Cavity quantum electrodynamics with separate photon storage and qubit readout modes.
Leek, P J; Baur, M; Fink, J M; Bianchetti, R; Steffen, L; Filipp, S; Wallraff, A
2010-03-12
We present the realization of a cavity quantum electrodynamics setup in which photons of strongly different lifetimes are engineered in different harmonic modes of the same cavity. We achieve this in a superconducting transmission line resonator with superconducting qubits coupled to the different modes. One cavity mode is strongly coupled to a detection line for qubit state readout, while a second long lifetime mode is used for photon storage and coherent quantum operations. We demonstrate sideband-based measurement of photon coherence, generation of n photon Fock states and the scaling of the sideband Rabi frequency with square root of n using a scheme that may be extended to realize sideband-based two-qubit logic gates.
Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.
Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A
2015-08-28
We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.
Qubit readout with the Josephson Photomultiplier
Ribeill, Guilhem
Recent demonstrations of error correction in many qubit circuits, as well as efforts to build a logical qubit, have shown the need for a simple and scalable superconducting quantum bit (qubit) readout. Current solutions based on heterodyne detection and cryogenic amplification of microwave readout tones may prove difficult to scale, while photon counting presents an attractive alternative. However, the development of counters operating at these frequencies has proved technically challenging. In this thesis, we describe the development of the Josephson Photomultiplier (JPM), a microwave photon counting circuit. We discuss the JPM theoretically, and describe the fabrication of the JPM using standard thin film lithography techniques. We measure its properties as a microwave photon counter using a qubit as an in-situ calibrated source of photons. We measure a JPM quantum efficiency at the few percent level. We then use the JPM to perform readout of a transmon qubit in both the dispersive and bright regimes. We observe raw measurement fidelities of 35% and 62% respectively. We discuss how the JPM and measurement protocol could be further optimized to achieve fidelities in excess of 90%.
Characterization of a two-transmon processor with individual single-shot qubit readout.
Dewes, A; Ong, F R; Schmitt, V; Lauro, R; Boulant, N; Bertet, P; Vion, D; Esteve, D
2012-02-03
We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own nondestructive single-shot readout. The fixed capacitive coupling yields the sqrt[iSWAP] two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%.
Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator
Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas
2016-05-01
We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185+/-15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing.
Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator
Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas
2016-01-01
We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732
Noise and Directionality in a SLUG Microwave Amplifier for Superconducting Qubit Readout
Thorbeck, Ted; Zhu, Shaojiang; Leonard, Edward; McDermott, Robert
2015-03-01
Josephson parametric amplifiers have been widely used for low-noise dispersive readout of superconducting qubits. However, multiple stages of cryogenic isolation are required to protect the qubit from the strong microwave pump tone and from the high temperature noise of downstream gain stages. We want to remove circulators and isolators from the measurement chain because they are bulky, expensive, and magnetic. The SLUG (superconducting low-inductance undulatory galvanometer) is a microwave amplifier that achieves broad bandwidth, low added noise, and high gain. In this talk we discuss measurements of the SLUG added noise (less than photon system added noise). We describe theoretical and experimental investigations of the SLUG reverse isolation. Finally, we discuss backaction of the SLUG on the measured qubit, and we present strategies for the suppression of SLUG backaction.
Manipulation of qubits in nonorthogonal collective storage modes
DEFF Research Database (Denmark)
Refsgaard, Jonas; Mølmer, Klaus
2012-01-01
We present an analysis of transfer of quantum information between the collective spin degrees of freedom of a large ensemble of two-level systems and a single central qubit. The coupling between the central qubit and the individual ensemble members may be varied and thus provides access to more...... than a single storage mode. Means to store and manipulate several independent qubits are derived for the case where the variation in coupling strengths does not allow addressing orthogonal modes of the ensemble. While our procedures and analysis may apply to a number of different physical systems...
Energy Technology Data Exchange (ETDEWEB)
Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; McDermott, R., E-mail: rfmcdermott@wisc.edu [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Sank, D.; Kelly, J.; Barends, R.; Martinis, John M. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)
2014-04-14
We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.
Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; Sank, D.; Kelly, J.; Barends, R.; Martinis, John M.; McDermott, R.
2014-04-01
We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.
Liu, Yanbing; Srinivasan, Srikanth J.; Hover, D.; Zhu, Shaojiang; McDermott, R.; Houck, A. A.
2014-11-01
We report high-fidelity, quantum non-demolition, single-shot readout of a superconducting transmon qubit using a dc-biased superconducting low-inductance undulatory galvanometer (SLUG) amplifier. The SLUG improves the system signal-to-noise ratio by 6.5 dB in a 20 MHz window compared with a bare high electron mobility transistor amplifier. An optimal cavity drive pulse is chosen using a genetic search algorithm, leading to a maximum combined readout and preparation fidelity of 91.9% with a measurement time of {{T}meas}=200 ns. Using post-selection to remove preparation errors caused by heating, we realize a combined preparation and readout fidelity of 94.3%.
SLUG Microwave Amplifier as a Nonreciprocal Gain Element for Scalable Qubit Readout
Thorbeck, Ted; Leonard, Edward; Zhu, Shaojiang; McDermott, Robert
Josephson parametric amplifiers for superconducting qubits require several stages of cryogenic isolation to protect the qubit from strong microwave pump tones and downstream noise. But isolators and circulators are large, expensive and magnetic, so they are an obstacle to scaling up a superconducting quantum computer. In contrast, the SLUG (Superconducting Low-inductance Undulatory Galvanometer) is a high gain, broadband, low noise microwave amplifier that provides built-in reverse isolation. Here, we describe the dependence of the SLUG reverse isolation on signal frequency and device operating point. We show that the reverse isolation of the SLUG can be as large as or larger than that of a bulk commercial isolator. Finally, we discuss the use of the SLUG to read out a transmon qubit without isolators or circulators.
Study of junction and bias parameters in readout of phase qubits
Energy Technology Data Exchange (ETDEWEB)
Zandi, Hesam, E-mail: zandi@ee.sharif.edu [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Safaei, Shabnam [Department of Physics, Faculty of Sciences, Bilkent University, 08600 Ankara (Turkey); Khorasani, Sina; Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)
2012-05-15
The exact numerical solution of the nonlinear Ginzburg-Landau equation for Josephson junctions is obtained, from which the precise nontrivial current density and effective potential of the Josephson junctions are found. Based on the resulting potential well, the tunneling probabilities of the associated bound states are computed which are in complete agreement with the reported experimental data. The effects of junction and bias parameters such as thickness of the insulating barrier, cross sectional area, bias current, and magnetic field are fully investigated using a successive perturbation approach. We define and compute figures of merit for achieving optimal operation of phase qubits and measurements of the corresponding states. Particularly, it is found that Josephson junctions with thicker barriers yield better performance in measurements of phase qubits. The variations of characteristic parameters such as life time of the states due to the above considered parameters are also studied and discussed to obtain the appropriate configuration setup.
Analysis and synthesis of multi-qubit, multi-mode quantum devices
Energy Technology Data Exchange (ETDEWEB)
Solgun, Firat
2015-03-27
In this thesis we propose new methods in multi-qubit multi-mode circuit quantum electrodynamics (circuit-QED) architectures. First we describe a direct parity measurement method for three qubits, which can be realized in 2D circuit-QED with a possible extension to four qubits in a 3D circuit-QED setup for the implementation of the surface code. In Chapter 3 we show how to derive Hamiltonians and compute relaxation rates of the multi-mode superconducting microwave circuits consisting of single Josephson junctions using an exact impedance synthesis technique (the Brune synthesis) and applying previous formalisms for lumped element circuit quantization. In the rest of the thesis we extend our method to multi-junction (multi-qubit) multi-mode circuits through the use of state-space descriptions which allows us to quantize any multiport microwave superconducting circuit with a reciprocal lossy impedance response.
Hover, D.; Zhu, S; Thorbeck, T.; Ribeill, G. J.; Sank, D.; Kelly, J; Barends, R.; Martinis, John M.; McDermott, R.
2013-01-01
We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power correspond...
Poschinger, U; Hettrich, M; Ziesel, F; Schmidt-Kaler, F
2011-01-01
We present a detailed theoretical and experimental study on the optical control of a trapped-ion qubit subject to thermally induced fluctuations of the Rabi frequency. The coupling fluctuations are caused by thermal excitation on three harmonic oscillator modes. We develop an effective Maxwell-Boltzmann theory which leads to a replacement of several quantized oscillator modes by an effective continuous probability distribution function for the Rabi frequency. The model is experimentally verified for driving the quadrupole transition with resonant square pulses. This allows for the determination of the ion temperature with an accuracy of better than 2% of the temperature pertaining to the Doppler cooling limit TD over a range from 0.5TD to 5TD. The theory is then applied successfully to model experimental data for rapid adiabatic passage (RAP) pulses. We apply the model and the obtained experimental parameters to elu- cidate the robustness and efficiency of the RAP process by means of numerical simulations.
Test of High Time Resolution MRPC with Different Readout Modes
Yang, S; Li, C; Heng, Y K; Qian, S; Chen, H F; Chen, T X; Dai, H L; Fan, H H; Liu, S B; Liu, S D; Jiang, X S; Shao, M; Tang, Z B; Zhang, H; Zhao, Z G
2014-01-01
In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.
Large Format Geiger Mode Avalanche Photodiode Arrays and Readout Circuits
2017-06-01
a detector wafer with a transparent substrate; the arrays can therefore be bump bonded to CMOS readouts by the same process used for InP- based... bump bond to a more advanced 3D integration requires heterogeneous integration technique. We have demonstrated wafer bonding of InP detector arrays...digital CMOS readout circuits using bump bonding or 3D integration techniques. Silicon is the material of choice for ultraviolet, visible, and near
Readout of a superconducting qubit. A problem of quantum escape processes for driven systems
Energy Technology Data Exchange (ETDEWEB)
Verso, Alvise
2010-10-27
We started this work with a description of two devices that were recently developed in the context of quantum information processing. These devices are used as read-out for superconducting quantum bits based on Josephson junctions. The classical description has to be extended to the quantum regime. As the main result we calculate the leading order corrections in {Dirac_h} on the escape rate. We took into account a standard metastable potential with a static energy barrier and showed how to derive an extension of the classical diffusion equation. We did this within a systematic semiclassical formalism starting from a quantum mechanical master equation. This master equation contains an extra term for the loss of population due to tunneling through the barrier and, in contrast to previous approaches, finite barrier transmission which also affects the transition probabilities between the states. The escape rate is obtained from the stationary non-equilibrium solution of the diffusion equation. The quantum corrections on the escape rate are captured by two factors, the first one describes zero-point fluctuations in the well, while the second one describes the impact of finite barrier transmission close to the top. Interestingly, for weak friction there exists a temperature range, where the latter one can actually prevail and lead to a reduction of the escape compared to the classical situation due to finite reflection from the barrier even for energies above the barrier. Only for lower temperatures does the quantum result exceed the classical one. The approach can not strictly be used for the Duffing oscillator because of the time dependent term in its Hamiltonian. But it is possible to move in a frame rotating with a frequency equal to the response frequency of the Duffing oscillator in order to obtain a time-independent Hamiltonian. Therefore a system plus reservoir model was applied to consistently derive in the weak coupling limit the master equation for the reduced
Pulse mode actuation-readout system based on MEMS resonator for liquid sensing
DEFF Research Database (Denmark)
Tang, Meng; Cagliani, Alberto; Davis, Zachary James
2014-01-01
A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive rea...
Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes
Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo
2012-01-01
3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…
Hyperfine and Optical Barium Ion Qubits
Dietrich, M R; Noel, T; Shu, G; Blinov, B B
2010-01-01
State preparation, qubit rotation, and high fidelity readout are demonstrated for two separate \\baseven qubit types. First, an optical qubit on the narrow 6S$_{1/2}$ to 5D$_{5/2}$ transition at 1.76 $\\mu$m is implemented. Then, leveraging the techniques developed there for readout, a ground state hyperfine qubit using the magnetically insensitive transition at 8 GHz is accomplished.
Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Wenner, J; Neeley, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; O' Connell, A D; Sank, D; Wang, H; Weides, M; Cleland, A N; Martinis, John M, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)
2011-06-15
We analyze the performance of a microwave chip mount that uses wirebonds to connect the chip and mount grounds. A simple impedance ladder model predicts that transmission crosstalk between two feedlines falls off exponentially with distance at low frequencies, but rises to near unity above a resonance frequency set by the chip to ground capacitance. Using SPICE simulations and experimental measurements of a scale model, the basic predictions of the ladder model were verified. In particular, by decreasing the capacitance between the chip and box grounds, the resonance frequency increased and transmission decreased. This model then influenced the design of a new mount that improved the isolation to - 65 dB at 6 GHz, even though the chip dimensions were increased to 1 cm x 1 cm, three times as large as our previous devices. We measured a coplanar resonator in this mount as preparation for larger qubit chips, and were able to identify cavity, slotline, and resonator modes.
Institute of Scientific and Technical Information of China (English)
Shi Zhen-Gang; Chen Xiong-Wen; Zhu Xi-Xiang; Song Ke-Hui
2007-01-01
This paper proposes a method of generating multipartite entanglement through using d. c. superconducting quantum interference devices (SQUID) inside a standing wave cavity. In this scheme, the d. c. SQUID works in the charge region. It is shown that, a large number of important multipartite entangled states can be generated by a controllable interaction between a cavity field and qubits. It is even possible to produce entangled states involving different cavity modes based on the measurement of charge qubits states. After such superpositions states are created, the interaction can be switched off by the classical magnetic field through the SQUID, and there is no information transfer between the cavity field and the charge qubits.
Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure.
Wang, Xiaomin; Fujimaki, Makoto; Kato, Takafumi; Nomura, Ken-Ichi; Awazu, Koichi; Ohki, Yoshimichi
2011-10-10
Optical planar waveguide-mode sensor is a promising candidate for highly sensitive biosensing techniques in fields such as protein adsorption, receptor-ligand interaction and surface bacteria adhesion. To make the waveguide-mode sensor system more realistic, a spectral readout type waveguide sensor is proposed to take advantage of its high speed, compactness and low cost. Based on our previously proposed monolithic waveguide-mode sensor composed of a SiO2 waveguide layer and a single crystalline Si layer [1], the mechanism for achieving high sensitivity is revealed by numerical simulations. The optimal achievable sensitivities for a series of waveguide structures are summarized in a contour map, and they are found to be better than those of previously reported angle-scan type waveguide sensors.
Advanced Readout System IC Current Mode Semi-Gaussian Shapers Using CCIIs and OTAs
Directory of Open Access Journals (Sweden)
Thomas Noulis
2007-01-01
Full Text Available Novel CMOS current mode shapers for front-end electronics are proposed. In particular, six semi-Gaussian shaper implementations based on second generation current conveyors and operational transconductance amplifiers are designed using advanced filter design techniques. Although all shaper architectures are fully integrated, they satisfy a relatively large peaking time. The topologies are analytically compared in terms of noise performance, power consumption, total harmonic distortion (THD, and dynamic range (DR in order to examine which is the most preferable in readout applications. Design technique selection criteria are proposed in relation to the shaper structures performance. Analysis is supported by simulations results using SPICE in a 0.6 μm process by Austria Mikro Systeme (AMS.
Vilella, E.; Comerma, A.; Alonso, O.; Gascon, D.; Diéguez, A.
2012-12-01
Avalanche photodiodes operated in the Geiger mode offer a high intrinsic gain as well as an excellent timing accuracy. These qualities make the sensor specially suitable for those applications where detectors with high sensitivity and low timing uncertainty are required. Moreover, they are compatible with standard CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. However, the sensor suffers from high levels of intrinsic noise, which may lead to erroneous results and limit the range of detectable signals. They also increase the amount of data that has to be stored. In this work, we present a pixel based on a Geiger-mode avalanche photodiode operated in the gated mode to reduce the probability to detect noise counts interfering with photon arrival events. The readout circuit is based on a two grounds scheme to enable low reverse bias overvoltages and consequently lessen the dark count rate. Experimental characterization of the fabricated pixel with the HV-AMS 0.35 μm standard technology is also presented in this article.
Energy Technology Data Exchange (ETDEWEB)
Vilella, E., E-mail: evilella@el.ub.es [Department of Electronics, University of Barcelona (UB) Marti i Franques 1, 08028 Barcelona (Spain); Comerma, A. [Department of Structure and Constituents of Matter, University of Barcelona (UB) Marti i Franques 1, 08028 Barcelona (Spain); Alonso, O. [Department of Electronics, University of Barcelona (UB) Marti i Franques 1, 08028 Barcelona (Spain); Gascon, D. [Department of Structure and Constituents of Matter, University of Barcelona (UB) Marti i Franques 1, 08028 Barcelona (Spain); Dieguez, A. [Department of Electronics, University of Barcelona (UB) Marti i Franques 1, 08028 Barcelona (Spain)
2012-12-11
Avalanche photodiodes operated in the Geiger mode offer a high intrinsic gain as well as an excellent timing accuracy. These qualities make the sensor specially suitable for those applications where detectors with high sensitivity and low timing uncertainty are required. Moreover, they are compatible with standard CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. However, the sensor suffers from high levels of intrinsic noise, which may lead to erroneous results and limit the range of detectable signals. They also increase the amount of data that has to be stored. In this work, we present a pixel based on a Geiger-mode avalanche photodiode operated in the gated mode to reduce the probability to detect noise counts interfering with photon arrival events. The readout circuit is based on a two grounds scheme to enable low reverse bias overvoltages and consequently lessen the dark count rate. Experimental characterization of the fabricated pixel with the HV-AMS 0.35 {mu}m standard technology is also presented in this article.
Study of multi-pixel Geiger-mode avalanche photodiodes as a read-out for PET
Musienko, Yuri; Lecoq, Paul; Reucroft, Stephen; Swain, John; Trummer, Julia
2007-01-01
We have studied the performance of two multi-pixel Geiger-mode APDs (recently developed by the Centre of Perspective Technologies and Apparatus (CPTA) in Moscow) with 1×1 mm2 and 3×3 mm2 sensitive area as a readout for LSO and LYSO scintillator crystals. Energy and timing spectra were measured using a 22Na γ-source. The results of this study allow us to conclude that this photodetector is a very promising candidate for PET applications.
Ballabriga, R; Wong, W; Heijne, E; Campbell, M; Llopart, X
2011-01-01
Medipix3 is a 256 x 256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2 x 2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 mu W in the charge summing mode and 9 mu W in the single pixel mode. The chip has been built in an 8-m...
Test of high time resolution MRPC with different readout modes for the BESIII upgrade
Energy Technology Data Exchange (ETDEWEB)
Yang, S. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Sun, Y.J., E-mail: sunday@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Li, C., E-mail: licheng@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Heng, Y.K.; Qian, S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Chen, H.F.; Chen, T.X. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Dai, H.L. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Fan, H.H.; Liu, S.B. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Liu, S.D.; Jiang, X.S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Shao, M.; Tang, Z.B.; Zhang, H.; Zhao, Z.G. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China)
2014-11-01
In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.
Kirchgessner, M.; Soldat, J.; Kugel, A.; Donato, M.; Porro, M.; Fischer, P.
2015-01-01
The readout chain of the DSSC 1M pixel detector currently built at DESY, Hamburg for the European X-Ray Free Electron Laser is described. The system operates in pulsed operation mode comparable to the new ILC. Each 0.1 seconds 800 images of 1M pixels are produced and readout by the DSSC DAQ electronics. The total data production rate of the system is about 134 Gbit/s. In order to deal with the high data rates, latest technology components like the Xilinx Kintex 7 FPGA are used to implement fast DDR3-1600 image buffers, high speed serial FPGA to FPGA communication and 10 GB Ethernet links concentrated in one 40 Gbit/s QSFP+ transceiver.
Cantilever-based sensor with integrated optical read-out using single mode waveguides
DEFF Research Database (Denmark)
Nordström, Maria; Zauner, Dan; Calleja, Montserrat;
2007-01-01
This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its ...
Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head
Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.
2016-08-01
The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180° + fan angle) scan centered
Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head.
Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Stayman, J Webster; Wang, Xiaohui; Foos, David H; Aygun, Nafi; Koliatsos, Vassillis E; Siewerdsen, Jeffrey H
2016-08-21
The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180° + fan angle) scan centered
CMS pixel module readout optimization and study of the Β⁰ lifetime in the semileptonic decay mode
Dambach, Sarah; Langenegger, Urs; Horisberger, Roland
2009-01-01
After more than twenty years of development, the CERN Large Hadron Collider will start continuously operating in mid 2009. An enormous amount of high energy collisions will take place inside the CMS experiment. The innermost detector of this experiment is the barrel pixel detector, with its main goals of track and vertex reconstruction. To do this reconstruction with a high precision, the charge produced inside the silicon sensor is read out as an analog signal. In the first part of this work, the analog readout chain is optimized by setting digital-to-analog converters on the readout chip. Procedures are developed to apply this optimization on more than 10’000 readout chips for the entire detector. The optimization is verified by comparing all optimized chips and with a simulation studying the hit resolution inside the detector. In the second part of this work the lifetime measurement of the B0 meson is studied in the semileptonic decay mode using a new reconstruction method for the undetected neutrino app...
Wasilewski, W; Wasilewski, Wojciech
2005-01-01
We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems (S. L. Braunstein, Phys. Rev. A, vol. 71, 055801 (2005)). We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored at...
Akhrameev, E. V.; Bezrukov, L. B.; Dzaparov, I. M.; Davitashvili, I. Sh.; Enqvist, T.; Fynbo, H.; Guliev, Zh. Sh.; Inzhechik, L. V.; Izmaylov, A. O.; Joutsenvaara, J.; Khabibullin, M. M.; KHOTJANTSEV, A.N; Kudenko, Yu. G.; Kuusiniemi, P.; Lubsandorzhiev, B. K.
2009-01-01
The results of a development of a scintillator counter with wavelength shifting (WLS) fibre and a multi-pixel Geiger-mode avalanche photodiode readout are presented. The photodiode has a metal-resistor-semiconductor layered structure and operates in the limited Geiger mode. The scintillator counter has been developed for the EMMA underground cosmic ray experiment.
Pulse mode readout of MEMS bulk disk resonator based mass sensor
DEFF Research Database (Denmark)
Tang, Meng; Cagliani, Alberto; Davis, Zachary James
2011-01-01
We propose a pulse excitation setup applied on a Micro-Electro-Mechanical bulk disk resonator aimed for mass detection. This scheme offers measuring not only the resonant frequency, which defines the mass change, but also the quality factor and the feedthrough/parasitic capacitance of the disk wh...... with a unique input signal within a range of 300kHz. In addition, the readout method is high speed with no complicated feedback configuration. Here we present a full electro-mechanical model, predicting the behavior of the disk, and the model is verified by the experimental results....
Bae, Woorham; Yoon, Kyung Jean; Hwang, Cheol Seong; Jeong, Deog-Kyoon
2016-12-02
This paper describes a novel readout scheme that enables the complete cancellation of sneak currents in resistive switching random-access memory (RRAM) crossbar array. The current-mode readout is employed in the proposed readout, and a few critical advantages of the current-mode readout for crossbar RRAM are elucidated in this paper. The proposed scheme is based on a floating readout scheme for low power consumption, and one more sensing port is introduced using an additional reference word line. From the additional port, information on the sneak current amount is collected, and simple current-mode arithmetic operations are implemented to cancel out the sneak current from the sensing current. In addition, a simple method of handling the overestimated-sneak-current issue is described. The proposed scheme is verified using HSPICE simulation. Moreover, an example of a current-mode sense amplifier realizing the proposed cancelling technique is presented. The proposed sense amplifier can be implemented with less hardware overhead compared to the previous works.
Bae, Woorham; Yoon, Kyung Jean; Hwang, Cheol Seong; Jeong, Deog-Kyoon
2016-12-01
This paper describes a novel readout scheme that enables the complete cancellation of sneak currents in resistive switching random-access memory (RRAM) crossbar array. The current-mode readout is employed in the proposed readout, and a few critical advantages of the current-mode readout for crossbar RRAM are elucidated in this paper. The proposed scheme is based on a floating readout scheme for low power consumption, and one more sensing port is introduced using an additional reference word line. From the additional port, information on the sneak current amount is collected, and simple current-mode arithmetic operations are implemented to cancel out the sneak current from the sensing current. In addition, a simple method of handling the overestimated-sneak-current issue is described. The proposed scheme is verified using HSPICE simulation. Moreover, an example of a current-mode sense amplifier realizing the proposed cancelling technique is presented. The proposed sense amplifier can be implemented with less hardware overhead compared to the previous works.
Energy Technology Data Exchange (ETDEWEB)
Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.
2008-08-01
Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.
Polyoxometalates as spin qubits
Gaita-Ariño, A.; Aldamen, M.; Clemente-Juan, J.-M.; Coronado, E.; Lehmann, J.; Loss, D.; Stamp, P.
2008-03-01
Polyoxometalates (POMs) are discrete fragments of metal oxides, clusters of regular MOn polyhedra. POMs show a remarkable flexibility in composition, structure and charge state, and thus can be designed according to specific electric and magnetic needs. The two localized spins with S = 1/2 on the V atoms in [PMo12O40(VO)2]^q- can be coupled through the delocalized electrons of the central core. This system was recently used for a theoretical scheme involving two-qubit gates and readout: the electrical manipulation of the molecular redox potential changes the charge of the core and thus the effective magnetic exchange between the qubits. Polyoxometalates can encapsulate magnetic ions, protecting them by a diamagnetic shell of controlled geometry. A great potential of POMs as spin qubits is that they can be constructed using only even elements, such as O, W, Mo and/or Si. Thus, there is a high abundance of polyoxometalate molecules without any nuclear spin, which could result in unusually low decoherence rates. There is currently an effort involving highly anisotropic, high magnetic moment, lanthanide@polyoxometalate molecules acting as spin qubits.
Energy Technology Data Exchange (ETDEWEB)
Vilella, E; Arbat, A; Alonso, O; Vila, A; Dieguez, A [Department of Electronics, University of Barcelona (UB) MartI i Franques 1, 08028 Barcelona (Spain); Comerma, A; Trenado, J; Gascon, D; Garrido, L, E-mail: evilella@el.ub.es [Department of Structure and Constituents of Matter, University of Barcelona (UB) MartI i Franques 1, 08028 Barcelona (Spain)
2011-01-15
This work presents low noise readout circuits for silicon pixel detectors based on Geiger mode avalanche photodiodes. Geiger mode avalanche photodiodes offer a high intrinsic gain as well as an excellent timing accuracy. In addition, they can be compatible with standard CMOS technologies. However, they suffer from a high intrinsic noise, which induces false counts indistinguishable from real events and represents an increase of the readout electronics area to store the false counts. We have developed new front-end electronic circuitry for Geiger mode avalanche photodiodes in a conventional 0.35 {mu}m HV-CMOS technology based on a gated mode of operation that allows low noise operation. The performance of the pixel detector is triggered and synchronized with the particle beam thanks to the gated acquisition. The circuits allow low reverse bias overvoltage operation which also improves the noise figures. Experimental characterization of the fabricated front-end circuit is presented in this work.
Coplanar waveguide flux qubit suitable for quantum annealing
Quintana, Chris; Chen, Yu; Sank, D.; Kafri, D.; Megrant, A.; White, T. C.; Shabani, A.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, J. M.
We introduce the ''fluxmon'' flux qubit, designed with the goal of practical quantum annealing. The qubit's capacitance and linear inductance are provided by a coplanar waveguide on a low loss substrate, minimizing dielectric dissipation and in principle allowing for GHz-scale inter-qubit coupling in a highly connected tunable architecture. Utilizing a dispersive microwave readout scheme, we characterize single-qubit noise and dissipation, and present a simple tunable inter-qubit coupler. We discuss tradeoffs between coherence and coupling in a quantum annealing architecture. This work was supported by Google Inc. and by the NSF GRFP.
Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.
2016-11-01
Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.
Vilella Figueras, Eva; Comerma Montells, Albert; Alonso Casanovas, Oscar; Gascón Fora, David; Diéguez Barrientos, Àngel
2011-01-01
Avalanche photodiodes operated in the Geiger mode offer a high intrinsic gain as well as an excellent timing accuracy. These qualities make the sensor specially suitable for those applications where detectors with high sensitivity and low timing uncertainty are required. Moreover, they are compatible with standard CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. However, the sensor suffers from high levels of intrinsic noise, which may lead to er...
Superconducting Qubits: A Short Review
Devoret, M. H.; Wallraff, A.; Martinis, J. M.
2004-01-01
Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs ...
Self-amplified CMOS image sensor using a current-mode readout circuit
Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick
2014-05-01
The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.
Zhang, Teng; Danilishin, Stefan L.; Steinlechner, Sebastian; Barr, Bryan W.; Bell, Angus S.; Dupej, Peter; Gräf, Christian; Hennig, Jan-Simon; Houston, E. Alasdair; Huttner, Sabina H.; Leavey, Sean S.; Pascucci, Daniela; Sorazu, Borja; Spencer, Andrew; Wright, Jennifer; Strain, Kenneth A.; Hild, Stefan
2017-03-01
With the recent detection of gravitational waves (GWs), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise) by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that frequency range. We show that the misalignment of the laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is
Geiger-mode avalanche photodiodes for the readout of scintillating fibers
Energy Technology Data Exchange (ETDEWEB)
Hahn, Alexander [Technische Universitaet Muenchen (Germany)
2014-07-01
Following up on the PAMELA collaboration's detection of trapped antiprotons in low-Earth orbit, the Technische Universitaet Muenchen has founded a student-developed endeavor to measure the yet-unknown low-energy antiproton flux in the Van Allen belt. The satellite-borne experiment will consist of a cube of scintillating fibers, and will discern antiprotons by detecting the pions of their characteristic annihilation. We have built a 128-channel prototype detector to test the ability to measure low-energy particles with scintillating fibers and Geiger-mode avalanche photodiodes (G-APD). After testing several different fiber types and APD-fiber coupling methods, we built the prototype with aluminum-wrapped Kuraray fibers. Additionly we have compared and contrasted KETEK and Hamamatsu G-APDs, studying in particular their dark count rates, cross talk intensities, photo-detection efficiencies, temperature dependences, and gains. I present our findings as well as an introduction to the experiment's aims and schematic structure.
Bialczak, R C; Hofheinz, M; Lenander, M; Lucero, E; Neeley, M; O'Connell, A D; Sank, D; Wang, H; Weides, M; Wenner, J; Yamamoto, T; Cleland, A N; Martinis, J M
2010-01-01
A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the inter-qubit coupling strength can be arbitrarily tuned over nanosecond timescales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over long distances. Such design flexibility is likely to be essential for a scalable quantum computer.
Controllable coherent population transfers in superconducting qubits for quantum computing.
Wei, L F; Johansson, J R; Cen, L X; Ashhab, S; Nori, Franco
2008-03-21
We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial atoms provide an efficient approach to design the required adiabatic pulses.
Energy Technology Data Exchange (ETDEWEB)
Vilella, E., E-mail: evilella@el.ub.es [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Arbat, A. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Comerma, A.; Trenado, J. [Department of Structure and Constituents of Matter, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Alonso, O. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Gascon, D. [Department of Structure and Constituents of Matter, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Vila, A. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Garrido, L. [Department of Structure and Constituents of Matter, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain); Dieguez, A. [Department of Electronics, University of Barcelona (UB), Marti i Franques 1, 08028 Barcelona (Spain)
2011-09-11
High sensitivity and excellent timing accuracy of the Geiger mode avalanche photodiodes make them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase in the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 {mu}m and a high integration 0.13 {mu}m commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.
Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model
Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.
2017-01-01
Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025
Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.
2016-03-01
We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.
Entanglement and Metrology with Singlet-Triplet Qubits
Shulman, Michael Dean
Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the
Kmon, P.; Maj, P.; Gryboś, P.; Szczygieł, R.
2016-01-01
We present a new method of an in-pixel threshold dispersion correction implemented in a prototype readout integrated circuit (IC) operating in a single photon counting mode. The new threshold correction method was implemented in a readout IC of area 9.6× 14.9 mm2 containing 23552 square pixels with the pitch of 75 μm designed and fabricated in CMOS 130 nm technology. Each pixel of the IC consists of a charge sensitive amplifier, a shaper, two discriminators, two 14-bit counters and a low-area trim DACs for threshold correction. The user can either control the range of the trim DAC globally for all the pixels in the integrated circuit or modify the trim DACs characteristics locally in each pixel independently. Using a simulation tool based on the Monte-Carlo methods, we estimated how much we could improve the offset trimming by increasing the number of bits in the trim DACs or implementing additional bits in a pixel to modify the characteristics of the trim DACs. The measurements of our IC prototype show that it is possible to reduce the effective threshold dispersion in large-area single-photon counting chips below 10 electrons rms.
Controllable gaussian-qubit interface for extremal quantum state engineering.
Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro
2010-06-18
We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.
Semiconductor adiabatic qubits
Energy Technology Data Exchange (ETDEWEB)
Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib
2016-12-27
A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.
Probing the Speed Limits of Transmon Dispersive Readout
Walter, Theo; Kurpiers, Philipp; Mondal, Mintu; Pechal, Marek; Wallraff, Andreas
In circuit QED, faster and more accurate measurement of a qubit's state is necessary to achieve better feedback control, to accomplish more complex quantum algorithms and simulations, and to cross the threshold for fault tolerant quantum computing. In this talk, we discuss our experimental progress to minimize the time needed to readout the state of a dispersively coupled transmon qubit with high fidelity. We outline a signal-to-noise ratio model, illuminate the constraints and find optimal parameters for maximizing measurement speed, while maintaining high readout fidelity. Utilizing a Purcell Filter increases the generality of our results as it becomes possible to reach these speeds with a broader set of system parameters.
Remote entanglement of transmon qubits
Hatridge, M.; Sliwa, K.; Narla, A.; Shankar, S.; Leghtas, Z.; Mirrahimi, M.; Girvin, S. M.; Schoelkopf, R. J.; Devoret, M. H.
2014-03-01
An open challenge in quantum information processing with superconducting circuits is to entangle distant (non-nearest neighbor) qubits. This can be accomplished by entangling the qubits with flying microwave oscillators (traveling pulses), and then performing joint operations on a pair of these oscillators. Remarkably, such a process is embedded in the act of phase-preserving amplification, which transforms two input modes (termed signal and idler) into a two-mode squeezed output state. For an ideal system, this process generates heralded, perfectly entangled states between remote qubits with a fifty percent success rate. For an imperfect system, the loss of information from the flying states degrades the purity of the entanglement. We show data on such a protocol involving two transmon qubits imbedded in superconducting cavities connected to the signal and idler inputs of a Josephson Parametric Converter (JPC) operated as a nearly-quantum limited phase-preserving amplifier. Strategies for optimizing performance will also be discussed. Work supported by: IARPA, ARO, and NSF.
Energy Technology Data Exchange (ETDEWEB)
Pham, T.H., E-mail: pham@lpnhe.in2p3.f [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Charpy, A.; Ciobanu, C. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Comerma, A. [Universitat de Barcelona, Dept E.C.M/Dept. Electronica/ICC-Diagonal 647, planta 6, 08028 Barcelona (Spain); David, J.; Dhellot, M. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France); Dieguez, A.; Gascon, D. [Universitat de Barcelona, Dept E.C.M/Dept. Electronica/ICC-Diagonal 647, planta 6, 08028 Barcelona (Spain); Genat, J.F.; Savoy Navarro, A.; Sefri, R. [LPNHE-Universite Pierre et Marie Curie/IN2P3-CNRS-4, Place Jussieu, 75252 Paris Cedex 05 (France)
2010-11-01
A 130 nm mixed (analog and digital) CMOS chip intended to read silicon strip detectors for future linear collider experiments was developed. Currently under testing, this chip has been optimized for a silicon micro-strip tracking device. It includes 88 channels of a full analog signal processing chain with the corresponding digital control and readout. Every analog channel includes (i) a low noise charge amplifier and integration with long pulse shaping, (ii) an eight by eight positions analog sampler for both storing successive events and reconstructing the full pulse shape, and (iii) a sparsifier performing analog sum of three adjacent inputs to decide whether there is signal or not. The whole system is controlled by the digital part, which allows configuring all the reference currents and voltages, drives the control signals to the analog memories, records the timing and channel information and subsequently performs the conversion to digital values of samples. The total surface of the circuit is 10x5 mm{sup 2}, with each analog channel occupying an area of 105x3500 {mu}m{sup 2}, and the remaining space of about 9000x700 {mu}m{sup 2} being filled by the analog channels on the silicon.
Purification and switching protocols for dissipatively stabilized entangled qubit states
Hein, Sven M.; Aron, Camille; Türeci, Hakan E.
2016-06-01
Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.
Qubit state detection using the quantum Duffing oscillator
Leyton, V; Peano, V
2011-01-01
We introduce a detection scheme for the state of a qubit, which is based on resonant few-photon transitions in a driven nonlinear resonator. The latter is parametrically coupled to the qubit and is used as its detector. Close to the fundamental resonator frequency, the nonlinear resonator shows sharp resonant few-photon transitions. Depending on the qubit state, these few-photon resonances are shifted to different driving frequencies. We show that this detection scheme offers the advantage of small back action, a large discrimination power with an enhanced read-out fidelity, and a sufficiently large measurement efficiency. A realization of this scheme in the form of a persistent current qubit inductively coupled to a driven SQUID detector in its nonlinear regime is discussed.
Environmental noise spectroscopy with qubits subjected to dynamical decoupling
Szańkowski, P.; Ramon, G.; Krzywda, J.; Kwiatkowski, D.; Cywiński, Ł.
2017-08-01
A qubit subjected to pure dephasing due to classical Gaussian noise can be turned into a spectrometer of this noise by utilizing its readout under properly chosen dynamical decoupling (DD) sequences to reconstruct the power spectral density of the noise. We review the theory behind this DD-based noise spectroscopy technique, paying special attention to issues that arise when the environmental noise is non-Gaussian and/or it has truly quantum properties. While we focus on the theoretical basis of the method, we connect the discussed concepts with specific experiments, and provide an overview of environmental noise models relevant for solid-state based qubits, including quantum-dot based spin qubits, superconducting qubits, and NV centers in diamond.
Readout scheme of the upgraded ALICE TPC
Appelshaeuser, Harald; Ivanov, Marian; Lippmann, Christian; Wiechula, Jens
2016-01-01
In this document, we present the updated readout scheme for the ALICE TPC Upgrade. Two major design changes are implemented with respect to the concept that was presented in the TPC Upgrade Technical Design Report: – The SAMPA front-end ASIC will be used in direct readout mode. – The ADC sampling frequency will be reduced from 10 to 5 MHz. The main results from simulations and a description of the new readout scheme is outlined.
High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.
Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J
2010-10-22
We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.
Three qubit quantum phase gate based on cavity QED
Chang, Juntao; Zubairy, M. Suhail
2004-10-01
We describe a three qubit quantum phase gate in which the three qubits are represented by the photons in a three-modes optical cavity. This gate is implemented by passing a four-level atom in a cascade configuration through the cavity. We shall discuss the application of such a quantum phase gate to quantum searching.
Entanglement and Quantum Error Correction with Superconducting Qubits
Reed, Matthew
2015-03-01
Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.
Superconducting qubits can be coupled and addressed as trapped ions
Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.
2009-03-01
Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518
Experiments with double-SQUID qubits
Energy Technology Data Exchange (ETDEWEB)
Doerling, Bernhard; Poletto, Stefano; Ustinov, Alexey V. [Karlsruher Institut fuer Technologie (Germany); Castellano, Maria Gabriella; Chiarello, Fabio [Instituto Fotonica e Nanotecnologie, CNR, Roma (Italy)
2010-07-01
A double-SQUID qubit (flash-qubit) allows the manipulation of quantum states by very short pulses of magnetic flux, without using microwaves. It consists of an rf-SQUID with a dc-SQUID replacing the single Josephson junction. The energy potential profile is controllable by dc bias fluxes threading the two loops. The initial qubit state in a double well is prepared by applying a dc flux pulse to one loop, thereby tilting the double well so that only one of the two states remains stable. To manipulate the state of the qubit a dc flux pulse is applied to the other loop to change the potential into a single well, where coherent Larmor oscillations between the two lowest eigenstates take place. Reading out the state is once again performed in the double well situation, where our readout dc-SQUID is able to discriminate between the two computational states due to their flux difference. We hope to present measurements done on a new sample, fabricated using shadow evaporation of aluminium and silicon nitride as the dielectric.
Coupled superconducting flux qubits
Plantenberg, J.H.
2007-01-01
This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t
Coupled superconducting flux qubits
Plantenberg, J.H.
2007-01-01
This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t
Integrated optical addressing of an ion qubit.
Mehta, Karan K; Bruzewicz, Colin D; McConnell, Robert; Ram, Rajeev J; Sage, Jeremy M; Chiaverini, John
2016-12-01
The long coherence times and strong Coulomb interactions afforded by trapped ion qubits have enabled realizations of the necessary primitives for quantum information processing and the highest-fidelity quantum operations in any qubit to date. Although light delivery to each individual ion in a system is essential for general quantum manipulations and readout, experiments so far have employed optical systems that are cumbersome to scale to even a few tens of qubits. Here we demonstrate lithographically defined nanophotonic waveguide devices for light routing and ion addressing that are fully integrated within a surface-electrode ion trap chip. Ion qubits are addressed at multiple locations via focusing grating couplers emitting through openings in the trap electrodes to ions trapped 50 μm above the chip; using this light, we perform quantum coherent operations on the optical qubit transition in individual (88)Sr(+) ions. The grating focuses the beam to a diffraction-limited spot near the ion position with 2 μm 1/e(2) radius along the trap axis, and we measure crosstalk errors between 10(-2) and 4 × 10(-4) at distances 7.5-15 μm from the beam centre. Owing to the scalability of the planar fabrication technique employed, together with the tight focusing and stable alignment afforded by the integration of the optics within the trap chip, this approach presents a path to creating the optical systems required for large-scale trapped-ion quantum information processing.
Integrated optical addressing of an ion qubit
Mehta, Karan K.; Bruzewicz, Colin D.; McConnell, Robert; Ram, Rajeev J.; Sage, Jeremy M.; Chiaverini, John
2016-12-01
The long coherence times and strong Coulomb interactions afforded by trapped ion qubits have enabled realizations of the necessary primitives for quantum information processing and the highest-fidelity quantum operations in any qubit to date. Although light delivery to each individual ion in a system is essential for general quantum manipulations and readout, experiments so far have employed optical systems that are cumbersome to scale to even a few tens of qubits. Here we demonstrate lithographically defined nanophotonic waveguide devices for light routing and ion addressing that are fully integrated within a surface-electrode ion trap chip. Ion qubits are addressed at multiple locations via focusing grating couplers emitting through openings in the trap electrodes to ions trapped 50 μm above the chip; using this light, we perform quantum coherent operations on the optical qubit transition in individual 88Sr+ ions. The grating focuses the beam to a diffraction-limited spot near the ion position with 2 μm 1/e2 radius along the trap axis, and we measure crosstalk errors between 10-2 and 4 × 10-4 at distances 7.5-15 μm from the beam centre. Owing to the scalability of the planar fabrication technique employed, together with the tight focusing and stable alignment afforded by the integration of the optics within the trap chip, this approach presents a path to creating the optical systems required for large-scale trapped-ion quantum information processing.
Energy Technology Data Exchange (ETDEWEB)
Tosi, Guilherme, E-mail: g.tosi@unsw.edu.au; Mohiyaddin, Fahd A.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney, New South Wales 2052, Australia. (Australia); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, D-80799 Munich, Germany. (Germany)
2014-08-15
Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified {sup 28}Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.
Directory of Open Access Journals (Sweden)
Guilherme Tosi
2014-08-01
Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.
Yum, Dahyun; Dutta, Tarun; Mukherjee, Manas
2016-01-01
We demonstrate an optical single qubit based on 6S1/2 to 5D5/2 quadrupole transition of a single Ba+ ion operated by diode based lasers only. The resonance wavelength of the 6S1/2 to 5D5/2 quadrupole transition is about 1762 nm which suitably falls close to the U-band of the telecommunication wavelength. Thus this qubit is a naturally attractive choice towards implementation of quantum repeater or quantum networks using existing telecommunication networks. We observe continuous bit-flip oscillations at a rate of about 250 kHz which is fast enough for the qubit operation as compared to the measured coherence time of over 3 ms. We also present a technique to quantify the bit-flip error in each qubit NOT gate operation.
1991-01-01
Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.
Integrated Josephson Parametric Amplifier Readout for Solid State Qubits
2014-10-13
Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person ...OF 1S. NUMBER ABSTRACT OF PAGES uu 19a. NAME OF RESPONSIBLE PERSON Irfan Siddiqi 19b. TELEPHONE NUMBER 510-642-5620 Standard F01m 298 (Rev 8/98...coherence in squeezed vacuum, S. J. Weber et al., International Conference on Squeezed States and Uncertainty Relations, Nuremberg , Germany (June
Catch-Disperse-Release Readout for Superconducting Qubits
2013-03-01
Weides, J. Wenner , T. Yamamoto, A. N. Cleland, and J. M. Mar- tinis, Phys. Rev. Lett. 106, 060501 (2011). [20] Y. Yin, Y. Chen, D. Sank, P. J. J...O’Malley, T. C. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner , A. N. Korotkov, A. N. Cle- land, and
Josephson quartic oscillator as a superconducting phase qubit
Energy Technology Data Exchange (ETDEWEB)
Zorin, Alexander [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Rome (Italy)
2010-07-01
Due to interplay between the cosine Josephson potential and parabolic magnetic-energy potential the radio-frequency SQUID with the screening parameter value {beta}{sub L} {identical_to}(2{pi}/{phi}{sub 0})LI{sub c} {approx}1 presents an oscillator circuit which energy well can dramatically change its shape. Ultimately, the magnetic flux bias of half flux quantum {phi}{sub e}={phi}{sub 0}/2 leads to the quartic polynomial shape of the well and, therefore, to significant anharmonicity of oscillations (> 30%). We show that the two lowest eigenstates in this symmetric global minimum perfectly suit for designing the qubit which is inherently insensitive to the charge variable, always biased in the optimal point and allows efficient dispersive and bifurcation-based readouts. Moreover, in the case of a double-SQUID configuration (dc SQUID instead of a single junction) the transition frequency in this Josephson phase qubit can be easy tuned within an appreciable range allowing variable qubit-qubit and qubit-resonator couplings.
Comparison of qubit and qutrit like entangled squeezed and coherent states of light
Najarbashi, G.; Mirzaei, S.
2016-10-01
Squeezed state of light is one of the important subjects in quantum optics which is generated by optical nonlinear interactions. In this paper, we especially focus on qubit like entangled squeezed states (ESS's) generated by beam splitters, phase-shifter and cross Kerr nonlinearity. Moreover the Wigner function of two-mode qubit and qutrit like ESS are investigated. We will show that the distances of peaks of Wigner functions for two-mode ESS are entanglement sensitive and can be a witness for entanglement. Like the qubit cases, monogamy inequality is fulfilled for qutrit like ESS. These trends are compared with those obtained for qubit and qutrit like entangled coherent states (ECS).
Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael
2014-03-01
We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, " open="|"> 0 and " open="|"> 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.
Lévay, Péter
2011-01-01
We link the recently discovered black hole-qubit correspondence to the structure of extra dimensions. In particular we show that for toroidal compactifications of type IIB string theory simple qubit systems arise naturally from the geometrical data of the tori parametrized by the moduli. We also generalize the recently suggested idea of the attractor mechanism as a distillation procedure of GHZ-like entangled states on the event horizon, to moduli stabilization for flux attractors in F-theory compactifications on elliptically fibered Calabi-Yau four-folds. Finally using a simple example we show that the natural arena for qubits to show up is an embedded one within the realm of fermionic entanglement of quantum systems with indistinguishable constituents.
Engineering extremal two-qubit entangled states with maximally entangled Gaussian light
Adesso, G; Illuminati, F; Paternostro, M
2010-01-01
We study state engineering induced by bilinear interactions between two remote qubits and light fields prepared in two-mode Gaussian states. The attainable two-qubit states span the entire physically allowed region in the entanglement-vs-global-purity plane. We show that two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. The target two-qubit entanglement is determined quantitatively only by the purities of the two-mode Gaussian resource. Thus, a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control completely the engineering of extremally entangled two-qubit states, which can be realized in realistic scenarios of cavity and circuit quantum electrodynamics.
Circuit QED with transmon qubits
Energy Technology Data Exchange (ETDEWEB)
Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)
2015-07-01
Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.
RF Control and Measurement of Superconducting Qubits
2015-02-14
208047 New Haven, CT 06520 -8047 14-Sep-2014 ABSTRACT Final Report: RF Control and Measurement of Superconducting Qubits Report Title This is the final...project duration, to the generation a new architecture which, while taking into account the limitations discovered in the other research line of the...materials properties. Third, spurious electromagnetic modes, not accounted for in the Hamiltonian (1), can spuriously couple to the atoms or the
Screening Effect in Charge Qubit
Institute of Scientific and Technical Information of China (English)
HUA Ming; XIAO Xiao; GAO Yi-Bo
2011-01-01
We study the influence of screening effect on quantum decoherence for charge qubit and the process of quantum information storage. When the flux produced by the circulating current in SQUID loop is considered, screening effect is formally characterized by a LC resonator. Using large-detuning condition and Fr(o)hlich transformation in the qubit-cavity-resonator system, we calculate the decoherence factor for charge qubit and the effective qubit-cavity Hamiltonian. The decoherence factor owns a factorized structure, it shows that screening effect is a resource of decoherence for charge qubit. The effective Hamiltonian shows that the screening effect results in a frequency shift for charge qubit and a modified qubit-cavity coupling constant induced by a LC resonator.
Sun, Luyan; Ginossar, Eran; Guy, Mikhael; Reed, Matthew; Paik, Hanhee; Bishop, Lev S.; Sears, Adam; Petrenko, Andrei; Brecht, Teresa; Frunzio, Luigi; Girvin, Steven; Schoelkopf, Robert
2012-02-01
The high power transient behavior of superconducting qubit-cavity systems has recently been used to perform high fidelity readout of transmon qubits [1]. We show that in the steady state, the system exhibits a bi-stable behavior that can be observed on the single-shot level, with the cavity state switching stochastically between dim and bright states. The switching times are shown to be long compared to the cavity and qubit lifetimes. Some features of the bi-stability can be explained by mean field theory, while its switching dynamics is studied with large scale simulations. Understanding these dynamics will be crucial for studying the transient response, an essential aspect of the qubit readout. We will discuss progress on optimizing readout by shaping the measurement pulse. [4pt] [1] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 173601 (2010)
Ralph, T C; Gilchrist, A; Gilchrist, Alexei
2005-01-01
We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss.
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-08-24
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement.
Quasi-lattices of qubits for generating inequivalent multipartite entanglements
Ian, Hou
2016-06-01
The mesoscopic scale of superconducting qubits makes their inter-spacings comparable to the scale of wavelength of a circuit cavity field to which they commonly couple. This comparability results in inhomogeneous coupling strengths for each qubit and hence asynchronous Rabi excitation cycles among the qubits that form a quasi-lattice. We find that such inhomogeneous coupling benefits the formation of multi-photon resonances between the single-mode cavity field and the quasi-lattice. The multi-photon resonances lead, in turn, to the simultaneous generation of inequivalent |\\text{GHZ}> and |W> types of multipartite entanglement states, which are not transformable to each other through local operations with classical communications. Applying the model on the 3-qubit quasi-lattice and using the entanglement measures of both concurrence and 3-tangle, we verify that the inhomogeneous coupling specifically promotes the generation of the totally inseparable |\\text{GHZ}> state.
Thiele, Stefan
2014-01-01
The realization of a functional quantum computer is one of the most ambitious technologically goals of today's scientists. Its basic building block is composed of a two-level quantum system, namely a quantum bit (or qubit). Among the other existing concepts, spin based devices are very attractive since they benefit from the steady progress in nanofabrication and allow for the electrical read-out of the qubit state. In this context, nuclear spin based devices exhibit an additional gain of cohe...
Multi-Qubit Algorithms in Josephson Phase Qubits
2016-06-14
improvement from the detection protocol relative to the added errors . At level IV, the focus is measuring Λ > 1, demonstrat- ing how a logical qubit...qubit since any measurement of a bit-flip error will pro- duce a random flip in phase. The key to quantum error correction is measuring qubit parities...1 and n = 2 errors , the repe- tition code is simply increased in size to 5 bits, with 4 parity measurements between them. Order n errors can be
Microcavity controlled coupling of excitonic qubits
Albert, F; Kasprzak, J; Strauß, M; Schneider, C; Höfling, S; Kamp, M; Forchel, A; Reitzenstein, S; Muljarov, E A; Langbein, W
2012-01-01
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. The most relevant mechanism of coherent coupling of distant qubits is coupling via the electromagnetic field. Here, we demonstrate the controlled coherent coupling of spatially separated excitonic qubits via the photon mode of a solid state microresonator. This is revealed by two-dimensional spectroscopy of the sample's coherent response, a sensitive and selective probe of the coherent coupling. The experimental results are quantitatively described by a rigorous theory of the cavity mediated coupling within a cluster of quantum dots excitons. Having demonstrated this mechanism, it can be used in extended coupling channels - sculptured, for instance, in photonic crystal cavities - to enable a long-range, non-local wiring up of individual emitters in solids.
Quantum magnonics: The magnon meets the superconducting qubit
Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu
2016-08-01
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon-vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons. xml:lang="fr"
Superconducting Qubit Optical Transducer (SQOT)
2015-08-05
SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The
Sirsi, Swarnamala; Hegde, Subramanya
2011-01-01
Quantum computation on qubits can be carried out by an operation generated by a Hamiltonian such as application of a pulse as in NMR, NQR. Quantum circuits form an integral part of quan- tum computation. We investigate the nonlocal operations generated by a given Hamiltonian. We construct and study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power. Our work addresses the problem of analyzing the quantum evolution in the special case of two qubit symmetric states. Such a symmetric space can be considered to be spanned by the angular momentum states {|j = 1,m>;m = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of newly defined Hermitian operators Mk's (k= 0.....8) which are constructed out of angular momentum operators Jx, Jy, Jz. These operators constitute a linearly independent set of traceless matrices (except for M0). Further...
Heralded entanglement between solid-state qubits separated by three metres.
Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R
2013-05-01
Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.
Energy Technology Data Exchange (ETDEWEB)
Blencowe, M P [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Armour, A D [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)], E-mail: miles.p.blencowe@dartmouth.edu, E-mail: andrew.armour@nottingham.ac.uk
2008-09-15
We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.
Multi-qubit joint measurements in circuit QED: stochastic master equation analysis
Energy Technology Data Exchange (ETDEWEB)
Criger, Ben; Ciani, Alessandro [RWTH, JARA Institut fuer Quanteninformation, Aachen (Germany); DiVincenzo, David P. [RWTH, JARA Institut fuer Quanteninformation, Aachen (Germany); Forschungszentrum Juelich, Juelich (Germany)
2016-12-15
We derive a family of stochastic master equations describing homodyne measurement of multi-qubit diagonal observables in circuit quantum electrodynamics. In the regime where qubit decay can be neglected, our approach replaces the polaron-like transformation of previous work, which required a lengthy calculation for the physically interesting case of three qubits and two resonator modes. The technique introduced here makes this calculation straightforward and manifestly correct. Using this technique, we are able to show that registers larger than one qubit evolve under a non-Markovian master equation. We perform numerical simulations of the three-qubit, two-mode case from previous work, obtaining an average post-measurement state fidelity of ∝94%, limited by measurement-induced decoherence and dephasing. (orig.)
Readout Architecture for Hybrid Pixel Readout Chips
AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken
The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...
Demonstrating quantum speed-up in a superconducting two-qubit processor
Dewes, A; Ong, F R; Schmitt, V; Milman, P; Bertet, P; Vion, D; Esteve, D
2011-01-01
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorithm among four objects and find that the correct answer is retrieved after a single run with a success probability between 0.52 and 0.67, significantly larger than the 0.25 achieved with a classical algorithm. This constitutes a proof-of-concept for the quantum speed-up of electrical quantum processors.
Superconducting Qubits and Quantum Resonators
Forn-Díaz, P.
2010-01-01
Superconducting qubits are fabricated "loss-free" electrical circuits on a chip with size features of tens of nanometers. If cooled to cryogenic temperatures below -273 °C they behave as quantum elements, similar to atoms and molecules. Such a qubit can be manipulated by fast-oscillating magnetic fi
Teleportation of M-Qubit Unitary Operations
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 郭光灿
2002-01-01
We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.
Demonstration of two-qubit algorithms with a superconducting quantum processor.
DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J
2009-07-09
Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.
Pavicic, M; McKay, B; Megill, N D; Pavicic, Mladen; Merlet, Jean-Pierre; Kay, Brendan Mc; Megill, Norman D.
2005-01-01
We give a constructive and exhaustive definition of Kochen-Specker (KS) qubits in the Hilbert space of any dimension as well as all the remaining vectors of the space. KS qubits are orthonormal states, i.e., vectors in n-dim Hilbert space, H^n, n>2 to which it is impossible to assign 1s and 0s in such a way that no two of mutually orthogonal vectors are both assigned 1. Our constructive definition of such KS vectors is based on the algorithms that generate linear MMP diagrams corresponding to blocks of orthogonal vectors in R^n, on algorithms that filter out diagrams on which algebraic 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of polynomially complex interval analysis and self-teaching programs. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors are generated and described, all 3-dim vector systems containing up to 30 vectors are scanned, and several general properties o...
Entanglement Dynamics of Two Qubits in a Common Bath
Ma, Jian; Wang, Xiaoguang; Nori, Franco
2012-01-01
We derive a set of hierarchical equations for qubits interacting with a Lorentz-broadened cavity mode at zero temperature, without using the rotating-wave, Born, and Markovian approximations. We use this exact method to reexamine the entanglement dynamics of two qubits interacting with a common bath, which was previously solved only under the rotating-wave and single-excitation approximations. With the exact hierarchy equation method used here, we observe significant differences in the resulting physics, compared to the previous results with various approximations. Double excitations due to counter-rotating-wave terms are also found to have remarkable effects on the dynamics of entanglement.
Yu, Deshui; Hufnagel, C; Kwek, L C; Amico, Luigi; Dumke, R
2016-01-01
We investigate a novel hybrid system of a superconducting charge qubit interacting directly with a single neutral atom via electric dipole coupling. Interfacing of the macroscopic superconducting circuit with the microscopic atomic system is accomplished by varying the gate capacitance of the charge qubit. To achieve strong interaction, we employ two Rydberg states with an electric-dipole-allowed transition, which alters the polarizability of the dielectric medium of the gate capacitor. Sweeping the gate voltage with different rates leads to a precise control of hybrid quantum states. Furthermore, we show a possible implementation of a universal two-qubit gate.
Readout of relaxation rates by nonadiabatic pumping spectroscopy
Riwar, Roman-Pascal; Roche, Benoît; Jehl, Xavier; Splettstoesser, Janine
2016-06-01
We put forward nonadiabatic charge pumping as a method for accessing the different charge relaxation rates as well as the relaxation rates of excited orbital states in double-quantum-dot setups, based on extremely size-limited quantum dots and dopant systems. The rates are obtained in a well-separated manner from plateaus, occurring when comparing the steady-state current for reversed driving cycles. This yields a reliable readout independent of any fitting parameters. Importantly, the nonadiabatic pumping spectroscopy essentially exploits the same driving scheme that the operation of these devices generally employs. We provide a detailed analysis of the working principle of the readout scheme as well as of possible errors, thereby demonstrating its broad applicability. The precise knowledge of relaxation rates is highly relevant for the implementation of time-dependently operated devices, such as electron pumps for metrology or qubits in quantum information.
Institute of Scientific and Technical Information of China (English)
陈石; 杨亚聃; 董洋; 李敏; 刘宏邦; 郑阳恒; 谢一冈; 阮向东; 王焕华; 陈雨; 俞伯祥; 唐爱松
2011-01-01
THGEM is a new type of gas detector with such merits as high counting rate, anti - radiation, high gain and relatively low cost. The THGEM detector system in direct current readout mode with the real time recording accumulated signals in multi - channels was used to measure the absolute intensity and two dimensional distribution. In addition, preliminary investigations were carried out on the multi - channel image effect.%THGEM是一种新型的具有计数率高、抗辐射、高增益和相对价廉等优点的气体探测器.采用适合实时记录多路多次信号累积效应的直流读出模式的THGEM探测系统测量了X射线的绝对强度及其相对强度的二维空间分布,并对多路成像效应进行了初步的探索.
Silicon quantum processor with robust long-distance qubit couplings
Energy Technology Data Exchange (ETDEWEB)
Rahman, Rajib [Purdue University; Tosi, Guilherme [Centre for Quantum Computation and Communication Technology; Schmitt, Vivien [Centre for Quantum Computation and Communication Technology; Klimeck, Gerhard [Purdue University; Tenberg, Stefanie B. [Centre for Quantum Computation and Communication Technology; Morello, Andrea [Centre for Quantum Computation and Communication Technology; Mohiyaddin, Fahd A. [ORNL
2017-09-01
Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.
Coherent controlization using superconducting qubits.
Friis, Nicolai; Melnikov, Alexey A; Kirchmair, Gerhard; Briegel, Hans J
2015-01-01
Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.
Quantum rekenen: Quantumcomputers en qubits
Hensen, B.J.; Hanson, R.
2013-01-01
De quantum computer is een computer gebaseerd op quantum bits, kortweg qubits. Dat zijn bits die fysiek gemaakt zijn van quantum systemen, met de speciale eigenschap dat ze in een superpositie tussen twee toestanden kunnen zijn.
Engineering the quantum-classical interface of solid-state qubits
Reilly, David J.
2015-10-01
Spanning a range of hardware platforms, the building-blocks of quantum processors are today sufficiently advanced to begin work on scaling-up these systems into complex quantum machines. A key subsystem of all quantum machinery is the interface between the isolated qubits that encode quantum information and the classical control and readout technology needed to operate them. As few-qubit devices are combined to construct larger, fault-tolerant quantum systems in the near future, the quantum-classical interface will pose new challenges that increasingly require approaches from the engineering disciplines in combination with continued fundamental advances in physics, materials and mathematics. This review describes the subsystems comprising the quantum-classical interface from the viewpoint of an engineer, experimental physicist or student wanting to enter the field of solid-state quantum information technology. The fundamental signalling operations of readout and control are reviewed for a variety of qubit platforms, including spin systems, superconducting implementations and future devices based on topological degrees-of-freedom. New engineering opportunities for technology development at the boundary between qubits and their control hardware are identified, transversing electronics to cryogenics.
Yagubizade, Hadi; Darvishi, Milad; Elwenspoek, Miko C.; Tas, Niels R.
2013-10-01
A 4th-order band-pass filter (BPF) based on the subtraction of two 2nd-order contour-mode Lamb-wave resonators is presented. The resonators have slightly different resonance frequencies around 380 MHz. Each resonator consists of a 500 nm pulsed-laser deposited lead zirconate titanate (PZT) thin-film on top of a 3 μm silicon (PZT-on-Si). The resonators are actuated in-phase, and their outputs are subtracted. Utilizing this technique, the feed-through signals are eliminated while the outputs of the resonators are added up constructively, due to the phase difference between the two output signals. The BPF is presented using 50 Ω termination with a bandwidth of approximately 3.9 MHz and 43 dB stopband rejection. This technique provides further opportunities for MEMS filter design in addition to existing methods, i.e., mechanical and/or electrical coupling. It also resolves the design issue associated with high feed-through when exploiting piezoelectric materials with high-dielectric constant like PZT.
Readout electronic for multichannel detectors
Kulibaba, V I; Naumov, S V
2001-01-01
Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.
Superconducting qubit-resonator-atom hybrid system
Yu, Deshui; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2017-09-01
We propose a hybrid quantum system where an LC resonator inductively interacts with a flux qubit and is capacitively coupled to a Rydberg atom. Varying the external magnetic flux bias controls the flux qubit flipping and the flux qubit-resonator interface. The atomic spectrum is tuned via an electrostatic field, manipulating the qubit-state transition of atom and the atom-resonator coupling. Different types of entanglement of superconducting, photonic and atomic qubits can be prepared via simply tuning the flux bias and electrostatic field, leading to the implementation of three-qubit Toffoli logic gate.
Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems
Energy Technology Data Exchange (ETDEWEB)
Ali, Mazhar
2009-07-13
This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference
Liu, Pei-Hua; Lin, Feng-Li
2017-08-01
In this work we study the decoherence of topological qubits in linear motions. The topological qubit is made of two spatially-separated Majorana zero modes which are the edge excitations of Kitaev chain [1]. In a previous work [2], it was shown by one of us and his collaborators that the decoherence of topological qubit is exactly solvable, moreover, topological qubit is robust against decoherence in the super-Ohmic environments. We extend the setup of [2] to consider the effect of motions on the decoherence of the topological qubits. Our results show the thermalization as expected by Unruh effect. Besides, we also find the so-called “anti-Unruh” phenomena which shows the rate of decoherence is anti-correlated with the acceleration in short-time scale. Moreover, we modulate the motion patterns of each Majorana modes and find information backflow and the preservation of coherence even with nonzero accelerations. This is the characteristics of the underlying non-Markovian reduced dynamics. We conclude that he topological qubit is in general more robust against decoherence than the usual qubits, and can be take into serious consideration for realistic implementation to have robust quantum computation and communication. This talk is based on our work in [3].
Single qubit operations with base squeezed coherent states
Podoshvedov, Sergey A.
2013-03-01
In quantum computing with base either coherent or squeezed coherent states, information is encoded into coherent states with opposite amplitudes. To exploit the base states in quantum computation, we need arbitrary qubit rotations plus a two-qubit gate such as controlled-Z gate to simulate any multiqubit unitary transformations. We develop an approach to realize single qubit operations with the base squeezed coherent states. The optical setup requires a resource of the base squeezed coherent states, unbalanced beam splitter whose transmittance tends to unity and photon counters in auxiliary modes. A successful two-photon subtraction from transmitted beam is heralded by two-photon click in auxiliary modes where tiny part of the initial beam is detected. The thrust of the method is that it achieves a high fidelity without photodetectors with a high efficiency or a single-photon resolution. We observe that there is wide diapason of values of the parameters that provide performance of single qubit operations with the base states. The problem is resolved in Wigner representation to take into account imperfections of the optical devices.
Coherent oscillations in a superconducting tunable flux qubit manipulated without microwaves
Energy Technology Data Exchange (ETDEWEB)
Poletto, S; Lisenfeld, J; Lukashenko, A; Ustinov, A V [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany); Chiarello, F; Castellano, M G; Torrioli, G [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Roma (Italy); Cosmelli, C [Dipartimento Fisica, Universita di Roma La Sapienza, 00185 Roma (Italy); Carelli, P [Dipartimento Ingegneria Elettrica, Universita dell' Aquila, 67040 Monteluco di Roio (Italy)], E-mail: ustinov@physik.uni-karlsruhe.de
2009-01-15
We experimentally demonstrate coherent oscillations of a tunable superconducting flux qubit by manipulating its energy potential with a nanosecond-long pulse of magnetic flux. The occupation probabilities of two persistent current states oscillate at a frequency ranging from 6 GHz to 21 GHz, tunable by changing the amplitude of the flux pulse. The demonstrated operation mode could allow quantum gates to be realized in less than 100 ps, which is much shorter than gate times attainable in other superconducting qubits. Another advantage of this type of qubit is its immunity to both thermal and magnetic field fluctuations.
Readout of the upgraded ALICE-ITS
Szczepankiewicz, A.
2016-07-01
The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.
Akchurin, N; Cardini, A.; Cascella, M.; Cei, F.; De Pedis, D.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; Genova, P.; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Moggi, A.; Pinci, D.; Policicchio, A.; Saraiva, J.G.; Sill, A.; Venturelli, T.; Wigmans, R.
2013-01-01
The RD52 Project at CERN is a pure instrumentation experiment whose goal is to un- derstand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\\sigma}/E $\\approx$ 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.
Akchurin, N.; Bedeschi, F.; Cardini, A.; Cascella, M.; Cei, F.; Pedis, D.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; P. Genova; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.(INFN Sezione di Pavia, Pavia, Italy)
2013-01-01
The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in n...
Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity
Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid
2015-06-01
We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.
One-Step Scheme for Realizing N-Qubit Quantum Phase Gates with Hot Trapped Ions
Institute of Scientific and Technical Information of China (English)
ZHENG Shi-Biao; LU Dao-Ming
2011-01-01
A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions.Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in the selective symmetric Dicke subspace.The scheme only involves a single step and the operation is insensitive to thermal motion.Moreover, the scheme does not require individual addresing of the ions.
Coupling spin qubits via superconductors
DEFF Research Database (Denmark)
Leijnse, Martin; Flensberg, Karsten
2013-01-01
We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....
Entanglement structures in qubit systems
Rangamani, Mukund; Rota, Massimiliano
2015-09-01
Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.
Entanglement structures in qubit systems
Rangamani, Mukund
2015-01-01
Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.
Verstraete, F; Verstraete, Frank; Verschelde, Henri
2002-01-01
We use the duality between completely positive linear maps and states to characterize all possible 1-qubit channels. This leads to a transparent way of characterizing all extreme points of the set of completely positive trace preserving maps. We show that these extremal maps arise in a natural way in problems such as to optimally enhance fidelity and optimal cloning. Next we use normal forms, previously derived for mixed states of two qubits, to derive interesting representations of CP-maps. It follows that a generic CP-map on 1 qubit can be interpreted as being a composition of a (reversible) filtering operation, followed by a unital map, followed by filtering again. It is furthermore shown that a map is entanglement breaking iff the dual state associated to it is separable, and how this implies that the Kraus operators can be chosen to be all of rank one.
Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system
Rouxinol, F.; Hao, Y.; Brito, F.; Caldeira, A. O.; Irish, E. K.; LaHaye, M. D.
2016-09-01
Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection.
Unification of multi-qubit polygamy inequalities
Kim, Jeong San
2012-01-01
We establish a unified view of polygamy of multi-qubit entanglement. We first introduce a two-parameter generalization of entanglement of assistance namely unified entanglement of assistance for bipartite quantum states, and provide an analytic lowerbound in two-qubit systems. We show a broad class of polygamy inequalities of multi-qubit entanglement in terms of unified entanglement of assistance that encapsulates all known multi-qubit polygamy inequalities as special cases. We further show that this class of polygamy inequalities can be improved into tighter inequalities for three-qubit systems.
Entanglement Between Qubits Interacting with Thermal Field
Directory of Open Access Journals (Sweden)
Bashkirovaa E.K.
2015-01-01
Full Text Available We have investigated the entanglement between two dipole coupled two-level artificial atoms (superconducting qubits, ion, spins etc.. The model, in which only one atom is trapped in an lossless cavity and interacts with single-mode thermal field, and the other one can be spatially moved freely outside the cavity has been carried out. We have considered the effect of the atomic coherence on the entanglement behavior. We have shown that a thermal field might cause high entanglement between the atoms both for coherent and incoherent initial atomic states only for small values of cavity mean photon number. We have also derived that the degree of entanglement is weakly dependent on the strength of dipole-dipole interaction for coherent initial states. In the considered model the atoms would get entangled even when both atoms are initially in the excited state.
Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Institute of Scientific and Technical Information of China (English)
Wu Chao; Fang Mao-Fa; Xiao Xing; Li Yan-Ling; Cao Shuai
2011-01-01
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance, are used for implementing quantum gates. By using dressed states, quantum state transfer and quantum entangling gate can be implemented. With the help of the time-dependent electromagnetic field, any two dressed qubits can be selectively coupled to the data bus (the last LC circuit), then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed. As a result, the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.
Dynamics of a qubit in a linear/nonlinear structured environment
Energy Technology Data Exchange (ETDEWEB)
Frammelsberger, Carmen; Hausinger, Johannes; Grifoni, Milena [Institute for Theoretical Physics, University of Regensburg (Germany)
2008-07-01
The understanding of the main dephasing and relaxation mechanisms is crucial for the realization of efficient solid state qubits. In this contribution we focus on the case in which the qubit is coupled to a driven linear or non-linear oscillator which in turn interacts with a dissipative environment. This situation mimicks the case of flux qubits read-out by a DC-SQUID, the latter being a linear or non-linear oscillator, or a cooper-pair box in a resonant electromagnetic cavity. In our work we adopt the point of view that the oscillator is part of the environment itself. In the linear oscillator case, this amounts to consider a spin-boson problem with a structured spectral density. Generalizing to the case of a finite bias, we show that analytic solutions for the dynamics can be obtained, at arbitrary detuning and finite temperatures, in the case of large Q-factors of the oscillator. One, two or more dominating oscillation frequencies of the qubit can be observed as a consequence of the entanglement with the oscillator. In the nonlinear case we show, using a mapping procedure which is exact in the linear case, that the problem can be approximated to a spin-boson model whose spectral density is proportional to the imaginary part of the nonlinear susceptibility of a quantum Duffing oscillator.
Fabrication and Characterization of Aluminum Airbridges for Superconducting Qubit Circuits
Chen, Zijun; Megrant, Anthony; Kelly, Julian; Barends, Rami; Bochmann, Joerg; Chen, Yu; Chiaro, Benjamin; Dunsworth, Andrew; Jeffrey, Evan; Mutus, Joshua; O'Malley, Peter; Neill, Charles; Roushan, Pedram; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Theodore; Cleland, Andrew; Martinis, John
2014-03-01
Superconducting circuits based on coplanar waveguides (CPWs) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers. These results pave the way for building airbridge crossovers on more complex qubit circuits.
Flux qubit to a transmission line
Energy Technology Data Exchange (ETDEWEB)
Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)
2015-07-01
Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.
Purification of Logic-Qubit Entanglement.
Zhou, Lan; Sheng, Yu-Bo
2016-07-05
Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.
Broadband sample holder for microwave spectroscopy of superconducting qubits.
Averkin, A S; Karpov, A; Shulga, K; Glushkov, E; Abramov, N; Huebner, U; Il'ichev, E; Ustinov, A V
2014-10-01
We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm(2). The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature.
Timing and Readout Contorl in the LHCb Upgraded Readout System
Alessio, Federico
2016-01-01
In 2019, the LHCb experiment at CERN will undergo a major upgrade where its detectors electronics and entire readout system will be changed to read-out events at the full LHC rate of 40 MHz. In this paper, the new timing, trigger and readout control system for such upgrade is reviewed. Particular attention is given to the distribution of the clock, timing and synchronization information across the entire readout system using generic FTTH technology like Passive Optical Networks. Moreover the system will be responsible to generically control the Front-End electronics by transmitting configuration data and receiving monitoring data, offloading the software control system from the heavy task of manipulating complex protocols of thousands of Front-End electronics devices. The way in which this was implemented is here reviewed with a description of results from first implementations of the system, including usages in test-benches, implementation of techniques for timing distribution and latency control."
Optimal Broadcasting of Mixed Equatorial Qubits
Institute of Scientific and Technical Information of China (English)
YU Zong-Wen
2009-01-01
We derive an optimal 2→M phase-covariant quantum broadcasting of mixed equatorial qubits.This quantum broadcasting is optimal in the sense that the shrinking factor between the input and the output single qubit achieves the upper bound.The result shows that we can copy two identical mixed equatorial qubits with the same quality as those of two identical pure equatorial states.
Thorbeck, Ted; Hover, David; Zhu, Shaojiang; Ribeill, Guilhem; Sank, Daniel; Barends, Rami; Martinis, John; McDermott, Robert
2014-03-01
We describe a high-fidelity dispersive measurement of a superconducting Xmon qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). We will show a qubit measurement fidelity of 99% in 700 ns with the SLUG, compared to 60% without the SLUG. The SLUG amplifier has a gain of 19 dB at 6.6 GHZ. It also improves the signal-to-noise ratio by 9 dB, compared the same circuit without the SLUG. Also, the SLUG amplifier has a large dynamic range, with an input saturation power corresponding to around 600 photons in the readout cavity. All of these properties make the SLUG a promising microwave amplifier for more complex quantum circuits.
Interfacing superconducting qubits and single optical photons
Das, Sumanta; Sørensen, Anders S
2016-01-01
We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit far from the optical axis. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such low light level is highly sought for to overcome the decoherence of the superconducting qubit caused by absorption of optical photons.
Exact two-qubit universal quantum circuit
Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar
2003-01-01
We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit gates. Each block in this circuit is given in a closed form solution. We also analyze the efficiency of different entangling gates, and find that exactly half of all the controlled-unitary gates can be used to implement two-qubit operations as efficiently as the commonly used CNOT gate.
Controlled decoherence of floating flux qubits
Institute of Scientific and Technical Information of China (English)
Ji Ying-Hua; Xu Lin
2010-01-01
In Born-Markov approximation, this paper calculates the energy relaxation time T1 and the decoherence time T2 of a floating flux qubit by solving the set of Bloch-Redfield equations. It shows that there are two main factors influencing the floating flux qubits: coupling capacitor in the circuit and the environment resistor. It also discusses how to improvethe quantum coherence time of a qubit. Through shunt connecting/series connecting inductive elements, an inductive environment resistor is obtained and further the reactance component of the environment resistor is improved, which is beneficial to the enhancement of decoherence time of floating flux qubits.
Zhong, Zai-Zhe
2004-01-01
The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.
Zhong, Zai-Zhe
2004-01-01
The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.
Thermopile Area Array Readout Project
National Aeronautics and Space Administration — NASA/JPL thermopile detector linear arrays, wire bonded to Black Forest Engineering (BFE) CMOS readout integrated circuits (ROICs), have been utilized in NASA...
Characteristic parameters and dynamics of two-qubit system in self-assembled monolayers
Rinkevicius, Z; Tsifrinovich, V I; Tretiak, S; Rinkevicius, Zilvinas; Berman, Gennady P.; Tsifrinovich, Vladimir I.; Tretiak, Sergei
2004-01-01
We suggest the application of nitronylnitroxide substituted with methyl group and 2,2,6,6-tetramethylpiperidin organic radicals as 1/2-spin qubits for self-assembled monolayer quantum devices. We show that the oscillating cantilever driven adiabatic reversals technique can provide the read-out of the spin states. We compute components of the $g$-tensor and dipole-dipole interaction tensor for these radicals. We show that the delocalization of the spin in the radical may significantly influence the dipole-dipole interaction between the spins.
Interfacing superconducting qubits and single optical photons
Das, Sumanta; Faez, Sanli; Sørensen, Anders S.
2016-01-01
We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit
Crystalline Silicon Dielectrics for Superconducting Qubit Circuits
Hover, David; Peng, Weina; Sendelbach, Steven; Eriksson, Mark; McDermott, Robert
2009-03-01
Superconducting qubit energy relaxation times are limited by microwave loss induced by a continuum of two-level state (TLS) defects in the dielectric materials of the circuit. State-of-the-art phase qubit circuits employ a micron-scale Josephson junction shunted by an external capacitor. In this case, the qubit T1 time is directly proportional to the quality factor (Q) of the capacitor dielectric. The amorphous capacitor dielectrics that have been used to date display intrinsic Q of order 10^3 to 10^4. Shunt capacitors with a Q of 10^6 are required to extend qubit T1 times well into the microsecond range. Crystalline dielectric materials are an attractive candidate for qubit capacitor dielectrics, due to the extremely low density of TLS defects. However, the robust integration of crystalline dielectrics with superconducting qubit circuits remains a challenge. Here we describe a novel approach to the realization of high-Q crystalline capacitor dielectrics for superconducting qubit circuits. The capacitor dielectric is a crystalline silicon nanomembrane. We discuss characterization of crystalline silicon capacitors with low-power microwave transport measurements at millikelvin temperatures. In addition, we report progress on integrating the crystalline capacitor process with Josephson qubit fabrication.
On the Black-Hole/Qubit Correspondence
Borsten, L; Marrani, A; Rubens, W
2011-01-01
The entanglement classification of four qubits is related to the extremal black holes of the 4-dimensional STU model via a time-like reduction to three dimensions. This correspondence is generalised to the entanglement classification of a very special four-way entanglement of eight qubits and the black holes of the maximally supersymmetric N = 8 and exceptional magic N = 2 supergravity theories.
Enhanced dynamical entanglement transfer with multiple qubits
Serafini, A; Kim, M S; Paternostro, M
2005-01-01
We present two strategies to enhance the dynamical entanglement transfer from continuous variable (CV) to finite dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small (``mesoscopic'') number of qubits resonantly coupled to the CV system is sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between mesoscopic and macroscopic behaviours of composite finite dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing to probabilistically convert CV entanglement into `almost perfect' Bell pairs of two qubits. ...
Quantum Markov Channels for Qubits
Daffer, S; McIver, J K; Daffer, Sonja; Wodkiewicz, Krzysztof; Iver, John K. Mc
2003-01-01
We examine stochastic maps in the context of quantum optics. Making use of the master equation, the damping basis, and the Bloch picture we calculate a non-unital, completely positive, trace-preserving map with unequal damping eigenvalues. This results in what we call the squeezed vacuum channel. A geometrical picture of the effect of stochastic noise on the set of pure state qubit density operators is provided. Finally, we study the capacity of the squeezed vacuum channel to transmit quantum information and to distribute EPR states.
Theory, modeling and simulation of superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Berman, Gennady P [Los Alamos National Laboratory; Kamenev, Dmitry I [Los Alamos National Laboratory; Chumak, Alexander [INSTIT OF PHYSICS, KIEV; Kinion, Carin [LLNL; Tsifrinovich, Vladimir [POLYTECHNIC INSTIT OF NYU
2011-01-13
We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high
Theory, modeling and simulation of superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Berman, Gennady P [Los Alamos National Laboratory; Kamenev, Dmitry I [Los Alamos National Laboratory; Chumak, Alexander [INSTIT OF PHYSICS, KIEV; Kinion, Carin [LLNL; Tsifrinovich, Vladimir [POLYTECHNIC INSTIT OF NYU
2011-01-13
We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high
Thermopile detector radiation hard readout
Gaalema, Stephen; Van Duyne, Stephen; Gates, James L.; Foote, Marc C.
2010-08-01
The NASA Jupiter Europa Orbiter (JEO) conceptual payload contains a thermal instrument with six different spectral bands ranging from 8μm to 100μm. The thermal instrument is based on multiple linear arrays of thermopile detectors that are intrinsically radiation hard; however, the thermopile CMOS readout needs to be hardened to tolerate the radiation sources of the JEO mission. Black Forest Engineering is developing a thermopile readout to tolerate the JEO mission radiation sources. The thermal instrument and ROIC process/design techniques are described to meet the JEO mission requirements.
Implementation of n-qubit Deutsch-Jozsa algorithm using resonant interaction in cavity QED
Institute of Scientific and Technical Information of China (English)
Wang Hong-Fu; Zhang Shou
2008-01-01
We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.
Decoherence of two-qubit system in a non-Markovian squeezed reservoir
Institute of Scientific and Technical Information of China (English)
Wang Fa-Qiang; Zhang Zhi-Ming; Liang Rui-Sheng
2009-01-01
The decoherence of two initially entangled qubits coupled with a squeezed vacuum cavity separately is investigated exactly. The results show that, first, in principle, the disentanglement time decreases with the increase of squeeze parameter r, due to the augmenting of average photon number of every mode in the squeezed vacuum cavity. Second, there appear entanglement revivals after the complete disentanglement for the case of even parity initial Bell state, while there occur the entanglement decrcase and the entanglement revival before the complete disentanglement for the case of odd parity initial Bell state. The results are quite different from those for the case of qubits in a vacuum cavity.
Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits
Kimchi-Schwartz, M. E.; Martin, L.; Flurin, E.; Aron, C.; Kulkarni, M.; Tureci, H. E.; Siddiqi, I.
2016-06-01
Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F =0.70 , and is scalable to multiple qubits.
Criteria of partial separability of multipartite qubit mixed-states
Zhong, Z Z
2004-01-01
In this paper, we discuss the partial separability and its criteria problems of multipartite qubit mixed-states. First we strictly define what is the partial separability of a multipartite qubit system. Next we give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit mixed-state to be partially separable is its reduction to satisfy the PPT condition.
Microcavity controlled coupling of excitonic qubits.
Albert, F; Sivalertporn, K; Kasprzak, J; Strauß, M; Schneider, C; Höfling, S; Kamp, M; Forchel, A; Reitzenstein, S; Muljarov, E A; Langbein, W
2013-01-01
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits--like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots--is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton-photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample's coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.
Producing and Distinguishing x-Type Four-Qubit States in Flux Qubits
Institute of Scientific and Technical Information of China (English)
GAO Gui-Long; SONG Fu-Quan; HUANG Shou-Sheng; WANG Yan-Wei; FAN Zhi-Qiang; YUAN Xian-Zhang; JIANG Nian-Quan
2012-01-01
We propose an effective method to produce four-qubit x~type entangled states by using flux qubits coupled to an LC circuit which acts as a quantum data bus (QDB). In our scheme, the interaction is mediated by the exchange of virtual rather than real photons because of the large detuning between flux qubits and QDB, and then QDB-induced loss can be effectively avoided. The experimental feasibility of the scheme is also presented.%We propose an effective method to produce four-qubit x-type entangled states by using flux qubits coupled to an LC circuit which acts as a quantum data bus (QDB).In our scheme,the interaction is mediated by the exchange of virtual rather than real photons because of the large detuning between flux qubits and QDB,and then QDB-induced loss can be effectively avoided.The experimental feasibility of the scheme is also presented.
Coherence properties in superconducting flux qubits
Energy Technology Data Exchange (ETDEWEB)
Spilla, Samuele
2015-02-16
The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking
Anisotropic Spin Cluster as a Qubit
Institute of Scientific and Technical Information of China (English)
YAN Xiao-Bo; WANG Ming-Ji
2007-01-01
We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interaction with non-uniform coupling constants. A time-dependent magnetic field is applied to control the time evolution of the cluster. It is well known that for an odd number og sites a spin cluster qubit can be defined in terms of the ground state doublet. The universal one-qubit logic gate can be constructed from the time evolution operator of the non-autonomous many-body system, and the six basic one-qubit gates can be realized by adjusting the applied time-dependent magnetic field.
Weak measurements with a qubit meter
DEFF Research Database (Denmark)
Wu, Shengjun; Mølmer, Klaus
2009-01-01
We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...... of the weak value. We present compact expressions for the weak value of single qubit observables and of product observables on qubit pairs. Experimental studies of the results are suggested with cold trapped ions....
Phase qubits fabricated with trilayer junctions
Energy Technology Data Exchange (ETDEWEB)
Weides, M; Bialczak, R C; Lenander, M; Lucero, E; Mariantoni, Matteo; Neeley, M; O' Connell, A D; Sank, D; Wang, H; Wenner, J; Yamamoto, T; Yin, Y; Cleland, A N; Martinis, J, E-mail: martin.weides@nist.gov, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)
2011-05-15
We have developed a novel Josephson junction geometry with minimal volume of lossy isolation dielectric, suitable for higher quality trilayer junctions implemented in qubits. The junctions are based on in situ deposited trilayers with thermal tunnel oxide, have micron-sized areas and a low subgap current. In qubit spectroscopy only a few avoided level crossings are observed, and the measured relaxation time of T{sub 1{approx}}400 ns is in good agreement with the usual phase qubit decay time, indicating low loss due to the additional isolation dielectric.
Non-Markovian dynamics of a superconducting qubit in an open multimode resonator
Malekakhlagh, Moein; Petrescu, Alexandru; Türeci, Hakan E.
2016-12-01
We study the dynamics of a transmon qubit that is capacitively coupled to an open multimode superconducting resonator. Our effective equations are derived by eliminating resonator degrees of freedom while encoding their effect in the Green's function of the electromagnetic background. We account for the dissipation of the resonator exactly by employing a spectral representation for the Green's function in terms of a set of non-Hermitian modes and show that it is possible to derive effective Heisenberg-Langevin equations without resorting to the rotating-wave, two-level, Born, or Markov approximations. A well-behaved time-domain perturbation theory is derived to systematically account for the nonlinearity of the transmon. We apply this method to the problem of spontaneous emission, capturing accurately the non-Markovian features of the qubit dynamics, valid for any qubit-resonator coupling strength.
Towards a heralded eigenstate-preserving measurement of multi-qubit parity in circuit QED
Huembeli, Patrick; Nigg, Simon E.
2017-07-01
Eigenstate-preserving multi-qubit parity measurements lie at the heart of stabilizer quantum error correction, which is a promising approach to mitigate the problem of decoherence in quantum computers. In this work we explore a high-fidelity, eigenstate-preserving parity readout for superconducting qubits dispersively coupled to a microwave resonator, where the parity bit is encoded in the amplitude of a coherent state of the resonator. Detecting photons emitted by the resonator via a current biased Josephson junction yields information about the parity bit. We analyze theoretically the measurement back action in the limit of a strongly coupled fast detector and show that in general such a parity measurement, while approximately quantum nondemolition is not eigenstate preserving. To remediate this shortcoming we propose a simple dynamical decoupling technique during photon detection, which greatly reduces decoherence within a given parity subspace. Furthermore, by applying a sequence of fast displacement operations interleaved with the dynamical decoupling pulses, the natural bias of this binary detector can be efficiently suppressed. Finally, we introduce the concept of a heralded parity measurement, where a detector click guarantees successful multi-qubit parity detection even for finite detection efficiency.
Experimental design of a loophole-free Bell test with spin qubits in diamond
Hensen, Bas; Bernien, Hannes; Dréau, Anaïs; Reiserer, Andreas; Ruitenberg, Just; Blok, Machiel; Wehner, Stephanie; Markham, M.; Twitchen, D.; Hanson, Ronald
2015-03-01
50 years ago, John Bell formulated his famous theorem. The outcomes of independent measurements on entangled objects can reveal strong correlations that violate Bell's inequality. Until now, all experimental implementations of Bell's test required additional assumptions, that open the door for so-called loopholes. These loopholes are particularly important in a cryptography setting where Bell violations enable fully device-independent protocols for quantum key distribution and certified generation of randomness. Here we will present the experimental design of a Bell test, aimed at closing the detection loophole and addressing the locality and free-will loopholes in a single experiment. We use two qubits associated with the electronic spin of the nitrogen-vacancy (NV) center in diamond, separated far enough to allow space-like separation between the two qubits during their measurement. The heralded nature of our remote entanglement protocol and efficient qubit readout allow us to use all entangled pairs, avoiding the fair-sampling assumption. Finally, the free-will loophole is addressed by the use of fast random number generators.
Reconsidering Rapid Qubit Purification by Feedback
Wiseman, H M
2006-01-01
This paper reconsiders the properties of a scheme for the rapid purification of the quantum state of a qubit, proposed recently in Jacobs 2003 Phys. Rev. A67 030301(R). The qubit starts in a completely mixed state, and information is obtained by a continuous measurement. Jacobs' rapid purification protocol uses Hamiltonian feedback control to maximise the average purity of the qubit for a given time, with a factor of two increase in the purification rate over the no-feedback protocol. However, by re-examining the latter approach, we show that it mininises the average time taken for a qubit to reach a given purity. In fact, the average time taken for the no-feedback protocol beats that for Jacobs' protocol by a factor of two. We discuss how this is compatible with Jacobs' result, and the usefulness of the different approaches.
Quantum data compression of a qubit ensemble.
Rozema, Lee A; Mahler, Dylan H; Hayat, Alex; Turner, Peter S; Steinberg, Aephraim M
2014-10-17
Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.
Single-qubit remote manipulation by magnetic solitons
Energy Technology Data Exchange (ETDEWEB)
Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); CNISM – c/o Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Nuzzi, Davide, E-mail: nuzzi@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Vaia, Ruggero, E-mail: ruggero.vaia@isc.cnr.it [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Verrucchi, Paola, E-mail: verrucchi@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)
2016-02-15
Magnetic solitons can constitute a means for manipulating qubits from a distance. This would overcome the necessity of directly applying selective magnetic fields, which is unfeasible in the case of a matrix of qubits embedded in a solid-state quantum device. If the latter contained one-dimensional Heisenberg spin chains coupled to each qubit, one can originate a soliton in a selected chain by applying a time-dependent field at one end of it, far from the qubits. The generation of realistic solitons has been simulated. When a suitable soliton passes by, the coupled qubit undergoes nontrivial operations, even in the presence of moderate thermal noise. - Highlights: • Proposal for the remote control of qubits coupled to a spin chain supporting solitons. • Traveling solitons can be generated on the chain by acting far from the qubit. • Suitable magnetic solitons can properly change the qubit state. • This qubit manipulation mechanism is shown to be resilient to thermal noise.
Quantum Data Compression of a Qubit Ensemble
Rozema, Lee A.; Mahler, Dylan H.; Hayat, Alex; Turner, Peter S.; Steinberg, Aephraim M.
2014-01-01
Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compre...
Decoherence in Josephson Qubits from Dielectric Loss
Martinis, John M.; Cooper, K. B.; McDermott, R.; Steffen, Matthias; Ansmann, Markus; Osborn, K; Cicak, K.; Oh, S.; Pappas, D. P.; Simmonds, R. W.; Yu, Clare C
2005-01-01
Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctio...
Digital column readout architectures for hybrid pixel detector readout chips
Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A
2014-01-01
In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.
Dissipative dynamics of superconducting hybrid qubit systems
Energy Technology Data Exchange (ETDEWEB)
Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)
2009-05-01
We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.
STU Black Holes as Four Qubit Systems
Lévay, Péter
2010-01-01
In this paper we describe the structure of extremal stationary spherically symmetric black hole solutions in the STU model of D=4, N=2 supergravity in terms of four-qubit systems. Our analysis extends the results of previous investigations based on three qubits. The basic idea facilitating this four-qubit interpretation is the fact that stationary solutions in D=4 supergravity can be described by dimensional reduction along the time direction. In this D=3 picture the global symmetry group $SL(2,R)^{\\times 3}$ of the model is extended by the Ehlers SL(2,R) accounting for the fourth qubit. We introduce a four qubit state depending on the charges (electric, magnetic and NUT) the moduli and the warp factor. We relate the entanglement properties of this state to different classes of black hole solutions in the STU model. In the terminology of four qubit entanglement extremal black hole solutions correspond to nilpotent, and nonextremal ones to semisimple states. In arriving at this entanglement based scenario the ...
Teleporting N-qubit unknown atomic state by utilizing the Ⅴ-type three-level atom
Institute of Scientific and Technical Information of China (English)
ZHANG XinHua; YANG ZhiYong; XU PeiPei
2009-01-01
Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the Ⅴ-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the Ⅴ-type degen-erate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.
Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.
Efficient factorization with a single pure qubit and $log N$ mixed qubits
Parker, S.; Plenio, M. B.
2000-01-01
It is commonly assumed that Shor's quantum algorithm for the efficient factorization of a large number $N$ requires a pure initial state. Here we demonstrate that a single pure qubit together with a collection of $log_2 N$ qubits in an arbitrary mixed state is sufficient to implement Shor's factorization algorithm efficiently.
Tomographic readout of an opto-mechanical interferometer
Kaufer, Henning; Westphal, Tobias; Friedrich, Daniel; Schnabel, Roman
2012-01-01
The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of $\\unit{1.9 \\cdot 10^{-16}}{\\metre/\\sqrt{\\hertz}}$ around the membrane's fundamental oscillation mode at $\\unit{133}{\\kilo\\hertz}$ has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.
Energy Technology Data Exchange (ETDEWEB)
Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)
2016-03-15
Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.
Analysis of photon-mediated entanglement between distinguishable matter qubits
Dyckovsky, A M
2012-01-01
We theoretically evaluate establishing remote entanglement between distinguishable matter qubits through interference and detection of two emitted photons. The fidelity of the entanglement operation is analyzed as a function of the temporal and frequency mode-matching between the photons emitted from each quantum memory. With a general analysis, we define limits on the absolute magnitudes of temporal and frequency mode-mismatches in order to maintain entanglement fidelities greater than 99% with two-photon detection efficiencies greater than 90%. We apply our analysis to several selected systems of quantum memories. Results indicate that high fidelities may be achieved in each system using current experimental techniques, while maintaining acceptable rates of entanglement. Thus, it might be possible to use two-photon-mediated entanglement operations between distinguishable quantum memories to establish a network for quantum communication and distributed quantum computation.
Emulation of complex open quantum systems using superconducting qubits
Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán
2017-02-01
With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.
Sliwa, Katrina
The quantum back-action of the measurement apparatus arising from the Heisenberg uncertainty principle is both a fascinating phenomenon and a powerful way to apply operations on quantum systems. Unfortunately, there are other effects which may overwhelm the Heisenberg back-action. This thesis focuses on two effects arising in the dispersive measurement of superconducting qubits made with two ultra-low-noise parametric amplifiers, the Josephson bifurcation amplifier (JBA) and the Josephson parametric converter (JPC). The first effect is qubit dephasing due to excess photons in the cavity coming from rogue radiation emitted by the first amplifier stage toward the system under study. This problem arises primarily in measurements made with the JBA, where a strong resonant pump tone is traditionally used to provide the energy for amplification. Replacing the single strong pump tone with two detuned pump tones minimized this dephasing to the point where the Heisenberg back-action of measurements made with the JBA could be observed. The second effect is reduced measurement efficiency arising from losses between the qubit and the parametric amplifier. Most commonly used parametric amplifiers operate in reflection, requiring additional lossy, magnetic elements known as circulators both to separate input from output, and to protect the qubits from dephasing due to the amplified reflected signal. This work presents two alternative directional elements, the Josephson circulator, which is both theoretically loss-less and does not rely upon the strong magnetic fields needed for traditional circulators, and the Josephson directional amplifier which does not send any amplified signal back toward the qubit. Both of these elements achieve directionality by interfering multiple parametric processes inside a single JPC, allowing for in-situ switching between the two modes of operation. This brings valuable experimental flexibility, and also makes these devices strong candidates for
Manipulating time-bin qubits with fiber optics components
Bussieres, Felix; Soudagar, Yasaman; Berlin, Guido; Lacroix, Suzanne; Godbout, Nicolas
2006-01-01
We propose two experimental schemes to implement arbitrary unitary single qubit operations on single photons encoded in time-bin qubits. Both schemes require fiber optics components that are available with current technology.
Scalable in situ qubit calibration during repetitive error detection
Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Lucero, E.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, John M.
2016-09-01
We present a method to optimize qubit control parameters during error detection which is compatible with large-scale qubit arrays. We demonstrate our method to optimize single or two-qubit gates in parallel on a nine-qubit system. Additionally, we show how parameter drift can be compensated for during computation by inserting a frequency drift and using our method to remove it. We remove both drift on a single qubit and independent drifts on all qubits simultaneously. We believe this method will be useful in keeping error rates low on all physical qubits throughout the course of a computation. Our method is O (1 ) scalable to systems of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant quantum computer.
Yang, Wan-li; Xu, Zhen-yu; Feng, Mang; Du, Jiang-feng
2010-01-01
The diamond nitrogen-vacancy (NV) center is an excellent candidate for quantum information processing, whereas entangling separate NV centers is still of great experimental challenge. We propose an one-step conditional phase flip with three NV centers coupled to a whispering-gallery mode cavity by virtue of the Raman transition and smart qubit encoding. As decoherence is much suppressed, our scheme could work for more qubits. The experimental feasibility is justified.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Least significant qubit algorithm for quantum images
Sang, Jianzhi; Wang, Shen; Li, Qiong
2016-11-01
To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.
Relaxation of a qubit measured by a driven Duffing oscillator
Serban, I; Wilhelm, F K
2009-01-01
We investigate the relaxation of a superconducting qubit for the case when its detector, the Josephson bifurcation amplifier, remains latched in one of its two (meta)stable states of forced vibrations. The qubit relaxation rates are different in different states. They can display strong dependence on the qubit frequency and resonant enhancement, which is due to {\\em quasienergy resonances}. Coupling to the driven oscillator changes the effective temperature of the qubit.
High frame rate measurements of semiconductor pixel detector readout IC
Szczygiel, R.; Grybos, P.; Maj, P.
2012-07-01
We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).
High frame rate measurements of semiconductor pixel detector readout IC
Energy Technology Data Exchange (ETDEWEB)
Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)
2012-07-11
We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).
Four-qubit entanglement classification from string theory.
Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W
2010-09-03
We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits.
Qubit State Monitoring by Measurement of Three Complementary Observables
DEFF Research Database (Denmark)
Ruskov, Rusko; Korotkov, Alexander N.; Mølmer, Klaus
2010-01-01
We consider the evolution of a qubit (spin 1/2) under the simultaneous continuous measurement of three noncommuting qubit operators σ̂x, σ̂y, and σ̂z. For identical ideal detectors, the qubit state evolves by approaching a pure state with a random direction in the Bloch vector space...
Optimal State Estimation of Pure Qubits on Circles
Institute of Scientific and Technical Information of China (English)
A. Ugulava; ZHANG Li-Hua; L. Chotorlishvili; SONG Wei; V. Skrinnikov; CAO Zhuo-Liang; G. Mchedlishvili
2008-01-01
We consider the problem of state estimation of qubits chosen from circles. It is shown that any qubit encoded in pairs chosen from a fixed circle parallel to the x-y equator with different phases contains the same information. We also investigate the problem of state estimation of qubits from three circles. The optimal estimation fidelity is derived.
Perfect Single Qubit Mirroring Effects on Two and Three Maximally Entangled Qubits
Institute of Scientific and Technical Information of China (English)
M.(A)vila
2013-01-01
Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state |i〉 of the chain is swapped into the state |N-i〉 within a time evolution interval τ.Such a phenomenon is an interesting way of transfering entanglement.An expressions for the perfect mirroring of a single qubit contained in a spin chain were proposed in the past.We exploit such an expressions for calculating the evolution times in chains of both two and three spins.In the case of a chain of two qubits,we derive conditions under which the associated four Bell states diagonalize the Hamiltonian.It is found that for the two Bell states |Φ+〉 and |Φ-〉,perfect mirroring does not occur (i.e.entanglement is not preserved under swapping).On the other hand,perfect single qubit mirror effect (entanglement preservation) indeed occurs for the other two Bell states |Ψ+〉 and |Ψ-〉 which are mapped into |Φ+〉 and |Φ-〉 respectively.For the case of a chain of three qubits,the effects of a perfect single qubit mirroring on a set of four maximally entangled three qubit states Ψ1,Ψ2,x1,and x2 are studied.Due to the fact that quantum mirroring preserves maximal entanglement,the states Ψ1and Ψ2 are not altered.However,quantum mirroring changes the states x1 and x2 only if we apply perfect quantum state mirroring in the site a =1 of the three qubits spin chain.The above constrains the preservation of maximal entanglement under qubit mirroring of such a state.Due to the fact that swapping has already been experimentally tested,a posible.experimental implementations of single qubit mirroring is possible.
Hell, M.; Wegewijs, M. R.; DiVincenzo, D. P.
2016-01-01
We theoretically investigate the backaction of a sensor quantum dot with strong local Coulomb repulsion on the transient dynamics of a qubit that is probed capacitively. We show that the measurement backaction induced by the noise of electron cotunneling through the sensor is surprisingly mitigated by the recently identified coherent backaction [M. Hell, M. R. Wegewijs, and D. P. DiVincenzo, Phys. Rev. B 89, 195405 (2014), 10.1103/PhysRevB.89.195405] arising from quantum fluctuations. This indicates that a sensor with quantized states may be switched off better than naively expected. This renormalization effect is missing in semiclassical stochastic fluctuator models and typically also in Born-Markov approaches, which try to avoid the calculation of the nonstationary, nonequilibrium state of the qubit plus sensor. Technically, we integrate out the current-carrying electrodes to obtain kinetic equations for the joint, nonequilibrium detector-qubit dynamics. We show that the sensor current response, level renormalization, cotunneling broadening, and leading non-Markovian corrections always appear together and cannot be turned off individually in an experiment or ignored theoretically. We analyze the backaction on the reduced qubit state—capturing the full non-Markovian effects imposed by the sensor quantum dot on the qubit—by applying a Liouville-space decomposition into quasistationary and rapidly decaying modes. Importantly, the sensor cannot be eliminated completely even in the simplest high-temperature, weak-measurement limit since the qubit state experiences an initial slip depending on the initial preparation of qubit plus sensor quantum dot. The slip persists over many qubit cycles, i.e., also on the time scale of the qubit decoherence induced by the backaction. A quantum-dot sensor can thus not be modeled as usual as a "black box" without accounting for its dynamical variables; it is part of the quantum circuit. We furthermore find that the Bloch vector
Four-qubit PPT entangled symmetric states
Tura, J; Hyllus, P; Kuś, M; Samsonowicz, J; Lewenstein, M
2012-01-01
We solve an open question of the existence of four-qubit entangled symmetric states with positive partial transpositions (PPT states). We reach this goal with two different approaches. First, we propose a half-analytical-half-numerical method that allows to construct multipartite PPT entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states. Second, we adapt the algorithm allowing to search for extremal elements in the convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we search for extremal four-qubit PPTESS and show that generically they have ranks (5,7,8). Finally, we provide an exhaustive characterization of these states with respect to their separability properties.
Cat-qubits for quantum computation
Mirrahimi, Mazyar
2016-08-01
The development of quantum Josephson circuits has created a strong expectation for reliable processing of quantum information. While this progress has already led to various proof-of-principle experiments on small-scale quantum systems, a major scaling step is required towards many-qubit protocols. Fault-tolerant computation with protected logical qubits usually comes at the expense of a significant overhead in the hardware. Each of the involved physical qubits still needs to satisfy the best achieved properties (coherence times, coupling strengths and tunability). Here, and in the aim of addressing alternative approaches to deal with these obstacles, I overview a series of recent theoretical proposals, and the experimental developments following these proposals, to enable a hardware-efficient paradigm for quantum memory protection and universal quantum computation. xml:lang="fr"
Nanosecond monolithic CMOS readout cell
Souchkov, Vitali V.
2004-08-24
A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.
A data readout approach for physics experiments
Institute of Scientific and Technical Information of China (English)
HUANG Xi-Ru; CAO Ping; GAO Li-Wei; ZHENG Jia-Jun
2015-01-01
With increasing physical event rates and the number of electronic channels,traditional readout schemes meet the challenge of improving readout speed caused by the limited bandwidth of the crate backplane.In this paper,a high-speed data readout method based on the Ethernet is presented to make each readout module capable of transmitting data to the DAQ.Features of exPlicitly parallel data transmitting and distributed network architecture give the readout system the advantage of adapting varying requirements of particle physics experiments.Furthermore,to guarantee the readout performance and flexibility,a standalone embedded CPU system is utilized for network protocol stack processing.To receive the customized data format and protocol from front-end electronics,a field programmable gate array (FPGA) is used for logic reconfiguration.To optimize the interface and to improve the data throughput between CPU and FPGA,a sophisticated method based on SRAM is presented in this paper.For the purpose of evaluating this high-speed readout method,a simplified readout module is designed and implemented.Test results show that this module can support up to 70 Mbps data throughput from the readout module to DAQ.
Controlled Remote State Preparation of an Arbitrary Two-Qubit State via a Six-Qubit Cluster State
Sang, Ming-huang; Nie, Li-ping
2017-07-01
In this work, we have demonstrated that a six-qubit cluster state can be used to realize the deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only the special two-qubit projective measurements.
A realizable quantum encryption algorithm for qubits
Institute of Scientific and Technical Information of China (English)
Zhou Nan-Run; Zeng Gui-Hua
2005-01-01
A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation.System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.
Robust two-qubit quantum registers.
Grigorenko, I A; Khveshchenko, D V
2005-02-04
We carry out a systematic analysis of a pair of coupled qubits, each of which is subject to its own dissipative environment, and argue that a combination of the interqubit couplings which provides for the lowest possible decoherence rates corresponds to the incidence of a double spectral degeneracy in the two-qubit system. We support this general argument by the results of an evolutionary genetic algorithm which can also be used for optimizing time-dependent processes (gates) and their sequences that implement various quantum computing protocols.
Towards Using Molecular States as Qubits
Goswami, Debabrata; Goswami, Tapas; Kumar, S. K. Karthick; Das, Dipak K.
2013-01-01
Molecular systems are presented as possible qubit systems by exploring non-resonant molecular fragmentation of n-propyl benzene with femtosecond laser pulses as a model case. We show that such laser fragmentation process is dependent on the phase and polarization characteristics of the laser. The effect of the chirp and polarization of the femtosecond pulse when applied simultaneously is mutually independent of each other, which makes chirp and polarization as useful ‘logic’ implementing parameters for such molecular qubits. PMID:23814323
Fidelity enhancement by logical qubit encoding.
Henry, Michael K; Ramanathan, Chandrasekhar; Hodges, Jonathan S; Ryan, Colm A; Ditty, Michael J; Laflamme, Raymond; Cory, David G
2007-11-30
We demonstrate coherent control of two logical qubits encoded in a decoherence free subspace (DFS) of four dipolar-coupled protons in an NMR quantum information processor. A pseudopure fiducial state is created in the DFS, and a unitary logical qubit entangling operator evolves the system to a logical Bell state. The four-spin molecule is partially aligned by a liquid crystal solvent, which introduces strong dipolar couplings among the spins. Although the system Hamiltonian is never fully specified, we demonstrate high fidelity control over the logical degrees of freedom. In fact, the DFS encoding leads to higher fidelity control than is available in the full four-spin Hilbert space.
Two qubits in the Dirac representation
Rajagopal, A. K.; Rendell, R. W.
2001-08-01
The Dirac-matrix representation of a general two-qubit system is shown to exhibit quite interesting features. The relativistic symmetries of time reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the Bell states. It is shown that only C does not mix the Bell states whereas all others do. The various logic gates of quantum information theory are also expressed in terms of the Dirac matrices. For example, the NOT gate is related to the product of T and P. A two-qubit density matrix is found to be entangled if it is invariant under C.
Entanglement in eight-qubit graph states
Energy Technology Data Exchange (ETDEWEB)
Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain)], E-mail: adan@us.es; Lopez-Tarrida, Antonio J.; Moreno, Pilar [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Portillo, Jose R. [Departamento de Matematica Aplicada I, Universidad de Sevilla, E-41012 Sevilla (Spain)
2009-06-15
Any 8-qubit graph state belongs to one of the 101 equivalence classes under local unitary operations within the Clifford group. For each of these classes we obtain a representative which requires the minimum number of controlled-Z gates for its preparation, and calculate the Schmidt measure for the 8-partite split, and the Schmidt ranks for all bipartite splits. This results into an extension to 8 qubits of the classification of graph states proposed by Hein, Eisert, and Briegel [M. Hein, J. Eisert, H.J. Briegel, Phys. Rev. A 69 (2004) 062311].
Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector
Energy Technology Data Exchange (ETDEWEB)
Ericson, M.N. [Oak Ridge National Lab., TN (United States); Allen, M.D. [Univ. of Tennessee, Knoxville, TN (United States); Boissevain, J. [Los Alamos National Lab., NM (United States)] [and others
1997-11-01
Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented.
ASICs in nanometer and 3D technologies for readout of hybrid pixel detectors
Maj, Piotr; Grybos, Pawel; Kmon, Piotr; Szczygiel, Robert
2013-07-01
Hybrid pixel detectors working in a single photon counting mode are very attractive solutions for material science and medical X-ray imaging applications. Readout electronics of these detectors has to match the geometry of pixel detectors with an area of readout channel of 100 μm × 100 μm (or even less) and very small power consumption (a few tens of μW). New solutions of readout ASICs are going into directions of better spatial resolutions, higher data throughput and more advanced functionality. We report on the design and measurement results of two pixel prototype ASICs in nanometer technology and 3D technology which offer fast signal processing, low noise performance and advanced functionality per single readout pixel cell.
Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector
Energy Technology Data Exchange (ETDEWEB)
Ericson, M.N. [Oak Ridge National Lab., TN (United States); Allen, M.D. [Univ. of Tennessee, Knoxville, TN (United States); Boissevain, J. [Los Alamos National Lab., NM (United States)] [and others
1997-11-01
Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented.
Long-lived qubit memory using atomic ions
Langer, C; Jost, J D; Chiaverini, J; De Marco, B L; Ben-Kish, A; Blakestad, R B; Britton, J L; Hume, D B; Itano, W M; Leibfried, D; Reichle, R; Rosenband, T; Schätz, T; Schmidt, P O; Wineland, D J
2005-01-01
We demonstrate experimentally a robust quantum memory using a magnetic-field-independent hyperfine transition in 9Be+ atomic ion qubits at a magnetic field B ~= 0.01194 T. We observe that the single physical qubit memory coherence time is greater than 10 seconds, an improvement of approximately five orders of magnitude from previous experiments with 9Be+. We also observe long coherence times of decoherence-free subspace logical qubits comprising two entangled physical qubits and discuss the merits of each type of qubit.
Optimal two qubit gate for generation of random bipartite entanglement
Znidaric, M
2007-01-01
We study protocols for generation of random pure states consisting of repeated applications of two qubit transformations. Necessary number of steps needed in order to generate states displaying bipartite entanglement typical of random states is obtained. We also find the optimal two qubit gate for which the convergence is the fastest. Perhaps surprisingly, applying the same good two qubit gate in addition to a random single qubit rotations at each step leads to a faster generation of entanglement than applying a random two qubit transformation at each step.
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Simple Scheme for Directly Measuring Concurrence of Two-Qubit Pure States in One Step
Institute of Scientific and Technical Information of China (English)
YANG Rong-Can; LIN Xiu; HUANG Zhi-Ping; LI Hong-Cai
2009-01-01
In the present work, a simple scheme for the direct measurement of the concurrence of two-qubit pure states is proposed.The scheme is based on trapped ions and only needs one step when the two identical pure states are given.The vibrational mode in our proposal is only virtually excited, which is important in view of decoherence.Furthermore, the scheme is feasible based on current technologies.
Quantum information processing in localized modes of light within a photonic band-gap material
Vats, N; John, S; Vats, Nipun; Rudolph, Terry; John, Sajeev
1999-01-01
The single photon occupation of a localized field mode within an engineered network of defects in a photonic band-gap (PBG) material is proposed as a unit of quantum information (qubit). Qubit operations are mediated by optically-excited atoms interacting with these localized states of light as the atoms traverse the connected void network of the PBG structure. We describe conditions under which this system can have independent qubits with controllable interactions and very low decoherence, as required for quantum computation.
Observing single quantum trajectories of a superconducting qubit
Murch, K W; Macklin, C; Siddiqi, I
2013-01-01
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture-a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a quantum trajectory conditioned on the measurement outcome. We employ weak measurements to monitor a microwave cavity embedding a superconducting qubit and track the individual quantum trajectories of the system. In this architecture, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure e...
Decoherence of Two-qubits Coupled with Reservoirs Studied with New Ket-Bra Entangled State Method
Ren, Yi-Chong; Fan, Hong-Yi
2016-04-01
For the first time we define a so-called Ket-Bra Entangled State (KBES) for two-qubits coupled with reservoirs by introduce an extra fictitious mode vector, and convert the corresponding master equation into Schrödinger-like equation by virtue of this state. Via this approach we concisely obtain the dynamic evolution of two uncoupled qubits each immersed in local thermal noise. Based on this, the decoherence evolution for the extended Werner-like states is derived and how purity and temperature influence the concurrence is analyzed. This KBES method may also be applied to tackling master equations of limited atomic level systems.
Experimental realization of one-way quantum computing with two-photon four-qubit cluster states.
Chen, Kai; Li, Che-Ming; Zhang, Qiang; Chen, Yu-Ao; Goebel, Alexander; Chen, Shuai; Mair, Alois; Pan, Jian-Wei
2007-09-21
We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special source, we implemented a highly efficient Grover's search algorithm and high-fidelity two-qubit quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.
High fidelity quantum gates with vibrational qubits.
Berrios, Eduardo; Gruebele, Martin; Shyshlov, Dmytro; Wang, Lei; Babikov, Dmitri
2012-11-26
Physical implementation of quantum gates acting on qubits does not achieve a perfect fidelity of 1. The actual output qubit may not match the targeted output of the desired gate. According to theoretical estimates, intrinsic gate fidelities >99.99% are necessary so that error correction codes can be used to achieve perfect fidelity. Here we test what fidelity can be accomplished for a CNOT gate executed by a shaped ultrafast laser pulse interacting with vibrational states of the molecule SCCl(2). This molecule has been used as a test system for low-fidelity calculations before. To make our test more stringent, we include vibrational levels that do not encode the desired qubits but are close enough in energy to interfere with population transfer by the laser pulse. We use two complementary approaches: optimal control theory determines what the best possible pulse can do; a more constrained physical model calculates what an experiment likely can do. Optimal control theory finds pulses with fidelity >0.9999, in excess of the quantum error correction threshold with 8 × 10(4) iterations. On the other hand, the physical model achieves only 0.9992 after 8 × 10(4) iterations. Both calculations converge as an inverse power law toward unit fidelity after >10(2) iterations/generations. In principle, the fidelities necessary for quantum error correction are reachable with qubits encoded by molecular vibrations. In practice, it will be challenging with current laboratory instrumentation because of slow convergence past fidelities of 0.99.
Optimal Manipulations with Qubits Universal NOT Gate
Buzek, V; Werner, R
1999-01-01
It is not a problem to complement a classical bit, i.e. to change the value of a bit, a 0 to a 1 and vice versa. This is accomplished by a NOT gate. Complementing a qubit in an unknown state, however, is another matter. We show that this operation cannot be done perfectly. We define the Universal-NOT (U-NOT) gate which out of N identically prepared pure input qubits generates M output qubits in a state which is as close as possible to the perfect complement. This gate can be realized by classical estimation and subsequent re-preparation of complements of the estimated state. Its fidelity is therefore equal to the fidelity F= (N+1)/(N+2) of optimal estimation, and does not depend on the required number of outputs. We also show that when some additional a priori information about the state of input qubit is available, than the fidelity of the quantum NOT gate can be much better than the fidelity of estimation.
Zhong, Z Z
2004-01-01
In this paper, we first discuss how to more strictly define the concept of the partial separability of the multipartite qubit density matrixes, further we give a way of reduction from an arbitrary multipartite qubit density matrix through to a bipartite qubit density matrix in one step. We prove that a necessary condition of a N-partite qubit density matrix to be partially separable with respect to a separation is that the corresponding reduced density matrix satisfies the PPT condition. Some examples are given.
Common Readout System in ALICE
Jubin, Mitra
2016-01-01
The ALICE experiment at the CERN Large Hadron Collider is going for a major physics upgrade in 2018. This upgrade is necessary for getting high statistics and high precision measurement for probing into rare physics channels needed to understand the dynamics of the condensed phase of QCD. The high interaction rate and the large event size in the upgraded detectors will result in an experimental data flow traffic of about 1 TB/s from the detectors to the on-line computing system. A dedicated Common Readout Unit (CRU) is proposed for data concentration, multiplexing, and trigger distribution. CRU, as common interface unit, handles timing, data and control signals between on-detector systems and online-offline computing system. An overview of the CRU architecture is presented in this manuscript.
A custom readout electronics for the BESIII CGEM detector
Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.
2017-07-01
For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout
Institute of Scientific and Technical Information of China (English)
Shi Zhen-Gang; Chen Xiong-Wen; Zhu Xi-Xiang; Song Ke-Hui
2009-01-01
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a ID transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1// noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.
Readout electronics for LGAD sensors
Alonso, O.; Franch, N.; Canals, J.; Palacio, F.; López, M.; Vilà, A.; Diéguez, A.; Carulla, M.; Flores, D.; Hidalgo, S.; Merlos, A.; Pellegrini, G.; Quirion, D.
2017-02-01
In this paper, an ASIC fabricated in 180 nm CMOS technology from AMS with the very front-end electronics used to readout LGAD sensors is presented as well as its experimental results. The front-end has the typical architecture for Si-strip readout, i.e., preamplification stage with a Charge Sensitive Amplifier (CSA) followed by a CR-RC shaper. Both amplifiers are based on a folded cascode structure with a PMOS input transistor and the shaper only uses passive elements for the feedback stage. The CSA has programmable gain and a configurable input stage in order to adapt to the different input capacitance of the LGAD sensors (pixelated, short and long strips) and to the different input signal (depending on the gain of the LGAD). The fabricated prototype has an area of 0.865 mm × 0.965 mm and includes the biasing circuit for the CSA and the shaper, 4 analog channels (CSA+shaper) and programmable charge injection circuits included for testing purposes. Noise and power analysis performed during simulation fixed the size of the input transistor to W/L = 860 μm/0.2 μm. The shaping time is fixed by design at 1 us and, in this ASIC version, the feedback elements of the shaper are passive, which means that the area of the shaper can be reduced using active elements in future versions. Finally, the different gains of the CSA have been selected to maintain an ENC below 400 electrons for a detector capacitor of 20 pF, with a power consumption of 150 μ W per channel.
Selective readout and back-action reduction for wideband acoustic gravitational wave detectors
Bonaldi, M; Conti, L; Pinard, M; Prodi, G A; Zendri, J P
2003-01-01
We present the concept of selective readout for broadband resonant mass gravitational wave detectors. This detection scheme is capable of specifically selecting the signal from the contributions of the vibrational modes sensitive to the gravitational waves, and efficiently rejecting the contribution from non gravitationally sensitive modes. Moreover this readout, applied to a dual detector, is capable to give an effective reduction of the back-action noise within the frequency band of interest. The overall effect is a significant enhancement in the predicted sensitivity, evaluated at the standard quantum limit for a dual torus detector. A molybdenum detector, 1 m in diameter and equipped with a wide area selective readout, would reach spectral strain sensitivities 2x10^{-23}/sqrt{Hz} between 2-6 kHz.
Suppression of dephasing by qubit motion in superconducting circuits
Averin, D. V.; Hu, K.; Zhong, Y. P.; Song, C.; Wang, H.; Han, S.
We suggest and demonstrate a protocol which suppresses dephasing due to the low-frequency noise by qubit motion, i.e., transfer of the logical qubit of information in a system of n >= 2 physical qubits. The protocol requires only the nearest-neighbor coupling and is applicable to different qubit structures. Motion of a logical qubit limits the correlation time of the effective noise seen by this qubit and suppresses its decoherence rate. This effect is qualitatively similar to the dynamic decoupling, but relies on the different resource: additional physical qubits, not extra control pulses. In this respect, suggested protocol can serve as the basis for an alternative approach to scalable quantum circuits. We further analyze its effectiveness against noises with arbitrary correlations. Our analysis, together with experiments using up to three superconducting qubits, shows that for the realistic uncorrelated noises, qubit motion increases the dephasing time of the logical qubit as √{ n}. In general, the protocol provides a diagnostic tool for measurements of the noise correlations. This work was supported by the National Basic Research Program of China (2014CB921200, 2012CB927404), US NSF Grants PHY-1314758 and PHY-1314861, the National Natural Science Foundation of China, and Zhejiang Provincial Natural Science Foundation.
Energy Technology Data Exchange (ETDEWEB)
Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)
2015-08-14
We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) and between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.
Quantum Computing Using Superconducting Qubits
2006-04-01
highlighted in the " Molecular Motors" first feature article of the November, 2002, Physics Today, page 38. http://www.physicstoday.org/vol-5 5/iss-I I...12-2003. the article was in http://www.mosac.com/ fisica /news/leggi.php?codice= 191. News coverage in French include the following three newspapers... molecular vibra- Josephson junction devices have been proposed and experi- tional mode [12], motional quantum states of a trapped - - mentally
Embedding qubits into fermionic Fock space, peculiarities of the four-qubit case
Lévay, Péter
2015-01-01
We give a fermionic Fock space description of embedded entangled qubits. Within this framework the problem of classification of pure state entanglement boils down to the problem of classifying spinors. The usual notion of separable states turns out to be just a special case of the one of pure spinors. By using the notion of single, double and mixed occupancy representation with intertwiners relating them a natural physical interpretation of embedded qubits is found. As an application of these ideas one can make a physically sound meaning of some of the direct sum structures showing up in the context of the so-called Black-Hole/Qubit Correspondence. We discuss how the usual invariants for qubits serving as measures of entanglement can be obtained from invariants for spinors in an elegant manner. In particular a detailed case study for recovering the invariants for four-qubits within a spinorial framework is presented. We also observe that reality conditions on complex spinors defining Majorana spinors for embe...
Exchange-only singlet-only spin qubit
Sala, Arnau; Danon, Jeroen
2017-06-01
We propose a feasible and scalable quantum-dot-based implementation of a singlet-only spin qubit which is to leading order intrinsically insensitive to random effective magnetic fields set up by fluctuating nuclear spins in the host semiconductor. Our proposal thus removes an important obstacle for further improvement of spin qubits hosted in high-quality III-V semiconductors such as GaAs. We show how the resulting qubit could be initialized, manipulated, and read out by electrical means only, in a way very similar to a triple-dot exchange-only spin qubit. Due to the intrinsic elimination of the effective nuclear fields from the qubit Hamiltonian, we find an improvement of the dephasing time T2* of several orders of magnitude as compared to similar existing spin qubits.
Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics.
Lolli, Jared; Baksic, Alexandre; Nagy, David; Manucharyan, Vladimir E; Ciuti, Cristiano
2015-05-01
We investigate theoretically how the spectroscopy of an ancillary qubit can probe cavity (circuit) QED ground states containing photons. We consider three classes of systems (Dicke, Tavis-Cummings, and Hopfield-like models), where nontrivial vacua are the result of ultrastrong coupling between N two-level systems and a single-mode bosonic field. An ancillary qubit detuned with respect to the boson frequency is shown to reveal distinct spectral signatures depending on the type of vacua. In particular, the Lamb shift of the ancilla is sensitive to both ground state photon population and correlations. Backaction of the ancilla on the cavity ground state is investigated, taking into account the dissipation via a consistent master equation for the ultrastrong coupling regime. The conditions for high-fidelity measurements are determined.
Integrated optical readout for miniaturization of cantilever-based sensor system
DEFF Research Database (Denmark)
Nordström, Maria; Zauner, Dan; Calleja, Montserrat
2007-01-01
The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...
N-qubit Entanglement Index and Classification
Wu, Y
2002-01-01
We show that all the N-qubit states can be classified as N entanglement classes each of which has an entanglement index $E=N-p=0,1,...,N-1$(E=0 corresponds to a fully separate class) where $p$ denotes number of groups for a partition of the positive integer N. In other words, for any partition $(n_1,n_2,...,n_p)$ of N with $n_j\\ge 1$ and $N=\\sum_{j=1}^{p}n_j$, the entanglement index for the corresponding state $\\rho_{n_1}\\bigotimes\\rho_{n_2}...\\bigotimes \\rho_{n_p}$ with $\\rho_{n_j}$ denoting a fully entangled state of $n_j-$qubits is $E(\\rho_{n_1}\\bigotimes\\rho_{n_2}...\\bigotimes \\rho_{n_p})=\\sum_{j=1}^{p}(n_j-1)=N-p$.
Characterization of qubit chains by Feynman probes
Tamascelli, Dario; Benedetti, Claudia; Olivares, Stefano; Paris, Matteo G. A.
2016-10-01
We address the characterization of qubit chains and assess the performances of local measurements compared to those provided by Feynman probes, i.e., nonlocal measurements realized by coupling a single-qubit register to the chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a consistent Bayesian estimator that saturates the Cramér-Rao bound, thus providing an effective characterization of the chain. Finally, we show that ultimate bounds to precision, i.e., saturation of the quantum Cramér-Rao bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.
Experimental Quantum Randomness Processing Using Superconducting Qubits
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Entanglement sharing: from qubits to Gaussian states
Adesso, G; Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
It is a central trait of quantum information theory that there exist limitations to the free sharing of quantum correlations among multiple parties. Such {\\em monogamy constraints} have been introduced in a landmark paper by Coffman, Kundu and Wootters, who derived a quantitative inequality expressing a trade-off between the couplewise and the genuine tripartite entanglement for states of three qubits. Since then, a lot of efforts have been devoted to the investigation of distributed entanglement in multipartite quantum systems. In these proceedings we report, in a unifying framework, a bird's eye view of the most relevant results that have been established so far on entanglement sharing in quantum systems. We will take off from the domain of $N$ qubits, graze qudits, and finally land in the almost unexplored territory of multimode Gaussian states of continuous variable systems.
Experimental Quantum Randomness Processing Using Superconducting Qubits.
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Thermodynamics of a qubit undergoing dephasing
Marcantoni, S.
2017-05-01
The thermodynamics of a qubit undergoing dephasing due to the coupling with the external environment is discussed. First of all, we assume the dynamics of the system to be described by a master equation in Lindblad form. In this framework, we review a standard formulation of the first and second law of thermodynamics that has been known in literature for a long time. After that, we explicitly model the environment with a set of quantum harmonic oscillators choosing the interaction such that the global dynamics of system and bath is analytically solvable and the Lindblad master equation is recovered in the weak-coupling limit. In this generalized setting, we can show that the correlations between system and bath play a fundamental role in the heat exchange. Moreover, the internal entropy production of the qubit is proven to be positive for arbitrary coupling strength.
Superconducting Qubits as Mechanical Quantum Engines
Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.
2017-09-01
We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.
Two-qubit correlations via a periodic plasmonic nanostructure
Energy Technology Data Exchange (ETDEWEB)
Iliopoulos, Nikos; Terzis, Andreas F. [Department of Physics, School of Natural Sciences, University of Patras, Patras 265 04 (Greece); Yannopapas, Vassilios [Department of Physics, National Technical University of Athens, Athens 157 80 (Greece); Paspalakis, Emmanuel, E-mail: paspalak@upatras.gr [Materials Science Department, School of Natural Sciences, University of Patras, Patras 265 04 (Greece)
2016-02-15
We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.
Phase diffusion and locking in single-qubit lasers
André, Stephan; Brosco, Valentina; Shnirman, Alexander; Schön, Gerd
2008-01-01
Motivated by recent experiments, which demonstrated lasing and cooling of the electromagnetic field in an electrical resonator coupled to a superconducting qubit, we study the phase coherence and diffusion of the system in the lasing state. We also discuss phase locking and synchronization induced by an additional {\\sl ac} driving of the resonator. We extend earlier work to account for the strong qubit-resonator coupling and to include the effects of low-frequency qubit's noise. We show that ...
Quantum entanglement for two qubits in a nonstationary cavity
Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.
2016-11-01
The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.
Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit
Institute of Scientific and Technical Information of China (English)
CAO Gang; WANG Li; TU Tao; LI Hai-Ou; XIAO Ming; GUO Guo-Ping
2012-01-01
We propose an effective method to design the working parameters of a pulse-driven charge qubit implemented with double quantum dot.It is shown that intrinsic qubit population leakage to undesired states in the control and measurement process can be determined by the simulation of coherent dynamics of the qubit and minimized by choosing proper working parameters such as pulse shape.The result demonstrated here bodes well for future quantum gate operations and quantum computing applications.
Quantum entanglement for two qubits in a nonstationary cavity
Berman, Oleg L; Lozovik, Yurii E
2016-01-01
The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by non-adiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.
Energy Technology Data Exchange (ETDEWEB)
Cao, Xiufeng, E-mail: xfcao@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Ai, Qing; Sun, Chang-Pu [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2012-01-09
We propose a strategy to demonstrate the transition from the quantum Zeno effect (QZE) to the anti-Zeno effect (AZE) using a superconducting qubit coupled to a transmission line cavity, by varying the central frequency of the cavity mode. Our results are obtained without the rotating wave approximation (RWA), and the initial state (a dressed state) is easy to prepare. Moreover, we find that in the presence of both qubit's intrinsic bath and the cavity bath, the emergence of the QZE and the AZE behaviors relies not only on the match between the qubit energy-level-spacing and the central frequency of the cavity mode, but also on the coupling strength between the qubit and the cavity mode. -- Highlights: ► We propose how to demonstrate the transition from Zeno effect to anti-Zeno effect. ► Our results are beyond the RWA, and the initial state is easy to prepare. ► The case of both qubit's intrinsic bath and cavity bath coexist is also studied.
Josephson junction microwave modulators for qubit control
Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.
2017-02-01
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
Conditional quantum logic using two atomic qubits
Protsenko, I E; Schlosser, N; Grangier, P
2002-01-01
In this paper we propose and analyze a feasible scheme where the detection of a single scattered photon from two trapped atoms or ions performs a conditional unitary operation on two qubits. As examples we consider the preparation of all four Bell states, the reverse operation that is a Bell measurement, and a CNOT gate. We study the effect of atomic motion and multiple scattering, by evaluating Bell inequalities violations, and by calculating the CNOT gate fidelity.
Accurate Control of Josephson Phase Qubits
2016-04-14
61 ~1986!. 23 K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics , Vol. 190 ~Springer-Verlag... PHYSICAL REVIEW B 68, 224518 ~2003!Accurate control of Josephson phase qubits Matthias Steffen,1,2,* John M. Martinis,3 and Isaac L. Chuang1 1Center...for Bits and Atoms and Department of Physics , MIT, Cambridge, Massachusetts 02139, USA 2Solid State and Photonics Laboratory, Stanford University
Quantum gambling using mesoscopic ring qubits
Pakuła, Ireneusz
2007-07-01
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg {\\it et al} is one of the simplest yet still hard to implement applications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game.
QUBIT DATA STRUCTURES FOR ANALYZING COMPUTING SYSTEMS
Directory of Open Access Journals (Sweden)
Vladimir Hahanov
2014-11-01
Full Text Available Qubit models and methods for improving the performance of software and hardware for analyzing digital devices through increasing the dimension of the data structures and memory are proposed. The basic concepts, terminology and definitions necessary for the implementation of quantum computing when analyzing virtual computers are introduced. The investigation results concerning design and modeling computer systems in a cyberspace based on the use of two-component structure are presented.
BESIII ETOF upgrade readout electronics commissioning
Wang, Xiao-Zhuang; Dai, Hong-Liang; Wu, Zhi; Heng, Yue-Kun; Zhang, Jie; Cao, Ping; Ji, Xiao-Lu; Li, Cheng; Sun, Wei-Jia; Wang, Si-Yu; Wang, Yun
2017-01-01
It is proposed to upgrade the endcap time-of-flight (ETOF) of the Beijing Spectrometer III (BESIII) with a multi-gap resistive plate chamber (MRPC), aiming at an overall time resolution of about 80 ps. After completing the entire readout electronics system, some experiments, such as heat radiation, radiation hardness and large-current beam tests, have been carried out to confirm the reliability and stability of the readout electronics. An on-detector test of the readout electronics has also been performed with the beam at the BEPCII E3 line. The test results indicate that the readout electronics system fulfills its design requirements. Supported by Chinese Academy of Sciences (1G201331231172010)
Very forward calorimeters readout and machine interface
Indian Academy of Sciences (India)
Wojciech Wierba; on behalf of the FCAL Collaboration
2007-12-01
The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed.
Back-Side Readout Silicon Photomultiplier
Choong, Woon-Seng; Holland, Stephen E.
2012-01-01
We present a novel structure for the back-side readout silicon photomultipler (SiPM). Current SiPMs are front-illuminated structures with front-side readout, which have relatively small geometric fill factor leading to degradation in their photon detection efficiency (PDE). Back-side readout devices will provide an advantageous solution to achieve high PDE. We designed and investigated a novel structure that would allow back-side readout while creating a region of high electric field optimized for avalanche breakdown. In addition, this structure has relatively high fill factor and also allow direct coupling of individual micro-cell of the SiPM to application-specific integrated circuits. We will discuss the performance that can be attained with this structure through device simulation and the process flow that can be used to fabricate this structure through process simulation. PMID:23564969
Integrated optical addressing of an ion qubit
Mehta, Karan K; McConnell, Robert; Ram, Rajeev J; Sage, Jeremy M; Chiaverini, John
2015-01-01
Scalable implementation of the optics required to control trapped atomic ions' quantum states will be required to construct large-scale ion trap quantum information processors. All experiments in ion traps so far have employed approaches cumbersome to scale to even a few tens of qubits, with the majority relying on manipulation of free space beams with bulk optics. Here we demonstrate lithographically defined nanophotonic dielectric waveguides integrated within a linear surface-electrode ion trap chip, and qubit addressing at multiple locations via focusing grating couplers that emit through openings in the trap electrodes to an ion trapped 50 $\\mu$m above the chip. We perform quantum coherent operations using visible light routed in and emitted from silicon nitride waveguides and couplers, on the optical qubit transition in individual $^{88}$Sr$^+$ ions. The addressing beam is focused near the ion position with a 2 $\\mu$m 1/$e^2$-radius along the trap axis, and we measure crosstalk errors between $10^{-2}$ a...
The Veldkamp space of multiple qubits
Energy Technology Data Exchange (ETDEWEB)
Vrana, Peter; Levay, Peter [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)
2010-03-26
We introduce a point-line incidence geometry in which the commutation relations of the real Pauli group of multiple qubits are fully encoded. Its points are pairs of Pauli operators differing in sign, and each line contains three pairwise commuting operators any of which is the product of the other two (up to sign). We study the properties of its Veldkamp space enabling us to identify subsets of operators which are distinguished from the geometric point of view. These are geometric hyperplanes and pairwise intersections. Among the geometric hyperplanes, one can find the set of self-dual operators with respect to the Wootters spin-flip operation well known from studies concerning multiqubit entanglement measures. In the two- and three-qubit cases, a class of hyperplanes gives rise to Mermin squares and other generalized quadrangles. In the three-qubit case, the hyperplane with points corresponding to the 27 Wootters self-dual operators is just the underlying geometry of the E{sub 6(6)} symmetric entropy formula describing black holes and strings in five dimensions.
The Veldkamp space of multiple qubits
Vrana, Péter
2009-01-01
We introduce a point-line incidence geometry in which the commutation relations of the real Pauli group of multiple qubits are fully encoded. Its points are pairs of Pauli operators differing in sign and each line contains three pairwise commuting operators any of which is the product of the other two (up to sign). We study the properties of its Veldkamp space enabling us to identify subsets of operators which are distinguished from the geometric point of view. These are geometric hyperplanes and pairwise intersections thereof. Among the geometric hyperplanes one can find the set of self-dual operators with respect to the Wootters spin-flip operation well-known from studies concerning multiqubit entanglement measures. In the two- and three-qubit cases a class of hyperplanes gives rise to Mermin squares and other generalized quadrangles. In the three-qubit case the hyperplane with points corresponding to the 27 Wootters self-dual operators is just the underlying geometry of the E6(6) symmetric entropy formula ...
Quantum jumps of a fluxonium qubit
Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Brecht, T.; Shankar, S.; Hatridge, M.; Schoelkopf, R. J.; Mirrahimi, M.; Glazman, L.; Devoret, M. H.
2014-03-01
The fluxonium qubit has recently been shown to have energy relaxation time (T1) of the order of 1 ms, limited by quasiparticle dissipation. With the addition of a Josephson Parametric Converter (JPC) to the experiment, trajectories corresponding to quantum jumps between the ground and 1st excited state can be measured, thus allowing the observation of the qubit decay in real time instead of that of an ensemble average. Our measurement fidelity with the JPC is in excess of 98% for an acquisition time of 5 us and we can thus continuously monitor the quantum jumps of the qubit in equilibrium with its environment in a time much shorter than its average relaxation time. We observe in our sample a jump statistics that varies from being completely Poissonian with a long (500 us) mean time in the ground state to being highly non-Poissonian with short (100 us) mean time in the ground state. The changes between these regimes occur on time scales of seconds, minutes and even hours. We have studied this effect and its relation to quasiparticle dynamics by injecting quasiparticles with a short intense microwave pulse and by seeding quasiparticle-trapping vortices with magnetic field. Work supported by: IARPA, ARO, and NSF.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.
Ivić, Z; Lazarides, N; Tsironis, G P
2016-07-12
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Demonstrating a driven reset protocol for a superconducting qubit.
Geerlings, K; Leghtas, Z; Pop, I M; Shankar, S; Frunzio, L; Schoelkopf, R J; Mirrahimi, M; Devoret, M H
2013-03-22
Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving appropriate qubit and cavity transitions. Our protocol, called the double drive reset of population, is tested on a superconducting transmon qubit in a three-dimensional cavity. Using a new method for measuring population, we show that we can prepare the ground state with a fidelity of at least 99.5% in less than 3 μs; faster times and higher fidelity are predicted upon parameter optimization.
Minimum construction of two-qubit quantum operations
Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar
2003-01-01
Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. We also demonstrate that for the highly scalable Josephson junction charge qubits, the B gate is also more easily and quickly generated than the CNOT gate for physically feasible parameters.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-07-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Spin-orbit mediated control of spin qubits
DEFF Research Database (Denmark)
Flindt, Christian; Sørensen, A.S; Flensberg, Karsten
2006-01-01
We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....
Encrypting Majorana fermion qubits as bound states in the continuum
Guessi, L. H.; Dessotti, F. A.; Marques, Y.; Ricco, L. S.; Pereira, G. M.; Menegasso, P.; de Souza, M.; Seridonio, A. C.
2017-07-01
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
Decoherence of an $n$-qubit quantum memory
Gorin, T; Seligman, T H; Gorin, Thomas; Pineda, Carlos; Seligman, Thomas H.
2007-01-01
We analyze decoherence of a quantum register in the absence of non-local operations i.e. of $n$ non-interacting qubits coupled to an environment. The problem is solved in terms of a sum rule which implies linear scaling in the number of qubits. Each term involves a single qubit and its entanglement with the remaining ones. Two conditions are essential: first decoherence must be small and second the coupling of different qubits must be uncorrelated in the interaction picture. We apply the result to a random matrix model, and illustrate its reach considering a GHZ state coupled to a spin bath.
Decoherence of an n-Qubit Quantum Memory
Gorin, Thomas; Pineda, Carlos; Seligman, Thomas H.
2007-12-01
We analyze decoherence of a quantum register in the absence of nonlocal operations, i.e., n noninteracting qubits coupled to an environment. The problem is solved in terms of a sum rule which implies linear scaling in the number of qubits. Each term involves a single qubit and its entanglement with the remaining ones. Two conditions are essential: first, decoherence must be small, and second, the coupling of different qubits must be uncorrelated in the interaction picture. We apply the result to a random matrix model, and illustrate its reach considering a Greenberger-Horne-Zeilinger state coupled to a spin bath.
Quantum dynamics of a two-atom-qubit system
Energy Technology Data Exchange (ETDEWEB)
Nguyen Van Hieu; Nguyen Bich Ha [Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187 Dresden (Germany); Le Thi Ha Linh [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)], E-mail: nvhieu@iop.vast.ac.vn
2009-09-01
A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-01-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780
Realization of the Three-Qubit Toffoli Gate in Molecules
Institute of Scientific and Technical Information of China (English)
DU Jiang-Feng; SHI Ming-Jun; ZHOU Xian-Yi; FAN Yang-Mei; WU Ji-Hui; YE Bang-Jiao; WENG Hui-Min; HAN Rong-Dian
2000-01-01
We present the experimental realization of this gate with a solution of chlorostyrene molecules. Our method does not depend heavily on the two-qubit controlled operation, which used to serve as the basic quantum operation in quantum computing. At present, we use transition operator that can be applied to all qubits in one operation.It appears that no experimental realization has yet been reported up to now regarding the implementation of quantum Toffoli gate using transition pulse on three-qubit nuclear magnetic resonance quantum computers. In addition, our method is experimentally convenient to be extended to more qubits.
Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage
Deng, Z J; Gao, K L
2006-01-01
A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.
Couplage variable entre un qubit de charge et un qubit de phase
Fay, Aurélien
2008-01-01
We have studied the quantum dynamics of a superconducting circuit based on a dc-SQUID coupled to a highly asymmetric Cooper pair transistor (ACPT). The dc-SQUID is a phase qubit controlled by a bias current and magnetic field. The ACPT is a charge qubit controlled by a bias current, magnetic flux and gate voltage. We have measured by microwave spectroscopy the lowest quantum levels of the coupled circuit as a function of the bias parameters. Quantum state measurements of the phase and charge ...
National Research Council Canada - National Science Library
Volchenko, Vladimir I; Akhrameev, Evgeniy V; Bezrukov, Leonid B; Dzaparova, Irina M; Davitashvili, Irakliy Sh; Enqvist, Timo; Fynbo, Hans; Guliev, Zhamal Sh; Inzhechik, Lev V; Izmaylov, Alexander O; Joutsenvaara, Jari; Khabibullin, Marat M; Khotjantsev, Alexey N; Kudenko, Yuri G; Kuusiniemi, Pasi; Lubsandorzhiev, Bayarto K; Lubsandorzhiev, Nima B; Mineev, Oleg V; Olanterä, Lauri; Petkov, Valeriy B; Poleshuk, Roman V; Räihä, Tomi; Shaibonov, Bator A. M; Sarkamo, Juho; Shaykhiev, Alexey T; Trzaska, Wladyslaw; Volchenko, Galina V; Yanin, Alexey F; Yershov, Nikolay V
2010-01-01
...×3.0 cm3 size scintillator counter with a wavelength shifting fibre and a multi-pixel Geiger mode avalanche photodiode readout in the Baksan underground laboratory at a depth of 200 metres of water equivalent...
Coherent control and detection of spin qubits in semiconductor with magnetic field engineering
Tokura, Yasuhiro
2012-02-01
Electrical control and detection of the spin qubits in semiconductor quantum dots (QDs) are among the major rapidly progressing fields for possible implementation of scalable quantum information processing. Coherent control of one-[1-3] and two-[4,5] spin qubits by electrical means had been demonstrated with various approaches. We have used an engineered magnetic field structure realized with proximal micro-magnets to transduce the spin and charge degrees of freedom and to selectively address one of the two spins [3]. We have demonstrated an all-electrical two-qubit gate consisting of single-spin rotations and interdot spin exchange in double QDs. A partially entangled output state is obtained by the application of the two-qubit gate to an initial, uncorrelated state. Our calculations taking into account of the nuclear spin fluctuation show the degree of entanglement. Non-uniform magnetic field also enables spin selective photon-assisted tunneling in double QDs, which then constitutes non-demolition spin read-out system in combination with a near-by charge detector [6]. [4pt] In collaboration with R. Brunner, Inst. of Phys., Montanuniversitaet Leoben, 8700, Austria, M. Pioro-Ladrière, D'ep. de Phys., Universit'e de Sherbrooke, Sherbrooke, Qu'ebec, J1K-2R1, Canada, T. Kubo, Y. -S. Shin, T. Obata, and S. Tarucha, ICORP-JST and Dep. of Appl. Phys., Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.[4pt] [1] F. H. Koppens, et al., Nature 442, 766 (2006).[0pt] [2] K. C. Nowack, et al., Science 318, 1430 (2007).[0pt] [3] M. Pioro-Ladrière, et al., Nature Physics 4, 776 (2008).[0pt] [4] J. R. Petta, et al., Science 309, 2180 (2005).[0pt] [5] R. Brunner, et al., Phys. Rev. Lett. 107, 146801 (2011).[0pt] [6] Y. -S. Shin, et al., Phys. Rev. Lett. 104, 046802 (2010).
Development of microwave kinetic inductance detectors and their readout system for LiteBIRD
Hattori, K.; Hazumi, M.; Ishino, H.; Kibayashi, A.; Kibe, Y.; Mima, S.; Okamura, T.; Sato, N.; Tomaru, T.; Yamada, Y.; Yoshida, M.; Yuasa, T.; Watanabe, H.
2013-12-01
Primordial gravitational waves generated by inflation have produced an odd-parity pattern B-mode in the cosmic microwave background (CMB) polarization. LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) aims at detecting this B-mode polarization precisely. It requires about 2000 detectors capable of detecting a frequency range from 50 GHz to 250 GHz with ultra low noise. Superconducting detectors are suitable for this requirement. We have fabricated and tested microwave kinetic inductance detectors (MKIDs) and developed a new readout system. We have designed antenna-coupled MKIDs. Quasi-particles are created by incident radiation and are detected as a change of the surface impedance of a superconductor strip. This change of the surface impedance is translated into the change of the resonant frequency of a microwave signal transmitted through the resonator. We also have developed a new readout system for MKIDs. The newly developed readout system is not only able to read out the amplitude and the phase data with the homodyne detection for multi-channels, but also provides a unique feature of tracking the resonant frequency of the target resonator. This mechanism enables us to detect signals with a large dynamic range. We report on the recent R&D status of the developing MKIDs and on the read-out system for LiteBIRD.
LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN
Alessio, F
2013-01-01
The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.
Testing the Dissipative Type of a Qubit Interacting with Environment
Institute of Scientific and Technical Information of China (English)
曾浩生; 匡乐满; 高克林
2003-01-01
We propose a method to test the correctness of the coupling model of a qubit interacting with environment and to determine the type of dissipation. The environment is modelled by a bath of oscillators with infinite degrees of freedom and the qubit-bath coupling is chosen to be a general dissipation-decoherence form. The proposed method can be realized in current experiments.
New smart readout technique performing edge detection designed to control vision sensors dataflow
Amhaz, Hawraa; Sicard, Gilles
2012-03-01
In this paper, a new readout strategy for CMOS image sensors is presented. It aims to overcome the excessive output dataflow bottleneck; this challenge is becoming more and more crucial along with the technology miniaturization. This strategy is based on the spatial redundancies suppression. It leads the sensor to perform edge detection and eventually provide binary image. One of the main advantages of this readout technique compared to other techniques, existing in the literature, is that it does not affect the in-pixel circuitry. This means that all the analogue processing circuitry is implemented outside the pixel, which keeps the pixel area and Fill Factor unchanged. The main analogue block used in this technique is an event detector developed and designed in the CMOS 0.35μm technology from Austria Micro Systems. The simulation results of this block as well as the simulation results of a test bench composed of several pixels and column amplifiers using this readout mode show the capability of this readout mode to reduce dataflow by controlling the ADCs. We must mention that this readout strategy is applicable on sensors that use a linear operating pixel element as well as for those based on logarithmic operating pixels. This readout technique is emulated by a MATLAB model which gives an idea about the expected functionalities and dataflow reduction rates (DRR). Emulation results are shown lately by giving the pre and post processed images as well as the DRR. This last cited does not have a fix value since it depends on the spatial frequency of the filmed scenes and the chosen threshold value.
Phase-Tuned Entangled State Generation between Distant Spin Qubits
Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.
2017-07-01
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.
Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A
2012-04-13
Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.
Qubit Systems from Colored Toric Geometry and Hypercube Graph Theory*
Aadel, Y.; Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.
2017-09-01
We develop a new geometric approach to deal with qubit information systems using colored graph theory. More precisely, we present a one to one correspondence between graph theory, and qubit systems, which may be explored to attack qubit information problems using toric geometry considered as a powerful tool to understand modern physics including string theory. Concretely, we examine in some details the cases of one, two, and three qubits, and we find that they are associated with CP 1, CP 1 × CP 1 and CP 1 × CP 1 × CP 1 toric varieties respectively. Using a geometric procedure referred to as a colored toric geometry, we show that the qubit physics can be converted into a scenario handling toric data of such manifolds by help of hypercube graph theory. Operations on toric information can produce universal quantum gates.
Quantum Privacy Amplification for a Sequence of Single Qubits
Institute of Scientific and Technical Information of China (English)
DENG Fu-Guo; LONG Gui-Lu
2006-01-01
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.
Control landscape for ultrafast manipulation by a qubit
Pechen, Alexander; Il'in, Nikolay
2017-02-01
In this work we study extrema of objective functionals for ultrafast manipulation by a qubit. Traps are extrema of the objective functionals which are optimal for manipulation by quantum systems only locally, not globally. Prior work has devoted a large amount of effort to the analysis of traps for quantum systems controlled by laser pulses which are long enough, and, for example, manipulation by a qubit with long control pulses was shown to be trap-free. Ultrafast femtosecond and attosecond control has now become widely applicable, which makes the analysis of traps on the ultrafast time scale a necessity. We complete such analysis for a qubit and show that ultrafast state transfer in a qubit remains trap-free for a wide range of the initial and final states of the qubit. We prove that for this range the probability of transition between the initial and the final states has a saddle but no traps.
Certifying qubit operations below the fault tolerance threshold
Blume-Kohout, Robin; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter
2016-01-01
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if -- and only if -- the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking (RB), which reports a different "error rate" that is not sensitive to all errors, cannot be compared directly to diamond norm thresholds, and cannot efficiently certify a qubit for FTQEC. We use gate set tomography (GST) to completely characterize the performance of a trapped-Yb$^+$-ion qubit and certify it rigorously as suitable for FTQEC by establishing that its diamond norm error rate is less than $6.7\\times10^{-4}$ with $95\\%$ confidence.
Addressed qubit manipulation in radio-frequency dressed lattices
Sinuco-León, G. A.; Garraway, B. M.
2016-03-01
Precise control over qubits encoded as internal states of ultracold atoms in arrays of potential wells is a key element for atomtronics applications in quantum information, quantum simulation and atomic microscopy. Here we theoretically study atoms trapped in an array of radio-frequency dressed potential wells and propose a scheme for engineering fast and high-fidelity single-qubit gates with low error due to cross-talk. In this proposal, atom trapping and qubit manipulation relies exclusively on long-wave radiation making it suitable for atom-chip technology. We demonstrate that selective qubit addressing with resonant microwaves can be programmed by controlling static and radio-frequency currents in microfabricated conductors. These results should enable studies of neutral-atom quantum computing architectures, powered by low-frequency electromagnetic fields with the benefit of simple schemes for controlling individual qubits in large ensembles.
Highly entangled multi-qubit states with simple algebraic structure
Energy Technology Data Exchange (ETDEWEB)
Tapiador, J E; Clark, J A; Stepney, S [Department of Computer Science, University of York (United Kingdom); Hernandez-Castro, J C [Department of Computing, University of Portsmouth (United Kingdom)], E-mail: jet@cs.york.ac.uk
2009-10-16
Recent works by Brown et al (2005 J. Phys. A: Math. Gen. 38 1119) and Borras et al (2007 J. Phys. A: Math. Theor. 40 13407) have explored numerical optimization procedures to search for highly entangled multi-qubit states according to some computationally tractable entanglement measure. We present an alternative scheme based upon the idea of searching for states having not only high entanglement but also simple algebraic structure. We report results for 4, 5, 6, 7 and 8 qubits discovered by this approach, showing that many of such states do exist. In particular, we find a maximally entangled 6-qubit state with an algebraic structure simpler than the best results known so far. For the case of 7 qubits, we discover states with high, but not maximum, entanglement and simple structure, as well as other desirable properties. Some preliminary results are shown for the case of 8 qubits.
Electrically driven spin qubit based on valley mixing
Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie
2017-02-01
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
Characterization of Medipix3 with the MARS readout and software
Ronaldson, J P; van Leeuwen, D; Doesburg, R M N; Ballabriga, R; Butler, A P H; Donaldson, J; Walsh, M; Nik, S J; Clyne, M N
2011-01-01
The Medipix3 x-ray imaging detector has been characterized using the MARS camera. This x-ray camera comprises custom built readout electronics and software libraries designed for the Medipix family of detectors. The performance of the Medipix3 and MARS camera system is being studied prior to use in real-world applications such as the recently developed MARS-CT3 spectroscopic micro-CT scanner. We present the results of characterization measurements, describe methods for optimizing performance and give examples of spectroscopic images acquired with Medipix3 and the MARS camera system. A limited number of operating modes of the Medipix3 chip have been characterized and single-pixel mode has been found to give acceptable performance in terms of energy response, image quality and stability over time. Spectroscopic performance is significantly better in charge-summing mode than single-pixel mode however image quality and stability over time are compromised. There are more modes of operation to be tested and further...
Mesoscopic fluctuations in biharmonically driven flux qubits
Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José
2017-01-01
We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought of as an effective transmittance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation, but large compared to the decoherence time, this characteristic rate has been accessed experimentally by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], 10.1103/PhysRevLett.110.016603 and its sensitivity with both the phase lag and the dc flux detuning explored. In this way, signatures of universal conductance fluctuationslike effects have been analyzed and compared with predictions from a phenomenological model that only accounts for decoherence, as a classical noise. Here we go beyond the classical noise model and solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet-Born-Markov master equation. Within this formalism, the computed relaxation and decoherence rates turn out to be strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular, we demonstrate the weak localizationlike effect in the average values of the relaxation rate. Our predictions can be tested for accessible but longer time scales than the current experimental times.
Trichromatic Open Digraphs for Understanding Qubits
Lang, Alex
2011-01-01
We introduce a trichromatic graphical calculus for quantum computing. The generators represent three complementary observables that are treated on equal footing, hence reflecting the symmetries of the Bloch sphere. We derive the Euler angle decomposition of the Hadamard gate within it as well as the so-called suplementarity relationships, which are valid equations for qubits that were not derivable within $Z/X$-calculus of Coecke and Duncan. More specifically, we have: dichromatic Z/X-calculus + Euler angle decomposition of the Hadamard gate = trichromatic calculus.
Trichromatic Open Digraphs for Understanding Qubits
Directory of Open Access Journals (Sweden)
Alex Lang
2012-10-01
Full Text Available We introduce a trichromatic graphical calculus for quantum computing. The generators represent three complementary observables that are treated on equal footing, hence reflecting the symmetries of the Bloch sphere. We derive the Euler angle decomposition of the Hadamard gate within it as well as the so-called supplementary relationships, which are valid equations for qubits that were not derivable within Z/X-calculus of Coecke and Duncan. More specifically, we have: dichromatic Z/X-calculus + Euler angle decomposition of the Hadamard gate = trichromatic calculus.
Multi-qubit circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Viehmann, Oliver
2013-09-03
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
The Veldkamp Space of Two-Qubits
Directory of Open Access Journals (Sweden)
Metod Saniga
2007-06-01
Full Text Available Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, W(2, it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space over the Galois field with two elements - the so-called Veldkamp space of W(2. An intriguing novelty is the recognition of (uni- and tri-centric triads and specific pentads of the Pauli operators in addition to the ''classical'' subsets answering to geometric hyperplanes of W(2.
Davies maps for qubits and qutrits
Roga, Wojciech; Zyczkowski, Karol
2009-01-01
We investigate the dynamics of an N -level quantum system weakly coupled to a thermal reservoir. For any fixed temperature of the bath there exists a natural reference state: the equilibrium state of the system. Among all quantum operations on the system one distinguishes Davies maps, they pre- serve the equilibrium state, satisfy the detailed balance condition and belong to a semi-group. A complete characterization of the three dimensional set of qubit Davies maps is given. We analyze these maps and find their mini- mum output entropy. A characterization of Davies maps for qutrits is also provided.
SU(2) Invariants of Symmetric Qubit States
Sirsi, Swarnamala
2011-01-01
Density matrix for N-qubit symmetric state or spin-j state (j = N/2) is expressed in terms of the well known Fano statistical tensor parameters. Employing the multiaxial representation [1], wherein a spin-j density matrix is shown to be characterized by j(2j+1) axes and 2j real scalars, we enumerate the number of invariants constructed out of these axes and scalars. These invariants are explicitly calculated in the particular case of pure as well as mixed spin-1 state.
Protocol for counterfactually transporting an unknown qubit
Salih, Hatim
2015-12-01
Quantum teleportation circumvents the uncertainty principle using dual channels: a quantum one consisting of previously-shared entanglement, and a classical one, together allowing the disembodied transport of an unknown quantum state over distance. It has recently been shown that a classical bit can be counterfactually communicated between two parties in empty space, “Alice” and “Bob”. Here, by using our “dual” version of the chained quantum Zeno effect to achieve a counterfactual CNOT gate, we propose a protocol for transporting an unknown qubit counterfactually, that is without any physical particles travelling between Alice and Bob—no classical channel and no previously-shared entanglement.
Dual computational basis qubit in semiconductor heterostructures
Gilbert, M. J.; Akis, R.; Ferry, D. K.
2003-08-01
Advances in quantum computing have revealed computing capabilities that threaten to render many of the public encryption codes useless against the hacking potential for a quantum-mechanical-based computing system. This potential forces the study of viable methods to keep vital information secure from third-party eavesdropping. In this letter, we propose a coupled electronic waveguide device to create a qubit with two computational bases. The characteristics we have obtained by simulating such devices suggest a possible way of implementing quantum cryptography in semiconductor device architectures.
Protocol for counterfactually transporting an unknown qubit
Directory of Open Access Journals (Sweden)
Hatim eSalih
2016-01-01
Full Text Available Quantum teleportation circumvents the uncertainty principle using dual channels: a quantum one consisting of previously-shared entanglement, and a classical one, together allowing the disembodied transport of an unknown quantum state over distance. It has recently been shown that a classical bit can be counterfactually communicated between two parties in empty space, Alice and Bob. Here, by using our dual version of the chained quantum Zeno effect to achieve a counterfactual CNOT gate, we propose a protocol for transporting an unknown qubit counterfactually, that is without any physical particles travelling between Alice and Bob—no classical channel and no previously-shared entanglement.
Liu, Pei-Hua
2016-01-01
In this paper, we consider the decoherence patterns of a topological qubit made of two Majorana zero modes in the generic linear and circular motions in the Minkowski spacetime. We show that the reduced dynamics is exact without Markov approximation. Our results imply that the acceleration will cause thermalization as expected by Unruh effect. However, for the short-time scale, we find the rate of decoherence is anti-correlated with the acceleration, as kind of decoherence impedance. This is in fact related to the "anti-Unruh" phenomenon previously found by studying the transition probability of Unruh-DeWitt detector. We also obtain the information backflow by some time modulations of coupling constant or acceleration, which is a characteristic of the underlying non-Markovian reduced dynamics. Moreover, by exploiting the nonlocal nature of the topological qubit, we find that some incoherent accelerations of the constituent Majorana zero modes can preserve the coherence instead of thermalizing it.
Imaging achievements with the Vernier readout
Lapington, J S; Worth, L B C; Tandy, J A
2002-01-01
We describe the Vernier anode, a high resolution and charge division image readout for microchannel plate detectors. It comprises a planar structure of insulated electrodes deposited on an insulating substrate. The charge cloud from an event is divided amongst all nine electrodes and the charge ratio uniquely determines the two-dimensional position coordinate of the charge centroid. We discuss the design of the anode pattern and describe the advantages offered by this readout. The cyclic variation of the electrode structure allows the image resolution to exceed the charge measurement resolution and enables the entire active area of the readout to be utilized. In addition, fixed pattern noise is greatly reduced. We present results demonstrating the position resolution and image linearity. A position resolution of 10 mu m FWHM is demonstrated and the overall imaging performance is shown to be limited by the microchannel plate pore spacing. We present measurements of the image distortions and describe techniques...
The NA60 experiment readout architecture
Floris, M; Usai, G L; David, A; Rosinsky, P; Ohnishi, H
2004-01-01
The NA60 experiment was designed to identify signatures of a new state of matter, the Quark Gluon Plasma, in heavy-ion collisions at the CERN Super Proton Synchroton. The apparatus is composed of four main detectors: a muon spectrometer (MS), a zero degree calorimeter (ZDC), a silicon vertex telescope (VT), and a silicon microstrip beam tracker (BT). The readout of the whole experiment is based on a PCI architecture. The basic unit is a general purpose PCI card, interfaced to the different subdetectors via custom mezzanine cards. This allowed us to successfully implement several completely different readout protocols (from the VME like protocol of the MS to the custom protocol of the pixel telescope). The system was fully tested with proton and ion beams, and several million events were collected in 2002 and 2003. This paper presents the readout architecture of NA60, with particular emphasis on the PCI layer common to all the subdetectors. (16 refs).
How to implement a quantum algorithm on a large number of qubits by controlling one central qubit
Zagoskin, Alexander; Ashhab, Sahel; Johansson, J. R.; Nori, Franco
2010-03-01
It is desirable to minimize the number of control parameters needed to perform a quantum algorithm. We show that, under certain conditions, an entire quantum algorithm can be efficiently implemented by controlling a single central qubit in a quantum computer. We also show that the different system parameters do not need to be designed accurately during fabrication. They can be determined through the response of the central qubit to external driving. Our proposal is well suited for hybrid architectures that combine microscopic and macroscopic qubits. More details can be found in: A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett. 97, 077001 (2006); and S. Ashhab, J.R. Johansson, F. Nori, Rabi oscillations in a qubit coupled to a quantum two-level system, New J. Phys. 8, 103 (2006).
The black-hole/qubit correspondence: an up-to-date review
Borsten, L; Lévay, P
2012-01-01
We give a review of the black-hole/qubit correspondence that incorporates not only the earlier results on black hole entropy and entanglement measures, seven qubits and the Fano plane, wrapped branes as qubits and the attractor mechanism as a distillation procedure, but also newer material including error-correcting codes, Mermin squares, Freudenthal triples and 4-qubit entanglement classification.
Quantum State Transfer between Charge and Flux Qubits in Circuit-QED
Institute of Scientific and Technical Information of China (English)
WU Qin-Qin; LIAO Jie-Qiao; KUANG Le-Man
2008-01-01
@@ We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynamics (QED)system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR).It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.
Strong Coupling of a Quantum Oscillator to a Flux Qubit at Its Symmetry Point
Fedorov, A.; Feofanov, A.K.; Macha, P.; Forn-Díaz, P.; Harmans, C.J.P.M.; Mooij, J.E.
2010-01-01
A flux qubit biased at its symmetry point shows a minimum in the energy splitting (the gap), providing protection against flux noise. We have fabricated a qubit of which the gap can be tuned fast and have coupled this qubit strongly to an LC oscillator. We show full spectroscopy of the qubit-oscilla
Indian Academy of Sciences (India)
E K Bashkirov; M S Mastyugin
2015-01-01
Considering two artificial identical atoms interacting with two-mode thermal field through non-degenerate two-photon transitions, this paper studies the influence of atomic coherence and dipole–dipole interaction on the entanglement of two qubits. It is found that the entanglement is greatly enhanced by these mechanisms.
Data readout system utilizing photonic integrated circuit
Energy Technology Data Exchange (ETDEWEB)
Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)
2013-10-11
We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.
Description of the TRT Readout Scheme
Luehring, F C
2002-01-01
This paper documents the TRT detector readout scheme. A description is provided of the data buffers used in the TRT readout chain: the single TRT channel output data format, the DTMROC output data buffer format, the TRT-ROD input FIFO data format, the TRT-ROD output buffer format, and the ROB output buffer data format. Also documented are the current designs for the TRT-ROD zero suppression and data compression schemes. A proposal is presented for ordering the data generated by individual TRT channels suitably for Level-2 triggering, Level-3 triggering and offline data processing.
Simulating Quantum Chemical Dynamics with Improved Superconducting Qubits
Megrant, Anthony E.
A quantum computer will potentially solve far-reaching problems which are currently intractable on any classical computer. Many technological obstacles have prevented the realization of a quantum computer, the main obstacle being decoherence, which is the loss of quantum information. Decoherence arises from the undesired interaction between qubits and their environment. Isolated qubits have better coherence but are more difficult to control. Superconducting qubits are a promising platform since their macroscopic size allows for easy control and coupling to other qubits. While the coherence of superconducting qubits has substantially improved over the past two decades, further improvements in coherence are required. We have repeatedly and reliably increased the coherence times of superconducting qubits. Currently decoherence in these devices is dominated by coupling to material defects. These defects are present in the dielectrics used to fabricate these devices or introduced during fabrication. Using simpler resonators as a testbed, we individually isolate, characterize, and then improve each step of the more complicated fabrication of superconducting qubits. We increased the quality factor of resonators by a factor of four by first identifying the surfaces and interfaces as a major source of loss and then by optimizing the substrate preparation. Furthermore, we measure and subsequently mitigate additional defect loss, which is dependent on the position of ground plane holes used to limit the loss from magnetic vortices. Implementing these improvements led to an increase of our qubit coherence times by more than an order of magnitude. The progress made in coherence while maintaining a high degree of connectivity and controllability has been directly used in more complex circuits. One such device is a fully connected three qubit ring with both tunable qubit frequencies and adjustable qubit-qubit couplings. The considerable level of control allows us to generate the
Ben-Aryeh, Y.; Mann, A.
2016-08-01
Hilbert-Schmidt (HS) decompositions are employed for analyzing systems of n-qubit, and a qubit with a qudit. Negative eigenvalues, obtained by partial-transpose (PT) plus local unitary (PTU) transformations for one qubit from the whole system, are used for indicating entanglement/separability. A sufficient criterion for full separability of the n-qubit and qubit-qudit systems is given. We use the singular value decomposition (SVD) for improving the criterion for full separability. General properties of entanglement and separability are analyzed for a system of a qubit and a qudit and n-qubit systems, with emphasis on maximally disordered subsystems (MDS) (i.e. density matrices for which tracing over any subsystem gives the unit density matrix). A sufficient condition that ρ (MDS) is not separable is that it has an eigenvalue larger than 1/d for a qubit and a qudit, and larger than 1/2n-1 for n-qubit system. The PTU transformation does not change the eigenvalues of the n-qubit MDS density matrices for odd n. Thus, the Peres-Horodecki (PH) criterion does not give any information about entanglement of these density matrices. The PH criterion may be useful for indicating inseparability for even n. The changes of the entanglement and separability properties of the GHZ state, the Braid entangled state and the W state by mixing them with white noise are analyzed by the use of the present methods. The entanglement and separability properties of the GHZ-diagonal density matrices, composed of mixture of 8GHZ density matrices with probabilities pi(i=1,2,…,8), is analyzed as function of these probabilities. In some cases, we show that the PH criterion is both sufficient and necessary.
Sohn, IlKwon; Tarucha, Seigo; Choi, Byung-Soo
2017-01-01
The implementation of a scalable quantum computer requires quantum error correction (QEC). An important step toward this goal is to demonstrate the effectiveness of QEC where the fidelity of an encoded qubit is higher than that of the physical qubits. Therefore, it is important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the swap gate worked rapidly on the quantum-dot qubit, it did not affect the performance in terms of the spatial layout.
Remote state preparation of spatial qubits
Energy Technology Data Exchange (ETDEWEB)
Solis-Prosser, M. A.; Neves, L. [Center for Optics and Photonics, Universidad de Concepcion, Casilla 4016, Concepcion (Chile) and Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)
2011-07-15
We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.
Quantum teleportation and entanglement swapping of matter qubits with multiphoton signals
Energy Technology Data Exchange (ETDEWEB)
Torres, Juan Mauricio [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Germany (Germany); Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo (Mexico); Bernad, Jozsef Zsolt; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Germany (Germany)
2014-07-01
We introduce a probabilistic Bell measurement of atomic qubits based on two consecutive photonic field measurements of two single mode cavities with which the atoms interact in two separate stages. To this end, we solve the two-atoms Tavis-Cummings model and exploit the property that the antisymmetric Bell state is insensitive to the interaction with the field. We consider implementations for quantum teleportation and for entanglement swapping protocols both of which can be achieved with 25% success probability and with unit fidelity. We emphasize possible applications for hybrid quantum repeaters where the aforementioned quantum protocols play an essential role.
Institute of Scientific and Technical Information of China (English)
S. Salimi; A. Mohammadzadet
2011-01-01
Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first terms of this states, one two-qubits formed. Because of the importance of two-qubits in theory of quantum entanglement, with two different measures with the title of concurrence and D-concurrence, we have studied the amount of entanglement and discussed its details. At the end, we describe these measures for pair coherent states as a function of the amplitude of the SU（2） coherent states.
Faithful conditional quantum state transfer between weakly coupled qubits
Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.
2016-08-01
One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.
Low-noise readout circuit for SWIR focal plane arrays
Altun, Oguz; Tasdemir, Ferhat; Nuzumlali, Omer Lutfi; Kepenek, Reha; Inceturkmen, Ercihan; Akyurek, Fatih; Tunca, Can; Akbulut, Mehmet
2017-02-01
This paper reports a 640x512 SWIR ROIC with 15um pixel pitch that is designed and fabricated using 0.18um CMOS process. Main challenge of SWIR ROIC design is related to input circuit due to pixel area and noise limitations. In this design, CTIA with single stage amplifier is utilized as input stage. The pixel design has three pixel gain options; High Gain (HG), Medium Gain (MG), and Low Gain (LG) with corresponding Full-Well-Capacities of 18.7ké, 190ké and 1.56Mé, respectively. According to extracted simulation results, 5.9é noise is achieved at HG mode and 200é is achieved at LG mode of operation. The ROIC can be programmed through an SPI interface. It supports 1, 2 and 4 output modes which enables the user to configure the detector to work at 30, 60 and 120fps frame rates. In the 4 output mode, the total power consumption of the ROIC is less than 120mW. The ROIC is powered from a 3.3V analog supply and allows for an output swing range in excess of 2V. Anti-blooming feature is added to prevent any unwanted blooming effect during readout.
Absence of State Collapse and Revival in a Superconducting Charge Qubit
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The Hamiltonian of a superconducting charge qubit with a configuration of dc SQUID contains an interaction between the LC oscillator part and charge qubit. This interaction may leads to quantum state collapse and revival which degrades the charge qubits and leads to serious decoherence. An analysis shows that the existing charge qubit parameters do not lead to this phenomenon, which is very good for the superconducting charge qubit.
A two-qubit photonic quantum processor and its application to solving systems of linear equations
Stefanie Barz; Ivan Kassal; Martin Ringbauer; Yannick Ole Lipp; Borivoje Dakić; Alán Aspuru-Guzik; Philip Walther
2014-01-01
Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, w...
Quantum Fisher and skew information for Unruh accelerated Dirac qubit
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Subhashish; Alok, Ashutosh Kumar [Indian Institute of Technology Jodhpur, Jodhpur (India); Omkar, S. [Indian Institute of Science Education and Research, Thiruvananthapuram (India)
2016-08-15
We develop a Bloch vector representation of the Unruh channel for a Dirac field mode. This is used to provide a unified, analytical treatment of quantum Fisher and skew information for a qubit subjected to the Unruh channel, both in its pure form as well as in the presence of experimentally relevant external noise channels. The time evolution of Fisher and skew information is studied along with the impact of external environment parameters such as temperature and squeezing. The external noises are modelled by both purely dephasing phase damping and the squeezed generalised amplitude damping channels. An interesting interplay between the external reservoir temperature and squeezing on the Fisher and skew information is observed, in particular, for the action of the squeezed generalised amplitude damping channel. It is seen that for some regimes, squeezing can enhance the quantum information against the deteriorating influence of the ambient environment. Similar features are also observed for the analogous study of skew information, highlighting a similar origin of the Fisher and skew information. (orig.)
Coupling of three-spin qubits to their electric environment
Russ, Maximilian; Ginzel, Florian; Burkard, Guido
2016-10-01
We investigate the behavior of qubits consisting of three electron spins in double and triple quantum dots subject to external electric fields. Our model includes two independent bias parameters, ɛ and ɛM, which both couple to external electromagnetic fields and can be controlled by gate voltages applied to the quantum dot structures. By varying these parameters, one can switch the qubit type by shifting the energies in the single quantum dots, thus changing the electron occupancy in each dot. Starting from the asymmetric resonant exchange qubit with a (2,0,1) and (1,0,2) charge admixture, one can smoothly cross over to the resonant exchange qubit with a detuned (1,1,1) charge configuration, and to the exchange-only qubit with the same charge configuration but equal energy levels down to the hybrid qubits with (1,2,0) and (0,2,1) charge configurations. Here, (l ,m ,n ) describes a configuration with l electrons in the left dot, m electrons in the center dot, and n electrons in the right dot. We first focus on random electromagnetic field fluctuations, i.e., "charge noise," at each quantum dot resulting in dephasing of the qubit, and we provide a complete map of the resulting dephasing time as a function of the bias parameters. We pay special attention to the so-called sweet spots and double sweet spots of the system, which are least susceptible to noise. In the second part, we investigate the coupling of the qubit system to the coherent quantized electromagnetic field in a superconducting strip-line cavity, and we also provide a complete map of the coupling strength as a function of the bias parameters. We analyze the asymmetric qubit-cavity coupling via ɛ and the symmetric coupling via ɛM.
PANDA straw tube detectors and readout
Strzempek, P.; Panda Collaboration
2016-07-01
PANDA is a detector under construction dedicated to studies of production and interaction of particles in the charmonium mass range using antiproton beams in the momentum range of 1.5 - 15 GeV/c at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. PANDA consists of two spectrometers: a Target Spectrometer with a superconducting solenoid and a Forward Spectrometer using a large dipole magnet and covering the most forward angles (Θ < 10 °). In both spectrometers, the particle's trajectories in the magnetic field are measured using self-supporting straw tube detectors. The expected high count rates, reaching up to 1 MHz/straw, are one of the main challenges for the detectors and associated readout electronics. The paper presents the readout chain of the tracking system and the results of tests performed with realistic prototype setups. The readout chain consists of a newly developed ASIC chip (PASTTREC 〈 PANDASTTReadoutChip 〉) with amplification, signal shaping, tail cancellation, discriminator stages and Time Readout Boards as digitizer boards.
Microwave multiplex readout for superconducting sensors
Ferri, E.; Becker, D.; Bennett, D.; Faverzani, M.; Fowler, J.; Gard, J.; Giachero, A.; Hays-Wehle, J.; Hilton, G.; Maino, M.; Mates, J.; Puiu, A.; Nucciotti, A.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.
2016-07-01
The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the 163Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of 163Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.
Authenticated communication from quantum readout of PUFs
Skoric, Boris; Pinkse, Pepijn W.H.; Mosk, Allard P.
2016-01-01
Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this modific
Janzing, D; Beth, T; Janzing, Dominik; Decker, Thomas; Beth, Thomas
2003-01-01
An n-qubit quantum register can in principle be completely controlled by operating on a single qubit that interacts with the register via an appropriate fixed interaction. We consider a hypothetical system consisting of n spin-1/2 nuclei that interact with an electron spin via a magnetic interaction. We describe algorithms that measure non-trivial joint observables on the register by acting on the control spin only. For large n this is not an efficient model for universal quantum computation but it can be modified to an efficient one if one allows n possible positions of the control particle. This toy model of measurements illustrates in which way specific interactions between the register and a probe particle support specific types of joint measurements in the sense that some joint observables can be measured by simple sequences of operations on the probe particle.
Tsallis entropy and entanglement constraints in multi-qubit systems
Kim, Jeong San
2009-01-01
We show that the restricted sharability and distribution of multi-qubit entanglement can be characterized by Tsallis-$q$ entropy. We first provide a class of bipartite entanglement measures named Tsallis-$q$ entanglement, and provide its analytic formula in two-qubit systems for $1 \\leq q \\leq 4$. For $2 \\leq q \\leq 3$, we show a monogamy inequality of multi-qubit entanglement in terms of Tsallis-$q$ entanglement, and we also provide a polygamy inequality using Tsallis-$q$ entropy for $1 \\leq q \\leq 2$ and $3 \\leq q \\leq 4$.
Few-Photon Scattering in Dispersive Waveguides with Multiple Qubits
Kocabaş, Şükrü Ekin
2016-01-01
We extend the Krylov subspace based time dependent numerical simulation technique for a qubit interacting with photons in a waveguide to the multiple qubit case. We analyze photon scattering from two qubits analytically and derive expressions for the bound states in the continuum (BIC). We show how the BIC can be excited. We use the BIC in a recent Pauli Z gate proposal involving decoherence free subspaces and obtain the gate fidelity as a function of the gate parameters. The techniques presented in the paper are useful for investigating the time evolution of quantum gates and other many-body systems with multiple quenches in the Hamiltonian.
Genuinely multipartite concurrence of N-qubit X matrices
Rafsanjani, S. M. Hashemi; M. Huber; Broadbent, C. J.; Eberly, J. H
2012-01-01
We find an algebraic formula for the N-partite concurrence of N qubits in an X-matrix. X- matricies are density matrices whose only non-zero elements are diagonal or anti-diagonal when written in an orthonormal basis. We use our formula to study the dynamics of the N-partite entanglement of N remote qubits in generalized N-party Greenberger-Horne-Zeilinger (GHZ) states. We study the case when each qubit interacts with a partner harmonic oscillator. It is shown that only one type of GHZ state ...
Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems
Tsomokos, Dimitris; Ashhab, Sahel; Nori, Franco
2011-03-01
We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.
Dynamical Suppression of Decoherence in Two-Qubit Quantum Memory
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.
The twistor geometry of three-qubit entanglement
Lévai, Peter
2004-01-01
A geometrical description of three qubit entanglement is given. A part of the transformations corresponding to stochastic local operations and classical communication on the qubits is regarded as a gauge degree of freedom. Entangled states can be represented by the points of the Klein quadric ${\\cal Q}$ a space known from twistor theory. It is shown that three-qubit invariants are vanishing on special subspaces of ${\\cal Q}$. An invariant vanishing for the $GHZ$ class is proposed. A geometric interpretation of the canonical decomposition and the inequality for distributed entanglement is also given.
Three qubit entanglement within graphical Z/X-calculus
Directory of Open Access Journals (Sweden)
Bob Coecke
2011-03-01
Full Text Available The compositional techniques of categorical quantum mechanics are applied to analyse 3-qubit quantum entanglement. In particular the graphical calculus of complementary observables and corresponding phases due to Duncan and one of the authors is used to construct representative members of the two genuinely tripartite SLOCC classes of 3-qubit entangled states, GHZ and W. This nicely illustrates the respectively pairwise and global tripartite entanglement found in the W- and GHZ-class states. A new concept of supplementarity allows us to characterise inhabitants of the W class within the abstract diagrammatic calculus; these method extends to more general multipartite qubit states.
Benchmarking quantum control methods on a 12-qubit system
Negrevergne, C; Ryan, C A; Ditty, M; Cyr-Racine, F; Power, W; Boulant, N; Havel, T; Cory, D G; Laflamme, R
2006-01-01
In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.
Improved high-fidelity transport of trapped-ion qubits through a multi-dimensional array
Blakestad, R B; VanDevender, A P; Wesenberg, J H; Biercuk, M J; Leibfried, D; Wineland, D J
2011-01-01
We have demonstrated transport of Be+ ions through a 2D Paul-trap array that incorporates an X-junction, while maintaining the ions near the motional ground-state of the confining potential well. We expand on the first report of the experiment [1], including a detailed discussion of how the transport potentials were calculated. Two main mechanisms that caused motional excitation during transport are explained, along with the methods used to mitigate such excitation. We reduced the motional excitation below the results in Ref. [1] by a factor of approximately 50. The effect of a mu-metal shield on qubit coherence is also reported. Finally, we examined a method for exchanging energy between multiple motional modes on the few-quanta level, which could be useful for cooling motional modes without directly accessing the modes with lasers. These results establish how trapped ions can be transported in a large-scale quantum processor with high fidelity.
Single-step implementation of the controlled-Z gate in a qubit/bus/qubit device
Galiautdinov, Andrei
2011-01-01
We propose a simple scheme for generating a high-fidelity controlled-Z (CZ) gate in a three-component qubit/bus/qubit device. The corresponding tune/detune pulse is single-step, with a near-resonant constant undershoot between the 200 and 101 states. During the pulse, the frequency of the first qubit is kept fixed, while the frequency of the second qubit is varied in such a way as to bring the 200 and 101 states close to resonance. As a result, the phase of the 101 state is accumulated via the corresponding second-order anticrossing. For experimentally realistic qubit frequencies and a 75 MHz coupling (150 MHz splitting), a 45 ns gate time can be realized with >99.99% intrinsic fidelity, with errors arising due to the non-adiabaticity of the ramps. The CZ pulse is characterized by two adjustable parameters: the undershoot magnitude and undershoot duration. The pulse does not load an excitation into the bus. This by-passes the previously proposed need for two additional qubit-to-bus and bus-to-qubit MOVE opera...
Architectural modeling of pixel readout chips Velopix and Timepix3
Poikela, T.; Plosila, J.; Westerlund, T.; Buytaert, J.; Campbell, M.; Llopart, X.; Plackett, R.; Wyllie, K.; van Beuzekom, M.; Gromov, V.; Kluit, R.; Zappon, F.; Zivkovic, V.; Brezina, C.; Desch, K.; Fang, X.; Kruth, A.
2012-01-01
We examine two digital architectures for front end pixel readout chips, Velopix and Timepix3. These readout chips are developed for tracking detectors in future high energy physics experiments. They must incorporate local intelligence in pixels for time-over-threshold measurement and sparse readout.
Calculation of quantum discord for qubit-qudit or N qubits
vinjanampathy, sai
2011-01-01
Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual information and classical correlation in a bipartite system. It has been discussed so far for small systems with only a few independent parameters. We extend here to a much broader class of states when the second party is of arbitrary dimension d, so long as the first, measured, party is a qubit. We present two formulae to calculate quantum discord, the first relating to the original entropic definition and the second to a recently proposed geometric distance measure which leads to an analytical formulation. The tracing over the qubit in the entropic calculation is reduced to a very simple prescription. And, when the d-dimensional system is a so-called X state, the density matrix having non-zero elements only along the diagonal and anti-diagonal so as to appear visually like the letter X, the entropic calculation can be carried out analytically. Such states of the full bipartite qubit-qudit system may be named ...
Novotny, J; Jex, I
2006-01-01
The structure of all completely positive quantum operations is investigated which transform pure two-qubit input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT operations which transform entangled pure two-qubit input states of a given degree of entanglement into orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled input states these quantum NOT operations can be performed perfectly.
Yin, Aihan; Wang, Jiwei
2016-12-01
In this paper, a new scheme of quantum information splitting (8QIS) by using five-qubit state and GHZ-state as quantum channel is proposed. The sender Alice performs Bell-state measurements (BSMs) on her qubit-pairs respectively,then tells her measurement result to the receivers Bob. If Bob wants to reconstruct the original states, he must cooperates with the controller Charlie, that Charlie performs two single particle measurement on his qubits and tells Bob the results. According to Alice's and Bob's results, Bob can reconstruct the initial state by applying appropriate unitary operation.
Two Qubits in the Dirac Representation
Rajagopal, A K
2000-01-01
A general two qubit system expressed in terms of the complete set of unit and fifteen traceless, Hermitian Dirac matrices, is shown to exhibit novel features of this system. The well-known physical interpretations associated with the relativistic Dirac equation involving the symmetry operations of time-reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the basic Bell states. The transformation properties of the Bell basis states under these symmetry operations also reveal that C is the only operator that does not mix the Bell states whereas all others do. In a similar fashion, expressing the various logic gates introduced in the subject of quantum computers in terms of the Dirac matrices shows for example, that the NOT gate is related to the product of time-reversal and parity operators.
Quantum repeaters based on heralded qubit amplifiers
Minář, Jiří; Sangouard, Nicolas
2011-01-01
We present a quantum repeater scheme based on the recently proposed qubit amplifier [N. Gisin, S. Pironio and N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010)]. It relies on a on-demand entangled-photon pair source which uses on-demand single-photon sources, linear optical elements and atomic ensembles. Interestingly, the imperfections affecting the states created from this source, caused e.g. by detectors with non-unit efficiencies, are systematically purified from an entanglement swapping operation based on a two-photon detection. This allows the distribution of entanglement over very long distances with a high fidelity, i.e. without vacuum components and multiphoton errors. Therefore, the resulting quantum repeater architecture does not necessitate final postselections and thus achieves high entanglement distribution rates. This also provides unique opportunities for device-independent quantum key distribution over long distances with linear optics and atomic ensembles.
Projective Ring Line Encompassing Two-Qubits
Saniga, M; Pracna, P; Planat, Michel; Pracna, Petr; Saniga, Metod
2006-01-01
The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in GF(2) is found to fully accommodate the algebra of 15 operators -- generalized Pauli matrices -- characterizing two-qubit systems. The relevant sub-configuration consits of 15 points each of which is either simultaneusly distant or simultaneously neighbour to (any) two given distant points of the line. The operators can be identified with the points in such a one-to-one manner that their commutation relations are exactly reproduced by the underlying geometry of the points, with the ring geometrical notions of neighbour/distant answering, respectively, to the operational ones of commuting/non-commuting. This finding opens up rather unexpected vistas for an algebraic geometrical modelling of finite-dimensional quantum systems and gives their numerous applications a wholy new perspective.
Algebra, Logic and Qubits Quantum Abacus
Vlasov, A Yu
2000-01-01
The canonical anticommutation relations (CAR) for fermion systems can be represented by finite-dimensional matrix algebra, but it is impossible for canonical commutation relations (CCR) for bosons. After description of more simple case with representation CAR and (bounded) quantum computational networks via Clifford algebras in the paper are discussed CCR. For representation of the algebra it is not enough to use quantum networks with fixed number of qubits and it is more convenient to consider Turing machine with essential operation of appending new cells for description of infinite tape in finite terms --- it has straightforward generalization for quantum case, but for CCR it is necessary to work with symmetrized version of the quantum Turing machine. The system is called here quantum abacus due to understanding analogy with the ancient counting devices (abacus).
Spectroscopy of a Synthetic Trapped Ion Qubit
Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.
2017-09-01
133Ba+ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1 /2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A =133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 62P1 /2↔62S1 /2 and 62P1 /2↔52D3 /2 electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 62P1 /2↔52D3 /2 electronic transition isotope shift for the rare A =130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.
Energy Technology Data Exchange (ETDEWEB)
Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)
2013-01-15
We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.
Enhancing the fidelity of two-qubit gates by measurements
Gefen, Tuvia; Cohen, Daniel; Cohen, Itsik; Retzker, Alex
2017-03-01
Dynamical decoupling techniques are the method of choice for increasing gate fidelities. While these methods have produced very impressive results in terms of decreasing local noise and increasing the fidelities of single-qubit operations, dealing with the noise of two-qubit gates has proven more challenging. The main obstacle is that the noise time scale is shorter than the two-qubit gate itself, so that refocusing methods do not work. We present a measurement- and feedback-based method to suppress two-qubit-gate noise, which cannot be suppressed by conventional methods. We analyze in detail this method for an error model, which is relevant for trapped-ion quantum information.
Implementation of Universal Control on a Decoherence-Free Qubit
Fortunato, E M; Hodges, J; Teklemariam, G; Cory, D G; Fortunato, Evan M.; Viola, Lorenza; Hodges, Jonathan; Teklemariam, Grum; Cory, David G.
2001-01-01
We demonstrate storage and manipulation of one qubit encoded into a decoherence-free subspace (DFS) of two nuclear spins using liquid state nuclear magnetic resonance (NMR) techniques. The DFS is spanned by states that are unaffected by arbitrary collective phase noise. Encoding and decoding procedures reversibly map an arbitrary qubit state from a single data spin to the DFS and back. The implementation demonstrates the robustness of the DFS memory against engineered dephasing with arbitrary strength as well as a substantial increase in the amount of quantum information retained, relative to an un-encoded qubit, under both engineered and natural noise processes. In addition, a universal set of logical manipulations over the encoded qubit is also realized. Although intrinsic limitations prevent maintaining full noise tolerance during quantum gates, we show how the use of dynamical control methods at the encoded level can ensure that computation is protected with finite distance. We demonstrate noise-tolerant ...
From qubits and actions to the Pauli-Schroedinger equation
Mizrahi, Salomon S
2010-01-01
Here I show that a classical or quantum bit state plus one simple operation, an action, are sufficient ingredients to derive a quantum dynamical equation that rules the sequential changes of the state. Then, by assuming that a freely moving massive particle is the qubit carrier, it is found that both, the particle position in physical space and the qubit state, change in time according to the Pauli-Schroedinger equation. So, this approach suggests the following conjecture: because it carries one qubit of information the particle motion has its description enslaved by the very existence of the internal degree of freedom. It is compelled to be no more described classically but by a wavefunction. I also briefly discuss the Dirac equation in terms of qubits.
Measurement Saves CNOT Gates in Optimal 2-Qubit Circuits
Shende, V V; Shende, Vivek V.; Markov, Igor L.
2005-01-01
It has been shown in recent papers that any 2-qubit unitary operator can be realized, up to global phase, by a quantum circuit with at most three CNOT gates. Three CNOT gates are also necessary for many operators. However, these results do not fully account for the effect of measurement. Intuitively, the fact that information is lost during measurement should allow some flexibility during circuit synthesis. In our present work, we formalize this in the case of two-qubit operators followed by projective measurements with respect to the computational basis. We show that, in this context, two CNOT gates and six one-qubit gates suffice to simulate an arbitrary two-qubit operator. We also show that for several types of measurement, two CNOT gates are also necessary. In one case, we show that one CNOT gate is necessary and sufficient.
Tunable quantum entanglement of three qubits in a nonstationary cavity
Amico, Mirko; Berman, Oleg L.; Kezerashvili, Roman Ya.
2017-09-01
We investigate the tunable quantum entanglement and the probabilities of excitations in a system of three qubits in a nonstationary cavity due to the dynamical Lamb effect, caused by nonadiabatic fast change of the boundary conditions of the cavity. The transition amplitudes and the probabilities of excitation of qubits due to the dynamical Lamb effect have been evaluated. The conditional concurrence and the conditional residual tangle for each fixed amount of created photons are introduced and calculated as measures of the pairwise or three-way dynamical quantum entanglement of the qubits. We also give a prescription on how to increase the values of those quantities by controlling the frequency of the cavity photons. A physical realization of the system with three superconducting qubits, coupled to a coplanar waveguide entangled due to the nonadiabatic fast change of boundary conditions of the cavity is proposed.
Quantum metamaterials: Electromagnetic waves in Josephson qubit lines
Energy Technology Data Exchange (ETDEWEB)
Zagoskin, A.M. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Physics and Astronomy Department, University of British Columbia, Vancouver, B.C. (Canada); Rakhmanov, A.L. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Institute for Theoretical and Applied Electrodynamics RAS, Moscow (Russian Federation); Savel' ev, Sergey [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Nori, Franco [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI (United States)
2009-05-15
We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting new effects, such as a ''breathing'' photonic crystal with an oscillating bandgap. Similar behaviour is expected from a transmission line formed by flux qubits. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Quantum entanglement in three accelerating qubits coupled to scalar fields
Dai, Yue; Shen, Zhejun; Shi, Yu
2016-07-01
We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.
Reduced phase error through optimized control of a superconducting qubit
Lucero, Erik; Bialczak, Radoslaw C; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A D; Sank, Daniel; Wang, H; Weides, Martin; Wenner, James; Yamamoto, Tsuyoshi; Cleland, A N; Martinis, John
2010-01-01
Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors in particular, we have developed a new experimental metrology --- amplified phase error (APE) pulses --- that amplifies and helps identify phase errors in general multi-level qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement "half derivative" an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to $\\sim 1.6^{\\circ}$ per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit $|2\\rangle$ state, is also reduced to $\\sim 10^{-4}$ for $20\\%$ faster gates.
Electric nonadiabatic geometric entangling gates on spin qubits
Azimi Mousolou, Vahid
2017-07-01
Producing and maintaining entanglement reside at the heart of the optimal construction of quantum operations and are fundamental issues in the realization of universal quantum computation. We here introduce a setup of spin qubits that allows the geometric implementation of entangling gates between the register qubits with any arbitrary entangling power. We show this by demonstrating a circuit through a spin chain, which performs universal nonadiabatic holonomic two-qubit entanglers. The proposed gates are all electric and geometric, which would help to realize fast and robust entangling gates on spin qubits. This family of entangling gates contains gates that are as efficient as the cnot gate in quantum algorithms. We examine the robustness of the circuit to some extent.
Qubits from Adinkra Graph Theory via Colored Toric Geometry
Aadel, Y; Benslimane, Z; Sedra, M B; Segui, A
2015-01-01
We develop a new approach to deal with qubit information systems using toric geometry and its relation to Adinkra graph theory. More precisely, we link three different subjects namely toric geometry, Adinkras and quantum information theory. This one to one correspondence may be explored to attack qubit system problems using geometry considered as a powerful tool to understand modern physics including string theory. Concretely, we examine in some details the cases of one, two, and three qubits, and we find that they are associated with \\bf CP^1, \\bf CP^1\\times CP^1 and \\bf CP^1\\times CP^1\\times CP^1 toric varieties respectively. Using a geometric procedure referred to as colored toric geometry, we show that the qubit physics can be converted into a scenario handling toric data of such manifolds by help of Adinkra graph theory. Operations on toric information can produce universal quantum gates.
Cooperative effects for Qubits in a Transmission Line: Theory
Lalumière, K.; Blais, A.; Sanders, B. C.; van Loo, A. F.; Fedorov, A.; Wallraff, A.
2012-02-01
Strong extinction of the transmitted power in a 1D transmission line coupled to an artificial atom has recently been achieved [1]. In contrast to the 3D case, large extinctions are made possible by the strong light-matter coupling occurring because of reduced dimensionality. Motivated by this, here we consider the situation where multiple artificial atoms (ie transmon qubits) are coupled to the 1D line. Following the work of Lehmberg for the 3D case [2], we obtain a master equation describing the dynamics of an arbitrary number of qubits coupled to the line. This master equation reveals interaction between the qubits mediated by the line. Using the input-output formalism, the model is compared to experimental results for multiple qubits coupled to the 1D line. [1] O. Astafiev et al., Science 327, 840 (2010) [2] R. H. Lehmberg. Phys. Rev. A 2, 883 (1970).
Entangling distant resonant exchange qubits via circuit quantum electrodynamics
Srinivasa, V.; Taylor, J. M.; Tahan, Charles
2016-11-01
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
Qubit Transport Model for Unitary Black Hole Evaporation without Firewalls
Osuga, Kento
2016-01-01
We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon and fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.
Decoherence of two-qubit systems: a random matrix description
Pineda, C.; Gorin, T.; Seligman, T. H.
2007-04-01
We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one-qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the above relation.
Decoherence of two qubit systems: A random matrix description
Pineda, C; Seligman, T H
2007-01-01
We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the relation above.
Decoherence in Superconducting Qubits from Surface Magnetic States
Hover, David; Sendelbach, Steven; Kittel, Achim; Mueck, Michael; McDermott, Robert
2008-03-01
Unpaired spins in amorphous surface oxides can act as a source of decoherence in superconducting and other solid-state qubits. A density of surface spins can give rise to low-frequency magnetic flux noise, which in turn leads to dephasing of the qubit state. In addition, magnetic surface states can couple to high-frequency resonant magnetic fields, and thereby contribute to energy relaxation of the qubit. We present the results of low-frequency measurements of the nonlinear and imaginary spin susceptibility of surface magnetic states in superconducting devices at millikelvin temperatures. In addition, we describe high-frequency magnetic resonance measurements that directly probe the surface spin density of states. We present calculations that connect the measurement results to qubit energy relaxation and dephasing times.
Low-frequency Flux Noise in SQUIDs and Superconducting Qubits
Sendelbach, Steven; Hover, David; Kittel, Achim; Mueck, Michael; McDermott, Robert
2008-03-01
Superconducting qubits are a leading candidate for scalable quantum information processing. In order to realize the full potential of these qubits, it is necessary to develop a more complete understanding of the microscopic physics that governs dissipation and dephasing of the quantum state. In the case of the Josephson phase and flux qubits, the dominant dephasing mechanism is an apparent low-frequency magnetic flux noise with a 1/f spectrum. The origin of this excess noise is not understood. We report the results of SQUID measurements that explore the dependence of the excess low-frequency flux noise on SQUID inductance, geometry, materials, and temperature. We discuss contributions to the measured noise from temperature fluctuations, trapped vortices in the superconducting films, and surface magnetic states in the native oxides of the superconductors. We discuss implications of our measurements for qubit dephasing.
Systematically Generated Two-Qubit Braids for Fibonacci Anyons
Zeuch, Daniel; Carnahan, Caitlin; Bonesteel, N. E.
We show how two-qubit Fibonacci anyon braids can be generated using a simple iterative procedure which, in contrast to previous methods, does not require brute force search. Our construction is closely related to that of, but with the new feature that it can be used for three-anyon qubits as well as four-anyon qubits. The iterative procedure we use, which was introduced by Reichardt, generates sequences of three-anyon weaves that asymptotically conserve the total charge of two of the three anyons, without control over the corresponding phase factors. The resulting two-qubit gates are independent of these factors and their length grows as log 1/ ɛ, where ɛ is the error, which is asymptotically better than the Solovay-Kitaev method.
Entangling qubits by Heisenberg spin exchange and anyon braiding
Zeuch, Daniel
As the discovery of quantum mechanics signified a revolution in the world of physics more than one century ago, the notion of a quantum computer in 1981 marked the beginning of a drastic change of our understanding of information and computability. In a quantum computer, information is stored using quantum bits, or qubits, which are described by a quantum-mechanical superposition of the quantum states 0 and 1. Computation then proceeds by acting with unitary operations on these qubits. These operations are referred to as quantum logic gates, in analogy to classical computation where bits are acted on by classical logic gates. In order to perform universal quantum computation it is, in principle, sufficient to carry out single-qubit gates and two-qubit gates, where the former act on individual qubits and the latter, acting on two qubits, are used to entangle qubits with each other. The present thesis is divided into two main parts. In the first, we are concerned with spin-based quantum computation. In a spin-based quantum computer, qubits are encoded into the Hilbert space spanned by spin-1/2 particles, such as electron spins trapped in semiconductor quantum dots. For a suitable qubit encoding, turning on-and-off, or "pulsing,'' the isotropic Heisenberg exchange Hamiltonian JSi · Sj allows for universal quantum computation and it is this scheme, known as exchange-only quantum computation, which we focus on. In the second part of this thesis, we consider a topological quantum computer in which qubits are encoded using so-called Fibonacci anyons, exotic quasiparticle excitations that obey non-Abelian statistics, and which may emerge in certain two-dimensional topological systems such as fractional quantum-Hall states. Quantum gates can then be carried out by moving these particles around one another, a process that can be viewed as braiding their 2+1 dimensional worldlines. The subject of the present thesis is the development and theoretical understanding of
Nonlinearities in the quantum measurement process of superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Serban, Ioana
2008-05-15
The work described in this thesis focuses on the investigation of decoherence and measurement backaction, on the theoretical description of measurement schemes and their improvement. The study presented here is centered around quantum computing implementations using superconducting devices and most important, the Josephson effect. The measured system is invariantly a qubit, i. e. a two-level system. The objective is to study detectors with increasing nonlinearity, e. g. coupling of the qubit to the frequency a driven oscillator, or to the bifurcation amplifier, to determine the performance and backaction of the detector on the measured system and to investigate the importance of a strong qubit-detector coupling for the achievement of a quantum non-demolition type of detection. The first part gives a very basic introduction to quantum information, briefly reviews some of the most promising physical implementations of a quantum computer before focusing on the superconducting devices. The second part presents a series of studies of different qubit measurements, describing the backaction of the measurement onto the measured system and the internal dynamics of the detector. Methodology adapted from quantum optics and chemical physics (master equations, phase-space analysis etc.) combined with the representation of a complex environment yielded a tool capable of describing a nonlinear, non-Markovian environment, which couples arbitrarily strongly to the measured system. This is described in chapter 3. Chapter 4 focuses on the backaction on the qubit and presents novel insights into the qubit dephasing in the strong coupling regime. Chapter 5 uses basically the same system and technical tools to explore the potential of a fast, strong, indirect measurement, and determine how close such a detection would ideally come to the quantum non-demolition regime. Chapter 6 focuses on the internal dynamics of a strongly driven Josephson junction. The analytical results are based on
On the geometry and invariants of qubits, quartits and octits
Planat, Michel
2010-01-01
Four level quantum systems, known as quartits, and their relation to two- qubit systems are investigated group theoretically. Following the spirit of Klein's lectures on the icosahedron and their relation to Hopf sphere fibrations, invariants of complex reflection groups occurring in the theory of qubits and quartits are displayed. Then, real gates over octits leading to the Weyl group of E8 and its invariants are derived. Even multilevel systems are of interest in the context of solid state nuclear magnetic resonance.
Investigating the Materials Limits on Coherence in Superconducting Charge Qubits
2014-12-04
mesoscopic effects in superconductors on the coherence of qubits and on losses in superconducting films , and comparing these to experiment. This...on the superconducting films themselves, or at the metal-substrate interfaces) was the main limitation on qubit lifetimes, which were then in the...quality. We also developed and tested the “vertical transmon” design, where the transmon capacitors are formed through the bulk thickness of the
Enhancing coherence in molecular spin qubits via atomic clock transitions
Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen
2016-03-01
Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.
Bounding the entanglement of N qubits with only four measurements
Hashemi Rafsanjani, S. M.; Broadbent, C. J.; Eberly, J. H.
2013-12-01
We introduce a measure for the genuinely N-partite (all-party) entanglement of N-qubit states using the trace distance metric and find an algebraic formula for the Greenberger-Horne-Zeilinger (GHZ)-diagonal states. We then use this formula to show how the all-party entanglement of experimentally produced GHZ states of an arbitrary number of qubits may be bounded with only four measurements.
Adiabatic holonomic quantum gates for a single qubit
Malinovsky, Vladimir S.; Rudin, Sergey
2014-04-01
A universal set of single qubit holonomic quantum gates using the geometric phase that the qubit wave function acquires after a cyclic evolution is discussed. The proposed scheme utilizes ultrafast linearly chirped pulses and provides a possibility to substantially suppress transient population of the ancillary state in a generic three-level system. That provides a possibility to reduce the decoherence effect and achieve a higher fidelity of the quantum gates.
COLIBRI: partial camera readout and sliding trigger for the Cherenkov Telescope Array CTA
Naumann, C. L.; Tejedor, L. A.; Martínez, G.
2013-06-01
Plans for the future Cherenkov telescope array CTA include replacing the monolithic camera designs used in H.E.S.S. and MAGIC-I by one that is built up from a number of identical segments. These so-called clusters will be relatively autonomous, each containing its own triggering and readout hardware. While this choice was made for reasons of flexibility and ease of manufacture and maintenance, such a concept with semi-independent sub-units lends itself quite naturally to the possibility of new, and more flexible, readout modes. In all previously-used concepts, triggering and readout of the camera is centralised, with a single camera trigger per event that starts the readout of all pixels in the camera at the same time and within the same integration time window. The limitations of such a trigger system can reduce the performance of a large array such as CTA, due to the huge amount of useless data created by night-sky background if trigger thresholds are set low enough to achieve the desired 20 GeV energy threshold, and to image losses at high energies due to the rigid readout window. In this study, an alternative concept (``COLIBRI'' = Concept for an Optimised Local Image Building and Readout Infrastructure) is presented, where only those parts of the camera which are likely to actually contain image data (usually a small percentage of the total pixels) are read out. This leads to a significant reduction of the expected data rate and the dead-times incurred in the camera. Furthermore, the quasi-independence of the individual clusters can be used to read different parts of the camera at slightly different times, thus allowing the readout to follow the slow development of the shower image across the camera field of view. This concept of flexible, partial camera readout is presented in the following, together with a description of Monte-Carlo studies performed to evaluate its performance as well as a hardware implementation proposed for CTA.
Geometric multiaxial representation of N -qubit mixed symmetric separable states
SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik
2017-08-01
The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.
Computing prime factors with a Josephson phase qubit quantum processor
Lucero, Erik; Chen, Yu; Kelly, Julian; Mariantoni, Matteo; Megrant, Anthony; O'Malley, Peter; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Ted; Yin, Yi; Cleland, Andrew N; Martinis, John M
2012-01-01
A quantum processor (QuP) can be used to exploit quantum mechanics to find the prime factors of composite numbers[1]. Compiled versions of Shor's algorithm have been demonstrated on ensemble quantum systems[2] and photonic systems[3-5], however this has yet to be shown using solid state quantum bits (qubits). Two advantages of superconducting qubit architectures are the use of conventional microfabrication techniques, which allow straightforward scaling to large numbers of qubits, and a toolkit of circuit elements that can be used to engineer a variety of qubit types and interactions[6, 7]. Using a number of recent qubit control and hardware advances [7-13], here we demonstrate a nine-quantum-element solid-state QuP and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produces coherent interactions between five qubits and verify bi- and tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In the final experiment, we ...
Environment-protected solid-state-based distributed charge qubit
Tayebi, Amin; Hoatson, Tanya Nicole; Wang, Joie; Zelevinsky, Vladimir
2016-12-01
A solid-state-based charge qubit is presented. The system consists of a one-dimensional wire with a pair of qubits embedded at its center. It is shown that the system supports collective states localized in the left and right sides of the wire and therefore, as a whole, performs as a single qubit. The couplings between the ground and excited states of the two central qubits are inversely proportional making them fully asynchronized and allowing for coherent manipulation and gate operations. Initialization and measurement devices, such as leads and charge detectors, connected to the edges of the wire are modeled by a continuum of energy states. The coupling to the continuum is discussed using the effective non-Hermitian Hamiltonian. At weak continuum coupling, all internal states uniformly acquire small decay widths. This changes dramatically as the coupling strength increases: the width distribution undergoes a sharp restructuring and is no longer uniformly divided among the eigenstates. Two broad resonances localized at the ends of the wire are formed. These superradiant states (analogous to Dicke states in quantum optics) effectively protect the remaining internal states from decaying into the continuum and hence increase the lifetime of the qubit. Environmental noise is introduced by considering random Gaussian fluctuations of electronic energies. The interplay between decoherence and superradiance is studied by solving the stochastic Liouville equation. In addition to increasing the lifetime, the emergence of the superradiant states increases the qubit coherence.
A TPC-like readout method for high precision muon-tracking using GEM-detectors
Energy Technology Data Exchange (ETDEWEB)
Flierl, Bernhard; Biebel, Otmar; Bortfeldt, Jonathan; Hertenberger, Ralf; Klitzner, Felix; Loesel, Philipp; Mueller, Ralph [Ludwig-Maximilians-Universitaet Muenchen (Germany); Zibell, Andre [Julius-Maximilians-Universitaet Wuerzburg (Germany)
2016-07-01
Gaseous electron multiplier (GEM) detectors are well suited for tracking of charged particles. Three dimensional tracking in a single layer can be achieved by application of a time-projection-chamber like readout mode (μTPC), if the drift time of the electrons is measured and the position dependence of the arrival time is used to calculate the inclination angle of the track. To optimize the tracking capabilities for ion tracks drift gas mixtures with low drift velocity have been investigated by measuring tracks of cosmic muons in a compact setup of four GEM-detectors of 100 x 100 x 6 mm{sup 3} active volume each and an angular acceptance of -25 to 25 . The setup consists of three detectors with two-dimensional strip readout layers of 0.4 mm pitch and one detector with a single strip readout layer of 0.25 mm pitch. All strips are readout by APV25 frontend boards and the amplification stage in the detectors consists of three GEM-foils. Tracks are reconstructed by the μTPC-method in one of the detectors and are then compared to the prediction from the other three detectors defined by the center of charge in every detector. We report our study of Argon and Helium based noble gas mixtures with carbon-dioxide as quencher.
Gate-defined quantum dot devices in undoped Si/SiGe heterostructures for spin qubit applications
Volk, Christian; Martins, Frederico; Marcus, Charles M.; Kuemmeth, Ferdinand
Spin qubits based on few electron quantum dots in semiconductor heterostructures are among the most promising systems for realizing quantum computation. Due to its low concentration of nuclear-spin-carrying isotopes, silicon is of special interest as a host material. We characterize gate-defined double and triple quantum dot devices fabricated from undoped Si/Si0.7Ge0.3 heterostructures. Our device architecture is based on integrating all accumulation and depletion mode gates in a single gate layer. This allows us to omit the commonly used global accumulation gate in order to achieve a more local control of the potential landscape in the device. We present our recent progress towards implementing spin qubits in these structures. Support through the EC FP7- ICT project SiSPIN no. 323841, and the Danish National Research Foundation is acknowledged.
Fiber and Crystals Dual Readout calorimeters
Cascella, Michele; Lee, Sehwook
2016-01-01
The RD52 (DREAM) collaboration is performing R\\&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO$_{4}$ crystals, as well as BGO and BSO, with the aim of realising a crystal based dual readout detector. We will describe our results, focusing on the more promising properties ...
Event loss rates and readout chips
Schmelling, M
1998-01-01
98-57 The LHCb experiment aims at a deadtimeless readout of BÂevents at a primary bunch crossing rate of 40 MHz. In order to achieve this goal, information from all events must be stored in a pipeline with latency matched to the time needed for the Level 0 trigger decision. Accepted events, which constitute only a small fraction of the total sample, are stored in a fifo of a certain depth and read out with a fixed clock rate. The fifo, also referred to as multiÂevent or derandomizing buffer, is needed in order to even out statistical fluctuations in the trigger rate. Apart from the length of the pipeline, which determines the maximum latency of the chip, the crucial parameter characterizing a readout chip is the fraction of triggers lost due to limitations of the chip's architecture. This note describes how the different design parameters and operation conditions determine the chip's performance.
Characterization of Silicon Detector Readout Electronics
Energy Technology Data Exchange (ETDEWEB)
Jones, M. [Purdue U.
2015-07-22
Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.
Implementation of the Fredkin gate with a three-qubit mixed-spin Heisenberg model
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We show that a local unitary(LU) equivalent Fredkin gate can be obtained from the free evolution of three mixed-spin qubits by virtue of numerical simulation with only one step.The spin-1 qubit acts as the control qubit,and two spin-1/2 qubits,which interact with the spin-1 qubit via the first neighbor spin interaction,respectively,play the role of target qubits.We also examine the imperfect Fredkin gate operation by considering the effects of nonidentical coupling constants,uniform and inhomogeneous magnetic fields.
Guo, G P; Hao, X J; Tu, T; Zhu, Z C; Guo, Guang-Can; Guo, Guo-Ping; Hao, Xiao-Jie; Tu, Tao; Zhu, Zhi-Cheng
2007-01-01
We propose a scheme to eliminate the effect of non-nearest-neighbor qubits in preparing cluster state with double-dot molecules. As the interaction Hamiltonians between qubits are Ising-model and mutually commute, we can get positive and negative effective interactions between qubits to cancel the effect of non-nearest-neighbor qubits by properly changing the electron charge states of each quantum dot molecule. The total time for the present multi-step cluster state preparation scheme is only doubled for one-dimensional qubit chain and tripled for two-dimensional qubit array comparing with the time of previous protocol leaving out the non-nearest-neighbor interactions.
New crystals for dual-readout calorimetry
Akchurin, N; Cardini, A; Carosi, R; Ciapetti, G; Ferrari, R; Franchino, S; Fraternali, M; Gaudio, G; Hauptman, J; Incagli, M; Korzhik, M; Lacava, F; La Rotonda, L; Livan, M; Meoni, E; Nikl, M; Pinci, D; Policicchio, A; Popescu, S; Scuri, F; Sill, A; Vandelli, W; Vedda, A; Venturelli, T; Voena, C; Volobouev, I; Wigmans, R
2009-01-01
Lead tungstate crystals doped with small fractions of praesodynium or molybdenum have been tested in beams of high-energy electrons. The goal of these tests was to study the effects of such dopants on the capability to separate the signal components deriving from the Cherenkov and scintillation light generated by the beam particles. These studies were carried out in view of the possible application of such crystals in dual-readout calorimeters.
Preliminary Assessment of Microwave Readout Multiplexing Factor
Energy Technology Data Exchange (ETDEWEB)
Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
2017-01-23
Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.
Enhanced optomechanical readout using optical coalescence
DEFF Research Database (Denmark)
Genes, Claudiu; Xuereb, André; Pupillo, Guido;
2013-01-01
We present a scheme to strongly enhance the readout sensitivity of the squared displacement of a mobile scatterer placed in a Fabry-Pérot cavity. We investigate the largely unexplored regime of cavity electrodynamics in which a highly reflective element positioned between the end mirrors of a sym...... in this generic “optical coalescence” phenomenon gives rise to an enhanced frequency shift of the peaks of the cavity transmission that can be exploited in optomechanics....
LSST camera readout chip ASPIC: test tools
Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.
2012-02-01
The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.
Signal processing for distributed readout using TESs
Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.
2006-04-01
We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods.
Signal processing for distributed readout using TESs
Energy Technology Data Exchange (ETDEWEB)
Smith, Stephen J. [Department of Physics and Astronomy, Space Research Centre, University of Leicester, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom)]. E-mail: sts@star.le.ac.uk; Whitford, Chris H. [Department of Physics and Astronomy, Space Research Centre, University of Leicester, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom); Fraser, George W. [Department of Physics and Astronomy, Space Research Centre, University of Leicester, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom)
2006-04-15
We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods.
Cryogenic readout techniques for germanium detectors
Energy Technology Data Exchange (ETDEWEB)
Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)
2015-07-01
High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)
XAMPS Detectors Readout ASIC for LCLS
Energy Technology Data Exchange (ETDEWEB)
Dragone, A; /SLAC; Pratte, J.F.; Rehak, P.; /Brookhaven; Carini, G.A.; /BNL, NSLS; Herbst, R.; /SLAC; O' Connor, P.; /Brookhaven; Siddons, D.P.; /BNL, NSLS
2008-12-18
An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a good position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.
Embedded controller for GEM detector readout system
Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek
2013-10-01
This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.
Nicolas, Adrien; Giacobino, Elisabeth; Maxein, Dominik; Laurat, Julien
2014-01-01
While measuring the orbital angular momentum state of bright light beams can be performed using imaging techniques, a full characterization at the single-photon level is challenging. For applications to quantum optics and quantum information science, such characterization is an essential capability. Here, we present a setup to perform the quantum state tomography of photonic qubits encoded in this degree of freedom. The method is based on a projective technique using spatial mode projection via fork holograms and single-mode fibers inserted into an interferometer. The alignment and calibration of the device is detailed as well as the measurement sequence to reconstruct the associated density matrix. Possible extensions to higher-dimensional spaces are discussed.
Reexamination of pure qubit work extraction.
Frenzel, Max F; Jennings, David; Rudolph, Terry
2014-11-01
Many work extraction or information erasure processes in the literature involve the raising and lowering of energy levels via external fields. But even if the actual system is treated quantum mechanically, the field is assumed to be classical and of infinite strength, hence not developing any correlations with the system or experiencing back-actions. We extend these considerations to a fully quantum mechanical treatment by studying a spin-1/2 particle coupled to a finite-sized directional quantum reference frame, a spin-l system, which models an external field. With this concrete model together with a bosonic thermal bath, we analyze the back-action a finite-size field suffers during a quantum-mechanical work extraction process and the effect this has on the extractable work and highlight a range of assumptions commonly made when considering such processes. The well-known semiclassical treatment of work extraction from a pure qubit predicts a maximum extractable work W=kTlog2 for a quasistatic process, which holds as a strict upper bound in the fully quantum mechanical case and is attained only in the classical limit. We also address the problem of emergent local time dependence in a joint system with a globally fixed Hamiltonian.
Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics
Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert
2010-03-01
Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.
Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures
Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina
2017-09-01
Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.
Detecting bit-flip errors in a logical qubit using stabilizer measurements.
Ristè, D; Poletto, S; Huang, M-Z; Bruno, A; Vesterinen, V; Saira, O-P; DiCarlo, L
2015-04-29
Quantum data are susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction to actively protect against both. In the smallest error correction codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Here using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. While increased physical qubit coherence times and shorter quantum error correction blocks are required to actively safeguard the quantum information, this demonstration is a critical step towards larger codes based on multiple parity measurements.
Decoherence-free quantum-information processing using dipole-coupled qubits
Brooke, P G
2007-01-01
We propose a quantum-information processor that consists of decoherence-free logical qubits encoded into arrays of dipole-coupled qubits. High-fidelity single-qubit operations are performed deterministically within a decoherence-free subsystem without leakage via global addressing of bichromatic laser fields. Two-qubit operations are realized locally with four physical qubits, and between separated logical qubits using linear optics. We show how to prepare cluster states using this method. We include all non-nearest-neighbor effects in our calculations, and we assume the qubits are not located in the Dicke limit. Although our proposal is general to any system of dipole-coupled qubits, throughout the paper we use nitrogen-vacancy (NV) centers in diamond as an experimental context for our theoretical results.
Extremal Entangled Four-Qubit Pure States with Respect to Multiple Entropy Measures
Institute of Scientific and Technical Information of China (English)
GUO Ying; LIU Dan; ZENG Gui-Hua; ZHAO Xin; Moon Ho Lee; LONG Gui-Lu
2008-01-01
Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit system. Some extremal entangled states have been found.
Implementing remotely a single-qubit rotation operation by three-qubit entanglement
Institute of Scientific and Technical Information of China (English)
Chen Li-Bing; Lu Hong; Liu Yu-Hua
2005-01-01
We investigate the problem of quantum remote implementation of a single-qubit rotation operation using threequbit entangled state. Firstly, we utilize the entanglement property of maximally entangled Greenberger-HorneZeilinger (GHZ) state to design a theoretical scheme for implementing the operation remotely with unit fidelity and unit probability. Then, we put forward two schemes for conclusive implementing the non-local single-qubit rotation with unit fidelity by employing a partially entangled pure GHZ state as quantum channel. The features of these schemes are that a third side is included, who may participate the process of quantum remote implementation as a supervisor.Furthermore, when the quantum channel is partially entangled, the third side can rectify the state distorted by imperfect quantum channel. In addition to the GHZ class state, the W class state can also be used to remotely implement the same operation probabilistically. The probability of successful implementation using the W class state is always less than that using the GHZ class state.
USB 3.0 readout and time-walk correction method for Timepix3 detector
Turecek, D.; Jakubek, J.; Soukup, P.
2016-12-01
The hybrid particle counting pixel detectors of Medipix family are well known. In this contribution we present new USB 3.0 based interface AdvaDAQ for Timepix3 detector. The AdvaDAQ interface is designed with a maximal emphasis to the flexibility. It is successor of FitPIX interface developed in IEAP CTU in Prague. Its modular architecture supports all Medipix/Timepix chips and all their different readout modes: Medipix2, Timepix (serial and parallel), Medipix3 and Timepix3. The high bandwidth of USB 3.0 permits readout of 1700 full frames per second with Timepix or 8 channel data acquisition from Timepix3 at frequency of 320 MHz. The control and data acquisition is integrated in a multiplatform PiXet software (MS Windows, Mac OS, Linux). In the second part of the publication a new method for correction of the time-walk effect in Timepix3 is described. Moreover, a fully spectroscopic X-ray imaging with Timepix3 detector operated in the ToT mode (Time-over-Threshold) is presented. It is shown that the AdvaDAQ's readout speed is sufficient to perform spectroscopic measurement at full intensity of radiographic setups equipped with nano- or micro-focus X-ray tubes.
Deterministic entanglement of superconducting qubits by parity measurement and feedback.
Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L
2013-10-17
The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.
On the geometry of four-qubit invariants
Lévay, Péter
2006-07-01
The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP3. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, suitable powers of their magnitudes are entanglement monotones that fit nicely into the geometric set of n-qubit ones related to Grassmannians of l-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally, in order to understand two-, three- and four-qubit entanglement in geometric terms we propose a unified setting based on CP3 furnished with a fixed quadric.
On the geometry of four-qubit invariants
Energy Technology Data Exchange (ETDEWEB)
Levay, Peter [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)
2006-07-28
The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP{sup 3}. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, suitable powers of their magnitudes are entanglement monotones that fit nicely into the geometric set of n-qubit ones related to Grassmannians of l-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally, in order to understand two-, three- and four-qubit entanglement in geometric terms we propose a unified setting based on CP{sup 3} furnished with a fixed quadric.
Macroscopic quantum oscillator based on a flux qubit
Energy Technology Data Exchange (ETDEWEB)
Singh, Mandip, E-mail: mandip@iisermohali.ac.in
2015-09-25
In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.
Deterministic doping and the exploration of spin qubits
Energy Technology Data Exchange (ETDEWEB)
Schenkel, T.; Weis, C. D.; Persaud, A. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lo, C. C. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720 (United States); London Centre for Nanotechnology (United Kingdom); Chakarov, I. [Global Foundries, Malta, NY 12020 (United States); Schneider, D. H. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bokor, J. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720 (United States)
2015-01-09
Deterministic doping by single ion implantation, the precise placement of individual dopant atoms into devices, is a path for the realization of quantum computer test structures where quantum bits (qubits) are based on electron and nuclear spins of donors or color centers. We present a donor - quantum dot type qubit architecture and discuss the use of medium and highly charged ions extracted from an Electron Beam Ion Trap/Source (EBIT/S) for deterministic doping. EBIT/S are attractive for the formation of qubit test structures due to the relatively low emittance of ion beams from an EBIT/S and due to the potential energy associated with the ions' charge state, which can aid single ion impact detection. Following ion implantation, dopant specific diffusion mechanisms during device processing affect the placement accuracy and coherence properties of donor spin qubits. For bismuth, range straggling is minimal but its relatively low solubility in silicon limits thermal budgets for the formation of qubit test structures.
2016-03-31
SECURITY CLASSIFICATION OF: The objective of this project is to implement an electron spin qubit system on a silicon metal-oxide- semiconductor ...Distribution Unlimited UU UU UU UU 31-03-2016 1-Nov-2010 30-Apr-2014 Final Report: Development of a Silicon Metal-Oxide- Semiconductor -Based Qubit Using Spin... Semiconductor -Based Qubit Using Spin Exchange Interactions Alone Report Title The objective of this project is to implement an electron spin qubit system on
Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED
Institute of Scientific and Technical Information of China (English)
HAN Yang; WU Wei; WU Chun-Wang; DAI Hong-Yi; LI Cheng-Zu
2008-01-01
@@ Positive-operator-value measurement (POVM) is the most general class of quantum measurement.We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit.By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step.As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.
Scheme for Remote Implementation of Partially Unknown Quantum Operation of Two Qubits in Cavity QED
Institute of Scientific and Technical Information of China (English)
QIU Liang; WANG An-Min
2008-01-01
By constructing the recovery operations of the protocol of remote implementation of partially unknown quantum operation of two qubits [An-Min Wang: Phys. Rev. A 74 (2006) 032317] with two-qubit Cnot gate and single qubit logic gates, we present a scheme to implement it in cavity QED. Long-lived Rydberg atoms are used as qubits, and the interaction between the atoms and the field of cavity is a nonresonant one. Finally, we analyze the experimental feasibility of this scheme.
Experimental Entanglement and Nonlocality of a Two-Photon Six-Qubit Cluster State
Ceccarelli, Raino; De Martini, Francesco; Mataloni, Paolo; Cabello, Adan
2009-01-01
We create a six-qubit linear cluster state by transforming a two-photon hyper-entangled state in which three qubits are encoded in each particle, one in the polarization and two in linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, robustness of entanglement against the loss of qubits, and higher violation of Bell inequalities than in previous experiments.
Data encoding efficiency in pixel detector readout with charge information
Garcia-Sciveres, Maurice
2016-01-01
The minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the bits used for by the FE-I4 pixel readout chip of the ATLAS experiment.
Data encoding efficiency in pixel detector readout with charge information
Energy Technology Data Exchange (ETDEWEB)
Garcia-Sciveres, Maurice, E-mail: mgs@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Wang, Xinkang [University of Chicago, Chicago, IL (United States)
2016-04-11
The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.
A Readout Mechanism for Latency Codes
Zohar, Oran; Shamir, Maoz
2016-01-01
Response latency has been suggested as a possible source of information in the central nervous system when fast decisions are required. The accuracy of latency codes was studied in the past using a simplified readout algorithm termed the temporal-winner-take-all (tWTA). The tWTA is a competitive readout algorithm in which populations of neurons with a similar decision preference compete, and the algorithm selects according to the preference of the population that reaches the decision threshold first. It has been shown that this algorithm can account for accurate decisions among a small number of alternatives during short biologically relevant time periods. However, one of the major points of criticism of latency codes has been that it is unclear how can such a readout be implemented by the central nervous system. Here we show that the solution to this long standing puzzle may be rather simple. We suggest a mechanism that is based on reciprocal inhibition architecture, similar to that of the conventional winner-take-all, and show that under a wide range of parameters this mechanism is sufficient to implement the tWTA algorithm. This is done by first analyzing a rate toy model, and demonstrating its ability to discriminate short latency differences between its inputs. We then study the sensitivity of this mechanism to fine-tuning of its initial conditions, and show that it is robust to wide range of noise levels in the initial conditions. These results are then generalized to a Hodgkin-Huxley type of neuron model, using numerical simulations. Latency codes have been criticized for requiring a reliable stimulus-onset detection mechanism as a reference for measuring latency. Here we show that this frequent assumption does not hold, and that, an additional onset estimator is not needed to trigger this simple tWTA mechanism.
Authenticated communication from quantum readout of PUFs
Škorić, Boris; Pinkse, Pepijn W. H.; Mosk, Allard P.
2017-08-01
Quantum readout of physical unclonable functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: A verifier can check if received classical data were sent by the PUF holder. We call this modification QR-d or, in the case of the optical-PUF implementation, QSA-d. We discuss how QSA-d can be operated in a parallel way. We also present a protocol for authenticating quantum states.
Mass-based readout for agglutination assays
Chunara, Rumi; Godin, Michel; Knudsen, Scott M.; Manalis, Scott R.
2007-11-01
We present a mass-based readout for agglutination assays. The suspended microchannel resonator (SMR) is used to classify monomers and dimers that are formed during early stage aggregation, and to relate the total count to the analyte concentration. Using a model system of streptavidin functionalized microspheres and biotinylated antibody as the analyte, we obtain a dose-response curve over a concentration range of 0.63-630nM and show that the results are comparable to what has been previously achieved by image analysis and conventional flow cytometry.
MEMS acceleration sensor with remote optical readout for continuous power generator monitoring
Directory of Open Access Journals (Sweden)
Tormen Maurizio
2015-01-01
Full Text Available Miniaturized accelerometers with remote optical readout are required devices for the continuous monitoring of vibrations inside power generators. In turbo and hydro generators, end-winding vibrations are present during operation causing in the long term undesirable out-of-service repairs. Continuous monitoring of these vibrations is therefore mandatory. The high electromagnetic fields in the generators impose the use of devices immune to electromagnetic interferences. In this paper a MEMS based accelerometer with remote optical readout is presented. Advantages of the proposed device are the use of a differential optical signal to reject the common mode signal and noise, the reduced number of steps for the MEMS chip fabrication and for the system assembly, and the reduced package volume.
A read-out system for the Medipix2 chip capable of 500 frames per second
Energy Technology Data Exchange (ETDEWEB)
Maiorino, M. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain)]. E-mail: maiorino@ifae.es; Martinez, R. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Pellegrini, G. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Blanchot, G. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Chmeissani, M. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Garcia, J. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Lozano, M. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain); Puigdengoles, C. [IFAE Institut de Fisica d' Altes Energies, UAB Campus, 08193 Barcelona (Spain); Ullan, M. [Centro Nacional de Microelectronica, IMB-CNM-CSIC, UAB Campus, 08193 Barcelona (Spain)
2006-07-01
High-speed X-ray-imaging acquisition technique is a growing field that can be used to understand microscopic mechanism of different phenomena in biology and material science. IFAE and CNM developed a very high-speed readout system, named DEMAS, for the Medipix2. The system is able to read a single Medipix2 chip through the parallel bus at a rate of 1 kHz.With a duty cycle of 50%, the real sampling speed is 500 frames per second (fps). This implies that 1 ms is allocated to the exposure time and another millisecond is devoted to the read-out of the chip. In such configuration, the raw data throughput is about 500 Mbit/s. For the first time we present examples of acquisition at 500 fps of moving samples with X-rays working in direct capture and photon counting mode.
Low-noise analog readout channel for SDD in X-ray spectrometry
Atkin, E.; Gusev, A.; Krivchenko, A.; Levin, V.; Malankin, E.; Normanov, D.; Rotin, A.; Sagdiev, I.; Samsonov, V.
2016-01-01
A low-noise analog readout channel optimized for operation with the Silicon Drift Detectors (SDDs) with built-in JFET is presented. The Charge Sensitive Amplifier (CSA) operates in a pulse reset mode using the reset diode built-in the SDD detector. The shaper is a 6th order semi-Gaussian filter with switchable discrete shaping times. The readout channel provides the Equivalent Noise Charge (ENC) of 12e- (simulation) and input dynamic range of 30 keV . The measured energy resolution at the 5,89 keV line of a 55Fe X-ray source is 336 eV (FWHM). The channel was prototyped via Europractice in the AMS 350 nm process as miniASIC. The simulation and first measurement results are presented in the paper.
Integrated optical read-out for polymeric cantilever-based sensors
DEFF Research Database (Denmark)
Tenje, Maria
2007-01-01
This thesis presents a novel read-out method developed for cantilever-based sensors. Cantilevers are thin beams clamped at one end and during the last 10 years they have emerged as an interesting new type of bio/chemical sensor. The specific recognition of a chemical manifests itself as a bending...... Young’s modulus instead of the conventional materials Si and Si3N4. Here, a novel read-out method is presented where optical waveguides are used to integrate the light into the cantilever. It is an all-polymer device where both the cantilever and the waveguides are fabricated in the negative resist SU-8....... Waveguides are structured on either side of the cantilever that is free-hanging in a microfluidic channel. Light is guided into the system and is either transmitted through the cantilever or reflected off the cantilever front-end, depending on the mode of operation. This work shows that waveguides, only...
Energy Technology Data Exchange (ETDEWEB)
Budden, B.S., E-mail: bbudden@lanl.gov [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stonehill, L.C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D.D.S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kamto, J. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Electrical & Computer Engineering Department, Praire View A& M University, Prairie View, TX 77446 (United States)
2015-09-21
A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.
Prototype readout electronics for the upgraded ALICE Inner Tracking System
Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vanat, T.
2017-01-01
The ALICE Collaboration is preparing a major upgrade to the experimental apparatus. A key element of the upgrade is the construction of a new silicon-based Inner Tracking System containing 12 Gpixels in an area of 10 m2. Its readout system consists of 192 readout units that control the pixel sensors and the power units, and deliver the sensor data to the counting room. A prototype readout board has been designed to test: the interface between the sensor modules and the readout electronics, the signal integrity and reliability of data transfer, the interface to the ALICE DAQ and trigger, and the susceptibility of the system to the expected radiation level.
LHCb: A new Readout Control system for the LHCb Upgrade
Alessio, F
2012-01-01
The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and the first hardware implementation of a new Readout Control system for the LHCb upgrade. The system is based on FPGAs and bi-directional links for the control of the entire readout architecture. First results on the validation of the system are also given.
Dynamics of Genuine Three-Qubit Entanglement in Ising Spin Systems
Institute of Scientific and Technical Information of China (English)
PANG Chao-Yang; LI Yu-Liang
2006-01-01
We investigate the dynamics of genuine three-qubit entanglement in the Ising model of three spins. A scheme is presented for generating the genuine three-qubit entanglement by the nearest-neighbour couplings. The effect of magnetic fields on the dynamics of genuine three-qubit entanglement is also discussed.
Improving Quantum Gate Fidelities by Using a Qubit to Measure Microwave Pulse Distortions
Gustavsson, Simon; Zwier, Olger; Bylander, Jonas; Yan, Fei; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P.; Oliver, William D.
2013-01-01
We present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative pi pulses, we amplify the qubit evolution due to microwave pulse distortions, which causes the qubit state to rotate around an
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Efficient controlled-phase gate for single-spin qubits in quantum dots
Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.
2011-01-01
Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems
Tao, Yin; Chong, Zhang; Huanming, Wu; Qisong, Wu; Haigang, Yang
2013-11-01
This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35 μm CMOS process and is 2.1 × 2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF / √Hz capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/°C after optimized compensation.
Maintaining Qubit Coherence in the face of Increased Superconducting Circuit Complexity
Hover, David; Weber, Steve; Rosenberg, Danna; Samach, Gabriel; Sears, Adam; Birenbaum, Jeffrey; Woods, Wayne; Yoder, Jonilyn; Racz, Livia; Kerman, Jamie; Oliver, William D.
Maintaining qubit coherence in the face of increased superconducting circuit complexity is a challenge when designing an extensible quantum computing architecture. We consider this challenge in the context of inductively coupled, long-lived, capacitively-shunted flux qubits. Specifically, we discuss our efforts to mitigate the effects of radiation loss, parasitic chip-modes, cross-coupling, and Purcell decay. Our approach employs numerical modeling of the ideal Hamiltonian and electromagnetic analysis of the circuit, both of which are independently shown to be consistent with experimental results. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the
Optimal Qubit Control Using Single-Flux Quantum Pulses
Liebermann, Per J.; Wilhelm, Frank K.
2016-08-01
Single-flux quantum pulses are a natural candidate for on-chip control of superconducting qubits. We show that they can drive high-fidelity single-qubit rotations—even in leaky transmon qubits—if the pulse sequence is suitably optimized. We achieve this objective by showing that, for these restricted all-digital pulses, genetic algorithms can be made to converge to arbitrarily low error, verified up to a reduction in gate error by 2 orders of magnitude compared to an evenly spaced pulse train. Timing jitter of the pulses is taken into account, exploring the robustness of our optimized sequence. This approach takes us one step further towards on-chip qubit controls.
Resilience of hybrid optical angular momentum qubits to turbulence.
Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio
2015-02-12
Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.
Maximally entangled mixed states for qubit-qutrit systems
Mendonça, Paulo E. M. F.; Marchiolli, Marcelo A.; Hedemann, Samuel R.
2017-02-01
We consider the problems of maximizing the entanglement negativity of X-form qubit-qutrit density matrices with (i) a fixed spectrum and (ii) a fixed purity. In the first case, the problem is solved in full generality whereas, in the latter, partial solutions are obtained by imposing extra spectral constraints such as rank deficiency and degeneracy, which enable a semidefinite programming treatment for the optimization problem at hand. Despite the technically motivated assumptions, we provide strong numerical evidence that threefold degenerate X states of purity P reach the highest entanglement negativity accessible to arbitrary qubit-qutrit density matrices of the same purity, hence characterizing a sparse family of likely qubit-qutrit maximally entangled mixed states.
Virtual qubits, virtual temperatures, and the foundations of thermodynamics
Brunner, Nicolas; Popescu, Sandu; Skrzypczyk, Paul
2011-01-01
We argue that thermal machines can be understood from the perspective of `virtual qubits' at `virtual temperatures': The relevant way to view the two heat baths which drive a thermal machine is as a composite system. Virtual qubits are two-level subsystems of this composite, and their virtual temperatures can take on any value, positive or negative. Thermal machines act upon an external system by placing it in thermal contact with a well-selected range of virtual qubits and temperatures. We demonstrate these claims by studying the smallest thermal machines. We show further that this perspective provides a powerful way to view thermodynamics, by analysing a number of phenomena. This includes approaching Carnot efficiency (where we find that all machines do so essentially by becoming equivalent to the smallest thermal machines), entropy production in irreversible machines, and a way to view work in terms of negative temperature and population inversion. Moreover we introduce the idea of "genuine" thermal machin...
Superradiance with an ensemble of superconducting flux qubits
Lambert, Neill; Matsuzaki, Yuichiro; Kakuyanagi, Kosuke; Ishida, Natsuko; Saito, Shiro; Nori, Franco
2016-12-01
Superconducting flux qubits are a promising candidate for realizing quantum information processing and quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune the "atoms" internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the inhomogeneous broadening of a large ensemble of flux qubits by tuning only the external flux. In addition, as an example of many-body physics in such an ensemble, we show how to observe superradiance, and its quadratic scaling with ensemble size, using a tailored microwave control pulse that takes advantage of the inhomogeneous broadening itself to excite only a subensemble of the qubits. Our scheme opens up an approach to using superconducting circuits to explore the properties of quantum many-body systems.
Complex chaos in the conditional dynamics of qubits
Kiss, T; Jex, I; Vymetal, S
2005-01-01
We analyse the consequences of measurement induced non-linearity for the dynamical behaviour of qubits. We present a one-qubit scheme where the equation governing the time evolution is a complex nonlinear map with one complex parameter. The map is a rational function of degree two leading to chaotic dynamics of the quantum state, in contrast to the usual notion of quantum chaos. The set of initial values with irregular behavior, the Julia set, has a nontrivial structure depending crucially on the parameter of the map. The family of maps labeled by the parameter can be characterized by the attractive fixed points. Each map with a fixed parameter can have at most two attractive cycles. This type of instability is also present in purification protocols based on conditional non-linear transformations of qubits.
Entangled Bloch Spheres: Bloch Matrix And Two Qubit State Space
Gamel, Omar
2016-01-01
We represent a two qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parameterize and visualize the two qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single ...
Recognizing Small-Circuit Structure in Two-Qubit Operators
Shende, V V; Markov, I L; Shende, Vivek V.; Bullock, Stephen S.; Markov, Igor L.
2003-01-01
This work describes numerical tests which determine whether a two-qubit quantum computation has an atypically simple quantum circuit. Specifically, we describe forumulae, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-not gates with all other gates being local unitary. Circuit diagrams are provided in each case. We expect significant impact in physical implementations where controlled-not's are more difficult than one-qubit computations. Our results can be contrasted with those by Zhang et al., Bullock and Markov, Vidal and Dawson, and Shende et al. In these works, small quantum circuits are achieved for arbitrary two-qubit operators, and the latter two prove three controlled-not's suffice. However, unitary operators with the sort of structure described above may not be detected. Our work provides results similar to those by Song and Klappenecker but for a wider range of operators.
Remote two-qubit state creation and its robustness
Stolze, J.; Zenchuk, A. I.
2016-08-01
We consider the problem of remote two-qubit state creation using the two-qubit excitation pure initial state of the sender. The communication line is based on the optimized boundary-controlled chain with two pairs of properly adjusted coupling constants. We show that the communication line can be characterized by a set of parameters independent of the initial state of the sender. These parameters are permanent attributes of a communication line and can be either calculated theoretically or measured in experiment. In particular, they determine the creatable subregion of the receiver's state space. The creation of a particular state within the creatable region is achieved by a proper choice of the independent parameters of the sender's initial state (control parameters) and reduces to the solvability of a certain system of algebraic equations. The creation of the two-qubit Werner state is considered as an example. We also study the effects of imperfections of the chain on the state creation.
Graph Theory and Qubit Information Systems of Extremal Black Branes
Belhaj, Adil; Segui, Antonio
2014-01-01
Using graph theory based on Adinkras, we consider once again the study of extremal black branes in the framework of quantum information. More precisely, we propose a one to one correspondence between qubit systems, Adinkras and certain extremal black branes obtained from type IIA superstring compactified on T^n. We accordingly interpret the real Hodge diagram of T^n as the geometry of a class of Adinkras formed by 2^n bosonic nodes representing n qubits. In this graphic representation, each node encodes information on the qubit quantum states and the charges of the extremal black branes built on T^n. The correspondence is generalized to n superqubits associated with odd and even geometries on the real supermanifold T^{n|n}. Using a combinatorial computation, general expressions describing the number of the bosonic and the fermionic states are obtained.
A scanning transmon qubit for strong coupling circuit quantum electrodynamics.
Shanks, W E; Underwood, D L; Houck, A A
2013-01-01
Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.
Detection of qubit-oscillator entanglement in nanoelectromechanical systems.
Schmidt, Thomas L; Børkje, Kjetil; Bruder, Christoph; Trauzettel, Björn
2010-04-30
Experiments over the past years have demonstrated that it is possible to bring nanomechanical resonators and superconducting qubits close to the quantum regime and to measure their properties with an accuracy close to the Heisenberg uncertainty limit. Therefore, it is just a question of time before we will routinely see true quantum effects in nanomechanical systems. One of the hallmarks of quantum mechanics is the existence of entangled states. We propose a realistic scenario making it possible to detect entanglement of a mechanical resonator and a qubit in a nanoelectromechanical setup. The detection scheme involves only standard current and noise measurements of an atomic point contact coupled to an oscillator and a qubit. This setup could allow for the first observation of entanglement between a continuous and a discrete quantum system in the solid state.
Coherent feedback control of a single qubit in diamond
Hirose, Masashi; Cappellaro, Paola
2016-04-01
Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Evolution of the dual-readout calorimeter
Indian Academy of Sciences (India)
Aldo Penzo; on behalf of 4th Concept and DREAM
2007-12-01
Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of fluctuations in this fraction on the overall energy resolution. In this respect, 4th is orthogonal to the other three concepts, which rely on particle flow analysis (PFA). The DREAM test-beam results hold promises for excellent performances, coupled with relatively simple construction and moderate costs, making such a solution an interesting alternative to the PFA paradigm. The next foreseen steps are to extend the dual-readout principle to homogeneous calorimeters (with the potential of achieving even better performances) and to tackle another source of fluctuation in hadronic showers, originating from binding energy losses in nuclear break-up (measuring neutrons of few MeV energy).
Semiconductor detectors with proximity signal readout
Energy Technology Data Exchange (ETDEWEB)
Asztalos, Stephen J. [XIA, LLC, Hayward, CA (United States)
2014-01-30
Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.
Fiber and crystals dual readout calorimeters
Cascella, Michele; Franchino, Silvia; Lee, Sehwook
2016-11-01
The RD52 (DREAM) collaboration is performing R&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO4 crystals, as well as BGO and BSO, with the aim of realizing a crystal based dual readout detector. We will describe our results, focusing on the more promising properties of homogeneous media for the technique. Guidelines for additional developments on crystals will be also given. Finally we discuss the construction techniques that we have used to assemble our prototypes and give an overview of the ones that could be industrialized for the construction of a full hermetic calorimeter.
Entanglement Equivalence of $N$-qubit Symmetric States
Mathonet, P; Godefroid, M; Lamata, L; Solano, E; Bastin, T
2009-01-01
We study the interconversion of multipartite symmetric $N$-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or GHZ entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric $N$-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.
Three-qubit topological phase on entangled photon pairs
Johansson, Markus; Singh, Kuldip; Sjöqvist, Erik
2013-01-01
We propose an experiment to observe the topological phases associated with cyclic evolutions, generated by local SU(2) operations, on three-qubit entangled states prepared on different degrees of freedom of entangled photon pairs. The topological phases reveal the nontrivial topological structure of the local SU(2) orbits. We describe how to prepare states showing different topological phases, and discuss their relation to entanglement. In particular, the presence of a $\\pi/2$ phase shift is a signature of genuine tripartite entanglement in the sense that it does not exist for two-qubit systems.
Quantum acousto-optic transducer for superconducting qubits
Shumeiko, V S
2015-01-01
We propose theory for reversible quantum transducer connecting superconducting qubits and optical photons using acoustic waves in piezoelectrics. The proposed device consists of integrated acousto-optic resonator that utilizes stimulated Brillouin scattering for phonon-photon conversion, and piezoelectric e?ect for coupling of phonons to qubits. We evaluate the phonon-photon coupling rate, and show that the required power of optical pump as well as the other device parameters providing full and faithful quantum conversion are feasible for implementation with the state of the art integrated acousto-optics.
Probing quantum coherence in arrays of superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Liguori, Alexandra; Rivas, Angel; Huelga, Susana; Plenio, Martin [Institut fuer Theoretische Physik, Universitaet Ulm, D-89069 Ulm (Germany)
2011-07-01
In the mid-80's the so-called phenomenon of dynamic localization was shown for a charged particle moving under the influence of a sinusoidally-varying time-dependent electric field, and more recently similar resonances in the conduction were found to be present also in ion channels. In this work we study the conditions under which this dynamic localization can be found in arrays of superconducting qubits. This phenomenon can serve as a signature of quantum coherence in such systems and moreover could be checked experimentally by various groups constructing arrays of superconducting flux qubits.
Decoherence of Josephson charge qubit in non-Markovian environment
Energy Technology Data Exchange (ETDEWEB)
Qiu, Qing-Qian; Zhou, Xing-Fei; Liang, Xian-Ting, E-mail: liangxianting@nbu.edu.cn
2016-05-15
In this paper we investigate the decoherence of Josephson charge qubit (JCQ) by using a time-nonlocal (TNL) dynamical method. Three kinds of environmental models, described with Ohmic, super-Ohmic, and sub-Ohmic spectral density functions are considered. It is shown that the TNL method can effectively include the non-Markovian effects in the dynamical solutions. In particular, it is shown that the sub-Ohmic environment has longer correlation time than the Ohmic and super-Ohmic ones. And the Markovian and non-Markovian dynamics are obviously different for the qubit in sub-Ohmic environment.
Measurement of geometric dephasing using a superconducting qubit
Berger, S.; Pechal, M.; Kurpiers, P.; Abdumalikov, A. A.; Eichler, C.; Mlynek, J. A.; Shnirman, A.; Gefen, Yuval; Wallraff, A.; Filipp, S.
2015-01-01
A quantum system interacting with its environment is subject to dephasing, which ultimately destroys the information it holds. Here we use a superconducting qubit to experimentally show that this dephasing has both dynamic and geometric origins. It is found that geometric dephasing, which is present even in the adiabatic limit and when no geometric phase is acquired, can either reduce or restore coherence depending on the orientation of the path the qubit traces out in its projective Hilbert space. It accompanies the evolution of any system in Hilbert space subjected to noise. PMID:26515812
Anisotropic Landau-Lifshitz-Gilbert models of dissipation in qubits
Crowley, Philip J. D.; Green, A. G.
2016-12-01
We derive a microscopic model for dissipative dynamics in a system of mutually interacting qubits coupled to a thermal bath that generalizes the dissipative model of Landau-Lifshitz-Gilbert to the case of anisotropic bath couplings. We show that the dissipation acts to bias the quantum trajectories towards a reduced phase space. This model applies to a system of superconducting flux qubits whose coupling to the environment is necessarily anisotropic. We study the model in the context of the D-Wave computing device and show that the form of environmental coupling in this case produces dynamics that are closely related to several models proposed on phenomenological grounds.
Scattering of two photons from two distant qubits: exact solution
Energy Technology Data Exchange (ETDEWEB)
Laakso, Matti; Pletyukhov, Mikhail [Institute for Theory of Statistical Physics, RWTH Aachen, 52056 Aachen (Germany)
2015-07-01
We consider the inelastic scattering of two photons from two qubits separated by an arbitrary distance and coupled to a one-dimensional transmission line. We present an exact, analytical solution to the problem, and use it to explore a particular configuration of qubits which is transparent to single-photon scattering, thus highlighting non-Markovian effects of inelastic two-photon scattering: Strong two-photon interference and momentum dependent photon (anti)bunching. This latter effect can be seen as an inelastic generalization of the Hong-Ou-Mandel effect.
Electron spin resonance detected by a superconducting qubit
Kubo, Y; Grezes, C; Umeda, T; Isoya, J; Sumiya, H; Yamamoto, T; Abe, H; Onoda, S; Ohshima, T; Jacques, V; Dréau, A; Roch, J -F; Auffeves, A; Vion, D; Esteve, D; Bertet, P
2012-01-01
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of \\thicksim15\\,\\mu_{B} out of an ensemble of 10^{11} spins.
Wu, Jin-Lei; Song, Chong; Xu, Jing; Yu, Lin; Ji, Xin; Zhang, Shou
2016-09-01
An efficient scheme is proposed for generating n-qubit Greenberger-Horne-Zeilinger states of n superconducting qubits separated by (n-1) coplanar waveguide resonators capacitively via adiabatic passage with the help of quantum Zeno dynamics in one step. In the scheme, it is not necessary to precisely control the time of the whole operation and the Rabi frequencies of classical fields because of the introduction of adiabatic passage. The numerical simulations for three-qubit Greenberger-Horne-Zeilinger state show that the scheme is insensitive to the dissipation of the resonators and the energy relaxation of the superconducting qubits. The three-qubit Greenberger-Horne-Zeilinger state can be deterministically generated with comparatively high fidelity in the current experimental conditions, though the scheme is somewhat sensitive to the dephasing of superconducting qubits.
Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy
Kim, Jeong San
2016-10-01
We provide generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Using quantum Tsallis entropy of order q, we first provide a generalized monogamy inequality of multi-qubit entanglement for q = 2 or 3. This generalization encapsulates the multi-qubit CKW-type inequality as a special case. We further provide a generalized polygamy inequality of multi-qubit entanglement in terms of Tsallis- q entropy for 1 ≤ q ≤ 2 or 3 ≤ q ≤ 4, which also contains the multi-qubit polygamy inequality as a special case.
Entanglement between qubits induced by a common environment with a gap
Oh, S; Oh, Sangchul; Kim, Jaewan
2006-01-01
We study a system of two qubits interacting with a common environment, described by a two-spin boson model. We demonstrate two competing roles of the environment: inducing entanglement between the two qubits and making them decoherent. For the environment of a single harmonic oscillator, if its frequency is commensurate with the induced two-qubit coupling strength, the two qubits could be maximally entangled and the environment could be separable. In the case of the environment of a bosonic bath, the gap of its spectral density function is essential to generate entanglement between two qubits at equilibrium and for it to be used as a quantum data bus.
Zhang, Jingfu; Laflamme, Raymond; Suter, Dieter
2012-09-07
Large-scale universal quantum computing requires the implementation of quantum error correction (QEC). While the implementation of QEC has already been demonstrated for quantum memories, reliable quantum computing requires also the application of nontrivial logical gate operations to the encoded qubits. Here, we present examples of such operations by implementing, in addition to the identity operation, the NOT and the Hadamard gate to a logical qubit encoded in a five qubit system that allows correction of arbitrary single-qubit errors. We perform quantum process tomography of the encoded gate operations, demonstrate the successful correction of all possible single-qubit errors, and measure the fidelity of the encoded logical gate operations.
A two-qubit photonic quantum processor and its application to solving systems of linear equations.
Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip
2014-08-19
Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations.
The two-qubit amplitude damping channel: Characterization using quantum stabilizer codes
Omkar, S.; Srikanth, R.; Banerjee, Subhashish; Shaji, Anil
2016-10-01
A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.
Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions
Balaneskovic, Nenad; Mendler, Marc
2016-09-01
We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.
Economic scheme for remote preparation of an arbitrary five-qubit Brown-type state
Indian Academy of Sciences (India)
Chen Hua-Bao; Fu Hau; Li Xiao-Wei; Ma Peng-Cheng; Zhan You-Bang
2016-04-01
A scheme for remotely preparing an arbitrary five-qubit Brown state by using three three-qubit GHZ states as the quantum channel is proposed. It is shown that, after the sender performs two different three-qubit projective measurements, the receiver should introduce two auxiliary qubits and employ suitable C-NOT gates, Toffoli gate and unitary operations on his qubits, theoriginal state can be recovered with unit probability. Compared with the previous scheme, the advantage of the present scheme is that the entanglement resource can be reduced.
Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution
Energy Technology Data Exchange (ETDEWEB)
Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)
2011-02-01
The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.
Read-out electronics for DC squid magnetic measurements
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.
A reconfigurable image tube using an external electronic image readout
Lapington, J. S.; Howorth, J. R.; Milnes, J. S.
2005-08-01
We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.
Institute of Scientific and Technical Information of China (English)
LI Wei-Jun; LI Shang-Bin; XU Jing-Bo
2004-01-01
@@ We study the system of a single qubit couples to a single mode thermal field according to a multi-photon JaynesCummings-type interaction with phase decoherence. Both the time evolving entanglement and the stationary state entanglement are calculated by adopting the log-negativity as a measure. It is found that the multi-photon process can enhance the stationary state entanglement of this system and can enlarge the range of the parameter△/g and the mean photon number of initial thermal field in which the stationary state is distillable.
Scalable one-way quantum computer using on-chip resonator qubits
Wu, Chun-Wang; Li, Hong-Yi; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu
2011-01-01
We propose a scalable and robust architecture for one-way quantum computation using coupled networks of superconducting transmission line resonators. In our protocol, quantum information is encoded into the long-lived photon states of the resonators, which have a much longer coherence time than the usual superconducting qubits. Each resonator contains a charge qubit used for the state initialization and local projective measurement of the photonic qubit. Any pair of neighboring photonic qubits are coupled via a mediator charge qubit, and large photonic cluster states can be created by applying Stark-shifted Rabi pulses to these mediator qubits. The distinct advantage of our architecture is that it combines both the excellent scalability of the solid-state systems and the long coherence time of the photonic qubits. Furthermore, this architecture is very robust against the parameter variations.
Rotta, Davide; De Michielis, Marco; Ferraro, Elena; Fanciulli, Marco; Prati, Enrico
2016-06-01
Scalability from single-qubit operations to multi-qubit circuits for quantum information processing requires architecture-specific implementations. Semiconductor hybrid qubit architecture is a suitable candidate to realize large-scale quantum information processing, as it combines a universal set of logic gates with fast and all-electrical manipulation of qubits. We propose an implementation of hybrid qubits, based on Si metal-oxide-semiconductor (MOS) quantum dots, compatible with the CMOS industrial technological standards. We discuss the realization of multi-qubit circuits capable of fault-tolerant computation and quantum error correction, by evaluating the time and space resources needed for their implementation. As a result, the maximum density of quantum information is extracted from a circuit including eight logical qubits encoded by the [[7, 1, 3
Experimental investigation of a four-qubit linear-optical quantum logic circuit
Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.
2016-09-01
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.
Charge noise and dynamical decoupling in singlet-triplet spin qubits
Ramon, Guy
2013-03-01
We consider theoretically the effects of an ensemble of fluctuating charges on the coherence of a singlet-triplet qubit in gate-defined double quantum dots. We predict a crossover behavior of the system between non-Gaussian noise and 1/f spectrum, going from mesoscopic single-qubit devices to multi-qubit larger devices. With increasing size of the fluctuator ensemble we find a narrowed distribution of qubit dephasing times that result from random sets of fluctuators. At the same time the noise becomes Markovian with a characteristic Gaussian spectrum and it is dominated by a large collection of weakly-coupled fluctuators. The efficiency of dynamical decoupling pulse sequences in restoring coherence is examined as a function of the qubit's working position and the fluctuator ensemble size. Analytical solutions for qubit dephasing in the limits of weak and strong qubit-fluctuator coupling shed light on the distinct dynamics at different parameter regimes. Supported by Research Corporation
Coherence preservation of a qubit inflicted by classical non-Gaussian charge noise
Ramon, Guy
2015-03-01
The efficiency of decoupling pulse sequences in removing noise due to several charge fluctuators is studied. Both numerical simulations and analytics are used to explore the qubit's dephasing and dissipative dynamics. Special emphasis is placed on qubit dynamics at the optimal point, where it is found that fluctuators that are strongly coupled to the qubit induce a non-Gaussian noise. Exact analytical results for this limit reveal a nontrivial scaling of the noise with the number of fluctuators. Furthermore, a crossover between distinct qubit dynamics is demonstrated by increasing the number of control pulses and/or varying the qubit's working position. While we consider as a test case exchange-coupled spin qubits in gate-defined GaAs double dots, our results are relevant to other systems such as superconducting Josephson qubits, and Si/SiGe quantum dots. Supported by NSF Grant DMR-1207298.
Bonderson, Parsa
2010-01-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.
Bonderson, Parsa; Lutchyn, Roman M.
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.
Entanglement Preserving in Quantum Copying of Three－Qubit Entangled State
Institute of Scientific and Technical Information of China (English)
TONGZhao－Yang; KUANGLe－Man
2002-01-01
We study the degree to which quantum entanglement survives when a three-qubit entangled state is copied by using local and non-local processes,respectively,and investigate iterating quantum copying for the three-qubit system.There may exist inter-three-qubit entanglement and inter-two-qubit entanglement for the three-qubit system.We show that both local and non-local copying processes degrade quantum entanglement in the three-particle system due to a residual correlation between the copied output and the copying machine.we also show that the inter-two-qubit entanglement is preserved better than the inter-three-qubit entanglement in the local cloning process.We find that non-local cloning is much more efficient than the local copying for broadcasting entanglement,and output state via non-local cloning exhiits the fidelity better than local cloning.
A novel readout system for wireless passive pressure sensors
Zhang, Huixin; Hong, Yingping; Ge, Binger; Liang, Ting; Xiong, Jijun
2014-03-01
This paper presents a novel readout system for wireless passive pressure sensors based on the inductively coupled inductor and cavity (LC) resonant circuits. The proposed system consists of a reader antenna inductively coupled to the sensor circuit, a readout circuit, and a personal computer (PC) post processing unit. The readout circuit generates a voltage signal representing the sensor's capacitance. The frequency of the reader antenna driving signal is a constant, which is equal to the sensor's resonant frequency at zero pressure. Based on mechanical and electrical modeling, the pressure sensor design based on the high temperature co-fired ceramic (HTCC) technology is conducted and discussed. The functionality and accuracy of the readout system are tested with a voltage-capacitance measurement system and demonstrated in a realistic pressure measurement environment, so that the overall performance and the feasibility of the readout system are proved.
Robust control of decoherence in realistic one-qubit quantum gates
Protopopescu, V; D'Helon, C; Schmulen, J
2003-01-01
We present an open-loop (bang-bang) scheme to control decoherence in a generic one-qubit quantum gate and implement it in a realistic simulation. The system is consistently described within the spin-boson model, with interactions accounting for both adiabatic and thermal decoherence. The external control is included from the beginning in the Hamiltonian as an independent interaction term. After tracing out the environment modes, reduced equations are obtained for the two-level system in which the effects of both decoherence and external control appear explicitly. The controls are determined exactly from the condition to eliminate decoherence, i.e. to restore unitarity. Numerical simulations show excellent performance and robustness of the proposed control scheme.
Optimal quantum cloning of orbital angular momentum photon qubits via Hong-Ou-Mandel coalescence
Nagali, Eleonora; Sciarrino, Fabio; De Martini, Francesco; Marrucci, Lorenzo; Piccirillo, Bruno; Karimi, Ebrahim; Santamato, Enrico; 10.1038/nphoton.2009.214
2010-01-01
The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 \\rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Nan; SHAO Bin; ZOU Jian
2005-01-01
@@ Taking the intrinsic decoherence effect into account, we investigate the entanglement dynamics of a superconducting charge qubit in a single-mode optical cavity. Concurrence, as the measure of entanglement of the coupled field-junction system, is calculated. In comparison, we also consider the entanglement of the system by using the entanglement parameter based on the ratio between mutual entropy and partial Von-Neumann entropy to investigate how the intrinsic decoherence affects the entanglement of the coupling system. Our results show that the evolution of the entanglement parameter has the behaviour similar to the concurrence and it is thus the well measure of entanglement for the mixed state in such a coupling system.
Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence
Institute of Scientific and Technical Information of China (English)
YAN Xue-Qun; SHAO Bin; ZOU Jian
2007-01-01
We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.
Bidirectional Mapping between a Biphoton Polarization State and a Single-Photon Two-Qubit State
Institute of Scientific and Technical Information of China (English)
LIN Qing
2010-01-01
@@ How to manipulate(operate or measure)single photons efficiently and simply is the basic problem in optical quantum information processing.We first present an efficient scheme to transform a biphoton polarization state to a corresponding single-photon state encoded by its polarization and spatial modes.This single-photon state carries both the information of the controlled and target photons.It will make the realization of bipartite positive-operator-valued measurements efficiently and simply.Moreover,the inverse transformation from the single-photon state back to the corresponding biphoton polarization state is also proposed.Using both the transformations,the realization of the arbitrary two-qubit unitary operation is simple with an M-Z interferometer.All the schemes are feasible with the current experimental technology.
Anomalous currents on closed surfaces: extended proximity, partial quantization and qubits.
Selem, Alexander
2013-01-30
Motivated by the surfaces of topological insulators, the Dirac anomaly's discontinuous dependence on the sign of the mass, m/|m|, is investigated on closed topologies when the mass terms are weak or only partially cover the surface. It is found that, unlike the massive Dirac theory on an infinite plane, there is a smoothly decreasing current when the mass region is not infinite; also, a massive finite region fails to exhibit a Hall current edge-exerting an extended proximity effect, which can, however, be uniformly small-and oppositely orientated Hall phases are fully quantized while accompanied by diffuse chiral modes. Examples are computed using Dirac energy eigenstates on a flat torus (genus one topology) and a closed cap cylinder (genus zero topology) for various mass-term geometries. Finally, from the resulting properties of the surface spectra, a potential application for a flux-charge qubit is presented.
Universal Quantum Cloning Machines for Two Identical Mixed Qubits
Institute of Scientific and Technical Information of China (English)
YANG Shuai; ZHAO Mei-Sheng; LIU Nai-Le; CHEN Zeng-Bing
2007-01-01
We present a series of universal quantum cloning machines for two identical mixed qubits. Every machine is optimal in the sense that it achieves the optimal bound of the single copy shrinking factor. Unlike in the case of pure state cloning, the single copy shrinking factor does not uniquely determine the cloning map in the case of mixed state cloning.
Qubit dynamics in a q-deformed oscillators environment
L'Innocente, S; Mancini, S
2009-01-01
We study the dynamics of one and two qubits plunged in a q-deformed oscillators environment. Specifically we evaluate the decay of quantum coherence and entanglement in time when passing from bosonic to fermionic environments. Slowing down of decoherence in the fermionic case is found. The effect only manifests at finite temperature.
General Scheme for the Construction of a Protected Qubit Subspace
DEFF Research Database (Denmark)
Aharon, N.; Drewsen, M.; Retzker, A.
2013-01-01
We present a new robust decoupling scheme suitable for half integer angular momentum states. The scheme is based on continuous dynamical decoupling techniques by which we create a protected qubit subspace. Our scheme predicts a coherence time of ~1 second, as compared to typically a few...
Quantum behavior of a SQUID qubit manipulated with fast pulses
Energy Technology Data Exchange (ETDEWEB)
Spilla, Samuele; Messina, Antonino; Napoli, Anna [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, 90123 Palermo (Italy); Castellano, Maria Gabriella; Chiarello, Fabio [Istituto Fotonica e Nanotecnologie - CNR, Roma (Italy); Migliore, Rosanna [Institute of Biophysics, National Research Council, via Ugo La Malfa 153, 90146 Palermo (Italy)
2013-07-01
A SQUID qubit manipulated with fast variation of the energy potential is analyzed. Varying the potential shape from a single to a double-well configuration, quantum behaviors are brought into light and discussed. We show that the presence of quantum coherences in the initial state of the system plays a central role in the appearance of these quantum effects.
Deep-well ultrafast manipulation of a SQUID flux qubit
Energy Technology Data Exchange (ETDEWEB)
Castellano, M G; Chiarello, F; Mattioli, F; Torrioli, G [Istituto Fotonica e Nanotecnologie-CNR, Roma (Italy); Carelli, P [Dip. Ingegneria Elettrica e dell' Informazione, Universita dell' Aquila, L' Aquila (Italy); Cosmelli, C, E-mail: mgcastellano@ifn.cnr.i [Dip. Fisica, Sapienza Universita di Roma (Italy)
2010-04-15
Superconducting devices based on the Josephson effect are effectively used for the implementation of qubits and quantum gates. The manipulation of superconducting qubits is generally performed by using microwave pulses with frequencies from 5 to 15 GHz, obtaining a typical operating frequency from 100 MHz to 1 GHz. A manipulation based on simple pulses in the absence of microwaves is also possible. In our system, a magnetic flux pulse modifies the potential of a double SQUID qubit from a symmetric double well to a single deep-well condition. By using this scheme with a Nb/AlO{sub x}/Nb system, we obtained coherent oscillations with sub-nanosecond period (tunable from 50 to 200 ps), very fast with respect to other manipulating procedures, and with a coherence time up to 10 ns, of the order of that obtained with similar devices and technologies but using microwave manipulation. We introduce ultrafast manipulation, presenting experimental results, new issues related to this approach (such as the use of a compensation procedure for canceling the effect of 'slow' fluctuations) and open perspectives, such as the possible use of RSFQ logic for qubit control.
The Quantum Socket: Wiring for Superconducting Qubits - Part 2
Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.
Non-Markovian time evolution of an accelerated qubit
Moustos, Dimitris
2016-01-01
We present a new method for evaluating the response of a moving qubit detector interacting with a scalar field in Minkowski spacetime. We treat the detector as an open quantum system, but we do not invoke the Markov approximation. The evolution equations for the qubit density matrix are valid at all times, for all qubit trajectories and they incorporate non-Markovian effects. We analyze in detail the case of uniform acceleration, providing a detailed characterization of all regimes where non-Markovian effects are significant. We argue that the most stable characterization of acceleration temperature refers to the late time behavior of the detector, because interaction with the field vacuum brings the qubit to a thermal state at the Unruh temperature. In contrast, the early-time transition rate, that is invoked in most discussions of acceleration temperature, does not exhibit a thermal behavior when non-Markovian effects are taken into account. Finally, we note that the non-Markovian evolution derived here als...
Optimal copying of entangled two-qubit states
Novotny, J; Jex, I
2004-01-01
We investigate the problem of copying pure two-qubit states of a given degree of entanglement in an optimal way. Completely positive covariant quantum operations are constructed which maximize the fidelity of the output states with respect to two separable copies. These optimal copying processes hint at the intricate relationship between fundamental laws of quantum theory and entanglement.
Coherent Operations and Screening in Multielectron Spin Qubits
DEFF Research Database (Denmark)
Higginbotham, Andrew Patrick; Kuemmeth, Ferdinand; Hanson, M.P.
2014-01-01
Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (>1 GHz) exchange oscillations with a quality factor Q ∼ 15 are found for the multielectron......-independent dephasing is needed to obtain quantitative agreement across a broad parameter range....
Barium Qubit State Detection and Ba Ion-Photon Entanglement
Sosnova, Ksenia; Inlek, Ismail Volkan; Crocker, Clayton; Lichtman, Martin; Monroe, Christopher
2016-05-01
A modular ion-trap network is a promising framework for scalable quantum-computational devices. In this architecture, different ion-trap modules are connected via photonic buses while within one module ions interact locally via phonons. To eliminate cross-talk between photonic-link qubits and memory qubits, we use different atomic species for quantum information storage (171 Yb+) and intermodular communication (138 Ba+). Conventional deterministic Zeeman-qubit state detection schemes require additional stabilized narrow-linewidth lasers. Instead, we perform fast probabilistic state detection utilizing efficient detectors and high-NA lenses to detect emitted photons from circularly polarized 493 nm laser excitation. Our method is not susceptible to intensity and frequency noise, and we show single-shot detection efficiency of ~ 2%, meaning that we can discriminate between the two qubits states with 99% confidence after as little as 50 ms of averaging. Using this measurement technique, we report entanglement between a single 138 Ba+ ion and its emitted photon with 86% fidelity. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness program, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.
Tuning the Gap of a Superconducting Flux Qubit
Paauw, F.G.; Fedorov, A.; Harmans, C.J.P.M.; Mooij, J.E.
2009-01-01
We experimentally demonstrate the in situ tunability of the minimum energy splitting (gap) of a superconducting flux qubit by means of an additional flux loop. Pulses applied via a local control line allow us to tune the gap over a range of several GHz on a nanosecond time scale. The strong flux sen
Full reconstruction of a 14-qubit state within four hours
Hou, Zhibo; Zhong, Han-Sen; Tian, Ye; Dong, Daoyi; Qi, Bo; Li, Li; Wang, Yuanlong; Nori, Franco; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can
2016-08-01
Full quantum state tomography (FQST) plays a unique role in the estimation of the state of a quantum system without a priori knowledge or assumptions. Unfortunately, since FQST requires informationally (over)complete measurements, both the number of measurement bases and the computational complexity of data processing suffer an exponential growth with the size of the quantum system. A 14-qubit entangled state has already been experimentally prepared in an ion trap, and the data processing capability for FQST of a 14-qubit state seems to be far away from practical applications. In this paper, the computational capability of FQST is pushed forward to reconstruct a 14-qubit state with a run time of only 3.35 hours using the linear regression estimation (LRE) algorithm, even when informationally overcomplete Pauli measurements are employed. The computational complexity of the LRE algorithm is first reduced from ∼1019 to ∼1015 for a 14-qubit state, by dropping all the zero elements, and its computational efficiency is further sped up by fully exploiting the parallelism of the LRE algorithm with parallel Graphic Processing Unit (GPU) programming. Our result demonstrates the effectiveness of using parallel computation to speed up the postprocessing for FQST, and can play an important role in quantum information technologies with large quantum systems.
Controlling electron quantum dot qubits by spin-orbit interactions
Energy Technology Data Exchange (ETDEWEB)
Stano, P.
2007-01-15
Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)
Towards third generation pixel readout chips
Energy Technology Data Exchange (ETDEWEB)
Garcia-Sciveres, M., E-mail: mgarcia-sciveres@lbl.gov; Mekkaoui, A.; Ganani, D.
2013-12-11
We present concepts and prototyping results towards a third generation pixel readout chip. We consider the 130 nm feature size FE-I4 chip, in production for the ATLAS IBL upgrade, to be a second generation chip. A third generation chip would have to go significantly further. A possible direction is to make the IC design generic so that different experiments can configure it to meet significantly different requirements, without the need for everybody to develop their own ASIC from the ground up. In terms of target technology, a demonstrator 500-pixel matrix containing analog front ends only (no complex functionality), was designed and fabricated in 65 nm CMOS and irradiated with protons in December 2011 and May 2012.
Fast readout of carbon nanotube mechanical resonators
Meerwaldt, Harold; Singh, Vibhor; Schneider, Ben; Schouten, Raymond; van der Zant, Herre; Steele, Gary
2013-03-01
We perform fast readout measurements of carbon nanotube mechanical resonators. Using an electronic mixing scheme, we can detect the amplitude of the mechanical motion with an intermediate frequency (IF) of 46 MHz and a timeconstant of 1 us, up to 5 orders of magnitude faster than before. Previous measurements suffered from a low bandwidth due to the combination of the high resistance of the carbon nanotube and a large stray capacitance. We have increased the bandwidth significantly by using a high-impedance, close-proximity HEMT amplifier. The increased bandwidth should allow us to observe the nanotube's thermal motion and its transient response, approaching the regime of real-time detection of the carbon nanotube's mechanical motion.