant reagents, specifically: nicarbazin and iron. Catalysts made from these precursors have previously proven to be among the best PGM-free catalysts, but their continued advancement suffered from the same lack of understanding that besets all catalysts in this class. The work I have performed address both engineering concerns and fundamental underlying principles. I present results demonstrating correlations between physical structure, chemical speciation, and synthesis parameters, as well as addressing active site chemistry and likely locations. My research presented herein introduces new morphology analysis techniques and elucidates several key structure-to-property characteristics of catalysts derived from iron and nicarbazin. I discuss the development and application of a new length-scale specific surface analysis technique that allows for analysis of well-defined size ranges from a few nm to several microns. The existing technique of

  11. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    the reforming of oxygen containing feedstocks like (bio-)ethanol or methanol, new catalyst formulations are needed which have been successfully developed and field tested. (orig.)

  12. Green nano-catalyst for methanolysis of non-edible Jatropha oil

    International Nuclear Information System (INIS)

    Teo, Siow Hwa; Rashid, Umer; Taufiq-Yap, Yun Hin

    2014-01-01

    Highlights: • A green nano heterogeneous base catalyst was prepared from CaO. • Transesterified Jatropha curcas oil achieved 95% of biodiesel yield at 65 °C. • Parameters affecting catalyst reaction were optimized. • Biodiesel produced was satisfied the International biodiesel standards. - Abstract: Non-edible feedstocks are regarded as a sustainable source of renewable energy. In order to find renewable, cheaper and easier methods to obtain energy, attention has been paid to develop potential green catalyst to produce renewable biodiesel. The catalyst was characterized by X-ray diffraction (XRD) results in combination with thermogravimetry–differential thermal analysis (TG–DTA), Brunauer–Emmer–Teller (BET), Fourier transfrom-infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM analysis depicted that calcium methoxide (Ca(OCH 3 ) 2 ) catalysts were in size of 34.7 nm. The reaction parameters namely; reaction time, methanol/oil molar ratio, catalyst dosage were investigated for fatty acid methyl ester (FAME) yield. The highest biodiesel yield (95%) was appraised under the optimum condition (i.e. catalyst amount of 2 wt.%; methanol/oil molar ratio of 15:1, reaction time of 90 min). The Ca(OCH 3 ) 2 phase of catalyst can be regarded as an active phase to get high yield of biodiesel which was confirmed from characterization study. Furthermore, important fuel properties were also investigated and satisfied the ASTM D6751 and European 14214 biodiesel standards. Thus, Ca(OCH 3 ) 2 catalyst prepared in this study was having efficient, low toxicity, cost effective and easy to prepare for green fuels production especially biodiesel

  13. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  14. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  15. Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes

    Science.gov (United States)

    2015-05-12

    Final 3. DATES COVERED (From - To) 03-April-2013 to 02-April-2015 4. TITLE AND SUBTITLE Novel Catalyst for the Chirality Selective...Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chiral single walled carbon nanotubes (SWCNTs) are known to possess unique... chirality control in SWCNT synthesis. A model catalyst based on CoSO4/SiO2 was developed that showed good selectivity to (9,8) nanotubes. Remote plasma

  16. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide.

    Science.gov (United States)

    Karan, Chandan Kumar; Bhattacharjee, Manish

    2018-04-16

    Two new bimetallic iron-alkali metal complexes of amino acid (serine)-based reduced Schiff base ligand were synthesized and structurally characterized. Their efficacy as catalysts for the chemical fixation of carbon dioxide was explored. The heterogeneous version of the catalytic reaction was developed by the immobilization of these homogeneous bimetallic iron-alkali metal complexes in an anion-exchange resin. The resin-bound complexes can be used as recyclable catalysts up to six cycles.

  17. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Science.gov (United States)

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  18. Niobium bonds as homogeneous catalysts for the cyclotrimerization of alkynes

    International Nuclear Information System (INIS)

    Du Toit, C.J.

    1984-05-01

    The activity and selectivity of the catalytic system MX 5 with M = Nb or Ta and X = Cl - or Br - and (CH 3 ) 3 TaCl 2 with regard to the reaction rate and product formation in the reaction with alkynes were evaluated. A measuring technique was developed with which the reaction path of the oligomerization reactions of alkynes with homogeneous catalysts in a nitrogen atmosphere can be followed spectrophotometrically

  19. NOx and N2O emission control with catalyst's

    International Nuclear Information System (INIS)

    Hiltunen, M.

    1994-01-01

    Due to the increasingly stringent emission regulations, new technologies are needed to be developed for improving emission control in circulating fluidized-bed boilers. The objective of this project is to test the concept of using catalysts for NO x and N 2 O emission control. N 2 O emission is in the range of 30 - 100 ppm from fluidized bed combustors burning coal. Since it is a greenhouse gas an effective means of controlling N 2 O emission is needed

  20. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  1. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  2. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  3. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  4. Grafting heterogeneous catalyst with gamma radiation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  5. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  6. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol

    DEFF Research Database (Denmark)

    Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank

    2014-01-01

    The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO 2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO...... 2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO 2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni......-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni 5 Ga 3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al 2 O 3 catalysts revealed the same or better methanol synthesis activity, as well as considerably...

  7. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    Directory of Open Access Journals (Sweden)

    Mikaela Lindgren

    2014-02-01

    Full Text Available Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE, where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  8. Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review

    Directory of Open Access Journals (Sweden)

    Liliana Lazar

    2012-02-01

    Full Text Available The removal of mercury from flue gases in scrubbers is greatly facilitated if the mercury is present as water-soluble oxidized species. Therefore, increased mercury oxidation upstream of scrubber devices will improve overall mercury removal. For this purpose heterogeneous catalysts have recently attracted a great deal of interest. Selective catalytic reduction (SCR, noble metal and transition metal oxide based catalysts have been investigated at both the laboratory and plant scale with this objective. A review article published in 2006 covers the progress in the elemental mercury (Hgel catalytic oxidation area. This paper brings the review in this area up to date. To this end, 110 papers including several reports and patents are reviewed. For each type of catalyst the possible mechanisms as well as the effect of flue gas components on activity and stability are examined. Advantages and main problems are analyzed. The possible future directions of catalyst development in this environmental research area are outlined.

  9. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  10. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  11. Designing Pd-based supported bimetallic catalysts for environmental applications

    OpenAIRE

    Nowicka, Ewa; Meenakshisundaram, Sankar

    2018-01-01

    Supported bimetallic nanoparticulate catalysts are an important class of heterogeneous catalysts for many reactions including selective oxidation, hydrogenation/hydrogenolysis, reforming, biomass conversion reactions, and many more. The activity, selectivity, and stability of these catalysts depend on their structural features including particle size, composition, and morphology. In this review, we present important structural features relevant to supported bimetallic catalysts focusing on Pd...

  12. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  13. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    Science.gov (United States)

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  14. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  15. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  16. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  17. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Arthur, Ernest Evans; Li, Fang; Momade, Francis W.Y.; Kim, Hern

    2014-01-01

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol −1 , which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  18. Biodiesel synthesis via transesterification of lipid Chlorophyta cultivated in walne rich carbon medium using KOH/Zeolite catalyst

    Science.gov (United States)

    Dianursanti, Hayati, Siti Zahrotul; Putri, Dwini Normayulisa

    2017-11-01

    Microalgae from the Chlorophyta division such as Nannochloropsis oculata and Chlorella vulgaris are highly potential to be developed as biodiesel feedstocks because they have a high oil content up to 58%. Biodiesel is produced by transesterification of triglycerides and alcohols with the aid of homogeneous catalysts such as KOH. However, the use of KOH catalysts produces soaps in the biodiesel synthesis. Heterogeneous catalysts are known to solve this problem. One of them is natural zeolite. Zeolite can be used as a catalyst and as a support catalyst. Loading KOH on the zeolite surface is expected to increase alkalinity in KOH/Zeolite catalysts so as to increase the activity of KOH/Zeolite catalyst in transesterification of triglyceride with methanol. In this experimental lipid of microalgae will be used for produced biodiesel via transesterification reaction with methanol and KOH/Zeolite as a catalyst heterogeneous at 60 °C for 3h and utilized catalyst modificated KOH/Zeolite with variation 0.5 M, 1 M and 1.5 M KOH. The modified zeolite was then analyzed by XRF, XRD and BET. The result showed that the yield of biodiesel from lipid N.oculata was 81,09% by 0.5KOH/Zeolite catalyst, 86,53% by 1KOH/Zeolite catalyst, 1,5KOH/Zeolite and 88,13% by 1.5KOH/Zeolit, while the biodiesel produced from lipid C.vulgaris was 59.29% by 0.5KOH/Zeolite, 82.27% by 1KOH/Zeolite and 83.72% by 1.5KOH/Zeolite.

  19. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    Science.gov (United States)

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pt -based anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hoyos, Bibian; Sanchez, Carlos; Gonzalez, Javier

    2007-01-01

    In this work it is studied the electro-catalytic behavior of pure platinum and platinum-based alloys with Ru, Sn, Ir, and Os supported on carbon to the ethanol electro-oxidation in aims to develop anodic catalysts for direct ethanol fuel cells, additionally, porous electrodes and membrane electrode assemblies were built for proton exchange membrane fuel cells in which the electrodes were tested. Catalysts characterization was made by cyclic voltammetry whereas the fuel cells behavior tests were made by current-potential polarization curves. in general, all alloys show a lower on-set reaction potential and a higher catalytic activity than pure platinum. However, in the high over potential zone, pure platinum has higher catalytic activity than the alloys. In agreement with these results, the alloys studied here could be useful in fuel cells operating on moderated and low current

  1. High Throughput In Situ XAFS Screening of Catalysts

    International Nuclear Information System (INIS)

    Tsapatsaris, Nikolaos; Beesley, Angela M.; Weiher, Norbert; Tatton, Helen; Schroeder, Sven L. M.; Dent, Andy J.; Mosselmans, Frederick J. W.; Tromp, Moniek; Russu, Sergio; Evans, John; Harvey, Ian; Hayama, Shu

    2007-01-01

    We outline and demonstrate the feasibility of high-throughput (HT) in situ XAFS for synchrotron radiation studies. An XAS data acquisition and control system for the analysis of dynamic materials libraries under control of temperature and gaseous environments has been developed. The system is compatible with the 96-well industry standard and coupled to multi-stream quadrupole mass spectrometry (QMS) analysis of reactor effluents. An automated analytical workflow generates data quickly compared to traditional individual spectrum acquisition and analyses them in quasi-real time using an HT data analysis tool based on IFFEFIT. The system was used for the automated characterization of a library of 91 catalyst precursors containing ternary combinations of Cu, Pt, and Au on γ-Al2O3, and for the in situ characterization of Au catalysts supported on Al2O3 and TiO2

  2. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst

    Science.gov (United States)

    Ibrahim, S. O.; Abdulkareem, A. S.; Isah, K. U.; Ahmadu, U.; Bankole, M. T.; Kariim, I.

    2018-06-01

    Trimetallic catalyst was prepared using wet impregnation method to produce carbon nanotubes (CNTs) through the method of catalytic chemical vapor deposition (CCVD). Characterization of the developed catalyst and CNTs were carried out using thermogravimetric analysis (TGA), x-ray diffraction (XRD), specific surface area Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HRSEM)/energy dispersive x-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED). The BET and TGA analysis indicated that the catalyst has a high surface area and is thermally stable. The FTIR of the developed catalyst shows notable functional group with presence of unbound water. The HRSEM of the catalyst revealed agglomerated, homogeneous and porous particles while the HRSEM/HRTEM of the produced CNTs gave the formation of long strand of multiwalled carbon nanotubes (MWCNTs), and homogeneous crystalline fringe like structure with irregular diameter. EDS revealed the dominance of carbon in the elemental composition. XRD/SAED patterns of the catalyst suggest high dispersion of the metallic particles in the catalyst mixture while that of the CNTs confirmed that the produced MWCNTs were highly graphitized and crystalline in nature with little structural defects. The anti-bacteria activity of the produced MWCNTs on Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa was also carried out. It was observed that the produced MWCNTs have an inhibitory property on bacteria; Escherichia coli and Klebsiella pneumoneae from zero day ( and ) through to twelfth day (Nil count) respectively. It has no effect on Pseudomonas aeruginosa with too numerous to count at zero-sixth day, but a breakdown in its growth at ninth-twelfth day (). This study implied that MWCNTs with varying diameter and well-ordered nano-structure can be produced from catalyst via CCVD

  4. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi Zhang

    2016-01-01

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  5. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-12-14

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  6. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao

    2016-11-28

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  7. Olefin polymerization from single site catalysts confined within porous media

    Science.gov (United States)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE

  8. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  9. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  10. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  11. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  12. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  13. Oxidation catalysts and process for preparing same

    International Nuclear Information System (INIS)

    1980-01-01

    Compounds particularly suitable as oxidation catalysis are described, comprising specified amounts of uranium, antimony and tin as oxides. Processes for making and using the catalysts are described. (U.K.)

  14. Selection of catalysts and reactors for hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [Imaf Group, Ottawa, ON (Canada)

    1998-07-13

    The performance of hydroprocessing units can be influenced by the selection of the catalysts and the type of reactor to suit a particular feed. The catalysts and reactors selected for light feeds differ markedly from those selected for heavy feeds. Fixed-bed reactors have been traditionally used for light feeds. High asphaltene and high metal content feeds are successfully processed using moving-bed and/or ebullated bed reactors. Multi-reactor systems consisting of moving-bed and/or ebullated bed reactors in series with fixed-bed reactors can be used to process difficult feeds. For heavy feeds, the physical properties (e.g. porosity), shape and size of the catalyst particles become crucial parameters. Pretreatment of catalysts by presulfiding improves the performance of the units.

  15. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  16. Finding furfural hydrogenation catalysts via predictive modelling

    NARCIS (Netherlands)

    Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.

    2010-01-01

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes

  17. Photoexcited iron porphyrin as biomimetic catalysts

    International Nuclear Information System (INIS)

    Bartocci, C.; Maldotti, A.; Varani, G.; Consiglio Nazionale delle Ricerche, Ferrara

    1996-01-01

    Photoexcited iron porphyrins can be of some interest in both fine and industrial chemistry in view of the preparation of new efficient biomimetic catalysts, working with high selectivity under mild temperature and pressure

  18. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01

    Lignin is a potentially plentiful source of renewable organics, with %7E50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts

  19. Thermal effects in highly dispersed iron catalysts

    International Nuclear Information System (INIS)

    Alvarez, A.M.; Cagnoli, M.V.; Gallegos, N.G.; Marchetti, S.G.; Yeramian, A.A.; Mercader, R.C.

    1994-01-01

    The Moessbauer spectra of three Fe/SiO 2 catalysts with 5 wt% iron content show the presence of several Fe species and display different magnetic behaviours when the precursors are subjected to various thermal treatments. Based on the Moessbauer parameters and CO chemisorption measurements, the average crystal sizes of the catalysts are estimated and discussed in connection with the thermal pretreatment severity and magnetic properties of the samples. (orig.)

  20. Dehydration of alcohols using solid acid catalysts

    OpenAIRE

    Cholerton, Mary

    2014-01-01

    Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differ...