WorldWideScience

Sample records for quasiparticle random phase

  1. Quasiparticle Random Phase Approximation with an optimal Ground State

    CERN Document Server

    Simkovic, F; Raduta, A A

    2001-01-01

    A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.

  2. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  3. Relativistic Quasiparticle Random Phase Approximation with a Separable Pairing Force

    Institute of Scientific and Technical Information of China (English)

    TIAN Yuan; MA Zhong-Yu; Ring Peter

    2009-01-01

    In our previous work [Phys. Lett. (to be published), Chin. Phys. Lett. 23 (2006) 3226], we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA ) with this separable pairing interaction and calculate the excitation energies of the first excited 2+ .states and reduced B(E2; 0+ → 2+) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction.

  4. Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jonathan, E-mail: engelj@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Mustonen, M. T., E-mail: mika.mustonen@yale.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06052 (United States)

    2016-06-21

    We discuss a recent global calculation of beta-decay rates in the self-consistent Skyrme quasiparticle random phase approximation (QRPA), with axially symmetric nuclear deformation treated explicitly. The calculation makes makes use of the finite-amplitude method, first proposed by Nakatsukasa and collaborators, to reduce computation time. The results are comparable in quality to those of several other global QRPA calculations. The QRPA may have reached the limit of its accuracy.

  5. Isoscalar Giant Resonances of 120Sn in the Quasiparticle Relativistic Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    CAO Li-Gang; MA Zhong-Yu

    2004-01-01

    @@ The quasiparticle relativistic random phase approximation (QRRPA) is formulated based on the relativistic mean field ground state in the response function formalism. The pairing correlations are taken into account in the Bardeen-Cooper-Schrieffer approximation with a constant pairing gap. The numerical calculations are performed in the case of various isoscalar giant resonances of nucleus 120Sn with parameter set NL3. The calculated results show that the QRRPA approach could satisfactorily reproduce the experimental data of the energies of low-lying states.

  6. Continuum quasiparticle random phase approximation for astrophysical direct neutron capture reaction of neutron-rich nuclei

    OpenAIRE

    Matsuo, Masayuki

    2014-01-01

    We formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random phase approximation (QRPA). A focus is put on very neutron-rich nuclei and low-energy neutron kinetic energy in the range of O(1 keV) - O(1 MeV), relevant for the rapid neutron-capture process of nucleosynthesis. We begin with the photo-absorption cross section and the E1 strength function, t...

  7. Collective Modes in a Superfluid Neutron Gas within the Quasiparticle Random-Phase Approximation

    CERN Document Server

    Martin, Noël

    2014-01-01

    We study collective excitations in a superfluid neutron gas at zero temperature within the quasiparticle random phase approximation. The particle-hole residual interaction is obtained from a Skyrme functional, while a separable interaction is used in the pairing channel which gives a realistic density dependence of the pairing gap. In accordance with the Goldstone theorem, we find an ungapped collective mode (analogous to the Bogoliubov-Anderson mode). At low momentum, its dispersion relation is approximately linear and its slope coincides with the hydrodynamic speed of sound calculated with the Skyrme equation of state. The response functions are compared with those obtained within the Landau approximation. We also compute the contribution of the collective mode to the specific heat of the neutron gas, which is relevant for the thermodynamic properties of the inner crust of neutron stars.

  8. {beta}-decay rates of r-process nuclei in the relativistic quasiparticle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Niksic, T.; Marketin, T.; Vretenar, D. [Zagreb Univ. (Croatia). Faculty of Science, Physics Dept.; Paar, N. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Ring, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2004-12-08

    The fully consistent relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is employed in the calculation of {beta}-decay half-lives of neutron-rich nuclei in the N{approx}50 and N{approx}82 regions. A new density-dependent effective interaction, with an enhanced value of the nucleon effective mass, is used in relativistic Hartree-Bogolyubov calculation of nuclear ground states and in the particle-hole channel of the PN-RQRPA. The finite range Gogny D1S interaction is employed in the T=1 pairing channel, and the model also includes a proton-neutron particle-particle interaction. The theoretical half-lives reproduce the experimental data for the Fe, Zn, Cd, and Te isotopic chains, but overestimate the lifetimes of Ni isotopes and predict a stable {sup 132}Sn. (orig.)

  9. Particle-particle and quasiparticle random phase approximations: connections to coupled cluster theory.

    Science.gov (United States)

    Scuseria, Gustavo E; Henderson, Thomas M; Bulik, Ireneusz W

    2013-09-14

    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a "correct bosonization" in the sense that the wavefunction and Hilbert space are exactly fermionic, yet the amplitude equations can be interpreted as adding different quasibosonic RPA channels together. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA and qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective.

  10. Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory

    CERN Document Server

    Scuseria, Gustavo E; Bulik, Ireneusz W

    2013-01-01

    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a correct bosonization in the sense that the wavefunction and Hilbert space are exactly fermionic. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA an d qp-RPA equations are textbook material...

  11. Thermal quasiparticle random-phase approximation with Skyrme interactions and supernova neutral-current neutrino-nucleus reactions

    Science.gov (United States)

    Dzhioev, Alan A.; Vdovin, A. I.; Martínez-Pinedo, G.; Wambach, J.; Stoyanov, Ch.

    2016-07-01

    The thermal quasiparticle random-phase approximation is combined with the Skyrme energy density functional method (Skyrme-TQRPA) to study the response of a hot nucleus to an external perturbation. For the sample nuclei 56Fe and 82Ge, the Skyrme-TQRPA is applied to analyze thermal effects on the strength function of charge-neutral Gamow-Teller transitions, which dominate neutrino-nucleus reactions at Eν≲20 MeV. For the relevant supernova temperatures we calculate the cross sections for inelastic neutrino scattering. We also apply the method to examine the rate of neutrino-antineutrino pair emission by hot nuclei. The cross sections and rates are compared with those obtained earlier from the TQRPA calculations based on the phenomenological quasiparticle-phonon model Hamiltonian. For inelastic neutrino scattering on 56Fe we also compare the Skyrme-TQRPA results to those obtained earlier from a hybrid approach that combines shell-model and RPA calculations.

  12. Stellar electron-capture rates in pf-shell nuclei from quasiparticle random-phase approximation calculations

    CERN Document Server

    Sarriguren, P

    2013-01-01

    Electron-capture rates at different density and temperature conditions are evaluated for a set of pf-shell nuclei representative of the constituents in presupernova formations. The nuclear structure part of the problem is described within a quasiparticle random-phase approximation based on a deformed Skyrme Hartree-Fock selfconsistent mean field with pairing correlations and residual interactions in particle-hole and particle-particle channels. The energy distributions of the Gamow-Teller strength are evaluated and compared to benchmark shell-model calculations and experimental data extracted from charge-exchange reactions. The model dependence of the weak rates are discussed and the various sensitivities to both density and temperature are analyzed.

  13. Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase-approximation

    CERN Document Server

    Losa, C; Dossing, T; Vigezzi, E; Broglia, R A

    2010-01-01

    We present a calculation of the properties of vibrational states in deformed, axially--symmetric even--even nuclei, within the framework of a fully self--consistent Quasparticle Random Phase Approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed ${}^{24}{}^{-}{}^{26}$Mg, ${}^{34}$Mg isotopes are presented and compared to experimental findings.

  14. Gamow-Teller strength in deformed nuclei within the self-consistent charge-exchange quasi-particle random-phase approximation with the Gogny force

    CERN Document Server

    Martini, M; Goriely, S

    2014-01-01

    The charge-exchange excitations in nuclei are studied within the fully self-consistent proton-neutron quasiparticle random-phase approximation using the finite-range Gogny interaction. No additional parameters beyond those included in the effective nuclear force are included. Axially symmetric deformations are consistently taken into account, both in the description of the ground states and spin-isospin excitations. We focus on the isobaric analog and Gamow-Teller resonances. A comparison of the predicted strength distributions to the existing experimental data is presented and the role of nuclear deformation analyzed. The Gamow-Teller strength is used to estimate the beta-decay half-life of nuclei for which experimental data exist. A satisfactory agreement with experimental half-lives is found and justifies the additional study of the exotic neutron-rich N=82, 126 and 184 isotonic chains of relevance for the r-process nucleosynthesis.

  15. Statistical analysis of β decays and the effective value of gA in the proton-neutron quasiparticle random-phase approximation framework

    Science.gov (United States)

    Deppisch, Frank F.; Suhonen, Jouni

    2016-11-01

    We perform a Markov chain Monte Carlo (MCMC) statistical analysis of a number of measured ground-state-to-ground-state single β+/electron-capture and β- decays in the nuclear mass range of A =62 -142 . The corresponding experimental comparative half-lives (logf t values) are compared with the theoretical ones obtained by the use of the proton-neutron quasiparticle random-phase approximation (p n QRPA ) with G -matrix-based effective interactions. The MCMC analysis is performed separately for 47 isobaric triplets and 28 more extended isobaric chains of nuclei to extract values and uncertainties for the effective axial-vector coupling constant gA in nuclear-structure calculations performed in the p n QRPA framework. As far as available, measured half-lives for two-neutrino β β- decays occurring in the studied isobaric chains are analyzed as well.

  16. Quasi-particle random phase approximation with quasi-particle-vibration coupling: application to the Gamow-Teller response of the superfluid nucleus $^{120}$Sn

    CERN Document Server

    Niu, Y F; Vigezzi, E; Bai, C L; Sagawa, H

    2016-01-01

    We propose a self-consistent quasi-particle random phase approximation (QRPA) plus quasi-particle-vibration coupling (QPVC) model with Skyrme interactions to describe the width and the line shape of giant resonances in open-shell nuclei, in which the effect of superfluidity should be taken into account in both the ground state and the excited states. We apply the new model to the Gamow-Teller resonance in the superfluid nucleus $^{120}$Sn, including both the isoscalar spin-triplet and the isovector spin-singlet pairing interactions. The strength distribution in $^{120}$Sn is well reproduced and the underlying microscopic mechanisms, related to QPVC and also to isoscalar pairing, are analyzed in detail.

  17. Low-energy dipole excitations in neon isotopes and N=16 isotones within the quasiparticle random phase approximation and the Gogny force

    CERN Document Server

    Martini, M; Dupuis, M

    2011-01-01

    Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones 24O, 26Ne, 28Mg, and 30Si are characterized by a similar behavior. The occupation of the 2s_1/2 neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of 28Ne and 30Ne, characterized by transitions involving the neutron 1d_3/2 state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is id...

  18. Two decay paths for calculation of nuclear matrix element of neutrinoless double-beta decay using quasiparticle random-phase approximation

    CERN Document Server

    Terasaki, Jun

    2015-01-01

    It is possible to employ virtual decay paths, including two-particle transfer, to calculate the nuclear matrix element of neutrinoless double-beta decay under the closure approximation, in addition to the true double-beta path. In the quasiparticle random-phase approximation (QRPA) approach, it is necessary to introduce the product wave functions of the like-particle and proton-neutron QRPA ground states, for achieving consistency between the calculations of the true and virtual paths. Using these different paths, the problem of whether or not these two methods give equivalent nuclear matrix elements (NME) is investigated. It is found that the two results are inequivalent, resulting from the different many-body correlations included in the two QRPA methods, i.e., the use of the product wave functions alone is not sufficient. The author proposes introduction of the proton-neutron pairing interaction with an adequate strength in the double-beta-path method, which carries less many-body correlations without this...

  19. Infinite-randomness fixed points for chains of non-Abelian quasiparticles.

    Science.gov (United States)

    Bonesteel, N E; Yang, Kun

    2007-10-05

    One-dimensional chains of non-Abelian quasiparticles described by SU(2)k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to k-->infinity). For k=2 this phase provides a random singlet description of the infinite-randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region of size L in these phases scales as S(L) approximately lnd/3 log(2)L for large L, where d is the quantum dimension of the particles.

  20. Large-scale deformed quasiparticle random-phase approximation calculations of the $\\gamma$-ray strength function using the Gogny force

    CERN Document Server

    Martini, M; Hilaire, S; Goriely, S; Lechaftois, F

    2016-01-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the $E1$ $\\gamma$-ray strength function obtained in the framework of the axially-symmetric deformed QRPA based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cut-off energy introduced in the 2-quasiparticle (2-$qp$) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the $E1$ strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to...

  1. Quasiparticle current and phase locking of intrinsic Josephson junctions

    Science.gov (United States)

    Seidel, P.; Grib, A. N.; Shukrinov, Yu. M.; Scherbel, J.; Hübner, U.; Schmidl, F.

    2001-09-01

    On the base of our experiments on thin film Josephson junctions in mesa geometry we discuss the quasiparticle branches of the intrinsic arrays within a tunnelling model using d-wave superconductor density of states. We find temperature dependent current contributions and a zero bias anomaly. The coherent behaviour is studied for intrinsic arrays with an additional side-wall shunt. The existence of thresholds of phase locking at small as well as at large inductances is demonstrated. We discuss the problems with experimental realisation of the shunts as well as with an alternative concept to enhance phase locking in such arrays towards application as oscillators in the frequency range up to some THz.

  2. Quasiparticle specific heats for the crystalline color superconducting phase of QCD

    CERN Document Server

    Casalbuoni, R; Mannarelli, M; Nardulli, G; Ruggieri, M; Stramaglia, S; 10.1016/j.physletb.2003.09.071

    2003-01-01

    We calculate the specific heats of quasiparticles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase. (21 refs).

  3. Quasi-particle Specific Heats for the Crystalline Color Superconducting Phase of QCD

    CERN Document Server

    Casalbuoni, Roberto; Mannarelli, M; Nardulli, Giuseppe; Ruggieri, Marco; Stramaglia, S

    2003-01-01

    We calculate the specific heats of quasi-particles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase.

  4. Quasi-particle specific heats for the crystalline color superconducting phase of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Casalbuoni, R.; Gatto, R.; Mannarelli, M.; Nardulli, G.; Ruggieri, M.; Stramaglia, S

    2003-11-27

    We calculate the specific heats of quasi-particles of two-flavor QCD in its crystalline phases for low temperature. We show that for the different crystalline structures considered here there are gapless modes contributing linearly in temperature to the specific heat. We evaluate also the phonon contributions which are cubic in temperature. These features might be relevant for compact stars with an inner shell in a color superconducting crystalline phase.

  5. Phases of QCD, thermal quasiparticles, and dilepton radiation from a fireball

    Science.gov (United States)

    Renk, Thorsten; Schneider, Roland; Weise, Wolfram

    2002-07-01

    We calculate dilepton production rates from a fireball adapted to the kinematical conditions realized in ultrarelativistic heavy-ion collisions over a broad range of beam energies. The freeze-out state of the fireball is fixed by hadronic observables. We use this information combined with the initial geometry of the collision region to follow the space-time evolution of the fireball. Assuming entropy conservation, its bulk thermodynamic properties can then be uniquely obtained once the equation of state (EOS) is specified. The high-temperature quark-gluon plasma (QGP) phase is modeled by a nonperturbative quasiparticle model that incorporates a phenomenological confinement description, adapted to lattice QCD results. For the hadronic phase, we interpolate the EOS into the region where a resonance gas approach seems applicable, keeping track of a possible overpopulation of the pion phase space. In this way, the fireball evolution is specified without reference to dilepton data, thus eliminating it as an adjustable parameter in the rate calculations. Dilepton emission in the QGP phase is then calculated within the quasiparticle model. In the hadronic phase, both temperature and finite baryon density effects on the photon spectral function are incorporated. Existing dilepton data from CERES at 158 and 40 A GeV Pb-Au collisions are well described, and a prediction for the PHENIX setup at RHIC for (s)=200A GeV is given.

  6. Phases of QCD, Thermal Quasiparticles and Dilepton Radiation from a Fireball

    CERN Document Server

    Renk, T; Weise, W

    2002-01-01

    We calculate dilepton production rates from a fireball adapted to the kinematical conditions realized in ultrarelativistic heavy ion collisions over a broad range of beam energies. The freeze-out state of the fireball is fixed by hadronic observables. We use this information combined with the initial geometry of the collision region to follow the space-time evolution of the fireball. Assuming entropy conservation, its bulk thermodynamic properties can then be uniquely obtained once the equation of state (EoS) is specified. The high-temperature (QGP) phase is modelled by a non-perturbative quasiparticle model that incorporates a phenomenological confinement description, adapted to lattice QCD results. For the hadronic phase, we interpolate the EoS into the region where a resonance gas approach seems applicable, keeping track of a possible overpopulation of the pion phase space. In this way, the fireball evolution is specified without reference to dilepton data, thus eliminating it as an adjustable parameter in...

  7. Investigation of magnetic phases in parent compounds of iron-chalcogenides via quasiparticle scattering interference

    Science.gov (United States)

    Kamble, Bhaskar; Akbari, Alireza; Eremin, Ilya

    2016-04-01

    We employ a five-orbital tight-binding model to develop the mean-field solution for various possible spin density wave states in the iron-chalcogenides. The quasiparticle interference (QPI) technique is applied to detect signatures of these states due to scatterings arising from non-magnetic impurities. Apart from the experimentally observed double-striped structure with ordering vector (π/2,π/2) , the QPI method is investigated for the extended-stripe as well as the orthogonal double-stripe phase. We discuss QPI as a possible tool to detect and classify various magnetic structures with different electronic structure reconstruction within the framework of the \\text{Fe}1+y\\text{Te} compound.

  8. Topological phases in condensed matter systems: A study of symmetries, quasiparticles and phase transitions

    NARCIS (Netherlands)

    Haaker, S.M.

    2014-01-01

    The research described in this thesis focuses on topological phases in condensed matter systems. It can be roughly divided into two parts. In the first part noninteracting systems are studied. The symmetry algebra of a charged spin-1/2 particle coupled to a non-Abelian magnetic field is determined,

  9. Thermodynamics of phase formation and heavy quasiparticles in Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Rost, Andreas W.; Bruin, Jan A.N.; Tian, Demian; Mackenzie, Andrew P. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Grigera, Santiago A. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, UNLP-CONICET, La Plata 1900 (Argentina); Perry, Robin S. [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH93JZ (United Kingdom); Raghu, Sri [Department of Physics and Astronomy, Rice University, Houston, Texas, 77005 (United States); Kivelson, Steve A. [Department of Physics, Stanford University, Stanford, California, 94305 (United States)

    2012-07-01

    The itinerant metamagnet Sr{sub 3}Ru{sub 2}O{sub 7} has motivated a wide range of experimental and theoretical work in recent years because of the discovery of an unusual low temperature phase which is forming in the vicinity of a proposed quantum critical point. A major challenge is the investigation of the thermodynamic properties of both this unusual phase and the fluctuations associated with the quantum critical point. Here we report on new specific heat measurements extending previous work to the wider phase diagram. Our results shed light on two important aspects of the system. First we discuss the entropic details of the formation of heavy quasiparticles as a function of temperature in this compound relevant for a wide class of materials. Secondly we present thermodynamic evidence for the anomalous low temperature phase forming directly out of the critical high temperature phase.

  10. Quantum criticality of D-wave quasiparticles and superconducting phase fluctuations.

    Science.gov (United States)

    Vafek, Oskar; Tesanović, Zlatko

    2003-12-05

    We present finite temperature (T) extension of the (2+1)-dimensional QED (QED3) theory of under-doped cuprates. The theory describes nodal quasiparticles whose interactions with quantum proliferated hc/2e vortex-antivortex pairs are represented by an emergent U(1) gauge field. Finite T introduces a scale beyond which the spatial fluctuations of vorticity are suppressed. As a result, the spin susceptibility of the pseudogap state is bounded by T2 at low T and crosses over to approximately T at higher T, while the low-T specific heat scales as T2, reflecting the thermodynamics of QED3. The Wilson ratio vanishes as T-->0; the pseudogap state is a "thermal (semi)metal" but a "spin-charge dielectric." This non-Fermi liquid behavior originates from two general principles: spin correlations induced by "gauge" interactions of quasiparticles and fluctuating vortices and the "relativistic" scaling of the T=0 fixed point.

  11. Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition.

    Science.gov (United States)

    Abrahams, Elihu; Wölfle, Peter

    2012-02-28

    We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh(2)Si(2), for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results.

  12. Isoscalar Giant Resonances of 120Sn in the Quasiparticle RRPA

    Institute of Scientific and Technical Information of China (English)

    CAOLi-gang; MAZhong-yu

    2003-01-01

    In present work we have formulated the quasiparticle relativistic random phase approximation (QRRPA) model based on the relativistic mean field ground state in the response function formalism. The pairing correlations are taken into account in the BCS approximation with a constant pairing gap extracted from the experimental binding energies of neighboring nuclei.

  13. Quasiparticle excitations in frustrated antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, Adolfo E. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina)]. E-mail: trumper@ifir.edu.ar; Gazza, Claudio J. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina); Manuel, Luis O. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina)]. E-mail: manuel@ifir.edu.ar

    2004-12-31

    We have computed the quasiparticle wave function corresponding to a hole injected in a triangular antiferromagnet. We have taken into account multi-magnon contributions within the self-consistent Born approximation. We have found qualitative differences, under sign reversal of the integral transfer t, regarding the multi-magnon components and the own existence of the quasiparticle excitations. Such differences are due to the subtle interplay between magnon-assisted and free hopping mechanisms. We conclude that the conventional quasiparticle picture can be broken by geometrical frustration without invoking spin liquid phases.

  14. Solid-Phase Random Glycosylation

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Dekany, Gyula

    2009-01-01

    Two different approaches were employed to study solid phase random glycosylations to obtain oligosaccharide libraries. In approach I, Wang resin esters were attached to the acceptors structures. Following their glycosylation and resin cleavage, the peracetylated components of the oligosaccharide ...

  15. Field Theories for Gauged Symmetry Protected Topological Phases: Abelian Gauge Theories with non-Abelian Quasiparticles

    CERN Document Server

    He, Huan; von Keyserlingk, Curt

    2016-01-01

    Dijkgraaf-Witten (DW) theories are of recent interest to the condensed matter community, in part because they represent topological phases of matter, but also because they characterize the response theory of certain symmetry protected topological (SPT) phases. However, as yet there has not been a comprehensive treatment of the spectra of these models in the field theoretic setting -- the goal of this work is to fill the gap in the literature, at least for a selection of DW models with abelian gauge groups but non-abelian topological order. As applications, various correlation functions and fusion rules of line operators are calculated. We discuss for example the appearance of non-abelian statistics in DW theories with abelian gauge groups.

  16. Quasiparticle bands and structural phase transition of iron from Gutzwiller density-functional theory

    Science.gov (United States)

    Schickling, Tobias; Bünemann, Jörg; Gebhard, Florian; Boeri, Lilia

    2016-05-01

    We use the Gutzwiller density-functional theory to calculate ground-state properties and band structures of iron in its body-centered-cubic (bcc) and hexagonal-close-packed (hcp) phases. For a Hubbard interaction U =9 eV and Hund's-rule coupling J =0.54 eV , we reproduce the lattice parameter, magnetic moment, and bulk modulus of bcc iron. For these parameters, bcc is the ground-state lattice structure at ambient pressure up to a pressure of pc=41 GPa where a transition to the nonmagnetic hcp structure is predicted, in qualitative agreement with experiment (pcexp=10 ,...,15 GPa ) . The calculated band structure for bcc iron is in good agreement with ARPES measurements. The agreement improves when we perturbatively include the spin-orbit coupling.

  17. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...

  18. Density-of-state oscillation of quasiparticle excitation in the spin density wave phase of (TMTSF)2ClO4.

    Science.gov (United States)

    Uji, S; Kimata, M; Moriyama, S; Yamada, J; Graf, D; Brooks, J S

    2010-12-31

    Systematic measurements of the magnetocaloric effect, heat capacity, and magnetic torque under a high magnetic field up to 35 T are performed in the spin density wave (SDW) phase of a quasi-one-dimensional organic conductor (TMTSF)2ClO4. In the SDW phase above 26 T, where the quantum Hall effect is broken, rapid oscillations (ROs) in these thermodynamic quantities are observed, which provides clear evidence of the density-of-state (DOS) oscillation near the Fermi level. The resistance is semiconducting and the heat capacity divided by temperature is extrapolated to zero at 0 K in the SDW phase, showing that all the energy bands are gapped, and there is no DOS at the Fermi level. The results show that the ROs are ascribed to the DOS oscillation of the quasiparticle excitation.

  19. Random Phases and Energy Dispersion

    Institute of Scientific and Technical Information of China (English)

    刘全慧; 刘天贵; 班卫全

    2003-01-01

    Using 2N + 1 successive stationary states centred at nth, we construct a rectangular wavepacket in which the stationary states are superimposed with the equal weight √2N + 1. With the requirement of the wavepacket to be a quasi-classical state, the number N is determined by minimizing the uncertainty △x△p. Since the stationary state can only be determined to within an arbitrary multiplicative complex phase factor of unit magnitude, a number of N is obtained as a set of the phases are given. For a harmonic oscillator, when all of the phase factors are essentially the same, we have N ≈ [61/3n2/3] with [x] signifying the integral part of positive number x. When every phase in the phase factors is given by a random number generated in a closed interval [0, 2π] and when n ≥ 10, the probability of appearance of N is roughly 1/2N when N = 1 to 7, and does not exceed 0.01 whenN ≥ 8.

  20. Comparing quasiparticle GW+DMFT and LDA+DMFT for the test bed material SrVO3

    Science.gov (United States)

    Taranto, C.; Kaltak, M.; Parragh, N.; Sangiovanni, G.; Kresse, G.; Toschi, A.; Held, K.

    2013-10-01

    We have implemented the quasiparticle GW+dynamical mean field theory (DMFT) approach in the Vienna ab initio simulation package. To this end, a quasiparticle Hermitization of the G0W0 self-energy a lá Kotani-Schilfgaarde is employed, and the interaction values are obtained from the locally unscreened random phase approximation (RPA) using a projection onto Wannier orbitals. We compare quasiparticle GW+DMFT and local density approximation (LDA)+DMFT against each other and against experiment for SrVO3. We observe a partial compensation of stronger electronic correlations due to the reduced GW bandwidth and weaker correlations due to a larger screening of the RPA interaction, so that the obtained spectra are quite similar and agree well with experiment. Noteworthy, the quasiparticle GW+DMFT better reproduces the position of the lower Hubbard side band.

  1. The investigation of the 2 decay by Pyatov method within quasiparticle random phase approximation formalism

    Indian Academy of Sciences (India)

    S Unlu; T Babacan; N Cakmak; C Selam

    2008-09-01

    The violated commutation condition between the total shell model Hamiltonian and Gamow–Teller operator (GT) has been restored by Pyatov method (PM). The considered nuclear model Hamiltonian in PM includes the separable GT residual interaction in ph and pp channels and is differentiated from the traditional schematic model by ℎ0 (restoration term). The influence of the h0 effective interaction on the 2 decay of 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te and 136Xe is investigated. All the calculations have been done within the framework of standard QRPA. The results obtained by PM are compared with those of other approaches and experimental data. The influence of the restoration term on the stability of the 2 decay nuclear matrix elements is analysed.

  2. Spin-isospin transitions in chromium isotopes within the quasiparticle random phase approximation

    CERN Document Server

    Cakmak, Sadiye; Babacan, Tahsin; Maras, Ismail

    2016-01-01

    Beta decay and electron capture on isotopes of chromium are advocated to play a key role in the stellar evolution process. In this paper we endeavor to study charge-changing transitions for 24 isotopes of chromium ($^{42-65}$Cr). These include neutron-rich and neutron-deficient isotopes of chromium. Three different models from the QRPA genre, namely the pn-QRPA, the Pyatov method (PM) and the Schematic model (SM), were selected to calculate and study the Gamow-Teller (GT) transitions in chromium isotopes. The SM was employed separately in the particle-particle ($pp$) and $pp$ + particle-hole ($ph$) channels. To study the effect of deformation, the SM was first used assuming the nuclei to be spherical and later to be deformed. The PM was used both in $pp$ and $pp$ + $ph$ channels but only for the case of spherical nuclei. The pn-QRPA calculation was done by considering both $pp$ and $ph$ forces and taking deformation of nucleus into consideration. A recent study proved this version of pn-QRPA to be the best fo...

  3. The quasiparticle zoo

    Science.gov (United States)

    Venema, Liesbeth; Verberck, Bart; Georgescu, Iulia; Prando, Giacomo; Couderc, Elsa; Milana, Silvia; Maragkou, Maria; Persechini, Lina; Pacchioni, Giulia; Fleet, Luke

    2016-12-01

    Quasiparticles are an extremely useful concept that provides a more intuitive understanding of complex phenomena in many-body physics. As such, they appear in various contexts, linking ideas across different fields and supplying a common language.

  4. Comparison of Gamow-Teller strengths in the random phase approximation

    CERN Document Server

    Nabi, Jameel-Un

    2012-01-01

    The Gamow-Teller response is astrophysically important for a number of nuclides, particularly around iron. The random phase approximation (RPA) is an efficient way to generate strength distributions. In order to better understand both theoretical systematics and uncertainties, we compare the Gamow-Teller strength distributions for a suite of nuclides and for a suite of interactions, including semi-realistic interactions in the $1p$-$0f$ space with the RPA and a separable multi-shell interaction in the quasi-particle RPA. We also compare with experimental results for GT$_-$ on ${54}$Fe.

  5. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    CERN Document Server

    Robin, Caroline

    2016-01-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and $\\rho$-meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to previously developed relativistic quasiparticle time blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and applied to Gamow-Teller resonance in a chain of neutron-rich Nickel isotopes $^{68-78}$Ni. A strong fragmentation of the resonance al...

  6. Electric dipole response of neutron-rich Calcium isotopes in relativistic quasiparticle time blocking approximation

    CERN Document Server

    Egorova, Irina A

    2016-01-01

    New results for electric dipole strength in the chain of even-even Calcium isotopes with the mass numbers A = 40 - 54 are presented. Starting from the covariant Lagrangian of Quantum Hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for $J \\leq 6$ and normal parity were computed in a self-consistent relativistic quasiparticle random phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2q$\\otimes$phonon) form the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation (RQTBA). The results for giant dipole resonance in the latter approach are compared to those obtained in RQRPA and to available data. Evolution of the dipole strength with neutron number is investigated for both high-frequency giant dipole resonance (GDR) and low-lying strength. Development of a pygmy resonant structure on the low-energy shoulder of GDR is traced and analyzed in terms...

  7. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  8. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  9. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  10. Random-phase metasurfaces at optical wavelengths

    DEFF Research Database (Denmark)

    Pors, Anders; Ding, Fei; Chen, Yiting

    2016-01-01

    , with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications......Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify...... the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting...

  11. Faddeev Random Phase Approximation for Molecules

    CERN Document Server

    Degroote, Matthias; Barbieri, Carlo

    2010-01-01

    The Faddeev Random Phase Approximation is a Green's function technique that makes use of Faddeev-equations to couple the motion of a single electron to the two-particle--one-hole and two-hole--one-particle excitations. This method goes beyond the frequently used third-order Algebraic Diagrammatic Construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are described at the level of the Random Phase Approximation. This paper presents the first results for diatomic molecules at equilibrium geometry. The behavior of the method in the dissociation limit is also investigated.

  12. Random-phase metasurfaces at optical wavelengths

    Science.gov (United States)

    Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.

    2016-06-01

    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.

  13. Diffusion of long-lived quasiparticles over long distances

    Energy Technology Data Exchange (ETDEWEB)

    Loidl, M. E-mail: loidl@mppmu.mpg.de; Bravin, M.; Bruckmayer, M.; Stefano, P. Di; Frank, T.; Meier, O.; Meunier, P.; Proebst, F.; Safran, G.; Seidel, W.; Sergeyev, I.; Sisti, M.; Stodolsky, L.; Uchaikin, S.; Zerle, L

    2000-04-07

    Diffusion of quasiparticles over distances up to 4 mm has been observed in various superconducting films. The quasiparticles were created by X-ray absorption in film strips with critical temperatures near 1 K and were detected in two superconducting phase transition thermometers at the ends of each strip. Position and energy of the absorbed X-rays as well as diffusion constants and lifetimes of the quasiparticles were determined. Very long lifetimes up to 9 ms allow the realization of large area phonon collector films on massive cryogenic particle detectors. Recently, with a first such detector a high efficiency of the phonon collection could be demonstrated.

  14. Faddeev Random Phase Approximation applied to molecules

    CERN Document Server

    Degroote, Matthias

    2012-01-01

    This Ph.D. thesis derives the equations of the Faddeev Random Phase Approximation (FRPA) and applies the method to a set of small atoms and molecules. The occurence of RPA instabilities in the dissociation limit is addressed in molecules and by the study of the Hubbard molecule as a test system with reduced dimensionality.

  15. Quasiparticle diffusion over several mm in cryogenic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Loidl, M. E-mail: loidl@hep.saclay.cea.fr; Cooper, S.; Meier, O.; Proebst, F.; Safran, G.; Seidel, W.; Sisti, M.; Stodolsky, L.; Uchaikin, S

    2001-06-11

    The use of quasiparticle diffusion in a superconducting film has the potential to allow an increase in the size of a cryogenic detector without proportional loss of energy resolution. The quasiparticle lifetime and the diffusion constant are critical parameters which have limited this development. Using W superconducting phase transition thermometers as the sensors and a W/Al bilayer as the diffusion film, we have measured quasiparticle diffusion over a distance of 2 mm and deduced a diffusion constant of D=2.5x10{sup -4} m{sup 2}/s and a quasiparticle lifetime of {tau}=9.0 ms, which is, to our knowledge, by far the longest ever observed. With Ir/Au thermometers and an Ir/Au/Al diffusion film we found D=4.6x10{sup -3} m{sup 2}/s and {tau}=0.43 ms with diffusion over 4 mm, the longest distance observed to date.

  16. Resonant quasiparticle-ion scattering in anisotropic superfluid 3He

    Science.gov (United States)

    Salmelin, R. H.; Salomaa, M. M.

    1990-03-01

    Low-energy excitations in quantum fluids are most directly encountered by ions. In the superfluid phases of 3He the relevant elementary excitations are Bogoliubov quasiparticles, which undergo repeated scattering off an ion in the presence of a divergent density of states. We present a quantum-mechanical calculation of the resonant 3He quasiparticle-scattering-limited mobility for negative ions in the anisotropic bulk 3A (A phase) and 3P (polar phase) that is exact when the quasiparticles scatter elastically. We develop a numerical scheme to solve the singular equations for quasiparticle-ion scattering in the A and P phases. Both of these superfluid phases feature a uniaxially symmetric order parameter but distinct topology for the magnitude of the energy gap on the Fermi sphere, i.e., points versus lines of nodes. In particular, the perpetual orbital circulation of Cooper pairs in 3A results in a novel, purely quantum-mechanical intrinsic Magnus effect, which is absent in the polar phase, where Cooper pairs possess no spontaneous orbital angular momentum. This is of interest also for transport properties of heavy-fermion superconductors. We discuss the 3He quasiparticle-ion cross sections, which allow one to account for the mobility data with essentially no free parameters. The calculated mobility thus facilitates an introduction of ``ion spectroscopy'' to extract useful information on fundamental properties of the superfluid state, such as the temperature dependence of the energy gap in 3A.

  17. Static correlation beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We investigate various approximations to the correlation energy of a H2 molecule in the dissociation limit, where the ground state is poorly described by a single Slater determinant. The correlation energies are derived from the density response function and it is shown that response functions...... derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly...

  18. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    Science.gov (United States)

    Robin, Caroline; Litvinova, Elena

    2016-07-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

  19. The interacting quasiparticle-phonon picture and odd-even nuclei. Overview and perspectives

    Science.gov (United States)

    Mishev, S.; Voronov, V. V.

    2016-11-01

    The role of the nucleon correlations in the ground states of even-even nuclei on the properties of low-lying states in odd-even spherical and transitional nuclei is studied. We reason about this subject using the language of the quasiparticle-phonon model which we extend to take account of the existence of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even-even cores. Of paramount importance to the structure of the low-lying states happens to be the quasiparticle-phonon interaction in the ground states which we evaluated using both the standard and the extended random phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed using pairing and quadrupole-quadrupole interaction modes which have the dominant impact on the lowest-lying states' structure. It is found that states with same angular momentum and parity become closer in energy as compared to the predictions of models disregarding the backward amplitudes, which turns out to be in accord with the experimental data. In addition we found that the interaction between the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute significantly to the magnetic dipolemoment of odd- A nuclei. It also reveals a potential for reproducing their experimental values which proves impossible if this interaction is neglected.

  20. Annihilation of colliding Bogoliubov quasiparticles reveals their Majorana nature.

    Science.gov (United States)

    Beenakker, C W J

    2014-02-21

    The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calculate the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1±cosϕ dependence on the phase difference ϕ of the superconductors from which the excitations originated (with the ± sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.

  1. Goldstone modes in the random phase approximation

    CERN Document Server

    Neergård, Kai

    2016-01-01

    I show that the kernel of the random phase approximation (RPA) matrix based on a stable Hartree, Hartree-Fock, Hartree-Bogolyubov or Hartree-Fock-Bogolyubov mean field solution is decomposed into a subspace with a basis whose vectors are associated, in the equivalent formalism of a classical Hamiltonian linear in canonic coordinates, with conjugate momenta of cyclic coordinates (Goldstone modes) and a subspace with a basis whose vectors are associated with pairs of conjugate canonic coordinates that do not enter the Hamiltonian at all. In a subspace complementary to the one spanned by all these coordinates including the conjugate coordinates of the Goldstone momenta, the RPA matrix behaves as in the case of a zerodimensional kernel. This result was derived very recently by Nakada as a corollary to a general analysis of RPA matrices based on both stable and unstable mean field solutions. The present proof does not rest on Nakada's general results.

  2. QCD Critical Point in a Quasiparticle Model

    CERN Document Server

    Srivastava, P K; Singh, C P

    2010-01-01

    Recent theoretical investigations have unveiled a rich structure in the quantum chromodynamics (QCD) phase diagram which consists of quark gluon plasma (QGP) and the hadronic phases but also supports the existence of a cross-over transition ending at a critical end point (CEP). We find a too large variation in determination of the coordinates of the CEP in the temperature (T), baryon chemical potential ($\\mu_{B}$) plane and, therefore, its identification in the current heavy-ion experiments becomes debatable. Here we use an equation of state (EOS) for a deconfined QGP using a thermodynamically consistent quasiparticle model involving quarks and gluons having thermal masses. We further use a thermodynamically consistent excluded volume model for the hadron gas (HG) which was recently proposed by us. Using these equations of state, a first order deconfining phase transition is constructed using Gibbs' criteria. This leads to an interesting finding that the phase transition line ends at a critical point (CEP) be...

  3. A novel random phase-shifting digital holographic microscopy method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper proposes a new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM.

  4. Metastability in spin polarised Fermi gases and quasiparticle decays

    DEFF Research Database (Denmark)

    Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos

    2011-01-01

    the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose...

  5. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current...

  6. Deformation-induced splitting of isoscalar E0 giant resonance: Skyrme random-phase-approximation analysis

    CERN Document Server

    Kvasil, J; Repko, A; Kleinig, W; Reinhard, P -G

    2016-01-01

    The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The study is performed within the fully self-consistent quasiparticle random-phase-approximation (QRPA) method based on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear incompressibility, are considered. The calculations confirm earlier results that, due to the deformation-induced E0-E2 coupling, the isoscalar E0 resonance attains a double-peak structure and significant energy upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller energy difference between the lower and upper peaks and thus a stronger E0-E2 coupling. This in turn results in more pumping of E0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss widths of the peaks and their negligible correlation...

  7. Electron Bubbles in Superfluid (3) 3 He-A: Exploring the Quasiparticle-Ion Interaction

    Science.gov (United States)

    Shevtsov, Oleksii; Sauls, J. A.

    2017-06-01

    When an electron is forced into liquid ^3He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3, where m_3 is the mass of a ^3He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3He-A.

  8. Electron Bubbles in Superfluid ^3 He-A: Exploring the Quasiparticle-Ion Interaction

    Science.gov (United States)

    Shevtsov, Oleksii; Sauls, J. A.

    2016-11-01

    When an electron is forced into liquid ^3 He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3 , where m_3 is the mass of a ^3 He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3 He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3 He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3 He-A.

  9. Random shortcuts induce phase synchronization in complex Chua systems

    Institute of Scientific and Technical Information of China (English)

    Wei Du-Qu; Luo Xiao-Shu; Qin Ying-Hua

    2009-01-01

    This paper studies how phase synchronization in complex networks depends on random shortcuts, using the piecewise-continuous chaotic Chua system as the nodes of the networks. It is found that for a given coupling strength,when the number of random shortcuts is greater than a threshold the phase synchronization is induced. Phase synchronization becomes evident and reaches its maximum as the number of random shortcuts is further increased. These phenomena imply that random shortcuts can induce and enhance the phase synchronization in complex Chua systems.Furthermore, the paper also investigates the effects of the coupling strength and it is found that stronger coupling makes it easier to obtain the complete phase synchronization.

  10. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  11. Stretched horizons, quasiparticles and quasinormal modes

    CERN Document Server

    Iizuka, N; Lifschytz, G; Lowe, D A; Iizuka, Norihiro; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2003-01-01

    We propose that stretched horizons can be described in terms of a gas of non-interacting quasiparticles. The quasiparticles are unstable, with a lifetime set by the imaginary part of the lowest quasinormal mode frequency. If the horizon arises from an AdS/CFT style duality the quasiparticles are also the effective low-energy degrees of freedom of the finite-temperature CFT. We analyze a large class of models including Schwarzschild black holes, non-extremal Dp-branes, the rotating BTZ black hole and de Sitter space, and we comment on degenerate horizons. The quasiparticle description makes manifest the relationship between entropy and area.

  12. Ultrafast spectroscopy of quasiparticle dynamics in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhang, Chunfeng, E-mail: cfzhang@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wang, Xiaoyong [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chakhalian, Jak, E-mail: jchakhal@uark.edu [Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); Xiao, Min, E-mail: mxiao@uark.edu [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States)

    2015-02-15

    Ultrafast pump-probe spectroscopy is a powerful tool to study the nonequilibrium dynamics in high-Tc cuprate superconductors. The photo-induced quasiparticle (QP) dynamics revealed by pump-probe spectroscopy are sensitive to the near-Fermi level electronic structures. Here we review several selected examples to illustrate the enduring challenges including pairing glue, phase separation, and phase transitions in cuprate superconductors. We also present the data obtained on thin films of YBa{sub 2}Cu{sub 3}O{sub 7−δ} in connection to these issues. - Highlights: • This paper reviews recent ultrafast spectroscopic study on cuprates. • Dynamics related to pairing glues and phase separations are summarized. • Mid-IR pulses enhance the coherent transport in underdoped cuprates. • Pump-probe data on the quasiparticle dynamics in YBCO films are presented.

  13. Critical relaxation with overdamped quasiparticles in open quantum systems

    Science.gov (United States)

    Lang, Johannes; Piazza, Francesco

    2016-09-01

    We study the late-time relaxation following a quench in an open quantum many-body system. We consider the open Dicke model, describing the infinite-range interactions between N atoms and a single, lossy electromagnetic mode. We show that the dynamical phase transition at a critical atom-light coupling is characterized by the interplay between reservoir-driven and intrinsic relaxation processes in the absence of number conservation. Above the critical coupling, small fluctuations in the occupation of the dominant quasiparticle mode start to grow in time, while the quasiparticle lifetime remains finite due to losses. Near the critical interaction strength, we observe a crossover between exponential and power-law 1 /τ relaxation, the latter driven by collisions between quasiparticles. For a quench exactly to the critical coupling, the power-law relaxation extends to infinite times, but the finite lifetime of quasiparticles prevents aging from appearing in two-times response and correlation functions. We predict our results to be accessible to quench experiments with ultracold bosons in optical resonators.

  14. Decryption of a random-phase multiplexing recording system

    Science.gov (United States)

    Chang, Chi-Ching; Liu, Jung-Ping; Lee, Hsiao-Yi; Lin, Ching-Yang; Chang, Tsung-Chien; Yau, Hon-Fai

    2006-03-01

    In practice, decrypting a random-phase encrypted volume holographic data storage system is impossible unless the original random-phase plate for the encryption is available. However, this study demonstrates that under certain conditions, ways are available that can decrypt an encrypted photorefractive LiNbO3 crystal holographic storage system. In addition to presenting experimental results that show the efficacy of this decryption approach, problems and difficulties in the experiments are discussed.

  15. Revealing novel quantum phases in quantum antiferromagnets on random lattices

    Directory of Open Access Journals (Sweden)

    R. Yu

    2009-01-01

    Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.

  16. Quasi-particle vortex scattering in UPt{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Suderow, H.; Huxley, A. [CEA Centre des Etudes Nucleaires de Grenoble, Grenoble (France). DRFMC; Aubin, H.; Behnia, K. [Laboratoire de Physique des Solides (CNRS), Universite Paris-Sud, 91405, Orsay (France)

    1997-09-08

    We present a study of thermal conductivity in the superconducting phase of the heavy fermion superconductor UPt{sub 3}. The angular dependence of the thermal conductivity shows a cosine-square law when the magnetic field rotates in the basal plane. For a field rotating out of the basal plane, however, our results present features which can not be explained through our current conventional picture for vortex scattering of heat-carrying quasi-particles. (orig.).

  17. Continuity and anomalous fluctuations in random walks in dynamic random environments: numerics, phase diagrams and conjectures

    CERN Document Server

    Avena, L

    2012-01-01

    We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamic setup too. Such anomalous fluctuations emerge in a new phase diagram. Further we discuss possible consequences for general static and dynamic random environments.

  18. Quasiparticle Theory of Transport Coefficients for Hadronic Matter at Finite Temperature and Baryon Density

    CERN Document Server

    Albright, M

    2016-01-01

    We develop a flexible quasiparticle theory of transport coefficients of hot hadronic matter at finite baryon density. We begin with a hadronic quasiparticle model which includes a scalar and a vector mean field. Quasiparticle energies and the mean fields depend on temperature and baryon chemical potential. Starting with the quasiparticle dispersion relation, we derive the Boltzmann equation and use the Chapman-Enskog expansion to derive formulas for the shear and bulk viscosities and thermal conductivity. We obtain both relaxation time approximation formulas and more general integral equations. Throughout the work, we explicitly enforce the Landau-Lifshitz conditions of fit and ensure the theory is thermodynamically self-consistent. The derived formulas should be useful for predicting the transport coefficients of the hadronic phase of matter produced in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and at other accelerators.

  19. Critical quasiparticles in single-impurity and lattice Kondo models

    Science.gov (United States)

    Vojta, M.; Bulla, R.; Wölfle, P.

    2015-07-01

    Quantum criticality in systems of local moments interacting with itinerant electrons has become an important and diverse field of research. Here we review recent results which concern (a) quantum phase transitions in single-impurity Kondo and Anderson models and (b) quantum phase transitions in heavy-fermion lattice models which involve critical quasiparticles. For (a) the focus will be on impurity models with a pseudogapped host density of states and their applications, e.g., in graphene and other Dirac materials, while (b) is devoted to strong-coupling behavior near antiferromagnetic quantum phase transitions, with potential applications in a variety of heavy-fermion metals.

  20. Towards thermodynamics of the quark quasi-particles

    CERN Document Server

    Molodtsov, S V

    2011-01-01

    Some features of hot and dense gas of quarks which are considered as the quasi-particles of the model Hamiltonian with four-fermion interaction are studied. Being adapted to the Nambu-Jona-Lasinio model this approach allows us to accommodate a phase transition similar to the nuclear liquid-gas one at the proper scale and to argue an existence of the mixed phase of vacuum and normal baryonic matter as a plausible scenario of chiral symmetry (partial) restoration. Analyzing the transition layer between two phases we estimate the surface tension coefficient and discuss the possibility of quark droplet formation.

  1. Quasiparticle Approach to Molecules Interacting with Quantum Solvents.

    Science.gov (United States)

    Lemeshko, Mikhail

    2017-03-03

    Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.

  2. Quasiparticle approach to molecules interacting with quantum solvents

    CERN Document Server

    Lemeshko, Mikhail

    2016-01-01

    Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently-predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)]. Most importantly, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.

  3. Phase transitions for information diffusion in random clustered networks

    Science.gov (United States)

    Lim, Sungsu; Shin, Joongbo; Kwak, Namju; Jung, Kyomin

    2016-09-01

    We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.

  4. Random phase-free computer holography and its applications

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2016-06-01

    Random phase is required in computer-generated hologram (CGH) to widely diffuse object light and to avoid its concentration on the CGH; however, the random phase causes considerable speckle noise in the reconstructed image and degrades the image quality. We introduce a simple and computationally inexpensive method that improves the image quality and reduces the speckle noise by multiplying the object light with the designed convergence light. We furthermore propose the improved method of the designed convergence light with iterative method to reduce ringing artifacts. Subsequently, as the application, a lensless zoomable holographic projection is introduced.

  5. Single-random-phase holographic encryption of images

    Science.gov (United States)

    Tsang, P. W. M.

    2017-02-01

    In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.

  6. Quasiparticle excitations in relativistic quantum field theory

    CERN Document Server

    Arteaga, Daniel

    2008-01-01

    We analyze the particle-like excitations arising in relativistic field theories in states different than the vacuum. The basic properties characterizing the quasiparticle propagation are studied using two different complementary methods. First we introduce a frequency-based approach, wherein the quasiparticle properties are deduced from the spectral analysis of the two-point propagators. Second, we put forward a real-time approach, wherein the quantum state corresponding to the quasiparticle excitation is explicitly constructed, and the time-evolution is followed. Both methods lead to the same result: the energy and decay rate of the quasiparticles are determined by the real and imaginary parts of the retarded self-energy respectively. Both approaches are compared, on the one hand, with the standard field-theoretic analysis of particles in the vacuum and, on the other hand, with the mean-field-based techniques in general backgrounds.

  7. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  8. Continuum Random Phase Approximation with finite-range interactions

    Energy Technology Data Exchange (ETDEWEB)

    Co' , Giampaolo [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); INFN, Sezione di Lecce, Lecce (Italy); De Donno, Viviana [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Anguiano, Marta; Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2016-05-15

    We rewrite the Random Phase Approximation secular equations in a form which allows the treatment of the continuum part of the single-particle spectrum without approximations. Within this formalism finite-range interactions can be used without restrictions. We present some results, obtained with Gogny interactions, where the role of the continuum is relevant. (orig.)

  9. Random phase-free computer-generated hologram

    CERN Document Server

    Shimobaba, Tomoyoshi

    2015-01-01

    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  10. Random phase-free computer-generated hologram.

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-04-01

    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  11. Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites

    Energy Technology Data Exchange (ETDEWEB)

    Mannella, N.

    2010-06-02

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

  12. Randomly phase-locked microlaser arrays and fuzzy eigenmodes with stochastic phasing.

    Science.gov (United States)

    Riyopoulos, S

    2006-10-30

    Deviations in the cold cavity parameters, random or systematic, produce incoherently phased-locked laser arrays with unevenly distributed phase difference and intensity. The collective radiation fields constitute "fuzzy" eigenmodes; the phasing among cavities is constant in time but changes randomly from site-to-site. The existence and structure of such eigenmodes is demonstrated numerically and analyzed theoretically using the rate equations for coupled semiconductor laser cavities. Active coupling, whereby one cavity's radiation field modulates the complex gain of nearby cavities (cross-cavity hole burning), is essential for the frequency pulling allowing synchronization of the laser operating frequencies.

  13. A third-order phase transition in random tilings

    CERN Document Server

    Colomo, F

    2013-01-01

    We consider the domino tilings of an Aztec diamond with a cut-off corner of macroscopic square shape and given size, and address the bulk properties of tilings as the size is varied. We observe that the free energy exhibits a third-order phase transition when the cut-off square, increasing in size, reaches the arctic ellipse---the phase separation curve of the original (unmodified) Aztec diamond. We obtain this result by studying the thermodynamic limit of certain nonlocal correlation function of the underlying six-vertex model with domain wall boundary conditions, the so-called emptiness formation probability (EFP). We consider EFP in two different representations: as a tau-function for Toda chains and as a random matrix model integral. The latter has a discrete measure and a linear potential with hard walls; the observed phase transition shares properties with both Gross-Witten-Wadia and Douglas-Kazakov phase transitions.

  14. Resistance of the double random phase encryption against various attacks.

    Science.gov (United States)

    Frauel, Yann; Castro, Albertina; Naughton, Thomas J; Javidi, Bahram

    2007-08-06

    Several attacks are proposed against the double random phase encryption scheme. These attacks are demonstrated on computer-generated ciphered images. The scheme is shown to be resistant against brute force attacks but susceptible to chosen and known plaintext attacks. In particular, we describe a technique to recover the exact keys with only two known plain images. We compare this technique to other attacks proposed in the literature.

  15. Extended Quark Potential Model From Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENGWei-Zhen; CHENXiao-Lin; 等

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.

  16. Extended Quark Potential Model from Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-Zhen; CHEN Xiao-Lin; LU Da-Hai; YANG Li-Ming

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.

  17. Phase shifting interferometry from two normalized interferograms with random tilt phase-shift.

    Science.gov (United States)

    Liu, Fengwei; Wu, Yongqian; Wu, Fan

    2015-07-27

    We propose a novel phase shifting interferometry from two normalized interferograms with random tilt phase-shift. The determination of tilt phase-shift is performed by extracting the tilted phase-shift plane from the phase difference of two normalized interferograms, and with the calculated tilt phase-shift value the phase distribution can be retrieved from the two normalized frames. By analyzing the distribution of phase difference and utilizing special points fitting method, the tilted phase-shift plane is extracted in three different cases, which relate to different magnitudes of tilts. Proposed method has been applied to simulations and experiments successfully and the satisfactory results manifest that proposed method is of high accuracy and high speed compared with the three step iterative method. Additionally, both open and closed fringe can be analyzed with proposed method. What's more, it cannot only eliminate the small tilt-shift error caused by slight vibration in phase-shifting interferometry, but also detect the large tilt phase-shift in phase-tilting interferometry. Thus, it will relaxes the requirements on the accuracy of phase shifter, and the costly phase shifter may even be useless by applying proposed method in high amplitude vibrated circumstance to achieve high-precision analysis.

  18. Quasiparticle model for deconfined matter and the nucleation of hadrons

    CERN Document Server

    Bessa, A

    2006-01-01

    Assuming a first-order chiral transition scenario, we study the process of phase conversion driven by homogeneous nucleation. We adopt a quasiparticle model whose parameters are fit to lattice QCD data to describe the pressure at high temperature in the deconfined sector, and a bag model equation of state for pions in the low-temperature sector. We compute the critical radius and nucleation rate in the thin-wall approximation, and compare the results to the ones obtained using the bag model and the linear $\\sigma$ model.

  19. Absolute Uniqueness of Phase Retrieval with Random Illumination

    CERN Document Server

    Fannjiang, Albert

    2011-01-01

    Random phase or amplitude illumination is proposed to remove at once all types of ambiguity, trivial or nontrivial, at once from phase retrieval. Almost sure irreducibility is proved for {\\em any} complex-valued object of arbitrary sparsity. While this irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a new perspective and an effective method for achieving absolute uniqueness in phase retrieval for {\\em every} object, not just objects outside of a measure-zero set. In particular, almost sure absolute uniqueness is proved for complex-valued objects under a general two-point assumption. For objects of nonnegative real and imaginary parts, absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases.

  20. Multiple image encryption and watermarking by random phase matching

    Science.gov (United States)

    He, M. Z.; Cai, L. Z.; Liu, Q.; Wang, X. C.; Meng, X. F.

    2005-03-01

    Usually a set of transmitted patterns can realize encryption and/or watermarking just for one hidden image. In this paper, we propose a novel method of multiple image encryption and watermarking by random phase matching, which can encrypt and then decrypt more than one image with the same set of transmitted patterns based on the idea of double phase encoding and the wave field superposition. The principle and procedure of this method are explained. A series of computer simulations with phase-shifting interferometry have shown that two or four independent images can be encrypted and decrypted without or with watermarking successfully with one set of composite interferograms. The ability of this method to retrieve hidden image(s) from part of the transmitted patterns has also been verified. This technique can considerably raise the efficiency of data transmission, and it is particularly suitable for the image transmission via Internet.

  1. Cascading dynamics on random networks: Crossover in phase transition

    Science.gov (United States)

    Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong

    2012-02-01

    In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.

  2. Neutron diffusion in a randomly inhomogeneous multiplying medium with random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Imre, Kaya [Courant Institute of Mathematical Sciences, New York University, New York 10012 (United States); Akcasu, A. Ziya [University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2012-06-15

    Neutron diffusion in a randomly inhomogeneous multiplying medium is studied. By making use of a random phase assumption we show that the average neutron density approximately satisfies an integral equation in Fourier space, which is solved using Kummer functions. We used multi-dimensional formulation. In the case of one dimension, we obtain the result of Rosenbluth and Tao for the mean total density for large t. In the three-dimensional case, a closed form of solution is derived for the mean total neutron density. Its asymptotic behavior is also investigated for large t.

  3. Quantum-matter physics: Quasiparticles on a collision course

    Science.gov (United States)

    van der Marel, Dirk

    2016-05-01

    Emergent quanta of momentum and charge, called quasiparticles, govern many of the properties of materials. The development of a quasiparticle collider promises to reveal fundamental insights into these peculiar entities. See Letter p.225

  4. Fully phase image encryption using double random-structured phase masks in gyrator domain.

    Science.gov (United States)

    Singh, Hukum; Yadav, A K; Vashisth, Sunanda; Singh, Kehar

    2014-10-01

    We propose a method for fully phase image encryption based on double random-structured phase mask encoding in the gyrator transform (GT) domain. The security of the system is strengthened by parameters used in the construction of a structured phase mask (SPM) based on a devil's vortex Fresnel lens (DVFL). The input image is recovered using the correct parameters of the SPMs, transform orders of the GT, and conjugate of the random phase masks. The use of a DVFL-based SPM enhances security by increasing the key space for encryption, and also overcomes the problem of axis alignment associated with an optical setup. The proposed scheme can also be implemented optically. The computed values of mean squared error between the retrieved and the original image show the efficacy of the proposed scheme. We have also investigated the scheme's sensitivity to the encryption parameters, and robustness against occlusion and multiplicative Gaussian noise attacks.

  5. Topological quantum computing with only one mobile quasiparticle.

    Science.gov (United States)

    Simon, S H; Bonesteel, N E; Freedman, M H; Petrovic, N; Hormozi, L

    2006-02-24

    In a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2 + 1 dimensional space-time. In this Letter we show that any such quantum computation that can be done by braiding n identical quasiparticles can also be done by moving a single quasiparticle around n - 1 other identical quasiparticles whose positions remain fixed.

  6. Random phase wave: a soluble non-Markovian system

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.

    1977-12-01

    The averaged propagator and the corresponding mass operator (non-Markovian particle-wave collision operator) of a particle being accelerated by a random potential are constructed explicitly in a model system. The model consists of an ensemble of monochromatic waves of random phase, such as arises in narrow-bandwidth plasma turbulence, and is particularly interesting as a system exhibiting strong trapping. An essential simplifying feature is that the propagator is evaluated in oscillation-center picture, which greatly simplifies the momentum-space operators occurring in the problem, and leads to a remarkable factorization of the mass operator. General analyticity and symmetry properties are derived using a projection-operator method, and verified for the solution of the model system. The nature of the memory exhibited by the mass operator is briefly examined.

  7. Doorway States in the Random-Phase Approximation

    CERN Document Server

    De Pace, A; Weidenmueller, H A

    2014-01-01

    By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.

  8. Doorway states in the random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    De Pace, A., E-mail: depace@to.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Molinari, A. [Dipartimento di Fisica Teorica dell’Università di Torino, via P.Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Weidenmüller, H.A. [Max-Planck-Institut für Kernphysik, D-69029 Heidelberg (Germany)

    2014-12-15

    By coupling a doorway state to a sea of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.

  9. Detection of phase randomly distributed weak transient signal using chaos

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In practical communication and radar system s, the phase of the received signal is random, the arrival time is unknown, the lasting time is limited and the SNR is often very low. In order to realize the detection of the signal, the method of using a group of nonlinear differential equations is presented. The theory of this chaos-based detection is analyzed. Computer simulation indicates that the shortest lasting time of the transient signal that can be detected out is 12 periods, the detection error of arrival time is less than 7/8 signal's period, the detection characteristics are got using Monte-Carlo simulation.

  10. Enhanced wavefront reconstruction by random phase modulation with a phase diffuser

    DEFF Research Database (Denmark)

    Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2011-01-01

    propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...

  11. Separabelized Skyrme Interactions and Quasiparticle RPA

    CERN Document Server

    Severyukhin, A P; Stoyanov, C; Nguyen Van Giai; Stoyanov, Ch.; Giai, Nguyen Van

    2002-01-01

    A finite rank separable approximation for the quasiparticle RPA with Skyrme interactions is applied to study the low lying quadrupole and octupole states in some S isotopes and giant resonances in some spherical nuclei. It is shown that characteristics calculated within the suggested approach are in a good agreement with available experimental data.

  12. Using Quasiparticle Poisoning To Detect Photons

    Science.gov (United States)

    Echternach, Pierre; Day, Peter

    2006-01-01

    According to a proposal, a phenomenon associated with excitation of quasiparticles in certain superconducting quantum devices would be exploited as a means of detecting photons with exquisite sensitivity. The phenomenon could also be exploited to perform medium-resolution spectroscopy. The proposal was inspired by the observation that Coulomb blockade devices upon which some quantum logic gates are based are extremely sensitive to quasiparticles excited above the superconducting gaps in their leads. The presence of quasiparticles in the leads can be easily detected via the charge states. If quasiparticles could be generated in the leads by absorption of photons, then the devices could be used as very sensitive detectors of electromagnetic radiation over the spectral range from x-rays to submillimeter waves. The devices in question are single-Cooper-pair boxes (SCBs), which are mesoscopic superconducting devices developed for quantum computing. An SCB consists of a small superconducting island connected to a reservoir via a small tunnel junction and connected to a voltage source through a gate capacitor. An SCB is an artificial two-level quantum system, the Hamiltonian of which can be controlled by the gate voltage. One measures the expected value of the charge of the eigenvectors of this quantum system by use of a radio-frequency single-electron transistor. A plot of this expected value of charge as a function of gate voltage resembles a staircase that, in the ideal case, consists of steps of height 2 e (where e is the charge of one electron). Experiments have shown that depending on the parameters of the device, quasiparticles in the form of "broken" Cooper pairs present in the reservoir can tunnel to the island, giving rise to steps of 1 e. This effect is sometimes called "poisoning." Simulations have shown that an extremely small average number of quasiparticles can generate a 1-e periodic signal. In a device according to the proposal, this poisoning would be

  13. Quasiparticle Dynamics and Exponential Protection in Majorana Islands

    DEFF Research Database (Denmark)

    Albrecht, Sven Marian

    This thesis presents measurements on Majorana islands: semiconductor-superconductor hybrid nanowire quantum dots in the trivial and the topological superconducting phase. We fabricate Majorana island devices based on indium arsenide nanowires with an epitaxially matched aluminum half-shell. Measu......This thesis presents measurements on Majorana islands: semiconductor-superconductor hybrid nanowire quantum dots in the trivial and the topological superconducting phase. We fabricate Majorana island devices based on indium arsenide nanowires with an epitaxially matched aluminum half......-shell. Measuring quasiparticle transport, we observe a gate voltage dependent even-odd Coulomb blockade pattern, associated with quasiparticle occupation of bound states, for which we demonstrate state parity lifetimes exceeding 10 milliseconds. Using Coulomb-blockade spectroscopy and varying the magnetic field...... for Majorana modes, with a characteristic length of 260 nm. For long devices exceeding one micron, transport at high magnetic fields shows discrete zero-energy states, with an energy gap to a higher-energy continuum, and evenly spaced Coulomb-blockade conductance peaks, a signature of teleportation via...

  14. Quasiparticle band structure of antiferromagnetic Eu Te

    Energy Technology Data Exchange (ETDEWEB)

    Mathi Jaya, S.; Nolting, W. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Lehrstuhl Festkoerpertheorie, Invalidenstrasse 110, D-10115 Berlin (Germany)

    1997-11-24

    The temperature-dependent electronic quasiparticle spectrum of the antiferromagnetic semiconductor Eu Te is derived by use of a combination of a many-body model procedure with a tight-binding-'linear muffin tin orbital' (TB - LMTO) band structure calculation. The central part is the d-f model for a single band electron ('test electron') being exchange coupled to the anti ferromagnetically ordered localized moments of the Eu ions. The single-electron Bloch energies of the d-f model are taken from a TB-LMTO calculation for paramagnetic Eu Te. The d-f model is evaluated by a recently proposed moment conserving Green function technique to get the temperature-dependent sublattice-quasiparticle band structure (S-QBS) and sublattice-quasiparticle density of states (S-QDOS) of the unoccupied 5 d-6 s energy bands. Unconventional correlation effects and the appearance of characteristic quasiparticles ('magnetic polarons') are worked out in detail. The temperature dependence of the S-QDOS and S-QBS is mainly provoked by the spectral weights of the energy dispersions. Minority- and majority-spin spectra coincide for all temperatures but with different densities of states. Upon cooling from T{sub N} to T = 0 K the lower conduction band edge exhibits a small blue shift of -0.025 eV in accordance with the experiment. Quasiparticle damping manifesting itself in a temperature-dependent broadening of the spectral density peaks arises from spin exchange processes between (5 d-6 s) conduction band electrons and localized 4 f moments. (author)

  15. Quasiparticle bandstructure of antiferromagnetic EuTe

    Science.gov (United States)

    Mathi Jaya, S.; Nolting, W.

    1997-11-01

    The temperature-dependent electronic quasiparticle spectrum of the antiferromagnetic semiconductor EuTe is derived by use of a combination of a many-body model procedure with a tight-binding - `linear muffin tin orbital' (TB - LMTO) band structure calculation. The central part is the d - f model for a single band electron (`test electron') being exchange coupled to the antiferromagnetically ordered localized moments of the Eu ions. The single-electron Bloch energies of the d - f model are taken from a TB - LMTO calculation for paramagnetic EuTe. The d - f model is evaluated by a recently proposed moment conserving Green function technique to get the temperature-dependent sublattice - quasiparticle bandstructure (S - QBS) and sublattice - quasiparticle density of states (S - QDOS) of the unoccupied 5d - 6s energy bands. Unconventional correlation effects and the appearance of characteristic quasiparticles (`magnetic polarons') are worked out in detail. The temperature dependence of the S - QDOS and S - QBS is mainly provoked by the spectral weights of the energy dispersions. Minority- and majority-spin spectra coincide for all temperatures but with different densities of states. Upon cooling from 0953-8984/9/47/012/img1 to T = 0 K the lower conduction band edge exhibits a small blue shift of -0.025 eV in accordance with the experiment. Quasiparticle damping manifesting itself in a temperature-dependent broadening of the spectral density peaks arises from spin exchange processes between (5d - 6s) conduction band electrons and localized 4f moments.

  16. The decryption of random phase multiplexing encoding system

    Science.gov (United States)

    Lee, Hsiao-Yi; Liu, Jung-Ping; Chang, Chi-Ching; Yau, Hon-Fai; Chang, Tsung-Chien

    2004-10-01

    Random-phase-multiplexing storage using photorefractive crystals is one of the most important topics in the field of photorefractive optics. To achieve random phase recording, we can use a diffuser to encrypt the reference light in a holographic recording setup. To decrypt the recorded pattern, the same diffuser used in encryption must be used in the reconstruction light, and it must be set in the original orientation. In this way, a number of 2-D patterns can be stored in a single photorefractive crystal with a single diffuser set at different orientations for different patterns. A merit in this recording method is that the encryption is virtually not possible to be decrypted if the original diffuser for encrypting is not available. In this paper, we proposed a way to decrypt the encrypted information in a photorefractive lithium niobate crystal without the possession of the original diffuser. In this method, we suppose somehow we know one of the patterns stored in the crystal, and then we retrieve the original diffuser with this pattern. And ultimately all the other patterns stored in the crystal are decrypted and retrieved with this retrieved diffuser.

  17. Non-perturbative renormalization group calculation of the quasi-particle velocity and the dielectric function of graphene

    Science.gov (United States)

    Sharma, Anand; Bauer, Carsten; Rueckriegel, Andreas; Kopietz, Peter

    We use a nonperturbative functional renormalization group approach to calculate the renormalized quasiparticle velocity v (k) and the static dielectric function ɛ (k) of suspended graphene as function of an external momentum k. We fit our numerical result for v (k) to v (k) /vF = A + Bln (Λ0 / k) , where vF is the bare Fermi velocity, Λ0 is an ultraviolet cutoff, and A = 1 . 37 , B = 0 . 51 for the physically relevant value (e2 /vF = 2 . 2) of the coupling constant. In stark contrast to calculations based on the static random-phase approximation, we find that ɛ (k) approaches unity for k --> 0 . Our result for v (k) agrees very well with a recent measurement by Elias etal. [Nat. Phys. 7, 701 (2011)]. With in the same approximation, we also explore an alternative scheme in order to understand the true nature of the low energy (momentum) behavior in graphene.

  18. Testing a random phase approximation for bounded turbulent flow

    Science.gov (United States)

    Ulitsky, Mark; Clark, Tim; Turner, Leaf

    1999-05-01

    Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., =δ(k1+k2), where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N3 grid points actually requires N3+1 members in the ensemble. The ``randomness'' of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N3+1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and those for a single realization.

  19. Optical double image security using random phase fractional Fourier domain encoding and phase-retrieval algorithm

    Science.gov (United States)

    Rajput, Sudheesh K.; Nishchal, Naveen K.

    2017-04-01

    We propose a novel security scheme based on the double random phase fractional domain encoding (DRPE) and modified Gerchberg-Saxton (G-S) phase retrieval algorithm for securing two images simultaneously. Any one of the images to be encrypted is converted into a phase-only image using modified G-S algorithm and this function is used as a key for encrypting another image. The original images are retrieved employing the concept of known-plaintext attack and following the DRPE decryption steps with all correct keys. The proposed scheme is also used for encryption of two color images with the help of convolution theorem and phase-truncated fractional Fourier transform. With some modification, the scheme is extended for simultaneous encryption of gray-scale and color images. As a proof-of-concept, simulation results have been presented for securing two gray-scale images, two color images, and simultaneous gray-scale and color images.

  20. Analytic interatomic forces in the random phase approximation

    CERN Document Server

    Ramberger, Benjamin; Kresse, Georg

    2016-01-01

    We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the GW approximation. This relationship allows to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.

  1. Accuracy of the Faddeev Random Phase Approximation for Light Atoms

    CERN Document Server

    Barbieri, C; Degroote, M

    2010-01-01

    The accuracy of the Faddeev random phase approximation (FRPA) method is tested by calculating the total and ionization energies of a set of light atoms up to Ar. Comparisons are made with the results of coupled-cluster singles and doubles (CCSD), third-order algebraic diagrammatic construction [ADC(3)], and with the experiment. It is seen that even for two-electron systems, He and Be-2+, the inclusion of RPA effects leads to satisfactory results and therefore it does not over-correlate the ground state. The FRPA becomes progressively better for larger atomic numbers where it gives about 5 mH more correlation energy and it shifts ionization potentials by 2-10 mH, with respect to its sister method ADC(3). The corrections for ionization potentials consistently reduce the discrepancies with the experiment.

  2. Key-space analysis of double random phase encryption technique

    Science.gov (United States)

    Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.

  3. Surface wake in the random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F.J. (Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Universidad del Pais Vasco, Apartado 649, 20080 San Sebastian (Spain)); Echenique, P.M. (Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Apartado 1072, 20080 San Sebastian (Spain))

    1993-11-01

    The scalar-electric-potential distribution set up by an ion traveling in the vicinity of a plane solid-vacuum interface, that is, the surface-wake potential, is investigated with the specular-reflection model to describe the response of the surface and with the random-phase approximation for the dielectric function of the bulk material. This permits us to address the study of the low-velocity surface wake: the static potential is found to have a dip at the position of the ion; that dip is shifted towards the direction opposite to the velocity vector for velocities smaller than the threshold of creation of plasmons ([approx]1.3[ital v][sub [ital F

  4. A mathematical formulation of the random phase approximation for crystals

    CERN Document Server

    Cances, Eric

    2011-01-01

    This works extends the recent study on the dielectric permittivity of crystals within the Hartree model [E. Cances and M. Lewin, Arch. Rational Mech. Anal., 197 (2010) 139--177] to the time-dependent setting. In particular, we prove the existence and uniqueness of the nonlinear Hartree dynamics, also called the random phase approximation in the physics literature, in a suitable functional space allowing to describe a local defect embedded in a perfect crystal. We also give a rigorous mathematical definition of the microscopic frequency-dependent polarization matrix, and derive the macroscopic Maxwell-Gauss equation for insulating and semiconducting crystals, from a first order approximation of the nonlinear Hartree model, by means of homogenization arguments.

  5. Quasiparticle interactions in frustrated Heisenberg chains

    Science.gov (United States)

    Vanderstraeten, Laurens; Haegeman, Jutho; Verstraete, Frank; Poilblanc, Didier

    2016-06-01

    Interactions between elementary excitations in quasi-one-dimensional antiferromagnets are of experimental relevance and their quantitative theoretical treatment has been a theoretical challenge for many years. Using matrix product states, one can explicitly determine the wave functions of the one- and two-particle excitations, and, consequently, the contributions to dynamical correlations. We apply this framework to the (nonintegrable) frustrated dimerized spin-1/2 chain, a model for generic spin-Peierls systems, where low-energy quasiparticle excitations are bound states of topological solitons. The spin structure factor involving two quasiparticle scattering states is obtained in the thermodynamic limit with full momentum and frequency resolution. This allows very subtle features in the two-particle spectral function to be revealed which, we argue, could be seen, e.g., in inelastic neutron scattering of spin-Peierls compounds under a change of the external pressure.

  6. Improvement of the image quality of random phase--free holography using an iterative method

    CERN Document Server

    Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2015-01-01

    Our proposed method of random phase-free holography using virtual convergence light can obtain large reconstructed images exceeding the size of the hologram, without the assistance of random phase. The reconstructed images have low-speckle noise in the amplitude and phase-only holograms (kinoforms); however, in low-resolution holograms, we obtain a degraded image quality compared to the original image. We propose an iterative random phase-free method with virtual convergence light to address this problem.

  7. Baryon number fluctuations in quasi-particle model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ameng [Southeast University Chengxian College, Department of Foundation, Nanjing (China); Luo, Xiaofeng [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China); Zong, Hongshi [Nanjing University, Department of Physics, Nanjing (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing (China); Institute of Theoretical Physics, CAS, State Key Laboratory of Theoretical Physics, Beijing (China)

    2017-04-15

    Baryon number fluctuations are sensitive to the QCD phase transition and the QCD critical point. According to the Feynman rules of finite-temperature field theory, we calculated various order moments and cumulants of the baryon number distributions in the quasi-particle model of the quark-gluon plasma. Furthermore, we compared our results with the experimental data measured by the STAR experiment at RHIC. It is found that the experimental data can be well described by the model for the colliding energies above 30 GeV and show large discrepancies at low energies. This puts a new constraint on the qQGP model and also provides a baseline for the QCD critical point search in heavy-ion collisions at low energies. (orig.)

  8. Baryon Number Fluctuations in Quasi-particle Model

    CERN Document Server

    Zhao, Ameng; Zong, Hongshi

    2016-01-01

    Baryon number fluctuations are sensitive to the QCD phase transition and QCD critical point. According to the Feynman rules of finite-temperature field theory, we calculated various order moments and cumulants of the baryon number distributions in the quasi-particle model of quark gluon plasma. Furthermore, we compared our results with the experimental data measured by the STAR experiment at RHIC. It is found that the experimental data can be well described by the model for the colliding energies above 30 GeV and show large discrepancies at low energies. It can put new constraint on qQGP model and also provide a baseline for the QCD critical point search in heavy-ion collisions at low energies.

  9. Expectation values of single-particle operators in the random phase approximation ground state.

    Science.gov (United States)

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  10. Expectation values of single-particle operators in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  11. Expectation values of single-particle operators in the random phase approximation ground state

    CERN Document Server

    Kosov, Daniel S

    2016-01-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.

  12. Quasiparticle interference in unconventional 2D systems

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  13. Phase Transitions in Sampling Algorithms and the Underlying Random Structures

    Science.gov (United States)

    Randall, Dana

    Sampling algorithms based on Markov chains arise in many areas of computing, engineering and science. The idea is to perform a random walk among the elements of a large state space so that samples chosen from the stationary distribution are useful for the application. In order to get reliable results, we require the chain to be rapidly mixing, or quickly converging to equilibrium. For example, to sample independent sets in a given graph G, the so-called hard-core lattice gas model, we can start at any independent set and repeatedly add or remove a single vertex (if allowed). By defining the transition probabilities of these moves appropriately, we can ensure that the chain will converge to a use- ful distribution over the state space Ω. For instance, the Gibbs (or Boltzmann) distribution, parameterized by Λ> 0, is defined so that p(Λ) = π(I) = Λ|I| /Z, where Z = sum_{J in Ω} Λ^{|J|} is the normalizing constant known as the partition function. An interesting phenomenon occurs as Λ is varied. For small values of Λ, local Markov chains converge quickly to stationarity, while for large values, they are prohibitively slow. To see why, imagine the underlying graph G is a region of the Cartesian lattice. Large independent sets will dominate the stationary distribution π when Λ is sufficiently large, and yet it will take a very long time to move from an independent set lying mostly on the odd sublattice to one that is mostly even. This phenomenon is well known in the statistical physics community, and characterizes by a phase transition in the underlying model.

  14. Charge of a quasiparticle in a superconductor

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-01-01

    Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071

  15. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  16. Irreducible tensor description. II. A quasiparticle gas

    Science.gov (United States)

    Banach, Zbigniew; Piekarski, Slawomir

    1989-08-01

    Let E be a three-dimensional Euclidean vector space and assume that ℏΩ(k) is a quasiparticle energy in the mode k∈E; thus k is a wave vector. Within the framework of the Boltzmann-Peierls equation and a broad class of isotropic dispersion relations [Ω(k)⇒Ω(k), k: =||k||], the exact system of irreducible equations of transfer for the symmetric traceless moments of the distribution function f is derived and the range of validity of Grad's moment procedure is extended to the case of quasiparticle gases. Thus not without reason, an expansion with respect to k of the one-particle density f around the local Bose-Einstein occupation probability f0 in terms of the appropriately chosen Tchebychef functions Aβ(z;Θ) and Ikenberry's harmonics Yα(g) is carefully recognized. Also, the importance of the Tchebychef basis {Aβ; β=0,1,...}, both in any serious analysis of equilibrium fluctuations and in exploiting the Chapman-Enskog procedure, is clearly established.

  17. Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.

    Science.gov (United States)

    Zheng, Wei; Zhai, Hui

    2014-12-31

    In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.

  18. Coherent suppression of quasiparticle dissipation in a superconducting artificial atom

    Energy Technology Data Exchange (ETDEWEB)

    Pop, Ioan [Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Department of Applied Physics, Yale University, New Haven, CT 06520 (United States)

    2016-07-01

    We demonstrate immunity to quasiparticle dissipation in a Josephson junction. At the foundation of this protection rests a prediction by Brian Josephson from fifty years ago: the particle-hole interference of superconducting quasiparticles when tunneling across a Josephson junction. The junction under study is the central element of a fluxonium artificial atom, which we place in an extremely low loss environment and measure using radio-frequency dispersive techniques. Furthermore, by using a quantum limited amplifier (a Josephson Parametric Converter) we can observe quantum jumps between the 0 and 1 states of the qubit in thermal equilibrium with the environment. The distribution of the times in-between the quantum jumps reveals quantitative information about the population and dynamics of quasiparticles. The data is entirely consistent with the hypothesis that our system is sensitive to single quasiparticle excitations, which opens new perspectives for quasiparticle monitoring in low temperature devices.

  19. Quasiparticle Description of the QCD Plasma, Comparison with Lattice Results at Finite T and Mu

    CERN Document Server

    Szabó, K K

    2003-01-01

    We compare our 2+1 flavor, staggered QCD lattice results with a quasiparticle picture. We determine the pressure, the energy density, the baryon density, the speed of sound and the thermal masses as a function of T and $\\mu_B$. For the available thermodynamic quantities the difference is a few percent between the results of the two approaches. We also give the phase diagram on the $\\mu_B$--T plane and estimate the critical chemical potential at vanishing temperature.

  20. Electron correlation effects beyond the random phase approximation

    Science.gov (United States)

    Fan, J. D.; Malozovsky, Y. M.

    2016-04-01

    The methods that have been used to deal with a many-particle system can be basically sorted into three types: Hamiltonian, field theory and phenomenological method. The first two methods are more popular. Traditionally, the Hamiltonian method has been widely adopted in the conventional electronic theory for metals, alloys and semiconductors. Basically, the mean-field approximation (MFA) that has been working well for a weakly coupled system like a metal is employed to simplify a Hamiltonian corresponding to a particular electron system. However, for a strongly coupled many-particle system like a cuprate superconductor MFA should in principle not apply. Therefore, the field theory on the basis of Green’s function and the Feynman diagrams must be invoked. In this method, one is however more familiar with the random phase approximation (RPA) that gives rise to the same results as MFA because of being short of the information for higher-order terms of interaction. For a strongly coupled electron system, it is obvious that one has to deal with higher-order terms of a pair interaction to get a correct solution. Any ignorance of the higher-order terms implies that the more sophisticated information contained in those terms is discarded. However, to date one has not reached a consensus on how to deal with the higher-order terms beyond RPA. We preset here a method that is termed the diagrammatic iteration approach (DIA) and able to derive higher-order terms of the interaction from the information of lower-order ones on the basis of Feynman diagram, with which one is able to go beyond RPA step by step. It is in principle possible that all of higher-order terms can be obtained, and then sorted to groups of diagrams. It turns out that each of the groups can be replaced by an equivalent one, forming a diagrammatic Dyson-equation-like relation. The diagrammatic solution is eventually “translated” to a four-dimensional integral equation. The method can be applied to a

  1. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems

    Science.gov (United States)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-12-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.

  2. Shaping the spectrum of random-phase radar waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  3. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.

    Science.gov (United States)

    Krasnov, V M

    2009-11-27

    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  4. Quasiparticle self-consistent GW theory.

    Science.gov (United States)

    van Schilfgaarde, M; Kotani, Takao; Faleev, S

    2006-06-09

    In past decades the scientific community has been looking for a reliable first-principles method to predict the electronic structure of solids with high accuracy. Here we present an approach which we call the quasiparticle self-consistent approximation. It is based on a kind of self-consistent perturbation theory, where the self-consistency is constructed to minimize the perturbation. We apply it to selections from different classes of materials, including alkali metals, semiconductors, wide band gap insulators, transition metals, transition metal oxides, magnetic insulators, and rare earth compounds. Apart from some mild exceptions, the properties are very well described, particularly in weakly correlated cases. Self-consistency dramatically improves agreement with experiment, and is sometimes essential. Discrepancies with experiment are systematic, and can be explained in terms of approximations made.

  5. Lifetime of quasiparticles in hot QED plasmas

    CERN Document Server

    Blaizot, J P; Blaizot, Jean Paul; Iancu, Edmond

    1996-01-01

    The calculation of the lifetime of quasiparticles in a QED plasma at high temperature remains plagued with infrared divergences, even after one has taken into account the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of very soft, unscreened, magnetic photons, whose contribution is enhanced by the thermal Bose-Einstein occupation factor. The self energy diagrams which diverge in perturbation theory contain no internal fermion loops, but an arbitrary number of internal magnetostatic photon lines. By generalizing the Bloch-Nordsieck model at finite temperature, we can resum all the singular contributions of such diagrams, and obtain the correct long time behaviour of the retarded fermion propagator in the hot QED plasma: S_R(t)\\sim \\exp\\{-\\alpha T \\, t\\, \\ln\\omega_pt\\}, where \\omega_p=eT/3 is the plasma frequency and \\alpha=e^2/4\\pi.

  6. Phase-locking-level statistics of coupled random fiber lasers.

    Science.gov (United States)

    Fridman, Moti; Pugatch, Rami; Nixon, Micha; Friesem, Asher A; Davidson, Nir

    2012-10-01

    We measure the statistics of phase locking levels of coupled fiber lasers with fluctuating cavity lengths. We found that the measured distribution of the phase locking level of such coupled lasers can be described by the generalized extreme value distribution. For large number of lasers the distribution of the phase locking level can be approximated by a Gumbel distribution. We present a simple model, based on the spectral response of coupled lasers, and the calculated results are in good agreement with the experimental results.

  7. Systematic investigation of the low-energy dipole excitations in 176,178,180Hf within rotational, translational and Galilean invariant quasiparticle RPA

    Science.gov (United States)

    Guliyev, E.; Kuliev, A. A.; Ertugral, F.

    2013-10-01

    Low-energy magnetic and electric dipole excitations in the even-even isotopes 176-180Hf have been systematically studied within the rotational, translational and Galilean invariant Quasiparticle Random Phase Approximation (QRPA). The results of the calculations show that most of the states predicted to have magnetic character and the computed M1 strength in these nuclei is less strongly fragmented than in mid-shell isotopes. The results of the calculations are in good agreement with experimental data. The results of the calculations indicate the presence of a few prominent negative parity dipole K=1 states in the energy investigated region. The comparison of the calculations with the available experimental data makes possible the interpretation of the states where parity could not be assigned experimentally.

  8. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D., E-mail: diego.muraca@gmail.co [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina); Sanchez, F.H. [Departamento de Fisica-Instituto de Fisica de La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 69, (1900), La Plata (Argentina); Pampillo, L.G.; Saccone, F.D. [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina)

    2010-03-15

    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  9. Collaborative Randomized Beamforming for Phased Array Radio Interferometers

    CERN Document Server

    Ocal, Orhan; Cherubini, Giovanni; Kazemi, Sanaz

    2014-01-01

    The Square Kilometre Array (SKA) will form the largest radio telescope ever built and such a huge instrument in the desert poses enormous engineering and logistic challenges. Algorithmic and architectural breakthroughs are needed. Data is collected and processed in groups of antennas before transport for central processing. This processing includes beamforming, primarily so as to reduce the amount of data sent. The principal existing technique points to a region of interest independently of the sky model and how the other stations beamform. We propose a new collaborative beamforming algorithm in order to maximize information captured at the stations (thus reducing the amount of data transported). The method increases the diversity in measurements through randomized beam- forming. We demonstrate through numerical simulation the effectiveness of the method. In particular, we show that randomized beamforming can achieve the same image quality while producing 40% less data when compared to the prevailing method m...

  10. Optical encryption for large-sized images using random phase-free method

    CERN Document Server

    Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Sugie, Takashige; Ito, Tomoyoshi

    2015-01-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  11. Optical security system using jigsaw transforms of the second random phase mask and the encrypted image in a double random phase encoding system

    Science.gov (United States)

    Singh, Madan; Kumar, Arvind; Singh, Kehar

    2008-10-01

    In this paper, we have described a simple and secure double random phase encoding and decoding system to encrypt and decrypt a two-dimensional gray scale image. We have used jigsaw transforms of the second random phase mask and the encrypted image. The random phase mask placed in the Fourier plane is broken into independent non-overlapping segments by applying the jigsaw transform. To make the system more secure, a jigsaw transform on the encrypted image is also carried out. The encrypted image is also broken into independent non-overlapping segments. The jigsaw transform indices of random phase code and the encrypted image form the keys for the successful retrieval of the data. Encrypting with this technique makes it almost impossible to retrieve the image without using both the right keys. Results of computer simulation have been presented in support of the proposed idea. Mean square error (MSE) between the decrypted and the original image has also been calculated in support of the technique.

  12. Nonequilibrium phase transition in directed small-world-Voronoi-Delaunay random lattices

    Science.gov (United States)

    Lima, F. W. S.

    2016-01-01

    On directed small-world-Voronoi-Delaunay random lattices in two dimensions with quenched connectivity disorder we study the critical properties of the dynamics evolution of public opinion in social influence networks using a simple spin-like model. The system is treated by applying Monte Carlo simulations. We show that directed links on these random lattices may lead to phase diagram with first- and second-order social phase transitions out of equilibrium.

  13. Shot Noise and the Transmission of Dilute Laughlin Quasiparticles

    OpenAIRE

    Kane, C. L.; Fisher, Matthew P. A.

    2002-01-01

    We analyze theoretically a three-terminal geometry in a fractional quantum Hall system - studied in a recent experiment - which allows a dilute beam of Laughlin quasiparticles to be prepared and subsequently scattered by a point contact. Employing a chiral Luttinger liquid description of the nu^{-1} = m integer edge states, we compute the current and noise of the quasiparticle beam after transmission through the point contact at finite temperature and bias voltage. A re-fermionization procedu...

  14. Non-equilibrium Phase Transitions: Activated Random Walks at Criticality

    Science.gov (United States)

    Cabezas, M.; Rolla, L. T.; Sidoravicius, V.

    2014-06-01

    In this paper we present rigorous results on the critical behavior of the Activated Random Walk model. We conjecture that on a general class of graphs, including , and under general initial conditions, the system at the critical point does not reach an absorbing state. We prove this for the case where the sleep rate is infinite. Moreover, for the one-dimensional asymmetric system, we identify the scaling limit of the flow through the origin at criticality. The case remains largely open, with the exception of the one-dimensional totally-asymmetric case, for which it is known that there is no fixation at criticality.

  15. Quantum logic gates from Dirac quasiparticles

    Science.gov (United States)

    Marino, E. C.; Brozeguini, J. C.

    2015-03-01

    We show that one of the fundamental operations of topological quantum computation, namely the non-Abelian braiding of identical particles, can be physically realized in a general system of Dirac quasiparticles in 1 + 1D. Our method is based on the study of the analytic structure of the different Euclidean correlation functions of Dirac fields, which are conveniently expressed as functions of a complex variable. When the Dirac field is an (Abelian) anyon with statistics parameter s (2s not an integer), we show that the associated Majorana states of such a field present non-Abelian statistics. The explicit form of the unitary, non-commuting (monodromy) matrices generated upon braiding is derived as a function of s and is shown to satisfy the Yang-Baxter algebra. For the special case of s = 1/4, we show that the braiding matrices become the logic gates NOT, CNOT,… required in the algorithms of universal quantum computation. We suggest that maybe polyacetylene, alternately doped with alkali and halogen atoms, is a potential candidate for a physical material realization of the system studied here.

  16. Multi-quasiparticle Excitations in 145Tb

    Institute of Scientific and Technical Information of China (English)

    ZhengYong; ZhouXiaohong; ZhangYuhu; T.Hayakawa; M.Oshima; T.Toh; T.Shizuma; J.Katakura; Y.Hatsukawa; M.Matsuda; H.Kusakari; M.Sugawara; K.Furuno; T.Komatsubara

    2003-01-01

    Study of in-beam γ-ray spectroscopy of 145Tb has been carried out by using 118Sn (32 S, 1p4n) 145Tb reaction. Excitation functions, X-γ-t and γ-γ-t coincidences and γ-ray anisotropies were measured. Here, t refers to the relative time difference between any two coincident γ-rays detected within ±200 ns. A level scheme of 14tTb, including 81 γ-transitions as shown in Fig.l, has been established up to 7.4 MeV in excitation energy and spinparity assignments for most of the observed levels have been done. The level structure shows characteristics of spherical nucleus. The observed states with excitation energies less than 2 MeV are interpreted by coupling an h11/2 proton to the 2+, 4+ and 3- core excitations in 144Gd. The excitation energies of these states fit wellin to the systematics of the neighboring odd-A N=80 isotones, and are well reproduced by the quasiparticle-cluster interaction calculations[1]. Semi-empirical shell model calculations[2] have been done for the higher-lying levels. The results clearly reveal the characteristic features of multiparticle configurations in a spherical nucleus. Specific configurations are proposed for the yrast and some non-yrast levels.

  17. Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals

    Science.gov (United States)

    Xu, N.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Bisti, F.; Strocov, V. N.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Qian, T.; Yazyev, O. V.; Mesot, J.; Ding, H.; Shi, M.

    2017-03-01

    The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two nontrivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g., NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magnetotransport properties observed in TaAs, TaP, and NbP, where the Fermi arc states are similar.

  18. Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals.

    Science.gov (United States)

    Xu, N; Autès, G; Matt, C E; Lv, B Q; Yao, M Y; Bisti, F; Strocov, V N; Gawryluk, D; Pomjakushina, E; Conder, K; Plumb, N C; Radovic, M; Qian, T; Yazyev, O V; Mesot, J; Ding, H; Shi, M

    2017-03-10

    The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two nontrivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g., NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magnetotransport properties observed in TaAs, TaP, and NbP, where the Fermi arc states are similar.

  19. Vortices and quasiparticles near the superconductor-insulator transition in thin films.

    Science.gov (United States)

    Galitski, Victor M; Refael, G; Fisher, Matthew P A; Senthil, T

    2005-08-12

    We study the low temperature behavior of an amorphous superconducting film driven normal by a perpendicular magnetic-field (B). For this purpose we introduce a new two-fluid formulation consisting of fermionized field-induced vortices and electrically neutralized Bogoliubov quasiparticles (spinons) interacting via a long-ranged statistical interaction. This approach allows us to access a novel non-Fermi-liquid phase, which naturally interpolates between the low B superconductor and the high B normal metal. We discuss the properties of the resulting "vortex metal" phase.

  20. Security enhancement of the phase-shifting interferometry-based cryptosystem by independent random phase modulation in each exposure

    Science.gov (United States)

    Liao, Meihua; He, Wenqi; Lu, Dajiang; Wu, Jiachen; Peng, Xiang

    2017-02-01

    The traditional phase-shifting interferometry (PSI)-based cryptosystem is one of the most classical optical cryptosystems. It employs the Mach-Zahnder interferometer to record the intensity distributions to partly overcome the inconvenience while storing the complex-valued ciphertext in some other optical cryptosystems (e.g., double random phase encoding technique). However, it has been proven to be vulnerable to chosen-plaintext attack and known-plaintext attack. In this manuscript, we propose an alternative method to enhance the security strength of the traditional PSI-based cryptosystem. By substituting the fixed random phase mask (RPM) and the phase retarder in the reference arm with four independent and different RPMs (served as secret keys) in four exposures, we can correspondingly capture four intensity-only patterns (regarded as ciphertexts). Theoretical analysis, especially with respect to security characteristics, as well as the numerical simulations are presented to verify the feasibility and reliability of the proposed cryptosystem.

  1. Simulation of heterogeneous two-phase media using random fields and level sets

    Institute of Scientific and Technical Information of China (English)

    George STEFANOU[1,2

    2015-01-01

    The accurate and efficient simulation of random heterogeneous media is important in the framework of modeling and design of complex materials across multiple length scales. It is usually assumed that the morphology of a random microstructure can be described as a non-Gaussian random field that is completely defined by its multivariate distribution. A particular kind of non-Gaussian random fields with great practical importance is that of translation fields resulting from a simple memory-less transformation of an underlying Gaussian field with known second-order statistics. This paper provides a critical examination of existing random field models of heterogeneous two-phase media with emphasis on level-cut random fields which are a special case of translation fields. The case of random level sets, often used to represent the geometry of physical systems, is also examined. Two numerical examples are provided to illustrate the basic features of the different approaches.

  2. A Randomized Double-Blind Crossover Study of Phase-Shift Sound Therapy for Tinnitus

    NARCIS (Netherlands)

    Heijneman, Karin M.; de Kleine, Emile; van Dijk, Pim

    2012-01-01

    Objective. The purpose of this study was to compare the efficacy of the treatment of tinnitus with a phase-shifting pure tone to that of the same tone treatment without phase shifting. Study Design. A double-blind crossover randomized controlled trial. Setting. This study was conducted at the Univer

  3. Signal analysis and processing for random binary phase coded pulse radar

    Institute of Scientific and Technical Information of China (English)

    孙光民; 刘国岁; 顾红

    2004-01-01

    The application of the random binary phase coded signal in the CW radar system has been limited by the difficulty to isolate the tranmission and reception signal. In order to make use of the random binary phase coded signal, the random binary phase coded pulse radar (RBPC-PR) system has been studied. First, the average ambiguity function (AAF) of the RBPC-PR signal has been analyzed. Then, a statistical method of reducing the range sidelobe (RSL) is presented. Finally, a signal processing scheme of the RBPC-PR is developed. The simulation results show that by using the scheme, the jamming immunity of the system, the resolution and accuracy of distance and velocity have been improved, and the distance and velocity vagueness caused by periods can also be removed. The RSL can be reduced over 30dB by the statistical average method, thus the probability ambiguity caused by random noise can be avoided.

  4. Image encryption using the Gyrator transform and random phase masks generated by using chaos

    Science.gov (United States)

    Vilardy, Juan M.; Jimenez, Carlos J.; Perez, Ronal

    2017-06-01

    The Gyrator transform (GT), chaotic random phase masks (CRPMs) and a random permutation of the Jigsaw transform (JT) are utilized to design an images encryption-decryption system. The encryption-decryption system is based on the double random phase encoding (DRPE) in the Gyrator domain (GD), this technique uses two random phase masks (RPMs) to encode the image to encrypt (original image) into a random noise. The RPMs are generated by using chaos, these masks are CRPMs. The parameters of the chaotic function have the control of the generation of the CRPMs. We apply a random permutation to the resulting image of the DRPE technique, with the purpose of obtaining an encrypted image with a higher randomness. In order to successfully retrieve the original image (without errors or noise-free) at the output of the decryption system is necessary to have all the proper keys, which are: the rotation angles of the GTs, the parameters of the chaotic function utilized to generate the two CRPMs and the random permutation of the JT. We check and analyze the validity of the image encryption and decryption systems by means of computing simulations.

  5. Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope

    Institute of Scientific and Technical Information of China (English)

    Jian Mi; Chunxi Zhang; Zheng Li; Zhanjun Wu

    2006-01-01

    @@ Taking account of shot noise, thermal noise, dark current noise, and intensity noise that come from broad band light source, the dependence of the random walk coefficient of fiber optic gyroscope (FOG) on bias phase and light power is studied theoretically and experimentally. It is shown that with different optical and electronic parameters, the optimal bias phase is different and should be adjusted accordingly to improve the FOG precision. By choosing appropriate bias phase, the random walk coefficient of the aim FOG is reduced from 0.0026 to 0.0019 deg./h1/2.

  6. Experimental study on optical image encryption with asymmetric double random phase and computer-generated hologram.

    Science.gov (United States)

    Xi, Sixing; Wang, Xiaolei; Song, Lipei; Zhu, Zhuqing; Zhu, Bowen; Huang, Shuai; Yu, Nana; Wang, Huaying

    2017-04-03

    Optical image encryption, especially double-random-phase-based, is of great interest in information security. In this work, we experimentally demonstrate the security and feasibility of optical image encryption with asymmetric double random phase and computer-generated hologram (CGH) by using spatial light modulator. First of all, the encrypted image modulated by asymmetric double random phase is numerically encoded into real-value CGH. Then, the encoded real-value CGH is loaded on the spatial light modulator and optically decrypted in self-designed experimental system. Experimental decryption results are in agreement with numerical calculations under the prober/mistaken phase keys condition. This optical decryption technology opens a window of optical encryption practical application and shows great potential for digital multimedia product copyright protection and holographic false trademark.

  7. A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps

    Science.gov (United States)

    Bhat, Gopalakrishna K.

    1994-10-01

    A fringe analysis technique, which makes use of the spatial filtering property of the Fourier transform method, for the elimination of random impulsive noise in the wrapped phase maps obtained using the phase stepping technique, is presented. Phase noise is converted into intensity noise by transforming the wrapped phase map into a continuous fringe pattern inside the digital image processor. Fourier transform method is employed to filter out the intensity noise and recover the clean wrapped phase map. Computer generated carrier fringes are used to preserve the sign information. This technique makes the two dimensional phase unwrapping process less involved, because it eliminates the local phase fluctuations, which act as pseudo 2π discontinuities. The technique is applied for the elimination of noise in a phase map obtained using electro-optic holography.

  8. Masking property of quantum random cipher with phase mask encryption

    Science.gov (United States)

    Sohma, Masaki; Hirota, Osamu

    2014-10-01

    The security analysis of physical encryption protocol based on coherent pulse position modulation (CPPM) originated by Yuen is one of the most interesting topics in the study of cryptosystem with a security level beyond the Shannon limit. Although the implementation of CPPM scheme has certain difficulty, several methods have been proposed recently. This paper deals with the CPPM encryption in terms of symplectic transformation, which includes a phase mask encryption as a special example, and formulates a unified security analysis for such encryption schemes. Specifically, we give a lower bound of Eve's symbol error probability using reliability function theory to ensure that our proposed system exceeds the Shannon limit. Then we assume the secret key is given to Eve after her heterodyne measurement. Since this assumption means that Eve has a great advantage in the sense of the conventional cryptography, the lower bound of her error indeed ensures the security level beyond the Shannon limit. In addition, we show some numerical examples of the security performance.

  9. Recombination and propagation of quasiparticles in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gedik, Nuh [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    Rapid developments in time-resolved optical spectroscopy have led to renewed interest in the nonequilibrium state of superconductors and other highly correlated electron materials. In these experiments, the nonequilibrium state is prepared by the absorption of short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the density and energy distribution of quasiparticles. The evolution of the nonequilibrium state is probed by time resolving the changes in the optical response functions of the medium that take place after photoexcitation. Ultimately, the goal of such experiments is to understand not only the nonequilibrium state, but to shed light on the still poorly understood equilibrium properties of these materials. We report nonequilibrium experiments that have revealed aspects of the cup rates that have been inaccessible by other techniques. Namely, the diffusion and recombination coefficients of quasiparticles have been measured in both YBa2Cu3O6.5 and Bi2Sr2CaCu2O8+x using time-resolved optical spectroscopy. Dependence of these measurements on doping, temperature and laser intensity is also obtained. To study the recombination of quasiparticles, we measure the change in reflectivity ΔR which is directly proportional to the nonequilibrium quasiparticle density created by the laser. From the intensity dependence, we estimate β, the inelastic scattering coefficient and γth thermal equilibrium quasiparticle decay rate. We also present the dependence of recombination measurements on doping in Bi2Sr2CaCu2O8+x. Going from underdoped to overdoped regime, the sign of ΔR changes from positive to negative right at the optimal doping. This is accompanied by a change in dynamics. The decay of ΔR stops being intensity dependent exactly at the optimal doping. We provide possible interpretations of these two

  10. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used...... in an iterative phase retrieval algorithm based on a wave-propagation equation. The technique offers a whole-field and high-resolution wavefront reconstruction of unstained microstructures. Phase maps of photoresist targets and human cheek cells are obtained to demonstrate the effectiveness of our method. (C......) 2010 Optical Society of America...

  11. Destruction of first-order phase transition in a random-field Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Crokidakis, Nuno; Nobre, Fernando D [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ (Brazil)], E-mail: nuno@if.uff.br, E-mail: fdnobre@cbpf.br

    2008-04-09

    The phase transitions that occur in an infinite-range-interaction Ising ferromagnet in the presence of a double Gaussian random magnetic field are analyzed. Such random fields are defined as a superposition of two Gaussian distributions, presenting the same width {sigma}. It is argued that this distribution is more appropriate for a theoretical description of real systems than other simpler cases, i.e. the bimodal ({sigma} = 0) and single Gaussian distributions. It is shown that a low-temperature first-order phase transition may be destroyed for increasing values of {sigma}, similarly to what happens in the compound Fe{sub x}Mg{sub 1-x}Cl{sub 2}, whose finite-temperature first-order phase transition is presumably destroyed by an increase in the field randomness.

  12. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used in an iter...

  13. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Lopez-Aguilar, F. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain (ES)); Balle, S. (Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain (ES)); Salvador, R. (Control Data Corporation, TALLAHASSEE, FL (USA) Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 (USA))

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  14. The random phase property and the Lyapunov spectrum for disordered multi-channel systems

    CERN Document Server

    Roemer, Rudolf A

    2009-01-01

    A random phase property establishing a link between quasi-one-dimensional random Schroedinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the full hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-And...

  15. Systematic distillation of composite Fibonacci anyons using one mobile quasiparticle

    CERN Document Server

    Reichardt, Ben W

    2012-01-01

    A topological quantum computer should allow intrinsically fault-tolerant quantum computation, but there remains uncertainty about how such a computer can be implemented. It is known that topological quantum computation can be implemented with limited quasiparticle braiding capabilities, in fact using only a single mobile quasiparticle, if the system can be properly initialized by measurements. It is also known that measurements alone suffice without any braiding, provided that the measurement devices can be dynamically created and modified. We study a model in which both measurement and braiding capabilities are limited. Given the ability to pull nontrivial Fibonacci anyon pairs from the vacuum with a certain success probability, we show how to simulate universal quantum computation by braiding one quasiparticle and with only one measurement, to read out the result. The difficulty lies in initializing the system. We give a systematic construction of a family of braid sequences that initialize to arbitrary acc...

  16. Random exchange interaction effects on the phase transitions in frustrated classical Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Li, W. C.; Song, X.; Feng, J. J.; Zeng, M.; Gao, X. S.; Qin, M. H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Jia, X. T. [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2015-07-07

    In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors.

  17. Asymptotic key generation rates with phase-randomized coherent light by decoy method

    CERN Document Server

    Hayashi, M

    2007-01-01

    The asymptotic key generation (AKG) rates of quantum key distribution (QKD) with the decoy method are discussed in both the forward error correction and the reverse error correction cases when the QKD system is equipped with phase-randomized coherent light with arbitrary number of intensities. For this purpose, we derive a useful convex expansion of the phase-randomized coherent state. We also derive upper bounds of AKG rates on a natural and concrete channel model. Using these upper bounds, we numerically check that the AKG rates are almost saturated when the number of intensities is three.

  18. Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in a Random Field

    Institute of Scientific and Technical Information of China (English)

    LIANG Ya-Qiu; WEI Guo-Zhu; SONG Li-Li; SONG Guo-Li; ZANG Shu-Liang

    2004-01-01

    The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.

  19. Extended quasiparticle approximation for relativistic electrons in plasmas

    Directory of Open Access Journals (Sweden)

    V.G.Morozov

    2006-01-01

    Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.

  20. Phase Diagrams and Tricritical Behaviour of the Spin-2 Ising Model in a Longitudinal Random Field

    Institute of Scientific and Technical Information of China (English)

    LIANG Ya-Qiu; WEI Guo-Zhu; ZHANG Qi; SONG Guo-Li

    2004-01-01

    @@ Within the framework of the effective-field theory with correlations, we study the ferromagnetic spin-2 randomfield Ising model (RFIM) in the presence of a crystal field on honeycomb (z = 3), square (z = 4) and simple cubic (z = 6) lattices. The effects of the crystal field and the longitudinal random field on the phase diagrams are investigated. Some characteristic features of the phase diagrams, such as the tricritical phenomena, reentrant phenomena and existence of two tricritical points, are found.

  1. Security enhancement of double-random phase encryption by iterative algorithm

    Science.gov (United States)

    Qian, Sheng-Xia; Li, Yongnan; Kong, Ling-Jun; Li, Si-Min; Ren, Zhi-Cheng; Tu, Chenghou; Wang, Hui-Tian

    2014-08-01

    We propose an approach to enhance the security of optical encryption based on double-random phase encryption in a 4f system. The phase key in the input plane of the 4f system is generated by the Yang-Gu algorithm to control the phase of the encrypted information in the output plane of the 4f system, until the phase in the output plane converges to a predesigned distribution. Only the amplitude of the encrypted information must be recorded as a ciphertext. The information, which needs to be transmitted, is greatly reduced. We can decrypt the ciphertext with the aid of the predesigned phase distribution and the phase key in the Fourier plane. Our approach can resist various attacks.

  2. Single-random phase encoding architecture using a focus tunable lens

    Science.gov (United States)

    Mosso, E. F.; Bolognini, N.; Pérez, D. G.

    2016-02-01

    We propose a new nonlinear optical architecture based on a focus tunable lens and an iterative phase retrieval algorithm. It constitutes a compact encryption system that uses a single-random phase key to simultaneously encrypt (decrypt) amplitude and phase data. Summarily, the information encoded in a transmittance object (phase and amplitude) is randomly modulated by a diffuser when a laser beam illuminates it; once the beam reaches a focus tunable lens, different subjective speckle distributions are registered at some image plane as the focal length is tuned to different values. This set of speckle patterns constitutes a delocalized ciphertext, which is used in an iterative phase retrieval algorithm to reconstruct a complex ciphertext. The original data are decrypted propagating this ciphertext through a virtual optical system. In this system, amplitude data are straightforwardly decrypted while phase data can only be restored if the random modulation produced in the encryption process is compensated. Thus, an encryption-decryption process and authentication protocol can simultaneously be performed. We validate the feasibility of our proposal with simulated and experimental results.

  3. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.

    Science.gov (United States)

    Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  4. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    Science.gov (United States)

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.

    2016-04-01

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  5. Thermodynamics and higher order moments in SU(3) linear σ-model with gluonic quasiparticles

    Science.gov (United States)

    Nasser Tawfik, Abdel; Magdy, Niseem

    2015-01-01

    In the framework of the linear σ-model (LSM) with three quark flavors, the chiral phase diagram at finite temperature and density is investigated. For temperatures higher than the critical temperature ({{T}c}), we added to the LSM the gluonic sector from the quasi-particle model (QPM), which assumes that the interacting gluons in the strongly interacting matter, the quark-gluon plasma (QGP), are phenomenologically the same as non-interacting massive quasi-particles. The dependence of the chiral condensates of strange and non-strange quarks on the temperature and chemical potential is analyzed. Then, we calculate the thermodynamics in the new approach (using a combination of the LSM and the QPM). Confronting the results with those from recent lattice quantum chromodynamics simulations reveals an excellent agreement for almost all thermodynamic quantities. The dependences of the first-order and second-order moments of the particle multiplicity on the chemical potential at fixed temperature are studied. These investigations are implemented through characterizing the large fluctuations accompanying the chiral phase transition. The results for the first-order and second-order moments are compared with those from the SU(3) Polyakov linear σ-model (PLSM). Also, the resulting phase diagrams deduced in the PLSM and the LSM+QPM are compared with each other.

  6. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Nie, You-Qi; Liu, Yang; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Leilei; Payne, Frank [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2015-06-15

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.

  7. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations

    Science.gov (United States)

    Nie, You-Qi; Huang, Leilei; Liu, Yang; Payne, Frank; Zhang, Jun; Pan, Jian-Wei

    2015-06-01

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.

  8. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    Science.gov (United States)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  9. Phase Transitions for the Cavity Approach to the Clique Problem on Random Graphs

    Science.gov (United States)

    Gaudillière, Alexandre; Scoppola, Benedetto; Scoppola, Elisabetta; Viale, Massimiliano

    2011-12-01

    We give a rigorous proof of two phase transitions for a disordered statistical mechanics system used to define an algorithm to find large cliques inside Erdös random graphs. Such a system is a conservative probabilistic cellular automaton inspired by the cavity method originally introduced in spin glass theory.

  10. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  11. Fractional Fourier transform-based optical encryption with treble random phase-encoding

    Science.gov (United States)

    Xin, Yi; Tao, Ran; Wang, Yue

    2008-03-01

    We propose a new architecture of optical encryption technique using the fractional Fourier transform with three statistically independent random phase masks. Compared with the existing double-phase encoding method in the fractional Fourier-domain, the proposed extra phase mask in the last fractional Fourier domain makes the architecture symmetrical, and additive processing to the encrypted image can be turned into complex stationary white noise after decryption, and enlarge the key space without any degradation of its robustness to blind decryption. This property can be utilized to improve the quality of the recover image. Simulation results have verified the validity.

  12. Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    NARCIS (Netherlands)

    De Visser, P.J.; Baselmans, J.J.A.; Yates, S.J.C.; Diener, P.; Endo, A.; Klapwijk, T.M.

    2012-01-01

    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μm−3 with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to

  13. Doping-dependent quasiparticle band structure in cuprate superconductors

    NARCIS (Netherlands)

    Eder, R; Ohta, Y.; Sawatzky, G.A

    1997-01-01

    We present an exact diagonalization study of the single-particle spectral function in the so-called t-t'-t ''-J model in two dimensions. As a key result, we find that hole doping leads to a major reconstruction of the quasiparticle band structure near (pi,0): whereas for the undoped system the quasi

  14. Transport signatures of quasiparticle poisoning in a Majorana island

    DEFF Research Database (Denmark)

    Albrecht, S. M.; Hansen, E. B.; Higginbotham, A. P.

    2017-01-01

    We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state...

  15. Temperature dependence of bag pressure from quasiparticle model

    Science.gov (United States)

    Prasad, N.; Singh, C. P.

    2001-03-01

    A quasiparticle model with effective thermal gluon and quark masses is used to derive a temperature /T- and baryon chemical potential /μ-dependent bag constant /B(μ,T). Consequences of such a bag constant are obtained on the equation of state (EOS) for a deconfined quark-gluon plasma (QGP).

  16. Are Quasiparticles and Phonons Identical in Bose-Einstein Condensates?

    Science.gov (United States)

    Tsutsui, Kazumasa; Kato, Yusuke; Kita, Takafumi

    2016-12-01

    We study an interacting spinless Bose-Einstein condensate to clarify theoretically whether the spectra of its quasiparticles (one-particle excitations) and collective modes (two-particle excitations) are identical, as concluded by Gavoret and Nozières [http://doi.org/10.1016/0003-4916(64)90200-3" xlink:type="simple">Ann. Phys. (N.Y.) 28, 349 (1964)]. We derive analytic expressions for their first and second moments so as to extend the Bijl-Feynman formula for the peak of the collective-mode spectrum to its width (inverse lifetime) and also to the one-particle channel. The obtained formulas indicate that the width of the collective-mode spectrum manifestly vanishes in the long-wavelength limit, whereas that of the quasiparticle spectrum apparently remains finite. We also evaluate the peaks and widths of the two spectra numerically for a model interaction potential in terms of the Jastrow wave function optimized by a variational method. It is thereby found that the width of the quasiparticle spectrum increases towards a constant as the wavenumber decreases. This marked difference in the spectral widths implies that the two spectra are distinct. In particular, the lifetime of the quasiparticles remains finite even in the long-wavelength limit.

  17. Quasiparticle operators with non-abelian braiding statistics

    CERN Document Server

    Cabra, D C; Rossini, G L; Cabra, Daniel C.; Moreno, Enrique F.; Rossini, Gerardo L.

    1998-01-01

    We study the gauge invariant fermions in the fermion coset representation of $SU(N)_k$ Wess-Zumino-Witten models which create, by construction, the physical excitations (quasiparticles) of the theory. We show that they provide an explicit holomorphic factorization of $SU(N)_k$ WZW primaries and satisfy non-abelian braiding relations.

  18. Lightwave-driven quasiparticle collisions on a subcycle timescale.

    Science.gov (United States)

    Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R

    2016-05-12

    Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

  19. Quasiparticle Dynamics and Exponential Protection in Majorana Islands

    DEFF Research Database (Denmark)

    Albrecht, Sven Marian

    Majorana modes. A preliminary analysis shows that Coulomb peaks also feature an alternating magnetic field dependent skew, the subject of future work. We additionally observe novel transport signatures of quasiparticle poisoning in a Majorana island strongly coupled to normal metal leads. Numerical...

  20. Hacking on decoy-state quantum key distribution system with partial phase randomization

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  1. Choice of optical system is critical for the security of double random phase encryption systems

    Science.gov (United States)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Cassidy, Derek; Zhao, Liang; Ryle, James P.; Healy, John J.; Sheridan, John T.

    2017-06-01

    The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.

  2. Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness

    Science.gov (United States)

    Güven, Can; Hinczewski, Michael; Berker, A. Nihat

    2011-03-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.

  3. Tensor renormalization group: local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness.

    Science.gov (United States)

    Güven, Can; Hinczewski, Michael; Berker, A Nihat

    2010-11-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.

  4. An ultrafast quantum random number generator based on quantum phase fluctuations

    CERN Document Server

    Xu, Feihu; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong

    2012-01-01

    A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we propose and experimentally demonstrate an ultrafast QRNG at a rate over 6 Gb/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with post-processing. We quantify the quantum randomness through min-entropy by modeling our system, and employ two extractors, Trevisan's extractor and Toeplitz-hashing, to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.

  5. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions

    Science.gov (United States)

    Ohtsuki, Tomi; Ohtsuki, Tomoki

    2017-04-01

    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  6. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet.

    Science.gov (United States)

    Hong, Tao; Qiu, Y; Matsumoto, M; Tennant, D A; Coester, K; Schmidt, K P; Awwadi, F F; Turnbull, M M; Agrawal, H; Chernyshev, A L

    2017-05-05

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

  7. A phase 3 randomized trial comparing inolimomab vs usual care in steroid-resistant acute GVHD.

    Science.gov (United States)

    Socié, Gérard; Vigouroux, Stéphane; Yakoub-Agha, Ibrahim; Bay, Jacques-Olivier; Fürst, Sabine; Bilger, Karin; Suarez, Felipe; Michallet, Mauricette; Bron, Dominique; Gard, Philippe; Medeghri, Zakaria; Lehert, Philippe; Lai, Chinglin; Corn, Tim; Vernant, Jean-Paul

    2017-02-02

    Treatment of steroid-resistant acute graft-versus-host disease (GVHD) remains an unmet clinical need. Inolimomab, a monoclonal antibody to CD25, has shown encouraging results in phase 2 trials. This phase 3 randomized, open-label, multicenter trial compared inolimomab vs usual care in adult patients with steroid-refractory acute GVHD. Patients were randomly selected to receive treatment with inolimomab or usual care (the control group was treated with antithymocyte globulin [ATG]). The primary objective was to evaluate overall survival at 1 year without changing baseline allocated therapy. A total of 100 patients were randomly placed: 49 patients in the inolimomab arm and 51 patients in the ATG arm. The primary criteria were reached by 14 patients (28.5%) in the inolimomab and 11 patients (21.5%) in the ATG arms, with a hazard ratio of 0.874 (P = .28). With a minimum follow-up of 1 year, 26 (53%) and 31 (60%) patients died in the inolimomab and ATG arms, respectively. Adverse events were similar in the 2 arms, with fewer viral infections in the inolimomab arm compared with the ATG arm. The primary end point of this randomized phase 3 trial was not achieved. The lack of a statistically significant effect confirms the need for development of more effective treatments for acute GVHD. This trial is registered to https://www.clinicaltrialsregister.eu/ctr-search/search as EUDRACT 2007-005009-24.

  8. Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate

    CERN Document Server

    Stivala, Salvatore; Pasquazi, Alessia; Oliveri, Roberto L; Morandotti, Roberto; Assanto, Gaetano; 10.1364/OL.35.000363

    2012-01-01

    We observe second harmonic generation via random quasi-phase-matching in a 2.0 \\mu m periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.

  9. The two-body random spin ensemble and a new type of quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Pizorn, Iztok; Prosen, Tomaz [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Mossmann, Stefan; Seligman, Thomas H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, CP 62132 Cuernavaca, Morelos (Mexico)], E-mail: tomaz.prosen@fmf.uni-lj.si

    2008-02-15

    We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.

  10. The two-body random spin ensemble and a new type of quantum phase transition

    Science.gov (United States)

    Pižorn, Iztok; Prosen, Tomaž; Mossmann, Stefan; Seligman, Thomas H.

    2008-02-01

    We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.

  11. Thermodynamics and higher order moments in SU(3) linear $\\sigma$-model with gluonic quasi-particles

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    In framework of linear $\\sigma$-model (LSM) with three quark flavors, the chiral phase-diagram at finite temperature and density is investigated. At temperatures higher than the critical temperature ($ T_c $), we added to LSM the gluonic sector from the quasi-particle model (QPM), which assumes that the interacting gluons in the strongly interacting matter, the quark-gluon plasma (QGP), are phenomenologically the same as non-interacting massive quasi-particles. The dependence of the chiral condensates of strange and non-strange quarks on temperature and chemical potential is analysed. Then, we have calculated the thermodynamics in the new approach (combination of LSM and QPM). Confronting the results with recent lattice QCD simulations shows an excellent agreement in almost all thermodynamic quantities. The first and second order moments of particle multiplicity are studied in dependence on the chemical potential but at fixed temperature and on the chemical potential but at fixed temperature. These are implem...

  12. Si1Sb2Te3 phase change material for chalcogenide random access memory

    Institute of Scientific and Technical Information of China (English)

    Zhang Ting; Song Zhi-Tang; Liu Bo; Liu Wei-Li; Feng Song-Lin; Chen Bomy

    2007-01-01

    This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory.Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase.The film holds a threshold current about 0.155 mA,which is smaller than the value 0.31 mA of Ge2Sb2Te5 film.Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at~180°C and changes to hexagonal structure at~270°C.Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method.Data retention of the films was characterized as well.

  13. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Science.gov (United States)

    Jin, Bo; Kim, Jungsik; Pi, Dong-Hai; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-12-01

    Phase change random access memory (PCRAM) devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM) and the encapsulating layer material (YELM) according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM) while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  14. The phase diagram of random Boolean networks with nested canalizing functions

    CERN Document Server

    Peixoto, Tiago P

    2010-01-01

    We obtain the phase diagram of random Boolean networks with nested canalizing functions. Using the annealed approximation, we obtain the evolution of the number $b_t$ of nodes with value one, and the network sensitivity $\\lambda$, and we compare with numerical simulations of quenched networks. We find that, contrary to what was reported by Kauffman et al. [Proc. Natl. Acad. Sci. 2004 101 49 17102-7], these networks have a rich phase diagram, were both the "chaotic" and frozen phases are present, as well as an oscillatory regime of the value of $b_t$. We argue that the presence of only the frozen phase in the work of Kauffman et al. was due simply to the specific parametrization used, and is not an inherent feature of this class of functions. However, these networks are significantly more stable than the variants where all possible Boolean functions are allowed.

  15. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-12-01

    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  16. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    Science.gov (United States)

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  17. Phase diagram and criticality of the random anisotropy model in the large-N limit

    Science.gov (United States)

    Mouhanna, Dominique; Tarjus, Gilles

    2016-12-01

    We revisit the thermodynamic behavior of the random-anisotropy O(N ) model by investigating its large-N limit. We focus on the system at zero temperature where the mean-field-like artifacts of the large-N limit are less severe. We analyze the connection between the description in terms of self-consistent Schwinger-Dyson equations and the functional renormalization group. We provide a unified description of the phase diagram and critical behavior of the model and clarify the nature of the possible "glassy" phases. Finally we discuss the implications of our findings for the finite-N and finite-temperature systems.

  18. Information hiding based on double random-phase encoding and public-key cryptography.

    Science.gov (United States)

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li

    2009-03-01

    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  19. Security authentication with a three-dimensional optical phase code using random forest classifier: an overview

    Science.gov (United States)

    Markman, Adam; Carnicer, Artur; Javidi, Bahram

    2017-05-01

    We overview our recent work [1] on utilizing three-dimensional (3D) optical phase codes for object authentication using the random forest classifier. A simple 3D optical phase code (OPC) is generated by combining multiple diffusers and glass slides. This tag is then placed on a quick-response (QR) code, which is a barcode capable of storing information and can be scanned under non-uniform illumination conditions, rotation, and slight degradation. A coherent light source illuminates the OPC and the transmitted light is captured by a CCD to record the unique signature. Feature extraction on the signature is performed and inputted into a pre-trained random-forest classifier for authentication.

  20. Impulse attack-free four random phase mask encryption based on a 4-f optical system.

    Science.gov (United States)

    Kumar, Pramod; Joseph, Joby; Singh, Kehar

    2009-04-20

    Optical encryption methods based on double random phase encryption (DRPE) have been shown to be vulnerable to different types of attacks. The Fourier plane random phase mask (RPM), which is the most important key, can be cracked with a single impulse function attack. Such an attack is viable because the Fourier transform of a delta function is a unity function. Formation of a unity function can be avoided if RPMs are placed in front of both lenses in a 4-f optical setup, thereby protecting the DRPE from an impulse attack. We have performed numerical simulations to verify the proposed scheme. Resistance of this scheme is checked against the brute force and the impulse function attacks. The experimental results validate the feasibility of the scheme.

  1. Simulation of single-photon state tomography using phase-randomized coherent states

    CERN Document Server

    Valente, P

    2016-01-01

    We have experimentally simulated the quantum state tomography of single-photon states of temporal modes of duration T and constant amplitude using phase randomized coherent states (PRCS). A stationary laser beam, whose phase relative to a local oscillator is varied at random, was used as a multiple realization of a PRCS of the temporal mode. The quadrature fluctuations histograms corresponding to the marginal distributions of the PRCS, were acquired with an oscilloscope using a sampling period T. Following a recent suggestion by Yuan et al \\cite{YUAN16}, we have derived estimates for the marginal distribution of the single-photon state. Based on these estimates, the approximate Wigner function and density matrix of the single-photon state were reconstructed with good precision. The sensitivity of the simulation to experimental errors and the number of PRCS used is addressed.

  2. Phase diagram of the classical Heisenberg model in a trimodal random field distribution

    Science.gov (United States)

    Santos-Filho, A.; Albuquerque, D. F. de; Santos-Filho, J. B.; Batista, T. S. Araujo

    2016-11-01

    The classical spin 1 / 2 Heisenberg model on a simple cubic lattice, with fluctuating bond interactions between nearest neighbors and in the presence of a random magnetic field, is investigated by effective field theory based on two-spin cluster. The random field is drawn from the asymmetric and anisotropic trimodal probability distribution. The fluctuating bond is extracted from the symmetric and anisotropic bimodal probability. We estimate the transition temperatures, and the phase diagram in the Tc- h, Tc- p and Tc - α planes. We observe that the temperature of the tricritical point decreases with the increase of disorder in exchange interactions until the system ceases to display tricritical behavior. The disorder of the interactions and reentrant phenomena depends on the trimodal distribution of the random field.

  3. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  4. Implementation of the direct evaluation of strains using a phase analysis code for random patterns

    CERN Document Server

    Molimard, Jérôme

    2011-01-01

    A new approach for decoding directly strains from surfaces encoded with random patterns has been developed and validated. It is based on phase analysis of small region of interest. Here we adapt to random patterns new concepts proposed by Badulescu (2009) on the grid method. First metrological results are encouraging: resolution is proportional to strain level, being 9% of the nominal value, for a spatial resolution of 9 pixels (ZOI 64 \\times 64 pixels2). Random noise has to be carefully controlled. A numerical example shows the relevance of the approach. Then, first application on a carbon fiber reinforced composite is developed. Fabric intertwining is studied using a tensile test. Over-strains are clearly visible, and results connect well with the previous studies

  5. Hartree-Fock and Random Phase Approximation theories in a many-fermion solvable model

    CERN Document Server

    Co', Giampaolo

    2016-01-01

    We present an ideal system of interacting fermions where the solutions of the many-body Schroedinger equation can be obtained without making approximations. These exact solutions are used to test the validity of two many-body effective approaches, the Hartree-Fock and the Random Phase Approximation theories. The description of the ground state done by the effective theories improves with increasing number of particles.

  6. Solutions of random-phase approximation equation for positive-semidefinite stability matrix

    CERN Document Server

    Nakada, H

    2016-01-01

    It is mathematically proven that, if the stability matrix $\\mathsf{S}$ is positive-semidefinite, solutions of the random-phase approximation (RPA) equation are all physical or belong to Nambu-Goldstone (NG) modes, and the NG-mode solutions may form Jordan blocks of $\\mathsf{N\\,S}$ ($\\mathsf{N}$ is the norm matrix) but their dimension is not more than two. This guarantees that the NG modes in the RPA can be separated out via canonically conjugate variables.

  7. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    Science.gov (United States)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  8. What makes a phase transition? Analysis of the random satisfiability problem

    CERN Document Server

    Zweig, K A; Vicsek, T; 10.1016/j.physa.2009.12.051

    2010-01-01

    In the last 30 years it was found that many combinatorial systems undergo phase transitions. One of the most important examples of these can be found among the random k-satisfiability problems (often referred to as k-SAT), asking whether there exists an assignment of Boolean values satisfying a Boolean formula composed of clauses with k random variables each. The random 3-SAT problem is reported to show various phase transitions at different critical values of the ratio of the number of clauses to the number of variables. The most famous of these occurs when the probability of finding a satisfiable instance suddenly drops from 1 to 0. This transition is associated with a rise in the hardness of the problem, but until now the correlation between any of the proposed phase transitions and the hardness is not totally clear. In this paper we will first show numerically that the number of solutions universally follows a lognormal distribution, thereby explaining the puzzling question of why the number of solutions ...

  9. Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach

    Science.gov (United States)

    Mezio, Alejandro; McKenzie, Ross H.

    2017-07-01

    We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility.

  10. Quasiparticle Gaps and Exciton Coulomb Energies in Si Nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Frey, K. [University of Illinois, Chicago; Idrobo Tapia, Juan C [ORNL; Tiago, Murilo L [ORNL; Reboredo, Fernando A [ORNL; Ogut, Serdar [University of Illinois, Chicago

    2009-01-01

    Quasiparticle gaps and exciton Coulomb energies of H-passivated spherical Si nanoshells are computed using rst principles SCF and GW methods. We nd that the quasiparticle gap of a nanoshell depends on both its inner radius R1 (weakly) and outer radius R2 (strongly). These dependences on R1 and R2 are mostly consistent with electrostatics of a metallic shell. We also nd that the unscreened Coulomb energy ECoul in Si nanoshells has a somewhat unexpected size dependence at xed outer radius R2: ECoul decreases as the nanoshell becomes more conning, contrary to what one would expect from quantum connement eects. We show that this is a consequence of an increase in the average electron-hole distance, giving rise to reduced exciton Coulomb energies in spite of the reduction in the conning nanoshell volume.

  11. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.

    Science.gov (United States)

    Holovko, M F; Patsahan, O; Patsahan, T

    2016-10-19

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  12. Vapour-liquid phase diagram for an ionic fluid in a random porous medium

    Science.gov (United States)

    Holovko, M. F.; Patsahan, O.; Patsahan, T.

    2016-10-01

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  13. Dirac-graphene quasiparticles in strong slow-light pulse

    Science.gov (United States)

    Golovinski, P. A.; Astapenko, V. A.; Yakovets, A. V.

    2017-02-01

    An analytical Volkov's solution of the massless Dirac equation for graphene in the field of slow-light pulse with arbitrary time dependence is obtained. Exact solutions are presented for special cases of monochromatic field and a single-cycle pulse. Following the Fock-Schwinger proper time method, the Green's function for quasiparticles is derived with the account of the influence an external classical electromagnetic wave field.

  14. Many-body localization phase transition: A simplified strong-randomness approximate renormalization group

    Science.gov (United States)

    Zhang, Liangsheng; Zhao, Bo; Devakul, Trithep; Huse, David A.

    2016-06-01

    We present a simplified strong-randomness renormalization group (RG) that captures some aspects of the many-body localization (MBL) phase transition in generic disordered one-dimensional systems. This RG can be formulated analytically and is mathematically equivalent to a domain coarsening model that has been previously solved. The critical fixed-point distribution and critical exponents (that satisfy the Chayes inequality) are thus obtained analytically or to numerical precision. This reproduces some, but not all, of the qualitative features of the MBL phase transition that are indicated by previous numerical work and approximate RG studies: our RG might serve as a "zeroth-order" approximation for future RG studies. One interesting feature that we highlight is that the rare Griffiths regions are fractal. For thermal Griffiths regions within the MBL phase, this feature might be qualitatively correctly captured by our RG. If this is correct beyond our approximations, then these Griffiths effects are stronger than has been previously assumed.

  15. Lightwave-driven quasiparticle collisions on a subcycle timescale

    Science.gov (United States)

    Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-05-01

    Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

  16. Topological strings linking with quasiparticle exchange in superconducting Dirac semimetals

    Science.gov (United States)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2017-06-01

    We demonstrate a topological classification of vortices in three-dimensional time-reversal invariant topological superconductors based on superconducting Dirac semimetals with an s -wave superconducting order parameter by means of a pair of numbers (NΦ,N ) , accounting how many units NΦ of magnetic fluxes h c /4 e and how many N chiral Majorana modes the vortex carries. From these quantities, we introduce a topological invariant, which further classifies the properties of such vortices under linking processes. While such processes are known to be related to instanton processes in a field theoretic description, we demonstrate here that they are, in fact, also equivalent to the fractional Josephson effect on junctions based at the edges of quantum spin Hall systems. This allows one to consider microscopically the effects of interactions in the linking problem. We therefore demonstrate that associated to links between vortices, one has the exchange of quasiparticles, either Majorana zero modes, or e /2 quasiparticles, which allows for a topological classification of vortices in these systems, seen to be Z8 classified. While NΦ and N are shown to be both even or odd in the weakly interacting limit, in the strongly interacting scenario one loosens this constraint. In this case, one may have further fractionalization possibilities for the vortices, whose excitations are described by SO(3) 3 -like conformal field theories with quasiparticle exchanges of more exotic types.

  17. Coulomb and spin-orbit interactions in random phase approximation calculations

    CERN Document Server

    De Donno, V; Anguiano, M; Lallena, A M

    2013-01-01

    We present a fully self-consistent computational framework composed by Hartree-Fock plus ran- dom phase approximation where the spin-orbit and Coulomb terms of the interaction are included in both steps of the calculations. We study the effects of these terms of the interaction on the random phase approximation calculations, where they are usually neglected. We carry out our investigation of excited states in spherical nuclei of oxygen, calcium, nickel, zirconium, tin and lead isotope chains. We use finite-range effective nucleon-nucleon interactions of Gogny type. The size of the effects we find is, usually, of few hundreds of keV. There are not simple approximations which can be used to simulate these effects since they strongly depend on all the variables related to the excited states, angular momentum, parity, excitation energy, isoscalar and isovector characters. Even the Slater approximation developed to account for the Coulomb exchange terms in Hartree-Fock is not valid in random phase approximation ca...

  18. Chaos Control for Coupling of the Double-Well Duffing System Based on Random Phase Disturbance

    Science.gov (United States)

    Wu, Gang; Li, Longsuo; Cong, Xinrong

    2013-06-01

    Non-feedback methods of chaos control are suited for practical applications. For possible practical applications of the control methods, the robustness of the methods in the presence of noise is of special interest. The noise can be in the form of external disturbances to the system or in the form of uncertainties due to inexact model of the system. This paper deals with the effect of random phase disturbance for a class of coupling of the Double-Well Duffing system in the presence of the noise. Lyapunov index is an important indicator to describe chaos. When the sign of the top Lyapunov exponent is positive, the system is chaotic. We compute top Lyapunov exponent by the Khasminskii's transform formula of spherical coordinate and extension of Wedig's algorithm based on linear stochastic system. With the change of the average of top Lyapunov exponent sign, we show that random phase can suppress chaos. Finally Poincaré map and phase portraits analysis are studied to confirm the obtained results.

  19. Phase Behavior and Percolation Properties of the Patchy Colloidal Fluids in the Random Porous Media.

    Science.gov (United States)

    Kalyuzhnyi, Y V; Holovko, M; Patsahan, T; Cummings, P T

    2014-12-18

    The lack of a simple analytical description of the hard-sphere fluid in a matrix with hard-core obstacles is limiting progress in the development of thermodynamic perturbation theories for the fluid in random porous media. We propose a simple and highly accurate analytical scheme, which allows us to calculate thermodynamic and percolation properties of a network-forming fluid confined in the random porous media, represented by the hard-sphere fluid and overlapping hard-sphere matrices, respectively. Our scheme is based on the combination of scaled-particle theory, Wertheim's thermodynamic perturbation theory for associating fluids and extension of the Flory-Stockmayer theory for percolation. The liquid-gas phase diagram and percolation threshold line for several versions of the patchy colloidal fluid model confined in a random porous media are calculated and discussed. The method presented enables calculation of the thermodynamic and percolation properties of a large variety of polymerizing and network-forming fluids confined in random porous media.

  20. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    Science.gov (United States)

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.

  1. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    Science.gov (United States)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  2. Expeditious Stochastic Calculation of Random-Phase Approximation Energies for Thousands of Electrons in Three Dimensions.

    Science.gov (United States)

    Neuhauser, Daniel; Rabani, Eran; Baer, Roi

    2013-04-04

    A fast method is developed for calculating the random phase approximation (RPA) correlation energy for density functional theory. The correlation energy is given by a trace over a projected RPA response matrix, and the trace is taken by a stochastic approach using random perturbation vectors. For a fixed statistical error in the total energy per electron, the method scales, at most, quadratically with the system size; however, in practice, due to self-averaging, it requires less statistical sampling as the system grows, and the performance is close to linear scaling. We demonstrate the method by calculating the RPA correlation energy for cadmium selenide and silicon nanocrystals with over 1500 electrons. We find that the RPA correlation energies per electron are largely independent of the nanocrystal size. In addition, we show that a correlated sampling technique enables calculation of the energy difference between two slightly distorted configurations with scaling and a statistical error similar to that of the total energy per electron.

  3. The chiral phase transition in a random matrix model with molecular correlations

    CERN Document Server

    Wettig, T; Weidenmüller, H A; Wettig, Tilo

    1995-01-01

    The chiral phase transition of QCD is analyzed in a model combining random matrix elements of the Dirac operator with specially chosen non-random ones. The special form of the latter is motivated by the assumption that the fermionic quasi-zero modes associated with instanton and anti-instanton configurations determine the chiral properties of QCD. Our results show that the degree of correlation between these modes plays the decisive role. To reduce the value of the chiral condensate by more than a factor of 2 about 95 percent of the instantons and anti-instantons must form so-called molecules. This conclusion agrees with numerical results of the Stony Brook group.

  4. Spin polarization dependence of quasiparticle properties in graphene

    OpenAIRE

    Qaiumzadeh, Alireza; Jahanbani, Kh.; Asgari, Reza

    2012-01-01

    We address spin polarization dependence of graphene's Fermi liquid properties quantitatively using a microscopic Random Phase Approximation theory in an interacting spin-polarized Dirac electron system. We show an enhancement of the minority-spin many-body velocity renormalization at fully spin polarization due to reduction in the electron density and consequently increase in the interaction between electrons near the Fermi surface. We also show that the spin dependence of the Fermi velocity ...

  5. Dispersive and Covalent Interactions between Graphene and Metal Surfaces from the Random Phase Approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Yan, Jun; Mortensen, Jens Jørgen

    2011-01-01

    We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the random phase approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations...... for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface....

  6. Collective Multipole excitations of exotic nuclei in relativistic continuum random phase approximation

    CERN Document Server

    Yang, Ding; Ma, Zhongyu

    2013-01-01

    Journal of Combinatorial Theory, Series B, 98(1):173-225, 2008n exotic nuclei are studied in the framework of a fully self-consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function. Different from the cases in stable nuclei, there are strong low-energy excitations in neutron-rich nuclei and proton-rich nuclei. The neutron or proton excess pushes the centroid of the strength function to lower energies and increases the fragmentation of the strength distribution. The effect of treating the contribution of continuum exactly are also discussed.

  7. Dual random phase encoding: a temporal approach for fiber optic applications.

    Science.gov (United States)

    Cuadrado-Laborde, Christian; Duchowicz, Ricardo; Torroba, Roberto; Sicre, Enrique E

    2008-04-10

    We analyze the dual random phase encoding technique in the temporal domain to evaluate its potential application for secure data transmission in fiber optic links. To take into account the optical fiber multiplexing capabilities, the noise content of the signal is restricted when multiple channels are transmitted over a single fiber optic link. We also discuss some mechanisms for producing encoded time-limited as well as bandwidth-limited signals and a comparison with another recently proposed technique is made. Numerical simulations have been carried out to analyze the system performance. The results indicate that this multiplexing encryption method could be a good alternative compared with other well-established methods.

  8. Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory

    Science.gov (United States)

    Bae, Junsoo; Hwang, Kyuman; Park, Kwangho; Jeon, Seongbu; Kang, Dae-hwan; Park, Soonoh; Ahn, Juhyeon; Kim, Seoksik; Jeong, Gitae; Chung, Chilhee

    2011-04-01

    The cell failures after cycling endurance in phase-change random access memory (PRAM) have been classified into three groups, which have been analyzed by transmission electron microscopy (TEM). Both stuck reset of the set state (D0) and stuck set of the reset state (D1) are due to a void created inside GeSbTe (GST) film or thereby lowering density of GST film. The decrease of the both set and reset resistances that leads to the tails from the reset distribution are induced from the Sb increase with cycles.

  9. Generalized model of double random phase encoding based on linear algebra

    Science.gov (United States)

    Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2013-01-01

    We propose a generalized model for double random phase encoding (DRPE) based on linear algebra. We defined the DRPE procedure in six steps. The first three steps form an encryption procedure, while the later three steps make up a decryption procedure. We noted that the first (mapping) and second (transform) steps can be generalized. As an example of this generalization, we used 3D mapping and a transform matrix, which is a combination of a discrete cosine transform and two permutation matrices. Finally, we investigated the sensitivity of the proposed model to errors in the decryption key.

  10. Cryptographic salting for security enhancement of double random phase encryption schemes

    Science.gov (United States)

    Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto

    2017-10-01

    Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.

  11. Random-phase approximation and its applications in computational chemistry and materials science

    Science.gov (United States)

    Ren, Xinguo; Rinke, Patrick; Joas, Christian; Scheffler, Matthias

    2012-11-01

    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.

  12. Optical information authentication via compressed sensing and double random phase encoding

    Science.gov (United States)

    Chen, Junxin; Bao, Nan; Zhu, Zhi-liang

    2017-10-01

    This paper presents a novel information authentication scheme via compressed sensing and double random phase encoding. Two alternative architectures have been investigated, in which significantly compressed data with micro percentage is sufficient for authentication. At the decoder end, a noise-like image with no leakage of the plaintext is recovered and subsequently authenticated using a nonlinear optical correlation approach. The authentication effectiveness, noise resistance and security performance of the proposed scheme have been experimentally validated. This work was supported by the Fundamental Research Funds for the Central Universities (N162410002-4, N151904002), the National Natural Science Foundation of China (No. 61374178).

  13. Twin-image reduction method for in-line digital holography using periphery and random reference phase-shifting techniques

    Science.gov (United States)

    Oshima, Teppei; Matsudo, Yusuke; Kakue, Takashi; Arai, Daisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-09-01

    Digital holography has the twin image problem that unwanted lights (conjugate and direct lights) overlap in the object light in the reconstruction process. As a method for extracting only the object light, phase-shifting digital holography is widely used; however, this method is not applicable for the observation of moving objects, because this method requires the recording of plural holograms. In this study, we propose a twin-image reduction method by combining the "periphery" method with the "random phase-shifting" method. The proposed method succeeded in improving the reconstruction quality, compared to other one-shot recording methods ("parallel phase-shifting digital holography" and "random phase-shifting").

  14. Computer and graphics modeling of heat transfer and phase change in a wall with randomly imbibed PCM

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A.D.

    1989-03-01

    We describe the theoretical basis and computer implementation of a simulation code for heat transfer and phase change in a rectangular 2-dimensional region in which PCM has been randomly placed with a preassigned volume fraction.

  15. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia : 2-year follow-up from a randomized phase 3 trial (DASISION)

    NARCIS (Netherlands)

    Kantarjian, Hagop M.; Shah, Neil P.; Cortes, Jorge E.; Baccarani, Michele; Agarwal, Mohan B.; Soledad Undurraga, Maria; Wang, Jianxiang; Kassack Ipina, Juan Julio; Kim, Dong-Wook; Ogura, Michinori; Pavlovsky, Carolina; Junghanss, Christian; Milone, Jorge H.; Nicolini, Franck E.; Robak, Tadeusz; Van Droogenbroeck, Jan; Vellenga, Edo; Bradley-Garelik, M. Brigid; Zhu, Chao; Hochhaus, Andreas

    2012-01-01

    Dasatinib is a highly potent BCR-ABL inhibitor with established efficacy and safety in imatinib-resistant/-intolerant patients with chronic myeloid leukemia (CML). In the phase 3 DASISION trial, patients with newly diagnosed chronic-phase (CP) CML were randomized to receive dasatinib 100 mg (n = 259

  16. High energy X-ray phase and dark-field imaging using a random absorption mask

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  17. Dual-channel in-line digital holographic double random phase encryption.

    Science.gov (United States)

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-10-01

    We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated.

  18. Angular momentum coupling and symmetries of the random phase approximation equations

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.J.H.; De Kock, P.R. (Stellenbosch Univ. (South Africa). Dept. of Physics)

    1985-06-01

    This article presents a formal and tensor-algebraic reduction of the state vectors of a many-fermion system, which are described by the random phase approximation (RPA), to eigenvectors of the square and the z-component of the angular-momentum operator. The angular momentum coupled RPA equations are obtained in a concise manner by the reduction of the uncoupled equations to a set of independent equations for each irreducible component of the RPA state vector. These equations are also rewritten in a form which is symmetric with regard to the treatment of particle and hole states and it is finally shown how this symmetry can be neatly incorporated by a specific phase convention for the initial basis vectors. The required coupling of angular momentum characterized creation and annihilation operators for particles to similar operators for particle-hole pairs which then form the components of a contrastandard tensorial set, is also formally presented.

  19. Workshop on Strategic Behavior and Phase Transitions in Random and Complex Combinatorial Structures : Extended Abstracts

    CERN Document Server

    Kirousis, Lefteris; Ortiz-Gracia, Luis; Serna, Maria

    2017-01-01

    This book is divided into two parts, the first of which seeks to connect the phase transitions of various disciplines, including game theory, and to explore the synergies between statistical physics and combinatorics. Phase Transitions has been an active multidisciplinary field of research, bringing together physicists, computer scientists and mathematicians. The main research theme explores how atomic agents that act locally and microscopically lead to discontinuous macroscopic changes. Adopting this perspective has proven to be especially useful in studying the evolution of random and usually complex or large combinatorial objects (like networks or logic formulas) with respect to discontinuous changes in global parameters like connectivity, satisfiability etc. There is, of course, an obvious strategic element in the formation of a transition: the atomic agents “selfishly” seek to optimize a local parameter. However, up to now this game-theoretic aspect of abrupt, locally triggered changes had not been e...

  20. Low-noise multiple watermarks technology based on complex double random phase encoding method

    Science.gov (United States)

    Zheng, Jihong; Lu, Rongwen; Sun, Liujie; Zhuang, Songlin

    2010-11-01

    Based on double random phase encoding method (DRPE), watermarking technology may provide a stable and robust method to protect the copyright of the printing. However, due to its linear character, DRPE exist the serious safety risk when it is attacked. In this paper, a complex coding method, which means adding the chaotic encryption based on logistic mapping before the DRPE coding, is provided and simulated. The results testify the complex method will provide better security protection for the watermarking. Furthermore, a low-noise multiple watermarking is studied, which means embedding multiple watermarks into one host printing and decrypt them with corresponding phase keys individually. The Digital simulation and mathematic analysis show that with the same total embedding weight factor, multiply watermarking will improve signal noise ratio (SNR) of the output printing image significantly. The complex multiply watermark method may provide a robust, stability, reliability copyright protection with higher quality printing image.

  1. Methods to measure the charge of the quasiparticles in the fractional quantum Hall effect

    Science.gov (United States)

    Kivelson, S. A.; Pokrovsky, V. L.

    1989-07-01

    We propose various experimental circumstances in which the longitudinal resistance of a two-dimensional electron gas in a high transverse magnetic field depends in a simple and characteristic way on the charge of the quasiparticle excitations. We propose that experiments of this sort could be used to directly measure the charge of the quasiparticle excitations which carry the dissipative part of the current. While it has been persuasively argued by Laughlin that the Hall conductance itself measures the quasiparticle charge, the connection is indirect, since the Hall current is carried by the condensate, not by the quasiparticles.

  2. Quasi-particle injection into YBa2Cu3O7-δ micro-bridge

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several types of quasi-particle injections into YBa2Cu3O70-δ (YBCO) micro-bridge have been studied, re-vealing the quasi-particle non-equilibrium effect, the current superposition effect and the heating effect. The current gain's dependence on temperatures indicates that supercon-ductivity of YBCO is really suppressed by quasi-particle injection. We propose a new type of quasi-particle injection which turns out to be a promising candidate for interface between superconductor and semiconductor circuits.

  3. A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer

    OpenAIRE

    Nanda, Rita; Stringer-Reasor, Erica M.; Saha, Poornima; Kocherginsky, Masha; Gibson, Jean; Libao, Bernadette; Hoffman, Philip C.; Obeid, Elias; Merkel, Douglas E.; Khramtsova, Galina; Skor, Maxwell; Krausz, Thomas; Cohen, Ronald N.; Ratain, Mark J.; Fleming, Gini F.

    2016-01-01

    Purpose Glucocorticoid receptor (GR) overexpression is associated with poor prognosis ER-negative breast cancer. GR antagonism with mifepristone increases chemotherapy-induced breast cancer cell death, therefore we conducted a phase I clinical trial of mifepristone and nab-paclitaxel in advanced breast cancer. Methods A novel randomized phase I design was used to assess the effect of mifepristone on nab-paclitaxel pharmacokinetics and toxicity. Patients were randomized to placebo or mifeprist...

  4. A randomized phase II trial of tacrolimus, mycophenolate mofetil and sirolimus after non-myeloablative unrelated donor transplantation

    DEFF Research Database (Denmark)

    Kornblit, Brian; Maloney, David G; Storer, Barry E

    2014-01-01

    The study is a randomized phase II trial investigating graft-versus-host disease prophylaxis after non-myeloablative (90 mg/m(2) fludarabine and 2 Gy total body irradiation) human leukocyte antigen matched unrelated donor transplantation. Patients were randomized as follows: arm 1 - tacrolimus 18...

  5. Phase Transitions on Fixed Connected Graphs and Random Graphs in the Presence of Noise

    CERN Document Server

    Liu, Jialing; Sehgal, Hullas; Olson, Joshua M; Liu, Haifeng; Elia, Nicola

    2008-01-01

    In this paper, we study the phase transition behavior emerging from the interactions among multiple agents in the presence of noise. We propose a simple discrete-time model in which a group of non-mobile agents form either a fixed connected graph or a random graph process, and each agent, taking bipolar value either +1 or -1, updates its value according to its previous value and the noisy measurements of the values of the agents connected to it. We present proofs for the occurrence of the following phase transition behavior: At a noise level higher than some threshold, the system generates symmetric behavior (vapor or melt of magnetization) or disagreement; whereas at a noise level lower than the threshold, the system exhibits spontaneous symmetry breaking (solid or magnetization) or consensus. The threshold is found analytically. The phase transition occurs for any dimension. Finally, we demonstrate the phase transition behavior and all analytic results using simulations. This result may be found useful in t...

  6. Simultaneous quasiparticle and Josephson tunneling in BSCCO-2212 break junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Ozyuzer, L.

    1998-10-27

    Tunneling measurements are reported for superconductor-insulator-superconductor (SIS) break junctions on underdoped, optimally-doped, and overdoped single crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212). The junction I-V characteristics exhibit well-defined quasiparticle current jumps at eV = 2A as well as hysteretic Josephson currents. The quasiparticle branch has been analyzed in the framework of d{sub x{sup 2}-y{sup 2}} (d-wave) superconductivity and indicates that there is preferential tunneling along the lobe directions of the d-wave gap. For overdoped Bi-2212 with T{sub c} = 62 K, the Josephson current is measured as a function of junction resistance, R{sub n}, which varied by two orders of magnitude (1 k{Omega} to 100 k{Omega}). I{sub c}R{sub n} product is proportional to the 0.47 power of I{sub c} and displays a maximum of 7.0 mV. When the hole doping is decreased from overdoped (T{sub c} = 62 K) to the underdoped regime (T{sub c} = 70 K), the average I{sub c}R{sub n} product increases as does the quasiparticle gap. The maximum I{sub c}R{sub n} is {approximately} 40% of the {Delta}/e at each doping level, with a value as high as 25 mV in underdoped Bi-2212.

  7. Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain

    Science.gov (United States)

    Singh, Hukum

    2016-05-01

    An optical color image encryption in the Fractional Wavelet Transform (FWT) domain is carried out. The original images are segregated into three colors components: R (red), G (green) and B (blue). After that the components are encrypted separately using double random phase encoding (DRPE) in the FWT domain. Random phase masks (RPMs) are used in the input as well as in Fourier plane. The images to be encrypted are transformed with the discrete wavelet transform (DWT), the resulting coefficients from the DWT are multiplied each one by masks different form RPM. Masks are independent each other and the results are applied an inverse discrete Wavelet Transform (IDWT), obtaining the encrypted images. The input images are recovered from their corresponding encrypted images by using the correct parameters of the FWT, and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family and fractional orders associated with the FWT are extra keys that access difficulty an attacker; thereby the scheme is more secure as compared to conventional techniques. The sensitivity of proposed scheme is verified with encryption parameters, occlusions, and noise attacks.

  8. Band-phase-randomized Surrogates to assess nonlinearity in non-stationary time series

    CERN Document Server

    Guarin, Diego; Orozco, Alvaro

    2011-01-01

    Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency band. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. When apply...

  9. Monotone Increasing Properties and Their Phase Transitions in Uniform Random Intersection Graphs

    CERN Document Server

    Zhao, Jun; Gligor, Virgil

    2015-01-01

    Uniform random intersection graphs have received much interest and been used in diverse applications. A uniform random intersection graph with $n$ nodes is constructed as follows: each node selects a set of $K_n$ different items uniformly at random from the same pool of $P_n$ distinct items, and two nodes establish an undirected edge in between if and only if they share at least one item. For such graph denoted by $G(n, K_n, P_n)$, we present the following results in this paper. First, we provide an exact analysis on the probabilities of $G(n, K_n, P_n)$ having a perfect matching and having a Hamilton cycle respectively, under $P_n = \\omega\\big(n (\\ln n)^5\\big)$ (all asymptotic notation are understood with $n \\to \\infty$). The analysis reveals that just like ($k$-)connectivity shown in prior work, for both properties of perfect matching containment and Hamilton cycle containment, $G(n, K_n, P_n)$ also exhibits phase transitions: for each property above, as $K_n$ increases, the limit of the probability that $G...

  10. Excited quasiparticles and entropy in 161,162Dy

    Science.gov (United States)

    Razavi, R.; Mohassel, A. Rashed; Mohammadi, S.

    2015-11-01

    In this paper, the nuclear level densities of 161,162Dy is studied by the use of a microscopic theory which includes nuclear pairing interaction. It is based on the modified harmonic oscillator model according to the Nilsson potential. The entropy of even-odd and even-even nuclei as a function of nuclear temperature is obtained. The entropy excess of 161Dy is compared with that of 162Dy. It is concluded that the difference is related to the entropy carried by the neutron hole coupled to the even-even core. The numbers of excited quasiparticles are calculated. Good agreement was observed between calculated results and the experimental data.

  11. Quasiparticle tunneling in a periodically driven bosonic Josephson junction

    Science.gov (United States)

    Gertjerenken, Bettina; Holthaus, Martin

    2014-11-01

    A resonantly driven bosonic Josephson junction supports stable collective excitations, or quasiparticles, which constitute analogs of the Trojan wave packets previously explored with Rydberg atoms in strong microwave fields. We predict a quantum beating effect between such symmetry-related many-body Trojan states taking place on time scales which are long in comparison with the driving period. Within a mean-field approximation, this quantum beating can be regarded as a manifestation of dynamical tunneling. On the full N -particle level, the beating phenomenon leads to an experimentally feasible, robust strategy for probing highly entangled mesoscopic states.

  12. Double-random-phase encryption with photon counting for image authentication using only the amplitude of the encrypted image.

    Science.gov (United States)

    Wang, Yong; Markman, Adam; Quan, Chenggen; Javidi, Bahram

    2016-11-01

    We present a photon-counting double-random-phase encryption technique that only requires the photon-limited amplitude of the encrypted image for decryption. The double-random-phase encryption is used to encrypt an image, generating a complex image. Photon counting is applied to the amplitude of the encrypted image, generating a sparse noise-like image; however, the phase information is not retained. By not using the phase information, the encryption process is simplified, allowing for intensity detection and also less information to be recorded. Using a phase numerically generated from the correct encryption keys together with the photon-limited amplitude of the encrypted image, we are able to decrypt the image. Moreover, nonlinear correlation algorithms can be used to authenticate the decrypted image. Both amplitude-based and full-phase encryption using the proposed method are investigated. Preliminary computational results and performance evaluation are presented.

  13. Retrieval of phase distributions from the quadriwave lateral shearing interferogram obtained by randomly encoded hybrid grating

    Science.gov (United States)

    Ling, Tong; Yang, Yongying; Liu, Dong; Yue, Xiumei; Jiang, Jiabin

    2015-10-01

    A wavefront retrieval method for the quadriwave lateral shearing interferogram obtained by randomly encoded hybrid grating (REHG) is proposed. The REHG consists of a binary amplitude grating and a phase chessboard, and the Faunhofer diffractions of this grating only contain the +/-1 orders in two orthogonal directions. As a result, no order selection mask is ever needed by the REHG for quadriwave lateral shearing interference. To retrieve the phase distributions from the REHG interferograms, fast Fourier transform (FFT) technique is employed at first to get the frequency spectrum. By performing inverse fast Fourier transform (IFFT) of the +1 order spectrum in the x and y directions, it is possible to extract shearing wavefronts from the interferogram in both two orthogonal directions. Using the translation property of Fourier transform, the relationship between the Fourier spectrum of the shearing wavefronts and the Fourier spectrum of the wavefront under test is deduced. The wavefront under test is retrieved by establishing an evaluation function firstly and finding the minimum value with least-square-solution. Analysis and compensations are made to reduce the errors in the testing results. Simulation experiments have shown that this method can retrieve different phase distributions without losing high-frequency information.

  14. Super-rough glassy phase of the random field XY model in two dimensions.

    Science.gov (United States)

    Perret, Anthony; Ristivojevic, Zoran; Le Doussal, Pierre; Schehr, Grégory; Wiese, Kay J

    2012-10-12

    We study both analytically, using the renormalization group (RG) to two loop order, and numerically, using an exact polynomial algorithm, the disorder-induced glass phase of the two-dimensional XY model with quenched random symmetry-breaking fields and without vortices. In the super-rough glassy phase, i.e., below the critical temperature T(c), the disorder and thermally averaged correlation function B(r) of the phase field θ(x), B(r)=([θ(x)-θ(x+r)](2)) behaves, for r > a, as B(r) is approximately equal to A(τ)ln(2)(r/a) where r=|r| and a is a microscopic length scale. We derive the RG equations up to cubic order in τ=(T(c)-T)/T(c) and predict the universal amplitude A(τ)=2τ(2)-2τ(3)+O(τ(4)). The universality of A(τ) results from nontrivial cancellations between nonuniversal constants of RG equations. Using an exact polynomial algorithm on an equivalent dimer version of the model we compute A(τ) numerically and obtain a remarkable agreement with our analytical prediction, up to τ≈0.5.

  15. Luteal Phase Support in the Intrauterine Insemination (IUI Cycles: A Randomized Double Blind, Placebo Controlled Study.

    Directory of Open Access Journals (Sweden)

    Batool Hossein Rashidi

    2014-12-01

    Full Text Available To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG, in sub fertile couples.This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They underwent ovarian stimulation with clomiphene citrate (100 mg and hMG (75 IU in preparation for the IUI cycle. Study group (n = 127 received luteal phase support in the form of vaginal progesterone (400 mg twice a day, and control group (n = 126 received placebo. Clinical pregnancy and abortion rates were assessed and compared between the two groups.The clinical pregnancy rate was not significantly higher for supported cycles than that for the unsupported ones (15.75% vs. 12.69%, p = 0.3. The abortion rate in the patients with progesterone luteal support compared to placebo group was not statistically different (10% vs. 18.75%, p = 0.45.It seems that luteal phase support with vaginal progesterone was not enhanced the success of IUI cycles outcomes, when clomiphene citrate and hMG were used for ovulation stimulation.

  16. Transverse thermoelectric response as a probe for existence of quasiparticles

    Science.gov (United States)

    Schattner, Yoni; Oganesyan, Vadim; Orgad, Dror

    2016-12-01

    The electrical Hall conductivities of any anisotropic interacting system with reflection symmetry obey σx y=-σy x . In contrast, we show that the analogous relation between the transverse thermoelectric Peltier coefficients, αx y=-αy x , does not generally hold in the same system. This fact may be traced to interaction contributions to the heat current operator and the mixed nature of the thermoelectric response functions. Remarkably, however, it appears that emergence of quasiparticles at low temperatures forces αx y=-αy x . This suggests that quasiparticle-free ground states (so-called non-Fermi liquids) may be detected by examining the relationship between αx y and αy x in the presence of reflection symmetry and microscopic anisotropy. These conclusions are based on the following results. (i) The relation between the Peltier coefficients is exact for elastically scattered noninteracting particles. (ii) It holds approximately within Boltzmann theory for interacting particles when elastic scattering dominates over inelastic processes. In a disordered Fermi liquid, the latter lead to deviations that vanish as T3. (iii) We calculate the thermoelectric response in a model of weakly coupled spin-gapped Luttinger liquids and obtain strong breakdown of antisymmetry between the off-diagonal components of α ̂. We also find that the Nernst signal in this model is enhanced by interactions and can change sign as function of magnetic field and temperature.

  17. Genetic braid optimization: A heuristic approach to compute quasiparticle braids

    Science.gov (United States)

    McDonald, Ross B.; Katzgraber, Helmut G.

    2013-02-01

    In topologically protected quantum computation, quantum gates can be carried out by adiabatically braiding two-dimensional quasiparticles, reminiscent of entangled world lines. Bonesteel [Phys. Rev. Lett.10.1103/PhysRevLett.95.140503 95, 140503 (2005)], as well as Leijnse and Flensberg [Phys. Rev. B10.1103/PhysRevB.86.104511 86, 104511 (2012)], recently provided schemes for computing quantum gates from quasiparticle braids. Mathematically, the problem of executing a gate becomes that of finding a product of the generators (matrices) in that set that approximates the gate best, up to an error. To date, efficient methods to compute these gates only strive to optimize for accuracy. We explore the possibility of using a generic approach applicable to a variety of braiding problems based on evolutionary (genetic) algorithms. The method efficiently finds optimal braids while allowing the user to optimize for the relative utilities of accuracy and/or length. Furthermore, when optimizing for error only, the method can quickly produce efficient braids.

  18. The quark susceptibility in a generalized dynamical quasiparticle model

    CERN Document Server

    Berrehrah, Hamza; Bratkovskaya, Elena; Steinert, Thorsten

    2015-01-01

    The quark susceptibility $\\chi_q$ at zero and finite quark chemical potential provides a critical benchmark to determine the quark-gluon-plasma (QGP) degrees of freedom in relation to the results from lattice QCD (lQCD) in addition to the equation of state and transport coefficients. Here we extend the familiar dynamical-quasiparticle model (DQPM) to partonic propagators that explicitly depend on the three-momentum with respect to the partonic medium at rest in order to match perturbative QCD (pQCD) at high momenta. Within the extended dynamical-quasi-particle model (DQPM$^*$) we reproduce simultaneously the lQCD results for the quark number density and susceptibility and the QGP pressure at zero and finite (but small) chemical potential $\\mu_q$. The shear viscosity $\\eta$ and the electric conductivity $\\sigma_e$ from the extended quasiparticle model (DQPM$^*$) also turn out in close agreement with lattice results for $\\mu_q$ =0. The DQPM$^*$, furthermore, allows to evaluate the momentum $p$, temperature $T$ ...

  19. Quasiparticle-mediated spin Hall effect in a superconductor

    Science.gov (United States)

    Wakamura, Taro

    Superconductivity often brings novel phenomena to spintronics. According to theoretical predictions, superconductivity may enhance the spin Hall effect (SHE) due to the increase in the resistance of superconducting quasiparticles which mediate spin transport in superconductors. In this work, we show a first experimental observation of quasiparticle-mediated SHE in a superconducting NbN, which exhibits an enormous enhancement below the superconducting critical temperature (TC = 10 K). We fabricated a lateral device structure composed of Py (NiFe) and NbN wires bridged by a nonmagnetic Cu wire. A pure spin current is generated in the Cu bridge by a spin injection current (I) between the Py and the Cu, and absorbed into the NbN wire. The absorbed spin currents are converted into charge currents via the inverse SHE, thereby generating the inverse SH voltage (VISHE) . When NbN is in the normal state at 20 K (>TC) , inverse SH signals ΔRISHE (RISHE ≡VISHE / I) are independent of I. However, at 3 K (

  20. Features of the Generalized Dynamics of Quasiparticles in Graphene

    Science.gov (United States)

    Suprun, Anatol D.; Shmeleva, Liudmyla V.

    2017-03-01

    The general dynamic properties of the electron, as quasiparticle in conduction band of graphene, were analyzed. It is shown that in graphene, these properties essentially differ from similar base properties for crystals with a simple lattice, despite insignificant, on the first sight, difference of dispersion law ɛ( p). Primarily, crystals with an elementary cell of arbitrary complexity of structure were considered. The obtained general relations were applied further to graphene. Herewith two-dimensional lattice of graphene has been considered as consisting of elementary cells with two atoms. Typically, graphene is considered as crystals consisting of two simple nested sublattices. It has been shown that both considerations lead to the analogous basic results. On the basis of obtained wave Hamiltonian, all the dynamic characteristics of the injected electron, considered as a quasiparticle, were found: speed, tensor of effective dynamic mass, and wave Lagrangian. Also, for some physically actual situations, the dynamic characteristics of an alternative description have been found: a mechanical momentum p m , mechanical Hamiltonian, and mechanical Lagrangian. For these situations, a generalized Louis de Broglie relationship between mechanical p m and wave p momenta was found also.

  1. Quasiparticles in Leptogenesis - A hard-thermal-loop study

    CERN Document Server

    Kie\\ssig, Clemens Paul

    2011-01-01

    We analyse the effects of thermal quasiparticles in leptogenesis using hard-thermal-loop-resummed propagators in the imaginary time formalism of thermal field theory. We perform our analysis in a leptogenesis toy model with three right-handed heavy neutrinos $N_1$, $N_2$ and $N_3$. We consider decays and inverse decays and work in the hierarchical limit where $M_2 \\gg M_1$. We neglect flavour effects and assume that the temperatures are much smaller than $M_2$ and $M_3$. We pay special attention to the influence of fermionic quasiparticles. We allow for the leptons to be either decoupled from each other, except for the interactions with neutrinos, or to be in chemical equilibrium by some strong interaction, for example via gauge bosons. In two additional cases, we approximate the full hard-thermal-loop lepton propagators with zero-temperature propagators, where we replace the zero-temperature mass by the thermal mass of the leptons $m_\\ell(T)$ in one case and the asymptotic mass of the positive-helicity mode ...

  2. Ab initio Sternheimer-GW method for quasiparticle calculations

    Science.gov (United States)

    Lambert, Henry; Giustino, Feliciano

    2014-03-01

    The GW method has emerged as the standard computational tool for investigating electronic excitations in bulk and nanoscale systems. Recently significant efforts have been devoted to extending the range of applicability of the GW method. With this aim, Ref. introduced the Sternheimer-GW method, reformulating the standard GW approach so that no unoccupied electronic states are required in the calculations. Here we present the implementation of the Sternheimer-GW method using planewaves and norm-conserving pseudopotentials. In our method we calculate the complete position- and energy-dependent GW self-energy operator, and as a by-product we obtain the entire G0W0 quasiparticle spectral function. We have validated our method by calculating the quasiparticle band structures of standard semiconductors and insulators (Si, SiC, diamond, LiCl) and by comparing the results with previous GW calculations. This method is currently being used for investigating the electronic structure of novel materials of reduced dimensionality. This work was supported by the ERC under the EU FP7/ERC Grant No. 239578 and by the UK EPSRC Grant No. EP/J009857/1.

  3. Statistical mechanics of random geometric graphs: Geometry-induced first-order phase transition.

    Science.gov (United States)

    Ostilli, Massimo; Bianconi, Ginestra

    2015-04-01

    Random geometric graphs (RGGs) can be formalized as hidden-variables models where the hidden variables are the coordinates of the nodes. Here we develop a general approach to extract the typical configurations of a generic hidden-variables model and apply the resulting equations to RGGs. For any RGG, defined through a rigid or a soft geometric rule, the method reduces to a nontrivial satisfaction problem: Given N nodes, a domain D, and a desired average connectivity 〈k〉, find, if any, the distribution of nodes having support in D and average connectivity 〈k〉. We find out that, in the thermodynamic limit, nodes are either uniformly distributed or highly condensed in a small region, the two regimes being separated by a first-order phase transition characterized by a O(N) jump of 〈k〉. Other intermediate values of 〈k〉 correspond to very rare graph realizations. The phase transition is observed as a function of a parameter a∈[0,1] that tunes the underlying geometry. In particular, a=1 indicates a rigid geometry where only close nodes are connected, while a=0 indicates a rigid antigeometry where only distant nodes are connected. Consistently, when a=1/2 there is no geometry and no phase transition. After discussing the numerical analysis, we provide a combinatorial argument to fully explain the mechanism inducing this phase transition and recognize it as an easy-hard-easy transition. Our result shows that, in general, ad hoc optimized networks can hardly be designed, unless to rely to specific heterogeneous constructions, not necessarily scale free.

  4. Roles of Antinucleon Degrees of Freedom in the Relativistic Random Phase Approximation

    CERN Document Server

    Kurasawa, Haruki

    2015-01-01

    Roles of antinucleon degrees of freedom in the relativistic random phase approximation(RPA) are investigated. The energy-weighted sum of the RPA transition strengths is expressed in terms of the double commutator between the excitation operator and the Hamiltonian, as in nonrelativistic models. The commutator, however, should not be calculated with a usual way in the local field theory, because, otherwise, the sum vanishes. The sum value obtained correctly from the commutator is infinite, owing to the Dirac sea. Most of the previous calculations takes into account only a part of the nucleon-antinucleon states, in order to avoid the divergence problems. As a result, RPA states with negative excitation energy appear, which make the sum value vanish. Moreover, disregarding the divergence changes the sign of nuclear interactions in the RPA equation which describes the coupling of the nucleon particle-hole states with the nucleon-antinucleon states. Indeed, excitation energies of the spurious state and giant monop...

  5. A study of key features of random atmospheric disturbance models for the approach flight phase

    Science.gov (United States)

    Heffley, R. K.

    1977-01-01

    An analysis and brief simulator experiment were performed to identify and classify important features of random turbulence for the landing approach flight phase. The analysis of various wind models was carried out within the context of the longitudinal closed-loop pilot/vehicle system. The analysis demonstrated the relative importance of atmospheric disturbance scale lengths, horizontal versus vertical gust components, decreasing altitude, and spectral forms of disturbances versus the pilot/vehicle system. Among certain competing wind models, the analysis predicted no significant difference in pilot performance. This was confirmed by a moving base simulator experiment which evaluated the two most extreme models. A number of conclusions were reached: attitude constrained equations do provide a simple but effective approach to describing the closed-loop pilot/vehicle. At low altitudes the horizontal gust component dominates pilot/vehicle performance.

  6. Dielectric matrix formulation of correlation energies in the Random Phase Approximation (RPA): inclusion of exchange effects

    CERN Document Server

    Mussard, Bastien; Jansen, Georg; Angyan, Janos

    2016-01-01

    Starting from the general expression for the ground state correlation energy in the adiabatic connection fluctuation dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the co...

  7. Phase transition in a random fragmentation problem with applications to computer science

    Energy Technology Data Exchange (ETDEWEB)

    Dean, David S.; Majumdar, Satya N. [IRSAMC, Laboratoire de Physique Quantique (UMR 5626 du CNRS), Universite Paul Sabatier, Toulouse (France)

    2002-08-16

    We study a fragmentation problem where an initial object of size x is broken into m random pieces provided x>x{sub 0} where x{sub 0} is an atomic cut-off. Subsequently, the fragmentation process continues for each of those daughter pieces whose sizes are bigger than x{sub 0}. The process stops when all the fragments have sizes smaller than x{sub 0}. We show that the fluctuation of the total number of splitting events, characterized by the variance, generically undergoes a nontrivial phase transition as one tunes the branching number m through a critical value m=m{sub c}. For mm{sub c} they are anomalously large and non-Gaussian. We apply this general result to analyse two different search algorithms in computer science. (author). Letter-to-the-editor.

  8. Driven random-phase three-wave interactions: Cycles, bursts, and stochasticity

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.A. (School of Physics, University of Sydney, NSW 2006 (Australia))

    1992-11-01

    Steadily driven, undriven, and stochastically driven three-wave decay processes involving groups of random-phase waves are investigated analytically and numerically. Steadily driven systems in which one product wave is suppressed exhibit neutrally stable Lotka--Volterra cycles, as for the true two-component case, whereas three-component systems are stable below a critical driver strength and unstable beyond that point. Initially unstable, but undriven, systems produce bursts of product waves, after which the parent waves fall to a final level that is an exponentially decreasing function of their initial level. Three-component systems where the product waves have near-equal dissipation rates are an exception to the latter behavior; in such systems the final parent-wave level is almost independent of the initial one. Stochastic driving gives rise to bursts of product waves in a cycle of fluctuating period, whereas a low-level noise source tends to stabilize the system.

  9. Time-dependent Relativistic Mean-field Theory and Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    P.Ring; D.Vretenar; A.Wandelt; NguyenVanGiai; MAZhong-yu; CAOLi-gang

    2001-01-01

    The relativistic random phase approximation (RRPA) is derived from the time-dependent relativistic mean field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also ah configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116Sn. It is shown that

  10. Quantum Phase Transition in the Two-Dimensional Random Transverse-Field Ising Model

    Science.gov (United States)

    Pich, C.; Young, A. P.

    1998-03-01

    We study the quantum phase transition in the random transverse-field Ising model by Monte Carlo simulations. In one-dimension it has been established that this system has the following striking behavior: (i) the dynamical exponent is infinite, and (ii) the exponents for the divergence of the average and typical correlation lengths are different. An important issue is whether this behavior is special to one-dimension or whether similar behavior persists in higher dimensions. Here we attempt to answer this question by studies of the two-dimensional model. Our simulations use the Wolff cluster algorithm and the results are analyzed by anisotropic finite size scaling, paying particular attention to the Binder ratio of moments of the order parameter distribution and the distribution of the spin-spin correlation functions for various distances.

  11. Evaluation of ground state entanglement in spin systems with the random phase approximation

    CERN Document Server

    Matera, J M; Canosa, N

    2010-01-01

    We discuss a general treatment based on the mean field plus random phase approximation (RPA) for the evaluation of subsystem entropies and negativities in ground states of spin systems. The approach leads to a tractable general method, becoming straightforward in translationally invariant arrays. The method is examined in arrays of arbitrary spin with $XYZ$ couplings of general range in a uniform transverse field, where the RPA around both the normal and parity breaking mean field state, together with parity restoration effects, are discussed in detail. In the case of a uniformly connected $XYZ$ array of arbitrary size, the method is shown to provide simple analytic expressions for the entanglement entropy of any global bipartition, as well as for the negativity between any two subsystems, which become exact for large spin. The limit case of a spin $s$ pair is also discussed.

  12. Evaluation of ground-state entanglement in spin systems with the random phase approximation

    Science.gov (United States)

    Matera, J. M.; Rossignoli, R.; Canosa, N.

    2010-11-01

    We discuss a general treatment based on the mean field plus random-phase approximation (RPA) for the evaluation of subsystem entropies and negativities in ground states of spin systems. The approach leads to a tractable general method that becomes straightforward in translationally invariant arrays. The method is examined in arrays of arbitrary spin with XYZ couplings of general range in a uniform transverse field, where the RPA around both the normal and parity-breaking mean-field state, together with parity-restoration effects, is discussed in detail. In the case of a uniformly connected XYZ array of arbitrary size, the method is shown to provide simple analytic expressions for the entanglement entropy of any global bipartition, as well as for the negativity between any two subsystems, which become exact for large spin. The limit case of a spin s pair is also discussed.

  13. A cubic scaling algorithm for excited states calculations in particle-particle random phase approximation

    CERN Document Server

    Lu, Jianfeng

    2016-01-01

    The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an $O(N^3)$ algorithm, where $N$ is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.

  14. Analysis of double random phase encryption from a key-space perspective

    Science.gov (United States)

    Monaghan, David S.; Situ, Guohai; Ryle, James; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    The main advantage of the double random phase encryption technique is its physical implementation however to allow us to analyse its behaviour we perform the encryption/decryption numerically. A typically strong encryption scheme will have an extremely large key-space, which will make the probable success of any brute force attack on that algorithm miniscule. Traditionally, designers of optical image encryption systems only demonstrate how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. We analyse this algorithm from a key-space perspective. The key-space of an encryption algorithm can be defined as the set of possible keys that can be used to encode data using that algorithm. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute force attack.

  15. Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation

    CERN Document Server

    Niu, YiFei; Vretenar, Dario; Meng, Jie

    2011-01-01

    We introduce a self-consistent microscopic theoretical framework for modelling the process of electron capture on nuclei in stellar environment, based on relativistic energy density functionals. The finite-temperature relativistic mean-field model is used to calculate the single-nucleon basis and the occupation factors in a target nucleus, and $J^{\\pi} = 0^{\\pm}$, $1^{\\pm}$, $2^{\\pm}$ charge-exchange transitions are described by the self-consistent finite-temperature relativistic random-phase approximation. Cross sections and rates are calculated for electron capture on 54,56Fe and 76,78Ge in stellar environment, and results compared with predictions of similar and complementary model calculations.

  16. Range-separated density-functional theory with random phase approximation: detailed formalism and illustrative applications

    CERN Document Server

    Toulouse, Julien; Angyan, Janos G; Savin, Andreas

    2010-01-01

    Using Green-function many-body theory, we present the details of a formally exact adiabatic-connection fluctuation-dissipation density-functional theory based on range separation, which was sketched in Toulouse, Gerber, Jansen, Savin and Angyan, Phys. Rev. Lett. 102, 096404 (2009). Range-separated density-functional theory approaches combining short-range density functional approximations with long-range random phase approximations (RPA) are then obtained as well-identified approximations on the long-range Green-function self-energy. Range-separated RPA-type schemes with or without long-range Hartree-Fock exchange response kernel are assessed on rare-gas and alkaline-earth dimers, and compared to range-separated second-order perturbation theory and range-separated coupled-cluster theory.

  17. Modelisation of London dispersion forces by random phase approximation: methodological developments

    CERN Document Server

    Mussard, B

    2015-01-01

    In this thesis are shown developments in the random phase approximation (RPA) in the context of range-separated theories. We present advances in the formalism of the RPA in general, and particularly in the "dielectric matrix" formulation of RPA, which is explored in details. We show a summary of a work on the RPA equations with localised orbitals, especially developments of the virtual localized orbitals that are the "projected oscillatory orbitals" (POO). A program has been written to calculate functions such as the exchange hole, the response function, etc on real space grid (parallelepipedic or of the "DFT" type) ; some of those visualisations are shown here. In the real space, we offer an adaptation of the effective energy denominator approximation (EED), originally developped in the reciprocal space in solid physics. The analytical gradients of the RPA correlation energies in the context of range separation has been derived. The formalism developped here with a lagrangian allows an all-in-one derivation ...

  18. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 2

    Science.gov (United States)

    Hohenemser, K. H.; Gaonkar, G. H.

    1968-01-01

    A comparison with NASA conducted simulator studies has shown that the approximate digital method for computing rotor blade flapping responses to random inputs, tentatively suggested in Phase I Report, gives with increasing rotor advance ratio the wrong trend. Consequently, three alternative methods of solution have been considered and are described: (1) an approximate method based on the functional relation between input and output double frequency spectra, (2) a numerical method based on the system responses to deterministic inputs and (3) a perturbation approach. Among these the perturbation method requires the least amount of computation and has been developed in two forms - the first form to obtain the response correlation function and the second for the time averaged spectra of flapping oscillations.

  19. Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation

    CERN Document Server

    Matera, Juan Mauricio; Canosa, Norma; 10.1103/PhysRevA.78.042319

    2011-01-01

    We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic spin 1/2 chains with both long and short range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation or chain size, where it predicts an entanglement range which can be at most twice that of interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.

  20. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 1

    Science.gov (United States)

    Hohenemser, K. H.; Gaonkar, G. H.

    1967-01-01

    A number of lifting rotor conditions with random inputs are discussed. The present state of random process theory, applicable to lifting rotor problems is sketched. Possible theories of random blade flapping and random blade flap-bending are outlined and their limitations discussed. A plan for preliminary experiments to study random flapping motions of a see-saw rotor is developed.

  1. Influence of limited random-phase of objects on the image quality of 3D holographic display

    Science.gov (United States)

    Ma, He; Liu, Juan; Yang, Minqiang; Li, Xin; Xue, Gaolei; Wang, Yongtian

    2017-02-01

    Limited-random-phase time average method is proposed to suppress the speckle noise of three dimensional (3D) holographic display. The initial phase and the range of the random phase are studied, as well as their influence on the optical quality of the reconstructed images, and the appropriate initial phase ranges on object surfaces are obtained. Numerical simulations and optical experiments with 2D and 3D reconstructed images are performed, where the objects with limited phase range can suppress the speckle noise in reconstructed images effectively. It is expected to achieve high-quality reconstructed images in 2D or 3D display in the future because of its effectiveness and simplicity.

  2. Collapse of the random phase approximation: examples and counter-examples from the shell model

    CERN Document Server

    Johnson, Calvin W

    2009-01-01

    The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking state to a symmetry-conserving state (also referred to as a ``phase transition'' in the literature). The order of the transition is important when one applies the random phase approximation (RPA) to the of the Hartree-Fock wavefunction: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become large and lead to unphysical results. The latter is known as ``collapse'' of the RPA. While the difference between first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time non-trivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model, where we can compare to exact numerical results.

  3. Estimating phase with a random generator: Strategies and resources in multiparameter quantum metrology

    Science.gov (United States)

    Yousefjani, Rozhin; Nichols, Rosanna; Salimi, Shahriar; Adesso, Gerardo

    2017-06-01

    Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimation of relevant parameters. We consider a probe undergoing a phase shift φ whose generator is randomly sampled according to a distribution with unknown concentration κ , which introduces a physical source of noise. We then investigate strategies for the joint estimation of the two parameters φ and κ given a finite number N of interactions with the phase imprinting channel. We consider both single qubit and multipartite entangled probes, and identify regions of the parameters where simultaneous estimation is advantageous, resulting in up to a twofold reduction in resources. Quantum enhanced precision is achievable at moderate N , while for sufficiently large N classical strategies take over and the precision follows the standard quantum limit. We show that full-scale entanglement is not needed to reach such an enhancement, as efficient strategies using significantly fewer qubits in a scheme interpolating between the conventional sequential and parallel metrological schemes yield the same effective performance. These results may have relevant applications in optimization of sensing technologies.

  4. Nonuniform sampling of hypercomplex multidimensional NMR experiments: Dimensionality, quadrature phase and randomization

    Science.gov (United States)

    Schuyler, Adam D; Maciejewski, Mark W; Stern, Alan S; Hoch, Jeffrey C

    2015-01-01

    Nonuniform sampling (NUS) in multidimensional NMR permits the exploration of higher dimensional experiments and longer evolution times than the Nyquist Theorem practically allows for uniformly sampled experiments. However, the spectra of NUS data include sampling-induced artifacts and may be subject to distortions imposed by sparse data reconstruction techniques, issues not encountered with the discrete Fourier transform (DFT) applied to uniformly sampled data. The characterization of these NUS-induced artifacts allows for more informed sample schedule design and improved spectral quality. The DFT–Convolution Theorem, via the point-spread function (PSF) for a given sampling scheme, provides a useful framework for exploring the nature of NUS sampling artifacts. In this work, we analyze the PSFs for a set of specially constructed NUS schemes to quantify the interplay between randomization and dimensionality for reducing artifacts relative to uniformly undersampled controls. In particular, we find a synergistic relationship between the indirect time dimensions and the “quadrature phase dimension” (i.e. the hypercomplex components collected for quadrature detection). The quadrature phase dimension provides additional degrees of freedom that enable partial-component NUS (collecting a subset of quadrature components) to further reduce sampling-induced aliases relative to traditional full-component NUS (collecting all quadrature components). The efficacy of artifact reduction is exponentially related to the dimensionality of the sample space. Our results quantify the utility of partial-component NUS as an additional means for introducing decoherence into sampling schemes and reducing sampling artifacts in high dimensional experiments. PMID:25899289

  5. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  6. Long-Term Improvements After Multimodal Rehabilitation in Late Phase After Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Bunketorp-Käll, Lina; Lundgren-Nilsson, Åsa; Samuelsson, Hans; Pekny, Tulen; Blomvé, Karin; Pekna, Marcela; Pekny, Milos; Blomstrand, Christian; Nilsson, Michael

    2017-07-01

    Treatments that improve function in late phase after stroke are urgently needed. We assessed whether multimodal interventions based on rhythm-and-music therapy or horse-riding therapy could lead to increased perceived recovery and functional improvement in a mixed population of individuals in late phase after stroke. Participants were assigned to rhythm-and-music therapy, horse-riding therapy, or control using concealed randomization, stratified with respect to sex and stroke laterality. Therapy was given twice a week for 12 weeks. The primary outcome was change in participants' perception of stroke recovery as assessed by the Stroke Impact Scale with an intention-to-treat analysis. Secondary objective outcome measures were changes in balance, gait, grip strength, and cognition. Blinded assessments were performed at baseline, postintervention, and at 3- and 6-month follow-up. One hundred twenty-three participants were assigned to rhythm-and-music therapy (n=41), horse-riding therapy (n=41), or control (n=41). Post-intervention, the perception of stroke recovery (mean change from baseline on a scale ranging from 1 to 100) was higher among rhythm-and-music therapy (5.2 [95% confidence interval, 0.79-9.61]) and horse-riding therapy participants (9.8 [95% confidence interval, 6.00-13.66]), compared with controls (-0.5 [-3.20 to 2.28]); P=0.001 (1-way ANOVA). The improvements were sustained in both intervention groups 6 months later, and corresponding gains were observed for the secondary outcomes. Multimodal interventions can improve long-term perception of recovery, as well as balance, gait, grip strength, and working memory in a mixed population of individuals in late phase after stroke. URL: http//www.ClinicalTrials.gov. Unique identifier: NCT01372059. © 2017 American Heart Association, Inc.

  7. Projected shell model study of quasiparticle structure of arsenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Preeti; Sharma, Chetan; Singh, Suram [Department of Physics and Electronics, University of Jammu, Jammu, 180006 (India); Bharti, Arun, E-mail: arunbharti_2003@yahoo.co.in [Department of Physics and Electronics, University of Jammu, Jammu, 180006 (India); Khosa, S.K. [Department of Physics and Electronics, University of Jammu, Jammu, 180006 (India); Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-11-20

    Odd-mass isotopic chain of {sup 67–79}As has been studied within the context of the projected shell model. Deformed single-particle states generated by the standard Nilsson potential are used to calculate various nuclear structure properties like yrast spectra, rotational frequencies and reduced transition probabilities. The study of band structures of these As nuclei based on the band diagrams indicates the presence of multi-quasiparticle structure in the high spin realm of these nuclei. Rotational alignment phenomenon has also been studied in terms of band crossing which is understood to occur due to the rotational alignment of g{sub 9/2} neutron pair. We also have compared the results of the present calculations with the available experimental as well as the other theoretical data and an overall good agreement has been achieved between the two.

  8. Identical high- K three-quasiparticle rotational bands

    Science.gov (United States)

    Kaur, Harjeet; Singh, Pardeep

    2016-12-01

    A comprehensive study of high- K three-quasiparticle rotational bands in odd- A nuclei indicates the similarity in γ -ray energies and dynamic moment of inertia Im^{(2)} . The extent of the identicality between the rotational bands is evaluated by using the energy factor method. For nuclei pairs exhibiting identical bands, the average relative change in the dynamic moment of inertia Im^{(2)} is also determined. The identical behaviour shown by these bands is attributed to the interplay of nuclear structure parameters: deformation and the pairing correlations. Also, experimental trend of the I(hbar) vs. hbar ω (MeV) plot for these nuclei pairs is shown to be in agreement with Tilted-Axis Cranking (TAC) model calculations.

  9. Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask.

    Science.gov (United States)

    Wang, Xiaogang; Zhao, Daomu

    2013-09-15

    We propose a simple amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask (RAM). The RAM that is not saved during the encryption provides extremely high security for the two private keys, and no iterative calculations are involved in the nonlinear encryption process. Lack of enough constraints makes the specific attack based on iterative amplitude-phase retrieval algorithms unusable. Numerical simulation results are given for testing the validity and security of the proposed approach.

  10. Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in aRandom Field

    Institute of Scientific and Technical Information of China (English)

    LIANGYa-Qiu; WEIGuo-Zhu; SONGLi-Li; SONGGuo-Li; ZANGShu-Liang

    2004-01-01

    The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.

  11. Inverse probability weighting to estimate causal effect of a singular phase in a multiphase randomized clinical trial for multiple myeloma

    Directory of Open Access Journals (Sweden)

    Annalisa Pezzi

    2016-11-01

    Full Text Available Abstract Background Randomization procedure in randomized controlled trials (RCTs permits an unbiased estimation of causal effects. However, in clinical practice, differential compliance between arms may cause a strong violation of randomization balance and biased treatment effect among those who comply. We evaluated the effect of the consolidation phase on disease-free survival of patients with multiple myeloma in an RCT designed for another purpose, adjusting for potential selection bias due to different compliance to previous treatment phases. Methods We computed two propensity scores (PS to model two different selection processes: the first to undergo autologous stem cell transplantation, the second to begin consolidation therapy. Combined stabilized inverse probability treatment weights were then introduced in the Cox model to estimate the causal effect of consolidation therapy miming an ad hoc RCT protocol. Results We found that the effect of consolidation therapy was restricted to the first 18 months of the phase (HR: 0.40, robust 95 % CI: 0.17-0.96, after which it disappeared. Conclusions PS-based methods could be a complementary approach within an RCT context to evaluate the effect of the last phase of a complex therapeutic strategy, adjusting for potential selection bias caused by different compliance to the previous phases of the therapeutic scheme, in order to simulate an ad hoc randomization procedure. Trial registration ClinicalTrials.gov: NCT01134484 May 28, 2010 (retrospectively registered EudraCT: 2005-003723-39 December 17, 2008 (retrospectively registered

  12. Validation of the k-filtering technique for a signal composed of random phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-08-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed temporal and spatial changes to be resolved, with techniques such as the k-filtering technique. While this technique does not assume Taylor's hypothesis as is necessary with single spacecraft missions, it does require weak stationarity of the time series, and that the fluctuations can be described by a superposition of plane waves with random phase. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  13. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-12-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  14. Recombinant Bile Salt-Stimulated Lipase in Preterm Infant Feeding: A Randomized Phase 3 Study.

    Directory of Open Access Journals (Sweden)

    Charlotte Casper

    Full Text Available Feeding strategies are critical for healthy growth in preterm infants. Bile salt-stimulated lipase (BSSL, present in human milk, is important for fat digestion and absorption but is inactivated during pasteurization and absent in formula. This study evaluated if recombinant human BSSL (rhBSSL improves growth in preterm infants when added to formula or pasteurized breast milk.LAIF (Lipase Added to Infant Feeding was a randomized, double-blind, placebo-controlled phase 3 study in infants born before 32 weeks of gestation. The primary efficacy variable was growth velocity (g/kg/day during 4 weeks intervention. Follow-up visits were at 3 and 12 months. The study was performed at 54 centers in 10 European countries.In total 415 patients were randomized (rhBSSL n = 207, placebo n = 208, 410 patients were analyzed (rhBSSL n = 206, placebo n = 204 and 365 patients were followed until 12 months. Overall, there was no significantly improved growth velocity during rhBSSL treatment compared to placebo (16.77 vs. 16.56 g/kg/day, estimated difference 0.21 g/kg/day, 95% CI [-0.40; 0.83], nor were secondary endpoints met. However, in a predefined subgroup, small for gestational age infants, there was a significant effect on growth in favor of rhBSSL during treatment. The incidence of adverse events was higher in the rhBSSL group during treatment.Although this study did not meet its primary endpoint, except in a subgroup of infants small for gestational age, and there was an imbalance in short-term safety, these data provide insights in nutrition, growth and development in preterm infants.ClinicalTrials.gov NCT01413581.

  15. A simulation of the measurement of electrical conductivity in randomly generated two-phase rocks.

    Science.gov (United States)

    Mandolesi, Eric; Moorkamp, Max; Jones, Alan G.

    2014-05-01

    Geological models of the subsurface require detailed data, often unavailable from direct observation or well logs. Hence imaging the subsurface relies on models obtained by interpretation of geophysical data. Several electromagnetic (EM) geophysical methods focus on the EM properties of rocks and sediments to determine a reliable image of the subsurface, while the same electromagnetic properties are directly measured in laboratories. Often these laboratory measurements return equivocal results that are difficult to reconcile with field observations. Recently different numerical approaches have been investigated in order to understand the effects of the geometry and continuity of interconnected pathways of conductors on EM field measurements, often restricting the studies to direct current (DC) sources. Bearing in mind the time-varying nature of the natural electromagnetic sources that play a role in field measurements, we numerically simulate the effects of such EM sources on the conductivity measured on the surface of a randomly generated three-dimensional body embedded in a uniform host by using electromagnetic induction equations, thus simulating a magnetotelluric (MT) survey. A key point in such a simulation is the scalability of the problem: the deeper the target, the longer the period of the EM source is needed. On the other hand, a long period signal ignores small heterogeneous conductors in the target bulk of the material, averaging the different conductivities in a median value. Since most real rocks are poor conductors, we have modeled a two-phase mixture of rock and interconnected conductive elements (representing melts, saline fluids, sulphidic, carbonitic, or metallic sediments, etc.), randomly generated within the background host. We have compared the results from the simulated measurements with the target rock embedded at different depths with electrical conductivity predicted by both Hashin-Shtrikman (HS) bounds and an updated multi-phase Archie

  16. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sara Llufriu

    Full Text Available Uncontrolled studies of mesenchymal stem cells (MSCs in multiple sclerosis suggested some beneficial effect. In this randomized, double-blind, placebo-controlled, crossover phase II study we investigated their safety and efficacy in relapsing-remitting multiple sclerosis patients. Efficacy was evaluated in terms of cumulative number of gadolinium-enhancing lesions (GEL on magnetic resonance imaging (MRI at 6 months and at the end of the study.Patients unresponsive to conventional therapy, defined by at least 1 relapse and/or GEL on MRI scan in past 12 months, disease duration 2 to 10 years and Expanded Disability Status Scale (EDSS 3.0-6.5 were randomized to receive IV 1-2×10(6 bone-marrow-derived-MSCs/Kg or placebo. After 6 months, the treatment was reversed and patients were followed-up for another 6 months. Secondary endpoints were clinical outcomes (relapses and disability by EDSS and MS Functional Composite, and several brain MRI and optical coherence tomography measures. Immunological tests were explored to assess the immunomodulatory effects.At baseline 9 patients were randomized to receive MSCs (n = 5 or placebo (n = 4. One patient on placebo withdrew after having 3 relapses in the first 5 months. We did not identify any serious adverse events. At 6 months, patients treated with MSCs had a trend to lower mean cumulative number of GEL (3.1, 95% CI = 1.1-8.8 vs 12.3, 95% CI = 4.4-34.5, p = 0.064, and at the end of study to reduced mean GEL (-2.8±5.9 vs 3±5.4, p = 0.075. No significant treatment differences were detected in the secondary endpoints. We observed a non-significant decrease of the frequency of Th1 (CD4+ IFN-γ+ cells in blood of MSCs treated patients.Bone-marrow-MSCs are safe and may reduce inflammatory MRI parameters supporting their immunomodulatory properties. ClinicalTrials.gov NCT01228266.

  17. Effect of hybridization and dispersion of quasiparticles on the coexistent state of superconductivity and antiferromagnetism in Ni2B2C

    Indian Academy of Sciences (India)

    B K Sahoo; B N Panda

    2011-10-01

    The effect of hybridization of conduction electrons and f-level on superconductivity (SC) and antiferromagnetism (AFM) in the coexistent phase of rare-earth nickel borocarbide superconductors (Ni2B2C) is reported. The Hamiltonian of the system is a mean field one and has been solved by writing equations of motion for the single-particle Green functions. It is assumed that superconductivity arises due to BCS pairing mechanism in the presence of antiferromagnetism in nickel lattices of Ni2B2 plane. The expressions for superconducting and antiferromagnetic order parameters are derived using double time electron Green functions. The quasiparticle energy bands are plotted and the nature of band dispersion of the quasiparticles is studied.

  18. Particle-number conserving analysis for the 2-quasiparticle and high-$K$ multi-quasiparticle states in doubly-odd ${}^{174, 176}$Lu

    CERN Document Server

    Bing-Huan, Li; Yi-An, Lei

    2014-01-01

    Two-quasiparticle bands and low-lying excited high-$K$ four-, six-, and eight-quasiparticle bands in the doubly-odd ${}^{174, 176}$Lu are analyzed by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. The proton and neutron Nilsson level schemes for ${}^{174, 176}$Lu are taken from the adjacent odd-$A$ Lu and Hf isotopes, which are adopted to reproduce the experimental bandhead energies of the one-quasiproton and one-quasineutron bands of these odd-$A$ Lu and Hf nuclei, respectively. Once the quasiparticle configurations are determined, the experimental bandhead energies and the moments of inertia of these two- and multi-quasiparticle bands are well reproduced by PNC-CSM calculations. The Coriolis mixing of the low-$K$ ($K=|\\Omega_1-\\Omega_2|$) two-quasiparticle band of the Gallagher-Moszkowski doublet with one nucleon in the $\\Omega = 1/2$ orbital is analyzed.

  19. Spin polarization dependence of quasiparticle properties in graphene

    Science.gov (United States)

    Qaiumzadeh, A.; Jahanbani, Kh.; Asgari, Reza

    2012-06-01

    We address spin polarization dependence of graphene's Fermi liquid properties quantitatively using a microscopic random phase approximation theory in an interacting spin-polarized Dirac electron system. We show an enhancement of the minority-spin many-body velocity renormalization at fully spin polarization due to reduction in the electron density and consequently increase in the interaction between electrons near the Fermi surface. We also show that the spin dependence of the Fermi velocity in the chiral Fermi systems is different than that in a conventional two-dimensional electron liquid. In addition, we show that the ratio of the majority-to-minority-spin lifetime is smaller than unity and related directly to the polarization and electron energy. The spin-polarization dependence of the carrier Fermi velocity is of significance in various spintronic applications.

  20. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona (Spain))

    1993-07-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity.

  1. Mechanical topological semimetals with massless quasiparticles and a finite Berry curvature

    Science.gov (United States)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2017-06-01

    A topological quantum phase requires a finite momentum-space Berry curvature which, conventionally, can arise through breaking the inversion or the time-reversal symmetry so as to generate nontrivial, topologically invariant quantities associated with the underlying energy band structure (e.g., a finite Chern number). For conventional graphene or graphenelike two-dimensional (2D) systems with gapless Dirac cones, the symmetry breaking will make the system insulating due to lifting of the degeneracy. To design materials that simultaneously possess the two seemingly contradicting properties (i.e., a semimetal phase with gapless bulk Dirac-like cones and a finite Berry curvature) is of interest. We propose a 2D mechanical dice lattice system that exhibits precisely such properties. As a result, an intrinsic valley Hall effect can arise without compromising the carrier mobility as the quasiparticles remain massless. We also find that, with confinement along the zigzag edges, two distinct types of gapless edge states with opposite edge polarizations can arise, one with a finite but the other with zero group velocity.

  2. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    CERN Document Server

    Hung, N Quang; Hao, T V Nhan; Phuc, L Tan

    2016-01-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in $^{48, 52, 58}$Ca and $^{90, 96, 110}$Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, cau...

  3. Time-reversal acoustic focusing system as a virtual random phased array.

    Science.gov (United States)

    Sarvazyan, Armen; Fillinger, Laurent; Gavrilov, Leonid

    2010-04-01

    This paper compares the performance of two different systems for dynamic focusing of ultrasonic waves: conventional 2-D phased arrays (PA) and a focusing system based on the principles of time-reversed acoustics (TRA). Focused ultrasound fields obtained in the experiments with the TRA focusing system (TRA FS), which employs a liquid-filled reverberator with 4 piezotransducers attached to its wall, are compared with the focused fields obtained by mathematical simulation of PAs comprised from several tens to several hundreds of elements distributed randomly on the array surface. The experimental and simulated focusing systems had the same aperture and operated at a frequency centered about 600 kHz. Experimental results demonstrated that the TRA FS with a small number of channels can produce complex focused patterns and can steer them with efficiency comparable to that of a PA with hundreds of elements. It is shown that the TRA FS can be realized using an extremely simple means, such as a reverberator made of a water-filled plastic bottle with just a few piezotransducers attached to its walls.

  4. Beyond-mean-field corrections within the second random-phase approximation

    Science.gov (United States)

    Grasso, M.; Gambacurta, D.; Engel, J.

    2016-06-01

    A subtraction procedure, introduced to overcome double-counting problems in beyond-mean-field theories, is used in the second random-phase approximation (SRPA). Doublecounting problems arise in the energy-density functional framework in all cases where effective interactions tailored at leading order are used for higher-order calculations, such as those done in the SRPA model. It was recently shown that this subtraction procedure also guarantees that the stability condition related to the Thouless theorem is verified in extended RPA models. We discuss applications of the subtraction procedure, introduced within the SRPA model, to the nucleus 16O. The application of the subtraction procedure leads to: (i) stable results that are weakly cutoff dependent; (ii) a considerable upwards correction of the SRPA spectra (which were systematically shifted downwards by several MeV with respect to RPA spectra, in all previous calculations). With this important implementation of the model, many applications may be foreseen to analyze the genuine impact of 2 particle-2 hole configurations (without any cutoff dependences and anomalous shifts) on the excitation spectra of medium-mass and heavy nuclei.

  5. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  6. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Science.gov (United States)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  7. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.

    Science.gov (United States)

    Loke, Desmond; Shi, Luping; Wang, Weijie; Zhao, Rong; Yang, Hongxin; Ng, Lung-Tat; Lim, Kian-Guan; Chong, Tow-Chong; Yeo, Yee-Chia

    2011-06-24

    Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices.

  8. Correlation energies beyond the random-phase approximation: ISTLS applied to spherical atoms and ions

    CERN Document Server

    Gould, Tim

    2012-01-01

    The inhomogeneous Singwi, Tosi, Land and Sjolander (ISTLS) correlation energy functional of Dobson, Wang and Gould [PRB {\\bf 66} 081108(R) (2008)] has proved to be excellent at predicting correlation energies in semi-homogeneous systems, showing promise as a robust `next step' fifth-rung functional by using dynamic correlation to go beyond the limitations of the direct random-phase approximation (dRPA), but with similar numerical scaling with system size. In this work we test the functional on fourteen spherically symmetric, neutral and charged atomic systems and find it gives excellent results (within 2mHa/$e^-$ except Be) for the absolute correlation energies of the neutral atoms tested, and good results for the ions (within 4mHa/$e^-$). In all cases it performs better than the dRPA. When combined with the previous successes, these new results point to the ISTLS functional being a prime contender for high-accuracy, benchmark DFT correlation energy calculations.

  9. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  10. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    Science.gov (United States)

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.

  11. Biometrics based key management of double random phase encoding scheme using error control codes

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  12. Random phase approximation with second-order screened exchange for current-carrying atomic states

    Science.gov (United States)

    Zhu, Wuming; Zhang, Liang; Trickey, S. B.

    2016-12-01

    The direct random phase approximation (RPA) and RPA with second-order screened exchange (SOSEX) have been implemented with complex orbitals as a basis for treating open-shell atoms. Both RPA and RPA+SOSEX are natural implicit current density functionals because the paramagnetic current density implicitly is included through the use of complex orbitals. We confirm that inclusion of the SOSEX correction improves the total energy accuracy substantially compared to RPA, especially for smaller-Z atoms. Computational complexity makes post self-consistent-field (post-SCF) evaluation of RPA-type expressions commonplace, so orbital basis origins and properties become important. Sizable differences are found in correlation energies, total atomic energies, and ionization energies for RPA-type functionals evaluated in the post-SCF fashion with orbital sets obtained from different schemes. Reference orbitals from Kohn-Sham calculations with semi-local functionals are more suitable for RPA+SOSEX to generate accurate total energies, but reference orbitals from exact exchange (non-local) yield essentially energetically degenerate open-shell atom ground states. RPA+SOSEX correlation combined with exact exchange calculated from a hybrid reference orbital set (half the exchange calculated from exact-exchange orbitals, the other half of the exchange from orbitals optimized for the Perdew-Burke-Ernzerhof (PBE) exchange functional) gives the best overall performance. Numerical results show that the RPA-like functional with SOSEX correction can be used as a practical implicit current density functional when current effects should be included.

  13. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  14. Combining double random phase encoding for color image watermarking in quaternion gyrator domain

    Science.gov (United States)

    Shao, Zhuhong; Duan, Yuping; Coatrieux, Gouenou; Wu, Jiasong; Meng, Jinyu; Shu, Huazhong

    2015-05-01

    Quaternion representation of color image has attracted great attention due to its capability to treat holistically the three color channels. In a more general way, it has successfully been used in multi-channel signal processing applications over the past few decades. In this study, a joint encryption/watermarking system with more security based on double random phase encoding (DRPE) in quaternion gyrator transform domain is addressed. In the proposed scheme, an RGB-scale watermark image together with a grayscale watermark image or not is encoded into a quaternion matrix and encrypted through the DRPE, the encrypted data is then fused into the middle coefficients of the quaternion gyrator-transformed host image. In the process of extracting watermarks, it is impossible to retrieve them without authorized keys. Compared with the three channels independently processing approach implemented in fractional Fourier domain, the proposed algorithm achieves lower complexity by reason of avoiding repetitive operations. Experimental results have demonstrated the feasibility of the proposed algorithm and its superior performance in terms of noise robustness.

  15. First-order corrections to random-phase approximation GW calculations in silicon and diamond

    Science.gov (United States)

    Ummels, R. T. M.; Bobbert, P. A.; van Haeringen, W.

    1998-05-01

    We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency corrections to the polarizability largely compensate each other. This does not hold, however, for the first-order corrections to the GW gap. For silicon the compensation between the first-order vertex and self-consistency correction contributions to the gap is only about 35%, while for diamond it is even absent. The resulting gap values are significantly and systematically too large, the direct gaps for silicon and diamond being 0.4 eV and 0.7 eV larger than their GW values, respectively. The success of GW in predicting electronic properties of, e.g., silicon and diamond can therefore apparently not be understood in terms of ``small'' corrections to GW to first order in W using a noninteracting Green's function.

  16. First principle calculations of long range correlation effects within the random phase approximation

    Science.gov (United States)

    Lu, Deyu; Li, Yan; Wilson, Hugh; Galli, Giulia

    2009-03-01

    The local and semi-local approximations to Density Functional Theory fail to describe correctly certain types of weak interactions (e.g. van der Waals forces) due an incorrect account of long range correlation effects. Such effects may be described by computing correlation energies within the random phase approximation (RPA), using the fluctuation-dissipation theorem and the adiabatic connection. We present an approach to compute RPA correlation energies based on an eigenmode expansion of the dielectric matrix [1,2]. By solving the frequency dependent Sternheimer equation within linear response theory [3], we eliminate the need to compute single particle unoccupied states, which makes our approach more efficient than methods using the direct-summation technique. Furthermore, the use of a dielectric eigenmode representation allows for a physical interpretation of several, different contributions to correlation energies. Results for graphite and the benzene crystal will be discussed. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B, 78:113303, (2008). [2] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett., 100:147601(2008). [3] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73:515, (2001).

  17. Experimental study of a high speed quantum random number generation scheme based on measuring phase noise of a single mode laser

    CERN Document Server

    Qi, Bing; Lo, Hoi-Kwong; Qian, Li

    2009-01-01

    In this paper, we present a high speed random number generation scheme based on measuring the quantum phase noise of a single mode diode laser operating at a low intensity level near the lasing threshold. A delayed self-heterodyning system has been developed to measure the random phase fluctuation. We experimentally investigate this random number generation scheme under two different operating conditions: with or without active phase stabilization of the fiber interferometer in the self-heterodyning system. The achieved random number generation rates are 500Mbit/s and 50Mbit/s, respectively. The generated random numbers have passed all the DIEHARD tests.

  18. Double random phase spread spectrum spread space technique for secure parallel optical multiplexing with individual encryption key

    Science.gov (United States)

    Hennelly, B. M.; Javidi, B.; Sheridan, J. T.

    2005-09-01

    A number of methods have been recently proposed in the literature for the encryption of 2-D information using linear optical systems. In particular the double random phase encoding system has received widespread attention. This system uses two Random Phase Keys (RPK) positioned in the input spatial domain and the spatial frequency domain and if these random phases are described by statistically independent white noises then the encrypted image can be shown to be a white noise. Decryption only requires knowledge of the RPK in the frequency domain. The RPK may be implemented using a Spatial Light Modulators (SLM). In this paper we propose and investigate the use of SLMs for secure optical multiplexing. We show that in this case it is possible to encrypt multiple images in parallel and multiplex them for transmission or storage. The signal energy is effectively spread in the spatial frequency domain. As expected the number of images that can be multiplexed together and recovered without loss is proportional to the ratio of the input image and the SLM resolution. Many more images may be multiplexed with some loss in recovery. Furthermore each individual encryption is more robust than traditional double random phase encoding since decryption requires knowledge of both RPK and a lowpass filter in order to despread the spectrum and decrypt the image. Numerical simulations are presented and discussed.

  19. Chaos control of a class of parametrically excited Duffing's system using a random phase

    Energy Technology Data Exchange (ETDEWEB)

    Li Longsuo, E-mail: lilongsuo@126.com [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China); Yu Hedan [Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin 150001 (China)

    2011-07-15

    Highlights: > The chaotic dynamical behavior first has been controlled by random phase. > It can be proved that chaos has been suppressed from the Lyapunov exponents. > It is verified that chaos has been suppressed from Poincare map. - Abstract: As the analysis of the chaotic dynamical behavior of a parametric Duffing's system, we show that chaos can be suppressed by addition the Gauss white noise phase and determined by the sign of the top Lyapunov exponent, which is based on the Khasminskii's formulation and the extension of Wedig's algorithm for linear stochastic systems. Also Poincare map analysis is carried out to confirm the obtained results. So random phase can be realized as one of the methods of chaos control.

  20. Randomized Phase II Trial of Lyophilized Strawberries in Patients with Dysplastic Precancerous Lesions of the Esophagus

    Science.gov (United States)

    Chen, Tong; Yan, Fei; Qian, Jiaming; Guo, Mingzhou; Zhang, Hongbing; Tang, Xiaofei; Chen, Fang; Stoner, Gary D.; Wang, Xiaomin

    2016-01-01

    Dysplasia is a histologic precursor of esophageal squamous cell carcinoma (SCC). We previously showed that dietary freeze-dried, or lyophilized, strawberry powder inhibits N-nitrosomethylbenzylamine-induced SCC in the rat esophagus. On the basis of this observation, we conducted a randomized (noncomparative) phase II trial in China to investigate the effects of two doses of freeze-dried strawberries in patients with esophageal dysplastic lesions in a high-risk area for esophageal cancer. We randomly assigned 75 patients identified by endoscopy to have dysplastic esophageal premalignant lesions to receive freeze-dried strawberry powder at either 30 g/d (37 patients) or 60 g/d (38 patients) for six months; the powder was mixed with water and drunk. After six months, we assessed the changes in histologic grade of these lesions (primary endpoint) in a blinded fashion. The dose of 30 g/d, did not significantly affect histology or any other measured parameter. The dose of 60 g/d, however, reduced the histologic grade of dysplastic premalignant lesions in 29 (80.6%) of the 36 patients at this dose who were evaluated for histology (P < 0.0001). The strawberry powder was well tolerated, with no toxic effects or serious adverse events. Strawberries (60 g/d) also reduced protein expression levels of inducible nitric oxide synthase (iNOS) by 79.5% (P < 0.001), cyclooxygenase-2 (COX-2) by 62.9% (P < 0.001), phospho-nuclear factor kappa B (NFκB)-p65 (pNFκB-p65) by 62.6% (P < 0.001), and phospho-S6 (pS6) by 73.2% (P < 0.001). Freeze-dried strawberries (60 g/d) also significantly inhibited the Ki-67 labeling index by 37.9% (P = 0.023). Our present results indicate the potential of freeze-dried strawberry powder for preventing human esophageal cancer, supporting further clinical testing of this natural agent in this setting. PMID:22135048

  1. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention.

    Science.gov (United States)

    Chen, Andrew C; Martin, Andrew J; Choy, Bonita; Fernández-Peñas, Pablo; Dalziell, Robyn A; McKenzie, Catriona A; Scolyer, Richard A; Dhillon, Haryana M; Vardy, Janette L; Kricker, Anne; St George, Gayathri; Chinniah, Niranthari; Halliday, Gary M; Damian, Diona L

    2015-10-22

    Nonmelanoma skin cancers, such as basal-cell carcinoma and squamous-cell carcinoma, are common cancers that are caused principally by ultraviolet (UV) radiation. Nicotinamide (vitamin B3) has been shown to have protective effects against damage caused by UV radiation and to reduce the rate of new premalignant actinic keratoses. In this phase 3, double-blind, randomized, controlled trial, we randomly assigned, in a 1:1 ratio, 386 participants who had had at least two nonmelanoma skin cancers in the previous 5 years to receive 500 mg of nicotinamide twice daily or placebo for 12 months. Participants were evaluated by dermatologists at 3-month intervals for 18 months. The primary end point was the number of new nonmelanoma skin cancers (i.e., basal-cell carcinomas plus squamous-cell carcinomas) during the 12-month intervention period. Secondary end points included the number of new squamous-cell carcinomas and basal-cell carcinomas and the number of actinic keratoses during the 12-month intervention period, the number of nonmelanoma skin cancers in the 6-month postintervention period, and the safety of nicotinamide. At 12 months, the rate of new nonmelanoma skin cancers was lower by 23% (95% confidence interval [CI], 4 to 38) in the nicotinamide group than in the placebo group (P=0.02). Similar differences were found between the nicotinamide group and the placebo group with respect to new basal-cell carcinomas (20% [95% CI, -6 to 39] lower rate with nicotinamide, P=0.12) and new squamous-cell carcinomas (30% [95% CI, 0 to 51] lower rate, P=0.05). The number of actinic keratoses was 11% lower in the nicotinamide group than in the placebo group at 3 months (P=0.01), 14% lower at 6 months (Pnicotinamide was discontinued. Oral nicotinamide was safe and effective in reducing the rates of new nonmelanoma skin cancers and actinic keratoses in high-risk patients. (Funded by the National Health and Medical Research Council; ONTRAC Australian New Zealand Clinical Trials

  2. Methadone induction in primary care (ANRS-Methaville: a phase III randomized intervention trial

    Directory of Open Access Journals (Sweden)

    Roux Perrine

    2012-06-01

    Full Text Available Abstract Background In France, the rapid scale-up of buprenorphine, an opioid maintenance treatment (OMT, in primary care for drug users has led to an impressive reduction in HIV prevalence among injecting drug users (IDU but has had no major effect on Hepatitis C incidence. To date, patients willing to start methadone can only do so in a methadone clinic (a medical centre for drug and alcohol dependence (CSAPA or a hospital setting and are referred to primary care physicians after dose stabilization. This study aims to assess the effectiveness of methadone in patients who initiated treatment in primary care compared with those who initiated it in a CSAPA, by measuring abstinence from street opioid use after one year of treatment. Methods/Design The ANRS-Methaville study is a randomized multicenter non-inferiority control trial comparing methadone induction (lasting approximately 2 weeks in primary care and in CSAPA. The model of care chosen for methadone induction in primary care was based on study-specific pre-training of all physicians, exclusion criteria and daily supervision of methadone during the initiation phase. Between January 2009 and January 2011, 10 sites each having one CSAPA and several primary care physicians, were identified to recruit patients to be randomized into two groups, one starting methadone in primary care (n = 147, the other in CSAPA (n = 48. The primary outcome of the study is the proportion of participants abstinent from street opioids after 1 year of treatment i.e. non-inferiority of primary care model in terms of the proportion of patients not using street opioids compared with the proportion observed in those starting methadone in a CSAPA. Discussion The ANRS-Methaville study is the first in France to use an interventional trial to improve access to OMT for drug users. Once the non-inferiority results become available, the Ministry of Health and agency for the safety of health products may change the the

  3. Quasiparticles in leptogenesis. A hard-thermal-loop study

    Energy Technology Data Exchange (ETDEWEB)

    Kiessig, Clemens Paul

    2011-06-29

    We analyse the effects of thermal quasiparticles in leptogenesis using hard-thermal-loop-resummed propagators in the imaginary time formalism of thermal field theory. We perform our analysis in a leptogenesis toy model with three right-handed heavy neutrinos N{sub 1}, N{sub 2} and N{sub 3}. We consider decays and inverse decays and work in the hierarchical limit where the mass of N{sub 2} is assumed to be much larger than the mass of N{sub 1}, that is M{sub 2} >> M{sub 1}. We neglect flavour effects and assume that the temperatures are much smaller than M{sub 2} and M{sub 3}. We pay special attention to the influence of fermionic quasiparticles. We allow for the leptons to be either decoupled from each other, except for the interactions with neutrinos, or to be in chemical equilibrium by some strong interaction, for example via gauge bosons. In two additional cases, we approximate the full hard-thermal-loop lepton propagators with zero-temperature propagators, where we replace the zero-temperature mass by the thermal mass of the leptons m{sub l}(T) in one case and the asymptotic mass of the positive-helicity mode {radical}(2)m{sub l}(T) in the other case. We calculate all relevant decay rates and CP-asymmetries and solve the corresponding Boltzmann equations we derived. We compare the final lepton asymmetry of the four thermal cases and the vacuum case for three different initial neutrino abundances; zero, thermal and dominant abundance. The final asymmetries of the thermal cases differ considerably from the vacuum case and from each other in the weak washout regime for zero abundance and in the intermediate regime for dominant abundance. In the strong washout regime, where no influences from thermal corrections are commonly expected, the final lepton asymmetry can be enhanced by a factor of two by hiding part of the lepton asymmetry in the quasi-sterile minus-mode in the case of strongly interacting lepton modes. (orig.)

  4. Basic equations of the quasiparticle-phonon nuclear model for odd spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, A.I.; Tien Khoa, D.; Voronov, V.V.

    1986-02-01

    This paper obtains, in general form, the system of basic equations of the quasiparticle-phonon nuclear model for odd spherical nuclei. The equations take into account the anharmonicity of the vibrations of the even-even core and the corrections made necessary by the Pauli principle. It is shown that the system of equations contains all the variants of approximate equations of the quasiparticle-phonon model that are widely used in calculations.

  5. Description of multi-quasiparticle bands by the tilted axis cranking model 21.60.-n; High K rotational bands; Tilted axis cranking; Multi-quasiparticle configurations

    CERN Document Server

    Frauendorf, S

    2000-01-01

    The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electro-magnetic transition probabilities are given. The mean field solutions are interpreted in terms of quantal rotational states. The construction of the quasiparticle configurations and the elimination of spurious states is discussed. The application of the theory to high spin data is demonstrated by analyzing the multi-quasiparticle bands in the nuclides with N=102,103 and Z=71,72,73.

  6. Benchmark tests and spin adaptation for the particle-particle random phase approximation.

    Science.gov (United States)

    Yang, Yang; van Aggelen, Helen; Steinmann, Stephan N; Peng, Degao; Yang, Weitao

    2013-11-07

    The particle-particle random phase approximation (pp-RPA) provides an approximation to the correlation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)]. It has virtually no delocalization error nor static correlation error for single-bond systems. However, with its formal O(N(6)) scaling, the pp-RPA is computationally expensive. In this paper, we implement a spin-separated and spin-adapted pp-RPA algorithm, which reduces the computational cost by a substantial factor. We then perform benchmark tests on the G2/97 enthalpies of formation database, DBH24 reaction barrier database, and four test sets for non-bonded interactions (HB6/04, CT7/04, DI6/04, and WI9/04). For the G2/97 database, the pp-RPA gives a significantly smaller mean absolute error (8.3 kcal/mol) than the direct particle-hole RPA (ph-RPA) (22.7 kcal/mol). Furthermore, the error in the pp-RPA is nearly constant with the number of atoms in a molecule, while the error in the ph-RPA increases. For chemical reactions involving typical organic closed-shell molecules, pp- and ph-RPA both give accurate reaction energies. Similarly, both RPAs perform well for reaction barriers and nonbonded interactions. These results suggest that the pp-RPA gives reliable energies in chemical applications. The adiabatic connection formalism based on pairing matrix fluctuation is therefore expected to lead to widely applicable and accurate density functionals.

  7. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    Science.gov (United States)

    Hung, N. Quang; Dang, N. Dinh; Hao, T. V. Nhan; Phuc, L. Tan

    2016-12-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in 48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-weighted sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking into account the contribution of the particle-particle and hole-hole excitations together with the particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.

  8. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease.

    Science.gov (United States)

    Saute, Jonas Alex Morales; de Castilhos, Raphael Machado; Monte, Thais Lampert; Schumacher-Schuh, Artur Francisco; Donis, Karina Carvalho; D'Ávila, Rui; Souza, Gabriele Nunes; Russo, Aline Dutra; Furtado, Gabriel Vasata; Gheno, Tailise Conte; de Souza, Diogo Onofre Gomes; Portela, Luis Valmor Cruz; Saraiva-Pereira, Maria-Luiza; Camey, Suzi Alvez; Torman, Vanessa Bielefeld Leotti; de Mello Rieder, Carlos Roberto; Jardim, Laura Bannach

    2014-04-01

    Because lithium exerts neuroprotective effects in preclinical models of polyglutamine disorders, our objective was to assess the safety and efficacy of lithium carbonate (0.5-0.8 milliequivalents per liter) in patients with Machado-Joseph disease (spinocerebellar ataxia type 3 [MJD/SCA3]). For this phase 2, single-center, double-blind, parallel, placebo-controlled trial (ClinicalTrials.gov identifier NCT01096082), 62 patients who had MJD/SCA3 with a disease duration ≤10 years and an independent gait were randomly assigned (1:1) to receive either lithium or placebo. After 24 weeks, 169 adverse events were reported, including 50.3% in the lithium group (P = 1.00; primary safety outcome). Sixty patients (31 in the placebo group and 29 in the lithium group) were analyzed for efficacy (intention-to-treat analysis). Mean progression between groups did not differ according to scores on the Neurological Examination Score for the Assessment of Spinocerebellar Ataxia (NESSCA) after 48 weeks (-0.35; 95% confidence interval, -1.7 to 1.0; primary efficacy outcome). The lithium group exhibited minor progression on the PATA speech-rate (P = 0.002), the nondominant Click Test (P = 0.023), the Spinocerebellar Ataxia Functional Index (P = 0.003), and the Composite Cerebellar Functional Score (P = 0.029). Lithium was safe and well tolerated, but it had no effect on progression when measured using the NESSCA in patients with MJD/SCA3. This slowdown in secondary outcomes deserves further clarification. © 2014 International Parkinson and Movement Disorder Society.

  9. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.

    Science.gov (United States)

    van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  10. Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia.

    Science.gov (United States)

    Byrd, John C; Flynn, Joseph M; Kipps, Thomas J; Boxer, Michael; Kolibaba, Kathryn S; Carlile, David J; Fingerle-Rowson, Guenter; Tyson, Nicola; Hirata, Jamie; Sharman, Jeff P

    2016-01-07

    Obinutuzumab is a glycoengineered, type 2 anti-CD20 humanized antibody with single-agent activity in relapsed chronic lymphocytic leukemia (CLL). With other CD20 antibodies, a dose-response relationship has been shown. We therefore performed a randomized phase 2 study in symptomatic, untreated CLL patients to evaluate if an obinutuzumab dose response exists. Obinutuzumab was given at a dose of 1000 mg (100 mg IV day 1, 900 mg day 2, 1000 mg day 8 and day 15 of cycle 1; 1000 mg day 1 of cycles 2-8) or 2000 mg (100 mg IV day 1, 900 mg day 2, 1000 mg day 3, 2000 mg day 8 and day 15 of cycle 1; 2000 mg day 1 of cycles 2-8). The primary end point was overall response rate (ORR). Eighty patients were enrolled with similar demographics: median age 67 years, 41% high-risk Rai disease, and 10% del(17p)(13.1). ORR (67% vs 49%, P = .08) and complete response (CR) or CR with incomplete cytopenia response (20% vs 5%) favored 2000 mg obinutuzumab. Overall, therapy was well tolerated, and infusion events were manageable. This study demonstrates significant efficacy of obinutuzumab monotherapy, for 1000 mg as well as for 2000 mg, in untreated CLL patients with acceptable toxicity. Although exploratory, a dose-response relationship may exist, but its relevance to improving progression-free survival is uncertain and will require further follow-up. This trial was registered at www.clinicaltrials.gov as #NCT01414205.

  11. Phase III randomized trial of toremifene versus tamoxifen for Japanese postmenopausal patients with early breast cancer.

    Science.gov (United States)

    Kimura, Morihiko; Tominaga, Takeshi; Kimijima, Izo; Takatsuka, Yuichi; Takashima, Shigemitsu; Nomura, Yasuo; Kasumi, Fujio; Yamaguchi, Akihiro; Masuda, Norikazu; Noguchi, Shinzaburo; Eshima, Nobuoki

    2014-05-01

    Toremifene, a selective estrogen receptor modulator, is used as adjuvant therapy for postmenopausal patients with breast cancer in Japan. For Japanese patients, however, only limited data are available on the efficacy and safety profile of toremifene. To establish the long term efficacy and safety of toremifene for Japanese patients, we conducted a prospective, multicenter, randomized phase III trial comparing toremifene and tamoxifen. The subjects were postmenopausal Japanese patients who had undergone surgery for node-negative breast cancer. Toremifene or tamoxifen was administered for 2 years. The primary endpoint was demonstration of the non-inferiority of toremifene compared with tamoxifen in respect of 5-year survival. Secondary endpoints were cumulative overall survival, cumulative disease-free survival, effects on lipid profiles, and adverse events. A total of 253 patients were enrolled. The baseline characteristics of the two treatment groups were well-balanced. Median follow-up was 66.5 months. Five-year survival was similar for toremifene and tamoxifen (97.0 vs. 96.9 %; 90 % confidence interval -3.9 to 4.1), indicating that toremifene is not inferior to tamoxifen for postmenopausal Japanese patients with early breast cancer. Cumulative overall survival and cumulative disease-free survival were also very similar for toremifene and tamoxifen (97.5 vs. 97.3 %, log-rank test P = 0.9458; 88.4 vs. 90.6 %, log-rank test P = 0.3359, respectively). Adverse events in both groups were similar and mostly mild or moderate. Thus, both are equally effective and well tolerated. Our results suggest that the efficacy and safety of toremifene and tamoxifen are equivalent for postmenopausal Japanese patients with early breast cancer.

  12. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    Science.gov (United States)

    Rashid, H.; Desmaris, V.; Pavolotsky, A.; Belitsky, V.

    2016-04-01

    In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.

  13. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    Directory of Open Access Journals (Sweden)

    H. Rashid

    2016-04-01

    Full Text Available In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.

  14. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Spin-orbit scattering visualized in quasiparticle interference

    Science.gov (United States)

    Kohsaka, Y.; Machida, T.; Iwaya, K.; Kanou, M.; Hanaguri, T.; Sasagawa, T.

    2017-03-01

    In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons—spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental techniques directly accessible to this effect are limited. Here we show that a signature of spin-orbit scattering manifests itself in quasiparticle interference (QPI) imaged by spectroscopic-imaging scanning tunneling microscopy. The experimental data of a polar semiconductor BiTeI are well reproduced by numerical simulations with the T -matrix formalism that include not only scalar scattering normally adopted but also spin-orbit scattering stronger than scalar scattering. To accelerate the simulations, we extend the standard efficient method of QPI calculation for momentum-independent scattering to be applicable even for spin-orbit scattering. We further identify a selection rule that makes spin-orbit scattering visible in the QPI pattern. These results demonstrate that spin-orbit scattering can exert predominant influence on QPI patterns and thus suggest that QPI measurement is available to detect spin-orbit scattering.

  16. Pseudolocalized Three-dimensional Solitary Waves as Quasi-Particles

    CERN Document Server

    Christov, C I

    2012-01-01

    A higher-order dispersive equation is introduced as a candidate for the governing equation of a field theory. A new class of solutions of the three-dimensional field equation are considered, which are not localized functions in the sense of the integrability of the square of the profile over an infinite domain. For the new type of solutions, the gradient and/or the Hessian/Laplacian are square integrable. In the linear limiting case, analytical expression for the pseudolocalized solution is found and the method of variational approximation is applied to find the dynamics of the centers of the quasi-particles (QPs) corresponding to these solutions. A discrete Lagrangian can be derived due to the localization of the gradient and the Laplacian of the profile. The equations of motion of the QPs are derived from the discrete Lagrangian. The pseudomass ("wave mass") of a QP is defined as well as the potential of interaction. The most important trait of the new QPs is that at large distances, the force of attraction...

  17. Quasiparticle motion in some classical and quantum mechanical systems: Investigations of nanoscale friction and polaron mobility

    Science.gov (United States)

    Tiwari, Mukesh

    In this thesis, we investigate some topics of transport in classical and quantum systems. The classical system under study is related to friction at the nanoscale. The first model we consider is that of a dimer moving on a 1-dimensional periodic substrate; we study the role of an internal channel of dissipation on the effective damping experienced by the dimer during its motion. With the view that understanding of the processes at the microscopic scale can shed some light on the origin of frictional forces, we undertake a systematic study of the scattering of a free particle by a harmonic oscillator. This study starts from a Hamiltonian description of the system, without any phenomenological damping. The dissipation in this system results from an exchange of energy between the particle and the oscillator when they are in close proximity. This classical scattering problem becomes chaotic as a result of exchange of energy. We present, in detail, a study of the chaotic scattering process for an initially static oscillator. In the case of an initially excited oscillator, extraction of information about the chaotic set requires the construction of Smale horseshoe on an appropriate Poincare surface of section. A discussion on the construction of this chaotic invariant set is also provided in this thesis. Interacting quasiparticle-boson systems form an important part of condensed matter physics. Various approximation schemes are often employed in the study of these systems. In order to understand the response of a quasi-particle to externally applied electric fields, we study in the second part of this thesis, the 2-site quantum dimer under the semiclassical approximation. The role of initial phases and effects of resonance between phonon frequency and the frequency due to the Stark splitting of states is investigated. This thesis also contains discussions regarding the frequency response of both degenerate and nondegenerate adiabatic semiclassical models and self

  18. Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Science.gov (United States)

    Morais, C. V.; Zimmer, F. M.; Lazo, M. J.; Magalhães, S. G.; Nobre, F. D.

    2016-06-01

    The behavior of the nonlinear susceptibility χ3 and its relation to the spin-glass transition temperature Tf in the presence of random fields are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the random fields is analyzed. Particularly, in the absence of random fields, the temperature Tf can be traced by a divergence in the spin-glass susceptibility χSG, which presents a term inversely proportional to the replicon λAT. As a result of a relation between χSG and χ3, the latter also presents a divergence at Tf, which comes as a direct consequence of λAT=0 at Tf. However, our results show that, in the presence of random fields, χ3 presents a rounded maximum at a temperature T* which does not coincide with the spin-glass transition temperature Tf (i.e., T*>Tf for a given applied random field). Thus, the maximum value of χ3 at T* reflects the effects of the random fields in the paramagnetic phase instead of the nontrivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3 still maintains a dependence on the replicon λAT, although in a more complicated way as compared with the case without random fields. These results are discussed in view of recent observations in the LiHoxY1 -xF4 compound.

  19. Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack.

    Science.gov (United States)

    Tashima, Hideaki; Takeda, Masafumi; Suzuki, Hiroyuki; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2010-06-21

    We have shown that the application of double random phase encoding (DRPE) to biometrics enables the use of biometrics as cipher keys for binary data encryption. However, DRPE is reported to be vulnerable to known-plaintext attacks (KPAs) using a phase recovery algorithm. In this study, we investigated the vulnerability of DRPE using fingerprints as cipher keys to the KPAs. By means of computational experiments, we estimated the encryption key and restored the fingerprint image using the estimated key. Further, we propose a method for avoiding the KPA on the DRPE that employs the phase retrieval algorithm. The proposed method makes the amplitude component of the encrypted image constant in order to prevent the amplitude component of the encrypted image from being used as a clue for phase retrieval. Computational experiments showed that the proposed method not only avoids revealing the cipher key and the fingerprint but also serves as a sufficiently accurate verification system.

  20. Efficacy of extended-release tramadol for treatment of prescription opioid withdrawal: A two-phase randomized controlled trial*

    Science.gov (United States)

    Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L.

    2013-01-01

    Background Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: 1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and 2) whether cessation of ER tramadol produces opioid withdrawal. Methods Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Results Use of breakthrough withdrawal medication differed significantly (ptramadol 200 mg produced significantly lower peak ratings than placebo on ratings of insomnia, lacrimation, muscular tension, and sneezing. Only tramadol 600 mg produced miosis in Phase 1. In Phase 2, tramadol 600 mg produced higher peak ratings of rhinorrhea, irritable, depressed, heavy/sluggish, and hot/cold flashes than placebo. There were no serious adverse events and no signal of abuse liability for tramadol. Conclusions ER tramadol 200 mg modestly attenuated opioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. PMID:23755929

  1. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial.

    Science.gov (United States)

    Nachum, Zohar; Garmi, Gali; Kadan, Yfat; Zafran, Noah; Shalev, Eliezer; Salim, Raed

    2010-11-07

    A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1), oxytocin (group 2) or both (group 3). A group of women who progressed spontaneously without intervention composed the control group (group 4). The primary outcome was the duration of time from initiation of augmentation until delivery. A total of 213 women were consented and randomized to group 1 (70 women), group 2 (72 women) and group 3 (71 women). Group 4 was composed from additional 70 women. A mean reduction of 120 minutes in labor duration was observed among group 3 compared to group 1 (p = 0.08) and 180 minutes compared to group 2 and 4 (p = 0.001). Women in group 3 had a shorter length of time from augmentation until the beginning of the active phase and a shorter first stage of labor than group 1 (p = 0.03), group 2 (p = 0.001) and group 4 (p = 0.001). Satisfaction was greater among group 3 and 4. Mode of delivery and neonatal outcome were comparable between the groups. Labor augmentation by combined amniotomy and oxytocin among women with a prolonged latent phase at term seems superior compared to either of them alone.

  2. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Amaran, Saieswari; Kosloff, Ronnie [Fritz Haber Research Centre and The Department of Physical Chemistry, Hebrew University, Jerusalem 91904 (Israel); Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rybak, Leonid; Levin, Liat; Amitay, Zohar [The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel (Germany)

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  3. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.

    Science.gov (United States)

    Burow, Asbjörn M; Bates, Jefferson E; Furche, Filipp; Eshuis, Henk

    2014-01-14

    The random phase approximation (RPA) is an increasingly popular method for computing molecular ground-state correlation energies within the adiabatic connection fluctuation-dissipation theorem framework of density functional theory. We present an efficient analytical implementation of first-order RPA molecular properties and nuclear forces using the resolution-of-the-identity (RI) approximation and imaginary frequency integration. The centerpiece of our approach is a variational RPA energy Lagrangian invariant under unitary transformations of occupied and virtual reference orbitals, respectively. Its construction requires the solution of a single coupled-perturbed Kohn-Sham equation independent of the number of perturbations. Energy gradients with respect to nuclear displacements and other first-order properties such as one-particle densities or dipole moments are obtained from partial derivatives of the Lagrangian. Our RPA energy gradient implementation exhibits the same [Formula: see text] scaling with system size N as a single-point RPA energy calculation. In typical applications, the cost for computing the entire gradient vector with respect to nuclear displacements is ∼5 times that of a single-point RPA energy calculation. Derivatives of the quadrature nodes and weights used for frequency integration are essential for RPA gradients with an accuracy consistent with RPA energies and can be included in our approach. The quality of RPA equilibrium structures is assessed by comparison to accurate theoretical and experimental data for covalent main group compounds, weakly bonded dimers, and transition metal complexes. RPA outperforms semilocal functionals as well as second-order Møller-Plesset (MP2) theory, which fails badly for the transition metal compounds. Dipole moments of polarizable molecules and weakly bound dimers show a similar trend. RPA harmonic vibrational frequencies are nearly of coupled cluster singles, doubles, and perturbative triples quality

  4. A randomized controlled phase Ib trial of the malaria vaccine candidate GMZ2 in African children.

    Directory of Open Access Journals (Sweden)

    Sabine Bélard

    Full Text Available BACKGROUND: GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3 and glutamate rich protein (GLURP that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials. METHODOLOGY/PRINCIPAL FINDINGS: Thirty children one to five years of age were randomized to receive three doses of either 30 µg or 100 µg of GMZ2, or rabies vaccine. GMZ2, adjuvanted in aluminum hydroxide, was administered on Days 0, 28 and 56. All participants received a full course of their respective vaccination and were followed up for one year. Both 30 µg and 100 µg GMZ2 vaccine doses were well tolerated and induced antibodies and memory B-cells against GMZ2 as well as its antigenic constituents MSP3 and GLURP. After three doses of vaccine, the geometric mean concentration of antibodies to GMZ2 was 19-fold (95%CI: 11,34 higher in the 30 µg GMZ2 group than in the rabies vaccine controls, and 16-fold (7,36 higher in the 100 µg GMZ2 group than the rabies group. Geometric mean concentration of antibodies to MSP3 was 2.7-fold (1.6,4.6 higher in the 30 µg group than in the rabies group and 3.8-fold (1.5,9.6 higher in the 100 µg group. Memory B-cells against GMZ2 developed in both GMZ2 vaccinated groups. CONCLUSIONS/SIGNIFICANCE: Both 30 µg as well as 100 µg intramuscular GMZ2 are immunogenic, well tolerated, and safe in young, malaria-exposed Gabonese children. This result confirms previous findings in naïve and malaria-exposed adults and supports further clinical development of GMZ2. TRIAL REGISTRATION: ClinicalTrials.gov NCT00703066.

  5. Field-Induced Multiple Reentrant Quantum Phase Transitions in Randomly Dimerized Antiferromagnetic S=1/2 Heisenberg Chains

    Science.gov (United States)

    Hida, Kazuo

    2006-07-01

    The multiple reentrant quantum phase transitions in the S=1/2 antiferromagnetic Heisenberg chains with random bond alternation in the magnetic field are investigated by the density matrix renormalization group method combined with interchain mean field approximation. It is assumed that odd numbered bonds are antiferromagnetic with strength J and even numbered bonds can take the values JS and JW (JS > J > JW > 0) randomly with the probabilities p and 1- p, respectively. The pure version ( p=0 and 1) of this model has a spin gap but exhibits a field-induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due to the magnetic field exceeds the spin gap. For 0 < p < 1, antiferromagnetism is induced by randomness at the small field region where the ground state is disordered due to the spin gap in the pure version. At the same time, this model exhibits randomness-induced plateaus at several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a consequence, we find a series of reentrant quantum phase transitions between transverse antiferromagnetic phases and disordered plateau phases with the increase of magnetic field for a moderate strength of interchain coupling. Above the main plateaus, the magnetization curve consists of a series of small plateaus and jumps between them. It is also found that antiferromagnetism is induced by infinitesimal interchain coupling at the jumps between the small plateaus. We conclude that this antiferromagnetism is supported by the mixing of low-lying excited states by the staggered interchain mean field even though the spin correlation function is short ranged in the ground state of each chain.

  6. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    OpenAIRE

    2015-01-01

    A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM) signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM), the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction wi...

  7. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2017-09-01

    The question of which non-interacting Green’s function ‘best’ describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green’s function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green’s functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  8. The topology of large-scale structure. I - Topology and the random phase hypothesis. [galactic formation models

    Science.gov (United States)

    Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.

    1987-01-01

    Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.

  9. Role of 'quasiparticle x phonon' components in gamma-decay of high-lying states

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V.Yu.; Soloviev, V.G.; Vdovin, A.I.; Stoyanov, C.

    1987-01-15

    The ..gamma.. decay rates of highly excited nuclear states of odd-mass nuclei into the low-lying one-quasiparticle states are calculated in a microscopic way. We conclude that not only the one quasiparticle component but also ''quasiparticle x phonon'' components of the wave function of highly excited states can play an important role in their ..gamma.. decay.

  10. Phase Diagrams, Criticality, and Local Properties of Spin Glasses and Random-Field Ising Models from Renormalization - Calculations.

    Science.gov (United States)

    Hartford, Edward John

    This position-space renormalization-group study focuses on two systems with quenched disorder: the Ising spin glass and the asymmetric random-field Ising model. We have employed the Migdal-Kadanoff approach to determine local recursion relations and have retained the full correlated probability distribution of interactions and fields at each iteration in a series of histograms. We find an equilibrium spin-glass phase in three dimensions, but not in two. The spin glass is characterized by a distribution of effective interactions that broadens under iteration, signaling both the long-range order of the phase and the importance of competing interactions on all length scales. We have introduced a method to calculate the distribution of local properties by differentiating the free energy with respect to a particular magnetic field or interaction. Within the spin-glass phase, the nearest neighbor correlation ranges from negative one to one, showing the strong correlations and the local variation within the phase. The spin-glass-to-paramagnet phase transition is second order, with a smooth specific heat indicated by a negative critical exponent alpha. The multicritical point separating the spin-glass, paramagnetic, and ferromagnetic phases lies along the Nishimori line and also has a nondivergent specific heat. When the system undergoes quenched dilution, the resulting critical and multicritical behaviors are identical to those of the undiluted system. Even the addition of an infinitesimal magnetic field destroys the long-range spin-glass order; however, the characteristic broadening of the distribution continues for several iterations for small fields and low temperatures, suggesting the persistence of sizable spin-glass domains. Our study of the asymmetric random-field Ising model is motivated by recent experiments on phase transitions in porous media and mean-field treatments, which suggest that new critical behavior could occur when the distribution of fields is

  11. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  12. Phase-I and randomized phase-II trial of panobinostat in combination with ICE (ifosfamide, carboplatin, etoposide) in relapsed or refractory classical Hodgkin lymphoma.

    Science.gov (United States)

    Hu, Bei; Younes, Anas; Westin, Jason R; Turturro, Francesco; Claret, Linda; Feng, Lei; Fowler, Nathan; Neelapu, Sattva; Romaguera, Jorge; Hagemeister, Fredrick B; Rodriguez, Maria Alma; Samaniego, Felipe; Fayad, Luis E; Copeland, Amanda R; Nastoupil, Loretta J; Nieto, Yago; Fanale, Michelle A; Oki, Yasuhiro

    2017-08-09

    This phase-I/phase-II study evaluated panobinostat in combination with ifosfamide, carboplatin, etoposide (P-ICE) in relapsed/refractory classical Hodgkin lymphoma. During phase I, panobinostat was given daily on Monday/Wednesday/Friday starting one week prior to Cycle 1 (C1) of ICE and during two weeks of C1-2 of ICE (Schedule A). No DLT was observed at 30 mg. However, frequent (84%) grade-4 thrombocytopenia during second week prompted us to omit the second week of panobinostat 30 mg (Schedule B) for phase II, where this regimen was compared to ICE. In the randomized phase-II study, CR was seen in 9/11 (82%) and 8/12 (67%) for P-ICE and ICE, respectively (p = .64). Grade-4 neutropenia (55% vs. 8%) and thrombocytopenia (100% vs. 33%) were more common in P-ICE. In summary, combination therapy using panobinostat produced high CR rate at the cost of greater bone marrow toxicity. Investigation of panobinostat with less myelosuppressive agents is of interest.

  13. Effect of random phase mask on input plane in photorefractive authentic memory with two-wave encryption method

    Science.gov (United States)

    Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi

    2004-06-01

    We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.

  14. Phase Behavior of the Ternary Solution Involving Rodlike and Random Coil Polymers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The present paper covers the phase behavior of poly(p-benzamide)(PBA)/Nylon 6/H2SO4 and poly(p-phenylene terephthalamide) (PPTA)/Nylon 6/H2SO4 systems. The transition temperatures detected by the Depolarized Light Intensity measurements were used to construct the phase diagram in which the influence of temperature was shown. The enhanced depolarized light intensity observed in the ternary system suggests that the coil polymer chains may tend to be extended and contribute to the overall anisotropy of the liquid crystal phase.

  15. Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Trulsen, J.

    1991-01-01

    Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...

  16. Alpha-helix <-> random coil phase transition: analysis of ab initio theory predictions

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we present results of calculations obtained with the use of the theoretical method described in our preceding paper [Eur. Phys. J. D, DOI 10.1140/epjd/e2007-00328-9] and perform detail analysis of -helix random coil transition in alanine polypeptides of different length. We...

  17. Vernakalant hydrochloride for rapid conversion of atrial fibrillation - A phase 3, randomized, placebo-controlled trial

    DEFF Research Database (Denmark)

    Roy, D.; Pratt, C.M.; Torp-Pedersen, C.;

    2008-01-01

    Background - The present study assessed the efficacy and safety of vernakalant hydrochloride ( RSD1235), a novel compound, for the conversion of atrial fibrillation ( AF). Methods and Results - Patients were randomized in a 2: 1 ratio to receive vernakalant or placebo and were stratified by AF du...

  18. Quasiparticle and Josephson Current in the Intrinsic Josephson Junctions in Htsc

    Science.gov (United States)

    Shukrinov, Yu. M.; Namiranian, A.; Najafi, A.

    2000-09-01

    The tunneling properties of the model structure consisting of HTSC and normal metal are studied. The influence of the impurity concentration in CuO2 layers on the high energy features is investigated, taking into account tight binding band structure, d-wave gap symmetry, group velocity and tunneling directionality. The increasing of the impurity lifetime broadening factor changes the degree of tunneling conductance peaks asymmetry, leads to nonequal shifting of the quasiparticle peaks and their width. We consider that the underlying asymmetry of the conductance peaks is primarily due to the features of quasiparticle energy spectrum and the d-wave symmetry enhances the degree of the peaks asymmetry. The analysis of c-axis transport of quasiparticles and Cooper pairs of stacked intrinsic junctions in HTSC is done.

  19. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    Science.gov (United States)

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  20. Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet

    Science.gov (United States)

    Šmejkal, L.; Železný, J.; Sinova, J.; Jungwirth, T.

    2017-03-01

    Spin orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated independently about a decade ago. Here we predict that Dirac quasiparticles can be controlled by the spin-orbit torque reorientation of the Néel vector in an antiferromagnet. Using CuMnAs as an example, we formulate symmetry criteria allowing for the coexistence of topological Dirac quasiparticles and Néel spin-orbit torques. We identify the nonsymmorphic crystal symmetry protection of Dirac band crossings whose on and off switching is mediated by the Néel vector reorientation. We predict that this concept verified by minimal model and density functional calculations in the CuMnAs semimetal antiferromagnet can lead to a topological metal-insulator transition driven by the Néel vector and to the topological anisotropic magnetoresistance.

  1. Biased impurity tunneling current emission spectrum in the presence of quasi-particle interaction

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2016-09-01

    We performed theoretical investigations of the tunneling current noise spectra through single-level impurity in the presence of quasi-particle (electron-phonon) interaction by means of the non-equilibrium Green function formalism. We demonstrated a fundamental link between quantum noise in tunneling contact and light emission processes. We calculated tunneling current noise spectra through a single level impurity atom both in the presence and in the absence of quasi-particle interaction for a finite bias voltage and identified it as a source of experimentally observed light emission from bias STM contacts. The results turn out to be sensitive to the tunneling contact parameters. Our findings provide important insight into the nature of non-equilibrium electronic transport in tunneling junctions with quasi-particle interaction.

  2. Quasiparticle parity lifetime of bound states in a hybrid superconductor-semiconductor quantum dot

    Science.gov (United States)

    Higginbotham, Andrew; Albrecht, Sven; Kirsanskas, Gediminas; Chang, Willy; Kuemmeth, Ferdinand; Krogstrup, Peter; Jespersen, Thomas; Nygård, Jesper; Flensberg, Karsten; Marcus, Charles

    2015-03-01

    We measure quasiparticle transport in an InAs nanowire that is half-covered with epitaxial superconducting aluminum, then locally gated to form a quantum dot. We observe negative differential conductance at finite source-drain bias, and temperature dependent even-odd alternations in the Coulomb blockade peak spacings at zero bias. These observations can be understood in terms of a mid-gap semiconductor discrete state and a continuum of BCS quasiparticle states. Comparing with simple models, we bound the discrete state's parity lifetime and the quasiparticle temperature. These results indicate that parity fluctuations are slow, and imply Majorana qubit poisoning times on the order of a millisecond. Additional results indicate that the bound states move to zero energy in a magnetic field, qualitatively consistent with expectations for Majorana fermions in a finite system. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  3. Quasi-particle Continuum and Resonances in the Hartree-Fock-Bogoliubov Theory

    Energy Technology Data Exchange (ETDEWEB)

    Pei, J. C. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Kruppa, Andras Tibor [ORNL; Nazarewicz, Witold [ORNL

    2011-01-01

    The quasi-particle energy spectrum of the Hartree-Fock-Bogoliubov (HFB) equations contains discrete bound states, resonances, and non-resonant continuum states. We study the structure of the unbound quasi-particle spectrum of weakly bound nuclei within several methods that do not rely on imposing scattering or outgoing boundary conditions. Various approximations are examined to estimate resonance widths. It is shown that the stabilization method works well for all HFB resonances except for very narrow ones. The Thomas-Fermi approximation to the non-resonant continuum has been shown to be very effective, especially for coordinate-space HFB calculations in large boxes that involve huge amounts of discretized quasi-particle continuum states.

  4. Quasiparticle continuum and resonances in the Hartree-Fock-Bogoliubov theory

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Junchen [ORNL; Kruppa, A. T. [Joint Institute for Heavy Ion Research, Oak Ridge; Nazarewicz, W. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2011-01-01

    The quasi-particle energy spectrum of the Hartree-Fock-Bogoliubov (HFB) equations contains discrete bound states, resonances, and non-resonant continuum states. We study the structure of the unbound quasi-particle spectrum of weakly bound nuclei within several methods that do not rely on imposing scattering or outgoing boundary conditions. Various approximations are examined to estimate resonance widths. It is shown that the stabilization method works well for all HFB resonances except for very narrow ones. The Thomas-Fermi approximation to the non-resonant continuum has been shown to be very effective, especially for coordinate-space HFB calculations in large boxes that involve huge amounts of discretized quasi-particle continuum states.

  5. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.

    Science.gov (United States)

    Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J

    2013-01-01

    High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

  6. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Shalev Eliezer

    2010-11-01

    Full Text Available Abstract Background A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Methods Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1, oxytocin (group 2 or both (group 3. A group of women who progressed spontaneously without intervention composed the control group (group 4. The primary outcome was the duration of time from initiation of augmentation until delivery. Results A total of 213 women were consented and randomized to group 1 (70 women, group 2 (72 women and group 3 (71 women. Group 4 was composed from additional 70 women. A mean reduction of 120 minutes in labor duration was observed among group 3 compared to group 1 (p = 0.08 and 180 minutes compared to group 2 and 4 (p = 0.001. Women in group 3 had a shorter length of time from augmentation until the beginning of the active phase and a shorter first stage of labor than group 1 (p = 0.03, group 2 (p = 0.001 and group 4 (p = 0.001. Satisfaction was greater among group 3 and 4. Mode of delivery and neonatal outcome were comparable between the groups. Conclusion Labor augmentation by combined amniotomy and oxytocin among women with a prolonged latent phase at term seems superior compared to either of them alone.

  7. Dynamic Monte Carlo simulation on behavior of phase transition of a random magnetic system in finite observation time

    Energy Technology Data Exchange (ETDEWEB)

    Kitazaki, Tamotsu; Kato, Tomohiko, E-mail: katou@fit.ac.jp

    2014-03-15

    Random magnets generally exhibit gradual phase transitions more or less. The origin of the phenomena has been controversial for a long time: intrinsic phenomena of disordered magnets or non-equilibrium effect due to finite observation time. We now support the latter, but there have not been clear evidences experimentally and theoretically. We show that the behavior of phase transition of a simple random magnetic system differs in the observation time by using a dynamic Monte Carlo simulation. The target of the simulation is experiments of the line width of NMR spin-echo spectra, a type of the order parameter, on Mn{sub x}Cd{sub 1−x} (HCOO){sub 2}·2(NH{sub 2})2CO. The calculated results indicate that, as the averaging time becomes shorter, the phase transition becomes more gradual. This tendency is most pronounced around the percolation concentration. The calculated results coincide well with the characteristic features of the experimental results. This coincidence supports that the smearing behavior of the order parameter is a non-equilibrium effect, though Ising model employed in the simulation is different with Heisenberg system of the target substance.

  8. Phase Structure of the Random-Plaquette Z_2 Gauge Model: Accuracy Threshold for a Toric Quantum Memory

    CERN Document Server

    Ohno, T; Ichinose, I; Matsui, T; Ohno, Takuya; Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo

    2004-01-01

    We study the phase structure of the random-plaquette Z_2 lattice gauge model in three dimensions. In this model, the "gauge coupling" for each plaquette is a quenched random variable that takes the value \\beta with the probability 1-p and -\\beta with the probability p. This model is relevant for the recently proposed quantum memory of toric code. The parameter p is the concentration of the plaquettes with "wrong-sign" couplings -\\beta, and interpreted as the error probability per qubit in quantum code. In the gauge system with p=0, i.e., with the uniform gauge couplings \\beta, it is known that there exists a second-order phase transition at a certain critical "temperature", T(\\equiv \\beta^{-1}) = T_c =1.31, which separates an ordered(Higgs) phase at TT_c. As p increases, the critical temperature T_c(p) decreases. In the p-T plane, the curve T_c(p) intersects with the Nishimori line T_{N}(p) at the certain point (p_c, T_{N}(p_c)). The value p_c is just the accuracy threshold for a fault-tolerant quantum memory...

  9. Damage detection using transient trajectories in phase-space with extended random decrement technique under non-stationary excitations

    Science.gov (United States)

    Liu, Gang; Mao, Zhu; Todd, Michael

    2016-11-01

    This paper proposes a damage detection method based on the geometrical variation of transient trajectories in phase-space, and the proposed methodology is compatible with non-stationary excitations (e.g., earthquake-induced ground motion). The work presented assumes zero-mean non-stationary excitation, and extends the random decrement technique to convert non-stationary response signals of the structure into free-vibration data. Transient trajectories of the structure are reconstructed via the embedding theorem from the converted free-vibration data, and trajectories are mapped successively into phase-space to enhance statistical analysis. Based upon the characterized system dynamics in terms of phase-space, the time prediction error is adopted as the damage index. To identify the presence and severity of damage in a statistically rigorous way, receiver operating characteristic curves and the Bhattacharyya distance are employed. The results from both numerical simulations and experiments validate the proposed framework, when the test structures are subject to non-stationary excitations. The extension achieved in this paper enables the phase-space damage detection approach to be compatible with non-stationary scenarios, such as traffic, wind, and earthquake loadings. Moreover, the results indicate that this phase-state-based method is able to identify damage-induced nonlinearity in response, which is an intrinsic characteristic associated with most structural damage types.

  10. Double-image encryption without information disclosure using phase-truncation Fourier transforms and a random amplitude mask.

    Science.gov (United States)

    Wang, Xiaogang; Zhao, Daomu; Chen, Yixiang

    2014-08-10

    We present a study about information disclosure in phase-truncation-based cryptosystems. The main information of the original image to be encoded can be obtained by using a decryption key in the worst case. The problem cannot be thoroughly solved by imaginary part truncating, keeping the encryption keys as private keys, or applying different phase keys for different plaintexts during each encryption process as well as the phase modulation in the frequency domain. In order to eliminate the risk of unintended information disclosure, we further propose a nonlinear spatial and spectral encoding technique using a random amplitude mask (RAM). The encryption process involving two security layers can be fully controlled by a RAM. The spatial encoding of the plaintext images and the simultaneous encryption of the plaintext images and the encryption key greatly enhance the security of system, avoiding several attacks that have cracked the phase-truncation-based cryptosystems. Besides, the hybrid encryption system retains the advantage of a trap door one-way function of phase truncation. Numerical results have demonstrated the feasibility and effectiveness of the proposed encryption algorithm.

  11. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  12. Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with {1 ≤ q ≤ 4}

    Science.gov (United States)

    Duminil-Copin, Hugo; Sidoravicius, Vladas; Tassion, Vincent

    2017-01-01

    This article studies the planar Potts model and its random-cluster representation. We show that the phase transition of the nearest-neighbor ferromagnetic q-state Potts model on Z^2 is continuous for {q in {2,3,4}}, in the sense that there exists a unique Gibbs state, or equivalently that there is no ordering for the critical Gibbs states with monochromatic boundary conditions. The proof uses the random-cluster model with cluster-weight {q ≥ 1} (note that q is not necessarily an integer) and is based on two ingredients: The fact that the two-point function for the free state decays sub-exponentially fast for cluster-weights {1≤ q≤ 4}, which is derived studying parafermionic observables on a discrete Riemann surface.

  13. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  14. Scattering of Quark-Quasiparticles in the Quark-Gluon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, M. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Rapp, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, Texas 77843-3366 (United States)

    2006-08-07

    Employing a Brueckner-type many-body approach, based on a driving potential extracted from lattice QCD, we study light quark properties in a Quark-Gluon Plasma (QGP) at moderate temperatures, T{approx}1-2T{sub c}. The quark-antiquark T-matrix is calculated self-consistently with pertinent quark self-energies. While the repulsive octet channel induces quasiparticle masses of up to 150 MeV, the attractive color-singlet part exhibits resonance structures which lead to quasiparticle widths of {approx}200MeV.

  15. Measurement of quasiparticle transport in aluminum films using tungsten transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Yen, J. J., E-mail: jeffyen@stanford.edu; Shank, B.; Cabrera, B.; Moffatt, R.; Redl, P. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Young, B. A.; Tortorici, E. C. [Department of Physics, Santa Clara University, Santa Clara, California 95053 (United States); Brink, P. L.; Cherry, M.; Tomada, A. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Kreikebaum, J. M. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Department of Physics, Santa Clara University, Santa Clara, California 95053 (United States)

    2014-10-20

    We report on experimental studies of phonon sensors which utilize quasiparticle diffusion in thin aluminum films connected to tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. These studies allow the design of phonon sensors with improved performance.

  16. Measurement Of Quasiparticle Transport In Aluminum Films Using Tungsten Transition-Edge Sensors

    CERN Document Server

    Yen, J J; Young, B A; Cabrera, B; Brink, P L; Cherry, M; Kreikebaum, J M; Moffatt, R; Redl, P; Tomada, A; Tortorici, E C

    2014-01-01

    We report new experimental studies to understand the physics of phonon sensors which utilize quasiparticle diffusion in thin aluminum films into tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach.

  17. A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer.

    Science.gov (United States)

    Nanda, Rita; Stringer-Reasor, Erica M; Saha, Poornima; Kocherginsky, Masha; Gibson, Jean; Libao, Bernadette; Hoffman, Philip C; Obeid, Elias; Merkel, Douglas E; Khramtsova, Galina; Skor, Maxwell; Krausz, Thomas; Cohen, Ronald N; Ratain, Mark J; Fleming, Gini F; Conzen, Suzanne D

    2016-01-01

    Glucocorticoid receptor (GR) overexpression is associated with poor prognosis ER-negative breast cancer. GR antagonism with mifepristone increases chemotherapy-induced breast cancer cell death, therefore we conducted a phase I clinical trial of mifepristone and nab-paclitaxel in advanced breast cancer. A novel randomized phase I design was used to assess the effect of mifepristone on nab-paclitaxel pharmacokinetics and toxicity. Patients were randomized to placebo or mifepristone for the first cycle; mifepristone was given to all for subsequent cycles. Nine patients were enrolled. All were found to have a twofold or greater increase in serum cortisol after mifepristone administration, reflecting effective GR inhibition. Neutropenia occurred at both nab-paclitaxel dose levels studied (100 and 80 mg/m(2)), and was easily managed with dose reduction and/or growth factor administration. Pharmacokinetic data suggest an interaction between nab-paclitaxel and mifepristone in some patients. Two patients had complete responses (CR), three partial responses (PR), one stable disease (SD), and three progressive disease (PD). Immunohistochemical staining for GR found six of nine tumors were GR-positive. All six GR-positive tumors were triple-negative at the time of recurrence. Of these six patients, two had CRs, two PRs, one SD, and one PD. GR appears to be a promising target in TNBC, and GR inhibition plus chemotherapy produces manageable toxicity. While neutropenia was observed in some, a nab-paclitaxel dose of 100 mg/m(2) plus mifepristone 300 mg was found to be tolerable, and a randomized phase II trial of nab-paclitaxel with/without mifepristone is planned in GR-positive advanced TNBC.

  18. Polaronic quasiparticle picture for generation dynamics of coherent phonons in semiconductors: Transient and nonlinear Fano resonance

    Science.gov (United States)

    Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya

    2017-01-01

    We examine generation dynamics of coherent phonons in both polar and nonpolar semiconductors, such as GaAs and Si, based on a polaronic-quasiparticle (PQ) model. In this model, the PQ operator is composed of two kinds of operators: one is a quasiboson operator, defined as a linear combination of a set of pairs of electron operators, and the other is a longitudinal optical (LO) phonon operator. In particular, the problem of transient and nonlinear Fano resonance (FR) is tackled, where the vestige of this quantum interference effect was observed exclusively in lightly n -doped Si immediately after carriers were excited by an ultrashort pulse laser [M. Hase et al., Nature (London) 426, 51 (2003), 10.1038/nature02044], although not observed yet in GaAs. The PQ model enables us to show straightforwardly that the phonon energy state is embedded in continuum states formed by a set of adiabatic eigenstates of the quasiboson; this energy configuration is a necessary condition of the manifestation of the transient FR in the present optically nonlinear system. Numerical calculations are done for photoemission spectra relevant to the retarded longitudinal dielectric function of transient photoexcited states and for power spectra relevant to the LO-phonon displacement function of time. The photoemission spectra show that in undoped Si, an asymmetric spectral profile characteristic of FR comes into existence immediately after the instantaneous carrier excitation to fade out gradually, whereas in undoped GaAs, no asymmetry in spectra appears in the whole temporal region. The similar results are also obtained in the power spectra. These results are in harmony with the reported experimental results. It is found that the obtained difference in spectral profile between undoped Si and GaAs is attributed to a phase factor of an effective interaction between the LO phonon and the quasiboson. More detailed discussion of the FR dynamics is made in the text.

  19. Influence of Nambu-Goldstone mode on energy-weighted sum of excitation strengths in random-phase approximation

    CERN Document Server

    Nakada, H

    2016-01-01

    Influence of the Nambu-Goldstone (NG) mode on the energy-weighted sum (EWS) of the excitation strengths is analyzed, within the random-phase approximation (RPA). When a certain symmetry is broken at the mean-field level, a NG mode emerges in the RPA, which can be represented by canonical variables forming a two-dimensional Jordan block. A general formula is derived which separates out the NG-mode contribution to the EWS, via the projection on the subspace directed by the NG mode. As examples, the formula is applied to the $E1$ excitation and the rotational excitations in nuclei.

  20. Role of vertex corrections in the matrix formulation of the random phase approximation for the multiorbital Hubbard model

    Science.gov (United States)

    Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.; Maier, Thomas A.; Valentí, Roser; Scalapino, Douglas J.

    2016-12-01

    In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Here we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.

  1. Research on the methods of optical image hiding based on double random phase encoding and digital holography

    Science.gov (United States)

    Xu, Hongsheng; Sang, Nong

    2011-12-01

    Optical information hiding system has many features such as high processing speed, high parallel, high encryption dimension and high speed of optical transformation and related operations, more advantages than digital method in some way. But it has not adequate security, and enough combination with techniques of digital image processing. So on basis of analyzing existing image hiding and analyzing techniques, we give out the idea. We should adopt idea of virtual optics on the way of all-digital simulation to do research of optical image hiding and analyzing methods based on optical image processing technique especially technique of double random phase encoding and digital holography.

  2. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial

    OpenAIRE

    Helmy, Adel; Guilfoyle, Mathew R.; Carpenter, Keri LH; Pickard, John D.; Menon, David K.; Hutchinson, Peter J.

    2014-01-01

    Traumatic brain injury (TBI) is the commonest cause of death and disability in those aged under 40 years. Interleukin-1 receptor antagonist (IL1ra) is an endogenous competitive antagonist at the interleukin-1 type-1 receptor (IL-1R). Antagonism at the IL-1R confers neuroprotection in several rodent models of neuronal injury (i.e., trauma, stroke and excitotoxicity). We describe a single center, phase II, open label, randomized-control study of recombinant human IL1ra (rhIL1ra, anakinra) in se...

  3. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions

    Science.gov (United States)

    Parrondo, Juan M. R.

    2001-09-01

    The role of symmetry breaking phase transitions in the Szilard engine is analyzed. It is shown that symmetry breaking is the only necessary ingredient for the engine to work. To support this idea, we show that the Ising model behaves exactly as the Szilard engine. We design a purely macroscopic Maxwell demon from an Ising model, demonstrating that a demon can operate with information about the macrostate of the system. We finally discuss some aspects of the definition of entropy and how thermodynamics should be modified to account for the variations of entropy in second-order phase transitions.

  4. Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian

    Science.gov (United States)

    Mehta, Dhagash; Kastner, Michael

    2011-06-01

    We study the stationary points of what is known as the lattice Landau gauge fixing functional in one-dimensional compact U(1) lattice gauge theory, or as the Hamiltonian of the one-dimensional random phase XY model in statistical physics. An analytic solution of all stationary points is derived for lattices with an odd number of lattice sites and periodic boundary conditions. In the context of lattice gauge theory, these stationary points and their indices are used to compute the gauge fixing partition function, making reference in particular to the Neuberger problem. Interpreted as stationary points of the one-dimensional XY Hamiltonian, the solutions and their Hessian determinants allow us to evaluate a criterion which makes predictions on the existence of phase transitions and the corresponding critical energies in the thermodynamic limit.

  5. Alpha-helix <-> random coil phase transition: analysis of ab initio theory predictions

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2008-01-01

    In the present paper we present results of calculations obtained with the use of the theoretical method described in our preceding paper [Eur. Phys. J. D, DOI 10.1140/epjd/e2007-00328-9] and perform detail analysis of -helix random coil transition in alanine polypeptides of different length. We...... have obtained same thermodynamical characteristics from the use of molecular dynamics simulations and compared them with the results of the new statistical mechanics approach. The comparison proves the validity of the statistical mechanic approach and establishes its accuracy....

  6. Thermodynamics of Phase Transitions and Bipolar Filamentary Switching in Resistive Random-Access Memory

    Science.gov (United States)

    Karpov, V. G.; Niraula, D.; Karpov, I. V.; Kotlyar, R.

    2017-08-01

    We present a phenomenological theory of bipolar filamentary resistive random-access memory describing the commonly observed features of their current-voltage characteristics. Our approach follows the approach of a thermodynamic theory developed earlier for chalcogenide memory and threshold switches and largely independent of their microscopic details. It explains, without adjustable parameters, such features as the domains of filament formation and switching, voltage-independent current in set and current-independent voltage in reset regimes, the relation between the set and reset voltages, filament resistance independent of its length, etc. Furthermore, it expresses the observed features through the material and circuitry parameters, thus paving the way to device improvements.

  7. Periodically driven random quantum spin chains: real-space renormalization for Floquet localized phases

    Science.gov (United States)

    Monthus, Cécile

    2017-07-01

    When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.

  8. Infinite randomness fixed point of the superconductor-metal quantum phase transition.

    Science.gov (United States)

    Del Maestro, Adrian; Rosenow, Bernd; Müller, Markus; Sachdev, Subir

    2008-07-18

    We examine the influence of quenched disorder on the superconductor-metal transition, as described by a theory of overdamped Cooper pairs which repel each other. The self-consistent pairing eigenmodes of a quasi-one-dimensional wire are determined numerically. Our results support the recent proposal by Hoyos et al. [Phys. Rev. Lett. 99, 230601 (2007)10.1103/PhysRevLett.99.230601] that the transition is characterized by the same strong-disorder fixed point describing the onset of ferromagnetism in the random quantum Ising chain in a transverse field.

  9. Embolization with larger-caliber coils can increase packing density: Evidence from the pilot phase of a randomized trial.

    Science.gov (United States)

    Cloutier, Francis; Khoury, Naim; Ghostine, Jimmy; Farzin, Behzad; Kotowski, Marc; Weill, Alain; Roy, Daniel; Raymond, Jean

    2017-02-01

    Background and purpose Endovascular coil embolization of cerebral aneurysms is associated with suboptimal angiographic results in up to 20-30% of patients. Coil packing density has been used as an index of the success of the initial procedure. The trial sought to study the effects of using 15-caliber coils, as compared with 10-caliber coils, on packing density. Methods Does Embolization with Larger coils lead to better Treatment of Aneurysms (DELTA) is an investigator-initiated multicenter prospective, randomized, controlled clinical trial. Patients are randomized 1:1 to embolization with either 10-caliber coils exclusively (control group) or the highest safely achievable proportion of 15-caliber coils and 10-caliber coils if necessary (intervention group) in 4-12-mm aneurysms. The endpoint of the pilot phase of the trial was the capacity to increase packing density of the initial procedure, calculated using a mathematical transformation of the dimensions entered into the case report forms. Secondary outcomes included the total number of coils used per aneurysm, total fluoroscopy time, initial angiographic outcomes and any adverse or undesirable event. Results Seventy patients were recruited between June 2014 and November 2015. Compared with 10-caliber coils, the 15-caliber coil group had a higher median packing density (44% vs 24%, p = 0.017). Results of other outcome measures were similar for the two groups. Conclusion Coiling of small and medium aneurysms randomized to 15-caliber coils achieved higher packing densities compared with coiling using 10-caliber coils.

  10. [Alemtuzumab for relapsing-remitting multiple sclerosis. Results of two randomized controlled phase III studies].

    Science.gov (United States)

    Klotz, L; Meuth, S G; Kieseier, B; Wiendl, H

    2013-08-01

    In November 2012 the results of 2 clinical phase III trials were published which addressed the effects of alemtuzumab in patients with relapsing-remitting multiple sclerosis (MS). In the CARE-MS-I study patients with early untreated MS (EDSS ≤ 3.0, disease duration alemtuzumab in patients with persisting disease activity under standard disease-modifying treatment (EDSS ≤ 5.0, disease duration alemtuzumab compared to interferon in terms of reduction of relapse rate as well as the number of new or enlarging T2 lesions and gadolinium-enhancing lesions. Moreover, the CARE-MS-II study showed a significant delay in disease progression by alemtuzumab. The portfolio and the frequency of relevant side effects, such as infusion-related reactions, development of secondary autoimmunity or infections were within the expected range. Taken together these studies confirm the high anti-inflammatory efficacy of alemtuzumab and hence provide the first evidence of superiority of a monotherapy in direct comparison to standard disease-modifying treatment in two phase III trials in relapsing-remitting MS. These data in the context of the mode of action of alemtuzumab provide evidence for the relevance of immune cells, especially T cells, in the pathophysiology of MS. Experience with long-term effects of alemtuzumab, e.g. from the phase II extension trial as well as the side effect profile argue in favor of a sustained reprogramming of the immune system as a consequence of immune cell depletion by alemtuzumab.

  11. Stereotactic ablative radiotherapy for comprehensive treatment of oligometastatic tumors (SABR-COMET: Study protocol for a randomized phase II trial

    Directory of Open Access Journals (Sweden)

    Palma David A

    2012-07-01

    Full Text Available Abstract Background Stereotactic ablative radiotherapy (SABR has emerged as a new treatment option for patients with oligometastatic disease. SABR delivers precise, high-dose, hypofractionated radiotherapy, and achieves excellent rates of local control. Survival outcomes for patients with oligometastatic disease treated with SABR appear promising, but conclusions are limited by patient selection, and the lack of adequate controls in most studies. The goal of this multicenter randomized phase II trial is to assess the impact of a comprehensive oligometastatic SABR treatment program on overall survival and quality of life in patients with up to 5 metastatic cancer lesions, compared to patients who receive standard of care treatment alone. Methods After stratification by the number of metastases (1-3 vs. 4-5, patients will be randomized between Arm 1: current standard of care treatment, and Arm 2: standard of care treatment + SABR to all sites of known disease. Patients will be randomized in a 1:2 ratio to Arm 1:Arm 2, respectively. For patients receiving SABR, radiotherapy dose and fractionation depends on the site of metastasis and the proximity to critical normal structures. This study aims to accrue a total of 99 patients within four years. The primary endpoint is overall survival, and secondary endpoints include quality of life, toxicity, progression-free survival, lesion control rate, and number of cycles of further chemotherapy/systemic therapy. Discussion This study will provide an assessment of the impact of SABR on clinical outcomes and quality of life, to determine if long-term survival can be achieved for selected patients with oligometastatic disease, and will inform the design of a possible phase III study. Trial registration Clinicaltrials.gov identifier: NCT01446744

  12. Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene

    Science.gov (United States)

    Yin, Long-Jing; Wang, Wen-Xiao; Zhang, Yu; Ou, Yang-Yang; Zhang, Hao-Ting; Shen, Cai-Yun; He, Lin

    2017-02-01

    Trilayer graphene (TLG) exhibits rich, alternative electronic properties and extraordinary quantum Hall phenomena owing to enhanced electronic interactions and tunable chirality of its quasiparticles. Here, we report direct observation of chirality transition of quasiparticles at stacking solitons of TLG via spatial-resolved Landau level spectroscopy. The one-dimensional stacking solitons with width of the order of 10 nm separate adjacent Bernal-stacked TLG and rhombohedral-stacked TLG. By using high-field tunneling spectra from scanning tunneling microscopy, we measured Landau quantization in both the Bernal-stacked TLG and the rhombohedral-stacked TLG and, importantly, we observed evolution of quasiparticles between the chiral degree l =1 and 2 and l =3 across the stacking domain-wall solitons. Our experiment indicates that such a chirality transition occurs smoothly, accompanying the transition of the stacking orders of TLG, around the domain-wall solitons. This result demonstrates the important relationship between the crystallographic stacking order and the chirality of quasiparticles in graphene systems.

  13. Quasi-particle interference of heavy fermions in resonant x-ray scattering

    Science.gov (United States)

    Gyenis, András; da Silva Neto, Eduardo H.; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-01-01

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

  14. Quasiparticle-injection effect in YBa2Cu3Ox-based planar structures

    NARCIS (Netherlands)

    Boguslavskij, Yu.M.; Joosse, K.; Roesthuis, F.J.G.; Gerritsma, G.J.; Rogalla, H.

    1994-01-01

    The supercurrent IS of a YBCO bridge can be modulated by the quasiparticle-injection current IG from YBCO/Au or YBCO/PBCO/Au junctions. The behavior of these structures is determined by two effects: 1) summation of the currents IS and IG in the YBCO bridge; 2) nonequilibrium suppression of the super

  15. GW correlation effects on plutonium quasiparticle energies: Changes in crystal-field splitting

    DEFF Research Database (Denmark)

    Chantis, A.N.; Albers, R.C.; Svane, Axel;

    2009-01-01

    We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GW method (QSGW). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centred cubic (fcc) unit cell. We span unit-cell volumes...

  16. Decay spectroscopy of 160Sm: The lightest four-quasiparticle K isomer

    Directory of Open Access Journals (Sweden)

    Z. Patel

    2016-02-01

    Full Text Available The decay of a new four-quasiparticle isomeric state in 160Sm has been observed using γ-ray spectroscopy at the RIBF, RIKEN. The four-quasiparticle state is assigned a 2π⊗2ν π52−[532], π52+[413], ν52−[523], ν72+[633] configuration. The half-life of this (11+ state is measured to be 1.8(4 μs. The (11+ isomer decays into a rotational band structure, based on a (6− ν52−[523]⊗ν72+[633] bandhead, consistent with the gK−gR values. This decays to a (5− two-proton quasiparticle state, which in turn decays to the ground state band. Potential energy surface and blocked-BCS calculations were performed in the deformed midshell region around 160Sm. They reveal a significant influence from β6 deformation and that 160Sm is the best candidate for the lightest four-quasiparticle K isomer to exist in this region. The relationship between reduced hindrance and isomer excitation energy for E1 transitions from multiquasiparticle states is considered with the new data from 160Sm. The E1 data are found to agree with the existing relationship for E2 transitions.

  17. Quasiparticle properties of a coupled quantum-wire electron-phonon system

    DEFF Research Database (Denmark)

    Hwang, E. H.; Hu, Ben Yu-Kuang; Sarma, S. Das

    1996-01-01

    We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron-electron interac...

  18. Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times

    Energy Technology Data Exchange (ETDEWEB)

    Korotkevich, Alexander O.; Lushnikov, Pavel M., E-mail: plushnik@math.unm.edu [Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow 119334 (Russian Federation); Rose, Harvey A. [Theoretical Division, Los Alamos National Laboratory, MS-B213, Los Alamos, New Mexico 87545 (United States); New Mexico Consortium, Los Alamos, New Mexico 87544 (United States)

    2015-01-15

    We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systems compared to the bandwidth currently available to temporally smoothed glass-based laser systems.

  19. A randomized controlled Phase Ib trial of the malaria vaccine candidate GMZ2 in African children

    DEFF Research Database (Denmark)

    Bélard, Sabine; Issifou, Saadou; Hounkpatin, Aurore B

    2011-01-01

    GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese ...... adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials....

  20. Quasiparticle Tunneling in the Fractional Quantum Hall effect at filling fraction ν=5/2

    Science.gov (United States)

    Radu, Iuliana P.

    2009-03-01

    In a two-dimensional electron gas (2DEG), in the fractional quantum Hall regime, the quasiparticles are predicted to have fractional charge and statistics, as well as modified Coulomb interactions. The state at filling fraction ν=5/2 is predicted by some theories to have non-abelian statistics, a property that might be exploited for topological quantum computing. However, alternative models with abelian properties have been proposed as well. Weak quasiparticle tunneling between counter-propagating edges is one of the methods that can be used to learn about the properties of the state and potentially distinguish between models describing it. We employ an electrostatically defined quantum point contact (QPC) fabricated on a high mobility GaAs/AlGaAs 2DEG to create a constriction where quasiparticles can tunnel between counter-propagating edges. We study the temperature and dc bias dependence of the tunneling conductance, while preserving the same filling fraction in the constriction and the bulk of the sample. The data show scaling of the bias-dependent tunneling over a range of temperatures, in agreement with the theory of weak quasiparticle tunneling, and we extract values for the effective charge and interaction parameter of the quasiparticles. The ranges of values obtained are consistent with those predicted by certain models describing the 5/2 state, indicating as more probable a non-abelian state. This work was done in collaboration with J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer and K. W. West. This work was supported in part by the Army Research Office (W911NF-05-1-0062), the Nanoscale Science and Engineering Center program of NSF (PHY-0117795), NSF (DMR-0701386), the Center for Materials Science and Engineering program of NSF (DMR-0213282) at MIT, the Microsoft Corporation Project Q, and the Center for Nanoscale Systems at Harvard University.

  1. Looking for phase transitions of strongly interacting matter applying new method on basic of Random Matrix Theory

    Energy Technology Data Exchange (ETDEWEB)

    Suleymanov, Mais [CIIT, Islamabad (Pakistan); Shahaliev, Ehtiram [HEPL, JINR, Dubna (Russian Federation)

    2009-07-01

    Over the last 25 years a lot of efforts have been made to search for new phases of strongly interacting matter. Heavy ion collisions are of great importance since they open a way to reproduce these phases in the Earth laboratory. But in this case the volume of information increases sharply as well as the background information. A method was introduced a method on the basic of Random Matrix Theory to study the fluctuations of neutron resonances in compound nuclei which doesn't depend on the background of measurements. To analyze the energetic levels of compound nuclei the function of distances between two energetic levels p(s{sub i}) is defined as the general distributions for probability of all kinds of ensembles. At values of the index of universality {nu}=0 it will change to Poisson type distributions pointing to absence of any correlations in the system and at the values of {nu}=1 it will change to Wigner type behavior directing to some correlation in the studying ensemble. We discuss that the experimental study of the behavior of p(s{sub i}) distribution for secondary particles could give a signal on the phase transitions.

  2. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    Science.gov (United States)

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  3. Adjuvant chemotherapy in completely resected gastric cancer: a randomized phase III trial conducted by GOIRC.

    Science.gov (United States)

    Di Costanzo, Francesco; Gasperoni, Silvia; Manzione, Luigi; Bisagni, Giancarlo; Labianca, Roberto; Bravi, Stefano; Cortesi, Enrico; Carlini, Paolo; Bracci, Raffaella; Tomao, Silverio; Messerini, Luca; Arcangeli, Annarosa; Torri, Valter; Bilancia, Domenico; Floriani, Irene; Tonato, Maurizio; Dinota, Angelo; Strafiuso, Gennaro; Corgna, Enrichetta; Porrozzi, Stella; Boni, Corrado; Rondini, Ermanno; Giunta, Alessandro; Monzio Compagnoni, Barbara; Biagioni, Franco; Cesari, Maurizio; Fornarini, Giuseppe; Nelli, Fabrizio; Carboni, Manlio; Cognetti, Francesco; Enzo, Maria Ruggeri; Piga, Andrea; Romiti, Adriana; Olivetti, Alessandra; Masoni, Luigi; De Stefanis, Marinella; Dalla Mola, Angelo; Camera, Salvatore; Recchia, Francesco; De Filippis, Sandro; Scipioni, Loreto; Zironi, Sandra; Luppi, Gabriele; Italia, Maurizio; Banducci, Stefano; Pisani Leretti, Andrea; Massidda, Bruno; Ionta, Maria Teresa; Nicolosi, Angelo; Canaletti, Rodolfo; Biscottini, Bruno; Grigniani, Fausto; Di Costanzo, Federica; Rovei, Rossella; Croce, Enrico; Carroccio, Rosalia; Gilli, Germana; Cavalli, Carla; Olgiati, Angelo; Pandolfi, Umberto; Rossetti, Riccardo; Natalini, Giovanni; Foa, Paolo; Oldani, Sabina; Bruno, Lorenzo; Cascinu, Stefano; Catalano, Giuseppina; Catalano, Vincenzo; Lungarotti, Ferdinando; Farris, Antonio; Sarobba, Maria Giuseppina; Trignano, Mario; Muscogiuri, Antonio; Francavilla, Fontana; Figoli, Franco; Leoni, Maurizio; Papiani, Giorgio; Orselli, Gianfranco; Antimi, Mauro; Bellini, Vincenzo; Cabassi, Alessandro; Contu, Antonio; Pazzola, Antonio; Frignano, Mario; Lastraioli, Elena; Saggese, Matilde; Bianchini, Diletta; Antonuzzo, Lorenzo; Mela, Micol; Camisa, Roberta

    2008-03-19

    Complete surgical resection of gastric cancer is potentially curative, but long-term survival is poor. Patients with histologically proven adenocarcinoma of the stomach of stages IB, II, IIIA and B, or IV (T4N2M0) and treated with potentially curative surgery were randomly assigned to follow-up alone or to intravenous treatment with four cycles (repeated every 21 days) of PELF (cisplatin [40 mg/m(2), on days 1 and 5], epirubicin [30 mg/m(2), days 1 and 5], L-leucovorin [100 mg/m(2), days 1-4], and 5-fluorouracil [300 mg/m(2), days 1-4] in a hospital setting. Frequencies and severity of adverse events were determined. Overall survival (OS) and disease-free survival (DFS) were compared between the treatment arms using Kaplan-Meier analysis and a Cox proportional hazards regression model. All statistical tests were two-sided. From January 1995 through September 2000, 258 patients were randomly assigned to chemotherapy (n = 130) or surgery alone (n = 128). Patient characteristics were well balanced between the two arms. Among those who received chemotherapy, grade 3 or 4 toxic effects including vomiting, mucositis, and diarrhea were experienced by 21.1%, 8.4%, and 11.8% of patients, respectively. Leucopenia, anemia, and thrombocytopenia of grade 3 or 4 were experienced by 20.3%, 3.3%, and 4.2% of patients, respectively. After a median follow-up of 72.8 months, 128 patients (49.6%) experienced recurrence and 139 (53.9%) deaths were observed, one toxicity-related. Relative to treatment with surgery alone, adjuvant chemotherapy did not increase disease-free survival (hazard ratio [HR] of recurrence = 0.92; 95% confidence interval [CI] = 0.66 to 1.27) or overall survival (HR of death = 0.90; 95% CI = 0.64 to 1.26). Our results failed to provide proof of an effect of adjuvant chemotherapy with PELF on overall survival or disease-free survival. The estimated effect of chemotherapy (10% reduction in the hazard of death or relapse) is modest and consistent with the results of

  4. Periodontal tissue regeneration using fibroblast growth factor-2: randomized controlled phase II clinical trial.

    Directory of Open Access Journals (Sweden)

    Masahiro Kitamura

    Full Text Available BACKGROUND: The options for medical use of signaling molecules as stimulators of tissue regeneration are currently limited. Preclinical evidence suggests that fibroblast growth factor (FGF-2 can promote periodontal regeneration. This study aimed to clarify the activity of FGF-2 in stimulating regeneration of periodontal tissue lost by periodontitis and to evaluate the safety of such stimulation. METHODOLOGY/PRINCIPAL FINDINGS: We used recombinant human FGF-2 with 3% hydroxypropylcellulose (HPC as vehicle and conducted a randomized double-blinded controlled trial involving 13 facilities. Subjects comprised 74 patients displaying a 2- or 3-walled vertical bone defect as measured > or = 3 mm apical to the bone crest. Patients were randomly assigned to 4 groups: Group P, given HPC with no FGF-2; Group L, given HPC containing 0.03% FGF-2; Group M, given HPC containing 0.1% FGF-2; and Group H, given HPC containing 0.3% FGF-2. Each patient underwent flap operation during which we administered 200 microL of the appropriate investigational drug to the bone defect. Before and for 36 weeks following administration, patients underwent periodontal tissue inspections and standardized radiography of the region under investigation. As a result, a significant difference (p = 0.021 in rate of increase in alveolar bone height was identified between Group P (23.92% and Group H (58.62% at 36 weeks. The linear increase in alveolar bone height at 36 weeks in Group P and H was 0.95 mm and 1.85 mm, respectively (p = 0.132. No serious adverse events attributable to the investigational drug were identified. CONCLUSIONS: Although no statistically significant differences were noted for gains in clinical attachment level and alveolar bone gain for FGF-2 groups versus Group P, the significant difference in rate of increase in alveolar bone height (p = 0.021 between Groups P and H at 36 weeks suggests that some efficacy could be expected from FGF-2 in stimulating regeneration

  5. Back-scatter analysis based algorithms for increasing transmission through highly-scattering random media using phase-only modulated wavefronts

    CERN Document Server

    Jin, Curtis; Michielssen, Eric; Rand, Stephen

    2014-01-01

    Recent theoretical and experimental advances have shed light on the existence of so-called `perfectly transmitting' wavefronts with transmission coefficients close to 1 in strongly backscattering random media. These perfectly transmitting eigen-wavefronts can be synthesized by spatial amplitude and phase modulation. Here, we consider the problem of transmission enhancement using phase-only modulated wavefronts. We develop physically realizable iterative and non-iterative algorithms for increasing the transmission through such random media using backscatter analysis. We theoretically show that, despite the phase-only modulation constraint, the non-iterative algorithms will achieve at least about 25$\\pi$% or about 78.5% transmission assuming there is at least one perfectly transmitting eigen-wavefront and that the singular vectors of the transmission matrix obey a maximum entropy principle so that they are isotropically random. We numerically analyze the limits of phase-only modulated transmission in 2-D with f...

  6. Randomized phase II trial of rubidazone and adriamycin in women with advanced breast cancer.

    Science.gov (United States)

    Ingle, J N; Ahmann, D L; O'Fallon, J R; Bisel, H F; Rubin, J; Kvols, L K; Giuliani, E R

    1979-01-01

    Thirty-eight females with advanced breast cancer who had failed prior chemotherapy were entered in a randomized study of rubidazone (150 mg/m2 iv over 1 hour) versus Adriamycin (60 mg/m2 iv over 5 minutes), both given every 4 weeks. The two treatment groups each contained 19 patients and were similar with respect to age, menopausal status, dominant disease status, Eastern Cooperative Oncology Group performance score, and prior hormonal therapy and chemotherapy exposure. No regressions (complete or partial) were observed with rubidazone, but four (21%) patients achieved regressions (one complete and three partial) with Adriamycin. Considering all cycles, hematologic toxicity included leukopenia (wbc count nadir of less than 4000/mm3) in 88% of patients receiving rubidazone and in 89% of those receiving Adriamycin. Three of eight patients treated with Adriamycin after rubidazone failure achieved a regression. Rubidazone appears to be of little value in the treatment of patients with advanced breast cancer who have failed prior chemotherapy.

  7. Complex Contagions and hybrid phase transitions in unclustered and clustered random networks

    CERN Document Server

    Miller, Joel C

    2015-01-01

    A complex contagion is an infectious process in which an individual may require multiple transmissions. We typically think of individuals beginning inactive and becoming active once they are contacted by sufficient numbers of active partners. These have been studied in a number of contexts, but the analytic models for dynamic spread of complex contagions are typically complex. Here we study the dynamics of a generalized Watts Threshold Model (gWTM). We first show that a wide range of other processes can be thought of as a special case of this gWTM. Then we adapt an "edge-based compartmental modeling" approach used for infectious diseases in networks to develop and analyze analytic models for the dynamics the gWTM in configuration model and a class of random clustered (triangle-based) networks. The resulting model is relatively simple and compact, and we use this model to gain insights into the dynamics. Under some conditions a cascade can happen with an arbitrarily small initial proportion active, and we deri...

  8. Induction chemotherapy before chemoradiotherapy and surgery for locally advanced rectal cancer. Is it time for a randomized phase III trial?

    Energy Technology Data Exchange (ETDEWEB)

    Roedel, Claus [Frankfurt Univ. (Germany). Klinik fuer Strahlentherapie und Onkologie; Arnold, Dirk [Halle Univ. (Germany). Klinik und Poliklinik fuer Innere Medizin IV; Becker, Heinz; Ghadimi, Michael; Liersch, Torsten [Goettingen Univ. (Germany). Klinik fuer Allgemein- und Visceralchirurgie; Fietkau, Rainer; Sauer, Rolf [Erlangen Univ. (Germany). Strahlenklinik; Graeven, Ullrich [Kliniken Maria Hilf GmbH, Moenchengladbach (Germany). Klinik fuer Haematologie, Onkologie und Gastroenterologie; Hess, Clemens [Goettingen Univ. (Germany). Klinik fuer Strahlentherapie und Radioonkologie; Hofheinz, Ralf [Universitaetsmedizin Mannheim (Germany). III. Medizinische Klinik Haematologie und Internistische Onkologie; Hohenberger, Werner [Erlangen Univ. (Germany). Chirurgische Klinik; Post, Stefan [Universitaetsmedizin Mannheim (Germany). Chirurgische Klinik; Raab, Rudolf [Klinikum Oldenburg (Germany). Klinik fuer Allgemein- und Visceralchirurgie; Wenz, Frederick [Universitaetsmedizin Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2010-12-15

    Background: In the era of preoperative chemoradiotherapy (CRT) and total mesorectal excision (TME), the development of distant metastases is the predominant mode of failure in rectal cancer patients today. Integrating more effective systemic therapy into combined modality programs is the challenge. The question that needs to be addressed is how and when to apply systemic treatment with adequate dose and intensity. Material and Methods: This review article focuses on phase II-III trials designed to improve 5-fluorouracil (5-FU)-based combined modality treatment for rectal cancer patients through the inclusion of concurrent, adjuvant or, most recently, induction combination chemotherapy. Computerized bibliographic searches of PubMed were supplemented with hand searches of reference lists and abstracts of ASCO/ASTRO/ESTRO meetings. Results: After preoperative CRT and surgical resection, approximately one third of patients do not receive adjuvant chemotherapy, mainly due to surgical complications, patients' refusal, or investigator's discretion. In order to be able to apply chemotherapy with sufficient dose and intensity, an innovative approach is to deliver systemic therapy prior to preoperative CRT rather than adjuvant chemotherapy. Emerging evidence from several phase II trials and, recently, randomized phase II trials indicate that induction chemotherapy is feasible, does not compromise CRT or surgical resection, and enables the delivery of chemotherapy in adequate dose and intensity. Although this approach did not increase local efficacy in recent trials (e.g., pathological complete response rates, tumor regression, R0 resection rates, local control), it may help to improve control of distant disease. Conclusion: Whether this improvement in applicability and dose density of chemotherapy will ultimately translate into improved disease-free survival will have to be tested in a larger phase III trial. (orig.)

  9. Projected shell model analysis of multi-quasiparticle high-K isomers in sup 1 sup 7 sup 4 Hf

    CERN Document Server

    Zhou Xian Rong; Sun Yang; Long Gui Lu

    2002-01-01

    Multi-quasiparticle high-K states in sup 1 sup 7 sup 4 Hf are studied in the framework of the projected shell model. The calculation reproduces well the observed ground-state band as well as most of the two- and four-quasiparticle rotational bands. Some as yet unobserved high-K isomeric states in sup 1 sup 7 sup 4 Hf are predicted. Possible reasons for the existing discrepancies between calculation and experiment are discussed. It is suggested that the projected shell model may be a useful method for studying multi-quasiparticle high-K isomers and the K-mixing phenomenon in heavy deformed nuclei

  10. Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations

    DEFF Research Database (Denmark)

    Patrick, Christopher; Thygesen, Kristian Sommer

    2016-01-01

    In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we invest...... and qualitatively different from that found from calculations employingU-corrected (semi)local functionals.However we also find that the+U term cannot be used to correct the RPA’s poor description of the heat of formation of NiO....... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...

  11. Density functional for short-range correlation: Is the random phase approximation accurate for iso-electronic energy changes?

    Science.gov (United States)

    Yan, Zidan; Perdew, John P.; Kurth, Stefan

    2000-03-01

    Within a density functional context, the random phase approximation (RPA) for the correlation emergy makes a short-range error which is well-suited for correction by a local spin density or generalized gradient approximation (GGA). Here we construct a GGA for the short-range correction, following the same reliable procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting density functional is nearly local, and predicts a substantial correction to the RPA correlation energy of an atom but \\underlinevery small corrections to the RPA atomization energy of a molecule, which may by itself come close to "chemical accuracy", and to the RPA surface energy of a metal. A by-product of this work is a density functional for the system-averaged correlation hole within RPA.

  12. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Aggelen, Helen van [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent (Belgium); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  13. Groundwater cleanup by in-situ sparging. XIII. Random air channels for sparing of dissolved and nonaqueous phase volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.J.; Clarke, A.N. [Eckenfelder, Inc., Nashville, TN (United States); Kaminski, K.M.; Chang, E.Y. [Martin Luther King Magnet High School, Nashville, TN (United States)

    1997-12-01

    A mathematical model is developed to simulate the sparging of dissolved volatile organic compounds (VOCs) and nonaqueous phase liquid (NAPL) from contaminated aquifers. The sparging air moves through the aquifer in persistent, random channels, to which VOC must move by diffusion/dispersion to be removed. The dependence of the rate of remediation on the various model parameters is investigated and some practical conclusions are reached regarding the operation of air sparging wells for aquifer remediation. VOCs of low water solubility (such as alkanes) and present as NAPL are found to be removed by air sparging much more slowly than VOCs of higher water solubility (such as benzene, toluene, ethylbenzene and xylenes) and present as NAPL, due to the very small maximum concentration gradients which can be maintained around droplets of the former. These small concentration gradients result in very slow rates of NAPL solution.

  14. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.

    Science.gov (United States)

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  15. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique.

    Science.gov (United States)

    Deepan, B; Quan, C; Wang, Y; Tay, C J

    2014-07-10

    In this paper, a new multiple-image encryption and decryption technique that utilizes the compressive sensing (CS) concept along with a double-random phase encryption (DRPE) has been proposed. The space multiplexing method is employed for integrating multiple-image data. The method, which results in a nonlinear encryption system, is able to overcome the vulnerability of classical DRPE. The CS technique and space multiplexing are able to provide additional key space in the proposed method. A numerical experiment of the proposed method is implemented and the results show that the proposed method has good accuracy and is more robust than classical DRPE. The proposed system is also employed against chosen-plaintext attacks and it is found that the inclusion of compressive sensing enhances robustness against the attacks.

  16. Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-08-01

    A novel image encryption system based on double random phase encoding (DRPE) and RSA public-key algorithm is proposed. The main characteristic of the system is that each encryption process produces a new decryption key (even for the same plaintext), thus the encryption system conforms to the feature of the one-time pad (OTP) cryptography. The other characteristic of the system is the use of fingerprint key. Only with the rightful authorization will the true decryption be obtained, otherwise the decryption will result in noisy images. So the proposed system can be used to determine whether the ciphertext is falsified by attackers. In addition, the system conforms to the basic agreement of asymmetric cryptosystem (ACS) due to the combination with the RSA public-key algorithm. The simulation results show that the encryption scheme has high robustness against the existing attacks.

  17. Dietary Soy Supplement on Fibromyalgia Symptoms: A Randomized, Double-Blind, Placebo-Controlled, Early Phase Trial

    Directory of Open Access Journals (Sweden)

    Dietlind L. Wahner-Roedler

    2011-01-01

    Full Text Available Most patients with fibromyalgia use complementary and alternative medicine (CAM. Properly designed controlled trials are necessary to assess the effectiveness of these practices. This study was a randomized, double-blind, placebo-controlled, early phase trial. Fifty patients seen at a fibromyalgia outpatient treatment program were randomly assigned to a daily soy or placebo (casein shake. Outcome measures were scores of the Fibromyalgia Impact Questionnaire (FIQ and the Center for Epidemiologic Studies Depression Scale (CES-D at baseline and after 6 weeks of intervention. Analysis was with standard statistics based on the null hypothesis, and separation test for early phase CAM comparative trials. Twenty-eight patients completed the study. Use of standard statistics with intent-to-treat analysis showed that total FIQ scores decreased by 14% in the soy group (P = .02 and by 18% in the placebo group (P < .001. The difference in change in scores between the groups was not significant (P = .16. With the same analysis, CES-D scores decreased in the soy group by 16% (P = .004 and in the placebo group by 15% (P = .05. The change in scores was similar in the groups (P = .83. Results of statistical analysis using the separation test and intent-to-treat analysis revealed no benefit of soy compared with placebo. Shakes that contain soy and shakes that contain casein, when combined with a multidisciplinary fibromyalgia treatment program, provide a decrease in fibromyalgia symptoms. Separation between the effects of soy and casein (control shakes did not favor the intervention. Therefore, large-sample studies using soy for patients with fibromyalgia are probably not indicated.

  18. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis

    DEFF Research Database (Denmark)

    Vollmer, T L; Sorensen, P S; Selmaj, K

    2014-01-01

    The phase III placebo-controlled BRAVO study assessed laquinimod effects in patients with relapsing-remitting MS (RRMS), and descriptively compared laquinimod with interferon beta (IFNβ)-1a (Avonex(®) reference arm). RRMS patients age 18-55 years with Expanded Disability Status Scale (EDSS) scores...... using EDSS was -31 % [hazard ratio (HR) 0.69, p = 0.063], and using Multiple Sclerosis Functional Composite (MSFC) z-score was -77 % (p = 0.150), vs. placebo. IFNβ-1a reduced ARR 26 % (RR = 0.74, 95 % CI 0.60-0.92, p = 0.007), showed no effect on PBVC loss (+11 %, p = 0.14), and changes in disability...... worsening were -26 and -66 % as measured using the EDSS (HR 0.742, p = 0.13) and MSFC (p = 0.208), respectively. Adverse events occurred in 75, 82, and 70 % of laquinimod, IFNβ-1a, and placebo patients, respectively. Once-daily oral laquinimod 0.6 mg resulted in statistically nonsignificant reductions...

  19. Robot-assisted Versus Laparoscopic Surgery for Rectal Cancer: A Phase II Open Label Prospective Randomized Controlled Trial.

    Science.gov (United States)

    Kim, Min Jung; Park, Sung Chan; Park, Ji Won; Chang, Hee Jin; Kim, Dae Yong; Nam, Byung-Ho; Sohn, Dae Kyung; Oh, Jae Hwan

    2017-05-25

    The phase II randomized controlled trial aimed to compare the outcomes of robot-assisted surgery with those of laparoscopic surgery in the patients with rectal cancer. The feasibility of robot-assisted surgery over laparoscopic surgery for rectal cancer has not been established yet. Between February 21, 2012 and March 11, 2015, patients with rectal cancer (cT1-3NxM0) were enrolled. Patients were randomized 1:1 to either robot-assisted or laparoscopic surgery, and stratified per sex and administration of preoperative chemoradiotherapy. The primary outcome was the quality of total mesorectal excision (TME) specimen. Secondary outcomes were the circumferential and distal resection margins, the number of harvested lymph nodes, morbidity, bowel function recovery, and quality of life. A total of 163 patients were randomly assigned to the robot-assisted (n = 81) and laparoscopic (n = 82) surgery groups, and 139 patients were eligible for the analyses (73 vs 66, respectively). One patient (1.2%) in the robot-assisted group was converted to open surgery. The TME quality did not differ between the robot-assisted and laparoscopic groups (80.3% vs 78.1% complete TME, respectively; 18.2% vs 21.9% nearly complete TME, respectively; P = 0.599). The resection margins, number of harvested lymph nodes, morbidity, and bowel function recovery also were not significantly different. On analyzing quality of life, scores of the European Organization for Research and Treatment of Cancer Quality of Life (EORTC QLQ C30) and EORTC QLQ CR38 were similar in the 2 groups, but in the EORTC QLQ CR 38 questionnaire, sexual function 12 months postoperatively was better in the robot-assisted group than in the laparoscopic group (P = 0.03). Robot-assisted surgery in rectal cancer showed TME quality comparable with that of laparoscopic surgery, and it demonstrated similar postoperative morbidity, bowel function recovery, and quality of life.

  20. Pharmacokinetics, pharmacodynamics, and safety of pasireotide LAR in patients with acromegaly: a randomized, multicenter, open-label, phase I study.

    Science.gov (United States)

    Petersenn, Stephan; Bollerslev, Jens; Arafat, Ayman M; Schopohl, Jochen; Serri, Omar; Katznelson, Laurence; Lasher, Janet; Hughes, Gareth; Hu, Ke; Shen, George; Reséndiz, Karina Hermosillo; Giannone, Vanessa; Beckers, Albert

    2014-11-01

    Pasireotide (SOM230), a multireceptor-targeted somatostatin analogue, has exhibited favorable safety/tolerability in several clinical studies. A long-acting-release (LAR) formulation of pasireotide may offer advantages over the subcutaneous formulation. This randomized, open-label, Phase I study evaluated the safety, PK, and PD of pasireotide LAR 20, 40, or 60 mg/month in patients with acromegaly. Safety assessments and blood samples for PK and PD were taken at designated time points. Thirty-five patients were randomized and completed the study. Steady-state pasireotide concentrations were achieved following three monthly injections. Trough pasireotide concentrations (ng/mL) 28 days after each injection were: 2.48, 4.16, and 3.10 (20 mg group); 6.42, 6.62, and 7.12 (40 mg group); and 9.51, 11.7, and 13.0 (60 mg group). At study end, 51% and 57% of patients achieved GH levels ≤2.5 μg/L and IGF-1 levels below ULN, respectively. Compared with baseline, fasting blood glucose and HbA1c levels increased, whereas fasting blood insulin levels decreased. Acromegaly symptoms were generally improved. Adverse events were mostly gastrointestinal and mild/moderate. Pasireotide LAR was generally well tolerated. Steady-state PK was achieved after three monthly doses; exposures were approximately dose proportional. Control of GH, IGF-1, and symptoms improved, suggesting that pasireotide LAR may be an effective treatment for acromegaly.

  1. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial.

    Science.gov (United States)

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri L H; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2014-05-01

    Traumatic brain injury (TBI) is the commonest cause of death and disability in those aged under 40 years. Interleukin-1 receptor antagonist (IL1ra) is an endogenous competitive antagonist at the interleukin-1 type-1 receptor (IL-1R). Antagonism at the IL-1R confers neuroprotection in several rodent models of neuronal injury (i.e., trauma, stroke and excitotoxicity). We describe a single center, phase II, open label, randomized-control study of recombinant human IL1ra (rhIL1ra, anakinra) in severe TBI, at a dose of 100 mg subcutaneously once a day for 5 days in 20 patients randomized 1:1. We provide safety data (primary outcome) in this pathology, utilize cerebral microdialysis to directly determine brain extracellular concentrations of IL1ra and 41 cytokines and chemokines, and use principal component analysis (PCA) to explore the resultant cerebral cytokine profile. Interleukin-1 receptor antagonist was safe, penetrated into plasma and the brain extracellular fluid. The PCA showed a separation in cytokine profiles after IL1ra administration. A candidate cytokine from this analysis, macrophage-derived chemoattractant, was significantly lower in the rhIL1ra-treated group. Our results provide promising data for rhIL1ra as a therapeutic candidate by showing safety, brain penetration and a modification of the neuroinflammatory response to TBI by a putative neuroprotective agent in humans for the first time.

  2. Photon-dressed quasiparticle states in 1D and 2D materials: a many-body Floquet approach

    Science.gov (United States)

    Manghi, Franca; Puviani, Matteo

    We studiy the interplay between electron-electron interactions and non-equilibrium conditions associated to time-dependent external fields. Exploring phases of quantum matter away from equilibrium may give access to regimes inaccessible under equilibrium conditions. What makes this field particularly interesting is the possibility to engineer new phases of matter by an external tunable control. We have developed a scheme that allows to treat photo-induced phenomena in the presence of electron-electron many body interactions, where both the nonlinear effects of the external field and the electron-electron correlation are treated simultaneously and in a non-perturbative way. The Floquet approach is used to include the effects of the external time periodic field, and the Cluster Perturbation Theory to describe interacting electrons in a lattice. They are merged in a Floquet-Green function method that allows to calculate photon dressed quasiparticle excitation. For 1D systems we show that an unconventional Mott insulator-to-metal transition occurs for given characteristics of the applied field (intensity and frequency). The method has also been applied to the 2D honeycomb lattice (graphene), where in the presence of realistic values of electron-electron interaction, we show that linearly polarized light may give rise to non-dissipative edge states associated to a non-trivial topological behavior.

  3. Randomized phase II clinical trial of chemo-immunotherapy in advanced nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Eduardo Lasalvia-Prisco

    2008-09-01

    Full Text Available Eduardo Lasalvia-Prisco1,4, Emilio Garcia-Giralt2, Jesús Vázquez2,4, Marta Aghazarian4, Eduardo Lasalvia-Galante3,4, Joshemaria Larrañaga3,4, Gonzalo Spera31Interdoctors Medical Procedures, North Miami Beach, FL, USA; 2Centre De Cancérologie Hartmann, Neuilly Sur Seine, France; 3Interdoctors Medical Procedures, Montevideo, Uruguay; 4National Institute of Oncology, Montevideo, Uruguay (initial dataAbstract: The purpose of this study was to compare chemotherapy-naive patients with stage IV nonsmall cell lung cancer patients treated with chemotherapy or chemoimmunotherapy. We tested doxetacel plus cisplatinum as chemotherapy protocol. An immunomodulatory adjuvant system was added as chemoimmunotherapy to the previously mentioned protocol. This system contains three well-known and complementary conditioners of protective immune-responses: cyclophosphamide low-dose, granulocyte macrophage-colony stimulant factor and magnesium silicate granuloma. Eighty-eight patients were randomly assigned to receive every 3-weeks one of the treatments under comparison. Patients received four cycles of treatment unless disease progression or unacceptable toxicity was documented. The maximum follow-up was one year. In each arm, tumor response (rate, duration, median survival time, 1-year overall survival, safety, and immunity modifications were assessed. Immunity was evaluated by submitting peripheral blood mononuclear cells to laboratory tests for nonspecific immunity: a phytohemaglutinin-induced lymphocyte proliferation, b prevalence of T-Regulatory (CD4+CD25+ cells and for specific immunity: a lymphocyte proliferation induced by tumor-associated antigens (TAA contained in a previously described autologous thermostable hemoderivative. The difference (chemotherapy vs. chemoimmunotherapy in response rate induced by the two treatments (39.0% and 35.0% was not statistically significant. However, the response duration (22 and 31 weeks, the median survival time (32

  4. Phase I randomized safety study of twice daily dosing of acidform vaginal gel: candidate antimicrobial contraceptive.

    Directory of Open Access Journals (Sweden)

    Marla J Keller

    Full Text Available BACKGROUND: Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota. METHODS: Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC placebo gel twice daily for 14 consecutive days. Safety was assessed by symptoms and pelvic examination. The impact of gel on mucosal immunity was assessed by quantifying cytokines, chemokines, antimicrobial proteins and antimicrobial activity of genital secretions collected by cervicovaginal lavage (CVL at screening, 2 hours after gel application, and on days 7, 14 and 21. Vaginal microbiota was characterized at enrollment and day 14 using species-specific quantitative PCR assays. RESULTS: The median vaginal and cervical pH was significantly lower 2 hours after application of Acidform and was associated with an increase in the bactericidal activity of CVL against E. coli. However, 65% of women who received Acidform had at least one local adverse event compared with 11% who received placebo (p = 0.002. While there was no increase in inflammatory cytokines or chemokines, CVL concentrations of lactoferrin and interleukin-1 receptor antagonist (IL-1ra, an anti-inflammatory protein, were significantly lower following Acidform compared to HEC placebo gel application. There were no significant changes in Lactobacillus crispatus or Lactobacillus jensenii in either group but there was a decrease in Gardnerella vaginalis in the Acidform group (p = 0.08. CONCLUSIONS: Acidform gel may augment mucosal defense as evidenced by an increase in bactericidal activity of genital secretions against E. coli and a decrease in Gardnerella vaginalis colonization. However, Acidform was associated with more irritation than

  5. Phase I Randomized Safety Study of Twice Daily Dosing of Acidform Vaginal Gel: Candidate Antimicrobial Contraceptive

    Science.gov (United States)

    Keller, Marla J.; Carpenter, Colleen A.; Lo, Yungtai; Einstein, Mark H.; Liu, Congzhou; Fredricks, David N.; Herold, Betsy C.

    2012-01-01

    Background Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota. Methods Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC) placebo gel twice daily for 14 consecutive days. Safety was assessed by symptoms and pelvic examination. The impact of gel on mucosal immunity was assessed by quantifying cytokines, chemokines, antimicrobial proteins and antimicrobial activity of genital secretions collected by cervicovaginal lavage (CVL) at screening, 2 hours after gel application, and on days 7, 14 and 21. Vaginal microbiota was characterized at enrollment and day 14 using species-specific quantitative PCR assays. Results The median vaginal and cervical pH was significantly lower 2 hours after application of Acidform and was associated with an increase in the bactericidal activity of CVL against E. coli. However, 65% of women who received Acidform had at least one local adverse event compared with 11% who received placebo (p = 0.002). While there was no increase in inflammatory cytokines or chemokines, CVL concentrations of lactoferrin and interleukin-1 receptor antagonist (IL-1ra), an anti-inflammatory protein, were significantly lower following Acidform compared to HEC placebo gel application. There were no significant changes in Lactobacillus crispatus or Lactobacillus jensenii in either group but there was a decrease in Gardnerella vaginalis in the Acidform group (p = 0.08). Conclusions Acidform gel may augment mucosal defense as evidenced by an increase in bactericidal activity of genital secretions against E. coli and a decrease in Gardnerella vaginalis colonization. However, Acidform was associated with more irritation than placebo and lower levels

  6. Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial

    Science.gov (United States)

    Hoy, Anna M.; Semple, Scott I.; Mungall, Will; Lennen, Ross J.; Moran, Carmel M.; Pellicoro, Antonella; Aucott, Rebecca L.; Severin, Thomas; Saini, Rajnish; Yates, Denise; Dongre, Neelesh; Duffield, Jeremy S.; Webb, David J.; Iredale, John P.; Hayes, Peter C.

    2017-01-01

    Background Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2) is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1) and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension. Methods and findings To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v.) infusion (for 60 min at 80 μg/kg/d and then 60 min at 30 μg/kg/d) or terlipressin (single 2-mg i.v. bolus), and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow. Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the

  7. Comparison of Intramuscular and Intravaginal Progesterone for Luteal Phase Support in IVF Cycles: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Katayon Berjis

    2008-06-01

    Full Text Available Objective: This research was designed to compare the effectiveness of intramuscular progesterone and vaginal progesterone to support luteal phase in IVF cycles. Materials and Methods: In this randomized clinical trial 182 infertile patients between 20-40 years old were selected for rapid ZIFT cycles. In order to support luteal phase Cyclogest suppository (400 mg BID was used for 77 cases and the rest used intramuscular progesterone (100 mg daily. Pregnancy and abortion rates were compared between two groups.Results: Chemical pregnancy rate (positive ß-HCG was %27.3 in Cyclogest group and %30.6 in intramuscular progestrone group (P = 0.7. Clinical pregnancy (gestational sac visible by transvaginal ultrasound was observed in %22.1 of cases in Cyclogest group and %27.1 of cases in intramuscular progestrone group (P = 0.4. Ongoing pregnancy rate (fetal heart action visible by transvaginal ultrasound was %15.6 in Cyclogest group and %18.8 in intramuscular progesterone group (P = 0.6.Conclusion: Chemical pregnancy, clinical pregnancy and ongoing pregnancy rates were similar in vaginal and intramuscular progestrone groups.

  8. Self-consistent random phase approximation - application to systems of strongly correlated fermions; Approximation des phases aleatoires self-consistante - applications a des systemes de fermions fortement correles

    Energy Technology Data Exchange (ETDEWEB)

    Jemai, M

    2004-07-01

    In the present thesis we have applied the self consistent random phase approximation (SCRPA) to the Hubbard model with a small number of sites (a chain of 2, 4, 6,... sites). Earlier SCRPA had produced very good results in other models like the pairing model of Richardson. It was therefore interesting to see what kind of results the method is able to produce in the case of a more complex model like the Hubbard model. To our great satisfaction the case of two sites with two electrons (half-filling) is solved exactly by the SCRPA. This may seem a little trivial but the fact is that other respectable approximations like 'GW' or the approach with the Gutzwiller wave function yield results still far from exact. With this promising starting point, the case of 6 sites at half filling was considered next. For that case, evidently, SCRPA does not any longer give exact results. However, they are still excellent for a wide range of values of the coupling constant U, covering for instance the phase transition region towards a state with non zero magnetisation. We consider this as a good success of the theory. Non the less the case of 4 sites (a plaquette), as indeed all cases with 4n sites at half filling, turned out to have a problem because of degeneracies at the Hartree Fock level. A generalisation of the present method, including in addition to the pairs, quadruples of Fermions operators (called second RPA) is proposed to also include exactly the plaquette case in our approach. This is therefore a very interesting perspective of the present work. (author)

  9. Description of collective and quasiparticle excitations in deformed actinide nuclei: The first application of the Heavy Shell Model

    CERN Document Server

    Cui, Ji-Wei; Chen, Fang-Qi; Sun, Yang; Wu, Cheng-Li; Gao, Zao-Chun

    2014-01-01

    The Heavy Shell Model (HSM) (Y. Sun and C.-L. Wu, Phys. Rev. C 68, 024315 (2003)) was proposed to take the advantages of two existing models, the projected shell model (PSM) and the Fermion Dynamical Symmetry Model (FDSM). To construct HSM, one extends the PSM by adding collective D-pairs into the intrinsic basis. The HSM is expected to describe simultaneously low-lying collective and quasi-particle excitations in deformed nuclei, and still keeps the model space tractable even for the heaviest systems. As the first numerical realization of the HSM, we study systematically the band structures for some deformed actinide nuclei, with a model space including up to 4-quasiparticle and 1-D-pair configurations. The calculated energy levels for the ground- state bands, the collective bands such as {\\beta} - and {\\gamma} -bands, and some quasiparticle bands agree well with known experimental data. Some low-lying quasiparticle bands are predicted, awaiting experimental confirmation.

  10. Shape vibrations and quasiparticle excitations in the lowest 0+ excited state of the Erbium isotopes

    CERN Document Server

    Chen, Fang-Qi

    2016-01-01

    The ground and first excited 0+ states of the {156-172}Er isotopes are analyzed in the framework of the generator coordinate method. The shape parameter beta is used to generate wave functions with different deformations which together with the two-quasiparticle states built on them provide a set of states. An angular momentum and particle number projection of the latter spawn the basis states of the generator coordinate method. With this ansatz and using the separable pairing plus quadrupole interaction we obtain a good agreement with the experimental spectra and E2 transition rates up to moderate spin values. The structure of the wave functions suggests that the first excited 0+ states in the soft Er isotopes are dominated by shape fluctuations, while in the well deformed Er isotopes the two-quasiparticle states are more relevant. In between both degrees of freedom are necessary .

  11. Multi-quasiparticle {gamma}-band structure in neutron-deficient Ce and Nd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, J.A. [Physics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Palit, R.; Naik, Z. [Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India); Sun, Y. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: sunyang@sjtu.edu.cn

    2009-06-01

    The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that {gamma}-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface {gamma}-oscillation in deformed nuclei based on the ground-state to {gamma}-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I=10 aligning states in {sup 134}Ce and both exhibiting a neutron character.

  12. Multi-Quasiparticle Gamma-Band Structure in Neutron-Deficient Ce and Nd Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Javid [ORNL; Bhat, G. H. [University of Kashmir, Srinagar, India; Palit, R. [Tata Institute of Fundamental Research, Mumbai, India; Naik, Z. [Tata Institute of Fundamental Research, Mumbai, India; Sun, Y. [Shanghai Jiao Tong University, Shanghai

    2009-01-01

    The newly developed multi-quasiparticle triaxial projected shell-model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce and Nd isotopes. It is observed that gamma bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma oscillation in deformed nuclei based on the ground state to gamma bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I=10 aligning states in ^{134}Ce and both exhibiting a neutron character.

  13. Inflationary quasiparticle creation and thermalization dynamics in coupled Bose-Einstein condensates

    CERN Document Server

    Posazhennikova, Anna; Kroha, Johann

    2016-01-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, non-equilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanche-like QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our set-up occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  14. A quasi-particle description of $(2+1)$- flavor lattice QCD equation of state

    CERN Document Server

    Chandra, Vinod

    2011-01-01

    A quasi-particle model has been employed to describe the $(2+1)$-flavor lattice QCD equation of state with physical quark masses. The interaction part of the equation of state has been mapped to the effective fugacities of otherwise non-interacting quasi-gluons and quasi-quarks. The mapping is found to be exact for the equation of state. The model leads to non-trivial dispersion relations for quasi-partons. The dispersion relations, effective quasi-particle number densities, and trace anomaly have been investigated employing the model. A Virial expansion for the EOS has further been obtained to investigate the role of interactions in quark-gluon plasma (QGP). Finally, Debye screening in QGP has been studied employing the model.

  15. Constraints on the quasiparticle density of states in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cren, T.; Roditchev, D.; Sacks, W.; Klein, J. [Paris-7 Univ., 75 (France). Groupe de Physique des Solides

    2000-10-15

    In this letter we present new tunneling data on YBa{sub 2}Cu{sub 3}O{sub 7} thin films by low-temperature scanning tunneling spectroscopy. Unusual peak-dip-hump features, previously reported in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, are also found in YBa{sub 2}Cu{sub 3}O{sub 7}. To analyse these common signatures, we propose a new heuristic model in which, in addition to the d-wave symmetry, the gap function is energy dependent. A simple expression for the quasiparticle density of states is derived, giving an excellent agreement with the experiment. The dynamics of the quasiparticle states and the energy scales involved in the superconducting transition are discussed. (orig.)

  16. Long quasiparticle lifetime in Aluminum Microwave Kinetic Inductance Detectors using coaxial stray light filters

    Science.gov (United States)

    Baselmans, J. J. A.; Yates, S. J. C.

    2009-12-01

    To achieve the high sensitivity requirements of future space based sub-mm spectroscopy missions is highly challenging. Microwave Kinetic Inductance Detectors are a promising candidate since they can theoretically achieve the performance required. However, they have yet to be shown to reach this performance. We will show that this is due in part to stray light saturating the device's sensitivity in aluminium KIDs in our experimental setup. We discuss a set of experiments that show that thermal radiation from the 3 K stage of our cooler is limiting the quasiparticle lifetime in our aluminium KIDs. Furthermore we discuss a new filtering method based upon coaxial cable filters to reduce this effect. Using the best filtering achievable we have measured a quasiparticle lifetime of 2.8 msec in a 100 nm thick Al KID.

  17. Resolving the quasiparticle scattering paradox in superconducting LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Christian; Sykora, Steffen; Haenke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr; Harnagea, Luminita; Wurmehl, Sabine [IFW Dresden (Germany); Brink, Jeroen van den; Buechner, Bernd [IFW Dresden (Germany); Department of Physics, TU Dresden (Germany)

    2013-07-01

    Several angle resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within hole-like bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the hole-like bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  18. Quasiparticle-mediated spin Hall effect in a superconductor.

    Science.gov (United States)

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  19. Investigating the quasiparticle dynamics operating in the electrodes of superconducting tunnel junctions using nanosecond phonon pulses

    CERN Document Server

    Steele, A

    2000-01-01

    this thesis data from phonon experiments are used to directly determine values for the parameters of an STJ such as the quasiparticle loss and tunnel rates in its electrodes. It is also shown how the input energy, in the form of phonons capable of breaking Cooper pairs, and the corresponding charge output from the device can be determined. These values are then compared with those obtained from x-ray absorption data. This thesis is concerned with the use of nanosecond phonon pulses to study quasiparticle behaviour in the electrodes of high-quality niobium superconducting tunnel junctions (STJs). This work is part of a collaboration with the Astrophysics Research and Development Division of the European Space Agency (ESA) at ESTEC. STJs are being widely investigated as photon detectors over a broad range of the electromagnetic spectrum. They potentially offer excellent energy resolution, time response and photon counting capabilities. The primary aim of this research was to use phonon pulses to investigate qua...

  20. Coexisting wobbling and quasiparticle excitations in the triaxial potential well of {sup 163}Lu

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.R.; Hagemann, G.B.; Herskind, B.; Sletten, G.; Wilson, J.N. [Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Hamamoto, I. [Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Department of Mathematical Physics, LTH, University of Lund, Lund (Sweden); Oedegaard, S.W. [Department of Physics, University of Oslo, PB 1048 Blindern, N-0316, Oslo (Norway); Spohr, K. [Department of Electronic Engineering and Physics, University of Paisley (United Kingdom); Huebel, H.; Bringel, P.; Neusser, A.; Schoenwasser, G.; Singh, A.K. [Helmholtz-Institut fuer Strahlen- und Kernphysik, University of Bonn, Nussallee 14-16, D-53115, Bonn (Germany); Ma, W.C.; Amro, H. [Mississippi State University, MS 39762, Mississippi State (United States); Bracco, A.; Leoni, S.; Benzoni, G. [Dipartimento di Fisica and INFN, Sezione di Milano, Milano (Italy); Maj, A. [Niewodniczanski Insitute of Nuclear Physics, Krakow (Poland); Petrache, C.M. [Dipartimento di Fisica and INFN, Sezione di Padova, Padova (Italy); Dipartimento di Matematica e Fisica, Universita di Camerino, Camerino (Italy); Lo Bianco, G.; Bednarczyk, P.; Curien, D.

    2004-02-01

    High-spin states of the nucleus {sup 163}Lu have been populated through the fusion-evaporation reaction {sup 139}La({sup 29}Si,5n) with a beam energy of 157 MeV. In addition to the two lowest excited triaxial strongly deformed (TSD) bands, recently interpreted as one- and two-phonon wobbling excitations, a third excited TSD band has been firmly established decaying to the yrast TSD band. The assignment of this band as a three-quasiparticle band shows together with the normal deformed (ND) level scheme the presence not only of shape coexistence between ND and TSD structures, but also an interplay of wobbling and quasiparticle excitations in the triaxial strongly deformed potential well of {sup 163}Lu. (orig.)

  1. Gauge dependence of the fermion quasiparticle poles in hot gauge theories

    Science.gov (United States)

    Wang, Shang-Yung

    2004-09-01

    The gauge dependence of the complex fermion quasiparticle poles corresponding to soft collective excitations is studied in hot gauge theories at one-loop order and next-to-leading order in the high-temperature expansion, with a view towards going beyond the leading order hard thermal loops and resummations thereof. We find that for collective excitations of momenta k˜eT the dispersion relations are gauge independent, but the corresponding damping rates are gauge dependent. For k≪eT and in the k→0 limit, both the dispersion relations and the damping rates are found to be gauge dependent. The gauge dependence of the position of the complex quasiparticle poles signals the need for resummation. Possible cancellation of the leading gauge dependence at two-loop order in the case of QED is briefly discussed.

  2. Departure from equilibrium of the quasiparticle distribution functions in high-energy nuclear collisions

    Science.gov (United States)

    Chakraborty, P.; Kapusta, J. I.

    2017-01-01

    In simulations of high energy heavy ion collisions that employ viscous hydrodynamics, single particle distributions are distorted from their thermal equilibrium form due to gradients in the flow velocity. These are closely related to the formulas for the shear and bulk viscosities in the quasiparticle approximation. Distorted single particle distributions are now commonly used to calculate the emission of photons and dilepton pairs, and in the late stage to calculate the conversion of a continuous fluid to individual particles. We show how distortions of the single particle distribution functions due to both shear and bulk viscous effects can be done rigorously in the quasiparticle approximation and illustrate it with the linear σ model at finite temperature.

  3. Quasi-particle properties in a quasi-two-dimensional electron liquid

    Indian Academy of Sciences (India)

    R Asgari; B Tanatar

    2008-02-01

    We consider the quasi-particle properties such as the effective mass and spin susceptibility of quasi-two-dimensional electron systems. The finite quantum well width effects are incorporated into the local-field factors that describe the charge and spin correlations. We employ the Fermi-hypernetted chain formalism in conjunction with fluctuation-dissipation theorem to obtain the local-field factors. Our results are in good agreement with recent experiments.

  4. Quasi-particles and effective mean field in strongly interacting matter

    Energy Technology Data Exchange (ETDEWEB)

    Levai, P. [MTA KFKI RMKI, POB 49., Budapest 114, 1525 (Hungary); Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); Ko, C.M. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States)

    2010-03-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar sigma field by introducing a dynamically generated mass, M(sigma), and a self-consistently determined interaction term, B(sigma). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  5. Quasi-particles and effective mean field in strongly interacting matter

    Science.gov (United States)

    Lévai, P.; Ko, C. M.

    2010-03-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  6. Observation of a $\\gamma$-band based on two-quasiparticle configuration in $^{70}$Ge

    CERN Document Server

    Raju, M Kumar; Muralithar, S; Singh, R P; Bhat, G H; Sheikh, J A; Tandel, S K; Sugathan, P; Reddy, T Seshi; Rao, B V Thirumala; Bhowmik, R K

    2016-01-01

    The structure of $^{70}$Ge has been studied through in-beam gamma ray spectroscopy. A new band structure is identified that leads to forking of the ground-state band into two excited bands. Band structures have been investigated using the microscopic triaxial projected shell model approach. The observed forking is demonstrated to result from almost simultaneous band crossing of the two neutron aligned and the \\gamma-band built on this two-quasiparticle configuration with the ground-state band.

  7. Equation of State of the Quark Gluon Plasma within the Quasi-particle Approach

    CERN Document Server

    Begun, Viktor V; Mogilevsky, Oleg A

    2010-01-01

    We propose simple analytical form of the quark-gluon plasma (QGP) equation of state (EoS) based on a quasi-particle approach. This new EoS satisfies all qualitative features observed in the lattice QCD calculations and gives a good quantitative description of the lattice results in SU(3) gluodynamics. The suggested EoS opens up new possibilities for hydrodynamic and kinetic phenomenological applications in the studies of the QGP.

  8. Four-Quasiparticle High-K States in Neutron-Deficient Lead and Polonium Nuclei

    Science.gov (United States)

    Shi, Yue; Xu, Furong

    2012-06-01

    Configuration-constrained potential energy surface calculations have been performed to investigate four-quasiparticle high-K configurations in neutron-deficient lead and polonium isotopes. A good agreement between the calculations and the experimental data has been found for the excitation energy of the observed Kπ = 19- state in 188Pb. Several lowly excited high-K states are predicted, and the large oblate deformation and low energy indicate high-K isomerism in these nuclei.

  9. Critical pairing fluctuations in the normal state of a superconductor: Pseudogap and quasiparticle damping

    Science.gov (United States)

    Lange, Philipp; Tsyplyatyev, Oleksandr; Kopietz, Peter

    2017-08-01

    We study the effect of critical pairing fluctuations on the electronic properties in the normal state of a clean superconductor in three dimensions. Using a functional renormalization group approach to take the non-Gaussian nature of critical fluctuations into account, we show microscopically that in the BCS regime, where the inverse coherence length is much smaller than the Fermi wave vector, critical pairing fluctuations give rise to a nonanalytic contribution to the quasiparticle damping of order Tc√{Gi}ln(80 /Gi) , where the Ginzburg-Levanyuk number Gi is a dimensionless measure for the width of the critical region. As a consequence, there is a temperature window above Tc where the quasiparticle damping due to critical pairing fluctuations can be larger than the usual T2 Fermi liquid damping due to noncritical scattering processes. On the other hand, in the strong coupling regime where Gi is of order unity, we find within the Gaussian approximation that the quasiparticle damping due to critical pairing fluctuations is proportional to the temperature. Moreover, we show that in the vicinity of the critical temperature Tc the electronic density of states exhibits a fluctuation-induced pseudogap. We also use functional renormalization group methods to derive and classify various types of higher-order scattering processes induced by the pairing interaction in Fermi systems close to the superconducting instability.

  10. Fermionic q-deformation and its connection to thermal effective mass of a quasiparticle

    Science.gov (United States)

    Algin, Abdullah; Senay, Mustafa

    2016-04-01

    A fermionic deformation scheme is applied to a study on the low-temperature quantum statistical behavior of a quasifermion gas model with intermediate statistics. Such a model does not satisfy the Pauli exclusion principle, and its quantum statistical properties are based on a formalism of the fermionic q-calculus. For low temperatures, several thermostatistical functions of the model such as the chemical potential, the heat capacity, and the entropy are derived by means of a function of the model deformation parameter q. The effect of fermionic q-deformation on the low-temperature thermostatistical properties of the model are discussed in detail. Our results show that the present deformed (quasi)fermion model provides remarkable connections of the model deformation parameter q, first, with the thermal effective mass of a quasiparticle, and second, with the temperature parameter. Hence, it turns out that the model deformation parameter q has also a role controlling the strength of effective quasiparticle interactions in the model. Finally, we conclude that this work can be useful for understanding the details of interaction mechanism of fermions such as quasiparticle states emergent in the fractional quantum Hall effect.

  11. Scattering of a composite quasiparticle by an impurity on a lattice

    Science.gov (United States)

    Suzuki, Fumika; Litinskaya, Marina; Unruh, William G.

    2017-08-01

    We study scattering of a composite quasiparticle, which possesses a degree of freedom corresponding to relative separation between two bound excitations, by a δ -like impurity potential on a one-dimensional discrete lattice. First, we show that, due to specific properties of their dispersion, lattice excitations bind to impurities with both negative and positive potentials. We demonstrate that the finite size of the composite excitation leads to formation of multiple excitation-impurity bound states. The number and the degree of localization of these bound states depend on the signs and relative magnitudes of the impurity potential and the binding strength of two quasiparticles. We also report the existence of excitation-impurity bound states whose energies are located in the continuum band. Secondly, we study a change in the entanglement between the center of mass and relative coordinate degrees of freedom of a biexciton wave packet during single impurity scattering and decoherence caused by it. For a composite quasiparticle on a lattice, the entanglement between its relative and center of mass coordinate degrees of freedom arises naturally due to inseparability of the two-particle Hamiltonian. One of the main focuses of our study is to investigate how this inseparability affects the creation of the biexciton-impurity bound states and the entanglement dynamics.

  12. Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor.

    Science.gov (United States)

    Ishida, Y; Saitoh, T; Mochiku, T; Nakane, T; Hirata, K; Shin, S

    2016-01-01

    In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲ 70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O(8+δ) and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc.

  13. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  14. Two- and three-phase equilibria of polydisperse Yukawa hard-sphere fluids confined in random porous media: high temperature approximation and scaled particle theory.

    Science.gov (United States)

    Hvozd, Taras V; Kalyuzhnyi, Yurij V

    2017-02-15

    We have studied the phase behavior of polydisperse Yukawa hard-sphere fluid confined in random porous media using extension and combination of high temperature approximation and scaled particle theory. The porous media are represented by the matrix of randomly placed hard-sphere obstacles. Due to the confinement, polydispersity effects are substantially enhanced. At an intermediate degree of fluid polydispersity and low density of the matrix, we observe two-phase coexistence with two critical points, and cloud and shadow curves forming closed loops of ellipsoidal shape. With the increase of the matrix density and the constant degree of polydispersity, these two critical points merge and disappear, and at lower temperatures the system fractionates into three coexisting phases. A similar phase behavior was observed in the absence of the porous media caused, however, by the increase of the polydispersity.

  15. Phase 3 Randomized Low-Dose Paclitaxel Chemoradiotherapy Study for Locally Advanced Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hongmei Lin

    2016-12-01

    Full Text Available Introduction: Concurrent chemoradiotherapy (CCRT is the standard treatment for locally advanced non-small cell lung cancer (LA-NSCLC, but is associated with poor chest tumor control. Here we report results of a randomized phase 3 study comparing two CCRT regimens in improving chest tumor control by low-dose paclitaxel chemoradiation for LA-NSCLC. Methods: Due to the logistics of local referral pattern, the study was designed to enroll patients with stage III LA-NSCLC who had completed 2-4 cycles of full-dose chemotherapy. One hundred thirty four were randomized to either Arm 1 (paclitaxel at 15 mg/m2, three times/wk [M, W, F] for 6 weeks, n=74, or Arm 2 (weekly paclitaxel at 45 mg/m2 for 6 weeks, n=60. Chest RT was 60-70 Gy in standard fractionation. Response rate was the primary endpoint, with recurrence-free survival (RFS as the secondary endpoint. Results: From March 2006 to February 2013, seventy-one patients completed Arm 1 treatment, and 59 completed Arm 2 treatment. The response rate for Arm 1 was significantly higher (83.1% than Arm 2 (54.2% (p=0.001. RFS was superior in Arm 1: median 14.6 months vs. 9.4 months, p=0.005, Hazard ratio (HR 1.868 (95% CI 1.203, 2.901. Overall survival was not significantly different: median 32.6 months in Arm 1 vs. 31.3 months in Arm 2, p = 0.91, HR 0.969 (95% CI 0.552, 1.703. Toxicity was significantly lower in Arm 1 for grade 3 and 4 leucopenia/neutropenia (p<0.001.Conclusions: Pulsed low-dose paclitaxel CCRT resulted in significantly better RFS and tumor response rate, and less hematologic toxicities than weekly CCRT for LA-NSCLC.

  16. A randomized phase II trial of personalized peptide vaccine with low dose cyclophosphamide in biliary tract cancer.

    Science.gov (United States)

    Shirahama, Takahisa; Muroya, Daisuke; Matsueda, Satoko; Yamada, Akira; Shichijo, Shigeki; Naito, Masayasu; Yamashita, Takuto; Sakamoto, Shinjiro; Okuda, Koji; Itoh, Kyogo; Sasada, Tetsuro; Yutani, Shigeru

    2017-02-11

    Since the prognosis of advanced biliary tract cancer (aBTC) still remains very poor, new therapeutic approaches, including immunotherapies, need to be developed. In the current study, we conducted an open-label randomized phase II study to test whether low dose cyclophosphamide (CPA) could improve antigen-specific immune responses and clinical efficacy of personalized peptide vaccination (PPV) in 49 previously treated aBTC patients. Patients with aBTC refractory to at least one regimen of chemotherapies were randomly assigned to receive PPV with low dose CPA (100 mg/ day for 7 days before vaccination) (PPV/CPA, n=24) or PPV alone (n=25). A maximum of four HLA-matched peptides were selected based on the pre-existing peptide-specific IgG responses, followed by subcutaneous administration. T cell responses to the vaccinated peptides in the PPV/CPA arm tended to be greater than those in the PPV alone arm. The PPV/CPA arm showed significantly better progression-free survival (median time: 6.1 vs 2.9 months; hazard ratio (HR): 0.427; P = 0.008) and overall survival (median time: 12.1 vs 5.9 months; HR: 0.376; P = 0.004), compared to the PPV alone arm. The PPV alone arm, but not the PPV/CPA arm, showed significant increase in plasma IL-6 after vaccinations, which might be associated with inhibition of antigen-specific T cell responses. These results suggested that combined treatment with low dose CPA could provide clinical benefits in aBTC patients under PPV, possibly through prevention of IL-6-mediated immune suppression. Further clinical studies would be recommended to clarify the clinical efficacy of PPV/CPA in aBTC patients. This article is protected by copyright. All rights reserved.

  17. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM

    Science.gov (United States)

    Offidani, Massimo; Pégourie, Brigitte; De La Rubia, Javier; Garderet, Laurent; Laribi, Kamel; Bosi, Alberto; Marasca, Roberto; Laubach, Jacob; Mohrbacher, Ann; Carella, Angelo Michele; Singhal, Anil K.; Tsao, L. Claire; Lynch, Mark; Bleickardt, Eric; Jou, Ying-Ming; Robbins, Michael; Palumbo, Antonio

    2016-01-01

    In this proof-of-concept, open-label, phase 2 study, patients with relapsed/refractory multiple myeloma (RRMM) received elotuzumab with bortezomib and dexamethasone (EBd) or bortezomib and dexamethasone (Bd) until disease progression/unacceptable toxicity. Primary endpoint was progression-free survival (PFS); secondary/exploratory endpoints included overall response rate (ORR) and overall survival (OS). Two-sided 0.30 significance level was specified (80% power, 103 events) to detect hazard ratio (HR) of 0.69. Efficacy and safety analyses were performed on all randomized patients and all treated patients, respectively. Of 152 randomized patients (77 EBd, 75 Bd), 150 were treated (75 EBd, 75 Bd). PFS was greater with EBd vs Bd (HR, 0.72; 70% confidence interval [CI], 0.59-0.88; stratified log-rank P = .09); median PFS was longer with EBd (9.7 months) vs Bd (6.9 months). In an updated analysis, EBd-treated patients homozygous for the high-affinity FcγRIIIa allele had median PFS of 22.3 months vs 9.8 months in EBd-treated patients homozygous for the low-affinity allele. ORR was 66% (EBd) vs 63% (Bd). Very good partial response or better occurred in 36% of patients (EBd) vs 27% (Bd). Early OS results, based on 40 deaths, revealed an HR of 0.61 (70% CI, 0.43-0.85). To date, 60 deaths have occurred (28 EBd, 32 Bd). No additional clinically significant adverse events occurred with EBd vs Bd. Grade 1/2 infusion reaction rate was low (5% EBd) and mitigated with premedication. In patients with RRMM, elotuzumab, an immunostimulatory antibody, appears to provide clinical benefit without added clinically significant toxicity when combined with Bd vs Bd alone. Registered to ClinicalTrials.gov as NCT01478048. PMID:27091875

  18. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial.

    Science.gov (United States)

    Pujade-Lauraine, Eric; Hilpert, Felix; Weber, Béatrice; Reuss, Alexander; Poveda, Andres; Kristensen, Gunnar; Sorio, Roberto; Vergote, Ignace; Witteveen, Petronella; Bamias, Aristotelis; Pereira, Deolinda; Wimberger, Pauline; Oaknin, Ana; Mirza, Mansoor Raza; Follana, Philippe; Bollag, David; Ray-Coquard, Isabelle

    2014-05-01

    In platinum-resistant ovarian cancer (OC), single-agent chemotherapy is standard. Bevacizumab is active alone and in combination. AURELIA is the first randomized phase III trial to our knowledge combining bevacizumab with chemotherapy in platinum-resistant OC. Eligible patients had measurable/assessable OC that had progressed two prior anticancer regimens were ineligible. After investigators selected chemotherapy (pegylated liposomal doxorubicin, weekly paclitaxel, or topotecan), patients were randomly assigned to single-agent chemotherapy alone or with bevacizumab (10 mg/kg every 2 weeks or 15 mg/kg every 3 weeks) until progression, unacceptable toxicity, or consent withdrawal. Crossover to single-agent bevacizumab was permitted after progression with chemotherapy alone. The primary end point was progression-free survival (PFS) by RECIST. Secondary end points included objective response rate (ORR), overall survival (OS), safety, and patient-reported outcomes. The PFS hazard ratio (HR) after PFS events in 301 of 361 patients was 0.48 (95% CI, 0.38 to 0.60; unstratified log-rank P < .001). Median PFS was 3.4 months with chemotherapy alone versus 6.7 months with bevacizumab-containing therapy. RECIST ORR was 11.8% versus 27.3%, respectively (P = .001). The OS HR was 0.85 (95% CI, 0.66 to 1.08; P < .174; median OS, 13.3 v 16.6 months, respectively). Grade ≥ 2 hypertension and proteinuria were more common with bevacizumab. GI perforation occurred in 2.2% of bevacizumab-treated patients. Adding bevacizumab to chemotherapy statistically significantly improved PFS and ORR; the OS trend was not significant. No new safety signals were observed.

  19. Comparison of Iohexol-380 and Iohexol-350 for coronary CT angiography: A multicenter, randomized, double-blind phase 3 trial

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Ah; Lee, Whal [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kang, Doo Kyoung [Dept. of Radiology, Ajou University School of Medicine, Suwon (Korea, Republic of); and others

    2016-06-15

    This multi-center, randomized, double-blind, phase 3 trial was conducted to compare the safety and efficacy of contrast agents iohexol-380 and iohexol-350 for coronary CT angiography in healthy subjects. Volunteers were randomized to receive 420 mgI/kg of either iohexol-350 or iohexol-380 using a flow rate of 4 mL/sec. All adverse events were recorded. Two blinded readers independently reviewed the CT images and conflicting results were resolved by a third reader. Luminal attenuations (ascending aorta, left main coronary artery, and left ventricle) in Hounsfield units (HUs) and image quality on a 4-point scale were calculated. A total of 225 subjects were given contrast media (115 with iohexol-380 and 110 with iohexol-350). There was no difference in number of adverse drug reactions between groups: 75 events in 56 (48.7%) of 115 subjects in the iohexol-380 group vs. 74 events in 51 (46.4%) of 110 subjects in the iohexol-350 group (p = 0.690). No severe adverse drug reactions were recorded. Neither group showed an increase in serum creatinine. Significant differences in mean density between the groups was found in the ascending aorta: 375.8 ± 71.4 HU with iohexol-380 vs. 356.3 ± 61.5 HU with iohexol-350 (p = 0.030). No significant differences in image quality scores between both groups were observed for all three anatomic evaluations (all, p > 0.05). Iohexol-380 provides improved enhancement of the ascending aorta and similar attenuation of the coronary arteries without any increase in adverse drug reactions, as compared with iohexol-350 using an identical amount of total iodine.

  20. Bose-Hubbard models with staggered flux: Quantum phases, collective excitation, and tricriticality

    Science.gov (United States)

    Yao, Juan; Zhang, Shizhong

    2014-08-01

    We study the quantum phases of a Bose-Hubbard model with staggered magnetic flux in two dimensions, as was realized recently [M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011), 10.1103/PhysRevLett.107.255301]. Within mean-field theory, we show how the structure of the condensates evolves from the weak- to the strong-coupling limit, exhibiting a tricritical point at the Mott-superfluid transition. Nontrivial topological structures (Dirac points) in the quasiparticle (hole) excitations in the Mott state are found within random phase approximation and we discuss how interaction modifies their structures. The excitation gap in the Mott state closes at different k points when approaching the superfluid states, which is consistent with the findings of mean-field theory.

  1. Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a phase 1 randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Mahamadou A Thera

    Full Text Available BACKGROUND: The objective was to evaluate the safety and immunogenicity of the AMA1-based malaria vaccine FMP2.1/AS02(A in children exposed to seasonal falciparum malaria. METHODOLOGY/PRINCIPAL FINDINGS: A Phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02(A is a recombinant protein (FMP2.1 based on apical membrane antigen 1 (AMA1 from the 3D7 clone of P. falciparum, formulated in the Adjuvant System AS02(A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert. One hundred healthy Malian children aged 1-6 years were recruited into 3 cohorts and randomized to receive either 10 microg FMP2.1 in 0.1 mL AS02(A, or 25 microg FMP2.1 in 0.25 mL AS02(A, or 50 microg FMP2.1 50 microg in 0.5 mL AS02(A, or rabies vaccine. Three doses of vaccine were given at 0, 1 and 2 months, and children were followed for 1 year. Solicited symptoms were assessed for 7 days and unsolicited symptoms for 30 days after each vaccination. Serious adverse events were assessed throughout the study. Transient local pain and swelling were common and more frequent in all malaria vaccine dosage groups than in the comparator group, but were acceptable to parents of participants. Levels of anti-AMA1 antibodies measured by ELISA increased significantly (at least 100-fold compared to baseline in all 3 malaria vaccine groups, and remained high during the year of follow up. CONCLUSION/SIGNIFICANCE: The FMP2.1/AS02(A vaccine had a good safety profile, was well-tolerated, and induced high and sustained antibody levels in malaria-exposed children. This malaria vaccine is being evaluated in a Phase 2 efficacy trial in children at this site. TRIAL REGISTRATION: ClinicalTrials.gov NCT00358332 [NCT00358332].

  2. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a phase 1 randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Mahamadou A Thera

    Full Text Available BACKGROUND: The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria. METHODOLOGY/PRINCIPAL FINDINGS: A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1 based on apical membrane antigen-1 (AMA-1 from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert. Sixty healthy, malaria-experienced adults aged 18-55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 microg/AS02A 0.25 mL or FMP2.1 50 microg/AS02A 0.5 mL or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively. CONCLUSION/SIGNIFICANCE: The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site.

  3. Multicenter, Double-Blind, Randomized, Phase 2 Study Evaluating the Novel Antibiotic Cadazolid in Patients with Clostridium difficile Infection.

    Science.gov (United States)

    Louie, Thomas; Nord, Carl Erik; Talbot, George H; Wilcox, Mark; Gerding, Dale N; Buitrago, Martha; Kracker, Hilke; Charef, Pascal; Cornely, Oliver A

    2015-10-01

    Cadazolid, a novel fluoroquinolone-oxazolidinone antibiotic, exhibits potent in vitro activity against Clostridium difficile, including the epidemic BI/NAP1/027 strain. This multicenter, randomized, double-blind, active reference group, phase 2 study evaluated the efficacy and safety of oral cadazolid in treatment of adult patients with C. difficile infection (CDI). Eligible patients with first occurrence/first recurrence of CDI were randomized 1:1:1:1 to 250, 500, or 1,000 mg cadazolid twice daily (BID) or oral 125 mg vancomycin four times daily (QID) for 10 days. The primary endpoint was clinical cure at test of cure (48 ± 24 h after the end of treatment; modified intent-to-treat population), defined as resolution of diarrhea with no further CDI treatment required. Secondary endpoints included recurrence rate, sustained clinical response (clinical cure without recurrence), and time to diarrhea resolution. Of 84 patients enrolled, 20, 22, 20, and 22 received 250, 500, or 1,000 mg cadazolid BID or 125 mg vancomycin QID, respectively. The primary endpoint was achieved in 76.5% (80% confidence interval [CI], 58.4, 89.3), 80.0% (63.9, 91.0), 68.4% (51.1, 82.5), and 68.2% (52.3, 81.3) of patients, respectively. There was no evidence of a cadazolid dosage-dependent response. Each dosage of cadazolid resulted in a lower recurrence rate than with vancomycin (18.2 to 25.0% versus 50%). Consequently, higher sustained clinical response rates were observed with cadazolid (46.7 to 60.0%) than with vancomycin (33.3%). The times to diarrhea resolution were similar for cadazolid and vancomycin. Cadazolid was well tolerated, with no safety signal observed. The results of this phase 2 study support further clinical development of cadazolid. (This study has been registered in the United States at ClinicalTrials.gov under registration no. NCT01222702 and in Europe with the European Medicines Agency under registration no. EUDRA-CT 2010-020941-29.).

  4. Open-label, randomized, comparative, phase III study on effects of reducing steroid use in combination with Palonosetron.

    Science.gov (United States)

    Komatsu, Yoshito; Okita, Kenji; Yuki, Satoshi; Furuhata, Tomohisa; Fukushima, Hiraku; Masuko, Hiroyuki; Kawamoto, Yasuyuki; Isobe, Hiroshi; Miyagishima, Takuto; Sasaki, Kazuaki; Nakamura, Michio; Ohsaki, Yoshinobu; Nakajima, Junta; Tateyama, Miki; Eto, Kazunori; Minami, Shinya; Yokoyama, Ryoji; Iwanaga, Ichiro; Shibuya, Hitoshi; Kudo, Mineo; Oba, Koji; Takahashi, Yasuo

    2015-07-01

    The purpose of this study is to compare the efficacy of a single administration of dexamethasone (DEX) on day 1 against DEX administration on days 1-3 in combination with palonosetron (PALO), a second-generation 5-HT3 receptor antagonist, for chemotherapy-induced nausea and vomiting (CINV) in non-anthracycline and cyclophosphamide (AC) moderately-emetogenic chemotherapy (MEC). This phase III trial was conducted with a multi-center, randomized, open-label, non-inferiority design. Patients who received non-AC MEC as an initial chemotherapy were randomly assigned to either a group administered PALO (0.75 mg, i.v.) and DEX (9.9 mg, i.v.) prior to chemotherapy (study treatment group), or a group administered additional DEX (8 mg, i.v. or p.o.) on days 2-3 (control group). The primary endpoint was complete response (CR) rate. The CR rate difference was estimated by logistic regression with allocation factors as covariates. The non-inferiority margin was set at -15% (study treatment group - control group). From April 2011 to March 2013, 305 patients who received non-AC MEC were randomly allocated to one of two study groups. Overall, the CR rate was 66.2% in the study treatment group (N = 151) and 63.6% in the control group (N = 154). PALO plus DEX day 1 was non-inferior to PALO plus DEX days 1-3 (difference, 2.5%; 95% confidence interval [CI]: -7.8%-12.8%; P-value for non-inferiority test = 0.0004). There were no differences between the two groups in terms of complete control rate (64.9 vs 61.7%) and total control rate (49.7% vs 47.4%). Anti-emetic DEX administration on days 2-3 may be eliminated when used in combination with PALO in patients receiving non-AC MEC.

  5. Randomized Phase 2 Trial of S1 and Oxaliplatin-Based Chemoradiotherapy With or Without Induction Chemotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dok Hyun [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jang, Geundoo [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Seoul (Korea, Republic of); Kim, Jong Hoon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Yong-Hee [Department of Thoracic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Ji Youn [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Hyeong Ryul [Department of Thoracic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jung, Hwoon-Yong; Lee, Gin-Hyug [Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Song, Ho Young [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Kyung-Ja [Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Ryu, Jin-Sook [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung-Bae, E-mail: sbkim3@amc.seoul.kr [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-03-01

    Purpose: To assess, in a randomized, phase 2 trial, the efficacy and safety of chemoradiotherapy with or without induction chemotherapy (ICT) of S1 and oxaliplatin for esophageal cancer. Patients and Methods: Patients with stage II, III, or IVA esophageal cancer were randomly allocated to either 2 cycles of ICT (oxaliplatin 130 mg/m{sup 2} on day 1 and S1 at 40 mg/m{sup 2} twice daily on days 1-14, every 3 weeks) followed by concurrent chemoradiotherapy (CCRT) (46 Gy, 2 Gy/d with oxaliplatin 130 mg/m{sup 2} on days 1 and 21 and S1 30 mg/m{sup 2} twice daily, 5 days per week during radiation therapy) and esophagectomy (arm A), or the same CCRT followed by esophagectomy without ICT (arm B). The primary endpoint was the pathologic complete response (pCR) rate. Results: A total of 97 patients were randomized (arm A/B, 47/50), 70 of whom underwent esophagectomy (arm A/B, 34/36). The intention-to-treat pCR rate was 23.4% (95% confidence interval [CI] 11.2-35.6%) in arm A and 38% (95% CI 24.5% to 51.5%) in arm B. With a median follow-up duration of 30.3 months, the 2-year progression-free survival rate was 58.4% in arm A and 58.6% in arm B, whereas the 2-year overall survival rate was 60.7% and 63.7%, respectively. Grade 3 or 4 thrombocytopenia during CCRT was more common in arm A than in arm B (35.4% vs 4.1%). The relative dose intensity of S1 (89.5% ± 20.6% vs 98.3% ± 5.2%, P=.005) and oxaliplatin (91.4% ± 16.8% vs 99.0% ± 4.2%, P=.007) during CCRT was lower in arm A compared with arm B. Three patients in arm A, compared with none in arm B, died within 90 days after surgery. Conclusions: Combination chemotherapy of S1 and oxaliplatin is an effective chemoradiotherapy regimen to treat esophageal cancer. However, we failed to show that the addition of ICT to the regimen can improve the pCR rate.

  6. Safety and Activity of UR-1505 in Atopic Dermatitis: A Randomized, Double-blind Phase II Exploratory Trial.

    Science.gov (United States)

    Vives, Roser; Pontes, Caridad; Sarasa, Maria; Millier, Aurelie

    2015-09-01

    UR-1505 is a new small molecule with immune modulator properties intended for the topical treatment of inflammatory skin diseases that has shown anti-inflammatory effects in models of skin inflammation. We compared the activity of UR-1505 ointment against its vehicle in the treatment of atopic dermatitis. Secondary objectives included exploring dose response, safety, and local tolerability of UR-1505. Patients with AD lesions on 2 symmetrical topographic areas (arms, leg, or trunk) were included in this unicenter randomized, double-blind, within-patient, controlled Phase II exploratory trial and received simultaneously 2 different treatments (0.5%, 1%, or 2% UR-1505 and vehicle or 0.1% tacrolimus ointment) once daily during 28 days. The primary efficacy end point was the change from baseline in the Investigator Global Assessment score at Day 28. Secondary end points were percentage of area clearance, local Eczema Area Severity Index (local EASI), and local tolerability. A linear mixed model was used, fitting treatment, body side, and group (treatment at the contralateral side) as fixed factors and the patient as a random effect. Twenty-eight patients were randomized and 25 patients were included in the per protocol analysis, with 50 evaluable lesions (n = 13 for vehicle, n = 8 for UR-1505 0.5%, n = 9 for 1% UR-1505, n=8 for 2% UR-1505, and n=12 for tacrolimus). The mean Investigator Global Assessment score change from baseline at Day 28 was -1.7 for vehicle, -1.0, -1.2, and -1.5 for 0.5%, 1%, and 2% UR-1505, respectively, and -2.6% for tacrolimus (P = 0.002). No serious nor causal adverse reactions were reported in this study, but patients reported numerous local symptoms after product applications, especially itching, tingling, tightness, and heat/burning sensations at frequencies that were similar for vehicle, 1% UR-1505, and 2% UR-1505; more frequent with 0.5% UR-1505; and lowest for tacrolimus. This study found that UR-1505 may not be a suitable option for the

  7. Semiclassical Quantization of Spinning Quasiparticles in Ballistic Josephson Junctions

    Science.gov (United States)

    Konschelle, François; Bergeret, F. Sebastián; Tokatly, Ilya V.

    2016-06-01

    A Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position-particle-hole-spin space is constructed and shown to depend on only two parameters, namely, a magnetic phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog computer of closed-path-ordered exponentials.

  8. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2 Ti2 O7 in a Magnetic Field

    Science.gov (United States)

    Thompson, J. D.; McClarty, P. A.; Prabhakaran, D.; Cabrera, I.; Guidi, T.; Coldea, R.

    2017-08-01

    The frustrated pyrochlore magnet Yb2 Ti2 O7 has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  9. Quasiparticle entropy in the high-field superconducting phase of CeCoIn(5).

    Science.gov (United States)

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2012-09-14

    The heavy-fermion superconductor CeCoIn(5) displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined specific heat and magnetocaloric effect measurements at temperatures T≥100  mK and fields H≤12  T aligned along different directions. For any of these conditions, we do not observe an additional entropy contribution upon tuning at constant temperature by magnetic field from the homogeneous SC into the presumed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state. By contrast, for H∥[100] a reduction of entropy was found that quantitatively agrees with the expectation for spin-density-wave order without FFLO superconductivity. Our data exclude the formation of a FFLO state in CeCoIn(5) for out-of-plane field directions, where no spin-density-wave order exists.

  10. A phase II randomized trial comparing radiotherapy with concurrent weekly cisplatin or weekly paclitaxel in patients with advanced cervical cancer

    Directory of Open Access Journals (Sweden)

    Charafeddine Maya

    2010-09-01

    Full Text Available Abstract Purpose/Objective This is a prospective comparison of weekly cisplatin to weekly paclitaxel as concurrent chemotherapy with standard radiotherapy for locally advanced cervical carcinoma. Materials/Methods Between May 2000 and May 2004, 31 women with FIGO stage IB2-IVA cervical cancer or with postsurgical pelvic recurrence were enrolled into this phase II study and randomized to receive on a weekly basis either 40 mg/m2 Cisplatin (group I; 16 patients or 50 mg/m2 paclitaxel (group II; 15 patients concurrently with radiotherapy. Median total dose to point A was 74 Gy (range: 66-92 Gy for group I and 66 Gy (range: 40-98 Gy for group II. Median follow-up time was 46 months. Results Patient and tumor characteristics were similar in both groups. The mean number of chemotherapy cycles was also comparable with 87% and 80% of patients receiving at least 4 doses in groups I and II, respectively. Seven patients (44% of group I and 8 patients (53% of group II developed tumor recurrence. The Median Survival time was not reached for Group I and 53 months for group II. The proportion of patients surviving at 2 and 5 years was 78% and 54% for group I and 73% and 43% for group II respectively. Conclusions This small prospective study shows that weekly paclitaxel does not provide any clinical advantage over weekly cisplatin for concurrent chemoradiation for advanced carcinoma of the cervix.

  11. Comparison of Relative Activation Energies Obtained by Density Functional Theory and the Random Phase Approximation for Several Claisen Rearrangements.

    Science.gov (United States)

    Hartley, Madeline K; Vine, Seanna; Walsh, Elizabeth; Avrantinis, Sara; Daub, G William; Cave, Robert J

    2016-03-03

    We investigate several representative density functional theory approaches for the calculation of relative activation energies and free energies of a set of model pericyclic reactions, some of which have been studied experimentally. In particular, we use a standard hybrid functional (B3LYP), the same hybrid functional augmented with a basis set superposition error and dispersion correction, a meta-hybrid functional developed to treat transition states and weak interactions (M06-2X), and the recently implemented random phase approximation (RPA) based on Kohn-Sham orbitals from conventional density functional theory by Furche and co-workers. We apply these methods to calculate relative activation energies and estimated free energies for the amide acetal Claisen rearrangement. We focus on relative activation energies to assess the effects of steric and weak interactions in the various methods and compare with experiment where possible. We also discuss the advantages of using this set of reactions as a test bed for the comparison of treatments of weak interactions. We conclude that all methods yield similar trends in relative reactivity, but the RPA yields results in best agreement with the experimental values.

  12. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    CERN Document Server

    Mussard, Bastien; Angyan, Janos; Toulouse, Julien

    2015-01-01

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Sz-abo and Ostlund [A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. {\\'A}ngy{\\'a}n, J. Chem. Phys. 135, 084119 (2011)], this works confirms...

  13. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma.

    Science.gov (United States)

    Kumar, Shaji; Flinn, Ian; Richardson, Paul G; Hari, Parameswaran; Callander, Natalie; Noga, Stephen J; Stewart, A Keith; Turturro, Francesco; Rifkin, Robert; Wolf, Jeffrey; Estevam, Jose; Mulligan, George; Shi, Hongliang; Webb, Iain J; Rajkumar, S Vincent

    2012-05-10

    Combinations of bortezomib (V) and dexamethasone (D) with either lenalidomide (R) or cyclophosphamide (C) have shown significant efficacy. This randomized phase 2 trial evaluated VDC, VDR, and VDCR in previously untreated multiple myeloma (MM). Patients received V 1.3 mg/m2 (days 1, 4, 8, 11) and D 40 mg (days 1, 8, 15), with either C 500 mg/m2 (days 1, 8) and R 15 mg (days 1-14; VDCR), R 25 mg (days 1-14; VDR), C 500 mg/m2 (days 1, 8; VDC) or C 500 mg/m2 (days 1, 8, 15; VDC-mod) in 3-week cycles (maximum 8 cycles), followed by maintenance with V 1.3 mg/m2 (days 1, 8, 15, 22) for four 6-week cycles (all arms)≥very good partial response was seen in 58%, 51%, 41%, and 53% (complete response rate of 25%, 24%, 22%, and 47%) of patients (VDCR, VDR, VCD, and VCD-mod, respectively); the corresponding 1-year progression-free survival was 86%, 83%, 93%, and 100%, respectively. Common adverse events included hematologic toxicities, peripheral neuropathy, fatigue, and gastrointestinal disturbances. All regimens were highly active and well tolerated in previously untreated MM, and, based on this trial, VDR and VCD-mod are preferred for clinical practice and further comparative testing. No substantial advantage was noted with VDCR over the 3-drug combinations. This trial is registered at www.clinicaltrials.gov (NCT00507442).

  14. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    Science.gov (United States)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  15. Contralaterally Controlled Functional Electrical Stimulation for Upper Extremity Hemiplegia: An Early-Phase Randomized Clinical Trial in Subacute Stroke Patients

    Science.gov (United States)

    Knutson, Jayme S.; Harley, Mary Y.; Hisel, Terri Z.; Hogan, Shannon D.; Maloney, Margaret M.; Chae, John

    2012-01-01

    Background Contralaterally controlled functional electrical stimulation (CCFES) is an experimental treatment intended to improve hand function after stroke. Objective To compare the effects of 6 weeks of CCFES vs. cyclic neuromuscular electrical stimulation (NMES) on upper extremity impairment and activity limitation in patients ≤ 6 months poststroke. Methods Twenty-one participants were randomized to CCFES or cyclic NMES. Treatment for both groups consisted of daily stimulation-assisted repetitive hand-opening exercise at home plus twice-weekly lab sessions of functional task practice. Assessments were made at pretreatment and posttreatment and at 1 month and 3 months posttreatment. They included maximum voluntary finger extension angle, finger movement tracking error, upper extremity Fugl-Meyer score, Box and Blocks test, and Arm Motor Abilities Test. Treatment effects were estimated using a 2-factor repeated measures analysis of variance with the value of the baseline measure as a covariate. Results Seventeen patients completed the treatment phase (9 CCFES, 8 cyclic NMES). At all post-treatment time points, CCFES produced larger improvements than cyclic NMES on every outcome measure. Maximum voluntary finger extension showed the largest treatment effect, with a mean group difference across the posttreatment time points of 28° more finger extension for CCFES. Conclusions The results favor CCFES over cyclic NMES though the small sample size limits the statistical power of the study. The effect size estimates from this study will be used to power a larger trial. PMID:21875892

  16. Low-energy effective interactions beyond the constrained random-phase approximation by the functional renormalization group

    Science.gov (United States)

    Kinza, Michael; Honerkamp, Carsten

    2015-07-01

    In the derivation of low-energy effective models for solids targeting the bands near the Fermi level, the constrained random-phase approximation (cRPA) has become an appreciated tool to compute the effective interactions. The Wick-ordered constrained functional renormalization group (cfRG) generalizes the cRPA approach by including all interaction channels in an unbiased way. Here we present applications of the cfRG to two simple multiband systems and compare the resulting effective interactions to the cRPA. First, we consider a multiband model for monolayer graphene, where we integrate out the σ bands to get an effective theory for π bands. It turns out that terms beyond cRPA are strongly suppressed by the different x y -plane reflection symmetry of the bands. In our model the cfRG corrections to cRPA become visible when one disturbs this symmetry difference slightly, however, without qualitative changes. This study shows that the embedding or layering of two-dimensional electronic systems can alter the effective interaction parameters beyond what is expected from screening considerations. The second example is a one-dimensional model for a diatomic system reminiscent of a CuO chain, where we consider an effective theory for Cu 3 d -like orbitals. Here the fRG data shows relevant and qualitative corrections compared to the cRPA results. We argue that the new interaction terms affect the magnetic properties of the low-energy model.

  17. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    Energy Technology Data Exchange (ETDEWEB)

    Mussard, Bastien, E-mail: bastien.mussard@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Reinhardt, Peter; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Ángyán, János G. [CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandoeuvre-lés-Nancy (France); CRM2, Institut Jean Barriol, CNRS, F-54506 Vandoevre-lés-Nancy (France)

    2015-04-21

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

  18. Localization transition in random Lévy matrices: multifractality of eigenvectors in the localized phase and at criticality

    Science.gov (United States)

    Monthus, Cécile

    2016-09-01

    For random Lévy matrices of size N× N , where matrix elements are drawn with some heavy-tailed distribution P≤ft({{H}ij}\\right)\\propto {{N} -1}|{{H}ij}{{|}-1-μ} with 0text{max}}∼ {{N}\\frac{1μ}} . Here we study the localization properties of the corresponding eigenvectors via some strong disorder perturbative expansion that remains consistent within the localized phase and that yields their inverse participation ratios (IPR) Y q as a function of the continuous parameter 0. In the region 0  q c but diverge in the region 0  text{c}}=1 corresponding to Cauchy matrices: the IPR Y q of the corresponding critical eigenstates follow the strong-multifractality spectrum characterized by the generalized fractal dimensions {{D}\\text{criti}}(q)=\\frac{1-2q}{1-q}θ ≤ft(0≤slant q≤slant \\frac{1}{2}\\right) , which has been found previously in various other Localization problems in spaces of effective infinite dimensionality.

  19. Effect of dance labor on the management of active phase labor pain & clients' satisfaction: a randomized controlled trial study.

    Science.gov (United States)

    Abdolahian, Somayeh; Ghavi, Fatemeh; Abdollahifard, Sareh; Sheikhan, Fatemeh

    2014-03-30

    There are a wide variety of non- pharmacologic pain relief techniques for labor which include pelvic movement, upright position, back massage and partner support during the first stage of labor. The effectiveness of dance labor- which is a combination of these techniques- has not been evaluated. This study aimed to evaluate the effectiveness of dance labor in pain reduction and woman's satisfaction during the first stage of labor. 60 primiparous women aged 18-35 years old were randomly assigned to dance labor and control groups. In the dance labor group, women were instructed to do standing upright with pelvic tilt and rock their hips back and forth or around in a circle while their partner massaged their back and sacrum for a minimum of 30 minutes. In the control group, the participants received usual care during physiologic labor. Pain and satisfaction scores were measured by Visual Analogue Scale. Data were analyzed by using the t. test and Chi-square. Mean pain score in the dance labor group was significantly lower than the control group (P dance labor group was significantly higher than in the control group (P Dance labor which is a complementary treatment with low risk can reduce the intensity of pain and increase mothers, satisfaction with care during the active phase of labor.

  20. Safety and preliminary immunogenicity of Cuban pneumococcal conjugate vaccine candidate in healthy children: a randomized phase I clinical trial.

    Science.gov (United States)

    Dotres, Carlos P; Puga, Rinaldo; Ricardo, Yariset; Broño, Carmen R; Paredes, Beatriz; Echemendía, Vladimir; Rosell, Sandra; González, Nadezhda; García-Rivera, Dagmar; Valdés, Yury; Goldblatt, David; Vérez-Bencomo, Vicente

    2014-09-15

    A new heptavalent conjugate vaccine (PCV7-TT) is under development in Cuba. PCV7-TT contains 2 μg of serotypes 1, 5, 14, 18C, 19F, 23F and 4 μg of 6B, each one conjugated to tetanus toxoid (TT). This vaccine was designed with the serotypes that cause most invasive pneumococcal diseases (IPD) worldwide. In the present study, we investigated the safety and explored the immunogenicity of PCV7-TT during a controlled, randomized and double blind clinical trial phase I in 4-5-year-old children. PCV7-TT was well tolerated and as safe as Synflorix used as control vaccine. Following a single-dose vaccination, all individual serotypes included in PCV7-TT induced statistically significant increase of IgG GMC and OPA GMT. These are the first clinical results of PCV7-TT in children and they pave the way toward next clinical trials in children and infants. This clinical trial was published in the Cuban Public Register of Clinical Trials with code RPCEC00000173.