WorldWideScience

Sample records for quasistatic structural mechanics

  1. Solution of large nonlinear quasistatic structural mechanics problems on distributed-memory multiprocessor computers

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, M. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    Most commercially-available quasistatic finite element programs assemble element stiffnesses into a global stiffness matrix, then use a direct linear equation solver to obtain nodal displacements. However, for large problems (greater than a few hundred thousand degrees of freedom), the memory size and computation time required for this approach becomes prohibitive. Moreover, direct solution does not lend itself to the parallel processing needed for today`s multiprocessor systems. This talk gives an overview of the iterative solution strategy of JAS3D, the nonlinear large-deformation quasistatic finite element program. Because its architecture is derived from an explicit transient-dynamics code, it does not ever assemble a global stiffness matrix. The author describes the approach he used to implement the solver on multiprocessor computers, and shows examples of problems run on hundreds of processors and more than a million degrees of freedom. Finally, he describes some of the work he is presently doing to address the challenges of iterative convergence for ill-conditioned problems.

  2. Effect of moderate magnetic annealing on the microstructure, quasi-static and viscoelastic mechanical behavior of a structural epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid; Li, Dongsheng

    2012-01-01

    In this study the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle x-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent to the macro scale creep compliance was calculated using the aforementioned nano-creep data. Using the continuous complex compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter , A/d(0), from short term(80 ), creep tests and the creep compliance J(t) from the long term(2700 s) creep tests with the tan(δ) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that under low magnetic fields both the quasi-static and viscoelastic mechanical properties of the epoxy have been improved.

  3. Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions

    Science.gov (United States)

    Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.

    2015-02-01

    The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.

  4. Quasi-static Deployment Simulation for Deployable Space Truss Structures

    Institute of Scientific and Technical Information of China (English)

    陈务军; 付功义; 何艳丽; 董石麟

    2004-01-01

    A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.

  5. Quasi-static elastography comparison of hyaline cartilage structures

    Energy Technology Data Exchange (ETDEWEB)

    McCredie, A J; Stride, E; Saffari, N [Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  6. Quasi-static modelling of compliant mechanisms: application to a 2-DOF underactuated finger

    Directory of Open Access Journals (Sweden)

    C. Quennouelle

    2011-02-01

    Full Text Available In this paper, the kinematostatic and the quasi-static models of parallel mechanisms are applied to underactuated mechanisms. Both models are extended to the cases for which the actuated joints are not kinematically independent, and for which the external loads are function of the configuration of the mechanism, the grasped object being considered as not perfectly rigid. An application to a 2-DOF underactuated compliant finger is then presented with details about the implementation of the kinematostatic and the quasi-static models. Finally, some numerical results are given that illustrate possible contributions of these models for the analysis and the control of underactuated mechanisms.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  7. Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

  8. Quasi-static Tensile and Compressive Behavior of Nanocrystalline Tantalum Based on Miniature Specimen Testing—Part II: Mechanical Properties

    Science.gov (United States)

    Ligda, J.; D'Antuono, D. Scotto; Taheri, M. L.; Schuster, B. E.; Wei, Q.

    2016-11-01

    In Part I of this work (this issue), we presented the microstructure of tantalum processed by high-pressure torsion (HPT). In this part, we will present results based on site-specific micro-mechanical testing. The experimental techniques were used due to the intrinsic microstructure gradient associated with HPT processing. The primary objective is to explore the grain size effect on the quasi-static mechanical properties of HPT processed tantalum with ultrafine grained (UFG, grain size d 100 nm) and nanocrystalline (NC, d body-centered cubic metals with UFG/NC microstructure tend to have localized shear band even under quasi-static uniaxial compression.

  9. Quasistatic Seismic Damage Indicators for RC Structures from Dissipating Energies in Tangential Subspaces

    Directory of Open Access Journals (Sweden)

    Wilfried B. Krätzig

    2014-01-01

    Full Text Available This paper applies recent research on structural damage description to earthquake-resistant design concepts. Based on the primary design aim of life safety, this work adopts the necessity of additional protection aims for property, installation, and equipment. This requires the definition of damage indicators, which are able to quantify the arising structural damage. As in present design, it applies nonlinear quasistatic (pushover concepts due to code provisions as simplified dynamic design tools. Substituting so nonlinear time-history analyses, seismic low-cycle fatigue of RC structures is approximated in similar manner. The treatment will be embedded into a finite element environment, and the tangential stiffness matrix KT in tangential subspaces then is identified as the most general entry for structural damage information. Its spectra of eigenvalues λi or natural frequencies ωi of the structure serve to derive damage indicators Di, applicable to quasistatic evaluation of seismic damage. Because det KT=0 denotes structural failure, such damage indicators range from virgin situation Di=0 to failure Di=1 and thus correspond with Fema proposals on performance-based seismic design. Finally, the developed concept is checked by reanalyses of two experimentally investigated RC frames.

  10. Design of a mechanism to simulate the quasi-static moment-deflection behaviour of the osteoligamentous structure of the C3-C4 cervical spine segment in the flexion-extension and lateral bending directions.

    Science.gov (United States)

    Chen, Samuel; Arsenault, Marc; Moglo, Kodjo

    2012-11-01

    The human neck is susceptible to traumatic injuries due to impacts as well as chronic injuries caused by loads such as those attributed to the wearing of heavy headgear. To facilitate the analysis of the loads that cause injuries to the cervical spine, it is possible to replicate the human neck's behaviour with mechanical devices. The goal of this work is to lay the foundation for the eventual development of a novel mechanism used to simulate the behaviour of the cervical spine during laboratory experiments. The research presented herein focuses on the design of a mechanism capable of reproducing the non-linear relationships between moments applied to the C3 vertebra and its corresponding rotations with respect to the C4 vertebra. The geometrical and mechanical properties of the mechanism are optimized based on the ability of the latter to replicate the load-deflection profile of the osteoligamentous structure of the C3-C4 vertebral pair in the flexion-extension and lateral bending directions. The results show that the proposed design concept is capable of faithfully replicating the non-linear behaviour of the motion segment within acceptable tolerances.

  11. Quasi-static Tensile and Compressive Behavior of Nanocrystalline Tantalum Based on Miniature Specimen Testing—Part II: Mechanical Properties

    Science.gov (United States)

    Ligda, J.; D'Antuono, D. Scotto; Taheri, M. L.; Schuster, B. E.; Wei, Q.

    2016-09-01

    In Part I of this work (this issue), we presented the microstructure of tantalum processed by high-pressure torsion (HPT). In this part, we will present results based on site-specific micro-mechanical testing. The experimental techniques were used due to the intrinsic microstructure gradient associated with HPT processing. The primary objective is to explore the grain size effect on the quasi-static mechanical properties of HPT processed tantalum with ultrafine grained (UFG, grain size d 100 nm) and nanocrystalline (NC, d imaging microscopy (OIM) show that the shear bands form by grain rotation. Comparing d in these two regions to the mechanism proposed in the literature shows that reduced d in the shear banding region is more susceptible to localized shearing via grain rotation. This work unifies, or at least further substantiates, the notion that body-centered cubic metals with UFG/NC microstructure tend to have localized shear band even under quasi-static uniaxial compression.

  12. Mechanical property evaluation of apricot fruits under quasi-static and dynamic loading

    Directory of Open Access Journals (Sweden)

    E Ahmadi

    2016-04-01

    Full Text Available Introduction: Some forces and impacts that occur during transporting and handling can reduce the apricot quality. Bruise damage is a major cause of fruit quality loss. Bruises occur under dynamic and static loading when stress induced in the fruit exceeds the failure stress of the fruit tissue. Needless to say that physical and mechanical properties of fruits in the design and optimization of systems related to production, processing and packaging of the products are important. Harvesting, transport, packaging and transportation of fruits and vegetables, result in their bruising which can cause loss of marketability of the fruit by consumers. The term of ‘absorbed energy’ could be used to express the quantity of damage done on the fruit and the high the absorbed energy, the higher the damage on the fruit. The object of this research was due to the importance of apricot fruit and lack of information about the mechanical behavior. Materials and Methods: In this study, apricot fruit variety “Ziaolmolki” was examined to determine some physical and mechanical properties. In order avoid any damage, the fruits were carefully harvested from trees and gathered in plastic boxes in a row, to prevent damage to the apricots. For determination of mechanical properties and levels of impact energy used test axial machine and pendulum device, respectively. Dependent variables (acoustics stiffness, radius of curvature, color characteristic a* and b*, Brix percentage, penetration force, penetration work and penetration deformation and independent variables (impact energy in three levels, temperature and color in 2 levels each were selected and analyzed by block designs with factorial structure. In the experimental design, the fruits were stored in two temperature levels, 3oC and 25oC. Two areas of any fruit (red and yellow areas were subjected to 3 impact energy levels. For each of the 8 levels, 8 fruit samples were selected. Overall, 96 fruits {8 (number

  13. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    Energy Technology Data Exchange (ETDEWEB)

    Brühwiler, Paul A.; Barbezat, Michel; Necola, Adly; Kohls, Doug J.; Bunk, Oliver; Schaefer, Dale W.; Pötschke, Petra (PSI); (EMMPA); (UCIN); (Leibniz)

    2010-10-22

    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.

  14. Quasi-Static Behavior of Palm-Based Elastomeric Polyurethane: For Strengthening Application of Structures under Impulsive Loadings

    Directory of Open Access Journals (Sweden)

    H. M. Chandima Chathuranga Somarathna

    2016-05-01

    Full Text Available In recent years, attention has been focused on elastomeric polymers as a potential retrofitting material considering their capability in contributing towards the impact resistance of various structural elements. A comprehensive understanding of the behavior and the morphology of this material are essential to propose an effective and feasible alternative to existing structural strengthening and retrofitting materials. This article presents the findings obtained from a series of experimental investigations to characterize the physical, mechanical, chemical and thermal behavior of eight types of palm-based polyurethane (PU elastomers, which were synthesized from the reaction between palm kernel oil-based monoester polyol (PKO-p and 4,4-diphenylmethane diisocyanate (MDI with polyethylene glycol (PEG as the plasticizer via pre-polymerization. Fourier transform infrared (FT-IR spectroscopy analysis was conducted to examine the functional groups in PU systems. Mechanical and physical behavior was studied with focus on elongation, stresses, modulus, energy absorption and dissipation, and load dispersion capacities by conducting hardness, tensile, flexural, Izod impact, and differential scanning calorimetry tests. Experimental results suggest that the palm-based PU has positive effects as a strengthening and retrofitting material against dynamic impulsive loadings both in terms of energy absorption and dissipation, and load dispersion. In addition, among all PUs with different plasticizer contents, PU2 to PU8 (which contain 2% to 8% (w/w PEG with respect to PKO-p content show the best correlation with mechanical response under quasi-static conditions focusing on energy absorption and dissipation and load dispersion characteristics.

  15. Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control

    DEFF Research Database (Denmark)

    Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.

    2015-01-01

    This paper presents a quasi-static hybrid simulation performed on a single component structure. Hybrid simulation is a substructural technique, where a structure is divided into two sections: a numerical section of the main structure and a physical experiment of the remainder. In previous cases...... to evaluate the validity of the method, the results are compared to a test of the emulated structure – referred to here as the reference test. It was found that the error introduced by compliance in the load train was significant. Digital image correlation was for this reason implemented in the hybrid...

  16. The inelastic quasi-static response of sandwich structures to local loading

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey; Rizov, Victor

    2004-01-01

    The paper addresses the inelastic quasi-static response of sandwich beams and panels with foam core to localized loads. The plane and axisymmetric formulations for local indentation or local low-velocity impact by a rigid body are considered; no overall bending is assumed. The governing equations

  17. Effects of grain size on the quasi-static mechanical properties of ultrafine-grained and nanocrystalline tantalum

    Science.gov (United States)

    Ligda, Jonathan Paul

    The increase in strength due to the Hall-Petch effect, reduced strain hardening capacity, a reduced ductility, and changes in deformation mechanisms are all effects of reducing grain size (d) into the ultrafine-grained (UFG, 100 replacement for depleted uranium in kinetic energy penetrators. However, an ideal replacement material must also plastically deform in tension under quasi-static rates to survive initial launch conditions. This raises the question: if the material forms ASBs at dynamic rates, will it also form shear bands at quasi-static isothermal rates? As well as, is there a specific grain size for a material that will plastically deform in tension at quasi-static rates but form adiabatic shear bands at dynamic rates? Using high pressure torsion, a polycrystalline bulk tantalum disk was refined into the UFG/NC regime. Using microscale mechanical testing techniques, such as nanoindentation, microcompression, and microtension, it is possible to isolate locations with a homogeneous grain size within the disk. Pillars are compressed using a nanoindenter with a flat punch tip, while "dog-bone" specimens were pulled in tension using a custom built in-situ tension stage within a scanning electron microscope (SEM). The observed mechanical behavior is related to the microstructure by using transmission electron microscopy (TEM) on the as-processed material and tested specimens. Synchrotron X-ray based texture analysis was also conducted on the disk to determine if any changes in the deformation texture occur during HPT processing. Nanoindentation data shows a trend of increasing hardness with radial position that saturates at 4.5 GPa near the edge, and decreasing strain rate sensitivity. The micromechanical tests show two distinct regions on a processed circular disk, a non-shearing region and a shearing region. Microcompression/tension tests in the region of 1.0 5.3 mm show a drastic switch to localized plastic deformation in the form of shear bands, with

  18. ORNL Quasi-Static Mechanical Characterization and Analysis: FY09 Annual Report to TARDEC

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Kirkland, Timothy Philip [ORNL; Strong, Kevin T [ORNL; Holmquist, Timothy [SWRI

    2009-12-01

    in target ceramic compliance. More so than any other produced damage mechanism. This suggests that a ballistically induced median crack in an armor ceramic may be associated with the dwell penetration event. (7) Glass exhibits tensile strength that is very much dependent on the amount of material, the side being tested (air versus tin if a float glass), and where it is being tensile stressed (in the middle or near an edge). The management of these effects will improve ballistic resistance of transparent armor (or any ceramic armor that is undergoing deflection as a consequence of a ballistic impact). (8) Plasma-arc heat treatment is a quick and relatively inexpensive method to improve the strength of glass. It is implementable into the production line for the mass production of glass. Increased strain-to-failure and bending deflections are concomitant with increased strength, and therefore, ballistic resistance is improvable using this method. (9) The Hertzian stress field at high contact stresses is very similar to the stress field from a ballistic impact. This is significant because the results from Hertzian indentation measurements have the prospect of being used as input in ballistic models to predict dwell conditions. (10) The understanding of glass densification and fragmentation behaviors are aided by piezo-Raman spectroscopy and quasi-static, high-energy fracture. Continued refinement of these test methods will improve the understanding of glass impact resistance. (11) In addition to glass, strength-size scaling was evident in SiC and B{sub 4}C. Previously proposed strength dependencies on rate from shock experiments may instead be explained by this strength-size scaling effect. (12) The quantification of strength-size scaling in armor ceramics clearly shows there is no single strength value that can be used to describe that ceramic. A ballistic modeler can therefore use more appropriate failure stress value(s) as input to predict deflection and expanding

  19. Quasi-static drift-tube accelerating structures for low-speed heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Keefe, D.

    1977-11-03

    The major attractions of the pulsed drift-tubes are that they are non-resonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the non-resonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse power modulators used to drive the drift-tubes are inexpensive compared to r.f. sources with equivalent peak-power. The longitudinal emittance of the beam emerging from the structure could be extremely low.

  20. High Strain-Rate and Quasi-Static Ductile Failure Mechanisms in Porous Materials

    Science.gov (United States)

    2007-11-02

    detailed understanding of the interrelated physical mechanisms that can result in ductile material failure in rate-dependent porous crystalline materials subjected...strains and slip-rates, and hydrostatic stresses on failure paths and ligament damage in face centered cubic (f.c.c.) crystalline materials have been

  1. A concept for energy harvesting from quasi-static structural deformations through axially loaded bilaterally constrained columns with multiple bifurcation points

    Science.gov (United States)

    Lajnef, N.; Burgueño, R.; Borchani, W.; Sun, Y.

    2014-05-01

    A major obstacle limiting the development of deployable sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading using piezoelectric scavengers is a possible solution. Most of the previously developed research focused on vibration-based piezoelectric harvesters which are typically characterized by a response with a narrow natural frequency range. Several techniques were used to improve their effectiveness. These methods focus only on the transducer’s properties and configurations, but do little to improve the stimuli from the source. In contrast, this work proposes to focus on the input deformations generated within the structure, and the induction of an amplified amplitude and up-converted frequency toward the harvesters’ natural spectrum. This paper introduces the concept of using mechanically-equivalent energy converters and frequency modulators that can transform low-amplitude and low-rate service deformations into an amplified vibration input to the piezoelectric transducer. The introduced concept allows energy conversion within the unexplored quasi-static frequency range (≪1 Hz). The post-buckling behavior of bilaterally constrained columns is used as the mechanism for frequency up-conversion. A bimorph cantilever polyvinylidene fluoride (PVDF) piezoelectric beam is used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept and the levels of extractable power were evaluated for different cases under varying input frequencies. Finally, finite element simulations are reported to provide insight into the scalability and performance of the developed concept.

  2. Brittle fracture in a periodic structure with internal potential energy. Quasi-static analysis

    CERN Document Server

    Mishuris, Gennady S

    2013-01-01

    We consider a linearly elastic body consisting of two equal symmetrically arranged layers (or half-planes) connected by a structured interface as a prospective crack path. The interface is comprised by periodic discrete system of bonds. In the initial state with no external forces, the bonds are assumed to be stressed in such a way that tensile and compressive forces of the same value alternate. In the general considerations, the layers are assumed to be of a general, unspecified {\\em periodic} structure, where such self-equilibrated residual stresses can also exist. A two-line chain and an anisotropic lattice are examined as illustrative examples. We consider the states of the body-with-a-crack under the residual stresses and under a combined action of the remote forces and residual stresses. Analytical solutions to the considered problems are presented. The solutions are based on a selective discrete transform introduced. In particular, it is found that a formula for local-to-global energy release ratio, wr...

  3. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)

    2015-11-10

    This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.

  4. Investigation of structure-property relationships of polyisobutylene-based biomaterials: Morphology, thermal, quasi-static tensile and long-term dynamic fatigue behavior.

    Science.gov (United States)

    Götz, C; Lim, G T; Puskas, J E; Altstädt, V

    2012-06-01

    This study examines the morphology, thermal, quasi-static and long-term dynamic creep properties of one linear and three arborescent polyisobutylene-based block copolymers (L_SIBS31, D_IBS16, D_IBS27 and D_IBS33). Silicone rubber, a common biopolymer, was considered as a benchmark material for comparison. A unique hysteretic testing methodology of Stepwise Increasing Load Test (SILT) and Single Load Test (SLT) was used in this study to evaluate the long-term dynamic fatigue performance of these materials. Our experimental findings revealed that the molecular weight of polyisobutylene (PIB) and polystyrene (PS) arms [M(n)(PIB(arm)) and M(n)(PS(arm))], respectively had a profound influence on the nano-scaled phase separation, quasi-static tensile, thermal transition, and dynamic creep resistance behaviors of these PIB-based block copolymers. However, silicone rubber outperformed the PIB-based block copolymers in terms of dynamic creep properties due to its chemically crosslinked structure. This indicates a need for a material strategy to improve the dynamic fatigue and creep of this class of biopolymers to be considered as alternative to silicone rubber for biomedical devices.

  5. Theoretical and experimental study of the quasistatic capacitance of metal-insulator-hydrogenated amorphous silicon structures: Strong evidence for the defect-pool model

    Science.gov (United States)

    Kleider, J. P.; Dayoub, F.

    1998-10-01

    The density of localized states in hydrogenated amorphous silicon (a-Si:H) is studied by means of the quasistatic capacitance technique applied to metal-insulator a-Si:H structures. Calculations in the framework of the defect-pool model show that the changes in the quasistatic capacitance versus gate bias curves (qs-CV curves) after bias annealing reveal the changes in the density of dangling-bond states predicted by the model, and are sensitive to the defect-pool parameters. The comparison of theoretical qs-CV curves with experimental curves obtained in a wide range of bias-anneal voltages Vba on several kinds of structures (top gate oxide, top gate nitride, and the most commonly used bottom gate nitride structures) strongly support the defect-pool model, and values for the model parameters are deduced. It is shown that for all structures the dominant phenomenon for bias annealing at positive Vba (i.e., under electron accumulation) is the creation of defects in the lower part of the gap in the a-Si:H. Bias annealing under hole accumulation reveals the creation of defects in the upper part of the gap of a-Si:H, but the precise dependence of the qs-CV curves upon Vba depends on the nature of the insulator-a-Si:H interface. In particular, it is affected by a higher density of interface trap levels in the top gate nitride structures, and by hole injection and trapping from the a-Si:H into the nitride layer in the bottom gate nitride structures.

  6. Dynamic and quasi-static lung mechanics system for gas-assisted and liquid-assisted ventilation.

    Science.gov (United States)

    Alvarez, Francisco J; Gastiasoro, Elena; Rey-Santano, M Carmen; Gomez-Solaetxe, Miguel A; Publicover, Nelson G; Larrabe, Juan L

    2009-07-01

    Our aim was to develop a computerized system for real-time monitoring of lung mechanics measurements during both gas and liquid ventilation. System accuracy was demonstrated by calculating regression and percent error of the following parameters compared to standard device: airway pressure difference (Delta P(aw)), respiratory frequency (f(R) ), tidal volume (V(T)), minute ventilation (V'(E)), inspiratory and expiratory maximum flows (V'(ins,max), V'(exp,max)), dynamic lung compliance (C(L,dyn) ), resistance of the respiratory system calculated by method of Mead-Whittenberger (R(rs,MW)) and by equivalence to electrical circuits (R(rs,ele)), work of breathing (W(OB)), and overdistension. Outcome measures were evaluated as function of gas exchange, cardiovascular parameters, and lung mechanics including mean airway pressure (mP(aw)). Delata P(aw), V(T), V'(ins,max), V'(exp,max), and V'(E) measurements had correlation coefficients r = 1.00, and %error or = 0.98 and %error ventilated groups had increased mP(aw) and W(OB), with decreased V(T), V'(E), C(L,dyn), R(rs,MW), and R(rs,ele) compared to controls. After 1-h ventilation, both injured group had decreased V(T), V'(E) , and C(L,dyn), with increased mP(aw), R(rs,MW), R(rs,ele), and W(OB) . In lung-injured animals, liquid ventilation restored gas exchange, and cardiovascular and lung functions. Our lung mechanics system was able to closely monitor pulmonary function, including during transitions between gas and liquid phases.

  7. Influence of microstructure on quasi-static and dynamic mechanical properties of bismuth-containing lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Witkin, David B., E-mail: david.b.witkin@aero.org [Materials Science Department, Aerospace Corporation, P.O. Box 92957, Mail Stop M2/242, Los Angeles, CA 90009 2957 (United States)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Tensile and dynamic properties of lead-free solder were evaluated. Black-Right-Pointing-Pointer Emphasis on addition of bismuth to alloys and role of isothermal aging. Black-Right-Pointing-Pointer Addition of bismuth increases strength. Black-Right-Pointing-Pointer Strength maintained in Bi-containing alloy after aging, which is opposite of SAC305. Black-Right-Pointing-Pointer Unlike SAC305 damping capacity of Bi-containing changes with aging like SnPb and Sn. - Abstract: The mechanical properties of bulk Pb-free solder alloys containing Bi have been characterized in the as-cast and aged conditions. The alloys were the commercially available Sn-3.4Ag-1.0Cu-3.3Bi and Sn-3.4Ag-4.8Bi (wt.%), which had demonstrated good reliability performance in previous circuit board-level testing programs, but have not been considered for high-volume electronic manufacturing. Room- and elevated-temperature tensile testing showed that the addition of Bi greatly reduced the loss in strength due to aging that occurs in the Sn-Ag-Cu ternary alloys. The room-temperature tensile strength of bulk SAC305 was reduced by 37% after aging at 150 Degree-Sign C for 336 h, but for SAC-Bi the reduction was not statistically meaningful and in SnAg-Bi the tensile strength increased. These differences are attributed to the presence of Bi and its role in solid solution strengthening and precipitation as a separate phase. The damping capacity of the alloys measured by dynamic mechanical analysis showed similar trends, with tan {delta} increasing in aged SAC305 but decreasing in SAC-Bi and SnAg-Bi. The reduction in damping seen in SAC-Bi and SnAg-Bi is consistent with Sn and SnPb eutectic solder, indicating that a general microstructural coarsening is responsible. The increase in damping in SAC305 suggests that the transformation of the ternary eutectic by particle coarsening leads to a continuous {beta}-Sn matrix that contributes to damping.

  8. Mechanics of the ankle and subtalar joints revealed through a 3D quasi-static stress MRI technique.

    Science.gov (United States)

    Siegler, S; Udupa, J K; Ringleb, S I; Imhauser, C W; Hirsch, B E; Odhner, D; Saha, P K; Okereke, E; Roach, N

    2005-03-01

    A technique to study the three-dimensional (3D) mechanical characteristics of the ankle and of the subtalar joints in vivo and in vitro is described. The technique uses an MR scanner compatible 3D positioning and loading linkage to load the hindfoot with precise loads while the foot is being scanned. 3D image processing algorithms are used to derive from the acquired MR images bone morphology, hindfoot architecture, and joint kinematics. The technique was employed to study these properties both in vitro and in vivo. The ankle and subtler joint motion and the changes in architecture produced in response to an inversion load and an anterior drawer load were evaluated. The technique was shown to provide reliable measures of bone morphology. The left-to-right variations in bone morphology were less than 5%. The left-to-right variations in unloaded hindfoot architecture parameters were less than 10%, and these properties were only slightly affected by inversion and anterior drawer loads. Inversion and anterior drawer loads produced motion both at the ankle and at the subtalar joint. In addition, high degree of coupling, primarily of internal rotation with inversion, was observed both at the ankle and at the subtalar joint. The in vitro motion produced in response to inversion and anterior drawer load was greater than the in vivo motion. Finally, external motion, measured directly across the ankle complex, produced in response to load was much greater than the bone movements measured through the 3D stress MRI technique indicating the significant effect of soft tissue and skin interference.

  9. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

    Science.gov (United States)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-12-01

    The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large-scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical-abuse-induced short circuit. In this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneously coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describe the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cells under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.

  10. Structured Mechanical Collage.

    Science.gov (United States)

    Huang, Zhe; Wang, Jiang; Fu, Hongbo; Lau, Rynson W H

    2014-07-01

    We present a method to build 3D structured mechanical collages consisting of numerous elements from the database given artist-designed proxy models. The construction is guided by some graphic design principles, namely unity, variety and contrast. Our results are visually more pleasing than previous works as confirmed by a user study.

  11. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    Science.gov (United States)

    Chabalko, Matthew J; Shahmohammadi, Mohsen; Sample, Alanson P

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  12. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer

    Science.gov (United States)

    Shahmohammadi, Mohsen; Sample, Alanson P.

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power. PMID:28199321

  13. Dynamic and quasi-static measurements of C-4 and primasheet P1000 explosives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; De Luca, Racci [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Cady, Carl M [Los Alamos National Laboratory; Todd, Steven N [SNL

    2010-01-01

    We have measured dynamic and quasi-static mechanical properties of C-4 and Primasheet P1000 explosive materials to provide input data for modeling efforts. Primasheet P1000 is a pentaerythritol tetranitrate-based rubberized explosive. C-4 is a RDX-based moldable explosive. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on load frames and on a dynamic mechanical analyzer. Split-Hopkinson and quasi-static tests were done at five temperatures from -50 C to 50 C. Acoustic velocities were measured at, above, and below room temperature.

  14. Implementation of the quasi-static method for neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Alcaro, Fabio; Dulla, Sandra; Ravetto, Piero, E-mail: fabio.alcaro@polito.it, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energetica, Politecnico di Torino (Italy); Le Tellier, Romain; Suteau, Christophe, E-mail: romain.le-tellier@cea.fr, E-mail: christophe.suteau@cea.fr [CEA, DEN, DER/SPRC/LEPh, Cadarache, Saint Paul-lez-Durance (France)

    2011-07-01

    The study of the dynamic behavior of next generation nuclear reactors is a fundamental aspect for safety and reliability assessments. Despite the growing performances of modern computers, the full solution of the neutron Boltzmann equation in the time domain is still an impracticable task, thus several approximate dynamic models have been proposed for the simulation of nuclear reactor transients; the quasi-static method represents the standard tool currently adopted for the space-time solution of neutron transport problems. All the practical applications of this method that have been proposed contain a major limit, consisting in the use of isotropic quantities, such as scalar fluxes and isotropic external neutron sources, being the only data structures available in most deterministic transport codes. The loss of the angular information produces both inaccuracies in the solution of the kinetic model and the inconsistency of the quasi-static method itself. The present paper is devoted to the implementation of a consistent quasi-static method. The computational platform developed by CEA in Cadarache has been used for the creation of a kinetic package to be coupled with the existing SNATCH solver, a discrete-ordinate multi-dimensional neutron transport solver, employed for the solution of the steady-state Boltzmann equation. The work aims at highlighting the effects of the angular treatment of the neutron flux on the transient analysis, comparing the results with those produced by the previous implementations of the quasi-static method. (author)

  15. Computational structural mechanics for engine structures

    Science.gov (United States)

    Chamis, C. C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.

  16. 隅撑支撑钢框架结构拟静力试验分析%EXPERIMENTAL ANALYSIS ON KNEE BRACING BRACING STEEL FRAME STRUCTURE QUASI-STATIC TEST

    Institute of Scientific and Technical Information of China (English)

    曹玉生; 徐超; 段珂

    2013-01-01

    Knee bracing steel frame structure model of quasi-static tests was experimentally investigated.By analysis of the test results,the seismic performance of knee bracing steel frame structure system was studied.Ansys and PKPM was used to determine the test load program,Pul-200 type hydraulic servo actuator and DH3820 strain measurement was used for loading and data acquisition.Draw graphics of hysteresis curve,skeleton curve and stiffness degradation curve to measure energy dissipation capacity,finally,summarize and analyze.%对隅撑支撑钢框架结构模型进行拟静力试验[1],通过对试验结果分析进而对隅撑支撑钢框架结构体系的抗震性能进行研究[2],运用Ansys软件以及PKPM软件的辅助来确定本次试验的加载方案,Pul-200型液压伺服作动器以及DH3820应变测试分析系统进行加载和数据的采集,通过数据来绘制滞回曲线、骨架曲线和刚度退化曲线等衡量耗能能力的图形,最后加以总结分析.

  17. Mechanics of Failure Mechanisms in Structures

    CERN Document Server

    Carlson, R L; Craig, J I

    2012-01-01

    This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material.  Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials.  The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...

  18. Quantum mechanics of molecular structures

    CERN Document Server

    Yamanouchi, Kaoru

    2012-01-01

    At a level accessible to advanced undergraduates, this textbook explains the fundamental role of quantum mechanics in determining the structure, dynamics, and other properties of molecules. Readers will come to understand the quantum-mechanical basis for harmonic oscillators, angular momenta and scattering processes. Exercises are provided to help readers deepen their grasp of the essential phenomena.

  19. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    Science.gov (United States)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  20. Structural Mechanics and Dynamics Branch

    Science.gov (United States)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  1. Statics and Mechanics of Structures

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically...

  2. Micromechanical Fast Quasi-Static Detection of α and β Relaxations with Nanograms of Polymer

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Schmid, Silvan; Larsen, Tom;

    2015-01-01

    Micromechanical string resonators are used as a highly sensitive tool for the detection of glass transition (Tg or α relaxation) and sub-Tg (β relaxation) temperatures of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The characterization technique allows for a fast detection of mechanical...... relaxations of polymers with only few nanograms of sample in a quasi-static condition. The polymers are spray coated on one side of silicon nitride (SiN) microstrings. These are pre-stressed suspended structures clamped on both ends to a silicon frame. The resonance frequency of the microstrings...... is then monitored as a function of increasing temperature. α and β relaxations in the polymer affect the net static tensile stress of the microstring and result in measureable local frequency slope maxima. Tg of PS and PMMA is detected at 91 ±2°C and 114 ±2°C, respectively. The results match well with the glass...

  3. Micromechanical Fast Quasi-Static Detection of α and β Relaxations with Nanograms of Polymer

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Schmid, Silvan; Larsen, Tom

    2015-01-01

    Micromechanical string resonators are used as a highly sensitive tool for the detection of glass transition (Tg or α relaxation) and sub-Tg (β relaxation) temperatures of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The characterization technique allows for a fast detection of mechanical...... relaxations of polymers with only few nanograms of sample in a quasi-static condition. The polymers are spray coated on one side of silicon nitride (SiN) microstrings. These are pre-stressed suspended structures clamped on both ends to a silicon frame. The resonance frequency of the microstrings...... is then monitored as a function of increasing temperature. α and β relaxations in the polymer affect the net static tensile stress of the microstring and result in measureable local frequency slope maxima. Tg of PS and PMMA is detected at 91 ±2°C and 114 ±2°C, respectively. The results match well with the glass...

  4. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  5. Statics and mechanics of structures

    CERN Document Server

    Krenk, Steen

    2013-01-01

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically determinate structures in the form of trusses, beams and frames. Instability is discussed in the form of the column problem - both the ideal column and the imperfect column used in actual column design. The theory of statically indeterminate structures is then introduced, and the force and deformation methods are explained and illustrated. An important aspect of the book’s approach is the systematic development of the theory in a form suitable for computer implementation using finite elements. This development is supported by two small computer programs, MiniTruss and MiniFrame, which permit static analysis of trusses and frames, as well as linearized stability analysis. The book’s final section presents related ...

  6. Collapse Mechanisms Of Masonry Structures

    Science.gov (United States)

    Zuccaro, G.; Rauci, M.

    2008-07-01

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  7. Structural and failure mechanics of sandwich composites

    CERN Document Server

    Carlsson, LA; Carlsson, Leif A

    2011-01-01

    Focusing on important deformation and failure modes of sandwich structures, this volume describes the mechanics behind fracture processes. The text also reviews test methods developed for the cr, structural integrity, and failure mechanisms of sandwich structures.

  8. Dynamic and quasi-static measurements of PBXN-5 and comp-B explosives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Todd, Steven N [SNL

    2009-03-12

    We have measured dynamic and quasi-static mechanical properties of PBXN-5 and Comp-B explosive materials to provide input data for modeling efforts. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on a load frame. Hopkinson bar and quasistatic testing was done at five temperatures from -50{sup o}C to 50{sup o}C. Our results were dominated by the low density of the samples and showed up as low acoustic velocities and lower strengths, as compared to other materials of the same or similar formulations. The effects seem to be consistent with the high porosity of the materials. The data do provide useful input to models that include density as a parameter and suggest caution when using measurements of ideal materials to predict behavior of damaged materials.

  9. Structural mechanisms of plexin signaling.

    Science.gov (United States)

    Pascoe, Heath G; Wang, Yuxiao; Zhang, Xuewu

    2015-09-01

    Signaling through plexin, the major cell surface receptor for semaphorin, plays critical roles in regulating processes such as neuronal axon guidance, angiogenesis and immune response. Plexin is normally kept inactive in the absence of semaphorin. Upon binding of semaphorin to the extracellular region, plexin is activated and transduces signal to the inside of the cell through its cytoplasmic region. The GTPase Activating Protein (GAP) domain in the plexin cytoplasmic region mediates the major intracellular signaling pathway. The substrate specificity and regulation mechanisms of the GAP domain have only been revealed recently. Many intracellular proteins serve as either upstream regulators or downstream transducers by directly interacting with plexin. The mechanisms of action for some of these proteins also start to emerge from recent studies. We review here these advances in the mechanistic understanding of plexin intracellular signaling from a structural perspective.

  10. Balanced calibration of resonant piezoelectric RL shunts with quasi-static background flexibility correction

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2015-01-01

    damping of the two modes associated with the resonant vibration form of the structure, when including a quasi-static contribution from non-resonant vibration modes via a single background flexibility parameter. Explicit calibration formulae are presented, and it is demonstrated by a numerical example...

  11. Fundamentals of electromagnetics 2 quasistatics and waves

    CERN Document Server

    Voltmer, David

    2007-01-01

    This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundame

  12. Mechanical behaviour of structural ceramics

    Directory of Open Access Journals (Sweden)

    Bueno, S.

    2007-06-01

    Full Text Available The use of ceramic materials in structural applications is limited by the lack of reliability associated with brittle fracture behaviour. In order to extend the structural use of ceramics, the design of microstructures which exhibit flaw tolerance due to toughening mechanisms which produce an increase in crack growth resistance during crack propagation has been proposed. This work is a review of the mechanical behaviour of structural ceramic materials and its characterisation. Firstly, the basic brittle fracture parameters and the statistical criteria to determine the probability of exceeding the safety factors demanded for a particular application are analysed. Then, the toughening mechanisms which can be developed in the materials through microstructural design as well as the mechanical characterisation of toughened ceramics are discussed. The experimental values of linear elastic fracture toughness parameters (critical stress intensity factor, KIC, and critical energy release rate, GIC are not intrinsic properties for toughened materials and depend on crack length and the loading system. In this work, the different mechanical parameters proposed to characterise such materials are reviewed. The following fracture parameters are analysed: work of fracture (γWOF, critical J-integral value (JIC and R-curve. For the determination, stable fracture tests are proposed in order to ensure that the energy provided during the test is no more than the necessary one for crack propagation.

    El uso de los materiales cerámicos en aplicaciones estructurales está limitado por la falta de fiabilidad asociada a su comportamiento frágil durante la fractura. Para extender su aplicación se ha propuesto el diseño de microestructuras que presenten tolerancia a los defectos debido a la actuación de mecanismos de refuerzo. Este trabajo es una puesta al día sobre el estudio del comportamiento mecánico de los materiales cerámicos estructurales y su

  13. Studying the cosmological apparent horizon with quasistatic coordinates

    Indian Academy of Sciences (India)

    Rui-Yan Yu; Towe Wang

    2013-02-01

    This article aims at a natural generalization of the static coordinates to the ( + 1)-dimensional Friedmann–Lemaître–Robertson–Walker (FLRW) Universe. After demonstrating a no-go theorem, we put forward the quasistatic coordinates for the FLRW Universe. Then, the quasistatic coordinates are utilized to study the unified first law and the scalar-type perturbations on the cosmological apparent horizon.

  14. Anisotropy in Quasi-Static Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Verma, Mahendra K.

    2017-08-01

    In this review we summarise the current status of the quasi-static magnetohydrodynamic turbulence. The energy spectrum is steeper than Kolmogorov’s k -5/3 spectrum due to the decrease of the kinetic energy flux with wavenumber k as a result of Joule dissipation. The spectral index decreases with the increase of interaction parameter. The flow is quasi two-dimensional with strong {{\\mathbf{U}}\\bot} at small k and weak {{U}\\parallel} at large k, where {{\\mathbf{U}}\\bot} and {{U}\\parallel} are the perpendicular and parallel components of velocity relative to the external magnetic field. For small k, the energy flux of {{\\mathbf{U}}\\bot} is negative, but for large k, the energy flux of {{U}\\parallel} is positive. Pressure mediates the energy transfer from {{\\mathbf{U}}\\bot} to {{U}\\parallel} .

  15. Force-displacement mixed control method for quasi-static tests of structures with multiple degrees of freedom%基于力和位移混合控制的多自由度结构拟静力试验方法研究

    Institute of Scientific and Technical Information of China (English)

    赵刚; 潘鹏; 聂建国; 王宗纲

    2012-01-01

    多自由度结构拟静力试验中需对各自由度按照特定的力比例模式进行加载,因此力控制加载自然成为多自由度结构拟静力试验的选择。然而,结构进入倒塌阶段后承载力急剧下降,采用力控制加载的拟静力加载试验难以实施。为有效解决上述问题,提出一种适用于多自由度结构拟静力试验的力和位移混合控制方法。采用此混合控制试验方法既能够保持结构各自由度的受力符合特定的力比例关系,又可以保证在结构进入倒塌阶段后实施稳定的加载控制。基于MTS公司的Flex-TestIIm平台采用VisualBASIC语言开发了多自由度力和位移混合控制拟静力加载试验控制软件TMPTG,并进行了具体试验,验证了混合控制算法的有效性。%In quasi-static tests for structures with muhiple degrees of freedom, the forces applied to the structures commonly follow a prescribed force profile, so the loading with controlled forces becomes the natural choice. However, force control is not applicable any more when the bearing capacities of the tested structures decrease dramatically during the collapse stage. To this end, a force-displacement mixed control method is proposed to apply in quasi-static tests for structures with multiple degrees of freedom. By this method, the forces on each degrees can followed force profile and achieve the stable control of the quasi-static loading in the collapse stage. Based on the Flex-Test IIm platform of MTS Corporation, a test program called TMPTG using the mixed control algorithm is developed. Some tests are conducted and the effectiveness of the method is verified.

  16. THE CLASSIFICATION OF PARALLEL STRUCTURE MECHANISMS

    Directory of Open Access Journals (Sweden)

    Mr. Yevgeny B. Shchelkunov

    2016-12-01

    Full Text Available The article presents an original classification and typing of theoretically possible realizations of layout diagrams containing parallel structure mechanisms that provide the basis for the implementation of the algorithm for calculating the mechanism geometric parameters. The mechanism is embedded in a pattern corresponding to this layout diagram and assigned initial data. The given classification can significantly reduce the time spent on the initial stage of designing mechanisms of parallel structure.

  17. Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.

    Science.gov (United States)

    Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A

    2016-10-01

    Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. QUASI-STATIC ANALYSIS FOR VISCOELASTIC TIMOSHENKO BEAMS WITH DAMAGE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams, the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain. The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasi-static behavior of the beam were investigated in detail.

  19. Parallel Algebraic Multigrids for Structural mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Brezina, M; Tong, C; Becker, R

    2004-05-11

    This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.

  20. Giga-Gauss scale quasistatic magnetic field generation in an 'escargot' target

    CERN Document Server

    Korneev, Ph; Tikhonchuk, V

    2014-01-01

    A simple setup for the generation of ultra-intense quasistatic magnetic fields, based on the generation of electron currents with a predefined geometry in a curved 'escargot' target, is proposed and analysed. Particle-In-Cell simulations and qualitative estimates show that giga-Gauss scale magnetic fields may be achieved with existent laser facilities. The described mechanism of the strong magnetic field generation may be useful in a wide range of applications, from laboratory astrophysics to magnetized ICF schemes.

  1. Four-level time decomposition quasi-static power flow and successive disturbances analysis. [Power system disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S.M. (Nikola Tesla Inst., Belgrade (YU))

    1990-01-01

    This paper presents a model and an appropriate numerical procedure for a four-level time decomposition quasi-static power flow and successive disturbances analysis of power systems. The analysis consists of the sequential computation of the zero, primary, secondary and tertiary quasi-static states and of the estimation of successive structural disturbances during the 1200 s dynamics after a structural disturbance. The model is developed by detailed inspection of the time decomposition characteristics of automatic protection and control devices. Adequate speed of the numerical procedure is attained by a specific application of the inversion matrix lemma and the decoupled model constant coefficient matrices. The four-level time decomposition quasi-static method is intended for security and emergency analysis. (author).

  2. Exact analysis of a Veselago lens in the quasi-static regime

    CERN Document Server

    Farhi, Asaf

    2014-01-01

    The resolution of conventional optical lenses is limited by the wavelength. Materials with negative refractive index have been shown to enable the generation of an enhanced resolution image where both propagating and non-propagating waves are employed. We analyze such a Veselago lens by exploiting some exact one dimensional integral expressions for the quasi-static electric potential of a point charge in that system. Those were recently obtained by expanding that potential in the quasi-static eigenfunctions of a three-?at-slabs composite structure. Numerical evaluations of those integrals, using realistic values for physical parameters like the electric permittivities of the constituent slabs and their thickness, reveal some surprising e?ects: E.g., the maximum concentration of the electric ?eld occurs not at the geometric optics foci but at the interfaces between the negative permittivity slab and the positive permittivity slabs. The analysis provides simple computational guides for designing such structures...

  3. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  4. Quasistatic Evolution in Debonding Problems via Capacitary Methods

    Science.gov (United States)

    Bucur, Dorin; Buttazzo, Giuseppe; Lux, Anne

    2008-09-01

    We discuss quasistatic evolution processes for capacitary measures and shapes in order to model debonding membranes. Minimizing movements as well as rate-independent processes are investigated and some models are described, together with a series of open problems.

  5. Quasistatic contact problems in viscoelasticity and viscoplasticity

    CERN Document Server

    Han, Weimin

    2002-01-01

    Phenomena of contact between deformable bodies or between deformable and rigid bodies abound in industry and in everyday life. A few simple examples are brake pads with wheels, tires on roads, and pistons with skirts. Common industrial processes such as metal forming and metal extrusion involve contact evolutions. Because of the importance of contact processes in structural and mechanical systems, considerable effort has been put into modeling and numerical simulations. This book introduces readers to a mathematical theory of contact problems involving deformable bodies. It covers mechanical modeling, mathematical formulations, variational analysis, and the numerical solution of the associated formulations. The authors give a complete treatment of some contact problems by presenting arguments and results in modeling, analysis, and numerical simulations. Variational analysis of the models includes existence and uniqueness results of weak solutions, as well as results of continuous dependence of the solution on...

  6. Quasi-static relaxation of arbitrarily shaped sessile drops

    CERN Document Server

    Iliev, S; Nikolayev, Vadim

    2016-01-01

    We study a spontaneous relaxation dynamics of arbitrarily shaped liquid drops on solid surfaces in the partial wetting regime. It is assumed that the energy dissipated near the contact line is much larger than that in the bulk of the fluid. We have shown rigorously in the case of quasi-static relaxation using the standard mechanical description of dissipative system dynamics that the introduction of a dissipation term proportional to the contact line length leads to the well known local relation between the contact line velocity and the dynamic contact angle at every point of an arbitrary contact line shape. A numerical code is developed for 3D drops to study the dependence of the relaxation dynamics on the initial drop shape. The available asymptotic solutions are tested against the obtained numerical data. We show how the relaxation at a given point of the contact line is influenced by the dynamics of the whole drop which is a manifestation of the non-local

  7. Fatigue Life Analysis of Rolling Bearings Based on Quasistatic Modeling

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-01-01

    Full Text Available Rolling bearings are widely used in aeroengine, machine tool spindles, locomotive wheelset, and so forth. Rolling bearings are usually the weakest components that influence the remaining life of the whole machine. In this paper, a fatigue life prediction method is proposed based on quasistatic modeling of rolling bearings. With consideration of radial centrifugal expansion and thermal deformations on the geometric displacement in the bearings, the Jones’ bearing model is updated, which can predict the contact angle, deformation, and load between rolling elements and bearing raceways more accurately. Based on Hertz contact theory and contact mechanics, the contact stress field between rolling elements and raceways is calculated. A coupling model of fatigue life and damage for rolling bearings is given and verified through accelerated life test. Afterwards, the variation of bearing life is investigated under different working conditions, that is, axial load, radial load, and rotational speed. The results suggested that the working condition had a great influence on fatigue life of bearing parts and the order in which the damage appears on bearing parts.

  8. Structure and mechanism for DNA lesion recognition

    Institute of Scientific and Technical Information of China (English)

    Wei Yang

    2008-01-01

    A fundamental question in DNA repair is how a lesion is detected when embedded in millions to billions of normal base pairs. Extensive structural and functional studies reveal atomic details of DNA repair protein and nucleic acid interactions. This review summarizes seemingly diverse structural motifs used in lesion recognition and suggests a general mechanism to recognize DNA lesion by the poor base stacking. After initial recognition of this shared struc-tural feature of lesions, different DNA repair pathways use unique verification mechanisms to ensure correct lesion identification and removal.

  9. Curved Nanotube Structures under Mechanical Loading

    Directory of Open Access Journals (Sweden)

    Hamidreza Yazdani Sarvestani

    2015-01-01

    Full Text Available Configuration of carbon nanotube (CNT has been the subject of research to perform theoretical development for analyzing nanocomposites. A new theoretical solution is developed to study curved nanotube structures subjected to mechanical loadings. A curved nanotube structure is considered. A nonlocal displacement-based solution is proposed by using a displacement approach of Toroidal Elasticity based on Eringen’s theory of nonlocal continuum mechanics. The governing equations of curved nanotube structures are developed in toroidal coordinate system. The method of successive approximation is used to discretize the displacement-based governing equations and find the general solution subjected to bending moment. The numerical results show that all displacement components increase with increasing the nonlocal parameter. The present theoretical study highlights the significance of the geometry and nonlocal parameter effects on mechanical behavior of nanotube structures.

  10. Masonry structures between mechanics and architecture

    CERN Document Server

    Pedemonte, Orietta; Williams, Kim

    2015-01-01

    This book provides an overview of state of the art research in the mechanics of masonry structures. It continues the series Between Mechanics and Architecture, initially launched in 1995 from the collaboration of several renowned scholars, including Edoardo Benvenuto and Patricia Radelet-de Grave.   The contributions in this volume represent the main approaches to the complex topic of masonry structures. In addition to historical studies, the mechanical behavior of masonry arches and structures is studied using different approaches (structural analysis, limit analysis, elastic analysis, plasticity, mathematical approaches, etc.), at times difficult to reconcile, at others intertwined and complementary.   Readers will have the opportunity to compare different theoretical lines of inquiry and thus explore new horizons of research.   Contributions by: Danila Aita Andrea Bacigalupo Riccardo Barsotti Stefano Bennati Antonio Brencich Mario Como Salvatore D’Agostino Luigi Gambarotta Jacques Heyman Santiago Huer...

  11. Quantum mechanical studies of carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Bartelt, Norman Charles [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ward, Donald [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schultz, Peter A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wang, Bryan M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Riverside, CA (United States); McCarty, Kevin F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.

  12. Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2009-01-01

    Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.

  13. Structural basis unifying diverse GTP hydrolysis mechanisms.

    Science.gov (United States)

    Anand, Baskaran; Majumdar, Soneya; Prakash, Balaji

    2013-02-12

    Central to biological processes is the regulation rendered by GTPases. Until recently, the GTP hydrolysis mechanism, exemplified by Ras-family (and G-α) GTPases, was thought to be universal. This mechanism utilizes a conserved catalytic Gln supplied "in cis" from the GTPase and an arginine finger "in trans" from a GAP (GTPase activating protein) to stabilize the transition state. However, intriguingly different mechanisms are operative in structurally similar GTPases. MnmE and dynamin like cation-dependent GTPases lack the catalytic Gln and instead employ a Glu/Asp/Ser situated elsewhere and in place of the arginine finger use a K(+) or Na(+) ion. In contrast, Rab33 possesses the Gln but does not utilize it for catalysis; instead, the GAP supplies both a catalytic Gln and an arginine finger in trans. Deciphering the underlying principles that unify seemingly unrelated mechanisms is central to understanding how diverse mechanisms evolve. Here, we recognize that steric hindrance between active site residues is a criterion governing the mechanism employed by a given GTPase. The Arf-ArfGAP structure is testimony to this concept of spatial (in)compatibility of active site residues. This understanding allows us to predict an as yet unreported hydrolysis mechanism and clarifies unexplained observations about catalysis by Rab11 and the need for HAS-GTPases to employ a different mechanism. This understanding would be valuable for experiments in which abolishing GTP hydrolysis or generating constitutively active forms of a GTPase is important.

  14. Probing complex RNA structures by mechanical force

    CERN Document Server

    Harlepp, S; Robert, J; Leger, J F; Xayaphoummine, A; Isambert, H; Chatenay, D

    2003-01-01

    RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpretated by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps",...

  15. Structured detailed opto-mechanical tolerance modeling

    Science.gov (United States)

    Swart, P. C.

    2016-02-01

    Opto-mechanical tolerancing is a complex art, which is often reduced to inadequate tabled data of allowable tilts and decentres. During the process the respective roles of optical- and mechanical designers can become entangled and a source of conflict. A framework of principles is introduced to guide the design team through these murky waters. From these principles the development of a catalogue of models, practices and past precedents are proposed. An example is presented to serve as illustration. The final result is a model, of opto-mechanical tolerances, which allows a structured flow of tolerances into optical performance prediction.

  16. Structure and multiscale mechanics of carbon nanomaterials

    CERN Document Server

    2016-01-01

    This book aims at providing a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.

  17. 短切芳纶纤维增强水泥砂浆准静态下力学性能研究%Research on Quasi-static Mechanical Properties of Short Cut Aramid Fiber-Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    胡海涛; 李妮; 熊杰

    2011-01-01

    Cement mortar reinforced with different volume fraction of aramid fiber is prepared by two-step dispersions of aramid fibers, the mechanical properties of composites materials are researched when adds cement additives sodium carboxymethylcellulose(CMC) and silicon powder. Result shows that sodium carboxymethylcellulose can improve fibers dispersion effectively. Silicon powder can improve samples' compression strength. The samples' bending strength is increased from 2. 6 MPa to 8. 3 MPa, and the compression strength increased from 29. 5 MPa to 54. 3 MPa, when the volume fraction of aramid fiber is 5vol%.%采用二步法制备不同纤维掺量的短切芳纶纤维增强水泥砂浆试样,研究添加剂羧甲基纤维素钠(CMC)和硅微粉对复合材料力学性能的影响.结果表明:羧甲基纤维素钠能够有效地促进纤维在水中的分散,进而促进其在水泥砂浆中的分散;掺加一定量的硅微粉能够进一步提高试样的压缩强度.当纤维体积分数为5%时,试样的力学性能最好,弯曲强度从2.6 MPa提高到了8.3 MPa,压缩强度也从29.5 MPa提高到了54.3 MPa.

  18. Structure and Growth Mechanism of Lanthanum Chromate

    Institute of Scientific and Technical Information of China (English)

    Li Shengli; Liu Weiming; Ling Ziyu; Sun Liangcheng; Ao Qing; Fu Guifu

    2005-01-01

    The unit cell of lanthanum chromate was constructed by calculating equivalent points. By means of calculation of the hole octahedrally surrounded by O2- ions, it was considered that the sintered property of lanthanum chromate and the stability of Cr-O octahedron might be promoted by mixing a little Ca2+ ions. The growth mechanism was discussed in terms of structural ledge observed by SEM, the surfaces of the structural ledges parallel to (001), (010) and (110) planes, respectively. The misfit between (110) and (001) planes is only 0.0021 on common atomic plane, and the interconnection of the structured ledge may occur during crystal growth.

  19. Structural engineering, mechanics and materials: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report on structural engineering, mechanics and materials is divided into three parts: a discussion on using Lanczos vectors and Ritz vectors for computing dynamic responses: solution of viscously damped linear systems using a finite element displacement formulation; and vibration analysis of fluid-solid systems using a finite element displacement formulation. (JF)

  20. Experimental thermal mechanics of deployable boom structures

    Science.gov (United States)

    Predmore, R.

    1972-01-01

    An apparatus was developed for thermal distortion measurements on deployable boom structures. The calibration procedure and thermal static bending plus twist measurements are considered. The thermal mechanics test facility is described. A table is presented for several examples of spacecraft applications of thermal static distortion measurements on 3-m deployable booms.

  1. Review: Modeling Damping in Mechanical Engineering Structures

    Directory of Open Access Journals (Sweden)

    Michel Lalanne

    2000-01-01

    Full Text Available This paper is concerned with the introduction of damping effects in the analysis of mechanical engineering structures. Damping can be considered as being generated by concentrated elements, by distributed elements, or by several effects existing simultaneously. Modeling damping for different engineering situations is described and some applications are presented briefly.

  2. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  3. Structural plasticity mechanisms and developmental psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Dominique eMuller

    2014-11-01

    Full Text Available Synaptic plasticity mechanisms are usually discussed in terms of changes in synaptic strength. The capacity of excitatory synapses to rapidly modify the membrane expression of glutamate receptors in an activity-dependent manner plays a critical role in learning and memory processes by re-distributing activity within neuronal networks. Recent work has however also shown that functional plasticity properties are associated with a rewiring of synaptic connections and a selective stabilization of activated synapses. These structural aspects of plasticity have the potential to continuously modify the organization of synaptic networks and thereby introduce specificity in the wiring diagram of cortical circuits. Recent work has started to unravel some of the molecular mechanisms that underlie these properties of structural plasticity, highlighting an important role of signaling pathways that are also major candidates for contributing to developmental psychiatric disorders. We review here some of these recent advances and discuss the hypothesis that alterations of structural plasticity could represent a common mechanism contributing to the cognitive and functional defects observed in diseases such as intellectual disability, autism spectrum disorders and schizophrenia.

  4. Structural mechanisms of nonplanar hemes in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, J.A.

    1997-05-01

    The objective is to assess the occurrence of nonplanar distortions of hemes and other tetrapyrroles in proteins and to determine the biological function of these distortions. Recently, these distortions were found by us to be conserved among proteins belonging to a functional class. Conservation of the conformation of the heme indicates a possible functional role. Researchers have suggested possible mechanisms by which heme distortions might influence biological properties; however, no heme distortion has yet been shown conclusively to participate in a structural mechanism of hemoprotein function. The specific aims of the proposed work are: (1) to characterize and quantify the distortions of the hemes in all of the more than 300 hemoprotein X-ray crystal structures in terms of displacements along the lowest-frequency normal coordinates, (2) to determine the structural features of the protein component that generate and control these nonplanar distortions by using spectroscopic studies and molecular-mechanics calculations for the native proteins, their mutants and heme-peptide fragments, and model porphyrins, (3) to determine spectroscopic markers for the various types of distortion, and, finally, (4) to discover the functional significance of the nonplanar distortions by correlating function with porphyrin conformation for proteins and model porphyrins.

  5. Mechanical Model Development for Composite Structural Supercapacitors

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.

    2016-01-01

    Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.

  6. Speckle temporal stability in XAO coronagraphic images. II. Refine model for quasi-static speckle temporal evolution for VLT/SPHERE

    Science.gov (United States)

    Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.

    2013-06-01

    Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.

  7. Integrated design approach for controlled mechanical structures

    Energy Technology Data Exchange (ETDEWEB)

    Kiriazov, P. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Mechanics

    1998-10-01

    This study is addressed to design problems of controlled mechanical structures (CMS) like robot manipulators and engineering systems with active vibration control that may be subject to arbitrary disturbances. Along with the basic design requirement for strength/load capacity, additional design criteria for CMS are needed to meet the continuously increasing demands for faster response, improved precision and reduced energy consumption. As a CMS is a functionally directed assembly of mutually influencing components: control, actuator, mechanical, and sensor subsystems, a conceptual framework for their integrated design is required. Parameters of these subsystems influencing the dynamic performance of CMS define a matrix that transfers the control inputs into the controlled outputs (accelerations). This transfer matrix plays the key role in the integrated structure-control design. We consider the design optimization problem for CMS having decentralized control architecture. An integrated design criterion for such systems is proposed which is based on optimal trade-off relations between bounds of model uncertainties and control force limits. Optimizing this criterion leads to CMS with maximum degree of robustness. The approach proposed makes it possible a decomposition of the overall design problem into design problems for the CMS`s components. The design concepts are applied to the mechanical subsystem of planar linkage systems. Robust decentralized controllers are designed for a two-degree-of-freedom manipulator with elastic joints. (orig.)

  8. Crack propagation in fracture mechanical graded structures

    Directory of Open Access Journals (Sweden)

    B. Schramm

    2015-10-01

    Full Text Available The focus of manufacturing is more and more on innovative and application-oriented products considering lightweight construction. Hence, especially functional graded materials come to the fore. Due to the application-matched functional material gradation different local demands such as absorbability, abrasion and fatigue of structures are met. However, the material gradation can also have a remarkable influence on the crack propagation behavior. Therefore, this paper examines how the crack propagation behavior changes when a crack grows through regions which are characterized by different fracture mechanical material properties (e.g. different threshold values KI,th, different fracture toughness KIC. In particular, the emphasis of this paper is on the beginning of stable crack propagation, the crack velocity, the crack propagation direction as well as on the occurrence of unstable crack growth under static as well as cyclic loading. In this context, the developed TSSR-concept is presented which allows the prediction of crack propagation in fracture mechanical graded structures considering the loading situation (Mode I, Mode II and plane Mixed Mode and the material gradation. In addition, results of experimental investigations for a mode I loading situation and numerical simulations of crack growth in such graded structures confirm the theoretical findings and clarify the influence of the material gradation on the crack propagation behavior.

  9. Plastic collapse and energy absorption of circular filled tubes under quasi-static loads by computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)

    2017-02-15

    This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.

  10. Structured light imaging of epicardial mechanics.

    Science.gov (United States)

    Laughner, Jacob I; Gong, Yuanzheng; Filas, Benjamen A; Zhang, Song; Efimov, Igor R

    2010-01-01

    There is a need for accurate measurements of mechanical strain and motion of the heart both in vitro and in vivo. We have developed a new structured-light imaging system capable of epicardial shape measurement at 333 fps at a resolution of 768 × 768 pixels. Here we present proof-of-concept data from our system applied to a beating rabbit heart in vitro to measure epicardial mechanics. This method will allow high resolution mapping of epicardial strain and virtual immobilization of the heart for removal of motion artifacts from epicardial recordings with fluorescence dyes. This will allow mapping of transmembrane potential and calcium transients in a beating heart, including in vivo.

  11. Evolution of Primordial Protostellar Clouds Quasi-Static Analysis

    CERN Document Server

    Omukai, K; Uehara, H; Susa, H; Omukai, Kazuyuki; Nishi, Ryoichi; Uehara, Hideya; Susa, Hajime

    1998-01-01

    The contraction processes of metal-free molecular clouds of starlike mass (or cloud cores) are investigated. We calculate radiative transfer of the H_2 lines and examine quasi-static contraction with radiative cooling. Comparing two time-scales, the free-fall time t_ff and the time-scale of quasi-static contraction t_qsc (nearly equal to t_cool, the cooling time) of these cores, we find that the ratio of the two time-scales t_ff/t_qsc, i.e., the efficiency of cooling, becomes larger with contraction even under the existence of cold and opaque envelopes. In particular, for fragments of primordial filamentary clouds, for which t_ff is nearly equal to t_qsc at the fragmentation epoch, they collapse dynamically in the free-fall time-scale. This efficiency of cooling is unique to line cooling.

  12. Quasistatic Metamaterials: Magnetic Coupling Enhancement by Effective Space Cancellation.

    Science.gov (United States)

    Prat-Camps, Jordi; Navau, Carles; Sanchez, Alvaro

    2016-06-01

    A novel and broadly applicable way to increase magnetic coupling between distant circuits in the quasistatic regime is introduced. It is shown how the use of magnetic metamaterials enhances the magnetic coupling between emitting and receiving coils. Results are experimentally demonstrated by measuring a boost on the efficiency of the wireless transmission of power between distant circuits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Giga-Gauss scale quasistatic magnetic field generation with laser

    CERN Document Server

    Korneev, Philipp; Tikhonchuk, Vladimir

    2014-01-01

    A simple setup for the generation of ultra-intense quasistatic magnetic fields is proposed and analysed. Estimations and numerical Particle-In-Cell calculations show that magnetic fields of gigagauss scale may be generated with conventional powerful relativistic lasers interacting with the appropriate targets of a special geometry. The setup may be useful for a wide range of applications, from laboratory astrophysics to magnetized ICF schemes.

  14. Quasistatic limit for plasmon-enhanced optical chirality

    Science.gov (United States)

    Finazzi, Marco; Biagioni, Paolo; Celebrano, Michele; Duò, Lamberto

    2015-05-01

    We discuss the possibility of enhancing the chiroptical response from molecules uniformly distributed around nanostructures that sustain localized plasmon resonances. We demonstrate that the average optical chirality in the near field of any plasmonic nanostructure cannot be significantly higher than that in a plane wave. This conclusion stems from the quasistatic nature of the nanoparticle-enhanced electromagnetic fields and from the fact that, at optical frequencies, the magnetic response of matter is much weaker than the electric one.

  15. Structure and mechanical behavior of human hair.

    Science.gov (United States)

    Yu, Yang; Yang, Wen; Wang, Bin; Meyers, Marc André

    2017-04-01

    The understanding of the mechanical behavior of hair under various conditions broadens our knowledge in biological materials science and contributes to the cosmetic industry. The hierarchical organization of hair is studied from the intermediate filament to the structural levels. The effects of strain rate, relative humidity, and temperature are evaluated. Hair exhibits a high tensile strength, 150-270MPa, which is significantly dependent on strain rate and humidity. The strain-rate sensitivity, approximately 0.06-0.1, is comparable to that of other keratinous materials and common synthetic polymers. The structures of the internal cortex and surface cuticle are affected by the large tensile extension. One distinguishing feature, the unwinding of the α-helix and the possible transformation to β-sheet structure of keratin under tension, which affects the ductility of hair, is analytically evaluated and incorporated into a constitutive equation. A good agreement with the experimental results is obtained. This model elucidates the tensile response of the α-keratin fibers. The contributions of elastic and plastic strains on reloading are evaluated and correlated to structural changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Slow Pain Generation Model Caused by Mechanical Stimulus Based on the Laminated Structure of Skin

    Science.gov (United States)

    Matsunaga, Nobutomo; Akayama, Seiko; Kawaji, Shigeyasu

    For design of the autonomous robot, action learning ability based on the subjective feeling pain is an important issue. In our previous researches, artificial superficial pain model caused by impact had been studied and the transmission mechanism focused on the input-output relations was proposed. However, the generation mechanism of the pain has not been considered yet. In this paper, the pain model of slow pain considering the skin dynamics is proposed. It is clarified from the FEM simulations that the strain energy density (SED) caused around the layer is related to the subjective pain level. From the experimental pain caused by quasi-static motion, the proposed pain model is evaluated.

  17. Structure-mechanics relationships in mineralized tendons.

    Science.gov (United States)

    Spiesz, Ewa M; Zysset, Philippe K

    2015-12-01

    In this paper, we review the hierarchical structure and the resulting elastic properties of mineralized tendons as obtained by various multiscale experimental and computational methods spanning from nano- to macroscale. The mechanical properties of mineralized collagen fibres are important to understand the mechanics of hard tissues constituted by complex arrangements of these fibres, like in human lamellar bone. The uniaxial mineralized collagen fibre array naturally occurring in avian tendons is a well studied model tissue for investigating various stages of tissue mineralization and the corresponding elastic properties. Some avian tendons mineralize with maturation, which results in a graded structure containing two zones of distinct morphology, circumferential and interstitial. These zones exhibit different amounts of mineral, collagen, pores and a different mineral distribution between collagen fibrillar and extrafibrillar space that lead to distinct elastic properties. Mineralized tendon cells have two phenotypes: elongated tenocytes placed between fibres in the circumferential zone and cuboidal cells with lower aspect ratios in the interstitial zone. Interestingly some regions of avian tendons seem to be predestined to mineralization, which is exhibited as specific collagen cross-linking patterns as well as distribution of minor tendon constituents (like proteoglycans) and loss of collagen crimp. Results of investigations in naturally mineralizing avian tendons may be useful in understanding the pathological mineralization occurring in some human tendons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Human Structural Variation: Mechanisms of Chromosome Rearrangements.

    Science.gov (United States)

    Weckselblatt, Brooke; Rudd, M Katharine

    2015-10-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials

    Science.gov (United States)

    Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S.; Smith, David R.; Urzhumov, Yaroslav

    2015-08-01

    The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.

  20. Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.

    Science.gov (United States)

    Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav

    2015-08-03

    The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.

  1. Speckle temporal stability in XAO coronagraphic images II. Refine model for quasi-static speckle temporal evolution for VLT/SPHERE

    CERN Document Server

    Martinez, P; Costille, A; Sauvage, J F; Dohlen, K; Puget, P; Beuzit, J L

    2013-01-01

    Observing sequences have shown that the major noise source limitation in high-contrast imaging is due to the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve, is determined by various factors, among others mechanical or thermal deformations. Understanding of these time-variable instrumental speckles, and especially their interaction with other aberrations, referred to as the pinning effect, is paramount for the search of faint stellar companions. The temporal evolution of quasi-static speckles is for instance required for a quantification of the gain expected when using angular differential imaging (ADI), and to determine the interval on which speckle nulling techniques must be carried out. Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the High-Order Test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final t...

  2. Robust disturbance rejection for flexible mechanical structures

    Science.gov (United States)

    Enzmann, Marc R.; Doeschner, Christian

    2000-06-01

    Topic of the presentation is a procedure to determine controller parameters using principles from Internal Model Control (IMC) in combination with Quantitative Feedback Theory (QFT) for robust vibration control of flexible mechanical structures. IMC design is based on a parameterization of all controllers that stabilize a given nominal plant, called the Q-parameter or Youla-parameter. It will be shown that it is possible to choose the controller structure and the Q- parameter in a very straightforward manner, so that a low order controller results, which stabilizes the given nominal model. Additional constraints can be implemented, so that the method allows for a direct and transparent trade-off between control performance and controller complexity and facilitates the inclusion of low-pass filters. In order to test (and if necessary augment) the inherent robust performance of the resulting controllers, boundaries based on the work of Kidron and Yaniv are calculated in the Nichols-Charts of the open loop and the complementary sensitivity function. The application of these boundaries is presented. Very simple uncertainty models for resonant modes are used to assess the robustness of the design. Using a simply structured plant as illustrative example we will demonstrate the design process. This will illuminate several important features of the design process, e.g. trade-off between conflicting objectives, trade- off between controller complexity and achievable performance.

  3. Structure and mechanism of mouse cysteine dioxygenase

    Science.gov (United States)

    McCoy, Jason G.; Bailey, Lucas J.; Bitto, Eduard; Bingman, Craig A.; Aceti, David J.; Fox, Brian G.; Phillips, George N.

    2006-01-01

    Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Å. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical β-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme. PMID:16492780

  4. Experimental analysis of quasi-static and dynamic fracture initiation toughness of gy4 armor steel material

    Science.gov (United States)

    Ren, Peng; Guo, Zitao

    Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.

  5. A Domain Decomposition Approach to Implementing Fault Slip in Finite-Element Models of Quasi-static and Dynamic Crustal Deformation

    CERN Document Server

    Aagaard, Brad T; Williams, Charles A

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  6. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension

    Science.gov (United States)

    Zhang, Chao; Mao, Chunjian; Zhou, Yexin

    2017-01-01

    The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

  7. Evaluation of quasi-static fracture characteristics considering surface conditions of silicon nitride for a space component

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Y; Kitazono, K [Tokyo Metropolitan University Department of Aerospace Engineering, Hino, Tokyo 191-0065 (Japan); Motoyashiki, Y; Sato, E, E-mail: kakimoto.yuuki@acjaxa.j [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 229-8510 (Japan)

    2010-07-01

    ISAS/JAXA is now planning to adopt a thruster made of monolithic silicon nitride (SN282 manufactured by Kyocera Co.) onto a Venus exploration probe, PLANET-C, in replacement of conventional niobium heat-resistant alloy. Silicon nitride is still brittle and requires precise analysis on multiaxial thermal stresses induced during firing, though it has high toughness among other structural ceramics. This study evaluated quasi-static fracture characteristics of SN282 considering the surface conditions through compression-torsion biaxial fracture tests as well as the conventional four-point-bending tests. The samples were applied to the mechanical tests either as-ground or after annealing at 1300{sup 0}C in air for 1 h, which formed an oxidation layer of more than 250nm on the specimen surface. Symmetry four-point-bending tests showed that annealing improves flexure strength and reduce the difference caused by grinding directions. Biaxial stress fracture tests showed the high compressive stress makes the influence of facial crack insensitive.

  8. Structural Mechanics Program: progress in 1980

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.; Norris, D.M.; Tagart, S.W. Jr.; Marston, T.U.

    1981-08-01

    The goal of the EPRI Structural Mechanics Program is to improve nuclear plant reliability and availability. The program is directed toward characterization of materials, evaluation and analysis of flaws, and application and technology transfer. The largest efforts are: the continuation of projects aimed at developing a statistically valid radiation embrittlement data base for evaluating the fracture toughness of irradiated pressure vessel steels and for evaluating damage annealing processes for embrittlement materials; the development of weld repair procedures for reactor pressure vessels as alternatives to the half bead repair method; the development of simplified design methodology for the prediction of crack initiation, stable crack growth, and instability of ductile material in the presence of flaws; and the development of methodology for predicting the growth and stability of stress corrosion cracks in large diameter stainless steel piping.

  9. Alligator osteoderms: Mechanical behavior and hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Irene H. [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Yang, Wen, E-mail: wey005@eng.ucsd.edu [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, Marc A. [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Departments of Mechanical and Aerospace Engineering and Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States)

    2014-02-01

    Osteoderms are bony scutes embedded underneath the dermal layers of the skin acting as a protection of the alligator (Archosauria: Crocodylia) internal organs and tissues. Additionally, these scutes function as an aid in temperature regulation. The scutes are inter-linked by fibrous connective tissue. They have properties similar to bone and thus have the necessary toughness to provide protection against predators. The scutes consist of hydroxyapatite and have a porosity of approximately 12%. They have a disc-like morphology with a ridge along the middle of the plate, called the keel; the outer perimeter of the disc has depressions, grooves, and jagged edges which anchor the collagen and act as sutures. Computerized tomography reveals the pattern of elongated pores, which emanate from the keel in a radial pattern. Micro-indentation measurements along the cross-section show a zigzag behavior due to the porosity. Compression results indicate that the axial direction is the strongest (UTS ∼ 67 MPa) and toughest (11 MJ/m{sup 3}); this is the orientation in which they undergo the largest external compression forces from predator teeth. Toughening mechanisms are identified through observation of the damage progression and interpreted in mechanistic terms. They are: flattening of pores, microcrack opening, and microcrack growth and coalescence. Collagen plays an essential role in toughening and plasticity by providing bridges that impede the opening of the cracks and prevent their growth. - Highlights: • We characterized the hierarchical structure of alligator scute. • The anisotropic mechanical behavior of alligator scute was studied. • Toughening mechanisms were identified at the micro- and nano-levels.

  10. The effect of the elliptical ratio on the tubular energy absorber subjected to lateral loading under quasistatic conditions

    Science.gov (United States)

    Baroutaji, A.; Olabi, A. G.

    2010-06-01

    Tubular systems are proposed to be used as energy absorber because they are cheap and easy to manufacture; recently some researchers use the elliptical tube as energy absorber. In this work, the influence of elliptical ratio (r =D1/D2) on energy absorption capability and load carrying capacity and stress of mild steel elliptical tubes has been investigated both experimentally and numerically, the experimental analyses conducted by using Zwick Type BT1-FB050TN testing instrument. This machine is universal instrument for performing tensile test and compression test, Fig (1) and bending test and it is consider as an important machine for measuring the mechanical properties of materials and structures. The loading frame consist of two vertical lead screws, a moving crosshead and an upper and lower bearing plate which bears the load of the lead screws. The maximum capacity of the loading frame attached to the table mounted unit is 50KN In this study a velocity between 310mm/min was applied to the moving component to ensure the quasistatic conditions whereas velocities between 0.5mm/min and 15 mm/min have been used by many researchers to simulate the quasi-static lateral compression of tubes between various indenters [1-2]. In addition to the experimental work, computational method using ANSYS is used to predict the loading and response of such tubes where series of models was performed with elliptical ratios ranging from 0.5 to 1.5. Comparison of numerical and experimental forcedeflection response is presented. It has been found that with changing the elliptical ratio of the tube the loaddeflection curve change and this leads to change the energy absorbed by tube, the changing of the geometrical shape of the tube leads to change the volume of this tube and hence the mass. By reducing the elliptical ratio to 0.5 the tube will absorb 43.3% more energy and the system will gain 102% more in terms of specific energy, fig (2).

  11. The effect of the elliptical ratio on the tubular energy absorber subjected to lateral loading under quasistatic conditions

    Directory of Open Access Journals (Sweden)

    Olabi A.G.

    2010-06-01

    Full Text Available Tubular systems are proposed to be used as energy absorber because they are cheap and easy to manufacture; recently some researchers use the elliptical tube as energy absorber. In this work, the influence of elliptical ratio (r =D1/D2 on energy absorption capability and load carrying capacity and stress of mild steel elliptical tubes has been investigated both experimentally and numerically, the experimental analyses conducted by using Zwick Type BT1-FB050TN testing instrument. This machine is universal instrument for performing tensile test and compression test, Fig (1 and bending test and it is consider as an important machine for measuring the mechanical properties of materials and structures. The loading frame consist of two vertical lead screws, a moving crosshead and an upper and lower bearing plate which bears the load of the lead screws. The maximum capacity of the loading frame attached to the table mounted unit is 50KN In this study a velocity between 310mm/min was applied to the moving component to ensure the quasistatic conditions whereas velocities between 0.5mm/min and 15 mm/min have been used by many researchers to simulate the quasi-static lateral compression of tubes between various indenters [1-2]. In addition to the experimental work, computational method using ANSYS is used to predict the loading and response of such tubes where series of models was performed with elliptical ratios ranging from 0.5 to 1.5. Comparison of numerical and experimental forcedeflection response is presented. It has been found that with changing the elliptical ratio of the tube the loaddeflection curve change and this leads to change the energy absorbed by tube, the changing of the geometrical shape of the tube leads to change the volume of this tube and hence the mass. By reducing the elliptical ratio to 0.5 the tube will absorb 43.3% more energy and the system will gain 102% more in terms of specific energy, fig (2.

  12. Adaptation of coordination mechanisms to network structures

    Directory of Open Access Journals (Sweden)

    Herwig Mittermayer

    2008-12-01

    Full Text Available The coordination efficiency of Supply Chain Management is determined by two opposite poles: benefit from improved planning results and associated coordination cost. The centralization grade, applied coordination mechanisms and IT support have influence on both categories. Therefore three reference types are developed and subsequently detailed in business process models for different network structures. In a simulation study the performance of these organization forms are compared in a process plant network. Coordination benefit is observed if the planning mode is altered by means of a demand planning IT tool. Coordination cost is divided into structural and activity-dependent cost. The activity level rises when reactive planning iterations become necessary as a consequence of inconsistencies among planning levels. Some characteristic influence factors are considered to be a reason for uninfeasible planning. In this study the effect of capacity availability and stochastic machine downtimes is investigated in an uncertain demand situation. Results that if the network runs with high overcapacity, central planning is less likely to increase benefit enough to outweigh associated cost. Otherwise, if capacity constraints are crucial, a central planning mode is recommendable. When also unforeseen machine downtimes are low, the use of sophisticated IT tools is most profitable.

  13. AHTR Mechanical, Structural, And Neutronic Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Bradley, Eric Craig [ORNL; Ilas, Dan [ORNL; Qualls, A L [ORNL; Zaharia, Nathaniel M [ORNL

    2012-10-01

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming a commercial reactor class. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month 2-batch cycle with 9 weight-percent enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The present design intent is for used fuel to be stored inside of containment for at least 6 months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates multiple levels of radioactive material containment including fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents. Key building design elements include: 1) below grade siting to minimize vulnerability to aircraft impact, 2) multiple natural circulation decay heat rejection chimneys, 3) seismic

  14. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    Science.gov (United States)

    Aagaard, B.; Williams, C. A.; Knepley, M. G.

    2011-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.6) can be used for quasi-static viscoelastic modeling, dynamic spontaneous rupture and/or ground-motion modeling. Unstructured and structured finite-element discretizations allow for spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales in dynamic problems ranging from milliseconds to minutes and temporal scales in quasi-static problems ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries (Linux, Darwin, and Windows systems) and source code are available from geodynamics.org. PyLith uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current PyLith features include prescribed fault ruptures with multiple earthquakes and aseismic creep, spontaneous fault ruptures with a variety of fault constitutive models, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, and gravitational body forces. PyLith supports infinitesimal and small strain formulations for linear elastic rheologies, linear and generalized Maxwell viscoelastic rheologies, power-law viscoelastic rheologies, and Drucker-Prager elastoplastic rheologies. Current software development focuses on coupling quasi-static and dynamic simulations to resolve multi-scale deformation across the entire seismic cycle and the coupling of elasticity to heat and/or fluid flow.

  15. Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes

    Science.gov (United States)

    2016-12-30

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6794--16-9710 Quasi-Static Evolution , Catastrophe, and “Failed” Eruption of Solar Flux...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Quasi-Static Evolution , Catastrophe... evolution of solar flux ropes subject to slowly increasing magnetic energy, encompassing quasi-static evolution , “catastrophic” transition to an eruptive

  16. Modeling quasi-static magnetohydrodynamic turbulence with variable energy flux

    CERN Document Server

    Verma, Mahendra K

    2014-01-01

    In quasi-static MHD, experiments and numerical simulations reveal that the energy spectrum is steeper than Kolmogorov's $k^{-5/3}$ spectrum. To explain this observation, we construct turbulence models based on variable energy flux, which is caused by the Joule dissipation. In the first model, which is applicable to small interaction parameters, the energy spectrum is a power law, but with a spectral exponent steeper than -5/3. In the other limit of large interaction parameters, the second model predicts an exponential energy spectrum and flux. The model predictions are in good agreement with the numerical results.

  17. Quasi-Static Analysis of LaRC THUNDER Actuators

    Science.gov (United States)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  18. Quasi-static axisymmetric eversion hemispherical domes made of elastomers

    Science.gov (United States)

    Kabrits, Sergey A.; Kolpak, Eugeny P.

    2016-06-01

    The paper considers numerical solution for the problem of quasi-static axisymmetric eversion of a spherical shell (hemisphere) under action of external pressure. Results based on the general nonlinear theory of shells made of elastomers, proposed by K. F. Chernykh. It is used two models of shells based on the hypotheses of the Kirchhoff and Timoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. The article presents diagrams of equilibrium states of eversion hemispheres for both models as well as the shape of the shell at different points in the diagram.

  19. AHTR Mechanical, Structural, and Neutronic Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Varma, V.K.; Holcomb, D.E.; Peretz, F.J.; Bradley, E.C.; Ilas, D.; Qualls, A.L.; Zaharia, N.M.

    2012-09-15

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual level of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design

  20. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    Science.gov (United States)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  1. Quasi-static responses and variational principles in gradient plasticity

    Science.gov (United States)

    Nguyen, Quoc-Son

    2016-12-01

    Gradient models have been much discussed in the literature for the study of time-dependent or time-independent processes such as visco-plasticity, plasticity and damage. This paper is devoted to the theory of Standard Gradient Plasticity at small strain. A general and consistent mathematical description available for common time-independent behaviours is presented. Our attention is focussed on the derivation of general results such as the description of the governing equations for the global response and the derivation of related variational principles in terms of the energy and the dissipation potentials. It is shown that the quasi-static response under a loading path is a solution of an evolution variational inequality as in classical plasticity. The rate problem and the rate minimum principle are revisited. A time-discretization by the implicit scheme of the evolution equation leads to the increment problem. An increment of the response associated with a load increment is a solution of a variational inequality and satisfies also a minimum principle if the energy potential is convex. The increment minimum principle deals with stables solutions of the variational inequality. Some numerical methods are discussed in view of the numerical simulation of the quasi-static response.

  2. A Minimum Leakage Quasi-Static RAM Bitcell

    Directory of Open Access Journals (Sweden)

    Adam Teman

    2011-05-01

    Full Text Available As SRAMs continue to grow and comprise larger percentages of the area and power consumption in advanced systems, the need to minimize static currents becomes essential. This brief presents a novel 9T Quasi-Static RAM Bitcell that provides aggressive leakage reduction and high write margins. The quasi-static operation method of this cell, based on internal feedback and leakage ratios, minimizes static power while maintaining sufficient, albeit depleted, noise margins. This paper presents the concept of the novel cell, and discusses the stability of the cell under hold, read and write operations. The cell was implemented in a low-power 40 nm TSMC process, showing as much as a 12× reduction in leakage current at typical conditions, as compared to a standard 6T or 8T bitcell at the same supply voltage. The implemented cell showed full functionality under global and local process variations at nominal and low voltages, as low as 300 mV.

  3. Constitutive equations of basalt filament tows under quasi-static and high strain rate tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lvtao; Sun Baozhong [College of Textiles, Donghua University, Shanghai 201620 (China); Hu, Hong [Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hung Hom Kowloon (Hong Kong); Gu Bohong, E-mail: gubh@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Department of Textile Engineering, Zhongyuan Institute of Technology, Zhengzhou, Henan Province 450007 (China)

    2010-05-25

    The tensile properties of basalt filament tows were tested at quasi-static (0.001 s{sup -1}) and high strain rates (up to 3000 s{sup -1}) with MTS materials tester (MTS 810.23) and split Hopkinson tension bar (SHTB), respectively. Experimental results showed that the mechanical properties of the basalt filament tows were rather sensitive to strain rate. Specifically, the stiffness and failure stress of the basalt filament tows increased distinctly as the strain rate increased, while the failure strain decreased. From scanning electronic microscope (SEM) photographs of the fracture surface, it is indicated that the basalt filament tows failed in a more brittle mode and the fracture surface got more regular as the strain rate increases. The strength distributions of the basalt filament tows have been evaluated by a single Weibull distribution function. The curve predicted from the single Weibull distribution function was in good agreement with the experimental data points.

  4. Thermal-Mechanical Testing of Hypersonic Vehicle Structures

    Science.gov (United States)

    Hudson, Larry; Stephens, Craig

    2007-01-01

    A viewgraph presentation describing thermal-mechanical tests on the structures of hypersonic vehicles is shown. The topics include: 1) U.S. Laboratories for Hot Structures Testing; 2) NASA Dryden Flight Loads Laboratory; 3) Hot Structures Test Programs; 4) Typical Sequence for Hot Structures Testing; 5) Current Hot Structures Testing; and 6) Concluding Remarks.

  5. Optimal Gait for Bioinspired Climbing Robots Using Dry Adhesion:A Quasi-Static Investigation

    Institute of Scientific and Technical Information of China (English)

    Paolo Boscariol; Michael A.Henrey; Yasong Li; Carlo Menon

    2013-01-01

    Legged robots relying on dry adhesives for vertical climbing are required to preload their feet against the wall to increase contact surface area and consequently maximize adhesion force.Preloading a foot causes a redistribution of forces in the entire robot,including contact forces between the other feet and the wall.An inappropriate redistribution of these forces can cause irreparable detachment of the robot from the vertical surface.This paper investigates an optimal preloading and detaching strategy that minimizes energy consumption,while retaining safety,during locomotion on vertical surfaces.The gait of a six-legged robot is planned using a quasi-static model that takes into account both the structure of the robot and the characteristics of the adhesive material.The latter was modelled from experimental data collected for this paper.A constrained optimization routine is used,and its output is a sequence of optimal posture and motor torque set-points.

  6. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize t

  7. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  8. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen

    2016-05-01

    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  9. The Quasi-Static Electromagnetic Approximation for Weakly Conducting Media

    CERN Document Server

    Heubrandtner, T

    2002-01-01

    In a conducting dielectric charge and electric field decay with a time constant tau_R = \\varepsilon/\\sigma. In a weakly conducting medium, as e.g. glass or melamine-phenolic laminate in use in RPC's, this time is about 10^{-3} s; so it is long as compared to the time the charge cloud needs to move through the gap and to the time the signal needs to propagate through a dielectric to the electrode. A quasi-static theory to deal with transient phenomena in weakly conducting media has been developed in Haus and Melcher (1989), Fano, Chu and Adler (1963); it simplifies the analysis considerably since it requires only the solution of a scalar diffusion-type equations in place of the time-dependent Maxwell equations. This little known theory is applied to treat the generation of signals in simple models for chambers with such materials.

  10. Oscillatory athermal quasistatic deformation of a model glass

    Science.gov (United States)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2013-08-01

    We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is observed for large system sizes, without, however, affecting qualitative aspects of the transition.

  11. Quasistatic Modeling of Concentric Tube Robots with External Loads.

    Science.gov (United States)

    Lock, Jesse; Laing, Genevieve; Mahvash, Mohsen; Dupont, Pierre E

    2010-12-03

    Concentric tube robots are a subset of continuum robots constructed by combining pre-curved elastic tubes. As the tubes are rotated and translated with respect to each other, their curvatures interact elastically, enabling control of the robot's tip configuration as well as the curvature along its length. This technology is projected to be useful in many types of minimally invasive medical procedures. Because these robots are flexible by design, they deflect considerably when applying forces to the external environment. Thus, in contrast to rigid-link robots, their kinematic and static force models are coupled. This paper derives a multi-tube quasistatic model that relates tube rotations and translations together with externally applied loads to robot shape and tip configuration. The model can be applied in robot design, procedure planning as well as control. For validation, the multi-tube model is compared experimentally to a computationally-efficient single-tube approximate model.

  12. Damping mechanisms and models in structural dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...

  13. Localization from near-source quasi-static electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  14. Pre-fatigue influence on quasi-static tensile properties of Ti-6Al-4V in thin-sheet form

    Directory of Open Access Journals (Sweden)

    De Baere I.

    2010-06-01

    Full Text Available The response of engineering structures to loads is most often assessed without taking possible damage of the used material(s into account. However, it has already been proved that a preceding cyclic loading and the alteration of the microstructure it causes, can have a significant influence on the mechanical properties of steel grades and aluminium alloys , and hence on the behaviour of structural elements made of it. Ti-6Al4V, the most widely used titanium alloy, is often one of the materials chosen for cyclic loading applications where other solicitations are present too. Therefore, the influence of pre-fatigue on the quasi-static mechanical properties of Ti-6Al-4V in thin-sheet form is investigated. Tensile experiments are performed on samples subjected to different damage levels. The material does not show a clear dependence of its tensile properties with previous loading cycles, although the overall effect can be important for particular geometries.

  15. Research on new software compensation method of static and quasi-static errors for precision motion controller

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To reduce mechanical vibrations induced by big errors compensation, a new software compensation method based on an improved digital differential analyzer (DDA) interpolator for static and quasi-static errors of machine tools is proposed. Based on principle of traditional DDA interpolator, a DDA interpolator is divided into command generator and command analyzer. There are three types of errors, considering the difference of positions between compensation points and interpolation segments. According to the classification, errors are distributed evenly in data processing and compensated to certain interpolation segments in machining. On-line implementation results show that the proposed approach greatly improves positioning accuracy of computer numerical control (CNC) machine tools.

  16. TOPOLOGICAL STRUCTURE AND MOBILITY OF THE MECHANISMS USED IN CAR MECHANICAL JACKS

    Directory of Open Access Journals (Sweden)

    Viorica VELIȘCU

    2015-05-01

    Full Text Available This paper presents a structural analysis of the mechanism of high topological type jack - screw and translator rectilinear- patina and mobility mechanism analysis using various generally applicable formulas.

  17. Heme oxygenase: evolution, structure, and mechanism.

    Science.gov (United States)

    Wilks, Angela

    2002-08-01

    Heme oxygenase has evolved to carry out the oxidative cleavage of heme, a reaction essential in physiological processes as diverse as iron reutilization and cellular signaling in mammals, synthesis of essential light-harvesting pigments in cyanobacteria and higher plants, and the acquisition of iron by bacterial pathogens. In all of these processes, heme oxygenase has evolved a similar structural and mechanistic scaffold to function within seemingly diverse physiological pathways. The heme oxygenase reaction is catalytically distinct from that of other hemoproteins such as the cytochromes P450, peroxidases, and catalases, but shares a hemoprotein scaffold that has evolved to generate a distinct activated oxygen species. In the following review we discuss the evolution of the structural and functional properties of heme oxygenase in light of the recent crystal structures of the mammalian and bacterial enzymes.

  18. Topology optimization in structural and continuum mechanics

    CERN Document Server

    Lewiński, Tomasz

    2014-01-01

    The book covers new developments in structural topology optimization. Basic features and limitations of Michell’s truss theory, its extension to a broader class of support conditions, generalizations of truss topology optimization, and Michell continua are reviewed. For elastic bodies, the layout problems in linear elasticity are discussed and the method of relaxation by homogenization is outlined. The classical problem of free material design is shown to be reducible to a locking material problem, even in the multiload case. For structures subjected to dynamic loads, it is explained how they can be designed so that the structural eigenfrequencies of vibration are as far away as possible from a prescribed external excitation frequency (or a band of excitation frequencies) in order to avoid resonance phenomena with high vibration and noise levels. For diffusive and convective transport processes and multiphysics problems, applications of the density method are discussed. In order to take uncertainty in mater...

  19. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes

    1999-01-01

    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  20. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes

    1999-01-01

    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  1. Structural hierarchy governs fibrin gel mechanics.

    Science.gov (United States)

    Piechocka, Izabela K; Bacabac, Rommel G; Potters, Max; Mackintosh, Fred C; Koenderink, Gijsje H

    2010-05-19

    Fibrin gels are responsible for the mechanical strength of blood clots, which are among the most resilient protein materials in nature. Here we investigate the physical origin of this mechanical behavior by performing rheology measurements on reconstituted fibrin gels. We find that increasing levels of shear strain induce a succession of distinct elastic responses that reflect stretching processes on different length scales. We present a theoretical model that explains these observations in terms of the unique hierarchical architecture of the fibers. The fibers are bundles of semiflexible protofibrils that are loosely connected by flexible linker chains. This architecture makes the fibers 100-fold more flexible to bending than anticipated based on their large diameter. Moreover, in contrast with other biopolymers, fibrin fibers intrinsically stiffen when stretched. The resulting hierarchy of elastic regimes explains the incredible resilience of fibrin clots against large deformations.

  2. CRISPR-Cas9 Structures and Mechanisms.

    Science.gov (United States)

    Jiang, Fuguo; Doudna, Jennifer A

    2017-05-22

    Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.

  3. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the

  4. Will Finite Elements Replace Structural Mechanics?

    Science.gov (United States)

    Ojalvo, I. U.

    1984-01-01

    This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.

  5. Structure and mechanism of rhomboid protease.

    Science.gov (United States)

    Ha, Ya; Akiyama, Yoshinori; Xue, Yi

    2013-05-31

    Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases.

  6. Thesaurus of terms for information on mechanics of structural failure

    Science.gov (United States)

    Carpenter, J. L., Jr.; Moya, N.

    1973-01-01

    A Thesaurus of approximately 700 subject terms used to describe the six problem areas in the mechanics of structural failure is presented. The initial criteria for the selection of terms are their significance and frequency of use in the literature describing the mechanics of structural failure. The purpose of the Thesaurus is to provide the Aerospace Safety Research and Data Institute a list of key works and identifiers that afford effective retrieval of information regarding failure modes and mechanisms for aerospace structures. The Thesaurus includes both a conventional listing of subject terms and a Key Words In Context (KWIC) listing.

  7. Optimum performance of explosives in a quasistatic detonation cycle

    Science.gov (United States)

    Baker, Ernest L.; Stiel, Leonard I.

    2017-01-01

    Analyses were conducted on the behavior of explosives in a quasistatic detonation cycle. This type of cycle has been proposed for the determination of the maximum work that can be performed by the explosive. The Jaguar thermochemical equilibrium program enabled the direct analyses of explosive performance at the various steps in the detonation cycle. In all cases the explosive is initially detonated to a point on the Hugoniot curve for the reaction products. The maximum useful work that can be obtained from the explosive is equal to the P-V work on the isentrope for expansion after detonation to atmospheric pressure, minus one-half the square of the particle velocity at the detonation point. This quantity is calculated form the internal energy of the explosive at the initial and final atmospheric temperatures. Cycle efficiencies (net work/ heat added) are also calculated with these procedures. For several explosives including TNT, RDX, and aluminized compositions, maximum work effects were established through the Jaguar calculations for Hugoniot points corresponding to C-J, overdriven, underdriven and constant volume detonations. Detonation to the C-J point is found to result in the maximum net work in all cases.

  8. Celestial Mechanics, Conformal Structures, and Gravitational Waves

    CERN Document Server

    Duval, C; Horvathy, P

    1991-01-01

    The equations of motion for $N$ non-relativistic particles attracting according to Newton's law are shown to correspond to the equations for null geodesics in a $(3N+2)$-dimensional Lorentzian, Ricci-flat, spacetime with a covariantly constant null vector. Such a spacetime admits a Bargmann structure and corresponds physically to a generalized pp-wave. Bargmann electromagnetism in five dimensions comprises the two Galilean electro-magnetic theories (Le Bellac and L\\'evy-Leblond). At the quantum level, the $N$-body Schr\\"odinger equation retains the form of a massless wave equation. We exploit the conformal symmetries of such spacetimes to discuss some properties of the Newtonian $N$-body problem: homographic solutions, the virial theorem, Kepler's third law, the Lagrange-Laplace-Runge-Lenz vector arising from three conformal Killing 2-tensors, and motions under inverse square law forces with a gravitational constant $G(t)$ varying inversely as time (Dirac). The latter problem is reduced to one with time indep...

  9. Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform

    Science.gov (United States)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2006-02-01

    We present a multiplexed fibre Fizeau interferometer (FFI) and fibre Bragg grating (FBG) sensor system for simultaneous measurement of quasi-static strain and temperature. A combined spatial-frequency and wavelength- division multiplexing scheme is employed to multiplex the FFI and FBG sensors. A demodulation technique based on the discrete wavelet transform with signal processing enhancements is used to determine the measurand- induced physical changes of the sensors. The noise associated with the sensor signal is reduced by the block-level-thresholding wavelet denoising method, which is applied via the demodulation technique. This sensor system yields a high accuracy and resolution, and low crosstalk. It is well suited for long-term quasi-static measurements, especially for the structural health monitoring of large-scale structures.

  10. Micromechanical Study of fabric evolution in quasi-static deformation of granular materials

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    2012-01-01

    In micromechanical studies of granular materials, relations are investigated between macro-level, continuum characteristics and micro-level, (inter) particle characteristics. For quasi-static deformation of granular materials, the fabric tensor is an important micromechanical characteristic that des

  11. Challenging the in-vivo assessment of biomechanical properties of the uterine cervix: A critical analysis of ultrasound based quasi-static procedures.

    Science.gov (United States)

    Maurer, M M; Badir, S; Pensalfini, M; Bajka, M; Abitabile, P; Zimmermann, R; Mazza, E

    2015-06-25

    Measuring the stiffness of the uterine cervix might be useful in the prediction of preterm delivery, a still unsolved health issue of global dimensions. Recently, a number of clinical studies have addressed this topic, proposing quantitative methods for the assessment of the mechanical properties of the cervix. Quasi-static elastography, maximum compressibility using ultrasound and aspiration tests have been applied for this purpose. The results obtained with the different methods seem to provide contradictory information about the physiologic development of cervical stiffness during pregnancy. Simulations and experiments were performed in order to rationalize the findings obtained with ultrasound based, quasi-static procedures. The experimental and computational results clearly illustrate that standardization of quasi-static elastography leads to repeatable strain values, but for different loading forces. Since force cannot be controlled, this current approach does not allow the distinction between a globally soft and stiff cervix. It is further shown that introducing a reference elastomer into the elastography measurement might overcome the problem of force standardization, but a careful mechanical analysis is required to obtain reliable stiffness values for cervical tissue. In contrast, the maximum compressibility procedure leads to a repeatable, semi-quantitative assessment of cervical consistency, due to the nonlinear nature of the mechanical behavior of cervical tissue. The evolution of cervical stiffness in pregnancy obtained with this procedure is in line with data from aspiration tests.

  12. 基于材料各向异性的整体梁裂纹转折分析%Analyzing Crack Turn of Wing-Beam Integrated Structure Based on Anisotropic Mechanical Properties of Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    殷之平; 郭今; 黄其青

    2012-01-01

    Sections 1 through 3 of the full paper explain the analysis mentioned in the title. Their core consists of: (1) taking into consideration the differences among mechanical properties of aluminum alloy in the directions of S-T-L, we perform the quasi-static simulation of the crack propagation path of the wing-beam integrated structure with Abaqus/Explicit and its VUMAT subroutine interface; (2) we analyze the quasi-static crack propagation characteristics of the wing-beam integrated structure under residual strength test and then compare the simulation results as shown in Figs. 5, 6 and 7 with the results of experiments performed by us, given in Fig. 2. The comparison results show preliminarily that, in designing a wing-beam integrated structure and analyzing a crack turn with the anisotrop-ic yielding standard, the anisotropie mechanical properties must be considered because it is these properties that cause the 90° turn near the rib of the wing-beam integrated structure under residual strength test.%考虑铝合金材料S-T-L方向材料性能的差异,运用Abaqus/Explicit及其子程序VUMAT进行整体翼梁稳定裂纹扩展路径的准静态模拟,研究了整体翼梁结构在进行剩余强度试验时准静态裂纹扩展特性,并与试验结果进行对比.分析结果显示,考虑材料各向异性损伤失效的材料模型可以很好的描述准静态裂纹扩展,并且可以较好的模拟整体梁裂纹在腹板45°转折和筋条附近90°转折.

  13. The Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics.

    Directory of Open Access Journals (Sweden)

    Meagan M Gilbert

    Full Text Available The ostrich Struthio camelus reaches the highest speeds of any extant biped, and has been an extraordinary subject for studies of soft-tissue anatomy and dynamics of locomotion. An elongate tarsometatarsus in adult ostriches contributes to their speed. The internal osteology of the tarsometatarsus, and its mechanical response to forces of running, are potentially revealing about ostrich foot function.Computed tomography (CT reveals anatomy and bone densities in tarsometatarsi of an adult and a young juvenile ostrich. A finite element (FE model for the adult was constructed with properties of compact and cancellous bone where these respective tissues predominate in the original specimen. The model was subjected to a quasi-static analysis under the midstance ground reaction and muscular forces of a fast run. Anatomy-Metatarsals are divided proximally and distally and unify around a single internal cavity in most adult tarsometatarsus shafts, but the juvenile retains an internal three-part division of metatarsals throughout the element. The juvenile has a sparsely ossified hypotarsus for insertion of the m. fibularis longus, as part of a proximally separate third metatarsal. Bone is denser in all regions of the adult tarsometatarsus, with cancellous bone concentrated at proximal and distal articulations, and highly dense compact bone throughout the shaft. Biomechanics-FE simulations show stress and strain are much greater at midshaft than at force applications, suggesting that shaft bending is the most important stressor of the tarsometatarsus. Contraction of digital flexors, inducing a posterior force at the TMT distal condyles, likely reduces buildup of tensile stresses in the bone by inducing compression at these locations, and counteracts bending loads. Safety factors are high for von Mises stress, consistent with faster running speeds known for ostriches.High safety factors suggest that bone densities and anatomy of the ostrich tarsometatarsus

  14. Reliability of Mechanical Structures with Considering Seismic Loading

    Directory of Open Access Journals (Sweden)

    Drahomír RYCHECKÝ

    2013-06-01

    Full Text Available The paper deals with summarization of methods used in seismic response evaluation of mechanical structures. The seismic evaluation of structures is inseparable condition in the design of hazardous facilities such as nuclear power plants. Based on demanded results, different methods can be used. For instance, when the anchorage of the structure is determinative, the equivalent static method (ESM can be advantageously used. To evaluate complex seismic response of a large mechanical structure the ESM is un-sufficient and e.g. for steady-state response of the structure the response spectrum method (RSM can be employed [3]. The RSM combines the response based on known mode shapes. Applying direct time-history (accelerogram is also possibility but time consuming. The paper contains definition of seismic safety factor for determining safety reserve of structures. All methods are applied on a sample example. Obtained results of each method are compared and discussed.

  15. Structural color mechanism in the Papilio blumei butterfly.

    Science.gov (United States)

    Lo, Mei-Ling; Lee, Cheng-Chung

    2014-02-01

    The structural color found in biological systems has complicated nanostructure. It is very important to determine its color mechanism. In this study, the 2D photonic crystal structures of the Papilio blumei butterfly were constructed, and the corresponding reflectance spectra were simulated by the finite-difference time-domain method. The structural color of the butterfly depends on the incident angle of light, film thickness, film material (film refractive index), and the size of the air hole (effective refractive index). Analysis of simulations can help us understand the hue, brightness, and saturation of structural color on the butterfly wing. As a result, the analysis can help us fabricate expected structural color.

  16. Computational structural mechanics methods research using an evolving framework

    Science.gov (United States)

    Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.

    1990-01-01

    Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.

  17. Structural and mechanical properties of mandibular condylar bone.

    Science.gov (United States)

    van Eijden, T M G J; van der Helm, P N; van Ruijven, L J; Mulder, L

    2006-01-01

    The trabecular bone of the mandibular condyle is structurally anisotropic and heterogeneous. We hypothesized that its apparent elastic moduli are also anisotropic and heterogeneous, and depend on trabecular density and orientation. Eleven condyles were scanned with a micro-CT system. Volumes of interest were selected for the construction of finite element models. We simulated compressive and shear tests to determine the principal mechanical directions and the apparent elastic moduli. Compressive moduli were relatively large in directions acting in the sagittal plane, and small in the mediolateral direction. The degree of mechanical anisotropy ranged from 4.7 to 10.8. Shear moduli were largest in the sagittal plane and smallest in the transverse plane. The magnitudes of the moduli varied with the condylar region and were proportional to the bone volume fraction. Furthermore, principal mechanical direction correlated significantly with principal structural direction. It was concluded that variation in trabecular structure coincides with variation in apparent mechanical properties.

  18. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Yonghao; Hess, Dennis W [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100 (United States); Liu Yan; Wong, C P, E-mail: dennis.hess@chbe.gatech.edu, E-mail: cp.wong@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245 (United States)

    2010-04-16

    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.

  19. Advances in structural mechanics of Chinese ancient architectures

    Institute of Scientific and Technical Information of China (English)

    Maohong YU; Yoshiya ODA; Dongping FANG; Junhai ZHAO

    2008-01-01

    Chinese ancient architectures are valuable heritage of ancient culture of China. Many historical building have been preserved up to now. The researches on the structural mechanics of ancient architectures show the different aspects of structure and mechanics. Systematical studies on the structural mechanics of ancient architectures have been carried out at Xi'an Jiaotong University since 1982. It is related with the need of repair of some national preservation relics in Xi'an. These studies include: 1) Ancient wooden structures including three national preservation relics Arrow Tower at North City Gate, City Tower at East City Gate, and Baogao Temple in Ningbao, Zhejiang province. 2) Ancient tall masonry building, the Big Goose Pagoda and Small Goose Pagoda in Xi'an. 3) Mechanical characteristics of ancient soil under foundation and city wall; the influence of caves in and under the ancient City Wall on the stability of the wall. 4) The typical Chinese ancient building at the center of city: the Bell Tower and Drum tower. 5) The behavior of Dou-Gong and Joggle joint of Chinese ancient wooden structure. 6) The mechanical behavior of ancient soils under complex stress state. A new systematical strength theory, the unified strength theory, is used to analyze the stability of ancient city wall in Xi'an and foundation of tall pagoda built in Tang dynasty. These researches also concern differential settlements of Arrow Tower and resistance to earthquake of these historical architecture heritages. Some other studies are also introduced. This paper gives a summary of these researches. Preservation and research are nowadays an essential requirement for the famous monuments, buildings, towers and others. Our society is more and more conscious of this necessity, which involves increasing activities of restoration, and then sometimes also of repair, mechanical strengthening and seismic retrofitting. Many historical buildings have in fact problems of structural strength and

  20. Strength design of compliant towers including dynamic effects using an equivalent quasi-static design wave procedure

    Energy Technology Data Exchange (ETDEWEB)

    Vugts, J.H.; Dob, S.L.; Harland, L.A. [Delft Univ. of Technology, Civil Engineering Faculty, Delft (Netherlands)

    1997-12-31

    While there is great experience with the deterministic and quasi-static design wave method for the design of bottom founded offshore structures, the determination and inclusion of random dynamic effects in the design process is far less developed and only occasionally needed. An attractive procedure sometimes used is to determine an `inertial load set` that accounts for the effects of the dynamic response and to add this to the applied loading, after which the same design wave process could continue to be used. This engineering method is described and critically reviewed, after which it is applied to a conceptual design of a compliant tower in 600 m water depth West of the Shetlands Isles. This is a demanding test for the method and to verify the results these are compared with the results of random time domain simulations which serve as a reference. An ``inertial load set`` should only be expected to give satisfactory results for local responses when these remain to be governed by a predominant quasi-static contribution. (Author)

  1. Discrete element modelling of the quasi-static uniaxial compression of individual infant formula agglomerates

    Institute of Scientific and Technical Information of China (English)

    Kevin J. Hanley; Catherine O'Sullivan; Edmond P. Byrne; Kevin Cronin

    2012-01-01

    Infant formula is usually produced in an agglomerated powder form.These agglomerates are subjected to many transient forces following their manufacture.These can be difficult to quantify experimentally because of their small magnitudes and short durations.Numerical models have the potential to address this gap in the experimental data.The objective of the research described here was to calibrate a discrete element model for these agglomerates using experimental data obtained for quasi-static loading,and to use this model to study the mechanics of the particle response in detail.The Taguchi method was previously proposed as a viable calibration approach for discrete element models.In this work,the method was assessed for calibration of the model parameters (e.g.,bond stiffnesses and strengths) considering three responses: the force at failure,strain at failure and agglomerate stiffness.The Weibull moduli for the simulation results and the experimental data were almost identical following calibration and the 37% characteristic stresses were similar.An analysis of the energy terms in the model provided useful insight into the model response.The bond energy and the normal force exerted on the platens were strongly correlated,and bond breakage events coincided with the highest energy dissipation rates.

  2. Quasi-static characterisation and impact testing of auxetic foam for sports safety applications

    Science.gov (United States)

    Duncan, Olly; Foster, Leon; Senior, Terry; Alderson, Andrew; Allen, Tom

    2016-05-01

    This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo-mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress-strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ˜10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required.

  3. FEMSA: A Finite Element Simulation Tool for Quasi-static Seismic Deformation Modeling

    Science.gov (United States)

    Volpe, M.; Melini, D.; Piersanti, A.

    2006-12-01

    Modeling postseismic deformation is an increasingly valuable tool in earthquake seismology. In particular, the Finite Element (FE) numerical method allows accurate modeling of complex faulting geometry, inhomogeneous materials and realistic viscous flow, appearing an excellent tool to investigate a lot of specific phenomena related with earthquakes. We developed a FE simulation tool, FEMSA (Finite Element Modeling for Seismic Applications), to model quasi-static deformation generated by faulting sources. The approach allows to automatically implement arbitrary faulting sources and calculate displacement and stress fields induced by slip on the fault. The package makes use of the capabilities of CalculiX, a non commercial FE software designed to solve field problems, and is freely distributed. The main advantages of the method are: reliability, wide diffusion and flexibility, allowing geometrical and/or rheological heterogeneities to be included in a mechanical analysis. We carried out an optimization study on boundary conditions as well as a series of benchmark simulations on test cases and we also verified the capability of our approach to face the presence of 3D heterogeneities within the domain. Here, we present our package and show some simple examples of application.

  4. A translation micromirror with large quasi-static displacement and high surface quality

    Science.gov (United States)

    Xue, Yuan; He, Siyuan

    2017-01-01

    A large displacement with high surface quality translation micromirror is presented. The micromirror consists of a magnetic actuator and a mirror plate. The actuator and the mirror plate are fabricated separately using two processes and then bonded together. The actuator consists of a moving film which is a 20 µm thick nickel film fabricated by MetalMUMPs and a solenoid located underneath the moving film. The moving film is designed to curve up through the residual stress gradient in the nickel film and a curve-up mechanism which includes four trapezoidal plates and anchoring springs. The mirror plate is simply diced from a polished silicon wafer and coated with a metal thin film. The mirror plate is bonded onto the central ring of the moving film. A solenoid attracts the moving film along with the mirror plate downwards to realize translation. A quasi-static displacement of 123 µm is achieved at a driving current of 400 mA. A high mirror surface quality is realized, e.g. 15.6 m of curvature radius and 2 nm surface roughness.

  5. Structural orientation dependent sub-lamellar bone mechanics.

    Science.gov (United States)

    Jimenez-Palomar, Ines; Shipov, Anna; Shahar, Ron; Barber, Asa H

    2015-12-01

    The lamellar unit is a critical component in defining the overall mechanical properties of bone. In this paper, micro-beams of bone with dimensions comparable to the lamellar unit were fabricated using focused ion beam (FIB) microscopy and mechanically tested in bending to failure using atomic force microscopy (AFM). A variation in the mechanical properties, including elastic modulus, strength and work to fracture of the micro-beams was observed and related to the collagen fibril orientation inferred from back-scattered scanning electron microscopy (SEM) imaging. Established mechanical models were further applied to describe the relationship between collagen fibril orientation and mechanical behaviour of the lamellar unit. Our results highlight the ability to measure mechanical properties of discrete bone volumes directly and correlate with structural orientation of collagen fibrils.

  6. Cosmological Perturbations and Quasi-Static Assumption in $f(R)$ Theories

    CERN Document Server

    Chiu, Mu-Chen; Shu, Chenggang; Tu, Hong

    2015-01-01

    $f(R)$ gravity is one of the simplest theories of modified gravity to explain the accelerated cosmic expansion. Although it is usually assumed that the quasi-Newtonian approach for cosmic perturbations is good enough to describe the evolution of large scale structure in $f(R)$ models, some studies have suggested that this method is not valid for all $f(R)$ models. Here, we show that in the matter-dominated era, the pressure and shear equations alone, which can be recast into four first-order equations to solve for cosmological perturbations exactly, are sufficient to solve for the Newtonian potential, $\\Psi$, and the curvature potential, $\\Phi$. Based on these two equations, we are able to clarify how the exact linear perturbations fit into different limits. We find that in the subhorizon limit, the so called quasi-static assumption plays no role in reducing the exact linear perturbations in any viable $f(R)$ gravity. Our findings also disagree with previous studies where we find little difference between our...

  7. 温度对Zr-45Ti-5Al-3V合金准静态力学性能的影响%INFLUENCE OF TEMPERATURE ON QUASI-STATIC MECHANICAL PROPERTIES OF Zr-45Ti-5Al-3V ALLOY

    Institute of Scientific and Technical Information of China (English)

    刘丁铭; 张波; 王杰; 王爱民; 王沿东; 张海峰; 胡壮麒

    2014-01-01

    在-100~200℃范围内不同应变速率(10-4,10-3和10-2s-1)下利用准静态拉伸和压缩实验研究了温度对Zr-45Ti-5Al-3V合金力学性能的影响.结果表明,在拉伸条件下,Zr-45Ti-5Al-3V合金具有较高的屈服强度和抗拉强度,室温时其屈服强度超过1355 MPa,但延伸率较小.随着温度的升高,合金的屈服强度和抗拉强度均下降,而塑性变形量则上升.在压缩条件下,温度对屈服强度的影响与拉伸时一致,而塑性变形量和断裂强度均在室温时最高,其他温度下变化规律与拉伸时一致.应变速率对合金的力学性能影响不大.%Zr alloys are widely used in pressurized-water reactors as fuel cladding materials due to their low neutron absorption cross section and excellent radiation resistance.Aside from the aforementioned properties,Zr alloys have high strength,relative low density and many other excellent physical and chemical properties that make them promising structural materials used in the aerospace environment.Zr-45Ti-5Al-3V alloy is a high strength zirconium alloy which is newly developed for use in aerospace environment.The temperature in space environment can change from-100 ℃ to more than 100 ℃,so it is necessary to study the mechanical behavior of Zr-45Ti-5Al-3V alloy under different temperatures.In this work,mechanical properties of Zr-45Ti-5Al-3V alloy under different temperatures (-100,25,100 and 200 ℃) and strain rates (10-4,10-3 and 10-2 s-1) were investigated.The microstructure of the Zr-45Ti-5Al-3V alloy is characterized by SEM and XRD.It is shown that the alloy is comprised of two phases:a lath-like α phase with hcp structure is distributed uniformly in the matrix comprised of a β phase with bcc structure.Quasi-static mechanical properties of Zr-45Ti-5Al-3V alloy were studied in temperature range of-100~200 ℃ under various strain rates (10-4,10-3 and 10-2 s-1) using the Instron 5528 electric universal material testing machine.The results

  8. Register of experts for information on mechanics of structural failure

    Science.gov (United States)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1975-01-01

    This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  9. Novel mechanisms that regulate clot structure/function.

    Science.gov (United States)

    Ariëns, Robert A S

    2016-05-01

    The structure and function of the blood clot has been associated with altered risk of thrombosis. Dense fibrin structures with small pores increase the risk of thrombosis, and have major functional consequences by increasing the resistance to fibrinolysis and altering the visco-elastic properties of the clot. However, while the structural changes to the overall fibrin network have been extensively characterised, little is known regarding the intrafibrillar structure of fibrin, the way protofibrils are arranged inside the fibrin fibers and the functional consequences of this. This brief paper aims to review recent findings regarding novel mechanisms that regulate fibrin intrafibrillar structure, including the degree of protofibril packing, their functional consequences, and the effects of FXIII activation on clot structure and thrombosis. It is concluded that fibrin intrafibrillar structure represents a major novel mechanism that influences clot structure and stability. Future studies are required to investigate the role of fibrin intrafibrillar structure in the functional characteristics of the blood clot, and in diseases of bleeding and thrombosis.

  10. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.

    Science.gov (United States)

    Wang, Yunjie; Zeinali-Davarani, Shahrokh; Zhang, Yanhang

    2016-08-16

    Considering the organization and engagement behavior of different extracellular matrix (ECM) constituents in the medial and adventitial layer of the arterial wall, in this study, we proposed a new constitutive model of ECM mechanics that considers the distinct structural and mechanical contributions of medial elastin, medial collagen, and adventitial collagen, to incorporate the constituent-specific fiber orientation and the sequential fiber engagement in arterial mechanics. Planar biaxial tensile testing method was used to characterize the orthotropic and hyperelastic behavior of porcine thoracic aorta. Fiber distribution functions of medial elastin, medial collagen, and adventitial collagen were incorporated into the constitutive model. Considering the sequential engagement of ECM constituents in arterial mechanics, a recruitment density function was incorporated into the model to capture the delayed engagement of adventitial collagen. A freely jointed chain model was used to capture the mechanical behavior of elastin and collagen at the fiber level. The tissue-level ECM mechanics was obtained by incorporating fiber distribution, engagement, and elastin and collagen content. The multi-scale constitutive model considering the structural and mechanical contributions of the three major ECM constituents allows us to directly incorporate information obtained from quantitative multi-photon imaging and analysis, and biochemical assay for the prediction of tissue-level mechanical response. Moreover, the model shows promises in fitting and predicting with a small set of material parameters, which has physical meanings and can be related to the structure of the ECM.

  11. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  12. Class I Microcins: Their Structures, Activities, and Mechanisms of Resistance

    Science.gov (United States)

    Severinov, Konstantin; Semenova, Ekaterina; Kazakov, Teymur

    Microcin J25, microcin B17, and microcin C7-C51 are the three known members of class I posttranslationally modified microcins (heavily posttranslationally modified antibacterial peptides produced by Enterobacteriaceae with molecular weights of less than 5 kDa). The three microcins are unrelated to each other; they have structures that are highly atypical for ribosomally synthesized peptides and target essential molecular machines that are validated drug targets. In this chapter, available data on mechanisms of action, structure-activity relationships, and immunity mechanisms for class I microcins and related compounds are discussed.

  13. Bibliography of information on mechanics of structural failure

    Science.gov (United States)

    Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.

    1973-01-01

    A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.

  14. Structural and mechanical stability of rare-earth diborides

    Institute of Scientific and Technical Information of China (English)

    Haci Ozisik; Engin Deligoz; Kemal Colakoglu; Gokhan Surucu

    2013-01-01

    Structural and mechanical properties of several rare-earth diborides were systematically investigated by first principles calculations.Specifically,we studied XB2,where X =Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,and Lu in the hexagonal A1B2,ReB2,and orthorhombic OsB2-type structures.The lattice parameters,bulk modulus,bond distances,second order elastic constants,and related polycrystalline elastic moduli (e.g.,shear modulus,Young's modulus,Poisson's ratio,Debye temperature,sound velocities) were calculated.Our results indicate that these compounds are mechanically stable in the considered structures,and according to "Chen's method",the predicted Vickers hardness shows that they are hard materials in A1B2-and OsB2-type structures.

  15. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    Directory of Open Access Journals (Sweden)

    Verleysen P.

    2012-08-01

    Full Text Available It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  16. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    Science.gov (United States)

    Galán López, J.; Verleysen, P.; Degrieck, J.

    2012-08-01

    It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  17. Development of mechanical structure design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang [and others

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme.

  18. Quantum Mechanical Square Root Speedup in a Structured Search Problem

    CERN Document Server

    Farhi, E; Farhi, Edward; Gutmann, Sam

    1997-01-01

    An unstructured search for one item out of N can be performed quantum mechanically in time of order square root of N whereas classically this requires of order N steps. This raises the question of whether square root speedup persists in problems with more structure. In this note we focus on one example of a structured problem and find a quantum algorithm which takes time of order the square root of the classical time.

  19. Protein mechanics: a route from structure to function

    Indian Academy of Sciences (India)

    Richard Lavery; Sophie Sacquin-Mora

    2007-08-01

    In order to better understand the mechanical properties of proteins, we have developed simulation tools which enable these properties to be analysed on a residue-by-residue basis. Although these calculations are relatively expensive with all-atom protein models, good results can be obtained much faster using coarse-grained approaches. The results show that proteins are surprisingly heterogeneous from a mechanical point of view and that functionally important residues often exhibit unusual mechanical behaviour. This finding offers a novel means for detecting functional sites and also potentially provides a route for understanding the links between structure and function in more general terms.

  20. Optimization of mechanical structures using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Victor C.; Schirru, Roberto, E-mail: victor.coppo.leite@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (LMP/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoracao de Processos

    2015-07-01

    Several optimization problems are dealed with the particle swarm optimization (PSO) algorithm, there is a wide kind of optimization problems, it may be applications related to logistics or the reload of nuclear reactors. This paper discusses the use of the PSO in the treatment of problems related to mechanical structure optimization. The geometry and material characteristics of mechanical components are important for the proper functioning and performance of the systems were they are applied, particularly to the nuclear field. Calculations related to mechanical aspects are all made using ANSYS, while the PSO is programed in MATLAB. (author)

  1. Stresses and Displacements in Steel-Lined Pressure Tunnels and Shafts in Anisotropic Rock Under Quasi-Static Internal Water Pressure

    Science.gov (United States)

    Pachoud, Alexandre J.; Schleiss, Anton J.

    2016-04-01

    Steel-lined pressure tunnels and shafts are constructed to convey water from reservoirs to hydroelectric power plants. They are multilayer structures made of a steel liner, a cracked backfill concrete layer, a cracked or loosened near-field rock zone and a sound far-field rock zone. Designers often assume isotropic behavior of the far-field rock, considering the most unfavorable rock mass elastic modulus measured in situ, and a quasi-static internal water pressure. Such a conventional model is thus axisymmetrical and has an analytical solution for stresses and displacements. However, rock masses often have an anisotropic behavior and such isotropic assumption is usually conservative in terms of quasi-static maximum stresses in the steel liner. In this work, the stresses and displacements in steel-lined pressure tunnels and shafts in anisotropic rock mass are studied by means of the finite element method. A quasi-static internal water pressure is considered. The materials are considered linear elastic, and tied contact is assumed between the layers. The constitutive models used for the rock mass and the cracked layers are presented and the practical ranges of variation of the parameters are discussed. An extensive systematic parametric study is performed and stresses and displacements in the steel liner and in the far-field rock mass are presented. Finally, correction factors are derived to be included in the axisymmetrical solution which allow a rapid estimate of the maximum stresses in the steel liners of pressure tunnels and shafts in anisotropic rock.

  2. Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2013-05-29

    The final step in the biosynthesis of the 22nd genetically encoded amino acid, pyrrolysine, is catalyzed by PylD, a structurally and mechanistically unique dehydrogenase. This catalyzed reaction includes an induced-fit mechanism achieved by major structural rearrangements of the N-terminal helix upon substrate binding. Different steps of the reaction trajectory are visualized by complex structures of PylD with substrate and product. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Locking mechanisms in degree-4 vertex origami structures

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.

    2016-04-01

    Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.

  4. Office of Naval Research: Solid and Structural Mechanics

    DEFF Research Database (Denmark)

    Belytschenko, T.; Murphy, W.P.; Bernitsas, M.M.;

    1997-01-01

    The goal of this report is to pursue a new paradigm for basic research in Solid and Structural Mechanics in order to serve the needs of the Navy of the 21st century. The framework for the report was established through meetings of the committee with Navy engineers and Office of Naval Research...

  5. Soft Time-Suboptimal Controlling Structure for Mechanical Systems

    DEFF Research Database (Denmark)

    Kulczycki, Piotr; Wisniewski, Rafal; Kowalski, Piotr

    2004-01-01

    The paper presents conception of a soft control structure based on the time-optimal approach. Its parameters are selected in accordance with the rules of the statistical decision theory and additionally it allows to eliminate rapid changes in control values. The object is a basic mechanical system...

  6. Quasi-static and dynamical bending of a cantilever poroelastic beam

    Institute of Scientific and Technical Information of China (English)

    YANG Yi; LI Li; YANG Xiao

    2009-01-01

    Based on the theory of porous media, the quasi-static and dynamical bending of a cantilever poroelastic beam subjected to a step load at its free end is investigated, and the influences of its permeability on bending deformation is examined.The initial boundary value problems for dynamical and quasi-static responses are solved with the Laplace transform technique,and the deflections, the bending moments of the solid skeleton and the equivalent couples of the pore fluid pressure are shown in figures. It is shown that the dynamical and quasi-static behavior of the saturated poroelastic beam depends closely on the permeability conditions at the beam ends. Under the different permeability conditions, the deflections of the beam may oscillate or not. The Mandel-Cryer effect also exists in liquid-saturated poroelastic beams.

  7. Resonant Acceleration of Electrons in Combined Self-Consistent Quasistatic Electromagnetic Fields and Intense Laser Fields

    Institute of Scientific and Technical Information of China (English)

    CHEN Fen-Ce; HE Xian-Tu; SHENG Zheng-Mao; QIAO Bin; ZHANG Hong

    2006-01-01

    @@ Using the single electron model, the acceleration of electrons in combined circularly polarized intense laser fields and the spontaneous quasistatic fields (including axial and azimuthal magnetic fields, the axial and transverse electric fields) produced in intense laser plasma interaction is investigated analytically and numerically by fitting the proper parameters of the quasistatic fields based on the data from the experiment and numerical calculation.A new resonant condition is given. It is found that the resonance acceleration of electron depends not only on laser field, but also on the bounce frequency oscillating in the quasistatic magnetic field and electric field. The net energy gained by electron does not increase monotonously with axial electric field, but there are some optimal axial electric fields.

  8. An experimental method of measuring the quasi-static and dynamic confined behaviour of PMMA

    Directory of Open Access Journals (Sweden)

    Siad L.

    2010-06-01

    Full Text Available A testing device is presented for the experimental study of the confined behaviour of PMMA in compression under quasi-static loading or at high strain-rates. The constitutive relation of the material ring (allowing to confine the PMMA being known, transverse gauges glued on its lateral surface allow for the measurement of the lateral confining pressure. The hydrostatic pressure and the Mises stress may be computed. Quasi-static and dynamic tests performed in a strain-rate range of 1e-3/s 1e3/s are processed with the method and compared to results of unconfined compression tests. It is found that the compressive behaviour of PMMA is weakly influenced by the level of pressure and much more sensitive to strain-rate: an elastic brittle behaviour is observed at high strain-rates in unconfined or confined conditions whereas elastoplastic behaviour is noted under quasi-static loading.

  9. A Linearization Algorithm of the Redundant Mechanical Structures

    Directory of Open Access Journals (Sweden)

    A. N. Bojko

    2015-01-01

    Full Text Available In design and manufacturing there are a lot of situations to make engineers to deal with products, which have redundant mechanical structures. This is a harmful effect that can produce non-solvable dimension chains at designing preproduction stage, and lead to rebasing in the course of assembly. Traditional means for mathematical description of mechanical structures, such as directed and undirected graphs, matrices, and etc., have no appropriate tools to identify redundancy and eliminate it. This can be achieved by using a relatively new mathematical model, i.e. a hyper-graph of mechanical linkages. It is shown that a necessary condition of redundancy is simple inequality X mechanical linkages generates mechanical assembly structures with different assembly properties. The paper considers generation of non-redundant structures, which possess a maximum fractionalizing property. So-organized products can be broken up into the largest number of independently assembled fragments - assembly units. This simplifies the preproduction engineering and disassembly procedures in case of full or selective repairs during operation. It is shown that the normal sequence of assemblies enables us to reduce a mechanical structure of such products to the chain of a maximum length. We propose an algorithm to eliminate redundancy. It generates the maximum fractionalizing mechanical structures. The algorithm is based on three heuristic rules that recommend eliminating edges, which disarrange a chain structure of the hyper-graph. The paper provides a rationale heuristics and considers a test case.To test the algorithm using a large array of examples, the experimental software has been developed. Computational experiments have been conducted using a sample of thirty redundant hyper-graphs randomly generated. The experiments have shown the

  10. Models, simulation, and experimental issues in structural mechanics

    CERN Document Server

    Maceri, Franco; Vairo, Giuseppe

    2017-01-01

    The reader aware in Structural Mechanics will find in this book a source of fruitful knowledge and effective tools useful for imagining, creating, and promoting novel and challenging developments. It addresses a wide range of topics, such as mechanics and geotechnics, vibration and damping, damage and friction, experimental methods, and advanced structural materials. It also discusses analytical, experimental and numerical findings, focusing on theoretical and practical issues, and leading to innovations in the field. Collecting some of the latest results from the Lagrange Laboratory, a European scientific research group, mainly consisting of Italian and French engineers, mechanicians and mathematicians, the book presents the most recent example of the long-term scientific cooperation between well-established French and Italian Mechanics, Mathematics and Engineering Schools. .

  11. A Modiifed Molecular Structure Mechanics Method for Analysis of Graphene

    Institute of Scientific and Technical Information of China (English)

    HUA Jun; LI Dongbo; ZHAO Dong; LIANG Shengwei; LIU Qinlong; JIA Ruiyan

    2015-01-01

    Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modiifed molecular structure mechanics method was developed to improve the original one, that is, the semi-rigid connections were used to model the bond angle variations between the C-C bonds in graphene. The simulated results show that the equivalent space frame model with semi-rigid connections for graphene proposed in this article is a simple, efifcient, and accurate model to evaluate the equivalent elastic properties of graphene. Though the present computational model of the semi-rigid connected space frame is only applied to characterize the mechanical behaviors of the space lattices of graphene, it has more potential applications in the static and dynamic analyses of graphene and other nanomaterials.

  12. On the mechanical properties of sintered metallic fibre structures

    Energy Technology Data Exchange (ETDEWEB)

    Veyhl, C., E-mail: Christoph.Veyhl@uon.edu.au [The University of Newcastle, School of Engineering, Centre for Mass and Thermal Transport in Engineering Materials, Callaghan, NSW 2308 (Australia); Fiedler, T., E-mail: Thomas.Fiedler@newcastle.edu.au [The University of Newcastle, School of Engineering, Centre for Mass and Thermal Transport in Engineering Materials, Callaghan, NSW 2308 (Australia); Jehring, U., E-mail: Ulrike.Jehring@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Branch Lab Dresden, 01277 Dresden, Winterbergstr. 28 (Germany); Andersen, O., E-mail: Olaf.Andersen@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Branch Lab Dresden, 01277 Dresden, Winterbergstr. 28 (Germany); Bernthaler, T., E-mail: Timo.Bernthaler@htw-aalen.de [University of Applied Sciences Aalen, Department of Surface Engineering and Materials Science, Faculty of Mechanical and Material Engineering, Beethovenstr. 1, 73430 Aalen (Germany); Belova, I.V., E-mail: Irina.Belova@newcastle.edu.au [The University of Newcastle, School of Engineering, Centre for Mass and Thermal Transport in Engineering Materials, Callaghan, NSW 2308 (Australia); Murch, G.E., E-mail: Graeme.Murch@newcastle.edu.au [The University of Newcastle, School of Engineering, Centre for Mass and Thermal Transport in Engineering Materials, Callaghan, NSW 2308 (Australia)

    2013-02-01

    The present study investigates mechanical properties of a novel sintered metallic fibre structure with different relative densities (i.e. 0.19, 0.27, and 0.46). The compressive mechanical properties Young's modulus, Poisson's ratio and 0.2% offset yield stress are determined. For this purpose, state of the art simulations are performed based on the real material structure using micro-computed tomography images. Computed results are compared with experimental uni-axial compression tests and good agreement between both methods is observed. Numerical analysis allows the investigation of directional dependence and mechanical anisotropy is observed to be governed by the fibre orientation. In addition, Young's modulus and 0.2% offset yield stress increase with rising relative density.

  13. Statistical Structures Underlying Quantum Mechanics and Social Science

    CERN Document Server

    Wright, R

    2003-01-01

    Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with complex, open systems for which the set of possible experiments is unknowable and outcome interference is a graded phenomenon resulting from the ways the human brain processes information. It is concluded that social science is, in some ways, "less classical" than quantum mechanics, but that generalized "quantum" structures may provide appropriate descriptions of social science experiments. Specific challenges to extending "quantum" structures to social science are identified.

  14. Analysis of slender structures using mechanics of structure genome and open source codes

    Science.gov (United States)

    Liu, Xin

    Structural genome (SG) is the smallest mathematical building block that contains all constitutive information of a structure. SG is a bridge connecting the material microstructures and the macroscopic structural analysis, so mechanics of structure genome (MSG) is an approach that unifies micromechanics and structural mechanics. There are three types of SG: 1D SG, 2D SG and 3D SG depending on the heterogeneity of the original structure. Once the SG of a structure is identified, the effective properties for corresponding structures including beams, plates/shells, or 3D solids can be obtained by the homogenization analysis of the SG. These effective properties can be used for the macroscopic structural analysis. After macroscopic structural analysis, the global structural responses can be the input parameters to get the local displacements/stress/strain using dehomogenization analysis of the SG. The mechanics of structure genome is implemented in a general purpose composites software called SwiftComp(TM). Slender structures are widely used in various industries, such as civil, aerospace and structural engineering. Using MSG, a new structural analysis approach is used to study the slender structures. In order to let users easily get the access to the software using this approach, several open source codes have been modified and upgraded. Graphical user interface is built on Gmsh, and CalculiX is chosen as the structural solver. New beam elements have been added to CalculiX to make the better use of the capability of SwiftComp(TM). Both linear and quadratic beam elements for Euler-Bernoulli and Timoshenko beam models are derived. Several numerical models show that the results using MSG and its companion code SwiftComp(TM) agree well with the 3D finite element analysis. The MSG approach greatly simplified the modeling process while maintaining accuracy. Therefore, the MSG approach provides an alternative way to analyze structures, especially when the structures are

  15. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  16. Improved Quasi-Static Method: IQS Method Implementation for CFEM Diffusion in Rattlesnake

    Energy Technology Data Exchange (ETDEWEB)

    Prince, Zachary M. [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Ragusa, Jean C. [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Wang, Yaqi [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2016-02-29

    The improved quasi-static (IQS) method is a transient spatial kinetics method that involves factorizing flux into space- and time-dependent components. These components include the flux’s power and shape. Power is time-dependent, while the shape is both space- and time-dependent. However, the impetus of the method is the assumption that the shape is only weakly dependent on time; therefore, the shape may not require computation at every time step, invoking the quasi-static nature. This paper describes the implementation and testing of IQS as an alternative kinetics solver within Rattlesnake to provide improved time performance with minimal reduction in accuracy.

  17. QUASI-STATIC AND DYNAMICAL ANALYSIS FOR VISCOELASTIC TIMOSHENKO BEAM WITH FRACTIONAL DERIVATIVE CONSTITUTIVE RELATION

    Institute of Scientific and Technical Information of China (English)

    朱正佑; 李根国; 程昌钧

    2002-01-01

    The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.

  18. Structural Mechanisms of Allostery and Autoinhibition in JNK Family Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J. D.; Nwachukwu, J. C.; Figuera-Losada, M.; Cherry, L.; Nettles, K. W.; LoGrasso, P. V.

    2012-12-05

    c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations.

  19. Viscoelastic modeling of apples under quasi-static loading using finite element method to investigate the causes of bruising

    Directory of Open Access Journals (Sweden)

    B Ghasemi

    2015-09-01

    Full Text Available Introduction: Apple is one of the most important horticultural crops of Iran. Its production in the country stands in the second place after citrus. Iran holds the fourth place in the world production of apples and gains a major share in the export of this product. Therefore, it is necessary to enhance the quantity and quality of the fruit in order to maintain and promote its position among the countries importing this product from Iran. Most of the mechanical damages to fruits and vegetables occur due to contact stresses under static, quasi-static and impact loading. To obtain stress distribution inside the fruit we can use finite element analysis. The aim of this study was to simulate the behavior of the apple as a viscoelastic body subjected to quasi-static loading and also to determine the failure criteria (maximum normal stress or shear stress of apple flesh to estimate its susceptibility to mechanical bruising. Materials and methods: In this study, Golab kohanz apple was used. Two samples were removed from each apple using a core sampler, one was used for uniaxial compression and the other was used for confined compression test using Instron universal tension and compression machine. Spherical indenter and parallel plate tests were performed in order to study apple susceptibility to bruising at four deformation levels (1, 2, 3 and 4 mm and the bruise volume was then measured after 24 hours. Stress-strain curves were plotted and then, the elastic and viscoelastic properties were obtained. Then, by using the data obtained from apple properties, the apple was modeled in Abaqus software as spherical and cylindrical shapes with viscoelastic behavior subjected to quasi-static loadings. Results and Discussion: The normal stress distribution of the modeled apple in the shape of a cylindrical sample is shown in Fig. 4. The value of maximum normal stress was obtained (0.51 MPa at the contact point of the loading plate with the sample. Experimental

  20. Quasi-static test of steel frame-bent structures of large thermal power plant main buildings%大型火电厂钢结构主厂房框排架结构拟静力试验研究

    Institute of Scientific and Technical Information of China (English)

    薛建阳; 梁炯丰; 彭修宁; 刘祖强; 茅荣华

    2012-01-01

    对1榀3跨5层的钢框排架主体结构进行了低周反复加载试验,观测了框排架的破坏形态,得到了试件的荷载-位移滞回曲线、骨架曲线,分析了钢框排架的破坏机制、滞回性能、延性、耗能能力、刚度退化等力学性能。结果表明:钢框排架结构的破坏机制为先梁端后柱端出现塑性铰的混合破坏机制,滞回曲线较饱满,整体位移延性系数大于4.0,等效黏滞阻尼系数达到0.189。钢框排架结构体系总体上表现出良好的抗震能力,适合高烈度抗震设防区采用。模型结构的层间位移角在底层和第二层较大,为薄弱层;煤斗梁地震反应较强,设计时要特别注意。%Through the experimental study on the model of a three-bay and five-story steel frame-bent structures under low cycle reversed loading,the failure condition of frame-bent structures was observed.The load-displacement,hysteretic loops and skeleton curve of tested model were obtained.The failure mechanism,hysteretic behavior,ductility,energy dissipation capacity and stiffness degradation were investigated.The results show that the failure mechanism of steel frame-bent structures is the first occurrence of beam-hinge and then column-hinge mechanism.The hysteretic loops are plump.The average of the overall ductility factors is greater than 4.The equivalent viscous damping coefficient is 0.189.The steel frame-bent structure exhibits excellent seismic behavior,and can be adopted in high seismic fortification zones.The inter-story drift is relatively large on the bottom story and the second story,namely the weak stories.And there are large seismic forces at the coal hopper beams,which must be paid attention in design.

  1. Decomposition Criterion-based Redundancy Removal in Mechanical Structures

    Directory of Open Access Journals (Sweden)

    A. N. Bozhko

    2014-01-01

    Full Text Available The most important design solutions of production engineering for the assembly operation are an assembly sequence and assembly chart. Both are closely linked with each other and therefore are recorded in the single process flow sheet that is an assembly chart.Capability for successive order assembling and splitting into assembly units depends on a set of the product design properties from which the main ones are position mechanical connections used to locate details within a product. An adequate mathematical model of the mechanical connections of technical system is a hyper graph. It allows us to give the correct description of the location relation of variable-locality.The analysis of the array of drawings shows that many designs contain redundant mechanical connections. The inequality is a criterion of redundancy, where |X| is the number of tops of the hyper graph (details, and |R| is the number of hyper edges (full assembly bases. Excess of mutual coordination is a harmful phenomenon which at designing stage exhibits as unsolvable dimension chains, while at the assembly stage it shows as relocation. Redundant connections should be removed from a design at the earliest design-for-manufacturing stages. Removal of connections generates mechanical structures with different assembly properties. The work offers some important criteria of generation of irredundant mechanical structures. The paper considers in detail a maximum decomposition criterion, which allows us to receive structures with the greatest capability to split into assembly units. It shows that such structures exhibit high flexibility in assembling and are adaptable to various specifications and production processes.

  2. POMM: design of rotating mechanism and hexapod structure

    Science.gov (United States)

    Côté, Patrice; Leclerc, Mélanie; Demers, Mathieu; Bastien, Pierre; Hernandez, Olivier

    2014-08-01

    The new high precision polarimeter for the "Observatoire du Mont Mégantic" (POMM) is an instrument designed to observe exoplanets and other targets in the visible and near infrared wavebands. The requirements to achieve these observation goals are posing unusual challenges to structural and mechanical designers. In this paper, the detailed design, analysis and laboratory results of the key mechanical structure and sub-systems are presented. First, to study extremely low polarization, the birefringence effect due to stresses in the optical elements must be kept to the lowest possible values. The double-wedge Wollaston custom prism assembly that splits the incoming optical beam is made of bonded α-BBO to N-BK-7 glass lenses. Because of the large mismatch of coefficients of thermal expansion and temperatures as low as -40°C that can be encountered at Mont-Mégantic observatory, a finite element analysis (FEA) model is developed to find the best adhesive system to minimize stresses. Another critical aspect discussed in details is the implementation of the cascaded rotating elements and the twin rotating stages. Special attention is given to the drive mechanism and encoding technology. The objective was to reach high absolute positional accuracy in rotation without any mechanical backlash. As for many other instruments, mass, size and dimensional stability are important critera for the supporting structure. For a cantilevered device, such as POMM, a static hexapod is an attractive solution because of the high stiffness to weight ratio. However, the mechanical analysis revealed that the specific geometry of the dual channel optical layout also added an off-axis counterbalancing problem. To reach an X-Y displacement error on the detector smaller than 35μm for 0-45° zenith angle, further structural optimization was done using FEA. An imaging camera was placed at the detector plane during assembly to measure the actual optical beam shift under varying gravitational

  3. Quasi-Static and High Strain Rate Compressive Response of Injection-Molded Cenosphere/HDPE Syntactic Foam

    Science.gov (United States)

    Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil

    2016-07-01

    High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.

  4. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  5. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    Science.gov (United States)

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings.

  6. MECHANISM OF ORIGIN OF STRUCTURAL VIBRATIONS IN CONICAL ROLLER BEARINGS

    Directory of Open Access Journals (Sweden)

    V.І. Marchuk

    2014-09-01

    Full Text Available This paper investigates the mechanism of origin of structural, structural and technological defects of rollers. The technique for integrated indicator of vibration working surfaces of the rings to determine the level of life of the finished part to the operation as part of the bearing and predict the vibroacoustic characteristics of rolling bearings. It was established that technological defects cause low-frequency and high-frequency vibrations. The question about the extent to which it is necessary to strengthen the tolerances on the parameters of bearings on which vibration level is determined not errors bearing parts and their structural properties. Calculated values of the amplitudes vibroacceleration due to the rigidity of the bearing vibrations are so small that in some cases adopted precision calculations turned enough to detect such vibrations. Thus, when tested on the vibro-acoustic installations structural vibration does not play an important role.

  7. Heat Loss Mechanisms In Transparent Insulation With Honeycomb Structures

    Science.gov (United States)

    Wittwer, V.; Stahl, W.; Pfluger, A.; Goetzberger, A.; Schmid, J.

    1983-12-01

    The development of highly transparent insulation materials is an important step in raising the efficiency of flat plate collectors and for passive use of solar energy in buildings. The problem in combining selective absorbers and honeycomb structures is that the radiation losses due to thermal emission of the material of the structure may be larger than the losses due to convection which are present without the structure. Therefore a thorough analysis of the different loss mechanisms has been made. There are two possibilities for overcoming these difficulties. The first is the use of materials with low absorptance in the infrared or with selective surfaces for the honeycomb structure. The second possibility is the use of highly IR-absorbing materials. In the latter case a selective absorber is not needed. Results from both approaches will be presented.

  8. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  9. Structures and Mechanical Properties of PVC/Na+- Montmorillonite Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly (vinyl chloride)/Na+-montmorillonite (PVC/MMT) nanocomposites with different MMT contents were prepared via melt blending. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) were used to characterize the structures. Effects of MMT content on the mechanical properties were also studied. It is found that PVC molecular chains can intercalate into the gallery of MMT layers during melt blending process, the stiffness and toughness of the composites are improved simultaneously within 0.5~7wt% MMT content, and the transparency and mechanical properties decrease as MMT content further increases.

  10. Structural refinement and deformation mechanisms in nanostructured metals

    DEFF Research Database (Denmark)

    Lu, K.; Hansen, Niels

    2009-01-01

    Deformation mechanisms in metals deformed to ultrahigh strains are analyzed based on a general pattern of grain subdivision down to structural scales 10 nm. The materials analyzed are medium- to high-stacking fault energy face-centered cubic and body-centered cubic metals with different loading...... conditions. The analysis points to dislocation glide as the dominant deformation mechanism at different length scales supplemented by a limited amount of twinning at the finest scales. With decreasing deformation temperature and increasing strain rate, the contribution of twinning increases...

  11. Features of structural response of mechanically loaded crystallites to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganov, Aleksandr V., E-mail: avkor@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.

  12. Passive ventricular mechanics modelling using MRI of structure and function.

    Science.gov (United States)

    Wang, V Y; Lam, H I; Ennis, D B; Young, A A; Nash, M P

    2008-01-01

    Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions.

  13. Coffee melanoidins: structures, mechanisms of formation and potential health impacts.

    Science.gov (United States)

    Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2012-09-01

    During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.

  14. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    Science.gov (United States)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  15. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  16. Application of fracture mechanics to materials and structures

    Energy Technology Data Exchange (ETDEWEB)

    Sih, G.C.; Sommer, E.; Dahl, W.

    1984-01-01

    The general theme is the interplay between material and design requirements, and this was underlined in many of the technical presentations. A panel discussion further clarified the objectives of fracture mechanics as a discipline and tool to guard structural and machine components against premature failure. Numerical and experimental techniques were shown to be essential in compiling laboratory data on fracture testing, and the need for the development of rational procedures to ensure safety and reliability in the design of modern structures was very strongly emphasized.

  17. Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

    DEFF Research Database (Denmark)

    Møller, N.; Brincker, Rune; Herlufsen, H.;

    2000-01-01

    Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need...... to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SSI) algorithm....... These are compared to other methods such as traditional Modal Analysis....

  18. The Structure, Functions, and Mechanical Properties of Keratin

    Science.gov (United States)

    McKittrick, J.; Chen, P.-Y.; Bodde, S. G.; Yang, W.; Novitskaya, E. E.; Meyers, M. A.

    2012-04-01

    Keratin is one of the most important structural proteins in nature and is widely found in the integument in vertebrates. It is classified into two types: α-helices and β-pleated sheets. Keratinized materials can be considered as fiber-reinforced composites consisting of crystalline intermediate filaments embedded in an amorphous protein matrix. They have a wide variety of morphologies and properties depending on different functions. Here, we review selected keratin-based materials, such as skin, hair, wool, quill, horn, hoof, feather, and beak, focusing on the structure-mechanical property-function relationships and finally give some insights on bioinspired composite design based on keratinized materials.

  19. Roll, adhere, spread and contract: structural mechanics of platelet function.

    Science.gov (United States)

    Sorrentino, Simona; Studt, Jan-Dirk; Medalia, Ohad; Tanuj Sapra, K

    2015-01-01

    Platelets are involved in life-sustaining processes such as hemostasis, wound healing, atherothrombosis and angiogenesis. Mechanical trauma to blood vessels causes platelet activation resulting in their adherence and clot formation at the damaged site, culminating in clot retraction and tissue repair. Two of the major players underlying this process are the cytoskeleton, i.e., actin and microtubules, and the membrane integrin receptors. Rare congenital bleeding disorders such as Glanzmann thrombasthenia and Bernard-Soulier syndrome are associated with genetic alterations of platelet surface receptors, also affecting the platelet cytoskeletal structure. In this review, we summarize the current knowledge about platelet structure and adhesion, and delve into the mechanical aspects of platelet function. Platelets lack a nucleus, and can thus provide a minimal model of a biological cell. New biophysical tools may help to scrutinize platelets anew and to extend the existing knowledge on cell biology.

  20. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  1. Rotation elastogram: a novel method to visualize local rigid body rotation under quasi-static compression

    Science.gov (United States)

    Sowmiya, C.; Kothawala, Ali Arshad; Thittai, Arun K.

    2016-04-01

    During manual palpation of breast masses, the perception of its stiffness and slipperiness are the two commonly used information by the physician. In order to reliably and quantitatively obtain this information several non-invasive elastography techniques have been developed that seek to provide an image of the underlying mechanical properties, mostly stiffness-related. Very few approaches have visualized the "slip" at the lesion-background boundary that only occurs for a loosely-bonded benign lesion. It has been shown that axial-shear strain distribution provides information about underlying slip. One such feature, referred to as "fill-in" was interpreted as a surrogate of the rotation undergone by an asymmetrically-oriented-loosely bonded-benign-lesion under quasi-static compression. However, imaging and direct visualization of the rotation itself has not been addressed yet. In order to accomplish this, the quality of lateral displacement estimation needs to be improved. In this simulation study, we utilize spatial compounding approach and assess the feasibility to obtain good quality rotation elastogram. The angular axial and lateral displacement estimates were obtained at different insonification angles from a phantom containing an elliptical inclusion oriented at 45°, subjected to 1% compression from the top. A multilevel 2D-block matching algorithm was used for displacement tracking and 2D-least square compounding of angular axial and lateral displacement estimates was employed. By varying the maximum steering angle and incremental angle, the improvement in the lateral motion tracking accuracy and its effects on the quality of rotational elastogram were evaluated. Results demonstrate significantly-improved rotation elastogram using this technique.

  2. Mechanical Properties of Zirconium Ceramics with Hierarchical Porous Structure

    Science.gov (United States)

    Kulkov, S.; Shutilova, E.; Buyakova, S.

    2016-07-01

    The work studies porous ceramics produced from ultra-fine powders. The porosity of ceramic samples was from 15 to 80%. The ceramic materials had cellular structure. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations, which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformations on deformation diagrams is due to mechanical instability of cellular elements in a ceramic frame.

  3. Dual structural color mechanisms in a scarab beetle.

    Science.gov (United States)

    Xu, Man; Seago, Ainsley E; Sutherland, Tara D; Weisman, Sarah

    2010-11-01

    The cuticle of a Mycterophallus cetoniine scarab species displays both red iridescence due to a multilayer reflector mechanism and rainbow iridescence due to a superimposed diffraction grating mechanism. This is the first reported example of an animal possessing two independent classes of structural colors arising from interference at the wavelengths of visible light. In this work, the Mycterophallus cuticle is characterized by light microscopy, spectrophotometry, scanning electron microscopy, and transmission electron microscopy. We compare the cuticle of the Mycterophallus species to two closely related Lomaptera scarab species, one with only a multilayer reflector and the second with only a diffraction grating. We calculate the correspondence between the nanostructural parameters and the optical properties of the Mycterophallus cuticle to determine the relative optical contributions of the two color mechanisms and the interactions between them.

  4. Review of Mechanics and Applications of Auxetic Structures

    Directory of Open Access Journals (Sweden)

    Mariam Mir

    2014-01-01

    Full Text Available One of the important mechanical properties of materials is Poisson’s ratio, which is positive for most of the materials. However, certain materials exhibit “auxetic” properties; that is, they have a negative Poisson’s ratio. Thus auxetic and non-auxetic materials exhibit different deformation mechanisms. A specific microscopic structure in the auxetic materials is important for maintaining a negative Poisson’s ratio. Based on their distinct nature auxetic materials execute certain unique properties in contrast to other materials, which are reviewed in this paper. Thus auxetic materials have important applications in the biomedical field which are also a part of this review article. Many auxetic materials have been discovered, fabricated, and synthesized which differ on the basis of structure, scale and deformation mechanism. The different types of auxetic materials such as auxetic cellular solids, microscopic auxetic polymers, molecular auxetic materials, and auxetic composites have been reviewed comprehensively in this paper. Modeling of auxetic structures is of considerable importance and needs appropriate stress strain configurations; thus different aspects of auxetic modeling have also been reviewed. Packing parameters and relative densities are of prime importance in this regard. This review would thus help the researchers in determining and deciding the various aspects of auxetic nature for their products.

  5. Experimental study on mechanical properties of aircraft honeycomb sandwich structures

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available Mechanical behaviour of sandwich panels under different conditions have been exprimentally studied in this research to increase the knowledge of aircraft sandwich panel structures and facilitate design criteria for aircraft structures. Tests were concentrated on the honeycomb sandwich structures under different loads including flexural, insert shear, flat wise tension and compression loads. Furthermore, effect of core density and face material on mechanical behavior of different samples were investigated and compared with analytical and FEM method. Effects of skin thickness on strength of honycomb sandwhich panels under shear pull out and moments have also been considerd in this study. According to this investigation, insert strength and flexural test under different load conditions is strongly affected by face thickness, but compression and tearoff (falt wise tensile properties of a sandwich panel depends on core material. The study concludes that the correlation between experimental results and the analytical predictions will enable the designer to predict the mechanical behaviour and strength of a sandwich beam; however, applied formula may lead engineers to unreliable results for shear modulus.

  6. Growth Mechanism of a Unique Hierarchical Vaterite Structure

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2013-03-01

    Calcium carbonate is one of the most significant minerals in nature as well as in biogenic sources. Calcium carbonate occurs naturally in three crystalline polymorphs, i.e., calcite, aragonite, and vaterite. Although it has been attracted much research attention to understanding of the formation mechanisms of the material, the properties of the vaterite polymorph is not well known. Here we report synthesis and formation mechanism of a unique hierarchical structure of vaterite. The material is grown by a controlled diffusion method. The structure possesses a core and an outer part. The core is convex lens-like and is formed by vaterite nanocrystals that have small misorientations. The outer part is separated into six garlic clove-like segments. Each segment possesses piles of plate-like vaterite crystals, and the orientations of the plates continuously change from pile to pile. Based on real-time experimental results and the structural analysis, a growth mechanism is presented. Work supported by NSFC (Grant No. 51172104) and MOST of China (Grant No. 2101CB630705)

  7. Mapping cardiac surface mechanics with structured light imaging.

    Science.gov (United States)

    Laughner, Jacob I; Zhang, Song; Li, Hao; Shao, Connie C; Efimov, Igor R

    2012-09-15

    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation.

  8. A mechanism for the cortical computation of hierarchical linguistic structure.

    Science.gov (United States)

    Martin, Andrea E; Doumas, Leonidas A A

    2017-03-01

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose-learning relational reasoning-processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and "cortical" oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism-using time to encode information across a layered network-generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation.

  9. Manufacturing, integration, and testing of ELMER structure and mechanisms

    Science.gov (United States)

    Ronquillo, Bernardo; Vega, Miguel A.; Ona, Miquel; Porras, Ester; Mayor, Ignacio; Roy, David; Camps, Sergio; Pereda, Francisco J.; Garcia-Vargas, Maria Luisa; Maldonado Medina, Manuel; Martin Fleitas, Juan Manuel; Sanchez, Ernesto

    2004-09-01

    ELMER is an optical instrument for the GTC designed to observe between 3650 and 10000 Armstrong. The observing modes for the instrument at Day One shall be: Imaging, Long Slit Spectroscopy, Mask-multi-object spectroscopy, Slit-less multi-object spectroscopy, Fast Photometry and Fast short-slit spectroscopy. It will be installed at the Nasmyth-B focal station at Day One, but it will also be designed to operate at the Folded Cassegrain focal station. The physical configuration of the instrument consists of a front section where the focal plane components are mounted (Slit Unit) and a rear section with the rest of the components (Field Lens, Prism/Grism/VPH Wheel, Filter Wheel, Collimator, Camera, Folder Mirrors, Shutter and Cryostat with the detector). Both sections are connected through a hexapod type structure. The optical path is bent twice with the two folder mirrors providing a compact system. The design phase of the ELMER Structure and Mechanisms finished on November 2002. Procurement and manufacturing covered from December 2002 to June 2003. Mechanical and electrical integration was accomplished on September 2003. Test campaign at factory covered from the end of September to mid November. Critical performance of the mechanics has been carefully tested during this period: positional tolerances of optical interfaces, repeatability of the 5 mechanisms (4 rotating wheels and collimator linear stage) and deflections of the instrument due to gravity. Results from the tests are widely within the specified values, providing a top performance instrument.

  10. Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms.

    Science.gov (United States)

    Sun, Chang-Yu; Chen, Po-Yu

    2013-11-01

    Alligator is a well-adapted living fossil covered with dorsal armor. This dermal shield consists of bony plates, called osteoderms, interconnected by sutures and non-mineralized collagen fibers, providing a dual function of protection and flexibility. Osteoderm features a sandwich structure, combining an inner porous core and an outer dense cortex, to offer enhancements for stiffness and energy absorbance. In this study, we investigated the multi-scale structure and mechanical behaviors of the American alligator (Alligator mississippiensis) osteoderm. Microcomputed tomography was applied to reveal the complex neurovascular network. Through the observation under optical and scanning electron microscopes, the osteoderm was found to consist of woven bone in the dorsal region and lamellar-zonal bone in the ventral region. Nanoindentation and compressive tests were performed to evaluate the mechanical properties of osteoderms. The varying mineral contents and porosity result in a graded mechanical property: a hard and stiff dorsal cortex gradually transform to a more compliant ventral base. Three protective mechanisms optimized for alligator osteoderms were proposed and elucidated.

  11. Existence of solutions for quasistatic problems of unilateral contact with nonlocal friction for nonlinear elastic materials

    Directory of Open Access Journals (Sweden)

    Alain Mignot

    2005-09-01

    Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.

  12. Small-Scale Quasi-Static Tests on Non-Slender Piles Situated in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    In the period from February 2009 till March 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests the piles have been exposed to quasi-static loading and all the tests have been conducted in a pressure tank. The objective of the tests has...

  13. A RELATIVISTIC QUASI-STATIC MODEL FOR ELECTRONS IN INTENSE LASER FIELDS

    Institute of Scientific and Technical Information of China (English)

    CHEN BAO-ZHEN

    2001-01-01

    A relativistic quasi-static model for the motion of the electrons in relativistic laser fields is proposed. Using the model, the recent experimental results about the generation of the hot electrons in relativistic laser fields can be fit quite well and the important role of the rescattering can be shown clearly.

  14. Quasi-Static Calibration Method of a High-g Accelerometer.

    Science.gov (United States)

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-02-20

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%.

  15. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  16. Alternative Mechanical Structure for LARP Nb3Sn Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anerella, M.; Cozzolino, J.; Ambrosio, G.; Caspi, S.; Felice, H.; Kovach, P.; Lamm, M.; Sabbi, G.; Schmalzle, J.; Wanderer, P.

    2010-08-01

    An alternative structure for the 120 mm Nb{sub 3}Sn quadrupole magnet presently under development for use in the upgrade for LHC at CERN is presented. The goals of this structure are to build on the existing technology developed in LARP with the LQ and HQ series magnets and to further optimize the features required for operation in the accelerator. These features include mechanical alignment needed for field quality and provisions for cold mass cooling with 1.9 K helium in a helium pressure vessel. The structure will also optimize coil azimuthal and axial pre-load for high gradient operation, and will incorporate features intended to improve manufacturability, thereby improving reliability and reducing cost.

  17. Structure and mechanism of the lactose permease of Escherichia coli.

    Science.gov (United States)

    Abramson, Jeff; Smirnova, Irina; Kasho, Vladimir; Verner, Gillian; Kaback, H Ronald; Iwata, So

    2003-08-01

    Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.

  18. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    Science.gov (United States)

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Elucidation of mechanism wear carbon steel with structure of martensite

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2013-04-01

    Full Text Available Purpose. The purpose of the paper is an estimation of degree of metal hardness change for the railway wheel with martensite structure during rolling. Methodology. As strength characteristic the Rockwell hardness is used. Wear tests were conducted in the conditions of normal loading with (10% and without sliding on the test equipment SMTs-2. Parameters of the fine crystalline structure (tetragonality degree of the crystalline grid, dislocation density, scale of coherent scattering regions, and disturbance value of the crystalline grid of second kind are determined by the methods of X-ray structural analysis. Findings. During operation of the railway wheels with different strength level, origin of defects on the wheel thread is caused by simultaneous action of both the friction forces and the cyclically changing loadings. Considering that formation of damage centers is largely determined by the state of metal volumes near the wheel thread, one should expect the differences in friction processes development at high contact stress for the wheels with different strength level and structural state. Originality. During the wear tests softening effect of carbon steel with martensite quenching structure is obtained. Softening effect equaled 3.5–7% from the level of quenched metal hardness. The softening effect is accompanied by the reduction of tetragonality degree of the crystalline structure of martensite, reduction of coherent scattering regions, dislocation density increase and crystalline grid disturbance of the second kind. Practical value. The results point out the necessity for further studies to clarify the resulted softening effect mechanism.

  20. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Dept. of Mechanical Engineering, Institute of Machine Convergence Technology, Hankyong National University, Anseong (Korea, Republic of)

    2016-10-15

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions.

  1. Resolving defence mechanisms: A perspective based on dissipative structure theory.

    Science.gov (United States)

    Zhang, Wei; Guo, Ben-Yu

    2017-04-01

    Theories and classifications of defence mechanisms are not unified. This study addresses the psychological system as a dissipative structure which exchanges information with the external and internal world. When using defence mechanisms, the cognitive-affective schema of an individual could remain stable and ordered by excluding psychological entropy, obtaining psychological negentropy or by dissipating the energy of self-presentation. From this perspective, defences can be classified into three basic types: isolation, compensation and self-dissipation. However, not every kind of defence mechanisms can actually help the individual. Non-adaptive defences are just functioning as an effective strategy in the short run but can be a harmful approach in the long run, while adaptive defences could instead help the individual as a long-term mechanism. Thus, we would like to suggest that it is more useful for the individual to use more adaptive defence mechanisms and seek out social or interpersonal support when undergoing psychic difficulties. As this model of defences is theoretical at present, we therefore aim to support and enrich this viewpoint with empirical evidence.

  2. Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity

    Science.gov (United States)

    Slone, Scott Michael; Li, Chen-Yu; Yoo, Jejoong; Aksimentiev, Aleksei

    2016-05-01

    The DNA bricks method exploits self-assembly of short DNA fragments to produce custom three-dimensional objects with subnanometer precision. In contrast to DNA origami, the DNA brick method permits a variety of different structures to be realized using the same library of DNA strands. As a consequence of their design, however, assembled DNA brick structures have fewer interhelical connections in comparison to equivalent DNA origami structures. Although the overall shape of the DNA brick objects has been characterized and found to conform to the features of the target designs, the microscopic properties of DNA brick objects remain yet to be determined. Here, we use the all-atom molecular dynamics method to directly compare the structure, mechanical properties and ionic conductivity of DNA brick and DNA origami structures different only by internal connectivity of their consistituent DNA strands. In comparison to equivalent DNA origami structures, the DNA brick structures are found to be less rigid and less dense and have a larger cross-section area normal to the DNA helix direction. At the microscopic level, the junction in the DNA brick structures are found to be right-handed, similar to the structure of individual Holliday junctions (HJ) in solution, which contrasts with the left-handed structure of HJ in DNA origami. Subject to external electric field, a DNA brick plate is more leaky to ions than an equivalent DNA origami plate because of its lower density and larger cross-section area. Overall, our results indicate that the structures produced by the DNA brick method are fairly similar in their overall appearance to those created by the DNA origami method but are more compliant when subject to external forces, which likely is a consequence of their single crossover design.

  3. Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lijun [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Cheng [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Haiyan; Tang, Huiping; Wang, Jianzhong [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2015-07-29

    The compression behavior of Ti–6Al–4V lattice structure with a cell shape of rhombic dodecahedron, which was fabricated by electron beam melting, was investigated at different temperatures. A series of quasi-static compression tests were performed at ambient temperature, 200 °C, 400 °C and 600 °C with a strain rate of 10{sup −3} s{sup −1}. Two groups of design configurations were adopted by changing the cell size and thickness of struts with the sample size maintained unchanged. The results revealed that their properties varied with different cell sizes and temperatures. Larger cell size leaded to lower modulus and strength of the lattice. Higher temperatures resulted in lower strengths, modulus, densification strains and plateau stresses. The energy absorption of lattice at high temperature was discussed, and the experimental data were compared with aluminum foams, titanium foams and stainless steel lattice. It demonstrated that the rhombic dodecahedron Ti–6Al–4V lattice structure could be applied as load-bearing components and energy absorber at high temperature.

  4. Structural elements in particle physics and statistical mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Honerkamp, J.; Pohlmeyer, K.; Romer, H.

    1983-01-01

    The NATO Advanced Summer Institute on Theoretical Physics 1981 had as its main objective a thorough comparison of structures and methods of two different branches of Theoretical Physics, namely Elementary Particle Physics and Statistical Mechanics, and the idea was to exhibit the structural similarities, to trace them until their origins, to compare solution and approximation schemes and to report on those new results and methods in either of the two branches which are indicative of an intimate connection between them. Thus stimulation of a deeper understanding and development of new Methods could be hoped for in both fields. One group of contributions gives concise up-to-date information on basic topics in Statistical Mechanics and Phase Transitions, Dynamical Systems, Solvable Lattice Models and Lattice Gauge Theories. A second group is devoted to special topics which illustrate the interrelationship between Statistical Mechanics and Elementary Particle Physics, like topological quantum numbers on a lattice, model studies on the confinement problem, etc. Supplementary information on experimental implications and on neighbouring fields is provided in a third group.

  5. A mechanism for the cortical computation of hierarchical linguistic structure

    Science.gov (United States)

    Doumas, Leonidas A. A.

    2017-01-01

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose—learning relational reasoning—processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and “cortical” oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism—using time to encode information across a layered network—generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation. PMID:28253256

  6. Composition, structure and mechanical properties of several natural cellular materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stem piths of sunflower, kaoliang and corn are natural cellular materials. In this paper, the contents of the compositions of these piths are determined and their cell shapes and structures are examined through scanning electron microscope (SEM) and optical microscope. Further research is conducted in the effects of the compositions and structures of the piths on the mechanical properties after testing the partial mechanical properties. The results show that the total cellulose, hemicelluloses and lignin content of each sample approaches 75% of the dry mass of its primary cell walls. With the fall of R value, a parameter relative to the contents of the main compositions, the flexibilities of the cellular piths descend while their stresses and rigidities increase. The basic cell shape making up the sunflower pith is approximately a tetrakaidehedron. The stem piths of kaoliang and corn are made up of cells close to hexangular prisms and a few tubular ones which can observably reinforce their mechanical properties in the axial directions.

  7. Structural Characterization and Statistical-Mechanical Model of Epidermal Patterns.

    Science.gov (United States)

    Chen, Duyu; Aw, Wen Yih; Devenport, Danelle; Torquato, Salvatore

    2016-12-06

    In proliferating epithelia of mammalian skin, cells of irregular polygon-like shapes pack into complex, nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct space (correlation function) and Fourier space (structure factor) of the cell centroids in the early stages of embryonic development show structural directional dependence (statistical anisotropy), which is a reflection of the fact that cells are stretched, which promotes uniaxial growth along the epithelial plane. In the late stages, the patterns tend toward statistically isotropic states, as cells attain global polarization and epidermal growth shifts to produce the skin's outer stratified layers. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-range soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. In contrast with many vertex-based models, our statistical-mechanical model does not explicitly incorporate information about the cell shapes and interfacial energy between cells; nonetheless, our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments, as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. The array of structural descriptors that we deploy enable us to distinguish between normal, mechanically

  8. Mechanical modeling of the growth of salt structures

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, R.A.M.

    1993-05-01

    A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 {times} 10{sup {minus}15}s{sup {minus}1} for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 10{sup 2} times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

  9. Structure and mechanism of action of the antimicrobial peptide piscidin.

    Science.gov (United States)

    Campagna, Sylvie; Saint, Nathalie; Molle, Gérard; Aumelas, André

    2007-02-20

    Piscidin, an antibacterial peptide isolated from the mast cells of striped bass, has potent antimicrobial activity against a broad spectrum of pathogens in vitro. We investigated the mechanism of action of this 22-residue cationic peptide by carrying out structural studies and electrophysiological experiments in lipid bilayers. Circular dichroism experiments showed that piscidin was unstructured in water but had a high alpha-helix content in dodecylphosphocholine (DPC) micelles. 1H NMR data in water and TFE confirmed these results and demonstrated that the segment of residues 8-17 adopted an alpha-helical structure in a micellar environment. This molecule has a marked amphipathic character, due to well-defined hydrophobic and hydrophilic sectors. This structure is similar to those determined for other cationic peptides involved in permeabilization of the bacterial membrane. Multichannel experiments with piscidin incorporated into azolectin planar bilayers gave reproducible I-V curves at various peptide concentrations and unambiguously showed that this peptide permeabilized the membrane. This pore forming activity was confirmed by single-channel experiments, with well-defined ion channels obtained at different voltages. The characteristics of the ion channels (voltage dependence, only one or two states of conductance) clearly suggest that piscidin is more likely to permeabilize the membrane by toroidal pore formation rather than via the "barrel-stave" mechanism.

  10. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Brandbyge, Mads; Jacobsen, Karsten Wedel

    1998-01-01

    We have simulated the mechanical deformation of atomic-scale metallic contacts under tensile strain using molecular dynamics and effective medium theory potentials. The evolution of the structure of the contacts and the underlying deformation mechanisms are described along with the calculated ele...... that the results measured in a nanocontact experiment depend significantly on the elastic stiffness of the experimental apparatus. For a soft setup, some of the atomic rearrangements might not be detected, whereas others are amplified.......We have simulated the mechanical deformation of atomic-scale metallic contacts under tensile strain using molecular dynamics and effective medium theory potentials. The evolution of the structure of the contacts and the underlying deformation mechanisms are described along with the calculated...... electronic conductance. Various defects such as intersecting stacking faults, local disorder, and vacancies are created during the deformation. Disordered regions act as weak spots that reduce the strength of the contacts. The disorder tends to anneal out again during the subsequent atomic rearrangements...

  11. Control mechanism of double-rotator-structure ternary optical computer

    Science.gov (United States)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  12. Extracellular matrix structure and nano-mechanics determine megakaryocyte function.

    Science.gov (United States)

    Malara, Alessandro; Gruppi, Cristian; Pallotta, Isabella; Spedden, Elise; Tenni, Ruggero; Raspanti, Mario; Kaplan, David; Tira, Maria Enrica; Staii, Cristian; Balduini, Alessandra

    2011-10-20

    Cell interactions with matrices via specific receptors control many functions, with chemistry, physics, and membrane elasticity as fundamental elements of the processes involved. Little is known about how biochemical and biophysical processes integrate to generate force and, ultimately, to regulate hemopoiesis into the bone marrow-matrix environment. To address this hypothesis, in this work we focus on the regulation of MK development by type I collagen. By atomic force microscopy analysis, we demonstrate that the tensile strength of fibrils in type I collagen structure is a fundamental requirement to regulate cytoskeleton contractility of human MKs through the activation of integrin-α2β1-dependent Rho-ROCK pathway and MLC-2 phosphorylation. Most importantly, this mechanism seemed to mediate MK migration, fibronectin assembly, and platelet formation. On the contrary, a decrease in mechanical tension caused by N-acetylation of lysine side chains in type I collagen completely reverted these processes by preventing fibrillogenesis.

  13. An Adaptive Variable Structure Control Scheme for Underactuated Mechanical Manipulators

    Directory of Open Access Journals (Sweden)

    Jung Hua Yang

    2012-01-01

    Full Text Available Mechanical arms have been widely used in the industry for many decades. They have played a dominant role in factory automation. However the control performance, or even system stability, would be deteriorated if some of the actuators fail during the operations. Hence, in this study, an adaptive variable structure scheme is presented to solve this problem. It is shown that, by applying the control mechanism proposed in this paper, the motion of robot systems can maintain asymptotical stability in case of actuators failure. The control algorithms as well as the convergence analysis are theoretically proved based on Lyapunov theory. In addition, to demonstrate the validity of the controller, a number of simulations as well as real-time experiments are also performed for Pendubot robot and Furuta robot systems. The results confirm the applicability of the proposed controller.

  14. Structural and mechanical properties of Laponite-PEG hybrid films.

    Science.gov (United States)

    Shikinaka, Kazuhiro; Aizawa, Kazuto; Murakami, Yoshihiko; Osada, Yoshihito; Tokita, Masatoshi; Watanabe, Junji; Shigehara, Kiyotaka

    2012-03-01

    Inorganic/organic hybrids were obtained by the sol-gel type organic modification reaction of Laponite sidewalls with poly(ethylene glycol) (PEG) bearing alkoxysiloxy terminal functionality. By casting an aqueous dispersion of the hybrid, the flexible and transparent hybrid films were obtained. Regardless of the inorganic/organic component ratio, the hybrid film had the ordered structure of Laponite in-plane flat arrays. The mechanical strength of hybrid films was drastically improved by the presence of cross-linking among alkoxysilyl functionalities of PEG terminals and the absence of PEG crystallines. Hybrid films, especially those that consisted of PEG with short chain, showed good mechanical properties that originate from quasi-homogeneous dispersion of components due to anchoring of PEG terminal to Laponite sidewall and interaction of PEG to Laponite surface.

  15. Structural mechanics and helical geometry of thin elastic composites.

    Science.gov (United States)

    Wada, Hirofumi

    2016-09-21

    Helices are ubiquitous in nature, and helical shape transition is often observed in residually stressed bodies, such as composites, wherein materials with different mechanical properties are glued firmly together to form a whole body. Inspired by a variety of biological examples, the basic physical mechanism responsible for the emergence of twisting and bending in such thin composite structures has been extensively studied. Here, we propose a simplified analytical model wherein a slender membrane tube undergoes a helical transition driven by the contraction of an elastic ribbon bound to the membrane surface. We analytically predict the curvature and twist of an emergent helix as functions of differential strains and elastic moduli, which are confirmed by our numerical simulations. Our results may help understand shapes observed in different biological systems, such as spiral bacteria, and could be applied to novel designs of soft machines and robots.

  16. Structure and mechanism of peptide-induced membrane pores

    Science.gov (United States)

    Qian, Shuo

    This thesis reports the studies of the structure and mechanism of peptide-induced membrane pores by antimicrobial peptide alamethicin and by a peptide named Baxalpha5, which is derived from Bax protein. Alamethicin is one of best known antimicrobial peptides, which are ubiquitous throughout the biological world. Bax-alpha5 peptide is the pore-forming domain of apoptosis regulator protein Bax, which activates pore formation on outer mitochondrial membrane to release cytochrome c to initiate programmed cell death. Both peptides as well as many other pore-forming peptides, induce pores in membrane, however the structure and mechanism of the pore formation were unknown. By utilizing grazing angle x-ray diffraction, I was able to reconstruct the electron density profile of the membrane pores induced by both peptides. The fully hydrated multiple bilayers of peptide-lipid mixture on solid substrate were prepared in the condition that pores were present, as established previously by neutron in-plane scattering and oriented circular dichroism. At dehydrated conditions, the inter bilayer distance of the sample shortened and the interactions between bilayers caused the membrane pores to become long-ranged correlated and formed a periodically ordered lattice of rhombohedral symmetry, so that x-ray diffraction can be applied. To help solving the phase problem of diffraction, a brominated lipid was used and multi-wavelength anomalous diffraction was performed below the bromine K-edge. The reconstructed electron density profiles unambiguously revealed that the alamethicin-induced membrane pore is of barrel-stave type, while the Bax-alpha5 induced pore is of lipidic toroidal (wormhole) type. The underlying mechanism of pore formation was resolved by observing the time-dependent process of pore formation in vesicles exposed to Bax-alpha5 solutions, as well as the membrane thinning experiment. This demonstrated that Bax-alpha5 exhibited the same sigmoidal concentration dependence as

  17. Bottlenecks to vibrational energy flow in OCS: Structures and mechanisms

    CERN Document Server

    Paškauskas, R; Uzer, T

    2008-01-01

    Finding the causes for the nonstatistical vibrational energy relaxation in the planar carbonyl sulfide (OCS) molecule is a longstanding problem in chemical physics: Not only is the relaxation incomplete long past the predicted statistical relaxation time, but it also consists of a sequence of abrupt transitions between long-lived regions of localized energy modes. We report on the phase space bottlenecks responsible for this slow and uneven vibrational energy flow in this Hamiltonian system with three degrees of freedom. They belong to a particular class of two-dimensional invariant tori which are organized around elliptic periodic orbits. We relate the trapping and transition mechanisms with the linear stability of these structures.

  18. Mechanical and structural properties of sputtered Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, M.; Boeni, P.; Tixier, S.; Clemens, D.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Ni/Ti bilayers have been prepared by dc-magnetron sputtering in order to study their mechanical and structural properties. A remarkable reduction of stress is observed when the Ni layers are sputtered reactively in argon with a high partial pressure of air. The high angle x-ray diffraction studies show a tendency towards amorphisation of the Ni layers with increasing air flow. The low angle measurements indicate a substantial reduction of interdiffusion resulting in smoother interfaces with increasing air content. (author) 2 figs., 2 refs.

  19. Structural and mechanical studies of cadmium manganese thiocyanate crystal

    Science.gov (United States)

    Manikandan, M. R.; Vijayaprasath, G.; babu, G. Anandha; Bhagavannarayan, G.; Vijayan, N.; Ravi, G.

    2012-06-01

    Single crystals of cadmium manganese thiocyanate (CMTC) have been synthesized successfully and grown by slow evaporation method. The structural perfection of the grown crystals has been analyzed by High resolution X-ray diffraction (HRXRD), which shows the crystalline perfection of the grown crystal is quite good. Optical behavior was assessed by UV-Vis analysis and found that no absorption in the UV visible region and it may be useful for second harmonic applications. The mechanical hardness of the grown crystals was studied and Vicker's microhardness, Stiffness constant was calculated.

  20. Structural and Mechanical Properties of Fluorinated SWCNTs: a DFT Study

    Directory of Open Access Journals (Sweden)

    I.K. Petrushenko

    2015-03-01

    Full Text Available This paper presents a study on structural and mechanical properties of a series of fluorinated armchair single-walled carbon nanotubes (SWCNTs by using density functional theory. At the PBE / SVP level, the data obtained compare well with experimental and theoretical studies. The results show that fluorination, in general, distort SWNCTs framework, but there exists the difference between ‘axial’ and ‘circumferential’ functionalization. It turns out that elastic properties diminish with increasing concentration of adsorbents, however, the fluorinated SWCNTs remain strong enough to be suitable for reinforcement of composites.

  1. Mechanical properties and network structure of wheat gluten foams.

    Science.gov (United States)

    Blomfeldt, Thomas O J; Kuktaite, Ramune; Johansson, Eva; Hedenqvist, Mikael S

    2011-05-09

    This Article reports the influence of the protein network structure on the mechanical properties of foams produced from commercial wheat gluten using freeze-drying. Foams were produced from alkaline aqueous solutions at various gluten concentrations with or without glycerol, modified with bacterial cellulose nanosized fibers, or both. The results showed that 20 wt % glycerol was sufficient for plasticization, yielding foams with low modulus and high strain recovery. It was found that when fibers were mixed into the foams, a small but insignificant increase in elastic modulus was achieved, and the foam structure became more homogeneous. SEM indicated that the compatibility between the fibers and the matrix was good, with fibers acting as bridges in the cell walls. IR spectroscopy and SE-HPLC revealed a relatively low degree of aggregation, which was highest in the presence of glycerol. Confocal laser scanning microscopy revealed distinct differences in HMW-glutenin subunits and gliadin distributions for all of the different samples.

  2. A Mechanism for E xB0 Structure Formation

    Science.gov (United States)

    Diamond, Patrick; Gurcan, Ozgur; Hahm, T. S.; Dif-Pradalier, Guilhem

    2012-10-01

    A novel mechanism for E xB0 staircase formation is proposed. Staircases are quasi-regular patterns of strong, localized shear layers and profile corrugations interspersed with regions of avalanching. The critical question is how do such quasi-regular patterns self-consistently form. We propose a simple model based on a.) symmetry constraints on the form of the flux, b.) the existence of a fluctuation amplitude dependent time delay between the profile perturbation and the flux. The time delay leads to the development of quasi-periodic jams or clusters in the transport flux. These in turn nucleate profile corrugations and a shear layer staircase. The implication for avalanche structure will be discussed. The aim of this work is a self-consistent treatment of the spatio-temporal structure of transport and flows.

  3. Structures and host-adhesion mechanisms of lactococcal siphophages

    Directory of Open Access Journals (Sweden)

    Silvia eSpinelli

    2014-01-01

    Full Text Available The Siphoviridae family of bacteriophages is the largest viral family on earth and comprises members infecting both bacteria and archaea. Lactococcal siphophages infect the Gram-positive bacterium Lactococcus lactis, which is widely used for industrial milk fermentation processes (e.g. cheese production. As a result, lactococcal phages have become one of the most thoroughly characterized class of phages from a genomic standpoint. They exhibit amazing and intriguing characteristics. First, each phage has a strict specificity towards a unique or a handful of L. lactis host strains. Second, most lactococcal phages possess a large organelle at their tail tip (termed the baseplate, bearing the receptor binding proteins and mediating host adsorption. The recent accumulation of structural and functional data revealed the modular structure of their building blocks, their different mechanisms of activation and the fine specificity of their receptor binding proteins. These results also illustrated similarities and differences between lactococcal Siphoviridae and Gram-negative infecting Myoviridae.

  4. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    Science.gov (United States)

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.

  5. Gelled Complex Fluids: Combining Unique Structures with Mechanical Stability.

    Science.gov (United States)

    Stubenrauch, Cosima; Gießelmann, Frank

    2016-03-01

    Gelled complex fluids are soft materials in which the microstructure of the complex fluid is combined with the mechanical stability of a gel. To obtain a gelled complex fluid one either adds a gelator to a complex fluid or replaces the solvent in a gel by a complex fluid. The most prominent example of a "natural" gelled complex fluid is the cell. There are various strategies by which one can form a gelled complex fluid; one such strategy is orthogonal self-assembly, that is, the independent but simultaneous formation of two coexisting self-assembled structures within one system. The aim of this Review is to describe the structure and potential applications of various man-made gelled complex fluids and to clarify whether or not the respective system is formed by orthogonal self-assembly.

  6. A Planar Quasi-Static Constraint Mode Tire Model

    Science.gov (United States)

    2015-07-10

    Automotive Research, Development and Engineering Center (TARDEC) ABSTRACT The world of vehicle design is a fast-paced iterative environment that...a Alexander A. Reidb David Gorsichb a Vehicle Terrain Performance Laboratory, Virginia Tech Mechanical Engineering Department b US Army Tank...simulations that are critical throughout the fast-paced iterative design process. Keywords: Terrain Surface, Road Surface, Tire Force Estimation

  7. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  8. A damage mechanics based approach to structural deterioration and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Bhattcharya, B.; Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1998-02-01

    Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions to the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.

  9. Mechanical properties of bimetallic one-dimensional structures

    Science.gov (United States)

    Smelova, Ekaterina M.; Sitnikov, Ivan I.; Zelensky, Vladimir S.; Tsysar, Kseniya M.; Andreev, Valery G.; Vdovin, Vladimir A.; Saletsky, Alexander M.

    2016-12-01

    Mechanical properties of freestanding Au-Mn nanowires and Au-Mn nanowire on a Cu (110) substrate are studied with ab initio theoretical approach. The calculations were carried out using the software package Vienna Ab-initio Simulation Package (VASP), which is based on the density functional theory (DFT). It was shown that the breaking force (0.45nN) as well as the interatomic distance at a breaking point in bimetallic nanowire (3.0 Å) are higher than in one component Au wire (0.4 nN and 2.6Å respectively). Relative elongation of 15 % results in a fracture of bimetallic nanowire. We studied the mechanical response of the nanojunction in a form of three-atomic Au chain aligned vertically between two pyramidal gold electrodes and demonstrated that the breaking of nanocontact depends only the interaction between Au atoms in the chain and dependents slightly on the structure and properties of the atomic structure of the electrodes.

  10. Mechanical properties and structure of austempered ductile iron -ADI

    Directory of Open Access Journals (Sweden)

    Krzyńska A.

    2007-01-01

    Full Text Available The results of experimental study of austempered ductile iron are presented. The aim of the investigations was to look closer into the structuremechanical properties relationships of this very attractive cast material. The experiment was carried out with 500 7 grade ductile iron, which was austempered using different parameters of heat treatment. The specimens were first solution treated 1 hour in 910oC and then isothermally quenched for different time in silicon oil bath of temperature 275, 325, 300 and 350oC. The mechanical properties heat treated specimens were tested in tensile to evaluate yield stress Re, 0.2, tensile strength Rm and elongation A10. Additionally hardness of heat treated samples was measured using Brinell-Rockwell hardness tester. Structure of the specimens was studied either with conventional metallography, scanning (SEM and transmission (TEM electron microscopy. It followed from the study that conventional grade ductile iron enabled to produce both low and high strength ADI, depend on heat treatment parameters. As expected the low temperature isothermal quenching produced higher strength ADI compare to the same ductile iron but austempered at 350oC. It was discovered however, that low yield strength ADI obtained for short time quenching at 275oC exhibited high strengthening effect while strained in tensile. So it was concluded that this had to by cause by large amount of untransformed austenite, which FCC lattice is characterized by high strengthening coefficient.

  11. The structure and mechanics of Moso bamboo material.

    Science.gov (United States)

    Dixon, P G; Gibson, L J

    2014-10-06

    Although bamboo has been used structurally for millennia, there is currently increasing interest in the development of renewable and sustainable structural bamboo products (SBPs). These SBPs are analogous to wood products such as plywood, oriented strand board and glue-laminated wood. In this study, the properties of natural Moso bamboo (Phyllostachys pubescens) are investigated to further enable the processing and design of SBPs. The radial and longitudinal density gradients in bamboo give rise to variations in the mechanical properties. Here, we measure the flexural properties of Moso bamboo in the axial direction, along with the compressive strengths in the axial and transverse directions. Based on the microstructural variations (observed with scanning electron microscopy) and extrapolated solid cell wall properties of bamboo, we develop models, which describe the experimental results well. Compared to common North American construction woods loaded along the axial direction, Moso bamboo is approximately as stiff and substantially stronger, in both flexure and compression but denser. This work contributes to critical knowledge surrounding the microstructure and mechanical properties of bamboo, which are vital to the engineering and design of sustainable SBPs.

  12. Isogeometric Shape Optimization for Quasi-static and Transient Problems

    NARCIS (Netherlands)

    Wang, Z.P.

    2016-01-01

    The recently developed isogeometric analysis (IGA) was aimed, from the start, at integrating computer aided design (CAD) and analysis. This synthesis of geometry and analysis has naturally led to renewed interest in developing structural shape optimization. The advantages of using isogeometric analy

  13. Structure and reaction mechanism of basil eugenol synthase.

    Directory of Open Access Journals (Sweden)

    Gordon V Louie

    Full Text Available Phenylpropenes, a large group of plant volatile compounds that serve in multiple roles in defense and pollinator attraction, contain a propenyl side chain. Eugenol synthase (EGS catalyzes the reductive displacement of acetate from the propenyl side chain of the substrate coniferyl acetate to produce the allyl-phenylpropene eugenol. We report here the structure determination of EGS from basil (Ocimum basilicum by protein x-ray crystallography. EGS is structurally related to the short-chain dehydrogenase/reductases (SDRs, and in particular, enzymes in the isoflavone-reductase-like subfamily. The structure of a ternary complex of EGS bound to the cofactor NADP(H and a mixed competitive inhibitor EMDF ((7S,8S-ethyl (7,8-methylene-dihydroferulate provides a detailed view of the binding interactions within the EGS active site and a starting point for mutagenic examination of the unusual reductive mechanism of EGS. The key interactions between EMDF and the EGS-holoenzyme include stacking of the phenyl ring of EMDF against the cofactor's nicotinamide ring and a water-mediated hydrogen-bonding interaction between the EMDF 4-hydroxy group and the side-chain amino moiety of a conserved lysine residue, Lys132. The C4 carbon of nicotinamide resides immediately adjacent to the site of hydride addition, the C7 carbon of cinnamyl acetate substrates. The inhibitor-bound EGS structure suggests a two-step reaction mechanism involving the formation of a quinone-methide prior to reduction. The formation of this intermediate is promoted by a hydrogen-bonding network that favors deprotonation of the substrate's 4-hydroxyl group and disfavors binding of the acetate moiety, akin to a push-pull catalytic mechanism. Notably, the catalytic involvement in EGS of the conserved Lys132 in preparing the phenolic substrate for quinone methide formation through the proton-relay network appears to be an adaptation of the analogous role in hydrogen bonding played by the equivalent

  14. Structure-mechanics property relationship of waste derived biochars.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X-ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900°C and 60min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01GPa, respectively. It was shown that a combination of higher heat treatment (≥500°C) temperature and longer residence time (~60min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus.

  15. Structural remodeling and mechanical function in heart failure.

    Science.gov (United States)

    Leonard, Bridget Louise; Smaill, Bruce Henry; LeGrice, Ian John

    2012-02-01

    The cardiac extracellular matrix (ECM) is the three-dimensional scaffold that defines the geometry and muscular architecture of the cardiac chambers and transmits forces produced during the cardiac cycle throughout the heart wall. The cardiac ECM is an active system that responds to the stresses to which it is exposed and in the normal heart is adapted to facilitate efficient mechanical function. There are marked differences in the short- and medium-term changes in ventricular geometry and cardiac ECM that occur as a result of volume overload, hypertension, and ischemic cardiomyopathy. Despite this, there is a widespread view that a common remodeling "phenotype" governs the final progression to end-stage heart failure in different forms of heart disease. In this review article, we make the case that this interpretation is not consistent with the clinical and experimental data on the topic. We argue that there is a need for new theoretical and experimental models that will enable stresses acting on the ECM and resultant deformations to be estimated more accurately and provide better spatial resolution of local signaling mechanisms that are activated as a result. These developments are necessary to link the effects of structural remodeling with altered cardiac mechanical function.

  16. Structure and mechanical properties of Octopus vulgaris suckers.

    Science.gov (United States)

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-06

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  17. Stability and structural dimension of access mechanized panel

    Institute of Scientific and Technical Information of China (English)

    LUO Yi-zhong; WU Ai-xiang; WANG Hong-jiang; LIU Xiang-ping

    2005-01-01

    To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine; and for the sake of obtaining better stability, the optimal panel dimension and access stoping sequence were researched. The results show that the integral stability of the mechanized panel of No. 3 ore-body is passable in the process of winning at full level height; the stability of panel tends to be worse gradually with continuous increasing of panel width; and the better width of access panel in No.3 ore-body is less than 52 m. It is indicated that 3D elasto-plastic finite element method can make a satisfactory study of numerical simulation on the panel stability and its structural dimension in the test for the upward access mechanized-panel mining. The results of the theoretical calculation and analysis accord with the actual situation from the field ground pressure monitoring.

  18. A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis

    Science.gov (United States)

    Thornton, E. A.; Dechaumphai, P.

    1986-01-01

    A Taylor-Galerkin finite element method for solving large, nonlinear thermal-structural problems is presented. The algorithm is formulated for coupled transient and uncoupled quasistatic thermal-structural problems. Vectorizing strategies ensure computational efficiency. Two applications demonstrate the validity of the approach for analyzing transient and quasistatic thermal-structural problems.

  19. Structure and mechanical properties of austenitic steel after cold rolling

    Directory of Open Access Journals (Sweden)

    A. Kurc-Lisiecka

    2011-02-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of the cold plastic deformation within the range 18-79% and heat treatment in a temperature range of 500 to 700°C on the microstructure and mechanical properties of austenitic stainless steel grade X5CrNi18-8.Design/methodology/approach: The investigations included observations of the microstructure on a light microscope, researches of mechanical properties in a static tensile test and hardness measurements made by Vickers’s method. The analysis of the phase composition was carried out on the basis of X-ray researches. Whereas, X-ray quantitative phase analysis was carried out by the Averbach Cohen method.Findings: Heat treatment of X5CrNi18-8 stainless steel in the range 500-700°C causes a significant decrease of the mechanical properties (Rm, Rp0.2 and increase of elongation (A. Hardness of investigated steel drops with decrease of cold working degree and increase of heat treatment temperature.Research limitations/implications: The analysis of the obtained results permits to state that the heat treatment causes an essential changes of the microstructure connected with fading of cold deformation. Heating of cold rolled austenitic stainless steels can cause a reverse transformation α’ → γ.Practical implications: Two-phase structure α’+γ of austenitic Cr-Ni steel in deformed state working at elevated temperature undergo a transformation. It significantly influences mechanical properties of steel. Austenite phase undergoes a recrystallization, while martensite α’ phase undergoes reverse transformation.Originality/value: The analytic dependence of the yield point of the investigated steel on the cold working degree in cold rolling process has been confirmed. Revealing this relation is of essential practical importance for the technology of sheetmetal forming of austenitic steel.

  20. Mechanisms and behavioural functions of structural coloration in cephalopods.

    Science.gov (United States)

    Mäthger, Lydia M; Denton, Eric J; Marshall, N Justin; Hanlon, Roger T

    2009-04-06

    Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review the recent anatomical and experimental evidence regarding the mechanisms of reflection and diffusion of light by the different cell types (iridophores and leucophores) of various cephalopod species. The structures that are responsible for the optical effects of some iridophores and leucophores have recently been shown to be proteins. Optical interactions with the overlying pigmented chromatophores are complex, and the recent measurements are presented and synthesized. Polarized light reflected from iridophores can be passed through the chromatophores, thus enabling the use of a discrete communication channel, because cephalopods are especially sensitive to polarized light. We illustrate how structural coloration contributes to the overall appearance of the cephalopods during intra- and interspecific behavioural interactions including camouflage.

  1. Crystal structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism.

    Science.gov (United States)

    Suzuki, Ryuichiro; Katayama, Takane; Kim, Byung-Jun; Wakagi, Takayoshi; Shoun, Hirofumi; Ashida, Hisashi; Yamamoto, Kenji; Fushinobu, Shinya

    2010-10-29

    Thiamine diphosphate (ThDP)-dependent enzymes are ubiquitously present in all organisms and catalyze essential reactions in various metabolic pathways. ThDP-dependent phosphoketolase plays key roles in the central metabolism of heterofermentative bacteria and in the pentose catabolism of various microbes. In particular, bifidobacteria, representatives of beneficial commensal bacteria, have an effective glycolytic pathway called bifid shunt in which 2.5 mol of ATP are produced per glucose. Phosphoketolase catalyzes two steps in the bifid shunt because of its dual-substrate specificity; they are phosphorolytic cleavage of fructose 6-phosphate or xylulose 5-phosphate to produce aldose phosphate, acetyl phosphate, and H(2)O. The phosphoketolase reaction is different from other well studied ThDP-dependent enzymes because it involves a dehydration step. Although phosphoketolase was discovered more than 50 years ago, its three-dimensional structure remains unclear. In this study we report the crystal structures of xylulose 5-phosphate/fructose 6-phosphate phosphoketolase from Bifidobacterium breve. The structures of the two intermediates before and after dehydration (α,β-dihydroxyethyl ThDP and 2-acetyl-ThDP) and complex with inorganic phosphate give an insight into the mechanism of each step of the enzymatic reaction.

  2. A non-quasistatic semi-empirical model for small geometry MOSFETs

    Science.gov (United States)

    Murray, Daniel; Sanchez, Julian J.; Demassa, Thomas A.

    1997-09-01

    A new charge-oriented semi-empirical non-quasistatic (NQS) model is developed for small geometry MOSFETs that is computationally efficient to be useful for circuit simulation. The NQS model includes the effect of velocity saturation, gate field dependent mobility, charge sharing, drain induced barrier lowering and geometric dependencies of threshold voltage. To model the carrier inertia that causes non-steady state conditions, a non-quasistatic model is adopted. An approximate inversion charge profile is used to reduce the nonlinear current-continuity equation to an ordinary differential equation. The model is valid in all regions of operation (weak, moderate and strong inversion) and is derived without resorting to the approximate arbitrary channel charge partitioning. The results from the proposed model are examined and compared with 2D simulation results and good agreement is obtained for the transient source, drain and gate currents for large signals applied to the gate.

  3. Quasistatic limit of the strong-field approximation describing atoms in intense laser fields: Circular polarization

    CERN Document Server

    Bauer, J H

    2010-01-01

    In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to higher powers of the laser frequency for hydrogenic atoms. The new analytical expressions for asymptotic ionization rates (which become accurate in the quasistatic limit) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared), these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.

  4. Ultrasonic guided wave mechanics for composite material structural health monitoring

    Science.gov (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  5. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    Science.gov (United States)

    Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus

    2016-04-01

    Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.

  6. 准静态颗粒介质的弹性势能弛豫分析∗%Analysis of elastic energy relaxation pro cess for granular materials at quasi-static state

    Institute of Scientific and Technical Information of China (English)

    金鑫鑫; 金峰; 刘宁; 孙其诚

    2016-01-01

    The granular system has complicated force chain network and multiple relaxation mechanisms. The different relaxation mechanisms have largely effects on others. The force chains divide the whole system into many soft zones which dominate the main dissipation process. The system evolves into lower potential energy state gradually and forms directional arrangement under an external load. During the evolution, the complex relaxation behaviors such as transport and migrant processes, make it difficult to distinguish different dissipated mechanisms. Each single physical mechanism stripping from multiple mechanisms should be studied in depth. While among all the mechanisms, the structure evolution plays a crucial role and needs to be paid more attention to. From the view of potential energy, the detailed energy transformation is illustrated. The granular system is often at a metastable state. When the external disturbance is large enough, the system would step over the energy barrier to a new state. The height of energy barrier is related to the packing structure and grain property. In energy landscape, there exist many energy valleys which correspond to different metastable states. The grain rearrangement and structure reorganization are two main evolution processes at a quasi-static state. The former brings about major potential energy change because of friction and forms certain contact relations. While the latter evolves on the basis of the skeleton formed by grain rearrangement and reaches lower energy state. The conversion among different energy valleys can be used to explain stress relaxation process. In a complex granular system, the choosing of appropriate internal state variables becomes important, which can reflect specific relaxation process and internal characteristics. The energy fluctuation in the system has a huge influence on dissipation process and macroscopic response and is an effective internal variable to have an insight into the structure evolution

  7. Quasi-static Multilayer Electrical Modeling of Human Limb for IBC

    Directory of Open Access Journals (Sweden)

    S. H. Pun

    2011-06-01

    Full Text Available Home health care system and long term physiologic parameters monitoring system are important for elevating the living quality of chronic disease patients and elderly. Elaborating towards a sophisticated and comprehensive home health care system, Intra-Body Communication (IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, we start from quasi-static Maxwell

  8. Quasi-static magnetic measurements to predict specific absorption rates in magnetic fluid hyperthermia experiments

    OpenAIRE

    Coral, DF; Zelis, PM; de Sousa, ME; Muraca, D.; Lassalle, V.; Nicolas, P.; Ferreira,ML.; van Raap, MBF

    2014-01-01

    In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific...

  9. On the identification of the eggshell elastic properties under quasistatic compression

    Directory of Open Access Journals (Sweden)

    Jana Simeonovová

    2004-01-01

    Full Text Available The problem of the identification of the elastic properties of eggshell, i.e. the evaluation of the Young's modulus and Poisson's ratio is solved. The eggshell is considered as a rotational shell. The experiments on the egg compression under quasistatic loading have been conducted. During these experiments a strain on the eggshell surface has been recorded. By the mutual comparison between experimental and theoretical values of strains the influence of the elastic constants has been demonstrated.

  10. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Timothy T.-Y.; Chow, Jong H.; Shaddock, Daniel A.; Littler, Ian C. M.; Gagliardi, Gianluca; Gray, Malcolm B.; McClelland, David E.

    2010-07-20

    We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H{sup 13}C{sup 14}N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

  11. Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic

    Directory of Open Access Journals (Sweden)

    Shipra Upadhyay

    2013-01-01

    Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.

  12. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.

    Science.gov (United States)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-09-07

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.

  13. Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries

    CERN Document Server

    Willems, B; Kalogera, V

    2009-01-01

    We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 solar mass helium white dwarf in binaries with orbital frequencies in the LISA gravitational wave frequency band and companion masses ranging from 0.3 to 10^5 solar masses. The resulting tidal evolution time scales for the orbital semi-major axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational ...

  14. Synthetic Multi-Functional Materials for Structural + Ballistic and Blast Protection

    Science.gov (United States)

    2005-03-01

    Meyers, M.A. Meyers, and K.S. Vecchio, "Quasi-Static and dynamic mechanical response of Strombus gigas (conch) shells", Mater. Sci. & Eng., A297 (2001...Mater. Sci. & Eng., 2001. A297 : p. 203-211. 28. Menig, R., M.H. Meyers, M.A. Meyers and K.S. Vecchio, Quasi-static and Dynamic mechanical response

  15. Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø

    planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This empha-sizes brass as being a convenient model...... of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn is a pure planar slip alloy, while Cu-15%Zn displays both...... system for the industrially important austenitic steels. A quantitative fatigue damage characterization has been carried out using a classification of sur-face cracks based on their length and growth behaviour. This has provided the basis for using a numerical Monte Carlo type model, which has been...

  16. Non-overlapping domain decomposition methods in structural mechanics

    CERN Document Server

    Gosselet, Pierre; 10.1007/BF02905857

    2012-01-01

    The modern design of industrial structures leads to very complex simulations characterized by nonlinearities, high heterogeneities, tortuous geometries... Whatever the modelization may be, such an analysis leads to the solution to a family of large ill-conditioned linear systems. In this paper we study strategies to efficiently solve to linear system based on non-overlapping domain decomposition methods. We present a review of most employed approaches and their strong connections. We outline their mechanical interpretations as well as the practical issues when willing to implement and use them. Numerical properties are illustrated by various assessments from academic to industrial problems. An hybrid approach, mainly designed for multifield problems, is also introduced as it provides a general framework of such approaches.

  17. Structural mechanics program: progress in 1981. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tagart, S.W. Jr.; Marston, T.U.; Nickell, R.E.; Norris, D.M.

    1982-10-01

    The goal of the EPRI Structural Mechanics Program is to improve nuclear plant reliability and availability. The program is directed toward characterization of materials, evaluation and analysis of flaws, and application and technology transfer. There are fourteen topics involving more than forty separate contracts. The largest efforts are: (1) the continuation of projects aimed at developing a valid radiation embrittlement data base for evaluating the fracture toughness of irradiated pressure vessel steels; (2) the development of weld repair procedures for reactor pressure vessels as alternatives to the half bead repair method; (3) the development of simplified design methodology for the prediction of crack initiation, stable crack growth, and instability of ductile material in the presence of flaws; and (4) evaluation of the thermal anneal remedy for reactor pressure vessel irradiation damage. The significant progress made in 1981 in this program is reviewed and the interrelationships of the projects are discussed.

  18. Development and mechanical properties of structural materials from lunar simulants

    Science.gov (United States)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  19. Multiple methods integration for structural mechanics analysis and design

    Science.gov (United States)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  20. Mechanical and Structural Investigation of Porous Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Baran Sarac

    2015-06-01

    Full Text Available The intrinsic properties of advanced alloy systems can be altered by changing their microstructural features. Here, we present a highly efficient method to produce and characterize structures with systematically-designed pores embedded inside. The fabrication stage involves a combination of photolithography and deep reactive ion etching of a Si template replicated using the concept of thermoplastic forming. Pt- and Zr-based bulk metallic glasses (BMGs were evaluated through uniaxial tensile test, followed by scanning electron microscope (SEM fractographic and shear band analysis. Compositional investigation of the fracture surface performed via energy dispersive X-ray spectroscopy (EDX, as well as Auger spectroscopy (AES shows a moderate amount of interdiffusion (5 at.% maximum of the constituent elements between the deformed and undeformed regions. Furthermore, length-scale effects on the mechanical behavior of porous BMGs were explored through molecular dynamics (MD simulations, where shear band formation is observed for a material width of 18 nm.

  1. Neuroferritinopathy: From ferritin structure modification to pathogenetic mechanism

    Science.gov (United States)

    Levi, Sonia; Rovida, Ermanna

    2015-01-01

    Neuroferritinopathy is a rare, late-onset, dominantly inherited movement disorder caused by mutations in L-ferritin gene. It is characterized by iron and ferritin aggregate accumulation in brain, normal or low serum ferritin levels and high variable clinical feature. To date, nine causative mutations have been identified and eight of them are frameshift mutations determined by nucleotide(s) insertion in the exon 4 of L-ferritin gene altering the structural conformation of the C-terminus of the L-ferritin subunit. Acting in a dominant negative manner, mutations are responsible for an impairment of the iron storage efficiency of ferritin molecule. Here, we review the main characteristics of neuroferritinopathy and present a computational analysis of some representative recently defined mutations with the purpose to gain new information about the pathogenetic mechanism of the disorder. This is particularly important as neuroferritinopathy can be considered an interesting model to study the relationship between iron, oxidative stress and neurodegeneration. PMID:25772441

  2. The mechanical behavior of GLARE laminates for aircraft structures

    Science.gov (United States)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  3. Fluid-Structure Interaction Mechanisms for Close-In Explosions

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw Jr.

    2000-01-01

    Full Text Available This paper examines fluid-structure interaction for close-in internal and external underwater explosions. The resulting flow field is impacted by the interaction between the reflected explosion shock and the explosion bubble. This shock reflects off the bubble as an expansion that reduces the pressure level between the bubble and the target, inducing cavitation and its subsequent collapse that reloads the target. Computational examples of several close-in interaction cases are presented to document the occurrence of these mechanisms. By comparing deformable and rigid body simulations, it is shown that cavitation collapse can occur solely from the shock-bubble interaction without the benefit of target deformation. Addition of a deforming target lowers the flow field pressure, facilitates cavitation and cavitation collapse, as well as reducing the impulse of the initial shock loading.

  4. Maturation of [FeFe]-hydrogenases: Structures and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, Yvain; Fontecilla-Camps, Juan C. [Laboratoire de Cristallographie et Cristallogenese des Proteines, Institut de Biologie Structurale J.P. Ebel, Universite Joseph Fourier, Grenoble, CNRS, UMR 5075, CEA, DSV/IBS, 41 rue J. Horowitz F-38027 Grenoble cedex 1 (France); Fontecave, Marc [Laboratoire de Chimie et Biologie des Metaux; Universite Joseph Fourier, Grenoble, CNRS, UMR 5249, CEA, DSV/iRTSV, 17 rue des Martyrs F-38054 Grenoble cedex 9 (France); College de France, 11 place Marcelin-Berthelot 75231 Paris cedex 05 (France)

    2010-10-15

    Maturation of [FeFe]-hydrogenases, consisting in the synthesis and assembly of a di-iron center with a dithiolate bridging ligand as well as CO and CN ligands, depends on the concerted action of three metalloproteins, HydE, HydF and HydG. HydE and HydG are ''Radical-SAM'' enzymes involved in the synthesis of the ligands. HydF is proposed to function as a scaffold protein in which the di-iron center is assembled before being transferred to the hydrogenase. Here we review the current knowledge regarding the structure of the three maturases and the mechanisms of synthesis and assembly of the di-iron center of [FeFe]-hydrogenases. (author)

  5. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    Energy Technology Data Exchange (ETDEWEB)

    Alsem, Daniel Henricus [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ~4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (~50-100 nm) created by fracture through the silicon grains (~500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (~20-200 nm) forms at worn regions. No dislocations or

  6. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    Science.gov (United States)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  7. Effect of mechanical parameters on dielectric elastomer minimum energy structures

    Science.gov (United States)

    Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert R.

    2013-04-01

    Soft robotics may provide many advantages compared to traditional robotics approaches based on rigid materials, such as intrinsically safe physical human-robot interaction, efficient/stable locomotion, adaptive morphology, etc. The objective of this study is to develop a compliant structural actuator for soft a soft robot using dielectric elastomer minimum energy structures (DEMES). DEMES consist of a pre-stretched dielectric elastomer actuator (DEA) bonded to an initially planar flexible frame, which deforms into an out-of-plane shape which allows for large actuation stroke. Our initial goal is a one-dimensional bending actuator with 90 degree stroke. Along with frame shape, the actuation performance of DEMES depends on mechanical parameters such as thickness of the materials and pre-stretch of the elastomer membrane. We report here the characterization results on the effect of mechanical parameters on the actuator performance. The tested devices use a cm-size flexible-PCB (polyimide, 50 μm thickness) as the frame-material. For the DEA, PDMS (approximately 50 μm thickness) and carbon black mixed with silicone were used as membrane and electrode, respectively. The actuators were characterized by measuring the tip angle and the blocking force as functions of applied voltage. Different pre-stretch methods (uniaxial, biaxial and their ratio), and frame geometries (rectangular with different width, triangular and circular) were used. In order to compare actuators with different geometries, the same electrode area was used in all the devices. The results showed that the initial tip angle scales inversely with the frame width, the actuation stroke and the blocking force are inversely related (leading to an interesting design trade-off), using anisotropic pre-stretch increased the actuation stroke and the initial bending angle, and the circular frame shape exhibited the highest actuation performance.

  8. Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties.

    Science.gov (United States)

    Yurenko, Yevgen P; Novotný, Jan; Nikolaienko, Tymofii Yu; Marek, Radek

    2016-01-21

    The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.

  9. Modeling quasi-static poroelastic propagation using an asymptotic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.

    2007-11-01

    solution. Unfortunately, analytic solutions are only available for highly idealized conditions, such as a uniform (Rudnicki(1986)) or one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul; Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In this paper I derive an asymptotic, semi-analytic solution for coupled deformation and flow. The approach is similar to trajectory- or ray-based methods used to model elastic and electromagnetic wave propagation (Aki & Richards(1980); Kline & Kay(1979); Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more recently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner; Vasco(2007)). The asymptotic solution is valid in the presence of smoothly-varying, heterogeneous flow properties. The situation I am modeling is that of a formation with heterogeneous flow properties and uniform mechanical properties. The boundaries of the layer may vary arbitrary and can define discontinuities in both flow and mechanical properties. Thus, using the techniques presented here, it is possible to model a stack of irregular layers with differing mechanical properties. Within each layer the hydraulic conductivity and porosity can vary smoothly but with an arbitrarily large magnitude. The advantages of this approach are that it produces explicit, semi-analytic expressions for the arrival time and amplitude of the Biot slow and fast waves, expressions which are valid in a medium with heterogeneous properties. As shown here, the semi-analytic expressions provide insight into the nature of pressure and deformation signals recorded at an observation point. Finally, the technique requires considerably fewer computer resources than does a fully numerical treatment.

  10. Crystal structure and mechanism of a bacterial fluorinating enzyme.

    Science.gov (United States)

    Dong, Changjiang; Huang, Fanglu; Deng, Hai; Schaffrath, Christoph; Spencer, Jonathan B; O'Hagan, David; Naismith, James H

    2004-02-05

    Fluorine is the thirteenth most abundant element in the earth's crust, but fluoride concentrations in surface water are low and fluorinated metabolites are extremely rare. The fluoride ion is a potent nucleophile in its desolvated state, but is tightly hydrated in water and effectively inert. Low availability and a lack of chemical reactivity have largely excluded fluoride from biochemistry: in particular, fluorine's high redox potential precludes the haloperoxidase-type mechanism used in the metabolic incorporation of chloride and bromide ions. But fluorinated chemicals are growing in industrial importance, with applications in pharmaceuticals, agrochemicals and materials products. Reactive fluorination reagents requiring specialist process technologies are needed in industry and, although biological catalysts for these processes are highly sought after, only one enzyme that can convert fluoride to organic fluorine has been described. Streptomyces cattleya can form carbon-fluorine bonds and must therefore have evolved an enzyme able to overcome the chemical challenges of using aqueous fluoride. Here we report the sequence and three-dimensional structure of the first native fluorination enzyme, 5'-fluoro-5'-deoxyadenosine synthase, from this organism. Both substrate and products have been observed bound to the enzyme, enabling us to propose a nucleophilic substitution mechanism for this biological fluorination reaction.

  11. Structural and magnetic relaxations of mechanically alloyed Fe-Mo

    Science.gov (United States)

    Jiraskova, Y.; Bursik, J.; Turek, I.; Cizek, J.; Prochazka, I.

    2014-10-01

    The Fe-Mo sample mechanically alloyed for 250 h under air atmosphere was exposed to a series of isothermal and isochronal treatments with the aim to follow changes in the structure and magnetic properties regarding relaxations of strains and defects and stability of chemical composition. For this purpose x-ray diffraction, positron annihilation, scanning and transmission electron microscopy, and Mössbauer spectrometry were applied and supplemented by magnetic measurements. The temperatures for the magnetic studies were selected from the thermomagnetic curve of the as-prepared sample. The time interval of isothermal treatments was chosen from 0-300 min. The Mo content in the bcc-Fe(Mo) phase has substantially exceeded the equilibrium solubility limit but it has been found to decrease under the thermal treatment which was reflected by decreasing lattice parameters. The small crystallite size of approximately 10 nm in the initial state starts to grow only after a certain amount of strains induced by severe deformation, due to mechanical alloying being released. This was also reflected in the magnetic parameters. From their time dependences at selected temperatures the characteristic relaxation times were obtained and used for a calculation of the activation enthalpy of relaxation processes.

  12. Structure and mechanics of proteins from single molecules to cells

    Science.gov (United States)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  13. Seagull feather shaft: Correlation between structure and mechanical response.

    Science.gov (United States)

    Wang, Bin; Meyers, Marc André

    2017-01-15

    Flight feathers are unique among a variety of keratinous appendages in that they are lightweight, stiff and strong. They are designed to withstand aerodynamic forces, but their morphology and structure have been oversimplified and thus understudied historically. Here we present an investigation of the shaft from seagull primary feathers, elucidate the hierarchical fibrous and porous structure along the shaft length, and correlate the tensile and nanomechanical properties to the fiber orientation. An analysis of the compressive behavior of the rachis based on a square-section model shows a good fit with experimental results, and demonstrates the synergy between the cortex and medulla. Flexural properties of the shaft along the shaft length, analyzed as a sandwich composite, reveal that although all flexural parameters decrease towards the distal shaft, the specific equivalent flexural modulus and strength increase by factors of 2 and 3, respectively. The failure mode in flexure for all specimens is buckling on the compressive surface, whereas the foamy medulla prevents destructive axial cracking and introduces important toughening mechanisms: crack deflection, fiber bridging, and microcracking.

  14. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  15. Structural mechanism of C-type inactivation in K+ channels

    Science.gov (United States)

    Cuello, Luis G.; Jogini, Vishwanath; Cortes, D. Marien; Perozo, Eduardo

    2011-01-01

    Interconversion between conductive and non-conductive forms of the K+ channel selectivity filter underlies a variety of gating events, from flicker transitions (μs) to C-type inactivation (ms-s). Here, we report the crystal structure of the K+ channel KcsA in its Open-Inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels “trapped” in a series of partially open conformations. Five conformer classes were identified with openings ranging, from 12 Å in closed KcsA (Cα-Cα distances at T112) to 32 Å when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first, to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures suggest a molecular basis for C-type inactivation in K+ channels. PMID:20613835

  16. Structural mechanism of C-type inactivation in K(+) channels.

    Science.gov (United States)

    Cuello, Luis G; Jogini, Vishwanath; Cortes, D Marien; Perozo, Eduardo

    2010-07-08

    Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.

  17. Molecular mechanics and quantum mechanical modeling of hexane soot structure and interactions with pyrene

    Directory of Open Access Journals (Sweden)

    Kubicki JD

    2000-09-01

    Full Text Available Molecular simulations (energy minimizations and molecular dynamics of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1 were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2 and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3 force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH, such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.

  18. A study of the disciplinary structure of mechanics based on the titles of published journal articles in mechanics

    Institute of Scientific and Technical Information of China (English)

    CHEN; Lixin; LIU; Zeyuan; LIANG; Liming

    2010-01-01

    Scientometrics is an emerging academic field for the exploration of the structure of science through journal citation relations.However,this article aims to study those subject-relevant journals’contents rather than studying their citations contained therein with the purpose of discovering a given disciplinary structure of science such as mechanics in our case.Based on the title wordings of 68,075 articles published in 66 mechanics journals,and using such research tools as the word frequency analysis,multidimensional scaling analysis and factor analysis,this article analyzes similarity and distinctions of those journals’contents in the subject field of mechanics.We first convert complex internal relations of these mechanics journals into a small number amount of independent indicators.The group of selected mechanics journals is then classified by a cluster analysis.This article demonstrates that the relations of the research contents of mechanics can be shown in an intuitively recognizable map,and we can have them analyzed from a perspective by taking into account about how those major branches of mechanics,such as solid mechanics,fluid mechanics,rational mechanics(including mathematical methods in mechanics),sound and vibration mechanics,computational mechanics,are related to the main thematic tenet of our study.It is hoped that such an approach,buttressed with this new perspective and approach,will enrich our means to explore the disciplinary structure of science and technology in general and mechanics in specific.

  19. Structure and mechanism of the phycobiliprotein lyase CpcT.

    Science.gov (United States)

    Zhou, Wei; Ding, Wen-Long; Zeng, Xiao-Li; Dong, Liang-Liang; Zhao, Bin; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Yang, Xiaojing

    2014-09-26

    Pigmentation of light-harvesting phycobiliproteins of cyanobacteria requires covalent attachment of open-chain tetrapyrroles, bilins, to the apoproteins. Thioether formation via addition of a cysteine residue to the 3-ethylidene substituent of bilins is mediated by lyases. T-type lyases are responsible for attachment to Cys-155 of phycobiliprotein β-subunits. We present crystal structures of CpcT (All5339) from Nostoc (Anabaena) sp. PCC 7120 and its complex with phycocyanobilin at 1.95 and 2.50 Å resolution, respectively. CpcT forms a dimer and adopts a calyx-shaped β-barrel fold. Although the overall structure of CpcT is largely retained upon chromophore binding, arginine residues at the opening of the binding pocket undergo major rotameric rearrangements anchoring the propionate groups of phycocyanobilin. Based on the structure and mutational analysis, a reaction mechanism is proposed that accounts for chromophore stabilization and regio- and stereospecificity of the addition reaction. At the dimer interface, a loop extending from one subunit partially shields the opening of the phycocyanobilin binding pocket in the other subunit. Deletion of the loop or disruptions of the dimer interface significantly reduce CpcT lyase activity, suggesting functional relevance of the dimer. Dimerization is further enhanced by chromophore binding. The chromophore is largely buried in the dimer, but in the monomer, the 3-ethylidene group is accessible for the apophycobiliprotein, preferentially from the chromophore α-side. Asp-163 and Tyr-65 at the β- and α-face near the E-configured ethylidene group, respectively, support the acid-catalyzed nucleophilic Michael addition of cysteine 155 of the apoprotein to an N-acylimmonium intermediate proposed by Grubmayr and Wagner (Grubmayr, K., and Wagner, U. G. (1988) Monatsh. Chem. 119, 965-983).

  20. Mapping the Broad Structural and Mechanical Properties of Amyloid Fibrils.

    Science.gov (United States)

    Lamour, Guillaume; Nassar, Roy; Chan, Patrick H W; Bozkurt, Gunes; Li, Jixi; Bui, Jennifer M; Yip, Calvin K; Mayor, Thibault; Li, Hongbin; Wu, Hao; Gsponer, Jörg A

    2017-02-28

    Amyloids are fibrillar nanostructures of proteins that are assembled in several physiological processes in human cells (e.g., hormone storage) but also during the course of infectious (prion) and noninfectious (nonprion) diseases such as Creutzfeldt-Jakob and Alzheimer's diseases, respectively. How the amyloid state, a state accessible to all proteins and peptides, can be exploited for functional purposes but also have detrimental effects remains to be determined. Here, we measure the nanomechanical properties of different amyloids and link them to features found in their structure models. Specifically, we use shape fluctuation analysis and sonication-induced scission in combination with full-atom molecular dynamics simulations to reveal that the amyloid fibrils of the mammalian prion protein PrP are mechanically unstable, most likely due to a very low hydrogen bond density in the fibril structure. Interestingly, amyloid fibrils formed by HET-s, a fungal protein that can confer functional prion behavior, have a much higher Young's modulus and tensile strength than those of PrP, i.e., they are much stiffer and stronger due to a tighter packing in the fibril structure. By contrast, amyloids of the proteins RIP1/RIP3 that have been shown to be of functional use in human cells are significantly stiffer than PrP fibrils but have comparable tensile strength. Our study demonstrates that amyloids are biomaterials with a broad range of nanomechanical properties, and we provide further support for the strong link between nanomechanics and β-sheet characteristics in the amyloid core. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Mechanical Behavior of Tough Hydrogels for Structural Applications

    Science.gov (United States)

    Illeperuma, Widusha Ruwangi Kaushalya

    Hydrogels are widely used in many commercial products including Jell-O, contact lenses, and superabsorbent diapers. In recent decades, hydrogels have been under intense development for biomedical applications, such as scaffolds in tissue engineering, carriers for drug delivery, and valves in microfluidic systems. But the scope is severely limited as conventional hydrogels are weak and brittle and are not very stretchable. This thesis investigates the approaches that enhance the mechanical properties of hydrogels and their structural applications. We discov¬ered a class of exceptionally stretchable and tough hydrogels made from poly-mers that form networks via ionic and covalent crosslinks. Although such a hydrogel contains ~90% water, it can be stretched beyond 20 times its initial length, and has a fracture energy of ~9000 J/m2. The combination of large stretchability, remarkable toughness, and recoverability of stiffness and toughness, along with easy synthesis makes this material much superior over existing hydrogels. Extreme stretchability and blunted crack tips of these hydrogels question the validity of traditional fracture testing methods. We re-examine a widely used pure shear test method to measure the fracture energy. With the experimental and simulation results, we conclude that the pure shear test method can be used to measure fracture energy of extremely stretchable materials. Even though polyacrylamide-alginate hydrogels have an extremely high toughness, it has a relatively low stiffness and strength. We improved the stiffness and strength by embedding fibers. Most hydrogels are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. But tough hydrogel composites do not fail by the fibers cutting the hydrogel; instead, it undergoes large deforming by fibers sliding through the matrix. Hydrogels were not considered as materials for structural applications. But with enhanced mechanical properties, they have opened up

  2. Mechanical characterization and structural assessment of biocomposites for construction

    Science.gov (United States)

    Christian, Sarah Jane

    The objective of this dissertation is to assess whether or not two particular biocomposite materials, made from hemp fabric and cellulose acetate or polyhydroxybutyrate matrices, are capable of being used for structural and/or construction purposes within in the construction and building industry. The objective of this dissertation was addressed by conducting research to meet the following three goals: (1) to measure the basic mechanical properties of hemp/cellulose acetate and hemp/PHB biocomposites and evaluate if they suitable for use in construction applications, (2) to determine how quickly moisture diffuses into the biocomposite materials and how the moisture affects the mechanical behavior, and (3) to determine how well simple models can predict behavior of structural scale laminates in tension and flexure using biocomposite ply behavior. Compression molding was used to manufacturing the biocomposites from hemp fabric and the themoplastic matrices: cellulose acetate and polyhydroxybutyrate. Four methods for determining the fiber volume fraction were evaluated, and the dissolution method, using different solvents for each matrix type, was used to determine the fiber volume fraction for each composite plate manufactured. Both types of biocomposite were tested in tension, compression, shear, and flexure and the measured properties were compared to wood and engineered wood products to assess whether the biocomposite properties are suitable for use in the construction industry. The biocomposites were conditioned in a humid environment to determine the rate of moisture diffusion into the materials. Then saturated specimens and specimens that were saturated and then dried were tested in tension to evaluate how moisture absorption affects the mechanical behavior of the biocomposites. Finally, simple models of laminate behavior based on laminate plate theory were evaluated to determine if ply level behavior could be used to predict structural scale laminate behavior

  3. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    Science.gov (United States)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the

  4. Study of structural-mechanical properties of the ointment base

    Directory of Open Access Journals (Sweden)

    V. V. Rudenko

    2013-06-01

    Full Text Available The ENTRY. For the local treatment of surgical wounds basis of a medicine plays an important role in ensuring its therapeutic effect. Ointment framework depends on adequate frequency of applications, pharmacokinetics, therapeutic effect and absence/presence of side effects. Unjustifiable selected the basis of a medicinal product may cause not only the increase or reduction of the actions of the active substance, but also a total absence of it. The AIM of the WORK was to develop composition and technology of production of combined emulsion of a medicine for the treatment of surgical wounds that meet the modern medical-biological requirements. MATERIALS AND METHODS OF RESEARCH. Rheological studies carried out with the help of rotary viscometer with coaxial cylinders «Rheotest-2» (Germany. For the study took the hinge of a pilot sample. RESULTS AND THEIR DISCUSSION. Based on the biomedical requirements to create a combination of soft drugs for the treatment of wound healing we conducted research to establish ointments emulsion based on first order. As emulsifier of the first kind were used twin-80 and stearic acid, and emulsifier of the second kind - monostearat glycerin. For the comparative analysis was taken a comprehensive emulsifier No.1. It is established, that the use of a complex of emulsifiers stearic acid, emulsifier No.1 the highest structural-mechanical parameters have emulsion with the ratio of surface-active substances of 2.5 % and 5.5%, respectively. With the increase in the stearic acid emulsion was increase in the rheological parameters of the model for all shear rates. Also the composition of model samples at different ratios of emulsifier No.1 and the twin-80. Determined that the maximum value rheological parameters observed in the ratio of: emulsifier No.1-twin-80 (1:7. With the increase in the emulsions quantity of emulsifier No.1 rheological parameters increases sharply for all speeds of the shift. This non-linear dependence

  5. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  6. Mechanical properties and structure of magnesium alloy AS31

    Directory of Open Access Journals (Sweden)

    A. Hanus

    2008-07-01

    Full Text Available Contemporary materials should possess high mechanical properties, physical and chemical, as well as technological ones, to ensure long and reliable use. The non-ferrous metals alloys used nowadays, including the magnesium alloys, meet the above-mentioned requirements and expectations regarding the contemporary materials.Magnesium alloys are primarily used in aeronautical and automobile industry in wide variety of structural characteristics because of their favorable combination of tensile strength (160 to 365 MPa, elastic modulus (45 GPa, and low density (1 740 kg/m3, which is two-thirds that of aluminum. Magnesium alloys have high strength-to-weight ratio (tensile strength/density, comparable to those of other structural metals. [1-6]Knowledge of the relaxation properties of metal materials at high temperatures is necessary for the verification of susceptibility of castings to the creation of defects during the production process. Temperature limits of materials where highest tension values are generated may be detected with tensile tests under high temperatures. The generated tensions in the casting are a cause of the creation and development of defects. At acoustic emission (hereinafter called the "AE" use, tensile tests at high temperatures may, among other things, be used for analysis of the AE signal sources and set, in more detail, the temperature limit of elastic-plastic deformations existence in the material under examination. The results of the temperature drop where tension at casting cooling is generated or its release at heating are basic data for controlled cooling mode (and temperature of casting knocking out of the form as well as necessary for the thermal mode for the casting tension reduction. [7-9]Knowledge of elastic-plastic properties at elevated temperatures is often important for complex evaluation of magnesium alloys. Objective of the work was focused on determination of changes of elastic-plastic properties of magnesium

  7. Structural evolution and mechanisms of fatigue in polycrystalline brass

    Energy Technology Data Exchange (ETDEWEB)

    Vejloe Carstensen, J

    1998-03-01

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic strain controlled fatigue of brass. This complicates the contstruction of a cyclic stress-strain (CSS) curve and thus the comparison with copper. A method to overcome this complication has been suggested. Surface observations on fatigued brass specimens show that individual grains tend to deform by Sachs type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass. It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the secondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn in a pure planar slip alloy, while Cu-15%Zn displays both planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This emphasizes brass as being a convenient model system for the industrially important austenitic steels. (au) 9 tabs., 94 ills., 177 refs.; The thesis is also available as DCAMM-R-S80 and as an electronic document on http://www.risoe.dk/rispubl

  8. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    size of grains is ~300nm. Rotational deformation modes give rise to the high angular disorientations of grains. The development of plastic shear instability regions has been simulated numerically. For this purpose, we use a recently developed theory, in which the influence of microshears on the deformation properties of materials has been studied by the methods of statistical physics and thermodynamics of irreversible processes. The results of theoretical and experimental studies suggest that one of the mechanisms of the plastic shear instability and localization of plastic strain at high-velocity perforation is related to structural and kinetic transitions in microshear ensembles

  9. Structural mechanism and effect of hole compressibility on mechanical strength of MFLB

    Institute of Scientific and Technical Information of China (English)

    Yan MA; Alun

    2008-01-01

    We have studied the structural mechanism of micron flaky wood fiber light density board (MFLB), of which voids are an important structural characteristic. A new parameter called hole compressibility (η) was added to study the characteristics of MFLB further, in order to produce various levels of hole compressibility. A set of hot pressures was applied, and uniform parts at cross-sections of MFLB were selected to study the effects of hole com-pressibility on the modulus of elasticity (MOE) and modulus of rupture (MOR) of MFLB by microscopic analyses. The results showed that MFLB (0.3 g/cm in density) processed at various hot pressures (from 1.6 to 2.2 MPa) all meet the norms of the Japan Light Parti-cleboard Industrial Standard JISA 5908, where η≤ 0 ran-ging from -0.0487 to -0.068. The critical value of hole compressibility at which the strength began to decrease was also obtained. We compared the void distribution, size and shape at different void contents and hole com-pressibility and discussed the effects of hole compressibil-ity on MOE and MOR of MFLB as well. To a certain density of raw material and micro-fiber of a certain thick-ness, the strength of MFLB can be decreased with an increase in hole compressibility. When the hole compres-sibility of MLFB exceeds a certain critical value, loading at a lower level will decrease MOR and MOE of MFLB considerably.

  10. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy.

    Science.gov (United States)

    Lin, Long; Wang, Sihong; Xie, Yannan; Jing, Qingshen; Niu, Simiao; Hu, Youfan; Wang, Zhong Lin

    2013-06-12

    We introduce an innovative design of a disk triboelectric nanogenerator (TENG) with segmental structures for harvesting rotational mechanical energy. Based on a cyclic in-plane charge separation between the segments that have distinct triboelectric polarities, the disk TENG generates electricity with unique characteristics, which have been studied by conjunction of experimental results with finite element calculations. The role played by the segmentation number is studied for maximizing output. A distinct relationship between the rotation speed and the electrical output has been thoroughly investigated, which not only shows power enhancement at high speed but also illuminates its potential application as a self-powered angular speed sensor. Owing to the nonintermittent and ultrafast rotation-induced charge transfer, the disk TENG has been demonstrated as an efficient power source for instantaneously or even continuously driving electronic devices and/or charging an energy storage unit. This work presents a novel working mode of TENGs and opens up many potential applications of nanogenerators for harvesting even large-scale energy.

  11. Structure design and mechanical measurement of inflatable antenna

    Science.gov (United States)

    Xu, Yan; Guan, Fu-ling

    2012-07-01

    This paper deals with the initial shape analysis, cutting-pattern analysis, surface accuracy measurement and modal testing of high-precision inflatable antennas reflectors that are intended for spaceflight applications. The initial shape analysis method, formulated on the basis of membrane theory and elastic mechanics, determines the required as-manufactured shape of the reflective surface of the antenna reflector. On the other hand, the cutting-pattern analysis method, with its formulation based on spring-mass representations, numerically calculates the required cutting pattern of the planar membrane gores that are to be assembled to form the 3-dimensional reflective surface. To validate the effectiveness of the proposed analysis methods, a 3.2-m antenna reflector model was designed, manufactured, and assembled for ground demonstration and testing. The reflective surface accuracy of this demonstration reflector model was measured by a photogrammetric measuring system. Shape adjustments of the reflective surface were performed by systematically adjusting the tension in the cables that were used to mount the reflector to its support structure. It was found that the reflective surface accuracy of the reflector model, as defined by its RMS error from a best-fit parabolic shape, was less than 1 mm. In addition, dynamic and RF tests were also performed on the demonstration reflector model. The test results indicated that the first-mode frequency of the reflector model agreed well with the corresponding analytical prediction, and its radiation pattern was also well focused.

  12. Space-time mechanics: Quantum causal structure and expansive force

    CERN Document Server

    Valenzuela, Mauricio

    2015-01-01

    Combining twistor space and phase space formulation of quantum mechanics we propose a new framework of quantization of geometries which incorporates Wigner functions for geometrical observables. Quantizing the light-cone in 2+1D and 3+1D results in one-sheet "quantum hyperboloids". We propose that the latter rule the causal structure of the space-time, yielding uncertainty of positions and space-time curvature. The quantum hyperboloid predicts accelerated propagation of signals and effective space expansion. These effects are noticeable at scales of the quantization parameter in twistor space and negligible at much larger scales since the hyperboloid is asymptotic to the light-cone. Due to space-time non-commutativity it is necessary to introduce notions of observers which are able to determine distances in specific directions. Thus, in the perspective of a time-observer, time and radius of spatial sections of the quantum hyperboloid become discrete and bounded from below. Hence the time is quantized and punc...

  13. Dynamic and quasi-static mechanical properties of iron-nickel alloy honeycomb

    Science.gov (United States)

    Clark, Justin L.

    Several metal honeycombs, termed Linear Cellular Alloys (LCAs), were fabricated via a paste extrusion process and thermal treatment. Two Fe-Ni based alloy compositions were evaluated. Maraging steel and Super Invar were chosen for their compatibility with the process and the wide range of properties they afforded. Cell wall material was characterized and compared to wrought alloy specifications. The bulk alloy was found to compare well with the more conventionally produced wrought product when porosity was taken into account. The presence of extrusion defects and raw material impurities were shown to degrade properties with respect to wrought alloys. The performance of LCAs was investigated for several alloys and cell morphologies. The results showed that out-of-plane properties exceeded model predictions and in-plane properties fell short due to missing cell walls and similar defects. Strength was shown to outperform several existing cellular metals by as much as an order of magnitude in some instances. Energy absorption of these materials was shown to exceed 150 J/cc at strains of 50% for high strength alloys. Finally, the suitability of LCAs as an energetic capsule was investigated. The investigation found that the LCAs added significant static strength and as much as three to five times improvement in the dynamic strength of the system. More importantly, it was shown that the pressures achieved with the LCA capsule were significantly higher than the energetic material could achieve alone. High pressures, approaching 3 GPa, coupled with the fragmentation of the capsule during impact increased the likelihood of initiation and propagation of the energetic reaction. This multi-functional aspect of the LCA makes it a suitable capsule material.

  14. Design for the Structure and the Mechanics of Moballs

    Science.gov (United States)

    Davoodi, Faranak; Davoudi, Farhooman

    2012-01-01

    The moball is envisioned to be a round, self-powered, and wind-driven multifunctioning sensor used in the Gone with the Wind ON-Mars (GOWON) [http://www.lpi.usra.edu/meetings/ marsconcepts2012/pdf/4238.pdf]: A Wind-Driven Networked System of Mobile sensors on Mars. The moballs would have sensing, processing, and communication capabilities. The moballs would perform in situ detection of key environmental elements such as vaporized water, trace gases, wind, dust, clouds, light and UV exposure, temperature, as well as minerals of interest, possible biosignatures, surface magnetic and electric fields, etc. The embedded various low-power micro instruments could include a Multispectral Microscopic Imager (to detect various minerals), a compact curved focal plane array camera (UV/Vis/NIR) with a large field of view, a compact UV/Visible spectrometer, a micro-weather station, etc. The moballs could communicate with each other and an orbiter. Their wind- or gravity-driven rolling movement could be used to harvest and store electric energy. They could also generate and store energy using the sunlight, when available, and the diurnal temperature variations on Mars. The moballs would be self-aware of their (and their neighbors ) positions, energy storage, and memory availability; they would have processing power and could intelligently cooperate with neighboring moballs by distributing tasks, sharing data, and fusing information. The major advantages of using the wind-driven and spherical moball network over rovers or other fixed sensor webs to explore Mars would be: (1) moballs could explore a much larger expanse of Mars in a much faster fashion, (2) they could explore the difficult terrains such as steep slopes and sand dunes, and (3) they would be self-energy- generating and could work together and move around autonomously. The challenge in designing the structure and the mechanics of the moball would be that it should be sturdy enough to withstand the impact of its initial

  15. Experimental study on energy absorption of foam filled kraft paper honeycomb subjected to quasi-static uniform compression loading

    Science.gov (United States)

    Abd Kadir, N.; Aminanda, Y.; Ibrahim, M. S.; Mokhtar, H.

    2016-10-01

    A statistical analysis was performed to evaluate the effect of factor and to obtain the optimum configuration of Kraft paper honeycomb. The factors considered in this study include density of paper, thickness of paper and cell size of honeycomb. Based on three level factorial design, two-factor interaction model (2FI) was developed to correlate the factors with specific energy absorption and specific compression strength. From the analysis of variance (ANOVA), the most influential factor on responses and the optimum configuration was identified. After that, Kraft paper honeycomb with optimum configuration is used to fabricate foam-filled paper honeycomb with five different densities of polyurethane foam as filler (31.8, 32.7, 44.5, 45.7, 52 kg/m3). The foam-filled paper honeycomb is subjected to quasi-static compression loading. Failure mechanism of the foam-filled honeycomb was identified, analyzed and compared with the unfilled paper honeycomb. The peak force and energy absorption capability of foam-filled paper honeycomb are increased up to 32% and 30%, respectively, compared to the summation of individual components.

  16. Static and quasi-static behavior of an adaptive system to compensate path errors for smart fiber placement

    Science.gov (United States)

    Perner, M.; Monner, H. P.; Krombholz, C.; Kruse, F. F.

    2015-04-01

    Smart fiber placement is an ambitious topic in current research for automated manufacturing of large-scale composite structures, e.g. wing covers. Adaptive systems get in focus to obtain a high degree of observability and controllability of the manufacturing process. In particular, vibrational issues and material failure have to be studied to significantly increase the production rate with no loss in accuracy of the fiber layup. As one contribution, an adaptive system has been developed to be integrated into the fiber placement head. It decouples the compaction roller from disturbances caused by misalignments, varying components' behavior over a large work area and acceleration changes during operation. Therefore, the smart system axially adapts the position of the compaction roller in case of disturbances. This paper investigates the behavior of the system to compensate quasi-static deviations from the desired path. In particular, the compensation efficiency of a constant offset, a linear drift with constant gradient and a single-curved drift is studied. Thus, the test bed with measurement devices and scenarios is explained. Based on the knowledge obtained by the experimental data, the paper concludes with a discussion of the proposed approach for its use under operating conditions and further implementation.

  17. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.

    Science.gov (United States)

    Lee, Tzong-Hsien; Hall, Kristopher N; Aguilar, Marie-Isabel

    2016-01-01

    Antimicrobial peptides (AMPs) are showing increasing promise as potential candidate antibacterial drugs in the face of the rapidly emerging bacterial resistance to conventional antibiotics in recent years. The target of these peptides is the microbial membrane and there are numerous models to explain their mechanism of action ranging from pore formation to general membrane disruption. The interaction between the AMP and the target membrane is critical to the specificity and activity of these peptides. However, a precise understanding of the relationship between antimicrobial peptide structure and their cytolytic function in a range of organisms is still lacking. This is a result of the complex nature of the interactions of AMPs with the cell membrane, the mechanism of which can vary considerably between different classes of antimicrobia peptides. A wide range of biophysical techniques have been used to study the influence of a number of peptide and membrane properties on the cytolytic activity of these peptides in model membrane systems. Central to characterisation of this interaction is a quantitative analysis of the binding of peptide to the membrane and the coherent dynamic changes in membrane structure. Recently, dual polarization interferometry has been used to perform an in depth analysis of antimicrobial peptide induced membrane perturbation and with new mass-structure co-fitting kinetic analysis have allowed a real-time label free analysis of binding affinity and kinetics. We review these studies which describe multi-step mechanisms which are adopted by various AMPs in nature and may advance our approach to the development of a new generation of effective antimicrobial therapeutics.

  18. Quasi-Static Analysis of Round LaRC THUNDER Actuators

    Science.gov (United States)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  19. Relativistic gravitational collapse in comoving coordinates: The post-quasistatic approximation

    CERN Document Server

    Herrera, L

    2010-01-01

    A general iterative method proposed some years ago for the description of relativistic collapse, is presented here in comoving coordinates. For doing that we redefine the basic concepts required for the implementation of the method for comoving coordinates. In particular the definition of the post-quasistatic approximation in comoving coordinates is given. We write the field equations, the boundary conditions and a set of ordinary differential equations (the surface equations) which play a fundamental role in the algorithm. As an illustration of the method, we show how to build up a model inspired in the well known Schwarzschild interior solution. Both, the adiabatic and non adiabatic, cases are considered.

  20. A TIME DOMAIN METHOD FOR QUASI-STATIC ANALYSIS OF VISCOELASTIC THIN PLATES

    Institute of Scientific and Technical Information of China (English)

    张能辉; 程昌钧

    2001-01-01

    Based on the Boltzmann's superposition principles of linear viscoelastic materials for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.

  1. Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals

    Science.gov (United States)

    2015-09-01

    equations should be taken in such a way that the total master system 1-4 satisfies the First and Second laws of thermodynamics . These demands entail quite...4302.   Respondents should be aware that notwithstanding any other provision of  law , no person shall be subject to any penalty  for failing to comply...provide a useful basis for verification of numerical methods. The second goal is not computational but physical – it is to explore in the quasi-static

  2. Critical Rayleigh number of for error function temperature profile with a quasi-static assumption

    CERN Document Server

    Kerr, Oliver S

    2016-01-01

    When a semi-infinite body is heated from below by a sudden increase in temperature (or cooled from above) an error function temperature profile grows as the heat diffuses into the fluid. The stability of such a profile is investigated using a large-wavelength asymptotic expansion under the quasi-static, or frozen-time, approximation. The critical Rayleigh number for this layer is found to be $Ra=\\pi^{1/2}$ based on the length-scale $(\\kappa t)^{1/2}$ where $\\kappa$ is the thermal diffusivity and $t$ the time since the onset of heating.

  3. FEMSA: a finite element simulation tool for quasi-static seismic deformation modeling

    Directory of Open Access Journals (Sweden)

    A. Piersanti

    2007-06-01

    Full Text Available We set up a computational tool to numerically model static and quasi-static deformation generated by faulting sources embedded in plane or spherical domains. We use a Finite Element (FE approach to automatically implement arbitrary faulting sources and calculate displacement and stress fields induced by slip on the fault. The package makes use of the capabilities of CalculiX, a non commercial FE software designed to solve field problems (see for details, and is freely distributed by request.

  4. Biological pattern formation: from basic mechanisms to complex structures

    Science.gov (United States)

    Koch, A. J.; Meinhardt, H.

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns? Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of Drosophila and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  5. Mechanics and properties of composed materials and structures

    CERN Document Server

    Öchsner, Andreas; Altenbach, Holm

    2014-01-01

    This volume details the latest trends in characterization and developments of composed materials and structures, including textile composites, sandwich plates, hollow sphere structures, reinforced concrete as well as classical fibre reinforced materials.

  6. Structure-phase state and mechanical properties of surface layers in titanium nikelide single crystals after shock mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Surikova, N., E-mail: surikova@ispms.tsc.ru; Panin, V., E-mail: paninve@ispms.tsc.ru; Vlasov, I.; Narkevich, N., E-mail: natnark@list.ru; Tolmachev, A. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Surikov, N., E-mail: jet-n@mail.ru [Siberian Physical-Technical Institute, Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The influence of ultrasonic shock surface treatment (USST) on refine structure and mechanical characteristics of surface layers and deformation behaviour of volume samples of TiNi(Fe, Mo) shape memory effect alloy single crystals is studied using optical and transmission electron microscope, X-ray diffraction, nanoindentation, mechanical attrition testing and experiments on uniaxial tension.

  7. Structural versus Matching Estimation : Transmission Mechanisms in Armenia

    NARCIS (Netherlands)

    Poghosyan, K.; Boldea, O.

    2011-01-01

    Opting for structural or reduced form estimation is often hard to justify if one wants to both learn about the structure of the economy and obtain accurate predictions. In this paper, we show that using both structural and reduced form estimates simultaneously can lead to more accurate policy

  8. Structural versus Matching Estimation : Transmission Mechanisms in Armenia

    NARCIS (Netherlands)

    Poghosyan, K.; Boldea, O.

    2011-01-01

    Opting for structural or reduced form estimation is often hard to justify if one wants to both learn about the structure of the economy and obtain accurate predictions. In this paper, we show that using both structural and reduced form estimates simultaneously can lead to more accurate policy predic

  9. Structural versus Matching Estimation : Transmission Mechanisms in Armenia

    NARCIS (Netherlands)

    Poghosyan, K.; Boldea, O.

    2011-01-01

    Opting for structural or reduced form estimation is often hard to justify if one wants to both learn about the structure of the economy and obtain accurate predictions. In this paper, we show that using both structural and reduced form estimates simultaneously can lead to more accurate policy predic

  10. Structures and Stabilization Mechanisms in Chemically Stabilized Ceramics

    Science.gov (United States)

    Gai-Boyes, Pratibha L.; Saltzberg, Michael A.; Vega, Alexander

    1993-09-01

    Structural complexities and disorder in chemically stabilized cristobalites (CSC), which are room temperature silica-based ceramics, prepared by a wet chemical route, are described. CSC displays many of the structural characteristics of the high temperature cristobalite, elucidated by HREM and X-ray diffraction. In-situ electron diffraction and NMR results suggest that the disorder is structural and is static.

  11. Structural Properties and Mechanical Durability of Extruded Fish Feed

    DEFF Research Database (Denmark)

    Haubjerg, Anders Fjeldbo; Veje, Christian; Jørgensen, Bo Nørregaard;

    2015-01-01

    This article investigates the possible correlation between mechanical properties of fish feed pellets and their mechanical durability. Mechanical properties were obtained by texture profile analysis (TPA) and stress relaxation test (SRT) of different types of fish feed. The results were correlated...... against a conventional test of mechanical durability (DORIS, Durability On a Realistic, test). From SRT it was found that for achieving a high durability, pellets should be able to relax an applied force nonelastically. From TPA, it was found that a durable pellet should also be able to return its...

  12. A global verification study of a quasi-static knee model with multi-bundle ligaments

    NARCIS (Netherlands)

    Mommersteeg, TJA; Blankevoort, L; Kooloos, JGM; Kauer, JMG; Maathuis, PGM

    1996-01-01

    The ligaments of the knee consist of fiber bundles with variable orientations, lengths and mechanical properties. In concept, however, these structures were too often seen as homogeneous structures, which are either stretched or slack during knee motions. In previous studies, we proposed a new struc

  13. Structural imprints in vivo decode RNA regulatory mechanisms

    Science.gov (United States)

    Spitale, Robert C.; Flynn, Ryan A.; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y.; Batista, Pedro J.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2015-03-01

    Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N6-methyladenosine (m6A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.

  14. High Temperature Advanced Structural Composites. Volume 3. Mechanics

    Science.gov (United States)

    1993-04-02

    of Mechanics Associaqao Brasileira de CiUncias MecAnicas Hosted by Departamento de Engenharia Civil Pontiffcia Universidade Cat61ica do Rio de Janeiro...plastic composite materiale , Jnl. Appl. Mach., Vol. 53 (1986). Mechanics of Matenals 7 (1989) 305-317 305 North-Holland STRESS FIELDS IN COMPOSITES

  15. Low carbon steel: Metallurgical structure vs. mechanical properties

    Science.gov (United States)

    Shull, Robert D.

    1990-01-01

    The objective is to provide a low cost, simple experiment for either demonstration purposes or as a laboratory experiment that will teach the student the importance of the thermal-mechanical history of a metallic alloy in determining that material's mechanical behavior. Hairpins are subjected to various treatments. The experimental equipment and procedures are discussed.

  16. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  17. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  18. Determination of quasi-static microaccelerations onboard a satellite using video images of moving objects

    Science.gov (United States)

    Levtov, V. L.; Romanov, V. V.; Boguslavsky, A. A.; Sazonov, V. V.; Sokolov, S. M.; Glotov, Yu. N.

    2009-12-01

    A space experiment aimed at determination of quasi-static microaccelerations onboard an artificial satellite of the Earth using video images of the objects executing free motion is considered. The experiment was carried out onboard the Foton M-3 satellite. Several pellets moved in a cubic box fixed on the satellite’s mainframe and having two transparent adjacent walls. Their motion was photographed by a digital video camera. The camera was installed facing one of the transparent walls; a mirror was placed at an angle to another transparent wall. Such an optical system allowed us to have in a single frame two images of the pellets from differing viewpoints. The motion of the pellets was photographed on time intervals lasting 96 s. Pauses between these intervals were also equal to 96 s. A special processing of a separate image allowed us to determine coordinates of the pellet centers in the camera’s coordinate system. The sequence of frames belonging to a continuous interval of photography was processed in the following way. The time dependence of each coordinate of every pellet was approximated by a second degree polynomial using the least squares method. The coefficient of squared time is equal to a half of the corresponding microacceleration component. As has been shown by processing made, the described method of determination of quasi-static microaccelerations turned out to be sufficiently sensitive and accurate.

  19. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    CERN Document Server

    Santos, J J; Giuffrida, L; Forestier-Colleoni, P; Fujioka, S; Zhang, Z; Korneev, Ph; Bouillaud, R; Dorard, S; Batani, D; Chevrot, M; Cross, J; Crowston, R; Dubois, J -L; Gazave, J; Gregori, G; d'Humières, E; Hulin, S; Ishihara, K; Kojima, S; Loyez, E; Marquès, J -R; Morace, A; Nicolaï, Ph; Peyrusse, O; Poyé, A; Raffestin, D; Ribolzi, J; Roth, M; Schaumann, G; Serres, F; Tikhonchuk, V T; Vacar, Ph; Woolsey, N

    2015-01-01

    Quasi-static magnetic-fields up to $800\\,$T are generated in the interaction of intense laser pulses (500J, 1ns, 10^{17}W/cm^2) with capacitor-coil targets of different materials. The reproducible magnetic-field was consistently measured by three independent diagnostics: GHz-bandwidth inductor pickup coils (B-dot probes), Faraday rotation of polarized optical laser light and proton beam-deflectometry. The field rise time is consistent with the laser pulse duration, and it has a dipole-like distribution over a characteristic volume of 1mm^3, which is coherent with theoretical expectations. These results demonstrate a very efficient conversion of the laser energy into magnetic fields, thus establishing a robust laser-driven platform for reproducible, well characterized, generation of quasi-static magnetic fields at the kT-level, as well as for magnetization and accurate probing of high-energy-density samples driven by secondary powerful laser or particle beams.

  20. Real-time closed-loop control for micro mirrors with quasistatic comb drives

    Science.gov (United States)

    Schroedter, Richard; Sandner, Thilo; Janschek, Klaus; Roth, Matthias; Hruschka, Clemens

    2016-03-01

    This paper presents the application of a real-time closed-loop control for the quasistatic axis of electrostatic micro scanning mirrors. In comparison to resonantly driven mirrors, the quasistatic comb drive allows arbitrary motion profiles with frequencies up to its eigenfrequency. A current mirror setup at Fraunhofer IPMS is manufactured with a staggered vertical comb (SVC) drive and equipped with an integrated piezo-resistive deflection sensor, which can potentially be used as position feedback sensor. The control design is accomplished based on a nonlinear mechatronic system model and the preliminary parameter characterization. In previous papers [1, 2] we have shown that jerk-limited trajectories, calculated offline, provide a suitable method for parametric trajectory design, taking into account physical limitations given by the electrostatic comb and thus decreasing the dynamic requirements. The open-loop control shows in general unfavorable residual eigenfrequency oscillations leading to considerable tracking errors for desired triangle trajectories [3]. With real-time closed-loop control, implemented on a dSPACE system using an optical feedback, we can significantly reduce these errors and stabilize the mirror motion against external disturbances. In this paper we compare linear and different nonlinear closed-loop control strategies as well as two observer variants for state estimation. Finally, we evaluate the simulation and experimental results in terms of steady state accuracy and the concept feasibility for a low-cost realization.

  1. Writing on Dirty Paper with Resizing and its Application to Quasi-Static Fading Broadcast Channels

    CERN Document Server

    Zhang, Wenyi; Laneman, J Nicholas

    2007-01-01

    This paper studies a variant of the classical problem of ``writing on dirty paper'' in which the sum of the input and the interference, or dirt, is multiplied by a random variable that models resizing, known to the decoder but not to the encoder. The achievable rate of Costa's dirty paper coding (DPC) scheme is calculated and compared to the case of the decoder's also knowing the dirt. In the ergodic case, the corresponding rate loss vanishes asymptotically in the limits of both high and low signal-to-noise ratio (SNR), and is small at all finite SNR for typical distributions like Rayleigh, Rician, and Nakagami. In the quasi-static case, the DPC scheme is lossless at all SNR in terms of outage probability. Quasi-static fading broadcast channels (BC) without transmit channel state information (CSI) are investigated as an application of the robustness properties. It is shown that the DPC scheme leads to an outage achievable rate region that strictly dominates that of time division.

  2. Quasi-static stop band with flexural metamaterial having zero rotational stiffness

    Science.gov (United States)

    Oh, Joo Hwan; Assouar, Badreddine

    2016-01-01

    Metamaterials realizing stop bands have attracted much attentions recently since they can break-through the well-known mass law. However, achieving the stop band at extremely low frequency has been still a big challenge in the fields of elastic metamaterials. In this paper, we propose a new metamaterial based on the idea of the zero rotational stiffness, to achieve extremely low frequency stop band for flexural elastic waves. Unlike the previous ways to achieve the stop band, we found that the zero rotational stiffness can provide a broad stop band at extremely low frequency, which starts from even almost zero frequency. To achieve the zero rotational stiffness, we propose a new elastic metamaterial consisting of blocks and links with the hinge connection. Analytic developments as well as numerical simulations evidence that this new metamaterial can exhibit extremely low and broad stop band, even at the quasi-static ranges. In addition, the metamaterial is shown to exhibit the negative group velocity at extremely low frequency ranges, as well as the quasi-static stop band, if it is properly designed. PMID:27651146

  3. Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading

    Science.gov (United States)

    Banerjee, Amit; Jiang, Chenchen; Lohiya, Lokesh; Yang, Yong; Lu, Yang

    2016-04-01

    Plastic deformation in metallic glasses is highly localized and often associated with shear banding, which may cause momentary release of heat upon fracture. Here, we report an explosive fracture phenomenon associated with momentary (˜10 ms) light emission (flash) in Lanthanum-based (LaAlNi) metallic glass microwires (dia. ˜50 μm) under quasi-static tensile loading. The load-displacement data as well as the visual information of the tensile deformation process were acquired through an in situ measurement set-up, which clearly showed nonlinear stress (σ)-strain ( ɛ) curves prior to yielding and also captured the occurrence of the flash at high fracture stresses (˜1 GPa). Through the postmortem fractographic analysis, it can be revealed that the fracto-emission upon quasi-static loading could be mainly attributed to the localized adiabatic work accumulated at a very large elastic strain confined within the microscale sample volume, followed by a localized high temperature rise up to ˜1000 K at the fracture surface through localized energy dissipation. Our findings suggest that the La-based metallic glass microwires could be useful for energetic microchips, micro-ignition devices, and other functional applications.

  4. Development of Benchmark Examples for Quasi-Static Delamination Propagation and Fatigue Growth Predictions

    Science.gov (United States)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for Abaqus/Standard. The example is based on a finite element model of a Double-Cantilever Beam specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.

  5. Plasma wakefield acceleration studies using the quasi-static code WAKE

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Neeraj [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Palastro, John [Icarus Research Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780 (United States); Antonsen, T. M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Mori, Warren B.; An, Weiming [University of California, Los Angeles, California 90095 (United States)

    2015-02-15

    The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. Spec. Top. Accel. Beams 3, 061301 (2000)] and the quasi-static code QuickPIC [Huang et al., J. Comput. Phys. 217, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at Facilities for Accelerator Science and Experimental Test Beams. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.

  6. Plasma wakefield acceleration studies using the quasi-static code WAKE

    CERN Document Server

    Jain, Neeraj; Antonsen, T M; Mori, Warren B; An, Weiming

    2014-01-01

    The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas {\\bf 4}, 217(1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. ST Accel. Beams {\\bf 3}, 061301(2000)] and the quasi-static code QuickPIC [Huang et al., J. Comp. Phys. {\\bf 217}, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at FACET. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.

  7. Mechanics of dielectric elastomers:materials, structures, and devices

    Institute of Scientific and Technical Information of China (English)

    Feng-bo ZHU; Chun-li ZHANG; Jin QIAN; Wei-qiu CHEN

    2016-01-01

    中文概要题目:介电高弹体的材料、结构和器件力学目的:介电高弹体是典型电敏性材料,在外加电场的作用下会产生大的变形,这一特点使其成为人工肌肉致动的理想材料,近年来引起研究者的广泛关注。本文着重介绍介电高弹体的基本力学理论和方法,旨在为相关材料、结构和器件的设计提供参考,也有助于不同专业背景的研究者了解并开展介电高弹体的相关研究。概本文介绍了近年来关于介电高弹体力电耦合问题的一些理论和数值研究,重点包括力电耦合的控制方程、材料本构关系、粘弹性响应、力电失稳以及致动器设计等方面。文中讨论了基于非平衡热动力学的介电高弹体力学模型处理复杂构型或与时间相关变形时常被采用的数值方法,优化介电高弹体致动极限的力学设计,以及介电高弹体力电响应在典型致动器中的应用。%Dielectric elastomers (DEs) respond to applied electric voltage with a surprisingly large deformation, showing a promising capability to generate actuation in mimicking natural muscles. A theoretical foundation of the mechanics of DEs is of crucial importance in designing DE-based structures and devices. In this review, we survey some recent theoretical and numerical efforts in exploring several aspects of electroactive materials, with emphases on the governing equations of electromechanical coupling, constitutive laws, viscoelastic behaviors, electromechanical instability as well as actuation applications. An overview of analytical models is provided based on the representative approach of non-equilibrium thermodynamics, with computational analyses being required in more generalized situations such as irregular shape, complex configuration, and time-dependent de-formation. Theoretical efforts have been devoted to enhancing the working limits of DE actuators by avoiding electromechanical instability as

  8. Compensation of high-order quasi-static aberrations on SPHERE with the coronagraphic phase diversity (COFFEE)

    CERN Document Server

    Paul, B; Mugnier, L M; Dohlen, K; Petit, C; Fusco, T; Mouillet, D; Beuzit, J -L; Ferrari, M

    2014-01-01

    The second-generation instrument SPHERE, dedicated to high-contrast imaging, will soon be in operation on the European Very Large Telescope. Such an instrument relies on an extreme adaptive optics system coupled with a coronagraph that suppresses most of the diffracted stellar light. However, the coronagraph performance is strongly limited by quasi-static aberrations that create long-lived speckles in the scientific image plane, which can easily be mistaken for planets. The ultimate performance is thus limited by the unavoidable differential aberrations between the wave-front sensor and the scientific camera, which have to be estimated andcompensated for. In this paper, we use the COFFEE approach to measure and compensate for SPHERE's quasi-static aberrations. COFFEE (for COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection), which consists in an extension of phase diversity to coronagraphic imaging, estimates the quasi-static aberrations, including the differential ones, using only two foc...

  9. LINGUISTIC MECHANISM OF HYPERMEDIA STRUCTURE IN MULTIMEDIA ELECTRONIC ATLAS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With hypermedia technology the structure of a publication can be re-arranged to accommodate more easy cognition of the idea and concept by linking the concepts which are represented by different media forms into an integrated concept.Essentially,multimedia electronic atlas is a kind of electronic publication,which has many common characters with ordinary CD-ROM publications.For the deeper exploration of electronic atlas it is very important to understand the internal and general structure of the new media structure.The aim of this paper is to discuss the internal structure of multimedia electronic atlas as a whole by applying the methodology of linguistics.

  10. Periodization of Duffing oscillators suspended on elastic structure: Mechanical explanation

    Energy Technology Data Exchange (ETDEWEB)

    Czolczynski, K. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)]. E-mail: dzanta@ck-sg.p.lodz.pl; Kapitaniak, T. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Perlikowski, P. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Stefanski, A. [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2007-05-15

    We consider the dynamics of chaotic oscillators suspended on the elastic structure. We show that for the given conditions of the structure, initially uncorrelated chaotic oscillators can synchronize both in chaotic and periodic regimes. The phenomena of the periodization, i.e., the behavior of nonlinear oscillators become periodic as a result of interaction with elastic structure, have been observed. We formulate the criterion for periodization of double well-potential Duffing oscillator evolution in terms of the forces and displacements in the spring elements. We argue that the observed phenomena are generic in the parameter space and independent of the number of oscillators and their location on the elastic structure.

  11. Error Analysis and Compensation Method on the Mechanical Structure of the Hydraulic Control System

    Directory of Open Access Journals (Sweden)

    Luo Yanyan

    2016-01-01

    Full Text Available Mechanical deformation of mechanical transmission part in hydraulic control system directly affects the loading accuracy of the system. For improving the mechanical properties of the system, The force analysis and motion analysis of mechanism are simulated based on the four-bar linkage structure (FLS, and kinematics simulation is designed by using Matlab program, then came to a system error bar graph. The system error was calculated accurately according to the results of the structural mechanics simulation made by Solidworks motion module. The structure of the system will be modified when systematic errors exceed the required limit values until it reach the required value.

  12. Effect of tomato internal structure on its mechanical properties and ...

    African Journals Online (AJOL)

    ONOS

    2010-03-22

    Mar 22, 2010 ... control mode. Therefore, if the tomatoes have the .... bruising on polygalacturonase and pectinmethylesterase active and pectic cell wall ... effect of compressive load, container, vibration and maturity on mechanical damage.

  13. Mechanism for improving state regulation of structural changes in the Mozambique economy

    Directory of Open Access Journals (Sweden)

    U. A. Salikov

    2013-01-01

    Full Text Available This paper proposes a mechanism of state regulation of the structural transformations that take into account the specific economic conditions in the economy of Mozambique and directed towards the priorities for structural reforms within the industrial modernization.

  14. Parallel kinematic mechanisms for distributed actuation of future structures

    Science.gov (United States)

    Lai, G.; Plummer, A. R.; Cleaver, D. J.; Zhou, H.

    2016-09-01

    Future machines will require distributed actuation integrated with load-bearing structures, so that they are lighter, move faster, use less energy, and are more adaptable. Good examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic form for current flying conditions, and light but powerful robotic manipulators which can interact safely with human co-workers. A 'tensegrity structure' is a good candidate for this application due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element structure into which actuators could be embedded. This paper presents results of an analysis of an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical method is used to determine the stability of the structure with varying actuator length, showing how four actuators can be used to control movement in three degrees of freedom as well as simultaneously maintaining the structural pre-load. An experimental prototype has been built, in which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are controlled antagonistically, by high speed switching of on-off valves, to achieve control of position and structure pre-load. Experimental and simulation results are presented, and future prospects for the approach are discussed.

  15. Decoupling local mechanics from large-scale structure in modular metamaterials.

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L

    2017-04-04

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  16. Computer programs: Mechanical and structural design criteria: A compilation

    Science.gov (United States)

    1973-01-01

    Computerized design criteria for turbomachinery and the constraints imposed by very high rotational fields are presented along with a variety of computerized design criteria of interest to structural designers.

  17. Parallel algorithms and archtectures for computational structural mechanics

    Science.gov (United States)

    Patrick, Merrell; Ma, Shing; Mahajan, Umesh

    1989-01-01

    The determination of the fundamental (lowest) natural vibration frequencies and associated mode shapes is a key step used to uncover and correct potential failures or problem areas in most complex structures. However, the computation time taken by finite element codes to evaluate these natural frequencies is significant, often the most computationally intensive part of structural analysis calculations. There is continuing need to reduce this computation time. This study addresses this need by developing methods for parallel computation.

  18. MHD Forces in Quasi-Static Evolution, Catastrophe, and ``Failed'' Eruption of Solar Flux Ropes

    Science.gov (United States)

    Chen, James

    2017-08-01

    This paper presents the first unified theoretical model of flux rope dynamics---a single set of flux-rope equations in ideal MHD---to describe as one dynamical process the quasi-static evolution, catastrophic transition to eruption, cessation (``failure'') of eruption, and the post-eruption quasi-equilibria. The model is defined by the major radial {\\it and} minor radial equations of motion including pressure. The initial equilibrium is a flux rope in a background plasma with pressure $p_c(Z)$ and an overlying magnetic field $B_c(Z)$. The flux rope is initially force-free, but theevolution is not required to be force- free. A single quasi-static control parameter, the rate of increase in poloidal flux, is used for the entire process. As this parameter is slowly increased, the flux rope rises, following a sequence of quasi-static equilibria. As the apex of the flux rope rises past a critical height $Z_{crt}$, it expands on a dynamical (Alfvénic) timescale. The eruption rapidly ceases, as the stored magnetic energy of eruption is exhausted, and a new equilibrium is established at height $Z_1 > Z_{crt}$. The calculated velocity profile resembles the observed velocity profiles in ``failed'' eruptions including a damped oscillation. In the post-eruption equilibria, the outward hoop force is balanced by the tension of the toroidal self magnetic field and pressure gradient force. Thus, the flux rope does not evolve in a force-free manner. The flux rope may also expand without reaching a new equilibrium, provided a sufficient amount of poloidal flux is injected on the timescale of eruption. This scenario results in a full CME eruption. It is shown that the minor radial expansion critically couples the evolution of the toroidal self-field and pressure gradient force. No parameter regime is found in which the commonly used simplifications---near-equilibrium minor radial expansion, force-free expansion, and constant aspect ratio $R/a$ (e.g., the torus instability equation

  19. Long term structural dynamics of mechanical systems with local nonlinearities

    NARCIS (Netherlands)

    Fey, R.H.B.; Campen, D.H. van; Kraker, A. de

    1996-01-01

    This paper deals with the long term behavior of periodically excited mechanical systems consisting of linear components and local nonlinearities. The number of degrees of freedom of the linear components is reduced by applying a component mode synthesis technique. Lyapunov exponents are used to iden

  20. Robotic Powered Transfer Mechanism modeling on Human Muscle Structure

    Science.gov (United States)

    Saito, Yukio

    It is considered in engineering that one power source can operate one joint. However, support movement mechanism of living organism is multi joint movement mechanism. Considerably different from mechanical movement mechanism, two pairs of uni-articular muscles and a pair of bi-articular muscles are involved in it. In leg, movements observed in short run including leg idling, heel contact and toeing are operated by bi-articular muscles of the thigh showing strong legs to support body weight. Pursuit of versatility in welfare robot brings its comparison with conventional machinery or industrial robot to the fore. Request for safety and technology allowing elderly people to operate the robot is getting stronger in the society. The robot must be safe when it is used together with other welfare equipment and simpler system avoiding difficult operation has to be constructed. Appearance of recent care and assistance robot is getting similar to human arm in comparison with industrial robot. Being easily able to imagine from industrial robot, mid-heavyweight articulated robot to support 60-70kgf combined with large output motor and reduction gears is next to impossible to be installed in the bath room. This research indicated that upper limb arm and lower limb thigh of human and animals are holding coalitional muscles and movement of uni-artcular muscle and bi-articular muscle conjure the image of new actuators.

  1. Controlled elastic postbuckling of bilaterally constrained non-prismatic columns: application to enhanced quasi-static energy harvesters

    Science.gov (United States)

    Liu, Suihan; Burgueño, Rigoberto

    2016-12-01

    Axially compressed bilaterally constrained columns, which can attain multiple snap-through buckling events in their elastic postbuckling response, can be used as energy concentrators and mechanical triggers to transform external quasi-static displacement input to local high-rate motions and excite vibration-based piezoelectric transducers for energy harvesting devices. However, the buckling location with highest kinetic energy release along the element, and where piezoelectric oscillators should be optimally placed, cannot be controlled or isolated due to the changing buckling configurations. This paper proposes the concept of stiffness variations along the column to gain control of the buckling location for optimal placement of piezoelectric transducers. Prototyped non-prismatic columns with piece-wise varying thickness were fabricated through 3D printing for experimental characterization and numerical simulations were conducted using the finite element method. A simple theoretical model was also developed based on the stationary potential energy principle for predicting the critical line contact segment that triggers snap-through events and the buckling morphologies as compression proceeds. Results confirm that non-prismatic column designs allow control of the buckling location in the elastic postbuckling regime. Compared to prismatic columns, non-prismatic designs can attain a concentrated kinetic energy release spot and a higher number of snap-buckling mode transitions under the same global strain. The direct relation between the column’s dynamic response and the output voltage from piezoelectric oscillator transducers allows the tailorable postbuckling response of non-prismatic columns to be used as multi-stable energy concentrators with enhanced performance in micro-energy harvesters.

  2. Structure and Mechanism of a Pentameric Formate Channel

    Energy Technology Data Exchange (ETDEWEB)

    Waight, A.; Love, J; Wang, D

    2010-01-01

    Formate transport across the inner membrane is a critical step in anaerobic bacterial respiration. Members of the formate/nitrite transport protein family function to shuttle substrate across the cytoplasmic membrane. In bacterial pathogens, the nitrite transport protein is involved in protecting bacteria from peroxynitrite released by host macrophages. We have determined the 2.13-{angstrom} structure of the formate channel FocA from Vibrio cholerae, which reveals a pentamer in which each monomer possesses its own substrate translocation pore. Unexpectedly, the fold of the FocA monomer resembles that found in water and glycerol channels. The selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. A 2.5-{angstrom} high-formate structure shows two formate ions bound to the cytoplasmic slit via both hydrogen bonding and van der Waals interactions, providing a structural basis for the substrate selectivity of the channel.

  3. Classical Mechanics on Noncommutative Space with Lie-algebraic Structure

    CERN Document Server

    Miao, Yan-Gang; Yu, Shao-Jie

    2009-01-01

    We investigate the kinetics of a particle exerted by a constant external force on a Lie-algebraic noncommutative space. The structure constants of a Lie algebra, also called noncommutative parameters, are constrained in general due to some algebraic properties, such as the antisymmetry and Jacobi identity. Through solving the constraint equations the structure constants satisfy, we obtain two general sorts of algebraic structures, each of which corresponds to one type of noncommutative spaces. Based on such types of noncommutative spaces as the starting point, we analyze the classical motion of the particle by means of the Hamiltonian formalism defined on a Poisson manifold. Our results {\\em not only} include that of a recent work as our special cases, {\\em but also} provide new trajectories of motion governed mainly by marvelous extra forces. The extra forces with the unimaginable $t\\dot{x}$-, $\\dot{(xx)}$-, and $\\ddot{(xx)}$-dependence besides with the usual $t$-, $x$-, and $\\dot{x}$-dependence, originating...

  4. Constraint corrected fracture mechanics in structural integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, A.; Wallin, K. [VTT Industrial Systems, Espoo (Finland)

    2004-07-01

    Specimen size, crack depth and loading conditions may affect the materials fracture toughness. In order to safeguard against these geometry effects, fracture toughness testing standards prescribe the use of highly constrained deep cracked bend specimens having a sufficient size to guarantee conservative fracture toughness values. One of the more advanced testing standards, for brittle fracture, is the Master Curve standard ASTM E1921, which is based on technology developed at VTT Industrial Systems. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimate of structural performance. In some cases this may lead to unnecessary repairs or even to an early 'retirement' of the structure. In the case of brittle fracture, essentially three different methods to quantify constraint have been proposed, J-small scale yielding correction (SSYC), Q-parameter and the T{sub stress}. (orig.)

  5. Structural mechanism of trimeric HIV-1 envelope glycoprotein activation.

    Directory of Open Access Journals (Sweden)

    Erin E H Tran

    Full Text Available HIV-1 infection begins with the binding of trimeric viral envelope glycoproteins (Env to CD4 and a co-receptor on target T-cells. Understanding how these ligands influence the structure of Env is of fundamental interest for HIV vaccine development. Using cryo-electron microscopy, we describe the contrasting structural outcomes of trimeric Env binding to soluble CD4, to the broadly neutralizing, CD4-binding site antibodies VRC01, VRC03 and b12, or to the monoclonal antibody 17b, a co-receptor mimic. Binding of trimeric HIV-1 BaL Env to either soluble CD4 or 17b alone, is sufficient to trigger formation of the open quaternary conformation of Env. In contrast, VRC01 locks Env in the closed state, while b12 binding requires a partial opening in the quaternary structure of trimeric Env. Our results show that, despite general similarities in regions of the HIV-1 gp120 polypeptide that contact CD4, VRC01, VRC03 and b12, there are important differences in quaternary structures of the complexes these ligands form on native trimeric Env, and potentially explain differences in the neutralizing breadth and potency of antibodies with similar specificities. From cryo-electron microscopic analysis at ∼9 Å resolution of a cleaved, soluble version of trimeric Env, we show that a structural signature of the open Env conformation is a three-helix motif composed of α-helical segments derived from highly conserved, non-glycosylated N-terminal regions of the gp41 trimer. The three N-terminal gp41 helices in this novel, activated Env conformation are held apart by their interactions with the rest of Env, and are less compactly packed than in the post-fusion, six-helix bundle state. These findings suggest a new structural template for designing immunogens that can elicit antibodies targeting HIV at a vulnerable, pre-entry stage.

  6. Modelling of Debond and Crack Propagation in Sandwich Structures Using Fracture and Damage Mechanics

    DEFF Research Database (Denmark)

    Berggreen, C.; Simonsen, Bo Cerup; Toernqvist, Rikard

    2003-01-01

    Skin-core de-bonding or core crack propagation will often be dominating mechanisms in the collapse modes of sandwich structures. This paper presents two different methods for prediction of crack propagation in a sandwich structure: a fracture mechanics approach, where a new mode-mix method...

  7. Kinetics and Structure of Refractory Compounds and AlloysObtained by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Refractory compounds are material with interesting properties for structural applications. However, the processing of such material is a great challenge because of their high melting temperature and limited ductility. Mechanical alloying is a novel technique of producing refractory compounds with specific properties. Kinetical and structural peculiarities of refractory compounds and alloys obtained by mechanical alloying are discussed.

  8. Influence of carbon nanotubes on mechanical properties and structure of rigid polyurethane foam

    Science.gov (United States)

    Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kulesza, M.; Lewandowska, M.; Kowalski, M.; Krauze, S.

    2014-08-01

    In this work, the influence of carbon nanotubes addition on foam structure and mechanical properties of rigid polyurethane foam/nanotube composites was investigated. Scanning electron microscopy was performed to reveal the foam porous structure and distribution of carbon nanotubes. To determine the mechanical properties, three point bending tests were carried out.

  9. INFLUENCE OF BAINITE STRUCTURE ON MECHANICAL CHARACTERISTICS OF HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2009-01-01

    Full Text Available Influence of structure of beynit is explored on mechanical properties after thermal treatment of wire from the steel 80. The structural state of beynit, providing the high complex of mechanical properties of high-carbon wire, is definite.

  10. Phospholipase A2 structure/function, mechanism, and signaling1

    OpenAIRE

    Burke, John E.; Dennis, Edward A.

    2009-01-01

    Tremendous advances in understanding the structure and function of the superfamily of phospholipase A2 (PLA2) enzymes has occurred in the twenty-first century. The superfamily includes 15 groups comprising four main types including the secreted sPLA2, cytosolic cPLA2, calcium-independent iPLA2, and platelet activating factor (PAF) acetyl hydrolase/oxidized lipid lipoprotein associated (Lp)PLA2. We review herein our current understanding of the structure and interaction with substrate phosphol...

  11. Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics.

    Science.gov (United States)

    Price, Jared S; Sheng, Xing; Meulblok, Bram M; Rogers, John A; Giebink, Noel C

    2015-02-05

    Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels 200x flux concentration ratio through small (photovoltaic panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.

  12. A new theoretical model of the quasistatic single-fiber pullout problem: Analysis of stress field

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    results of the stress distributions, in both fully bonded region and fully debonded region, are presented for a typical glass/epoxy composite system with different fibre volume fraction and model length. In fully bonded region, the theoretical results from present model are more accurate compared......A new theoretical model is developed in order to predict the stress transfer during the quasistatic single-fibre pullout process. The theoretical approach retains all relevant stress and strain components, and satisfies exactly the interfacial continuity conditions and all the stress boundary...... conditions. For both matrix and fibre, the equilibrium equations along radial direction are satisfied strictly, while the equilibrium equations along axial direction are satisfied in the integral forms. Three normal stress-strain relationships are strictly satisfied, while the radial displacement gradient...

  13. Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method

    Science.gov (United States)

    Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin

    2015-12-01

    The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problem are presented.

  14. LCODE: A parallel quasistatic code for computationally heavy problems of plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sosedkin, A.P.; Lotov, K.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-09-01

    LCODE is a freely distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message‐Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.

  15. Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr [Korea Advanced Institute of Science and Technology 291 Daehak-ro, Yuseong-gu, Daejeon, Korea 305-701 (Korea, Republic of)

    2015-12-31

    The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problem are presented.

  16. LCODE: A parallel quasistatic code for computationally heavy problems of plasma wakefield acceleration

    Science.gov (United States)

    Sosedkin, A. P.; Lotov, K. V.

    2016-09-01

    LCODE is a freely distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message-Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.

  17. A Matlab library for solving quasi-static volume conduction problems using the boundary element method.

    Science.gov (United States)

    Stenroos, M; Mäntynen, V; Nenonen, J

    2007-12-01

    The boundary element method (BEM) is commonly used in the modeling of bioelectromagnetic phenomena. The Matlab language is increasingly popular among students and researchers, but there is no free, easy-to-use Matlab library for boundary element computations. We present a hands-on, freely available Matlab BEM source code for solving bioelectromagnetic volume conduction problems and any (quasi-)static potential problems that obey the Laplace equation. The basic principle of the BEM is presented and discretization of the surface integral equation for electric potential is worked through in detail. Contents and design of the library are described, and results of example computations in spherical volume conductors are validated against analytical solutions. Three application examples are also presented. Further information, source code for application examples, and information on obtaining the library are available in the WWW-page of the library: (http://biomed.tkk.fi/BEM).

  18. Sphere decoding complexity exponent for decoding full rate codes over the quasi-static MIMO channel

    CERN Document Server

    Jalden, Joakim

    2011-01-01

    In the setting of quasi-static multiple-input multiple-output (MIMO) channels, we consider the high signal-to-noise ratio (SNR) asymptotic complexity required by the sphere decoding (SD) algorithm for decoding a large class of full rate linear space-time codes. With SD complexity having random fluctuations induced by the random channel, noise and codeword realizations, the introduced SD complexity exponent manages to concisely describe the computational reserves required by the SD algorithm to achieve arbitrarily close to optimal decoding performance. Bounds and exact expressions for the SD complexity exponent are obtained for the decoding of large families of codes with arbitrary performance characteristics. For the particular example of decoding the recently introduced threaded cyclic division algebra (CDA) based codes -- the only currently known explicit designs that are uniformly optimal with respect to the diversity multiplexing tradeoff (DMT) -- the SD complexity exponent is shown to take a particularly...

  19. Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media

    Science.gov (United States)

    Habashy, T. M.; Kong, J. A.; Tsang, L.

    1985-05-01

    Several techniques are employed to model dipole fields in a two-layer dissipative medium. The upper layer is assumed lossless, the lower lossy. Attention is limited to solutions of integrals over the vertical field by quasi-static approximation (QSA), steepest descent image-source (SDIS), residue and hybrid solution approaches. A comparison of the solutions with experimental data delineates the realms of effectiveness for each computational technique: QSA is good for frequencies below 100 kHz and measurements of less than 1/30 wavelength; SDIS is valid at high frequencies on thick layers; and, normal mode residue is applicable for low frequency thin layers. Finally, intermediate conditions require all three techniques.

  20. A formula for the profile of voltammogram spikes in the quasistatic regime

    Science.gov (United States)

    Medved', I.

    2008-09-01

    A phase transition occurring at electrode-electrolyte interfaces is reflected in voltammograms (the current versus voltage plots) as a sharp spike. We derive a general formula fitting the profile of the spikes due to the first-order phase transitions that can be microscopically modeled by classical two-dimensional lattice gases. The quasistatic (near equilibrium) regime is required. The profile is especially essential when interpreting generic voltammograms, where two or more close or overlapping spikes usually appear. Simple direct links between the microscopics of a phase transition and the macroscopic properties of the associated spike are explicitly given. We demonstrate our results on the voltammograms for the underpotential deposition of copper on platinum (111) and (100) and on gold (111) and achieve very good agreement with experiment.

  1. Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime*

    Science.gov (United States)

    Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.

    2016-05-01

    Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  2. LCODE: a parallel quasistatic code for computationally heavy problems of plasma wakefield acceleration

    CERN Document Server

    Sosedkin, Alexander

    2015-01-01

    LCODE is a freely-distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message-Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.

  3. Head position control on quasi-static read/write tester

    Science.gov (United States)

    Kusumi, Takayuki; Yamakawa, Kiyoshi; Ouchi, Kazuhiro

    2005-02-01

    To develop high-density magnetic recording systems, a simple feedback system without servo writing was applied to a quasi-static read/write tester in which a medium reciprocates against a stand-still head. The head position signal in cross-track direction during the scanning is fed back to the high-precision piezoelectric actuator of the media stage. The stage is controlled so as to make the head/medium alignment error zero. A contact head slider assembled on a parallel-link suspension was used to evaluate the feedback system. The tester shows an accuracy of 1.5 nm in cross-track direction which is preferable for the read/write tests at future high recording densities.

  4. Recovering vector displacement estimates in quasistatic elastography using sparse relaxation of the momentum equation

    CERN Document Server

    Babaniyi, Olalekan A; Barbone, Paul E

    2015-01-01

    We consider the problem of estimating the $2D$ vector displacement field in a heterogeneous elastic solid deforming under plane stress conditions. The problem is motivated by applications in quasistatic elastography. From precise and accurate measurements of one component of the $2D$ vector displacement field and very limited information of the second component, the method reconstructs the second component quite accurately. No a priori knowledge of the heterogeneous distribution of material properties is required. This method relies on using a special form of the momentum equations to filter ultrasound displacement measurements to produce more precise estimates. We verify the method with applications to simulated displacement data. We validate the method with applications to displacement data measured from a tissue mimicking phantom, and in-vivo data; significant improvements are noticed in the filtered displacements recovered from all the tests. In verification studies, error in lateral displacement estimate...

  5. Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics

    Science.gov (United States)

    Price, Jared S.; Sheng, Xing; Meulblok, Bram M.; Rogers, John A.; Giebink, Noel C.

    2015-02-01

    Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels 200x flux concentration ratio through small (panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.

  6. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further......, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic...

  7. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  8. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  9. Continuum theory of defects - Structural-analytical mechanics of materials

    Science.gov (United States)

    Likhachev, V. A.; Volkov, A. E.; Shudegov, V. E.

    The fundamental concepts of the continuum theory of defects in crystals are examined including dislocations, disclinations, and planar defects. The principal plastic characteristics of materials are then calculated using these concepts. Elements of deformation theory for piecewise inhomogeneous bodies with a structural hierarchy and phase transformations are examined. The nature of the amorphous state is discussed.

  10. Technology & Mechanics Overview of Air-Inflated Fabric Structures

    Science.gov (United States)

    2006-12-04

    bridging, and energy absorbers such as automotive air bags and landing cushions for space vehicles. Recent advances in high performance fibers and...inflated fabric structures were constructed using adhesively bonded, piece-cut manufacturing methods. These methods were limited to relatively low...moisture, fire, chemicals, etc. Coating materials such as urethane , PVC (poly vinyl chloride), neoprene, EPDM (ethylene propylene diene monomer) are

  11. Piezoelectric and mechanical properties of structured PZT-epoxy composites

    NARCIS (Netherlands)

    James, N.K.; Ende, D.A. van den; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)-epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage o

  12. Piezoelectric and mechanical properties of structured PZT–epoxy composites

    NARCIS (Netherlands)

    Kunnamkuzhakkal James, N.; Van den Ende, D.; Lafont, U.; Van der Zwaag, S.; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage o

  13. Organisational Structure: Essential in Making Mechanisms Process Management

    Directory of Open Access Journals (Sweden)

    Domnica Doina Parcalabu

    2011-05-01

    Full Text Available Although public management is a new field of management science, there are already convinced that the extension of specific principles and approaches, there is only a relative matter, but becomes animperative necessity, which determines the coordinates of the major public sector reform. Otherwise, there is increased risk of slipping into formalism, changing some general understandings and essential to thedetriment of the fundamental, meeting new public management. As a consequence, it is absolutely necessary to waive the perception and treatment of the old administrative system, public institutions in general and inparticular as bureaucratic administrative apparatus that develop rules, regulations and laws by which they are applied and the transition to new principles and regularities of public management, the administrative systemas a whole and each public institution by public managers seek an given level of managerial performance, reflected in increasing general public interest and satisfaction of specific social needs. To this we highlightthe organizational analysis and design of technology-specific organizational structure of public institutions, structures of communication within public institutions, participatory decision-making structures that are mostefficient and effective types of organizations based on structures - pyramidal and hierarchical organizations network-type organizations.

  14. SPACE Approach to Concrete's Space Structure and its Mechanical Properties

    NARCIS (Netherlands)

    Stroeven, P.; Stroeven, M.

    2001-01-01

    Structural properties of particulate materials can be described in densities of the particle packing, more generally denoted as particle composition. Obviously, this global measure does not offer information on the way particles are mutually arranged in space. This is associated with particle config

  15. Statistical mechanics of secondary structures formed by random RNA sequences.

    Science.gov (United States)

    Bundschuh, R; Hwa, T

    2002-03-01

    The formation of secondary structures by a random RNA sequence is studied as a model system for the sequence-structure problem omnipresent in biopolymers. Several toy energy models are introduced to allow detailed analytical and numerical studies. First, a two-replica calculation is performed. By mapping the two-replica problem to the denaturation of a single homogeneous RNA molecule in six-dimensional embedding space, we show that sequence disorder is perturbatively irrelevant, i.e., an RNA molecule with weak sequence disorder is in a molten phase where many secondary structures with comparable total energy coexist. A numerical study of various models at high temperature reproduces behaviors characteristic of the molten phase. On the other hand, a scaling argument based on the external statistics of rare regions can be constructed to show that the low-temperature phase is unstable to sequence disorder. We performed a detailed numerical study of the low-temperature phase using the droplet theory as a guide, and characterized the statistics of large-scale, low-energy excitations of the secondary structures from the ground state structure. We find the excitation energy to grow very slowly (i.e., logarithmically) with the length scale of the excitation, suggesting the existence of a marginal glass phase. The transition between the low-temperature glass phase and the high-temperature molten phase is also characterized numerically. It is revealed by a change in the coefficient of the logarithmic excitation energy, from being disorder dominated to being entropy dominated.

  16. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.; (Monash); (Queensland Inst. of Med. Rsrch.)

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  17. Computational Mechanics of Input-Output Processes: Structured Transformations and the ɛ -Transducer

    Science.gov (United States)

    Barnett, Nix; Crutchfield, James P.

    2015-10-01

    Computational mechanics quantifies structure in a stochastic process via its causal states, leading to the process's minimal, optimal predictor—the ɛ {{-}}machine. We extend computational mechanics to communication channels coupling two processes, obtaining an analogous optimal model—the ɛ {{-}}transducer—of the stochastic mapping between them. Here, we lay the foundation of a structural analysis of communication channels, treating joint processes and processes with input. The result is a principled structural analysis of mechanisms that support information flow between processes. It is the first in a series on the structural information theory of memoryful channels, channel composition, and allied conditional information measures.

  18. Study on mechanical characteristics and safety evaluation method of steel frame structure after fire

    Directory of Open Access Journals (Sweden)

    Qiang Sun

    2014-01-01

    Full Text Available Mechanical characterization of steel frame structure after fire are analyzed based on fire dynamics, heat transfer theory, structural mechanics, and finite element theory. We study the temperature characteristics and mechanical properties of steel frame structure under different fire locations and propose a safety evaluation method. We also analyze damage level of main frame components, maximum temperature of fire, thermal characteristics of frame components, firing duration, etc. to provide useful information for fire resistance design of the steel frame structure and post-disaster safety evaluation.

  19. An overview of studies in structural mechanics; Panorama des etudes en mecanique des structures

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, D.; Blay, N.; Broc, D.; Chaudat, T.; Feau, C.; Sollogoub, P.; Wang, F.; Baj, F.; Bung, H.; Combescure, D.; Lepareux, M.; Phalippou, C.; Bentejac, F.; Hourdequin, N.; Laporte, T.; Millard, A.; Nicolas, L.; Chapuliot, S.; Fissolo, A.; Gourdin, C.; Kayser, Y.; Marie, S.; Reytier, M.; Yuritzinn, T.; Magnaud, J.P. [CEA Saclay Dept. Modelisation de Systemes et Structures, 91 - Gif sur Yvette (France); Braillard, O.; Collard, B.; Gobillot, G.; Mori, V.; Vallory, J.; Pascal-Ribot, S.; Pluyette, E. [CEA Saclay, Dept. de Technologie Nucleaire, 91 - Gif sur Yvette (France); Berton, M.N.; Cabrillat, M.T.; Lejeail, Y. [CEA Saclay, Dept. d' Etudes des Reacteurs, 91 - Gif sur Yvette (France)

    2006-07-01

    The present report gives an overview of the ongoing research programmes in structural mechanics at CEA/DEN. On the whole, these contributions are well representative of the research work performed, more oriented by engineering concerns than driven by pure academic goals. Fundamentally, the developed knowledge results in new methods and improved engineering and computational tools that can be used for CEA needs and transferred to industrial clients and partners. Basic research is carried out with the help of university laboratories, what allows CEA teams to identify the underlying problems and to address them in an adequate manner. Confrontation with other viewpoints and backgrounds takes place in international cooperative actions conducted with academic or industrial research centres, often giving rise to benchmarks. Due to the wide range of problems submitted to CEA/DEN, the R and D topics are numerous and the effort devoted to each of them is limited and sometimes not continuous. Basic research is of course more limited and needs thorough preparation in order to ensure that the key questions, which lock the progress, are really addressed.. Before to end, it is worth mentioning two original research actions which have begun: -) identification of medium state and representation of its variability by a probabilistic approach: this original approach couples inverse method an probability to obtain non directly measurable value from global effect on structures (for example deduce damage from the displacement of a loaded beam) and should be applied to non destructive identification of present state of nuclear reactor enclosures, -) a program of numerical simulations of fluid-elastic instability of a tube bundle submitted to cross flow has been initiated with an Arbitrary Lagrangian Eulerian -ALE- finite element method to obtain a better knowledge and understanding of the phenomenon. From these simulations, the evolutions of pressure and velocity fields close to fluid

  20. Numerical Study of the Cerebro-Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle

    Science.gov (United States)

    2001-10-25

    THE CEREBRO -SPINAL FLUID (CSF) DYNAMICS UNDER QUASI- STATIC CONDITION DURING A CARDIAC CYCLE Loïc FIN, Reinhard GREBE, Olivier BALÉDENT, Ilana...from... to) - Title and Subtitle Numerical Study of the Cerebro -Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle

  1. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    Science.gov (United States)

    2016-09-01

    suitability of this composite for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under... contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all... MECHANICAL PROPERTIES AND FATIGUE BEHAVIOR OF UNITIZED COMPOSITE AIRFRAME STRUCTURES AT ELEVATED

  2. Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures

    CERN Document Server

    Longhi, Stefano

    2011-01-01

    Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.

  3. Structure and permeation mechanism of a mammalian urea transporter

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Elena J.; Cao, Yu; Enkavi, Giray; Quick, Matthias; Pan, Yaping; Tajkhorshid, Emad; Zhou, Ming (UIUC); (Columbia)

    2012-09-17

    As an adaptation to infrequent access to water, terrestrial mammals produce urine that is hyperosmotic to plasma. To prevent osmotic diuresis by the large quantity of urea generated by protein catabolism, the kidney epithelia contain facilitative urea transporters (UTs) that allow rapid equilibration between the urinary space and the hyperosmotic interstitium. Here we report the first X-ray crystal structure of a mammalian UT, UT-B, at a resolution of 2.36 {angstrom}. UT-B is a homotrimer and each protomer contains a urea conduction pore with a narrow selectivity filter. Structural analyses and molecular dynamics simulations showed that the selectivity filter has two urea binding sites separated by an approximately 5.0 kcal/mol energy barrier. Functional studies showed that the rate of urea conduction in UT-B is increased by hypoosmotic stress, and that the site of osmoregulation coincides with the location of the energy barrier.

  4. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    Science.gov (United States)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  5. Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling

    Directory of Open Access Journals (Sweden)

    B. Novotný

    2000-01-01

    Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.

  6. Mechanisms and behavioural functions of structural coloration in cephalopods

    OpenAIRE

    Mäthger, Lydia M.; Denton, Eric J.; Marshall, N. Justin; Hanlon, Roger T.

    2008-01-01

    Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review t...

  7. Liquid Metal-Organic Frameworks: Formation Mechanism, Structure and Properties

    OpenAIRE

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-01-01

    Metal--organic frameworks are a novel family of chemically diverse materials, with applications in a wide field covering engineering, physics, chemistry, biology and medicine. Research so far has focused almost entirely on crystalline structures, yet a clear trend has emerged shifting the emphasis onto disordered states of MOFs, including "defective by design" crystals, as well as amorphous phases such as glasses and gels. Here we introduce a MOF liquid, a strongly associated liquid obtained ...

  8. Multifunctional Thermal Structures Using Cellular Contact-Aided Complaint Mechanisms

    Science.gov (United States)

    2016-10-31

    Mars Exploration Rover mission [Sunada et al., 2002, Novak et al. 2003]. Differential thermal expansion (DTE) uses two materials with different...Transfer, vol. 46, no. 24, p. 4573–4586, 2003. Novak , K. S., Phillips, C. J., Birur, G. C., Sunada E. T., and Pauken, M. T., “Development of a...unilateral contact,” Structural and Multidisciplinary Optimization, Vol. 41, No. 1, Feb 2010, pp. 57 - 64. Sunada, E., Lankford, K., Pauken, M., Novak , K. S

  9. Multifunctional Thermal Structures Using Cellular Contract-Aided Complaint Mechanisms

    Science.gov (United States)

    2017-01-26

    Mars Exploration Rover mission [Sunada et al., 2002, Novak et al. 2003]. Differential thermal expansion (DTE) uses two materials with different...Transfer, vol. 46, no. 24, p. 4573–4586, 2003. Novak , K. S., Phillips, C. J., Birur, G. C., Sunada E. T., and Pauken, M. T., “Development of a...unilateral contact,” Structural and Multidisciplinary Optimization, Vol. 41, No. 1, Feb 2010, pp. 57 - 64. Sunada, E., Lankford, K., Pauken, M., Novak , K. S

  10. Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, N.M.G. [ICEMS-Grupo de Materiais e Engenharia de Superficies, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra-Polo II, 3030-201 Coimbra (Portugal)]. E-mail: nuno.parreira@dem.uc.pt; Carvalho, N.J.M. [ICEMS-Grupo de Materiais e Engenharia de Superficies, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra-Polo II, 3030-201 Coimbra (Portugal)]. E-mail: nuno.carvalho@dem.uc.pt; Cavaleiro, A. [ICEMS-Grupo de Materiais e Engenharia de Superficies, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra-Polo II, 3030-201 Coimbra (Portugal)]. E-mail: albano.cavaleiro@dem.uc.pt

    2006-07-03

    Tungsten oxide coatings were deposited without substrate bias by DC reactive magnetron sputtering of a tungsten target using oxygen as reactive gas. By tuning the partial pressure of oxygen (p {sub O{sub 2}}/p {sub Ar}) between 0 and 4, the oxygen content of the films was changed from 0 to 75 at.%. The structure of the films (investigated by X-ray diffraction) depends on their oxygen content. For low oxygen contents, the {alpha}-W and {beta}-W{sub 3}O phases were observed (< 30 at.%), and with the increase of oxygen content (30 at.% < O < 67 at.%) the structure became amorphous. A transition region was obtained for oxygen content between 67 at.% and 75 at.%, and when O > 75 at.%, a nanocrystalline (WO{sub 3}) structure was reached. The hardness and Young's modulus were evaluated by depth sensing indentation. The decrease in hardness followed the four different ranges of chemical compositions accordingly, from {approx} 23 GPa for pure W down to {approx} 7 GPa for WO{sub 3} films. A similar behaviour was observed for the Young's modulus, which ranged from 450 GPa to 150 GPa. The cohesion/adhesion of the films were investigated using a scratch-test apparatus. These coatings displayed a low adhesion (critical load, L {sub c} < 15 N) to the steel substrate because the depositions were carried out intentionally without an adhesion interfacial layer.

  11. Thermo-mechanical behavior of stainless steel knitted structures

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  12. Classical mechanics on noncommutative space with Lie-algebraic structure

    Science.gov (United States)

    Miao, Yan-Gang; Wang, Xu-Dong; Yu, Shao-Jie

    2011-08-01

    We investigate the kinetics of a nonrelativistic particle interacting with a constant external force on a Lie-algebraic noncommutative space. The structure constants of a Lie algebra, also called noncommutative parameters, are constrained in general due to some algebraic properties, such as the antisymmetry and Jacobi identity. Through solving the constraint equations the structure constants satisfy, we obtain two new sorts of algebraic structures, each of which corresponds to one type of noncommutative spaces. Based on such types of noncommutative spaces as the starting point, we analyze the classical motion of the particle interacting with a constant external force by means of the Hamiltonian formalism on a Poisson manifold. Our results not only include that of a recent work as our special cases, but also provide new trajectories of motion governed mainly by marvelous extra forces. The extra forces with the unimaginable tx˙-,(xx)˙-, and (xx)¨-dependence besides with the usual t-, x-, and x˙-dependence, originating from a variety of noncommutativity between different spatial coordinates and between spatial coordinates and momenta as well, deform greatly the particle's ordinary trajectories we are quite familiar with on the Euclidean (commutative) space.

  13. Entities, Identity and the Formal Structure of Quantum Mechanics

    CERN Document Server

    de Ronde, Christian; Holik, Federico; Freytes, Hector

    2012-01-01

    The concept of individuality in quantum mechanics shows radical differences from the one used in classical physics. In particular, it is not possible to consider the fundamental particles described by quantum theory as individual distinguishable objects. In this paper we present arguments in favor of quantum non-individuality, which -in addition to those based on quantum statistics- relate to the Kochen-Specker theorem and the principle of superposition. Then, we analyze the possibility of referring to 'possible individuals' instead of 'actual individuals', and show that the Modal-Kochen-Specker theorem precludes this interpretational move.

  14. Lipid Microdomains: Structural Correlations, Fluctuations, and Formation Mechanisms

    Science.gov (United States)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-03-01

    Compositional lipid microdomains (“lipid rafts”) in mammalian plasma membranes are believed to facilitate many important cellular processes. While several physically distinct scenarios predicting the presence of finite-sized microdomains in vivo have been proposed in the past, direct experimental verification or falsification of model predictions has remained elusive. Herein, we demonstrate that the combination of the spatial correlation and temporal fluctuation spectra of the lipid domains can be employed to unambiguously differentiate between the existing theoretical scenarios. Furthermore, the differentiation of the raft formation mechanisms using this methodology can be achieved by collecting data at physiologically relevant conditions without the need to tune control parameters.

  15. Damage and deterioration mechanism and curing technique of concrete structure in main coal cleaning plants

    Institute of Scientific and Technical Information of China (English)

    LV Heng-lin; ZHAO Cheng-ming; SONG Lei; MA Ying; XU Chun-hua

    2009-01-01

    Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Da-tun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the spe-cial natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.

  16. Collected Papers in Structural Mechanics Honoring Dr. James H. Starnes, Jr.

    Science.gov (United States)

    Knight, Norman F., Jr. (Compiler); Nemeth, Michael P. (Compiler); Malone, John B. (Compiler)

    2006-01-01

    This special publication contains a collection of structural mechanics papers honoring Dr. James H. Starnes, Jr. presented at the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference held in Austin, Texas, April 18-21, 2005. Contributors to this publication represent a small number of those influenced by Dr. Starnes' technical leadership, his technical prowess and diversity, and his technical breath and depth in engineering mechanics. These papers cover some of the research areas Dr. Starnes investigated, which included buckling, postbuckling, and collapse of structures; composite structural mechanics, residual strength and damage tolerance of metallic and composite structures; and aircraft structural design, certification and verification. He actively pursued technical understanding and clarity, championed technical excellence, and modeled humility and perseverance.

  17. Mechanical Response of All-composite Pyramidal Lattice Truss Core Sandwich Structures

    Institute of Scientific and Technical Information of China (English)

    Ming Li; Linzhi Wu; Li Ma; Bing Wang; Zhengxi Guan

    2011-01-01

    The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally. Sandwich structures were fabricated with a hot compression molding method using carbon fiber reinforced composite T700/3234. The out-of-plane compression and shear tests were conducted. Experimental results showed that the all-composite pyramidal lattice truss core sandwich structures were more weight efficient than other metallic lattice truss core sandwich structures. Failure modes revealed that node rupture dominated the mechanical behavior of sandwich structures.

  18. Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates

    Science.gov (United States)

    Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.

    1996-01-01

    Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.

  19. Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones

    Directory of Open Access Journals (Sweden)

    Guozheng Kang

    2015-11-01

    Full Text Available Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficiently. In this paper, the latest progresses made in experimental and theoretical analyses for the structural fatigue features of NiTi shape memory alloys are reviewed. First, macroscopic experimental observations to the pure mechanical and thermo-mechanical fatigue features of the alloys are summarized; then the state-of-arts in the mechanism analysis of fatigue rupture are addressed; further, advances in the construction of fatigue failure models are provided; finally, summary and future topics are outlined.

  20. Modulation mechanism and disorder structure in hollandite-type crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiaojing; Fujiki, Yoshiki; Horiuchi, Shigeo (National Inst. for Research in Inorganic Materials, Ibaraki (Japan)); Ishigame, Mareo (Research Inst. for Scientific Measurements, Tohoku Univ., Sendai (Japan))

    1991-07-01

    The structural modulation in some hollandite-type crystals is explained by a vacancy-displacive modulation model. In this model the large cations located in the tetragonal channels along the c axis deviate from the average position to form a modulation wave. Three types of disorder in the initial phase of the modulation wave have been introduced to interpret apparently different diffraction patterns in hollandite-type crystals. A mathematical analysis as well as optical diffraction give results similar to those experimentally observed. High-resolution transmission electron microscope images have been observed to confirm the discussion further. (orig.).

  1. Cumulative Laws,Team Assembling Mechanisms Determining Network Structure

    Institute of Scientific and Technical Information of China (English)

    WU Bin; LIU Qi; YE Qi

    2008-01-01

    A number of researching works have shed light on the field of complex networks recently.We investigate a wide range of real-world networks and find several interesting phenomena.Firstly,almost all of these networks evolve by overlapping new small graphs on former networks.Secondly,not only the degree sequence of the mature network follows a power-law distribution,but also the distribution of the cumulative occurrence times during the growing process are revealed to have a heavy tail.Existing network evolving models do not provide interpretation to these phenomena.We suggest a model based on the team assembling mechanism,which is extracted from the growing processes of real-world networks and requires simple parameters,and produces networks exhibiting these properties observed in the present study and in previous works.

  2. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.

    Science.gov (United States)

    Paczkowski, Jon E; Richardson, Brian C; Fromme, J Christopher

    2015-07-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.

  3. Fabrication, structure and mechanical properties of indium nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  4. Mechanical properties and electronic structures of Fe-Al intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  5. Mechanical properties and electronic structures of Fe-Al intermetallic

    Science.gov (United States)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe3Al, FeAl, FeAl2, Fe2Al5 and FeAl3) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe2Al5 has the lowest formation enthalpy, which shows the Fe2Al5 is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young's modulus and anisotropic index. Fe3Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong's modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  6. Molecular Structures and Mechanical Properties of Microbe Rapid Coagulation Natural Rubber

    Institute of Scientific and Technical Information of China (English)

    LIANG Yue; HUANG Mao-Fang; ZENG Zong-Qiang

    2011-01-01

    In this work,molecular structures,dynamic mechanical properties and glass transition temperatures of microbe coagulated natural rubber(NR) samples were analyzed by using pyrolysis gas chromatography-mass spectrometry(py-GC/MS),rubber process analyzer(RPA) and dynamic mechanical thermal analysis(DMA).And the cross-linked network structures and mechanical properties of the corresponding NR vulcanizates were further determined by using nuclear magnetic resonance(NMR) crosslink density spectrometer(XLDS-15) and universal testing machines.The results show that NR raw rubber produced by rapidly coagulated with microorganism exhibits a simple molecular structure composition and good dynamic mechanical properties,and the corresponding NR vulcanizates possess the aggregation structure of high cross-linked density,a high glass transition temperature of-61.5 ℃ and high mechanical properties(tensile strength reaches 25.2 MPa),as compared with that coagulated with acetic acid.

  7. Optimal Structural Design of Complicated Mechanical Products Based on Data Mining

    Institute of Scientific and Technical Information of China (English)

    TAO Jing; WU Qing-ming; SUN Chuan

    2009-01-01

    Complicated mechanical products normally consist of multi-parameter mechanisms. The couplings between two tmechanisms are either strong or weak. The traditional optimal design methods cannot meet the requirements of optimal structural design of the complicated multi-parameter mechanical products. On the basis of analyzing the optimal design methods and the data mining principles, an improved iterative dichotomizer 3 (ID3) algorithm is hereby put forth to bring out an optimal design information model integrated with the data mining technology as well as an optimal structural design system of complicated mechanical products based on the data mining principles. The system is demonstrated by the optimal structural design of the mainframe of the full face rock tunnel boring machine (TBM). An example shows that the data mining technology has fully tackled the issues of the optimal structural design of complicated mechanical products.

  8. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    Directory of Open Access Journals (Sweden)

    Mang Su

    2014-01-01

    Full Text Available This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.

  9. Structure based hypothesis of a mitochondrial ribosome rescue mechanism

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2012-05-01

    Full Text Available Abstract Background mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1. Results Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site. Conclusions We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria. Reviewers This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann and Dr. Shamil Sunyaev.

  10. Mechanical Properties of Asphalt Pavement Structure in Highway Tunnel

    Institute of Scientific and Technical Information of China (English)

    SHI Chun-xiang; GUO Zhong-yin

    2008-01-01

    A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal contact stress induced by the acceleration/deceleration of vehicles. The key design parameters are the maximum horizontal tensile stresses at the surface of the asphalt layer, the maximum horizontal tensile stresses at the bottom of the asphalt layer and the maximum vertical shear stresses at the surface of the as- phalt layer were calculated. The influencing factors such as double-wheel weight; asphalt layer thickness; base course stiffness modulus and thickness; and the contact conditions among the structure layers on these key design parameters were also examined separately to propose construction procedures of highway tunnel asphalt pavement.

  11. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.

    Science.gov (United States)

    Shisler, Krista A; Broderick, Joan B

    2014-03-15

    The glycyl radical enzyme activating enzymes (GRE-AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe-4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE-AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE-AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE-AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes. Copyright © 2014. Published by Elsevier Inc.

  12. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications.

    Science.gov (United States)

    Spížek, Jaroslav; Řezanka, Tomáš

    2017-06-01

    Lincomycin and its derivatives are antibiotics exhibiting biological activity against bacteria, especially Gram-positive ones, and also protozoans. Lincomycin and its semi-synthetic chlorinated derivative clindamycin are widely used in clinical practice. Both antibiotics are bacteriostatic, inhibiting protein synthesis in sensitive bacteria; however, at higher concentrations, they may be bactericidal. Clindamycin is usually much more active than lincomycin in the treatment of bacterial infections, in particular those caused by anaerobic species; it can also be used for the treatment of important protozoal diseases, e.g. malaria, most effectively in combination with other antibiotic or non-antibiotic antimicrobials (primaquine, fosfidomycin, benzoyl peroxide). Chemical structures of lincosamide antibiotics and the biosynthesis of lincomycin and its genetic control have been summarized and described. Resistance to lincomycin and clindamycin may be caused by methylation of 23S ribosomal RNA, modification of the antibiotics by specific enzymes or active efflux from the bacterial cell. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. 闭孔泡沫Zn-22Al在单轴准静态加载下的压缩行为%Compressive behavior of Zn-22Al closed-cell foams under uniaxial quasi-static loading

    Institute of Scientific and Technical Information of China (English)

    A. HEYDARI ASTARAIE; H. R. SHAHVERDI; S. H. ELAHI

    2015-01-01

    通过使用氢化物发泡剂,采用熔体发泡法制备闭孔泡沫Zn−Al合金,在准静态条件下研究其压缩性能。在压缩试样过程中,分析发泡材料的结构,并研究其形态和压缩性能之间的关系。结果表明,应力−应变行为具有典型的闭孔泡沫金属和脆性泡沫金属的特征;在平稳阶段的控制变形机制是脆性破碎;泡沫Zn−22Al合金的抗压强度得到了显著提高,其压缩性能符合Gibson−Ashby模型。%Zn−22Al alloy closed-cell foams were fabricated by melt foaming process using hydride foaming agent. The compressive properties were investigated under quasi-static condition. The structure of the foamed material was analyzed during compression test to reveal the relationship between morphology and compressive behavior. The results show that the stress−strain behavior is typical of closed-cell metal foams and mostly of brittle type. Governing deformation mechanism at plateau stage is identified to be brittle crushing. A substantial increase in compressive strength of Zn−22Al foams was obtained. The agreement between compressive properties and Gibson−Ashby model was also detected.

  14. MWCNTs/Resin Nanocomposites: Structural, Thermal, Mechanical and Dielectric Investigation

    Directory of Open Access Journals (Sweden)

    N. D. Alexopoulos

    2015-11-01

    Full Text Available Multi-wall carbon nanotubes (MWCNTs were manufactured, characterized and added to a typical aeronautical resin matrix at different concentrations as nano-reinforcement. The carbon content of produced MWCNTs was determined to be around 98.5% while they consisted of 13-20 wall-layers and their external diameter had an average size in between 20 and 50 nm. MWCNTs were dispersed in an epoxy resin system and tensile specimens for different MWCNTs concentrations were prepared in an open mould. Electrical wiring was attached to the specimens’ surface and surface electrical resistance change was in-situ monitored during monotonic tension till fracture. Performed tensile tests showed that the MWCNTs addition increased both modulus of elasticity and ultimate tensile strength on the nano-composites with a simultaneously dramatic ductility decrease. The MWCNTs addition enhanced the investigated resin matrix with monitoring ability; electrical resistance change of the investigated tensile tests was correlated in the elastic regime with axial nominal strain and the gauge factor of the different MWCNTs concentration specimens were calculated. It was found that lowest MWCNTs concentration gave the best results in terms of piezo-resistivity and simultaneously the least enhancement in the mechanical properties.

  15. Development and Comparison of Mechanical Structures for FNAL 15 T Nb$_3$Sn Dipole Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Novitski, I. [Fermilab; Zlobin, A. V. [Fermilab

    2016-11-08

    Main design challenges for 15 T accelerator magnets are large Lorentz forces at this field level. The large Lorentz forces generate high stresses in the coil and mechanical structure and, thus, need stress control to maintain them at the acceptable level for brittle Nb3Sn coils and other elements of magnet mechanical structure. To provide these conditions and achieve the design field in the FNAL 15 T dipole demonstrator, several mechanical structures have been developed and analysed. The possibilities and limitations of these designs are discussed in this paper

  16. Register of specialized sources for information on mechanics of structural failure

    Science.gov (United States)

    Carpenter, J. L., Jr.; Denny, F. J.

    1973-01-01

    Specialized information sources that generate information relative to six problem areas in aerospace mechanics of structural failure are identified. Selection for inclusion was based upon information obtained from the individual knowledge and professional contacts of Martin Marietta Aerospace staff members and the information uncovered by the staff of technical reviewers. Activities listed perform basic or applied research related to the mechanics of structural failure and publish the results of such research. The purpose of the register is to present, in easy reference form, original sources for dependable information regarding failure modes and mechanisms of aerospace structures.

  17. Structural Mechanisms and Drug Discovery Prospects of Rho GTPases.

    Science.gov (United States)

    Smithers, Cameron C; Overduin, Michael

    2016-06-13

    Rho GTPases regulate cellular morphology and dynamics, and some are key drivers of cancer progression. This superfamily offers attractive potential targets for therapeutic intervention, with RhoA, Rac1 and Cdc42 being prime examples. The challenges in developing agents that act on these signaling enzymes include the lack of obvious druggable pockets and their membrane-bound activities. However, progress in targeting the similar Ras protein is illuminating new strategies for specifically inhibiting oncogenic GTPases. The structures of multiple signaling and regulatory states of Rho proteins have been determined, and the post-translational modifications including acylation and phosphorylation points have been mapped and their functional effects examined. The development of inhibitors to probe the significance of overexpression and mutational hyperactivation of these GTPases underscores their importance in cancer progression. The ability to integrate in silico, in vitro, and in vivo investigations of drug-like molecules indicates the growing tractability of GTPase systems for lead optimization. Although no Rho-targeted drug molecules have yet been clinically approved, this family is clearly showing increasing promise for the development of precision medicine and combination cancer therapies.

  18. The Deleuzian Concept of Structure and Quantum Mechanics

    Science.gov (United States)

    Christiaens, Wim A.

    2014-03-01

    Gilles Deleuze wanted a philosophy of nature in a pre-kantian almost archaic sense. A central concept in his philosophy is `multiplicity'. Although the concept is philosophical through and through, it has roots in the mathematical notion of manifold, specifically the state spaces for dynamical systems exhibiting non-linear behaviour. Deleuze was attracted to such mathematical structures because he believed they indicated a break with the dogmatic image of thought (the kind of thought that constrains itself into producing representations of reality conceived as particular things with strict borders, behaving and interacting according to invariant covering laws within space). However, even though it is true that a phase space representation of a physical entity is not a typical materialist picture of reality, it derives from a normal Euclidean representation, and can in principle be reduced to it. We want to argue that the real break happens with the quantum state space, and that Deleuze's typical description of a multiplicity fits even better with the quantum state space.

  19. Structure, composition, and mechanical properties of shark teeth.

    Science.gov (United States)

    Enax, Joachim; Prymak, Oleg; Raabe, Dierk; Epple, Matthias

    2012-06-01

    The teeth of two different shark species (Isurus oxyrinchus and Galeocerdo cuvier) and a geological fluoroapatite single crystal were structurally and chemically characterized. In contrast to dentin, enameloid showed sharp diffraction peaks which indicated a high crystallinity of the enameloid. The lattice parameters of enameloid were close to those of the geological fluoroapatite single crystal. The inorganic part of shark teeth consisted of fluoroapatite with a fluoride content in the enameloid of 3.1 wt.%, i.e., close to the fluoride content of the geological fluoroapatite single crystal (3.64 wt.%). Scanning electron micrographs showed that the crystals in enameloid were highly ordered with a special topological orientation (perpendicular towards the outside surface and parallel towards the center). By thermogravimetry, water, organic matrix, and biomineral in dentin and enameloid of both shark species were determined. Dentin had a higher content of water, organic matrix, and carbonate than enameloid but contained less fluoride. Nanoindentation and Vicker's microhardness tests showed that the enameloid of the shark teeth was approximately six times harder than the dentin. The hardness of shark teeth and human teeth was comparable, both for dentin and enamel/enameloid. In contrast, the geological fluoroapatite single crystal was much harder than both kinds of teeth due to the absence of an organic matrix. In summary, the different biological functions of the shark teeth ("tearing" for Isurus and "cutting" for Galeocerdo) are controlled by the different geometry and not by the chemical or crystallographic composition.

  20. Structure and uptake mechanism of bacteriocins targeting peptidoglycan renewal.

    Science.gov (United States)

    Zeth, Kornelius

    2012-12-01

    Bacteriocins are narrow-spectrum protein antibiotics released to kill related bacteria of the same niche. Uptake of bacteriocins depends critically on the presence of an uptake receptor in the outer membrane, a translocation pore and an energy-dependent activating system of the inner membrane. Most bacteriocins act on the inner membrane as pore-forming toxins or they target cytoplasmic DNA/RNA and ribosomal synthesis respectively. Only two bacteriocins are known to become activated in the periplasmic space and to inhibit the renewal process of the peptidoglycan structure. In Escherichia coli, the Cma (colicin M) phosphatase is activated in the periplasmic space by the FkpA chaperone and subsequently degrades the C55-PP precursor unit of the peptidoglycan. Pst (pesticin) from Yersinia pestis carries a lysozyme homology domain to degrade peptidoglycan. Import of Pst is only achieved if the N-terminal translocation domain can span the outer membrane and if extensive unfolding of the protein during membrane passage is permitted. There is considerable plasticity in the import pathway since a chimaera comprising the activity domain replaced by T4 lysozyme is also translocated and active in killing those bacteria carrying the FyuA receptor.

  1. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko

    2015-01-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations......, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo......-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D...

  2. Numerical modelling of structure and mechanical properties for medical tools

    Directory of Open Access Journals (Sweden)

    L. Jeziorski

    2007-09-01

    , mechanical properties and work condition of medical tools. For bowl cutter was improve geometrical sharp and distribution of cutting holes. Originality/value: This paper presents conception to obtain new medical tools, after optimizing the basic construction parameters by numerical calculations. The prepared model could be a helpful for engineering decisions used in the designing and producing forceps and bowl cutter.

  3. Structure and Pozzolanic Activity of Calcined Coal Gangue during the Process of Mechanical Activation

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; LI Dongxu; CHEN Jianhua; YANG Nanru

    2009-01-01

    On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR,NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.

  4. Connecting caddisworm silk structure and mechanical properties: combined infrared spectroscopy and mechanical analysis

    Science.gov (United States)

    Ashton, Nicholas N.; Pan, Huaizhong; Stewart, Russell J.

    2016-01-01

    The underwater silk of an aquatic casemaking caddisfly larvae (Hesperophylax occidentalis) is viscoelastic, and displays distinct yield behaviour, large strain cycle hysteresis and near complete recovery of its initial strength and stiffness when unloaded. Yield followed by a stress plateau has been attributed to sequential rupture of serial Ca2+-cross-linked phosphoserine (pS) β-domains. Spontaneous recovery has been attributed to refolding of the Ca2+/pS domains powered by an elastic network. In this study, native Ca2+ ions were exchanged with other metal ions, followed by combined mechanical and FTIR analysis to probe the contribution of pS/metal ion complexes to silk mechanical properties. After exchange of Ca2+ with Na+, the fibres are soft elastomers and the infrared spectra are consistent with Cv3 symmetry of the – groups. Multivalent metal ions decreased the – symmetry and the symmetric stretching modes (vs) split in a manner characteristic of ordered phosphate compounds, such as phosphate minerals and lamellar bilayers of phosphatidic acid lipids. Integrated intensities of the vs bands, indicative of the metal ion's effect on transition dipole moment of the P–O bonds, and thereby the strength of the phosphate metal complex, increased in the order: Na+ ion-exchanged fibres increased in the same order: establishing the link between phosphate transition dipole moments and silk fibre strength. PMID:27278649

  5. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....... experimental data in the form of chemical shifts, as well as distance restraints obtained either experimentally or from sequence co-evolution. Of notable results, One of the determined structures, aKMT, was not solved experimentally at the time, but was found to match the recently published X-ray structure...

  6. Structural, mechanical and thermodynamic properties of ZrO2 polymorphs by first-principles calculation

    Science.gov (United States)

    Liang, Zuozhong; Wang, Wei; Zhang, Min; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-04-01

    The structural, mechanical and thermodynamic properties of ZrO2 polymorphs (namely, monoclinic (P21/c), tetragonal (P42/nmc), cubic (Fm 3 bar m), and orthorhombic (Pbca and Pnma)) are investigated systematically by employing DFT functionals (LDA, PBE and PW91). It is found that the structural parameters of ZrO2 polymorphs calculated by PBE and PW91 functionals are highly consistent with previous experiments with low absolute relative error (ARE). Moreover, all considered structures are mechanically stable according to the Born-Huang criterion and the PBE and PW91 functionals are more accurate than the LDA functional in predicting mechanical and thermodynamic properties. Significantly, we described mechanical and thermodynamic properties of ZrO2 polymorphs by introducing the charge density difference of related surfaces, which provides a better understanding of different behaviors of elastic constants (Cij) in various crystal structures of ZrO2.

  7. Simulation and Analysis of Microneedle for Drug Delivery based on Structural and Fluid Flow Mechanics

    OpenAIRE

    Neha Mane; Ashok Gaikwad

    2013-01-01

    MEMS (Micro Electro Mechanical System) design systems are used for the development of microneedles, which are used for drug delivery. The drug delivery through micronnedle is painless which is not in case of transdermal needles. In this paper the simulation and analysis of microneedle is presented. The typical structure of a microneedle is simulated for studies of the structural behavior of microneedle and the fluid mechanics of the drug delivery. The studies show that the microneedle with si...

  8. The Effect of Boron Impurity on the Structure and Mechanical Properties of Hafnium

    OpenAIRE

    S.V. Chornobuk; V.A. Makara; A.O. Goncharenko

    2017-01-01

    In present study the influence of low concentrations (≤ 1.5 at. %) impurities of boron on the structure and mechanical properties of hafnium has been discussed. Experimental specimens of the alloys with different content of impurities of boron have been compacted during reaction hot syntering. Revealed significant dependence of structure and mechanical properties of these alloys on their composition. The prospective use of boron as an alloying element to improve the operational characteristic...

  9. Reconfigurable Structure using Multifunctional Mechanized Materials for Threats Precognition and Neutralization

    Science.gov (United States)

    2015-09-24

    order to strength the structure. The building block of the mechanized materials is a novel bi-stable cylindrical shell that can reconfigure itself...concepts in the report. 16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations , e.g. U, C, S...The instantaneously reaction of individual mechanized material cell will be realized by the AMS in order to strength the structure. The building

  10. The Modelling of Mechanism with Parallel Kinematic Structure in Software Matlab/Simulink

    Directory of Open Access Journals (Sweden)

    Vladimir Bulej

    2016-09-01

    Full Text Available The article deals with the preparation of simulation model of mechanism with parallel kinematic structure called hexapod as an electro-mechanical system in software MATLAB/Simulink. The simulation model is composed from functional blocks represented each part of mechanism’s kinematic structure with certain properties. The results should be used for further simulation of its behaviour as well as for generating of control algorithms for real functional prototype.

  11. Effects of structure multiplicity on mechanism of radiation crosslinking of polymers

    Science.gov (United States)

    Lihua, Zhang; Maotang, Zhou; Donglin, Chen

    1994-09-01

    In an attempt to explore the effects of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical and morphological multiplicity of polymer structure result in the multiplicity of crosslinking mechanism, and that any single equation can only be applicable to a certain step of the whole radiation process.

  12. Mechanism of radiation crosslinking of polymers and its relationship with structural multiplicity

    Science.gov (United States)

    Lihua, Zhang; Maotang, Zhou; Donglin, Chen

    1993-07-01

    In an attempt to explore the effect of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical and morphological multiplicity of polymer structure results in the multiplicity of crosslinking mechanism, and that any single equation can only be applicable to a certain step of the whole radiation process.

  13. Mechanical Attachment of Reusable Surface Insulation to Space Shuttle Primary Structure

    Science.gov (United States)

    Fleck, R. W.; Lehman, J. K.

    1973-01-01

    Three methods of attaching surface insulation tiles to shuttle primary structure have been proposed: direct bond, mechanical attachment, and subpanels with standoffs. The direct bond approach is lightweight but is difficult to refurbish and inspect. The subpanel approach is heavier but allows for easy refurbishment since subpanels are easily removed and replaced. The mechanical attachment approach allows easy refurbishment and inspection and is lightweight when an efficient insulator is used between surface insulation tiles and primary structure.

  14. Structural, electronic, mechanical and magnetic properties of rare earth nitrides REN (RE= Pm, Eu and Yb)

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A. [Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu 625019 (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com [Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu 625019 (India); Santhosh, M. [Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu 625019 (India); Iyakutti, K. [Department of physics and Nanotechnology, SRM University, Chennai, Tamilnadu 603203. India. (India)

    2015-07-01

    The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively. - Highlights: • Rare earth nitrides PmN, EuN and YbN are found to be ferromagnetic in nature. • Electronic, structural, elastic and mechanical properties of rare earth nitrides are investigated. • A pressure induced structural phase transition is predicted under high pressure. • Electronic structure reveals that these materials exhibit half-metallic behavior. • Computed elastic moduli obey the mechanical stability condition.

  15. Structure of the cathelicidin motif of protegrin-3 precursor: structural insights into the activation mechanism of an antimicrobial protein.

    Science.gov (United States)

    Sanchez, Jean-Frédéric; Hoh, François; Strub, Marie-Paule; Aumelas, André; Dumas, Christian

    2002-10-01

    Cathelicidins are a family of antimicrobial proteins isolated from leucocytes and epithelia cells that contribute to the innate host defense mechanisms in mammalians. Located in the C-terminal part of the holoprotein, the cathelicidin-derived antimicrobial peptide is liberated by a specific protease cleavage. Here, we report the X-ray structure of the cathelicidin motif of protegrin-3 solved by MAD phasing using the selenocysteine-labeled protein. Its overall structure represents a fold homologous to the cystatin family and adopts two native states, a monomer, and a domain-swapped dimer. This crystal structure is the first example of a structural characterization of the highly conserved cathelicidin motif and thus provides insights into the possible mechanism of activation of the antimicrobial protegrin peptide.

  16. Structural relaxation mechanisms in liquid Eugenol. A depolarized light scattering study

    Science.gov (United States)

    Bezot, P.; Hesse-Bezot, C.; Roynard, D.; Jeanneaux, F.

    1988-07-01

    A depolarized light scattering study of liquid Eugenol, over a large temperature range including the supercooled region, is proposed. Comparisons with shear mechanical impedance measurements, obtained at lower frequencies, lead to more precise information on the viscoelastic parameters in the supercooled region. The structural relaxation process measurements by means of the photon correlation technique are compared to the dielectric and mechanical measurements. Molecular mechanisms are proposed.

  17. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    Science.gov (United States)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-01-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering. PMID:27624892

  18. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    Science.gov (United States)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-09-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  19. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures.

    Science.gov (United States)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C Q

    2016-09-14

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson's ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  20. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  1. Mechanical Properties Of 3D-Structure Composites Based On Warp-Knitted Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Chen Si

    2015-06-01

    Full Text Available In this paper, the mechanical properties (compression and impact behaviours of three-dimension structure (3D-structure composites based on warp-knitted spacer fabrics have been thoroughly investigated. In order to discuss the effect of fabric structural parameters on the mechanical performance of composites, six different types of warp-knitted spacer fabrics having different structural parameters (such as outer layer structure, diameter of spacer yarn, spacer yarn inclination angle and thickness were involved for comparison study. The 3D-structure composites were fabricated based on a flexible polyurethane foam. The produced composites were characterised for compression and impact properties. The findings obtained indicate that the fabric structural parameters have strong influence on the compression and impact responses of 3D-structure composites. Additionally, the impact test carried out on the 3D-structure composites shows that the impact loads do not affect the integrity of composite structure. All the results reveal that the product exhibits promising mechanical performance and its service life can be sustained.

  2. Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes

    KAUST Repository

    Zhong, Hua

    2014-12-01

    We investigate the two-phase flow in a horizontally placed Y-shaped tube with different Young\\'s angle and width in each branch. By using a quasistatic approach, we can determine the specific contact position and the equilibrium contact angle of fluid in each branch based on the minimization problem of the free energy of the system. The wettability condition and the width of the two branches play important roles in the distribution of fluid in each branch. We also consider the effect of gravity. Some fluid in the upper branch will be pulled down due to the competition of the surface energy and the gravitational energy. The result provides some insights on the theory of two-phase flow in porous media. In particular, it highlights that the inhomogeneous wettability distribution affects the direction of the fluid penetrating a given porous medium domain. It also sheds light on the current debate whether relative permeability may be considered as a full tensor rather than a scalar.

  3. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    Science.gov (United States)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  4. Role of multiscale heterogeneity in fault slip from quasi-static numerical simulations

    Science.gov (United States)

    Aochi, Hideo; Ide, Satoshi

    2017-07-01

    Quasi-static numerical simulations of slip along a fault interface characterized by multiscale heterogeneity (fractal patch model) are carried out under the assumption that the characteristic distance in the slip-dependent frictional law is scale-dependent. We also consider slip-dependent stress accumulation on patches prior to the weakening process. When two patches of different size are superposed, the slip rate of the smaller patch is reduced when the stress is increased on the surrounding large patch. In the case of many patches over a range of scales, the slip rate on the smaller patches becomes significant in terms of both its amplitude and frequency. Peaks in slip rate are controlled by the surrounding larger patches, which may also be responsible for the segmentation of slip sequences. The use of an explicit slip-strengthening-then-weakening frictional behavior highlights that the strengthening process behind small patches weakens their interaction and reduces the peaks in slip rate, while the slip deficit continues to accumulate in the background. Therefore, it may be possible to image the progress of slip deficit at larger scales if the changes in slip activity on small patches are detectable.

  5. Efficiencies of power plants, quasi-static models and the geometric-mean temperature

    Science.gov (United States)

    Johal, Ramandeep S.

    2017-02-01

    Observed efficiencies of industrial power plants are often approximated by the square-root formula: 1 - √T-/T+, where T+(T-) is the highest (lowest) temperature achieved in the plant. This expression can be derived within finite-time thermodynamics, or, by entropy generation minimization, based on finite rates for the processes. In these analyses, a closely related quantity is the optimal value of the intermediate temperature for the hot stream, given by the geometric-mean value: √T+/T-. In this paper, instead of finite-time models, we propose to model the operation of plants by quasi-static work extraction models, with one reservoir (source/sink) as finite, while the other as practically infinite. No simplifying assumption is made on the nature of the finite system. This description is consistent with two model hypotheses, each yielding a specific value of the intermediate temperature, say T1 and T2. The lack of additional information on validity of the hypothesis that may be actually realized, motivates to approach the problem as an exercise in inductive inference. Thus we define an expected value of the intermediate temperature as the equally weighted mean: (T1 + T2)/2. It is shown that the expected value is very closely given by the geometric-mean value for almost all of the observed power plants.

  6. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Energy Technology Data Exchange (ETDEWEB)

    H, Jorge A Rueda [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Nunez, L A [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Centro Nacional de Calculo Cientifico, Universidad de Los Andes, CeCalCULA, Corporacion Parque Tecnologico de Merida, Merida 5101, Venezuela (Venezuela)

    2007-05-15

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.

  7. Nonlinear quasi-static analysis of ultra-deep-water top-tension riser

    Science.gov (United States)

    Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun

    2017-09-01

    In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.

  8. Pore network modeling of drainage process in patterned porous media: a quasi-static study

    KAUST Repository

    Zhang, Tao

    2015-04-17

    This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.

  9. Three-dimensional quasistatic model for high brightness beam dynamics simulation

    Science.gov (United States)

    Qiang, Ji; Lidia, Steve; Ryne, Robert D.; Limborg-Deprey, Cecile

    2006-04-01

    In this paper, we present a three-dimensional quasistatic model for high brightness beam dynamics simulation in rf/dc photoinjectors, rf linacs, and similar devices on parallel computers. In this model, electrostatic space-charge forces within a charged particle beam are calculated self-consistently at each time step by solving the three-dimensional Poisson equation in the beam frame and then transforming back to the laboratory frame. When the beam has a large energy spread, it is divided into a number of energy bins or slices so that the space-charge forces are calculated from the contribution of each bin and summed together. Image-charge effects from conducting photocathode are also included efficiently using a shifted-Green function method. For a beam with large aspect ratio, e.g., during emission, an integrated Green function method is used to solve the three-dimensional Poisson equation. Using this model, we studied beam transport in one Linac Coherent Light Sources photoinjector design through the first traveling wave linac with initial misalignment with respect to the accelerating axis.

  10. Random polycrystals of grains containing cracks: Model of quasistatic elastic behavior for fractured systems

    Science.gov (United States)

    Berryman, James G.; Grechka, Vladimir

    2006-12-01

    A model study on fractured systems was performed using a concept that treats isotropic cracked systems as ensembles of cracked grains by analogy to isotropic polycrystalline elastic media. The approach has two advantages: (a) Averaging performed is ensemble averaging, thus avoiding the criticism legitimately leveled at most effective medium theories of quasistatic elastic behavior for cracked media based on volume concentrations of inclusions. Since crack effects are largely independent of the volume they occupy in the composite, such a non-volume-based method offers an appealingly simple modeling alternative. (b) The second advantage is that both polycrystals and fractured media are stiffer than might otherwise be expected, due to natural bridging effects of the strong components. These same effects have also often been interpreted as crack-crack screening in high-crack-density fractured media, but there is no inherent conflict between these two interpretations of this phenomenon. Results of the study are somewhat mixed. The spread in elastic constants observed in a set of numerical experiments is found to be very comparable to the spread in values contained between the Reuss and Voigt bounds for the polycrystal model. Unfortunately, computed Hashin-Shtrikman bounds are much too tight to be in agreement with the numerical data, showing that polycrystals of cracked grains tend to violate some implicit assumptions of the Hashin-Shtrikman bounding approach. However, the self-consistent estimates obtained for the random polycrystal model are nevertheless very good estimators of the observed average behavior.

  11. Quasi-static crack tip fields in rate-sensitive FCC single crystals

    Indian Academy of Sciences (India)

    P Biswas; R Narasimhan

    2012-02-01

    In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term $(K −T)$ elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along $[10\\bar{1}]$ direction. Solutions corresponding to different stress intensity rates $\\dot{K}$, -stress values and strain rate exponents are obtained. The results show that the stress levels ahead of the crack tip increase with $\\dot{K}$ which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive -stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative -stress. Also, negative -stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.

  12. Thin-walled composite tubes using fillers subjected to quasistatic axial compression

    Science.gov (United States)

    AL-Qrimli, Haidar F.; Mahdi, Fadhil A.; Ismail, Firas B.; Alzorqi, Ibrahim S.

    2015-04-01

    It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the “INSTRON Universal machine” which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens.

  13. Structural studies of disordered Mg2NiH4 formed by mechanical grinding

    DEFF Research Database (Denmark)

    Rönnebro, Ewa; Jensen, Jens Oluf; Noréus, Dag;

    1999-01-01

    The low temperature phase of Mg2NiH4 was mechanically ground in argon atmosphere. The ordered monoclinic structure was destroyed to form the disordered cubic structure, previously only found above 510 K. With a Guinier-Hagg X-ray camera the cell parameter was determined to be a=6.492(3) Angstrom....

  14. Structure and elevator mechanism of the Na(+)-citrate transporter CitS

    NARCIS (Netherlands)

    Lolkema, Juke S; Slotboom, Dirk Jan

    2016-01-01

    The recently determined crystal structure of the bacterial Na(+)-citrate symporter CitS provides unexpected structural and mechanistic insights. The protein has a fold that has not been seen in other proteins, but the oligomeric state, domain organization and proposed transport mechanism strongly re

  15. Structural Reliability of Ceramics at High Temperature: Mechanisms of Fracture and Fatigue Crack Growth

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold H. Dauskardt

    2005-08-01

    Final report of our DOE funded research program. Aim of the research program was to provide a fundamental basis from which the mechanical reliability of layered structures may be understood, and to provide guidelines for the development of technologically relevant layered material structures with optimum resistance to fracture and subcritical debonding. Progress in the program to achieve these goals is described.

  16. Modelling of Debond and Crack Propagation in Sandwich Structures Using Fracture and Damage Mechanics

    DEFF Research Database (Denmark)

    Berggreen, C.; Simonsen, Bo Cerup; Toernqvist, Rikard

    2003-01-01

    Skin-core de-bonding or core crack propagation will often be dominating mechanisms in the collapse modes of sandwich structures. This paper presents two different methods for prediction of crack propagation in a sandwich structure: a fracture mechanics approach, where a new mode-mix method...... is presented, and a local damage mechanics approach. The paper presents a real-life application example, where the superstructure in a vessel pulls the skin off the sandwich deck. The calculations show almost unstable crack growth initially followed by a stabilization, and a nearly linear relation between...

  17. Factors Influencing Quasistatic Modeling of Deformation and Failure in Rock-Like Solids by the Smoothed Particle Hydrodynamics Method

    Directory of Open Access Journals (Sweden)

    X. W. Tang

    2013-01-01

    actual test of marble material. Typical results of the axial stress-strain response from infinitesimal to finite deformation as well as the progressive failure process for the marble tests are given and the influences of various factors are discussed. It is found that only provided proper choices of particle momentum equation and the smoothing length parameter, the SPH method is capable for favorably reproducing the deformation and progressive failure evolution in rock-like materials under quasistatic compression loads.

  18. Structural analysis of composite wind turbine blades nonlinear mechanics and finite element models with material damping

    CERN Document Server

    Chortis, Dimitris I

    2013-01-01

    This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...

  19. Prototype test study on mechanical characteristics of segmental lining structure of underwater railway shield tunnel

    Institute of Scientific and Technical Information of China (English)

    He Chuan; Feng Kun; Yan Qixiang

    2014-01-01

    Based on the first underwater railway shield tunnel,the Shiziyang shield tunnel of Guangzhou Zhu-jiang River,the prototype test was carried out against its segmental lining structure by using“multi-function shield tunnel structure test system”. And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that,the mechanical characteristics of segmental lining structure varied with the water pressures;especially after cracking,the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi-fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear failure often occurred near longitudinal seam when using straight assembling.

  20. Homology Modeling: Generating Structural Models to Understand Protein Function and Mechanism

    Science.gov (United States)

    Ramachandran, Srinivas; Dokholyan, Nikolay V.

    Geneticists and molecular and cell biologists routinely uncover new proteins important in specific biological processes/pathways. However, either the molecular functions or the functional mechanisms of many of these proteins are unclear due to a lack of knowledge of their atomic structures. Yet, determining experimental structures of many proteins presents technical challenges. The current methods for obtaining atomic-resolution structures of biomolecules (X-ray crystallography and NMR spectroscopy) require pure preparations of proteins at concentrations much higher than those at which the proteins exist in a physiological environment. Additionally, NMR has size limitations, with current technology limited to the determination of structures of proteins with masses of up to 15 kDa. Due to these reasons, atomic structures of many medically and biologically important proteins do not exist. However, the structures of these proteins are essential for several purposes, including in silico drug design [1], understanding the effects of disease mutations [2], and designing experiments to probe the functional mechanisms of proteins. Comparative modeling has gained importance as a tool for bridging the gap between sequence and structure space, allowing researchers to build structural models of proteins that are difficult to crystallize or for which structure determination by NMR spectroscopy is not tractable. Comparative modeling, or homology modeling, exploits the fact that two proteins whose sequences are evolutionarily connected display similar structural features [3]. Thus, the known structure of a protein (template) can be used to generate a molecular model of the protein (query) whose experimental structure is notknown.