Wolcott, J; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Diaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P
2015-01-01
The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\
Relativistic models for quasielastic electron and neutrino-nucleus scattering
Directory of Open Access Journals (Sweden)
Meucci Andrea
2012-12-01
Full Text Available Relativistic models developed within the framework of the impulse approximation for quasielastic (QE electron scattering and successfully tested in comparison with electron-scattering data have been extended to neutrino-nucleus scattering. Different descriptions of final-state interactions (FSI in the inclusive scattering are compared. In the relativistic Green’s function (RGF model FSI are described consistently with the exclusive scattering using a complex optical potential. In the relativistic mean field (RMF model FSI are described by the same RMF potential which gives the bound states. The results of the models are compared for electron and neutrino scattering and, for neutrino scattering, with the recently measured charged-current QE (CCQE MiniBooNE cross sections.
Inclusive quasielastic scattering of polarized electrons from polarized nuclei
Energy Technology Data Exchange (ETDEWEB)
Amaro, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Universidad de Granada (Spain). Dept. de Fisica Moderna]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Caballero, J.A. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia]|[Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear; Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Moya de Guerra, E. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia
1996-12-23
The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to {sup 39}K. Results are presented using two models for the ejected nucleon - when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon`s momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed. (orig.).
Quasielastic electron-deuteron scattering in the weak binding approximation
Energy Technology Data Exchange (ETDEWEB)
Ethier, Jacob J. [William and Mary College, JLAB; Doshi, Nidhi P. [Carnegie Mellon University; Malace, Simona P. [JLAB; Melnitchouk, Wally [JLAB
2014-06-01
We perform a global analysis of all available electron-deuteron quasielastic scattering data using Q^2-dependent smearing functions that describe inclusive inelastic e-d scattering within the weak binding approximation. We study the dependence of the cross sections on the deuteron wave function and the off-shell extrapolation of the elastic electron-nucleon cross section, which show particular sensitivity at x >> 1. The excellent overall agreement with data over a large range of Q^2 and x suggest a limited need for effects beyond the impulse approximation, with the exception of the very high-x or very low-Q^2 regions, where short-distance effects in the deuteron become more relevant.
Quasielastic electron-deuteron scattering in the weak binding approximation
Energy Technology Data Exchange (ETDEWEB)
Ethier, Jacob J. [William and Mary College, JLAB; Doshi, Nidhi P. [Carnegie Mellon University; Malace, Simona P. [JLAB; Melnitchouk, Wally [JLAB
2014-06-01
We perform a global analysis of all available electron-deuteron quasielastic scattering data using Q^2-dependent smearing functions that describe inclusive inelastic e-d scattering within the weak binding approximation. We study the dependence of the cross sections on the deuteron wave function and the off-shell extrapolation of the elastic electron-nucleon cross section, which show particular sensitivity at x >> 1. The excellent overall agreement with data over a large range of Q^2 and x suggest a limited need for effects beyond the impulse approximation, with the exception of the very high-x or very low-Q^2 regions, where short-distance effects in the deuteron become more relevant.
Electron- and neutrino-nucleus scattering from the quasielastic to the resonance region
Leitner, T; Alvarez-Ruso, L; Mosel, U
2008-01-01
We present a model for electron- and neutrino-scattering off nucleons and nuclei focussing on the quasielastic and resonance region. The lepton-nucleon reaction is described within a relativistic formalism that includes, besides quasielastic scattering, the excitation of 13 N* and Delta resonances and a non-resonant single-pion background. Recent electron-scattering data is used for the state-of-the-art parametrizations of the vector form factors; the axial couplings are determined via PCAC and, in the case of the Delta resonance, the axial form factor is refitted using neutrino-scattering data. Scattering off nuclei is treated within the GiBUU framework that takes into account various nuclear effects: the local density approximation for the nuclear ground state, mean-field potentials and in-medium spectral functions. Results for inclusive scattering off Oxygen are presented and, in the case of electron-induced reactions, compared to experimental data and other models.
González-Jiménez, R; Donnelly, T W
2015-01-01
We study parity violation in quasielastic (QE) electron-nucleus scattering using the relativistic impulse approximation. Different fully relativistic approaches have been considered to estimate the effects associated with the final-state interactions. We have computed the parity-violating quasielastic (PVQE) asymmetry and have analyzed its sensitivity to the different ingredients that enter in the description of the reaction mechanism: final-state interactions, nucleon off-shellness effects, current gauge ambiguities. Particular attention has been paid to the description of the weak neutral current form factors. The PVQE asymmetry is proven to be an excellent observable when the goal is to get precise information on the axial-vector sector of the weak neutral current. Specifically, from measurements of the asymmetry at backward scattering angles good knowledge of the radiative corrections entering in the isovector axial-vector sector can be gained. Finally, scaling properties shown by the interference $\\gamma...
Amaro, J E; Simo, I Ruiz
2015-01-01
The experimental data from quasielastic electron scattering from $^{12}$C are reanalyzed in terms of a new scaling variable suggested by the interacting relativistic Fermi gas with scalar and vector interactions, which is known to generate a relativistic effective mass for the interacting nucleons. By choosing a mean value of this relativistic effective mass $m_N^* =0.8 m_N$, we observe that most of the data fall inside a region around the inverse parabola-shaped universal scaling function of the relativistic Fermi gas. This suggests a method to select the subset of data that highlight the quasielastic region, about two thirds of the total 2,500 data. Regardless of the momentum and energy transfer, this method automatically excludes the data that are not dominated by the quasielastic process. The resulting band of data reflects deviations from the perfect universality, and can be used to characterize experimentally the quasielastic peak, despite the manifest scaling violation. Moreover we show that the spread...
Quasi-elastic electron-deuteron scattering and the electric form factor of the neutron
Energy Technology Data Exchange (ETDEWEB)
Arenhoevel, H.; Kim, Y.E. (Mainz Univ. (Germany, F.R.). Inst. fuer Kernphysik); Craver, B.A. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics); Fabian, W. (State Univ. of New York, Stony Brook (USA). Dept. of Physics); Saylor, D.P. (Worcester Polytechnic Inst., MA (USA). Dept. of Physics)
1978-09-02
The possibility of extracting accurately the neutron electric form factor from electron-neutron coincidence measurements in quasi-elastic electron-deuteron scattering is investigated for squared three-momentum transfers q/sup 2/<=30 fm/sup -2/ using the Reid soft-core, Hamada-Johnston and Bryan-Gersten potentials. It is found that contributions of the electric form factor of the neutron to the quasi-elastic cross section can be as large as 5.4% at q/sup 2/ approximately equal to 1 fm/sup -2/ (approximately 3% at q/sup 2/ approximately equal to 10 approximately 20 fm/sup 2/). Potential model dependence and corrections due to meson exchange currents and isobar configurations are found to be small (< or approximately 1%).
Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium
Zhou, Z L; Ferro-Luzzi, M; Passchier, E; Alarcon, R; Anghinolfi, M; Arenhövel, H; Van Bommel, R; Botto, T; Van den Brand, J F J; Bulten, H J; Choi, S; Comfort, J; Dolfini, S M; Ent, R; Gaulard, C; Higinbotham, D W; De Jager, C W; Konstantinov, E S; Lang, J; Leidemann, W; De Lange, D J; Miller, M A; Lenko, D N; Papadakis, N H; Passchier, I; Poolman, H R; Popov, S G; Rachek, Igor A; Ripani, M; Six, E; Steijger, J J M; Taiuti, M; Unal, O; Vodinas, N P; De Vries, H
1999-01-01
We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm$^{-1}$. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/$c$ with a tensor polarized $^2$H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.
Parity violation in quasielastic electron scattering from closed-shell nuclei
Energy Technology Data Exchange (ETDEWEB)
Amaro, J.E. [Massachusetts Inst. of Technol., Cambridge, MA (United States). Dept. of Phys.]|[Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Caballero, J.A. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Donnelly, T.W. [Massachusetts Inst. of Technol., Cambridge, MA (United States). Dept. of Phys.; Lallena, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Moya de Guerra, E. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Udias, J.M. [National Laboratory for Nuclear and High-Energy Physics, Section K (NIKHEF-K), P.O. Box 41882, NL-1009 DB Amsterdam (Netherlands)
1996-06-03
The electromagnetic and weak neutral current matrix elements that enter in the analysis of parity-violating quasielastic electron scattering are calculated using a continuum nuclear shell model. New approximations to the on-shell relativistic one-body currents and relativistic kinematics for use in such models are developed and discussed in detail. Results are presented for three closed-shell nuclei of interest: {sup 16}O, {sup 40}Ca and {sup 208}Pb. The current work concludes with a study of the sensitivity of the resulting parity-violating asymmetries to properties of the nucleon form factors including the possible strangeness content of the nucleon. (orig.).
Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering
Henley, E. M.; Krein, G.
1989-11-01
The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.
Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)
2013-12-01
The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)^{2} for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1
Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering
Tjon, J A
2008-01-01
An eikonal expansion is used to provide systematic corrections to the eikonal approximation through order $1/k^2$, where $k$ is the wave number. Electron wave functions are obtained for the Dirac equation with a Coulomb potential. They are used to investigate distorted-wave matrix elements for quasi-elastic electron scattering from a nucleus. A form of effective-momentum approximation is obtained using trajectory-dependent eikonal phases and focusing factors. Fixing the Coulomb distortion effects at the center of the nucleus, the often-used ema approximation is recovered. Comparisons of these approximations are made with full calculations using the electron eikonal wave functions. The ema results are found to agree well with the full calculations.
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Keith, C.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Meekins, D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Net, L. A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration
2017-02-01
Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D -state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6 -1.7 , 2.5, 4.2, and 5.6 -5.8 GeV ), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2(0.13 -3.17 (GeV/c ) 2) , missing momentum (pm=0.0 -0.5 GeV /c ), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θn q). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI
Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment
Energy Technology Data Exchange (ETDEWEB)
Wolcott, J. [Tufts U.
2015-12-31
The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.
Quasielastic K-nucleus scattering
Pace, A D; Oset, E
1997-01-01
Quasielastic K^+ - nucleus scattering data at q=290, 390 and 480 MeV/c are analyzed in a finite nucleus continuum random phase approximation framework, using a density-dependent particle-hole interaction. The reaction mechanism is consistently treated according to Glauber theory, keeping up to two-step inelastic processes. A good description of the data is achieved, also providing a useful constraint on the strength of the effective particle-hole interaction in the scalar-isoscalar channel at intermediate momentum transfers. We find no evidence for the increase in the effective number of nucleons participating in the reaction which has been reported in the literature.
Inclusive electron scattering from nuclei in the quasielastic region at large momentum transfer
Energy Technology Data Exchange (ETDEWEB)
Fomin, Nadia [California Inst. of Technology (CalTech), Pasadena, CA (United States)
2008-12-01
Experiment E02-019, performed in Hall C at the Thomas Jefferson National Accelerator Facility (TJNAF), was a measurement of inclusive electron cross sections for several nuclei (^{2}H,^{3}He, ^{4}He, ^{9}Be,^{12}C, ^{63}Cu, and ^{197}Au) in the quasielastic region at high momentum transfer. In the region of low energy transfer, the cross sections were analyzed in terms of the reduced response, F(y), by examining its y-scaling behavior. The data were also examined in terms of the nuclear structure function νW^{A}_{ 2} and its behavior in x and the Nachtmann variable ξ. The data show approximate scaling of νW^{A}_{ 2} in ξ for all targets at all kinematics, unlike scaling in x, which is confined to the DIS regime. However, y-scaling observations are limited to the kinematic region dominated by the quasielastic response (y <0), where some scaling violations arising from FSIs are observed.
Kim, K S
2005-01-01
Using a relativistic mean-field single particle knock-out model for (e,e') reactions on nuclei, we investigate approximate treatments of Coulomb distortion effects and the extraction of longitudinal and transverse structure functions. We show that an effective momentum approximation (EMA) when coupled with a focusing factor provides a good description of the transverse contributions to the (e,e') cross sections for electron energies above 300 MeV on 208Pb. This approximation is not as good for the longitudinal contributions even for incident electron eneriges above 1 GeV and if one requires very precise extraction of longitudinal and transverse structure functions in the quasielastic region it is necessary to utilize distortion factors based on a nuclear model and a more accurate inclusion of Coulomb distortion effects.
Beam-target double spin asymmetry in quasi-elastic electron scattering off the deuteron with CLAS
Mayer, Michael
2016-01-01
Quasi-elastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D-state admixture) and on the limits of the Impulse Approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. We measured the beam-target double spin asymmetry for quasi-elastic electron scattering off the deuteron at several beam energies using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. ...
Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment
Wolcott, J
2016-01-01
The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generato...
Electron neutrino charged-current quasielastic scattering in the MINERvA experiment
Wolcott, Jeremy
2015-01-01
The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.
Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment
Energy Technology Data Exchange (ETDEWEB)
Wolcott, Jeremy [Rochester U.
2015-10-28
The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.
Molecular dynamics using quasielastic neutron scattering
Mitra, S
2003-01-01
Quasielastic neutron scattering (QENS) technique is well suited to study the molecular motions (rotations and translations) in solids or liquids. It offers a unique possibility of analysing spatial dimensions of atomic or molecular processes in their development over time. We describe here some of the systems studied using the QENS spectrometer, designed, developed and commissioned at Dhruva reactor in Trombay. We have studied a variety of systems to investigate the molecular motion, for example, simple molecular solids, molecules adsorbed in confined medium like porous systems or zeolites, monolayer-protected nano-sized metal clusters, water in Portland cement as it cures with time, etc. (author)
Quasi-elastic neutron scattering studies of protein dynamics
Energy Technology Data Exchange (ETDEWEB)
Rorschach, H.E.
1993-05-25
Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.
Quasi-elastic nuclear scattering at high energies
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1992-01-01
The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.
Quasi-Elastic Scattering in MINERvA
McFarland, Kevin S
2011-01-01
Determination of the quasi-elastic scattering cross-section over a broad range of neutrino energies, nuclear targets and Q^2 is a primary goal of the MINERvA experiment. We present preliminary comparisons of data and simulation in a sample rich in anti-{\
Mapping from quasi-elastic scattering to fusion reactions
Hagino, K
2014-01-01
The fusion barrier distribution has provided a nice representation for the channel coupling effects on heavy-ion fusion reactions at energies around the Coulomb barrier. Here we discuss how one can extract the same representation using the so called sum-of-differences (SOD) method with quasi-elastic scattering cross sections. In contrast to the conventional quasi-elastic barrier distribution, the SOD barrier distribution has an advantage in that it can be applied both to non-symmetric and symmetric systems. It is also the case that the correspondence to the fusion barrier distribution is much better than the quasi-elastic barrier distribution. We demonstrate its usefulness by studying $^{16}$O+$^{144}$Sm, $^{58}$Ni+$^{58}$Ni, and $^{12}$C+$^{12}$C systems.
Nuclear Transparency in Large Momentum Transfer Quasielastic Scattering
Mardor, I.; Durrant, S.; Aclander, J.; Alster, J.; Barton, D.; Bunce, G.; Carroll, A.; Christensen, N.; Courant, H.; Gushue, S.; Heppelmann, S.; Kosonovsky, E.; Mardor, Y.; Marshak, M.; Makdisi, Y.; Minor, E. D.; Navon, I.; Nicholson, H.; Piasetzky, E.; Roser, T.; Russell, J.; Sutton, C. S.; Tanaka, M.; White, C.; Wu, J.-Y.
1998-12-01
We measured simultaneously pp elastic and quasielastic \\(p,2p\\) scattering in hydrogen, deuterium, and carbon for momentum transfers of 4.8 to 6.2 \\(GeV/c\\)2 at incoming momenta of 5.9 and 7.5 GeV/c and center-of-mass scattering angles in the range θc.m. = 83.7°-90°. The nuclear transparency is defined as the ratio of the quasielastic cross section to the free pp cross section. At incoming momentum of 5.9 GeV/c, the transparency of carbon decreases by a factor of 2 from θc.m.~=85° to θc.m.~=89°. At the largest angle the transparency of carbon increases from 5.9 to 7.5 GeV/c by more than 50%. The transparency in deuterium does not depend on incoming momentum nor on θc.m..
Quasielastic Neutron Scattering by Superionic Strontium Chloride
DEFF Research Database (Denmark)
Dickens, M. H.; Hutchings, M. T.; Kjems, Jørgen
1978-01-01
The scattering, from powder and single crystal samples, appears only above the superionic transition temperature, 1000K. The integrated intensity is found to be strongly dependent on the direction and magnitude of the scattering vector, Q, (which suggests the scattering is coherent) but does not ...
Effective Spectral Function for Quasielastic Scattering on Nuclei
Bodek, A; Coopersmith, B
2014-01-01
Spectral functions that are used in neutrino event generators (such as GENIE, NEUT, NUANCE, NUWRO, and GiBUU) to model quasielastic(QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritche Fermi gas with high momentum tail, and the Benhar Fantoni two dimensional spectral function. We find that the predictions of these spectral functions for the $\\frac{d\\sigma}{d\
Hard diffraction from quasi-elastic dipole scattering
Bialas, A
1996-01-01
The contribution to diffraction dissociation of virtual photons due to quasi-elastic scattering of the q-\\bar q component is calculated in the framework of the QCD dipole picture. Both longitudinal and transverse components of the cross-section are given. It is shown that, at fixed mass of the diffractively produced system, quantum mechanical interference plays an important r\\^ ole. Phenomenological consequences are discussed.
Recent Measurements of Neutrino-Nucleus Quasi-Elastic Scattering
Wascko, M O
2011-01-01
We present recent measurements of neutrino charged current quasi-elastic (CC QE) scattering, nu_mu + p -> mu- + n. Measurements of CC QE on carbon near 1 GeV by MiniBooNE and SciBooNE, as well as measurements on iron at 3 GeV by MINOS, disagree with current interaction models, while measurements at higher energies on carbon by NOMAD show excellent agreement with those same models.
Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering
Budd, H; Arrington, J
2005-01-01
We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of Fa for neutrino experiments. We show how well \\minerva, a new approved experiment at FNAL, can measure Fa. We show the that Fa has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check Fa extracted from neutrino scattering.
Point-defect diffusion from coherent quasielastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Gillan, M.J.; Wolf, D.
1985-09-16
We outline a theory which suggests that the dynamics of point defects in crystals can be studied by coherent quasielastic neutron scattering. The theory assumes that the surrounding lattice distortion follows each defect instantaneously, and that the distortion fields of different defects can be linearly superposed. The energy width of the scattered intensity yields the hopping rate and jump vectors of the defects. We discuss systems for which the predicted effects for ionic defects are observable, pointing out that the detection of small polaron hopping should also be possible.
Quasielastic Light Scattering and Structure of Nanodroplets Mixed with Polycaprolactone
Directory of Open Access Journals (Sweden)
Soheil Sharifi
2014-01-01
Full Text Available The interaction of polycaprolactone (PCL with droplets of a microemulsion is studied with quasielastic light scattering and small angle X-ray scattering At constant droplet size we vary the PCL concentration and there is clear evidence for an increasing attractive interaction of the droplets from structural investigations with small-angle X-ray scattering (SAXS. The collective diffusion coefficient (Dc of the droplets is monitored with quasielastic light scattering (QELS. We mainly focus on the variation of the dynamic behavior as a function of the PCL concentration and length scale (M.W. = 5000 and 10000 in microemulsion. With increasing PCL concentration and length scale the dynamics of the system slow down. A hard sphere model with depletion potential can fit well the SAXS experiment of microemulsion mixed with PCL. The results show with increase of PCL on microemulsion the size of droplets is constant at 83Å but the size ratio of polymer to droplets is changing.
Measurement of Muon Antineutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_{\
Fields, L; Aliaga, L; Altinok, O; Bodek, A; Boehnlein, D; Bradford, R; Brooks, W K; Budd, H; Butkevich, A; Caicedo, D A M; Castromonte, C M; Christy, M E; da Motta, H; Damiani, D S; Danko, I; Datta, M; Day, M; DeMaat, R; Devan, J; Diaz, G A; Dytman, S A; Eberly, B; Edmondson, D A; Felix, J; Fitzpatrick, T; Fiorentini, G A; Gago, A M; Gallagher, H; Gobbi, B; Gran, R; Harris, D A; Higuera, A; Howley, I J; Hurtado, K; Jerkins, M; Kafka, T; Kanter, M O; Keppel, C; Kordosky, M; Krajeski, A H; Kulagin, S A; Le, T; Leister, A G; Maggi, G; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Niculescu, G; Niculescu, I; Ochoa, N; O'Connor, C D; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Pena, C; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Sassin, K E; Schellman, H; Schmitz, D W; Schneider, R M; Schulte, E C; Sedita, P; Simon, C; Snider, F D; Snyder, M C; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tan, W; Tice, B G; Tzanakos, G; Velasquez, J P; Walding, J; Walton, T; Wolcott, J; Wolthuis, B A; Zavala, G; Zhang, D; Ziemer, B P
2013-01-01
We have isolated muon anti-neutrino charged-current quasi-elastic interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and compare to several theoretical models of quasi-elastic scattering. Good agreement is obtained with a model where the nucleon axial mass, M_A, is set to 0.99 GeV/c^2 but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross-section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q^2 favor this interpretation over an alternative in which the axial mass is increased.
Extraction of structure functions for lepton-nucleus scattering in the quasi-elastic region
Kim, K. S.; Kim, Hungchong; Cheoun, Myung-Ki; So, W. Y.
2016-12-01
Within the framework of a relativistic single-particle model, we calculate inclusive electron-nucleus scattering by electromagnetic current, and neutrino-nucleus scattering by neutral and charged current in the quasi-elastic region. The longitudinal, the transverse, and the transverse-interference structure functions are extracted from the theoretical cross section by using the Rosenbluth separation method at fixed momentum transfer and scattering angle and then compared with each other from the viewpoint of these current interactions. The position of peak for the electron scattering shifts to higher energy transfer than that for the neutrino scattering. The axial and pseudoscalar terms turn out to play an important role in the neutrino-nucleus scattering.
Neutron Angular Scatter Effects in 3DHZETRN: Quasi-Elastic
Wilson, John W.; Werneth, Charles M.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2017-01-01
The current 3DHZETRN code has a detailed three dimensional (3D) treatment of neutron transport based on a forward/isotropic assumption and has been compared to Monte Carlo (MC) simulation codes in various geometries. In most cases, it has been found that 3DHZETRN agrees with the MC codes to the extent they agree with each other. However, a recent study of neutron leakage from finite geometries revealed that further improvements to the 3DHZETRN formalism are needed. In the present report, angular scattering corrections to the neutron fluence are provided in an attempt to improve fluence estimates from a uniform sphere. It is found that further developments in the nuclear production models are required to fully evaluate the impact of transport model updates. A model for the quasi-elastic neutron production spectra is therefore developed and implemented into 3DHZETRN.
Quasielastic neutron scattering study of silver selenium halides
Major, A G; Barnes, A C; Howells, W S
2002-01-01
Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)
Dynamics of flexible counter-ions in conducting polyaniline a quasielastic neutron-scattering study
Bee, M; Djurado, D; Marque, D; Combet, J; Rannou, P; Dufour, B
2002-01-01
Conducting polyaniline protonated with sulphonic flexible counter-ions was investigated by quasielastic incoherent neutron scattering. In addition to their role in electrical properties, the flexible counter-ions also increase the elasticity of the samples. As in the case of more rigid counter-ions, polymer chains appear as very stiff objects whose dynamics is completely outside the investigated time scale. Conversely, the counter-ion dynamics was proved to be of major importance in charge transport since a dynamical transition is observed precisely in the temperature range where the electronic properties change from a metallic to a semiconducting regime. (orig.)
Dynamics of lipid-saccharide nanoparticles by quasielastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Di Bari, M.T.; Gerelli, Y. [Dipartimento di Fisica and Unita CNISM, Universita degli Studi di Parma (Italy); Sonvico, F. [Dipartimento Farmaceutico, Universita degli Studi di Parma (Italy); Deriu, A. [Dipartimento di Fisica and Unita CNISM, Universita degli Studi di Parma (Italy)], E-mail: antonio.deriu@fis.unipr.it; Cavatorta, F.; Albanese, G. [Dipartimento di Fisica and Unita CNISM, Universita degli Studi di Parma (Italy); Colombo, P. [Dipartimento Farmaceutico, Universita degli Studi di Parma (Italy); Fernandez-Alonso, F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)
2008-04-18
Nano- and microparticles composed of saccharide and lipid systems are extensively investigated for applications as highly biocompatible drug carriers. A detailed understanding of particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of a quasielastic neutron scattering (QENS) investigation on lecithin/chitosan nanoparticles prepared by autoassembling the two components in an aqueous solution. The measurements were performed at room temperature on lyophilized and H{sub 2}O hydrated nanoparticles (h = 0.47 w H{sub 2}O/w hydrated sample). In the latter, hydration water is mostly enclosed inside the nanoparticles; its dynamics is similar to that of bulk water but with a significant decrease in diffusivity. The scattering from the nanoparticles can be described by a simple model of confined diffusion. In the lyophilized state only hydrogens belonging to the polar heads are seen as mobile within the experimental time-window. In the hydrated sample the diffusive dynamics involves also a significant part of the hydrogens in the lipid tails.
Quasielastic Scattering at MiniBooNE Energies
Alvarez-Ruso, L; Leitner, T; Mosel, U
2009-01-01
We present our description of neutrino induced charged current quasielastic scattering (CCQE) in nuclei at energies relevant for the MiniBooNE experiment. In our framework, the nucleons, with initial momentum distributions according to the Local Fermi Gas model, move in a density- and momentum-dependent mean field potential. The broadening of the outgoing nucleons due to nucleon-nucleon interactions is taken into account by spectral functions. Long range (RPA) correlations renormalizing the electroweak strength in the medium are also incorporated. The background from resonance excitation events that do not lead to pions in the final state is also predicted by propagating the outgoing hadrons with the Giessen semiclassical BUU model in coupled channels (GiBUU). We achieve a good description of the shape of the CCQE Q2 distribution extracted from data by MiniBooNE, thanks to the inclusion of RPA correlations, but underestimate the integrated cross section when the standard value of MA = 1 GeV is used. Possible ...
Dynamics of camphor sulfonic acid in polyaniline (PANI-CSA): a quasielastic neutron scattering study
Bée, M.; Djurado, D.; Combet, J.; Telling, M.; Rannou, P.; Pron, A.; Travers, J. P.
2001-07-01
PolyAniline (PANI) doped by camphor sulphonic acid (CSA) exhibits an electronic conductivity of several hundreds of S/cm. All the authors agree to invoke in various extents the role of disorder in the evolution of the transport properties as a function of temperature. The IRIS spectrometer at the Rutherford-Appleton Laboratory was used to remove uncertainties of previous IN6-IN16 experiments at Institut Laue-Langevin. The rigidity of the PANI chains was confirmed, in both a conducting and a partially doped sample. All the observable quasielastic scattering occurs from the CSA dynamics. However, this contribution is too weak in the case of the partially doped specimen to conclude about the coupling of the counter-ion disorder with the electronic transport properties.
Quasi-elastic neutron scattering study of the mobility of methane in microporous silica
Benes, Nieck E.; Jobic, Herve; Verweij, Henk
2001-01-01
The dynamics of translation and rotation of methane in microporous bulk silica have been studied with quasi-elastic neutron scattering. At T=200 K the self-diffusion coefficient of translation is DS=1.1×10−8 m2 s−1 with an estimated activation energy of 4 kJ mol−1. Any variation of DS with occupanc
Peters, Evan; Minerva Collaboration
2016-09-01
Understanding how particles behave in detectors is a critical part of analyzing data from neutrino experiments, but neutral particles are difficult to characterize. The purpose of this project was to calibrate the neutron response in Quasielastic antineutrino scattering (QE) events in the Minerva detector. We applied quasi-elastic assumptions to estimate the outgoing neutron kinematics in QE scattering, and then added modifications to improve the model's predictions for neutron response in data. We compared these kinematic predictions of neutron energy and angle to Monte Carlo simulations of QE scattering and to the behavior of reconstructed energy ``blobs'' that characterize neutral particle behavior in simulated and real Minerva data. Filtering events for neutron energy, angle, and distance from the interaction vertex, we derive calibration functions for both the simulation and real data. Future work will include potential changes to the blobbing algorithms and refinement of the calibration technique using rigorous statistical methods.
Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon
Aguilar-Arevalo, A A; Brice, S J; Brown, B C; Bugel, L; Cao, J; Coney, L; Conrad, J M; Cox, D C; Curioni, A; Djurcic, Z; Finley, D A; Fleming, B T; Ford, R; García, F G; Garvey, G T; Green, C; Green, J A; Hart, T L; Hawker, E; Imlay, R; Johnson, R A; Kasper, P; Katori, T; Kobilarcik, T; Kourbanis, I; Koutsoliotas, S; Laird, E M; Link, J M; Liu, Y; Liu, Y; Louis, W C; Mahn, K B M; Marsh, W; Martin, P S; McGregor, G; Metcalf, W; Meyers, P D; Mills, F; Mills, G B; Monroe, J; Moore, C D; Nelson, R H; Nienaber, P; Ouedraogo, S; Patterson, R B; Perevalov, D; Polly, C C; Prebys, E; Raaf, Jennifer L; Ray, H; Roe, B P; Russell, A D; Sandberg, V; Schirato, R; Schmitz, D; Shaevitz, M H; Shoemaker, F C; Smith, D; Sorel, M; Spentzouris, P; Stancu, I; Stefanski, R J; Sung, M; Tanaka, H A; Tayloe, R; Tzanov, M; Vande Water, R; Wascko, M O; White, D H; Wilking, M J; Yang, H J; Zeller, G P; Zimmerman, E D
2007-01-01
Low energy (200
Energy Technology Data Exchange (ETDEWEB)
Rorschach, H.E.
1993-05-25
Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.
A quasi-elastic neutron scattering and neutron spin-echo study of hydrogen bonded system
Energy Technology Data Exchange (ETDEWEB)
Branca, C.; Faraone, A.; Magazu, S.; Maisano, G.; Mangione, A
2004-07-15
This work reports neutron spin echo results on aqueous solutions of trehalose, a naturally occurring disaccharide of glucose, showing an extraordinary bioprotective effectiveness against dehydration and freezing. We collected data using the SPAN spectrometer (BENSC, Berlin) on trehalose aqueous solutions at different temperature values. The obtained findings are compared with quasi-elastic neutron scattering results in order to furnish new results on the dynamics of the trehalose/water system on the nano and picoseconds scale.
Mobility of hydrogen in microporous silica studied with quasi-elastic neutron scattering
Benes, Nieck E.; Jobic, Herve; Reat, Valerie; Bouwmeester, Henny J.M.; Verweij, Henk
2003-01-01
The mobility of H2 in microporous amorphous silica is studied using quasi-elastic neutron scattering. At T=90 K the self-diffusion coefficient is approximately Ds=1.2×10−8 m2 s−1 for low degrees of occupancy (<20%) and decreases slightly to Ds=0.95×10−8 m2 s−1 for an occupancy of 31%. A rough esti
Surface Diffuseness Anomaly in 16O+208pb Quasi-elastic Scattering at Backward Angle
Institute of Scientific and Technical Information of China (English)
JIA Hui-Ming; XU Xin-Xing; BAI Chun-Lin; YU Ning; LIN Cheng-Jian; ZHANG Huan-Qiao; LIU Zu-Hua; YANG Feng; JIA Fei; ZHANG Chun-Lei; AN Guang-Peng; WU Zhen-Dong
2008-01-01
@@ The quasi-elastic scattering excitation function of the doubly magic 16O+208pb system at a backward angle is measured at sub-barrier energies with high precision. The diffuseness parameters extracted from both the single-channel and the coupled-channels calculations give almost the same value α = 0.76±0.04 fm. The results show that the coupling effect is negligible for the spherical system. The obtained value is smaller than the extracted value from the fusion excitation function, but larger than the value of α = 0.63 fm, which is from the systematic analysis of elastic scattering data.
Critical quasielastic light scattering in KTa0.968Nb0.032O3
Lee, Edward; Chase, L. L.; Boatner, L. A.
1985-02-01
Intense quasielastic light scattering is observed in potassium tantalate niobate at temperatures near the ferroelectric transition at Tc~40 K. The central peak (CP) has a non-Lorentzian shape and consists of a sharp component with a broad tail. Near Tc, the sharp component narrows to 1.5 GHz (half-width at half maximum) which is close to the limit of resolution achievable when using an I2 vapor filter to eliminate elastically scattered light. It is, therefore, possible that the CP has a much narrower distribution than that of the renormalized Fabry-Perot data. Spectra obtained over a range of frequency shifts including the Raman scattering from the soft TO mode have been fitted by a coupled-mode formalism in which it is assumed that the CP derives all of its intensity from the coupling to the TO phonon. This model accounts reasonably well for the relative intensities of the CP and phonon and the large renormalized frequency of the phonon near Tc. The integrated intensity of the CP has a temperature dependence which is singular at Tc, whereas that of the TO phonon is close to a step-function increase at Tc. Although ordinary two-phonon difference (phonon-density-fluctuations) scattering cannot be excluded as a possible origin of the observed quasielastic scattering, several properties of the quasielastic and Raman spectra, as well as other recent experimental results, suggest a mechanism involving fluctuations due to the disorder in the polarizabilities and force constants introduced by the Nb substitution.
Quasi-elastic neutron scattering studies of protein dynamics
Energy Technology Data Exchange (ETDEWEB)
Rorschach, H.E.
1991-03-20
The techniques of X-ray and neutron scattering that have been so successfully applied to the study of the structure of biological macromolecules have in recent years been also used for the study of the thermal motion of these molecules. The diffraction of X-rays has been widely used to investigate the high-frequency motion of the heavy-atom residues of proteins. In these studies, the mean-square thermal amplitudes can be determined from the intensities of the sharp structural lines obtained from single crystals of the hydrated proteins. Similar information can be obtained on lighter atoms from the study of the neutron scattering from single crystals. The results of these measurements are coupled closely to the rapidly developing field of theoretical molecular dynamics which is now being applied to study the dynamics of large biological molecules. This report discusses research in this area.
Energy Technology Data Exchange (ETDEWEB)
Dorman, Mark Edward [Univ. College London, Bloomsbury (United Kingdom)
2008-04-01
The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.
Directory of Open Access Journals (Sweden)
Pieper Jörg
2015-01-01
Full Text Available This short review summarizes our current knowledge about the functional relevance of protein dynamics in photosynthetic reaction centers. In the case of Photosystem II membrane fragments, elastic and quasielastic neutron scattering experiments reveal a dynamical transition at about 240 K corresponding to the activation of picosecond molecular motions. Likewise, a “freezing” of molecular dynamics is observed upon dehydration. Intriguingly, these effects correlate with the pronounced temperature- and hydration-dependence of specific electron transfer steps in Photosystem II indicating that molecular dynamics is an indispensable prerequisite for its function. Thus, electron transfer in Photosystem II appears to be a prototypical example for a dynamics-function correlation. Finally, the laser-neutron pump-probe technique is shown to permit in-situ monitoring of molecular dynamics in specific functional states of a protein in real time.
Diffusion of water in nano-porous polyamide membranes: Quasielastic neutron scattering study
Sharma, V. K.; Mitra, S.; Singh, P.; Jurányi, F.; Mukhopadhyay, R.
2010-10-01
Dynamics of water sorbed in a reverse osmosis polyamide membrane (ROPM) as studied by quasielastic neutron scattering (QENS) is reported here. The trimesoylchloride-m-phenylene diamine based ROPM is synthesized by interfacial polymerization technique. QENS data indicates that translational motion of water confined in ROPM gets modified compared to bulk water whereas rotational motion remains unaltered. Translational motion of water in ROPM is found to follow random jump diffusion with lower diffusivity compared to bulk water. Translational diffusivity does not show the Arrhenius behaviour.
Analysis of the Quasi-Elastic Scattering of Neutrons in Hydrogenous Liquids
Energy Technology Data Exchange (ETDEWEB)
Porohit, S.N. [Nuclear Science and Engineering Dept., Rensselaer Polytechnique Inst., Troy, NY (United States)
1966-11-15
A critical discussion of the quasi-elastic scattering of neutrons by incoherent (hydrogenous) liquids is presented. Using the line shape expression a comparative discussion of several phenomenological models has been carried out. Extension of the Singwi-Sjoelander zero phonon expression, for the jump-diffusion model, so as to include the one phonon expression has also been given. For a delayed diffusion model a complete treatment of S(K, {omega}) is presented. Along the lines of the macroscopic diffusion cooling, a microscopic diffusion cooling effect in fluids is speculated.
Two Particle-Hole Excitations in Charged Current Quasielastic Antineutrino--Nucleus Scattering
Nieves, J; Vacas, M J Vicente
2013-01-01
We evaluate the quasielastic and multinucleon contributions to the antineutrino nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the $W$ boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analysed the relevance of 2p2h events for the antineutrino energy reconstruction.
Two particle–hole excitations in charged current quasielastic antineutrino-nucleus scattering
Energy Technology Data Exchange (ETDEWEB)
Nieves, J., E-mail: jmnieves@ific.uv.es [Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia–CSIC, Institutos de Investigación de Paterna, E-46071 Valencia (Spain); Ruiz Simo, I. [Dipartimento di Fisica, Università di Trento, I-38123 Trento (Italy); Vicente Vacas, M.J. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia–CSIC, Institutos de Investigación de Paterna, E-46071 Valencia (Spain)
2013-04-10
We evaluate the quasielastic and multinucleon contributions to the antineutrino-nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the W boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analyzed the relevance of 2p2h events for the antineutrino energy reconstruction.
Barrier distribution from 28Si+154Sm quasielastic scattering: Coupling effects in the fusion process
Directory of Open Access Journals (Sweden)
Kaur Gurpreet
2016-01-01
Full Text Available Barrier distribution for the 28Si+154Sm system has been extracted from large angle quasielastic scattering measurement to investigate the role of various channel couplings on fusion dynamics. The coupled channel calculations, including the collective excitation of the target and projectile, are observed to reproduce the experimental BD rather well. It seems that the role of neutron transfer, relative to collective excitation, is in fact weak in the 28Si+154Sm system even though it has positive Q-value for neutron transfer channels.
DEFF Research Database (Denmark)
Bai, M.; Miskowiec, A.; Hansen, F. Y.
2012-01-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...
Quasielastic small-angle neutron scattering from heavy water solutions of cyclodextrins.
Kusmin, André; Lechner, Ruep E; Saenger, Wolfram
2011-01-14
We present a model for quasielastic neutron scattering (QENS) by an aqueous solution of compact and inflexible molecules. This model accounts for time-dependent spatial pair correlations between the atoms of the same as well as of distinct molecules and includes all coherent and incoherent neutron scattering contributions. The extension of the static theory of the excluded volume effect [A. K. Soper, J. Phys.: Condens. Matter 9, 2399 (1997)] to the time-dependent (dynamic) case allows us to obtain simplified model expressions for QENS spectra in the low Q region in the uniform fluid approximation. The resulting expressions describe the quasielastic small-angle neutron scattering (QESANS) spectra of D(2)O solutions of native and methylated cyclodextrins well, yielding in particular translational and rotational diffusion coefficients of these compounds in aqueous solution. Finally, we discuss the full potential of the QESANS analysis (that is, beyond the uniform fluid approximation), in particular, the information on solute-solvent interactions (e.g., hydration shell properties) that such an analysis can provide, in principle.
Quasi-elastic Charm Production In Neutrino-nucleon Scattering
Bischofberger, M
2005-01-01
A study of quasi elastic charm production in charged current neutrino-nucleon scattering is presented. A sample of about 1.3 million interactions recorded with the NOMAD detector in the CERN SPS wide band neutrino beam has been searched for quasi elastically produced charmed baryons ( L+c,Sc and S*c ). The search has been performed in two exclusive decay channels of the L+c, both including a L . Also, the semi-inclusive decay channels L+c,Sc,S *c→L+X have been studied. Kinematic selection criteria have been chosen in order to obtain samples enriched with quasi elastic charm events. Signal efficiencies and background expectations have been estimated by Monte Carlo simulations. The observed number of events in each searched channel has been found to agree with the background expectation from charged and neutral current reactions and an upper limit for the cross section has been derived. For the quasi elastic charm production cross section averaged over the neutrino energy spectrum (&lan...
Quasielastic Scattering from Relativistic Bound Nucleons: Transverse-Longitudinal Response
Energy Technology Data Exchange (ETDEWEB)
Udias, J. M. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, (Spain); Caballero, J. A. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla, (Spain); Moya de Guerra, E. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Amaro, J. E. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, (Spain); Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
1999-12-27
Predictions for electron induced proton knockout from p{sub 1/2} and p{sub 3/2} shells in {sup 16}O are presented using various approximations for the relativistic nucleonic current. Results for differential cross section, transverse-longitudinal response (R{sub TL} ), and left-right asymmetry A{sub TL} are compared at |Q{sup 2}|=0.8(GeV/c){sup 2} . We show that there are important dynamical and kinematical relativistic effects which can be tested by experiment. (c) 1999 The American Physical Society.
Inclusive inelastic electron scattering from nuclei
Fomin, Nadia
2007-01-01
Inclusive electron scattering from nuclei at large x and $Q^2$ is the result of a reaction mechanism that includes both quasi--elastic scattering from nucleons and deep inelastic scattering from the quark constituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the influence of final state interactions and the approach to $y$-scaling, the strength of nucleon-nucleon correlations, and the approach to $x$- scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.
Coulomb distortion effects in deep-inelastic electron scattering
Co', Giampaolo; Heisenberg, Jochen
1987-11-01
The effects of the Coulomb distortion of the electron wave functions in the description of the electron scattering processes in the quasi-elastic region are discussed. A method to extract longitudinal and transverse response functions considering these effects is presented. While the transverse response function is remarkably affected by the Coulomb distortion, the values of the longitudinal response function are practically unchanged.
DEFF Research Database (Denmark)
Hervig, K.W.; Wu, Z.; Dai, P.
1997-01-01
Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed on an ex......Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed...... comparison with experiment, quasielastic spectra calculated from the MD simulations were analyzed using the same models and fitting algorithms as for the neutron spectra. This combination of techniques gives a microscopic picture of the melting process in these two monolayers which is consistent with earlier...
Telling, Mark T F; Neylon, Cameron; Kilcoyne, Susan H; Arrighi, Valeria
2008-09-04
Quasi-elastic neutron scattering (QENS) has been used to study the deviation from Debye-law harmonic behavior in lyophilized and hydrated apoferritin, a naturally occurring, multisubunit protein. Whereas analysis of the measured mean squared displacement (msd) parameter reveals a hydration-dependent inflection above 240 K, characteristic of diffusive motion, a hydration-independent inflection is observed at 100 K. The mechanism responsible for this low-temperature anharmonic response is further investigated, via analysis of the elastic incoherent neutron scattering intensity, by applying models developed to describe side-group motion in glassy polymers. Our results suggest that the deviation from harmonic behavior is due to the onset of methyl group rotations which exhibit a broad distribution of activated processes ( E a,ave = 12.2 kJ.mol (-1), sigma = 5.0 kJ x mol (-1)). Our results are likened to those reported for other proteins.
Indian Academy of Sciences (India)
M Sivanantham; B V R Tata
2010-12-01
Polyacrylamide (PAAm) hydrogels immersed in water and aqueous NaCl solutions were investigated for their structure and dynamics using static and quasi-elastic laser light scattering (QELS) techniques. Ensemble-averaged electric field correlation function (, ) obtained from the non-ergodic analysis of intensity-autocorrelation function for PAAm gel immersed in water and in 5 M NaCl showed an exponential decay to a plateau with an initial decay followed by saturation at long times. The value of the plateau was found to depend on NaCl concentration and was higher than that of water. Collective diffusion coefficient, , of the polymer network of the hydrogel immersed in water and in different concentrations of NaCl was determined by analysing (, ). The measured diffusion coefficient showed linear decrease with increase in concentration of NaCl. The characteristic network parameters were obtained by analyzing (, ) with harmonically bound Brownian particle model and from static light scattering studies.
Axial-vector dominance predictions in quasielastic neutrino-nucleus scattering
Amaro, J. E.; Ruiz Arriola, E.
2016-03-01
The axial form factor plays a crucial role in quasielastic neutrino-nucleus scattering, but the error of the theoretical cross section due to uncertainties of GA remains to be established. Conversely, the extraction of GA from the neutrino nucleus cross section suffers from large systematic errors due to nuclear model dependencies, while the use of single-parameter dipole fits underestimates the errors and prevents an identification of the relevant kinematics for this determination. We propose to use a generalized axial-vector-meson dominance in conjunction with large-Nc and high-energy QCD constraints to model the nucleon axial form factor, as well as the half-width rule as an a priori uncertainty estimate. The minimal hadronic ansatz comprises the sum of two monopoles corresponding to the lightest axial-vector mesons being coupled to the axial current. The parameters of the resulting axial form factor are the masses and widths of the two axial mesons as obtained from the averaged Particle Data Group values. By applying the half-width rule in a Monte Carlo simulation, a distribution of theoretical predictions can then be generated for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the (νμ,μ ) quasielastic cross section from 12 for the kinematics of the MiniBooNE experiment. The resulting predictions have no free parameters. We find that the relativistic Fermi gas model globally reproduces the experimental data, giving χ2/# bins=0.81 . A Q2-dependent error analysis of the neutrino data shows that the uncertainties in the axial form factor GA(Q2) are comparable to the ones induced by the a priori half-width rule. We identify the most sensitive region to be in the range 0.2 ≲Q2≲0.6 GeV2 .
A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment
Lyubushkin, V.; Popov, B.; Kim, J. J.; Camilleri, L.; Levy, J.-M.; Mezzetto, M.; Naumov, D.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Kustov, D.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Ling, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mishra, S. R.; Moorhead, G. F.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Seaton, M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.
2009-10-01
We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ( ν μ n→ μ - p and bar{ν }_{μ}ptoμ+n ) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ ( bar{ν}_{μ} ) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are < σ_{qel}rangle_{ν_{μ}}=(0.92±0.02(stat)±0.06(syst))×10^{-38} cm2 and <σ_{qel}rangle_{bar{ν}_{μ}}=(0.81±0.05(stat)±0.09(syst))×10^{-38} cm2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A =1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M A is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.
Quasi-Elastic Scattering of 16C from 12C at 47.5 MeV/Nucleon
Institute of Scientific and Technical Information of China (English)
FAN Feng-Ying; ZHENG Tao; YE Yan-Lin; JIANG Dong-Xing; HUA Hui; LI Zhi-Huan; GE Yu-Cheng; LI Xiang-Qing; LOU Jian-Ling; SHI Fan; LV Lin-Hui; CAO Zhong-Xin; NIE Peng-Xuan; LI Qi-Te; SONG Yu-Shou; LU Fei; XU Hu-Shan; HU Zheng-Guo; WANG Meng; ZHANG Xue-Ying; LI Chen; CHEN Ruo-Fu; TANG Bin; XU Zhi-Guo; YUE Ke; ZHANG Ya-Peng; ZANG Yong-Dong; ZHANG Xue-Heng; YAO Xiang-Wu; CHEN Jin-Da; TU Xiao-Lin; ZHANG Jie; WU Da-Peng; BAI Zhen
2009-01-01
Differential cross sections for the quasi-elastic scattering of 16C at 47.5 MeV/nucleon from 12C target are measured.Coupled-channels calculations are carried out and the optical potential parameters are obtained by fitting the experimental angular distribution.
Institute of Scientific and Technical Information of China (English)
N. Ghahramany; M. Vaez zadeh Asadi; G.R. Boroun
2003-01-01
Electric and Magnetic form factors of neutron are calculated via electron-deuteron scattering at 1.511 ～5.507 GeV energy using SLAC group data. Our results show that the neutron electric form factor is not equal to zero;rather it has a small value, indicating that in spite of the fact that total charge is almost neutral, there is a nonuniformcharge distribution within the neutron, and that magnetic form factor follows the dipole fit.
mQfit, a new program for analyzing quasi-elastic neutron scattering data
Directory of Open Access Journals (Sweden)
Martinez Nicolas
2015-01-01
Full Text Available Analysis of Quasi-elastic Neutron Scattering (QENS data of complex systems such as biological or soft matter samples in a comprehensive and explicit way often requires great efforts. Most popular software only allows to fit spectra originating from one single instrument and does not permit to extract parameters from a model that is fitted simultaneously to data taken at different instrumental resolutions. We present here a new program, mQfit (multiple QENS dataset fitting, that enables to fit QENS data taken at different spectrometers (with typical resolutions between 0.01 and 0.1 meV and momentum transfer ranges. This allows drastically reducing the number of fitting parameters. The routine is implemented with a user friendly Graphical User's Interface (GUI, and freely available. As an example, we will present results obtained on E. coli bacterial pellets, and compare them to values published in the literature.
Quasi-elastic neutron scattering study of dynamics in condensed matter
Indian Academy of Sciences (India)
S Mitra; R Mukhopadhyay
2004-07-01
Quasi-elastic neutron scattering (QENS) technique, known to study stochastic motions has been successfully used to elucidate the molecular motions and physical properties related to them, in a variety of systems. QENS is a unique technique that provides information on the time-scale of the motion as well as the geometry of the motions. In this paper, results of some of the systems studied using the facility available at Dhruva, Trombay and other mega-facilities are discussed. Emphasis is given on the results obtained from three different systems studied using QENS, namely, (1) alkyl chain motions in monolayer protected metal clusters, (2) molecular motions of propane in Na-Y zeolitic systems and (3) the study of reorientational motions of liquid crystal in O. series in different mesophases.
Quasi-elastic light scattering of platinum dendrimer-encapsulated nanoparticles.
Wales, Christina H; Berger, Jacob; Blass, Samuel; Crooks, Richard M; Asherie, Neer
2011-04-05
Platinum dendrimer-encapsulated nanoparticles (DENs) containing an average 147 atoms were prepared within sixth-generation, hydroxyl-terminated poly(amidoamine) dendrimers (G6-OH). The hydrodynamic radii (R(h)) of the dendrimer/nanoparticle composites (DNCs) were determined by quasi-elastic light scattering (QLS) at high (pH ∼10) and neutral pH for various salt concentrations and identities. At high pH, the size of the DNC (R(h) ∼4 nm) is close to that of the empty dendrimer. At neutral pH, the size of the DNC approximately doubles (R(h) ∼8 nm) whereas that of the empty dendrimer remains unchanged. Changes in ionic strength also alter the size of the DNCs. The increase in size of the DNC is likely due to electrostatic interactions involving the metal nanoparticle.
Parameters of Fermi-motion from Quasielastic Backward Pion-Proton Scattering on Nuclei
Abramov, B M; Dukhovskoy, I A; Khanov, A I; Krestnikov, Yu S; Krutenkova, A P; Kulikov, V V; Matsuk, M A; Radkevich, I A; Turdakina, E N
1999-01-01
In experiment on the study of the quasielastic pion-proton scattering at large momentum transfer on nuclei the proton Fermi-momentum distributions have been analysed in plane-wave approximation for light nuclei $^6$Li, $^7$Li and $^{12}$C. It was found that, contrary to (e,e') experiments, that the oscillator model gives slightly better description of our data than the Fermi - gas model. But the values of parameters of the distributions obtained in our analysis are considerably smaller, than in (e,e') experiments. It gives evidence that the plane-wave approximation is not sufficient and more complicated theoretical models which take into account the effects of distortion of pion-nucleon amplitude in a nuclear medium are necessary for analysis of our data.
Quasielastic neutron scattering studies of H motion in Laves-phase compounds
Skripov, A V; Cook, J C; Udovic, T J; Hempelmann, R
2002-01-01
The results of our quasielastic neutron scattering measurements for a number of cubic Laves-phase hydrides AB sub 2 H sub x are consistent with the coexistence of two types of H motion: the fast localized jumps within the hexagons formed by interstitial g (A sub 2 B sub 2) sites and the slower hopping from one hexagon to another. The analysis of these results has revealed the relation between the hydrogen-hopping rates, the g-g distances, and the ratio of the metallic radii R sub A and R sub B of the elements A and B forming the AB sub 2 compound. We conclude that the behavior of the two frequency scales of H motion is determined mainly by R sub A /R sub B. A new type of localized H motion is predicted for compounds with R sub A /R sub B >1.35. (orig.)
Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering.
Lautner, Lisa; Pluhackova, Kristyna; Barth, Nicolai K H; Seydel, Tilo; Lohstroh, Wiebke; Böckmann, Rainer A; Unruh, Tobias
2017-08-01
Neutron scattering is a powerful tool to study relaxation processes in biological membrane mimics in space and time. Combining different inelastic and quasielastic neutron scattering techniques, a large dynamic range can be covered: from atomic to mesoscopic lengths and from femto- to some hundreds of nanoseconds in time. This allows studies on e.g. the diffusion of lipids, the membrane undulation motions, the dispersion of sound waves in membranes as well as the mutual interactions of membrane constituents such as lipids, proteins, and additives. In particular, neutron scattering provides a quite direct experimental approach to the inter-atomic and inter-molecular potentials on length and time scales which are perfectly accessible by molecular dynamics (MD) simulations. Neutron scattering experiments may thus substantially support the further refinement of biomolecular force fields for MD simulations by supplying structural and dynamical information with high spatial and temporal resolution. In turn, MD simulations support the interpretation of neutron scattering data. The combination of both, neutron scattering experiments and MD simulations, yields an unprecedented insight into the molecular interactions governing the structure and dynamics of biological membranes. This review provides an overview of the molecular dynamics in biological membrane mimics as revealed by neutron scattering. It focuses on the latest findings such as the fundamental molecular mechanism of lateral lipid diffusion as well as the influence of additives and proteins on the short-time dynamics of lipids. Special emphasis is placed on the comparison of recent neutron scattering and MD simulation data with respect to molecular membrane dynamics on the pico- to nanosecond time scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakada, Masaru; Maruyama, Kenji; Yamamuro, Osamu; MISAWA, Masakatsu
2009-01-01
The dynamics of water molecules in the n-propyl alcohol-water mixtures is investigated by using quasielastic neutron scattering measurements. The dynamic structure factor S(Q,E) obtained from incoherent scattering of hydrogen atoms of water is fitted with jump diffusion and relaxing cage models. The diffusion constant obtained from the relaxing cage model, which gives better fitting with S(Q,E), shows better agreement to the experimental value than that of jump diffusion model. The dependence...
A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment
Energy Technology Data Exchange (ETDEWEB)
Lyubushkin, V.; Bunyatov, S.; Chukanov, A.; Klimov, O.; Kustov, D.; Nefedov, Yu.; Samoylov, O.; Tereshchenko, V. [JINR, Dubna (Russian Federation); Popov, B. [JINR, Dubna (Russian Federation); LPNHE, Univ. of Paris VI and VII, Paris (France); Kim, J.J.; Godley, A.; Ling, J.; Mishra, S.R.; Petti, R.; Seaton, M.; Wu, Q. [Univ. of South Carolina, Columbia, SC (United States); Camilleri, L.; Autiero, D.; Di Lella, L.; Couto e Silva, E. do; Ferrere, D.; Grant, A.; Kokkonen, J.; Linssen, L.; Placci, A.; Stiegler, U.; Tsesmelis, E.; Vidal-Sitjes, G.; Wilson, F.F. [CERN, Geneva (Switzerland); Levy, J.M.; Astier, P.; Banner, M.; Dumarchez, J.; Lachaud, C.; Letessier-Selvon, A.; Schahmaneche, K.; Touchard, A.M.; Vannucci, F. [LPNHE, Univ. of Paris VI and VII, Paris (France); Mezzetto, M.; Baldo-Ceolin, M.; Bobisut, F.; Collazuol, G.; Contalbrigo, M.; Gibin, D.; Guglielmi, A.; Lacaprara, S.; Laveder, M.; Rebuffi, L.; Sconza, A.; Zuccon, P. [Univ. of Padova (Italy); INFN, Padova (Italy); Naumov, D. [JINR, Dubna (Russian Federation); Univ. of Florence (Italy); INFN, Florence (Italy); Alekhin, S. [Inst. for High Energy Physics, Protvino, Moscow Region (Russian Federation); Baldisseri, A.; Besson, N.; Bouchez, J.; Gosset, J.; Hagner, C.; Mechain, X.; Meyer, J.P.; Stolarczyk, T.; Zaccone, H. [DAPNIA, Saclay (France); Bassompierre, G.; Gaillard, J.M.; Gouanere, M.; Mendiburu, J.P.; Nedelec, P.; Pessard, H.; Sillou, D. [LAPP, Annecy (France); Benslama, K.; Degaudenzi, H.; Joseph, C.; Juget, F.; Nguyen-Mau, C.; Sozzi, G.; Tareb-Reyes, M.; Tran, M.T.; Vacavant, L.; Vieira, J.M. [Univ. of Lausanne, Lausanne (Switzerland); Bird, I. [CERN, Geneva (Switzerland); Univ. of Lausanne (Switzerland); Blumenfeld, B.; Long, J. [Johns Hopkins Univ., Baltimore, MD (United States); Boyd, S.; Ellis, M.; Peak, L.S.; Ulrichs, J.; Varvell, K.E.; Yabsley, B.D. [Univ. of Sydney (Australia); Bueno, A. [Harvard Univ., Cambridge, MA (United States); ETH Zurich (Switzerland)] [and others
2009-10-15
We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ({nu}{sub {mu}}n {yields}{mu}{sup -}p and anti {nu}{sub {mu}}p{yields}{mu}{sup +}n) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total {nu}{sub {mu}}(anti {nu}{sub {mu}}) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are left angle {sigma}{sub qel} right angle {sub {nu}}{sub {mu}}=(0.92{+-}0.02(stat){+-}0.06(syst)) x 10{sup -38} cm{sup 2} and left angle {sigma}{sub qel} right angle {sub anti} {sub {nu}{sub {mu}}}{sub =}(0.81{+-}0.05(stat){+-}0.09(syst)) x 10{sup -38} cm{sup 2} for neutrino and antineutrino, respectively. The axial mass parameter M{sub A} was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M{sub A}=1.05{+-}0.02(stat){+-}0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q{sup 2} shape analysis of the high purity sample of {nu}{sub {mu}} quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M{sub A} is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M{sub A} is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M{sub A}, these results are compatible with the more precise NOMAD value. (orig.)
The influence of the nuclear medium on inclusive electron and neutrino scattering off nuclei
Buss, O; Alvarez-Ruso, L; Mosel, U
2007-01-01
We present a model for inclusive electron and neutrino scattering off nuclei paying special attention to the influence of in-medium effects on the quasi-elastic scattering and pion-production mechanisms. Our results for electron scattering off Oxygen are compared to experimental data at beam energies ranging from 0.7-1.5 GeV. The good description of electron scattering serves as a benchmark for neutrino scattering.
Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin
Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin
2012-02-01
Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.
Quasielastic neutron scattering study of large amplitude motions in molecular systems
Energy Technology Data Exchange (ETDEWEB)
Bee, M. [Univ. J. Fourier - Grenoble 1, Lab. de Spectrometrie Physique, Saint-Martin d`Heres (France)
1996-12-31
This lecture aims at giving some illustrations of the use of Incoherent Quasielastic Neutron Scattering in the investigation of motions of atoms or molecules in phases with dynamical disorder. The general incoherent scattering function is first recalled. Then the Elastic Incoherent Structure Factor is introduced. It is shown how its determination permits to deduce a particular dynamical model. Long-range translational diffusion is illustrated by some experiments carried out with liquids or with different chemical species intercalated in porous media. Examples of rotational motions are provided by solid phases where an orientational disorder of the molecules exists. The jump model is the most commonly used and yields simple scattering laws which can be easily handled. Highly disordered crystals require a description in terms of the isotropic rotational diffusion model. Many of the present studies are concerned with rather complicated systems. Considerable help is obtained either by using selectively deuterated samples or by carrying out measurements with semi-oriented samples. (author) 5 figs., 14 refs.
The contribution of small angle and quasi-elastic scattering to the physics of liquid water
Teixeira, José
2017-05-01
Many properties of liquid water at low temperature show anomalous behaviour. For example, density, isothermal compressibility, heat capacity pass by maxima or minima and transport properties show a super-Arrhenius behaviour. Extrapolations performed beyond the homogeneous nucleation temperature are at the origin of models that predict critical points, liquid-liquid transitions or dynamic cross-overs in the large domain of temperature and pressure not accessible to experiments because of ice nucleation. A careful analysis of existing data can be used to test some of these models. Small angle X-ray or neutron scattering data are incompatible with models where two liquids or heterogeneities are present. Quasi-elastic neutron scattering, taking advantage and combining both coherent and incoherent scattering show that two relaxation times are present in liquid water and that one of them, related to hydrogen bond dynamics, has an Arrhenian behaviour, suggesting that the associated dynamics of the bonds, similar to the β relaxation of polymers, determines the glass transition temperature of water.
Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yang [ORNL; Tyagi, M. [NCNR and University of Maryland; Mamontov, Eugene [ORNL; Chen, Sow-hsin H [ORNL
2011-01-01
Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.
Dhindsa, Gurpreet K.
Neutron scattering has been proved to be a powerful tool to study the dynamics of biological systems under various conditions. This thesis intends to utilize neutron scattering techniques, combining with MD simulations, to develop fundamental understanding of several biologically interesting systems. Our systems include a drug delivery system containing Nanodiamonds with nucleic acid (RNA), and two specific model proteins, beta-Casein and Inorganic Pyrophosphatase (IPPase). RNA and nanodiamond (ND) both are suitable for drug-delivery applications in nano-biotechnology. The architecturally flexible RNA with catalytic functionality forms nanocomposites that can treat life-threatening diseases. The non-toxic ND has excellent mechanical and optical properties and functionalizable high surface area, and thus actively considered for biomedical applications. In this thesis, we utilized two tools, quasielastic neutron scattering (QENS) and Molecular Dynamics Simulations to probe the effect of ND on RNA dynamics. Our work provides fundamental understanding of how hydrated RNA motions are affected in the RNA-ND nanocomposites. From the experimental and Molecular Dynamics Simulation (MD), we found that hydrated RNA motion is faster on ND surface than a freestanding one. MD Simulation results showed that the failure of Stokes Einstein relation results the presence of dynamic heterogeneities in the biomacromolecules. Radial pair distribution function from MD Simulation confirmed that the hydrophilic nature of ND attracts more water than RNA results the de-confinement of RNA on ND. Therefore, RNA exhibits faster motion in the presence of ND than freestanding RNA. In the second project, we studied the dynamics of a natively disordered protein beta-Casein which lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of beta-Casein are explored by Quasielastic Neutron Scattering (QENS). We investigated the mean square displacement (MSD) of
Energy Technology Data Exchange (ETDEWEB)
Calandrini, V. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Synchrotron Soleil, L' Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette (France); Hamon, V. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Hinsen, K. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Synchrotron Soleil, L' Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette (France); Calligari, P. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Institut Laue-Langevin, 6 Rue Jules Horowitz, B.P. 156, 38042 Grenoble (France); Laboratoire Leon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette (France); Bellissent-Funel, M.-C. [Laboratoire Leon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette (France); Kneller, G.R. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Synchrotron Soleil, L' Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette (France)], E-mail: kneller@cnrs-orleans.fr
2008-04-18
This paper presents a study of the influence of non-denaturing hydrostatic pressure on the relaxation dynamics of lysozyme in solution, which combines molecular dynamics simulations and quasielastic neutron scattering experiments. We compare results obtained at ambient pressure and at 3 kbar. Experiments have been performed at pD 4.6 and at a protein concentration of 60 mg/ml. For both pressures we checked the monodispersity of the protein solution by small angle neutron scattering. To interpret the simulation results and the experimental data, we adopt the fractional Ornstein-Uhlenbeck process as a model for the internal relaxation dynamics of the protein. On the experimental side, global protein motions are accounted for by the model of free translational diffusion, neglecting the much slower rotational diffusion. We find that the protein dynamics in the observed time window from about 1 to 100 ps is slowed down under pressure, while its fractal characteristics is preserved, and that the amplitudes of the motions are reduced by about 20%. The slowing down of the relaxation is reduced with increasing q-values, where more localized motions are seen.
Quasi-elastic scattering of 6He, 7Be, and 8B nuclei by 12C nuclei
Kovalchuk, V I
2016-01-01
The observed cross sections of quasi-elastic scattering of 6He, 7Be, and 8B nuclei by 12C nuclei are described within the framework of the diffraction nuclear model and the model of nucleus-nucleus scattering in the high-energy approximation with a double folding potential, for intermediate energies of the incident particles. The calculations make use of realistic distributions of nucleon densities and take account of the Coulomb interaction and inelastic scattering with excitation of low-lying collective states of the target.
Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations
Energy Technology Data Exchange (ETDEWEB)
Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko; Yamamuro, Osamu, E-mail: yamamuro@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Tyagi, Madhusudan [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-6102 (United States); Department of Materials Science, University of Maryland, College Park, Maryland 20742 (United States)
2015-12-21
Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionic diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.
Fujiwara, Satoru; Chatake, Toshiyuki; Matsuo, Tatsuhito; Kono, Fumiaki; Tominaga, Taiki; Shibata, Kaoru; Sato-Tomita, Ayana; Shibayama, Naoya
2017-08-31
Hemoglobin, the vital O2 carrier in red blood cells, has long served as a classic example of an allosteric protein. Although high-resolution X-ray structural models are currently available for both the deoxy tense (T) and fully liganded relaxed (R) states of hemoglobin, much less is known about their dynamics, especially on the picosecond to subnanosecond time scales. Here, we investigate the picosecond dynamics of the deoxy and CO forms of human hemoglobin using quasielastic neutron scattering under near physiological conditions in order to extract the dynamics changes upon ligation. From the analysis of the global motions, we found that whereas the apparent diffusion coefficients of the deoxy form can be described by assuming translational and rotational diffusion of a rigid body, those of the CO form need to involve an additional contribution of internal large-scale motions. We also found that the local dynamics in the deoxy and CO forms are very similar in amplitude but are slightly lower in frequency in the former than in the latter. Our results reveal the presence of rapid large-scale motions in hemoglobin and further demonstrate that this internal mobility is governed allosterically by the ligation state of the heme group.
Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations.
Kofu, Maiko; Tyagi, Madhusudan; Inamura, Yasuhiro; Miyazaki, Kyoko; Yamamuro, Osamu
2015-12-21
Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (Ea) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionic diffusion processes, Ea increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.
Coherent dynamics of meta-toluidine investigated by quasielastic neutron scattering.
Faraone, Antonio; Hong, Kunlun; Kneller, Larry R; Ohl, Michael; Copley, John R D
2012-03-14
The coherent dynamics of a typical fragile glass former, meta-toluidine, was investigated at the molecular level using quasielastic neutron scattering, with time-of-flight and neutron spin echo spectrometers. It is well known that the static structure factor of meta-toluidine shows a prepeak originating from clustering of the molecules through hydrogen bonding between the amine groups. The dynamics of meta-toluidine was measured for several values of the wavevector transfer Q, which is equivalent to an inverse length scale, in a range encompassing the prepeak and the structure factor peak. Data were collected in the temperature range corresponding to the liquid and supercooled states, down to the glass transition. At least two dynamical processes were identified. This paper focuses on the slowest relaxation process in the system, the α-relaxation, which was found to scale with the macroscopic shear viscosity at all the investigated Q values. No evidence of "de Gennes" narrowing associated with the prepeak was observed, in contrast with what happens at the Q value corresponding to the interparticle distance. Moreover, using partially deuterated samples, the dynamics of the clusters was found to be correlated to the single-particle dynamics of the meta-toluidine molecules.
Coherent Dynamics of meta-Toluidine Investigated by QuasiElastic Neutron Scattering
Energy Technology Data Exchange (ETDEWEB)
Faraone, Antonio [National Institute of Standards and Technology (NIST); Hong, Kunlun [ORNL; Kneller, Larry [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Ohl, Michael E [ORNL; Copley, John R. D. [National Institute of Standards and Technology (NIST), Gaithersburg, MD
2012-01-01
The coherent dynamics of a typical fragile glass former, meta-toluidine, was investigated at the molecular level using quasielastic neutron scattering, with time-of-flight and neutron spin echo spectrometers. It is well known that the static structure factor of meta-toluidine shows a prepeak originating from clustering of the molecules through hydrogen bonding between the amine groups. The dynamics of meta-toluidine was measured for several values of the wavevector transfer Q, which is equivalent to an inverse length scale, in a range encompassing the prepeak and the structure factor peak. Data were collected in the temperature range corresponding to the liquid and supercooled states, down to the glass transition. At least two dynamical processes were identified. This paper focuses on the slowest relaxation process in the system, the {alpha}-relaxation, which was found to scale with the macroscopic shear viscosity at all the investigated Q values. No evidence of 'de Gennes' narrowing associated with the prepeak was observed, in contrast with what happens at the Q value corresponding to the interparticle distance. Moreover, using partially deuterated samples, the dynamics of the clusters was found to be correlated to the single-particle dynamics of the meta-toluidine molecules.
Multi-component modeling of quasielastic neutron scattering from phospholipid membranes
Energy Technology Data Exchange (ETDEWEB)
Wanderlingh, U., E-mail: uwanderlingh@unime.it; D’Angelo, G.; Branca, C.; Trimarchi, A.; Rifici, S.; Finocchiaro, D. [Dipartimento di Fisica e Scienze della Terra, University of Messina, I-98166 Messina (Italy); Conti Nibali, V. [Institute for Physical Chemistry II, Ruhr-University Bochum, Bochum (Germany); Crupi, C. [IPCF-V.le F. Stagno D’Alcontres, n. 37, Messina 98158 (Italy); Ollivier, J. [Institut Laue-Langevin, 6 rue J. Horowitz, BP 156, F-38042 Grenoble (France); Middendorf, H. D. [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom)
2014-05-07
We investigated molecular motions in the 0.3–350 ps time range of D{sub 2}O-hydrated bilayers of 1-palmitoyl-oleoyl-sn-glycero-phosphocholine and 1,2-dimyristoyl-sn-glycero-phosphocholine in the liquid phase by quasielastic neutron scattering. Model analysis of sets of spectra covering scale lengths from 4.8 to 30 Å revealed the presence of three types of motion taking place on well-separated time scales: (i) slow diffusion of the whole phospholipid molecules in a confined cylindrical region; (ii) conformational motion of the phospholipid chains; and (iii) fast uniaxial rotation of the hydrogen atoms around their carbon atoms. Based on theoretical models for the hydrogen dynamics in phospholipids, the spatial extent of these motions was analysed in detail and the results were compared with existing literature data. The complex dynamics of protons was described in terms of elemental dynamical processes involving different parts of the phospholipid chain on whose motions the hydrogen atoms ride.
Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering
Purewal, Justin; Keith, J. Brandon; Ahn, Channing C.; Brown, Craig M.; Tyagi, Madhusudan; Fultz, Brent
2012-12-01
The graphite intercalation compound KC24 adsorbs hydrogen gas at low temperatures up to a maximum stoichiometry of KC24(H2)2, with a differential enthalpy of adsorption of approximately -9 kJ mol-1. The hydrogen molecules and potassium atoms form a two-dimensional condensed phase between the graphite layers. Steric barriers and strong adsorption potentials are expected to strongly hinder hydrogen diffusion within the host KC24 structure. In this study, self-diffusion in a KC24(H2)0.5 sample is measured experimentally by quasielastic neutron scattering and compared to values from molecular dynamics simulations. Self-diffusion coefficients are determined by fits of the experimental spectra to a honeycomb net diffusion model and found to agree well with the simulated values. The experimental H2 diffusion coefficients in KC24 vary from 3.6 × 10-9 m2 s-1 at 80 K to 8.5 × 10-9 m2 s-1 at 110 K. The measured diffusivities are roughly an order of magnitude lower that those observed on carbon adsorbents, but compare well with the rate of hydrogen self-diffusion in molecular sieve zeolites.
A Measurement of Inclusive Quasielastic Electron Cross Sections at X > 1 and High Q{sup 2}
Energy Technology Data Exchange (ETDEWEB)
Thomas Petitjean
2002-07-01
Experiment E89-008 measured inclusive electron scattering cross sections from different nuclei in Hall C at Jefferson Laboratory. Cross sections on the low energy loss side of the quasi-elastic peak (x{sub Bj} > 1) are extracted for carbon, aluminum, iron and gold. The data cover four-momentum transfers squared of 0:97 to 5:73 GeV 2 =c 2 . The measured cross sections are compared to cross sections calculated using a microscopic spectral function. The cross section results are also analyzed in terms of the two scaling functions F (y) and f( psi ). For both the data is found to be independent of the momentum transfer (scaling of the first kind). For f( psi ) the data is in addition independent of the mass number A (scaling of the second kind) and thus exhibits superscaling properties.
Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R
2014-01-01
Kinematic distributions from an inclusive sample of 1.41 x 10^6 charged-current nu_mu interactions on iron, obtained using the MINOS Near Detector exposed to a wide-band beam with peak flux at 3 GeV, are compared to a conventional treatment of neutrino scattering within a Fermi gas nucleus. Results are used to guide the selection of a subsample enriched in quasielastic nu_mu Fe interactions, containing an estimated 123,000 quasielastic events of incident energies 1 = 2.79 GeV. Four additional subsamples representing topological and kinematic sideband regions to quasielastic scattering are also selected for the purpose of evaluating backgrounds. Comparisons using subsample distributions in four-momentum transfer Q^2 show the Monte Carlo model to be inadequate at low Q^2. Its shortcomings are remedied via inclusion of a Q^2-dependent suppression function for baryon resonance production, developed from the data. A chi-square fit of the resulting Monte Carlo simulation to the shape of the Q^2 distribution for th...
Energy Technology Data Exchange (ETDEWEB)
Garvey, G. T. [Los Alamos; Harris, D. A. [Fermilab; Tanaka, H. A. [British Columbia U.; Tayloe, R. [Indiana U.; Zeller, G. P. [Fermilab
2015-06-15
The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations.
Pakou, A.; Keeley, N.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Boiano, A.; Boiano, C.; Carbone, D.; Cavallaro, M.; Grebosz, J.; La Commara, M.; Manea, C.; Marquinez-Duran, G.; Martel, I.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Sgouros, O.; Signorini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Torresi, D.; Trzcińska, A.; Watanabe, Y. X.; Yamaguchi, H.
2015-07-01
Quasi-elastic scattering data were obtained for the radioactive nucleus 8Li on a 90Zr target at the near-barrier energy of 18.5MeV over the angular range to 80°. They were analyzed within the coupled channels and coupled reaction channels frameworks pointing to a strong coupling effect for single neutron stripping, in contrast to 6, 7 Li + 90 Zr elastic scattering at similar energies, a non-trivial result linked to detailed differences in the structure of these Li isotopes.
Results for quasi-elastic anti-neutrino scattering on scintillator from the MINERvA experiment
Schellman, Heidi; Minerva Collaboration
2016-09-01
We present a new preliminary measurement of the charge-current quasi-elastic scattering cross section for anti-neutrinos on scintillator (CH) over the energy range 1.5-10 GeV. The data were taken with the MINERvA detector in the NuMI beamline at Fermilab and cover the energy range of interest for the proposed DUNE long-baseline neutrino oscillation experiment and of JLAB elastic scattering experiments. Of particular interest to the nuclear community are possible signatures for short range correlations and/or meson exchange currents in these data. We present comparisons to a range of nuclear models.
Proton diffusion in SrZr{sub 0.95}Y{sub 0.05}O{sub 3} observed by quasielastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Sata, Noriko; Ishigame, Mareo [Tohoku Univ., Sendai (Japan). Research Inst. for Scientific Measurements; Shin, Shik; Shibata, Kaoru
1999-11-01
Proton diffusion was observed in Y-dopedSrZrO{sub 3} ceramics above 500 deg C by quasielastic neutron scattering. The line width of the quasielastic component varies with energy transfer Q and temperature. The temperature dependence is well elucidated by the thermal activation-type proton migration with activation energy of 0.2eV. The observed hopping distance was 1.7A, which is comparable to one of the distances between two proton sites. (author)
Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\
Energy Technology Data Exchange (ETDEWEB)
Chvojka, Jesse John [Univ. of Rochester, NY (United States)
2012-01-01
The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q^{2}, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles
Quasielastic pion scattering near the (3,3) resonance. [255 MeV, differential cross section ratio
Energy Technology Data Exchange (ETDEWEB)
Varghese, P.
1978-12-01
The quasielastic pion scattering process (..pi..,..pi..p), in which an energetic pion scatters off a target nucleus, knocking-out a bound proton, was studied to determine the role of recoil nucleon charge exchange in the mechanism of the process near the (3,3) free particle pion-nucleon resonance. Calculations, which incorporate the hypothesis of final state charge exchange of the outgoing nucleon, were performed to predict expectations for observing the process. Experimental measurements were made on /sup 27/Al and /sup 208/Pb, using 255-MeV ..pi../sup +/ and ..pi../sup -/ beams. The outgoing protons were observed in a counter telescope in singles and coincidence modes. Singles spectra were measured at proton angles theta/sub rho/ = 45, 55, 64, and 90/sup 0/ and cross sections were calculated as a function of the energy of the detected proton, for each of the targets. Values of the ratio of ..pi../sup +/ to ..pi../sup -/ cross sections were calculated for each of the angles of observation. The results obtained indicate that the singles spectra contain events from processes other than quasielastic scattering and that the quasielastic events cannot be easily disentangled from the large background due to such events. The study has thus established the inadequacy of observing quasielastic pion scattering in a single arm measurement. Coincidence measurements were made by observing the recoil protons in coincidence with the scattered pions, which were detected in a scintillator counter telescope. The ratio of ..pi../sup +/ to ..pi../sup -/ cross sections were obtained for each target for the angular settings (theta/sub rho/, theta/sub ..pi../) = (55, 50/sup 0/) and (64, 37.5/sup 0/). The measured values of 7.0 +- 0.7 for /sup 27/Al and 4.5 +- 0.5 for /sup 208/Pb are substantially below the impulse approximation no-charge-exchange limit of 9. The observed A dependence of this cross section ratio is in agreement with the predictions of the semiclassical charge exchange
DEFF Research Database (Denmark)
Shi, Qing; Voss, Johannes; Jacobsen, H.S.
2007-01-01
we study hydrogen dynamics in undoped and TiCl3-doped samples of NaAlH4 and Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. Hydrogen dynamics is found to be limited and mediated by hydrogen vacancies in both alanate phases, requiring......Understanding the catalytic role of titanium-based additives on the reversible hydrogenation of complex metal hydrides is an essential step towards developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed catalytic effects, and here...
DEFF Research Database (Denmark)
Voss, Johannes; Shi, Qing; Jacobsen, Hjalte Sylvest
2007-01-01
alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk......Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium...
Study of the Quasi-Elastic Scattering in the NOvA Detector Prototype
Energy Technology Data Exchange (ETDEWEB)
Betancourt, Minerba [Univ. of Minnesota, Minneapolis, MN (United States)
2013-06-01
NOvA is a 810 km long base-line neutrino oscillation experiment with two detectors (far 14 KTon and near detector 300 Ton) currently being installed in the NUMI o -axis neutrino beam produced at Fermilab. A 222 Ton prototype NOvA detector (NDOS) was built and operated in the neutrino beam for over a year to understand the response of the detector and its construction. The goal of this thesis is to study the muon neutrino interaction data collected in this test, specifically the identification of quasi-elastic charged-current interactions and measure the behavior of the quasi-elastic muon neutrino cross section.
Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud
2006-09-14
Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion
Effect of coupling in the 28Si+154Sm reaction studied by quasi-elastic scattering
Kaur, Gurpreet; Behera, B. R.; Jhingan, A.; Nayak, B. K.; Dubey, R.; Sharma, Priya; Thakur, Meenu; Mahajan, Ruchi; Saneesh, N.; Banerjee, Tathagata; Khushboo, Kumar, A.; Mandal, S.; Saxena, A.; Sugathan, P.; Rowley, N.
2016-09-01
The study of the coupling to collective states of the 28Si projectile and 154Sm target in fusion mechanism is reported. Understanding such couplings is important as they influence the barrier height and the formation probability of the compound nuclei, which in turn may be related to the synthesis of superheavy elements in heavier systems. In the present work, before performing the coupled-channel calculations, we wish to obtain an experimental signature of coupling to projectile and target excitation through barrier distribution (BD) study. To this end, the BDs of the 28Si+154Sm and 16O+154Sm systems have been compared using existing fusion data, scaled to compensate for the differences between the nominal Coulomb barriers and the respective coupling strengths. However, the large error bars on the high-energy side of the fusion BD prevent any definite identification of such signatures. We have, therefore, performed a quasi-elastic (QE) scattering experiment for the heavier 28Si+154Sm system and compared its results with existing QE data for the 16O projectile. Since QE BDs are precise at higher energies, the comparison has shown that the BD of 28Si+154Sm is similar to that of 16O+154Sm to a large extent except for a peaklike structure on the higher energy side. The similarity shows that the 154Sm deformation plays a major role in the fusion mechanism of 28Si+154Sm system. The peaklike structure is attributed to 28Si excitation. In contrast with previous studies, it is found that a coupled-channel calculation with vibrational coupling to the first 2+ state of 28Si reproduces this structure rather well. However, an almost identical result is found with the rotational coupling scheme if one considers the large positive hexadecapole deformation of the projectile. A value around that given by Möller and Nix (β4≈0.25 ) leads to a strong cancellation in the re-orientation term that couples the 2+ state back to itself, making that state look vibrational in this
Energy Technology Data Exchange (ETDEWEB)
Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Mukhopadhyay, S. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)
2016-01-07
The ionic stochastic motions in the molten alkali halide NaF are investigated by quasielastic neutron scattering and first principles molecular dynamics simulation. Quasielastic neutron scattering was employed to extract the diffusion behavior of the sodium ions in the melt. An extensive first principles based simulation on a box of up to 512 particles has been performed to complement the experimental data. From that large box, a smaller 64-particle box has then been simulated over a runtime of 60 ps. A good agreement between calculated and neutron data on the level of spectral shape has been obtained. The obtained sodium diffusion coefficients agree very well. The simulation predicts a fluorine diffusion coefficient similar to the sodium one. Applying the Nernst-Einstein equation, a remarkable large cross correlation between both ions can be deduced. The velocity cross correlations demonstrate a positive correlation between the ions over a period of 0.1 ps. That strong correlation is evidence that the unlike ions do not move completely statistically independent and have a strong association over a short period of time.
Quasi-Elastic Neutron Scattering (QENS) Studies of Hydrogen Dynamics for Nano-Confined NaAlH4
Dobbins, Tabbetha; Narasegowda, Shathabish; Brown, Craig; Tyagi, Madhusudan; Jenkins, Timothy
The hydrogen dynamics of nano-confined sodium alanate (NaAlH4) has been studied using quasi-elastic neutron scattering (QENS). Results indicate thermodynamic destabilization is responsible for reduced desorption temperatures of NaAlH4 upon confinement within the nanopores of a metal organic framework (MOF). Both the bulk (microscale) NaAlH4 and the nanoconfined NaAlH4 data were fitted to re-orientation models which yielded corresponding percent mobile hydrogen and jump lengths. The jump lengths calculated from the nano-NaAlH4 were ~2.5 Å, and in conformity with those jump lengths determined for bulk NaAlH4 of ~2.3 Å. As much as 18 % of the hydrogen atoms were estimated to be mobile in the nano-NaAlH4 sample even at relatively low temperatures of 350 K. In contrast, bulk NaAlH4 shows less than 7 % mobile H-atoms even at higher temperatures of ~450 K. The activation energy for the long range is 3.1meV. Quasi-Elastic Neutron Scattering (QENS) Studies of Hydrogen Dynamics for Nano-Confined NaAlH4.
Gazeau, F; Dubois, E; Perzynski, R
2003-01-01
We investigate the structure and dynamics of ionic magnetic fluids (MFs), based on ferrite nanoparticles, dispersed at pH approx 7 either in H sub 2 O or in D sub 2 O. Polarized and non-polarized static small angle neutron scattering (SANS) experiments in zero magnetic field allow us to study both the magnetic and the nuclear contributions to the neutron scattering. The magnetic interparticle attraction is probed separately from the global thermodynamic repulsion and compares well to direct magnetic susceptibility measurements. The magnetic interparticle correlation is in these fluid samples independent of the probed spatial scale. In contrast, a spatial dependence of the interparticle correlation is evidenced at large PHI by the nuclear structure factor. A model of magnetic interaction quantitatively explains the under-field anisotropy of the SANS nuclear contribution. In a quasi-elastic neutron spin-echo experiment, we probe the Brownian dynamics of translation of the nanoparticles in the range 1.3 sup<=...
Measurement of quasi-elastic 12C(p,2p) scattering at high momentum transfer
Mardor, Y.; Aclander, J.; Alster, J.; Barton, D.; Bunce, G.; Carroll, A.; Christensen, N.; Courant, H.; Durrant, S.; Gushue, S.; Heppelmann, S.; Kosonovsky, E.; Mardor, I.; Marshak, M.; Makdisi, Y.; Minor, E. D.; Navon, I.; Nicholson, H.; Piasetzky, E.; Roser, T.; Russell, J.; Sutton, C. S.; Tanaka, M.; White, C.; Wu, J.-Y.
1998-10-01
We measured the high-momentum transfer [Q2=4.8 and 6.2 (GeV/c)2] quasi-elastic 12C(p,2p) reaction at θcm~=90 deg for 6 and 7.5 GeV/c incident protons. The momentum components of both outgoing protons and the missing energy and momentum of the proton in the nucleus were measured. We verified the validity of the quasi-elastic picture for ground state momenta up to about 0.5 GeV/c. Transverse and longitudinal momentum distributions of the target proton were measured. They have the same shape with a large momentum tail which is not consistent with independent particle models. We observed that the transverse distribution gets wider as the longitudinal component increases in the beam direction.
Axial-vector dominance predictions in quasielastic neutrino-nucleus scattering
Amaro, J E
2015-01-01
We use the minimum meson-dominance ansatz compatible with low- and high energy constrains to model the nucleon axial form factor. The parameters of the resulting axial form factor are the masses and widths of the two axial mesons, incorporated as a product of monopoles. By applying the half width rule in a Monte Carlo simulation a distribution of theoretical predictions can be generated for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the $(\
Quasi-elastic scattering of a secondary sup 6 He beam on a sup 9 Be target at 25 MeV/nucleon
Chen Tao; Li Zhi Huan; Jiang Dong Xing; Hua Hui; Li Xiang Qing; Wang Quan Jin; Ge Yuch Eng; Pang Dan Yang; Di Zhenyu; Jin Ge; Xiao Guo Qing; Guo Zhong Yan; Xiao Zhi Gang; Wang Hong Wei; Zhang Bao Guo; Wu He Yu; Li Jia Xing; Sun Zhi Yu; Zhan Wen Long
2002-01-01
The quasi-elastic scattering of a secondary sup 6 He beam (25 MeV/n) on a sup 9 Be target has been measured for the first time with the application of a sophisticated tracking detector system. The angular distribution is reported. A phenomenological optical potential is obtained by fitting the experimental data, which encourages more accurate experimental measurements
Quasi-elastic Scattering of a Secondary 6He Beam on a 9Be Target at 25MeV/Nucleon
Institute of Scientific and Technical Information of China (English)
陈陶; 叶沿林; 李智焕; 江栋兴; 华辉; 李湘庆; 王全进; 葛榆成; 庞丹阳; 狄振宇; 靳根明; 肖国青; 郭忠言; 肖志刚; 王宏伟; 张保国; 吴和宇; 李家兴; 孙志宇; 詹文龙
2002-01-01
The quasi-elastic scattering of a secondary 6He beam (25 MeV/n) on a 9Be target has been measured for the firsttime with the application of a sophisticated tracking detector system. The angular distribution is reported. Aphenomenological optical potential is obtained by fitting the experimental data, which encourages more accurateexperimental measurements.
Diama, Armand
Over the past several years, we have conducted a variety of elastic neutron diffraction and quasielastic neutron scattering experiments to study the structure and the dynamics of films of two intermediate-length alkane molecules (C nH2n+2), adsorbed on a graphite basal-plane surface. The two molecules are the normal alkane n-tetracosane [n-CH 3(CH2)22CH3] and the branched alkane squalane (C30H62 or 2, 6, 10, 15, 19, 23-hexamethyltetracosane) whose carbon backbone is the same length as teteracosane. The temperature dependence of the monolayer structure of tetracosane and squalane was investigated using elastic neutron diffraction and evidence of two phase transitions was observed. Both the low-coverage tetracosane (C 24H50) and squalane (C30H62) monolayers have crystalline-to-"smectic" and "smectic"-to-isotropic fluid phase transitions upon heating. The diffusive motion in the tetracosane and squalane monolayers has been investigated by quasielastic neutron scattering. Two different quasielastic neutron scattering spectrometers at the Center for Neutron Research, National Institute of Standards and Technology (NIST) have been used. The spectrometers differ in both their dynamic range and energy resolution allowing molecular motions to be investigated on time scales in the range 10-13--10 -9 s. On these time scales, we observe evidence of translational, rotational, and intermolecular diffusive motions in the tetracosane and squalane monolayers. We conclude that the molecular diffusive motion in the two monolayers is qualitatively similar. Thus, despite the three methyl sidegroups at each end of the squalane molecule, its monolayer structure, phase transitions, and dynamics are qualitatively similar to that of a monolayer of the unbranched tetracosane molecules. With the higher resolution spectrometer at NIST, we have also investigated the molecular diffusive motion in multilayer tetracosane films. The analysis of our measurements indicates slower diffusive motion in
Charged-current quasielastic scattering of muon antineutrino and neutrino in the MINERvA experiment
Ankowski, Artur M
2015-01-01
One of the largest sources of systematic uncertainties in ongoing neutrino-oscillation measurements is the description of nuclear effects. Its considerable reduction is expected thanks to the dedicated studies of (anti)neutrino-nucleus interactions in the MINERvA experiment. In this article, the calculations within the spectral function approach are compared to the charged-current quasielastic cross sections reported from MINERvA. The obtained results show that the effect of final-state interactions on the (anti)muon kinematics plays pivotal role in reproducing the experimental data.
Institute of Scientific and Technical Information of China (English)
Man LUO; Li-Ke JIANG; Yao-Xiong HUANG; Ming XIAO; Bo LI; Guo-Lin ZOU
2004-01-01
Citral refined from Litsea cubeba oil has been found to have a strong influence on fungi,especially Aspergillus flavus. Multiplex microanalysis and quasi-elastic light scattering techniques were applied to study the effects of citral on Aspergillus flavus spores from the levels of membrane, organelle and intracellular macromolecule. It was found that citral injured the wall and the membrane of A. flavus spore,resulting in decrease of its elasticity. After entering the cell, citral not only influenced the genetic expression of mitochondrion reduplication and its morphology, but also changed the aggregation of protein-like macromolecules. As a result, cells, organelles and macromolecules lost their normal structures and functions,eventually leading to the loss of germination ability of A. flavus spores. Since Litsea cubeba oil as food additive and antifungal agent is safe and less poisonous, it is important to elucidate the inhibitory mechanisms of Litsea cubeba oil on the germination ability ofA. flavus spore.
Energy Technology Data Exchange (ETDEWEB)
Zhang Chuhong [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Midlothian, Scotland, Edinburgh, EH14 4AS (United Kingdom); Arrighi, Valeria [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Midlothian, Scotland, Edinburgh, EH14 4AS (United Kingdom)], E-mail: v.arrighi@hw.ac.uk; Gagliardi, Simona [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Midlothian, Scotland, Edinburgh, EH14 4AS (United Kingdom); McEwen, Iain J. [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Midlothian, Scotland, Edinburgh, EH14 4AS (United Kingdom); Tanchawanich, Jeerachada [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Midlothian, Scotland, Edinburgh, EH14 4AS (United Kingdom); Telling, Mark T.F. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 OQX (United Kingdom); Zanotti, J.-M. [Laboratoire Leon Brillouin (CEA-CNRS), CEA Saclay, 91191Gif-sur-Yvette Cedex (France)
2006-09-29
The dynamics of poly(vinyl acetate) (PVAc) in the glassy state has been investigated using a range of neutron spectrometers, sampling complementary energy and momentum transfer ranges. By combining the analysis of elastic window scan data at high resolution, medium resolution quasielastic neutron scattering (QENS) spectra and low resolution time-of-flight measurements we identify the molecular processes occurring in PVAc, below the polymer glass transition. Our QENS results are in agreement with the literature data for the methyl group rotation but we also find evidence for a fast process, with activation energy of 1.9 kJ/mol. Although the different instruments provide only limited dynamic information, we attempt to give a homogeneous description of molecular motion across the different energies and Q ranges.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
Toshimi Suda
2014-11-01
A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.
Osaka, Noboru; Shibayama, Mitsuhiro; Kikuchi, Tatsuya; Yamamuro, Osamu
2009-10-01
Dynamics of water and poly(N-isopropylacrylamide) (PNIPA) in concentrated aqueous solutions, where the majority of water molecules are attached to polymer chains, has been investigated with use of incoherent quasi-elastic neutron scattering (QENS) and dynamic light scattering (DLS) measurements as functions of temperature, T, and hydrostatic pressure, P. It was observed by QENS that the self-diffusion coefficient, D(water), of water in PNIPA/H(2)O solutions increased by P at temperatures below the lower critical solution temperature (LCST) of PNIPA aqueous solutions. However, above the LCST, D(water) decreased by P, as is often reported in non-hydrogen bonding solutions. In isobaric heating runs, therefore, the jump in D(water) at LCST decreased with increasing pressure. On the other hand, the mean-square displacement, , of the local vibrational motion of PNIPA in PNIPA/D(2)O solutions, where the incoherent scattering signal of PNIPA was predominantly observed, was reduced due to the aggregation behavior of PNIPA by pressurizing, which was also confirmed by using DLS. The jump in at the LCST became gradual by pressurizing, which was consistent with the changes of the dynamics of water obtained in PNIPA/H(2)O solutions.
Energy Technology Data Exchange (ETDEWEB)
Wolcott, Jeremy [Univ. of Rochester, NY (United States)
2016-01-01
Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q^{2}. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE
Measurement of Muon Neutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_{\
Fiorentini, G A; Rodrigues, P A; Aliaga, L; Altinok, O; Bodek, A; Boehnlein, D; Bradford, R; Brooks, W K; Budd, H; Butkevich, A; Caicedo, D A M; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Damiani, D S; Danko, I; Datta, M; Day, M; DeMaat, R; Devan, J; Diaz, G A; Dytman, S A; Eberly, B; Edmondson, D A; Felix, J; Fields, L; Fitzpatrick, T; Gago, A M; Gallagher, H; Gobbi, B; Gran, R; Harris, D A; Higuera, A; Howley, I J; Hurtado, K; Jerkins, M; Kafka, T; Kanter, M O; Keppel, C; Kordosky, M; Krajeski, A H; Kulagin, S A; Le, T; Leister, A G; Maggi, G; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Niculescu, G; Niculescu, I; Ochoa, N; O'Connor, C D; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Pena, C; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Sassin, K E; Schellman, H; Schneider, R M; Schulte, E C; Sedita, P; Simon, C; Snider, F D; Snyder, M C; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tan, W; Tice, B G; Tzanakos, G; Velasquez, J P; Walding, J; Walton, T; Wolcott, J; Wolthuis, B A; Zavala, G; Zhang, D; Ziemer, B P
2013-01-01
We report a study of muon neutrino charged-current quasi-elastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a {\\mu}^- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and study the low energy particle content of the final state. Deviations are found between the measured d{\\sigma}/dQ^2 and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.
Charged Current Quasielastic Analysis from MINERνA
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Anushree [Rio de Janeiro, CBPF
2015-08-01
The MINERνA detector situated in Fermilab, is designed to make precision cross-section measurements for scattering processes on various nuclei. In this proceeding, the results of the charged current quasi-elastic (CCQE) analysis using lepton kinematics and with proton kinematics have been presented. Comparison of these with theoretical models suggested that further studies are required to include the additional nuclear effects in the current simulations. The first direct measurement of electron-neutrino quasielastic-like scattering in the few-GeV region of incident neutrino energy has also been presented. All three analyses, discussed here, are carried out on hydrocarbon target.
Bellissent-Funel, Marie-Claire; Kaneko, Katsumi; Ohba, Tomonori; Appavou, Marie-Sousai; Soininen, Antti J; Wuttke, Joachim
2016-02-01
Incoherent neutron scattering by water confined in carbon nanohorns was measured with the backscattering spectrometer SPHERES and analyzed in exemplary breadth and depth. Quasielastic spectra admit δ-plus-Kohlrausch fits over a wide q and T range. From the q and T dependence of fitted amplitudes and relaxation times, however, it becomes clear that the fits do not represent a uniform physical process, but that there is a crossover from localized motion at low T to diffusive α relaxation at high T. The crossover temperature of about 210 to 230 K increases with decreasing wave number, which is incompatible with a thermodynamic strong-fragile transition. Extrapolated diffusion coefficients D(T) indicate that water motion is at room temperature about 2.5 times slower than in the bulk; in the supercooled state this factor becomes smaller. At even higher temperatures, where the α spectrum is essentially flat, a few percentages of the total scattering go into a Lorentzian with a width of about 1.6μeV, probably due to functional groups on the surface of the nanohorns.
Ivanov, M V; Barbaro, M B; Giusti, C; Meucci, A; Caballero, J A; Gonzalez-Jimenez, R; de Guerra, E Moya; Udias, J M
2015-01-01
Neutral current quasielastic (anti)neutrino scattering cross sections on a $^{12}$C target are analyzed using a realistic spectral function $S(p,E)$ that gives a scaling function in accordance with the ($e,e'$) scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals (NOs) from the Jastrow correlation method and has a realistic energy dependence. The standard value of the axial mass $M_A= 1.032$ GeV is used in all calculations. The role of the final-state interaction (FSI) on the spectral and scaling functions, as well as on the cross sections is accounted for. A comparison of the calculations with the empirical data of the MiniBooNE and BNL experiments is performed. Our results are analyzed in comparison with those when NN correlations are not included, and also with results from other theoretical approaches, such as the relativistic Fermi gas (RFG), the relativistic mean field (RMF), the relativistic Green's function (RGF), as well as with the Super...
Ivanov, M. V.; Antonov, A. N.; Caballero, J. A.; Megias, G. D.; Barbaro, M. B.; de Guerra, E. Moya; Udías, J. M.
2014-01-01
Charge-current quasielastic (anti)neutrino scattering cross sections on a 12C target are analyzed using a spectral function S (p,E) that gives a scaling function in accordance with the (e ,e') scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations, it has a realistic energy dependence, and natural orbitals (NOs) from the Jastrow correlation method are used in its construction. In all calculations the standard value of the axial mass MA=1.032 GeV/c2 is used. The results are compared with those when NN correlations are not included, as in the relativistic Fermi gas model, or when harmonic-oscillator single-particle wave functions are used instead of NOs. The role of the final-state interactions (FSIs) on the theoretical spectral and scaling functions, as well as on the cross sections, is accounted for. A comparison of the results for the cases with and without FSI, as well as to results from the phenomenological scaling function obtained from the superscaling analysis, is carried out. Our calculations based on the impulse approximation underpredict the MiniBooNE data but agree with the data from the NOMAD experiment. The possible missing ingredients in the considered theoretical models are discussed.
Haruki, Rie; Koshimizu, Masanori; Nishikido, Fumihiko; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Kishimoto, Shunji
2016-12-01
The dynamics of iodine ions in potassium iodide (KI) and lithium iodide (LiI) aqueous solutions have been studied through 127I nuclear resonant quasi-elastic scattering (NRQES). A newly developed Si (12 2 2) double crystal monochromator for 127I 57.6 keV excitation is used. Broadening due to a diffusive motion is measured in the energy spectra of the NRQES from the solutions.
Results on Double-polarization Asymmetries in Quasielastic Scattering from Polarized 3He
Energy Technology Data Exchange (ETDEWEB)
Sulkosky, Vincent A. [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
The 3He nucleus has become extremely important in the investigation of the neutron’s spin structure. When polarized, 3He acts as an effective polarized neutron target and hence facilitates our understanding of the neutron’s internal structure. However, to be used in this manner, our understanding of the internal structure of 3He is of extreme importance. As the precision of experiments has improved, the extraction of polarized neutron information from 3He leads to an ever larger share of the systematic uncertainty for these experiments. In these proceedings, I present a precise measurement of beam-target asymmetries in the and reactions. The former process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed around the quasi-elastic peak at Q2 = 0.25 (GeV/c)2 and 0.35 (GeV/c)2 for recoil momenta up to 270 MeV/c. The experimental apparatus, analysis and results were presented together with a comparison to state-of-the art Faddeev calculations.
Energy Technology Data Exchange (ETDEWEB)
Verdal, Nina [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Udovic, Terrence J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Rush, John J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Skripov, Alexander V. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)
2015-10-05
Highlights: • NaBH{sub 4}–NaX (X = Cl, I) solutions were made by ball-milling/annealing pure compounds. • BH{sub 4}{sup −} reorientational motions were studied by quasielastic neutron scattering. • Mobility increased from X = Cl to NaBH{sub 4} to X = I, consistent with expanding lattices. • Near 400 K, BH{sub 4}{sup −} favored cubic tumbling for X = Cl and tetrahedral tumbling for X = I. • Activation energies were in the range of 11–12 kJ mol{sup −1} for both compounds. - Abstract: Equimolar NaBH{sub 4}–NaX (X = Cl and I) solid solutions were synthesized to study, via quasielastic neutron scattering, the effect of partial halide anion substitution on the reorientational dynamics of tetrahydroborate (BH{sub 4}{sup −}) anions in NaBH{sub 4}. The BH{sub 4}{sup −} reorientational mobility increased in the order of NaBH{sub 4}–NaCl, NaBH{sub 4}, and NaBH{sub 4}–NaI, which corresponded with expanding face-centered-cubic lattices accommodating the respective increasing sizes of the Cl{sup −}, BH{sub 4}{sup −}, and I{sup −} anions. The BH{sub 4}{sup −} anions in NaBH{sub 4}–NaCl were found (at least above 400 K) to undergo ‘cubic’ tumbling motions with the four H atoms per anion visiting all eight corners of a cube, similar to what was previously observed for NaBH{sub 4}. In contrast, the BH{sub 4}{sup −} anions in NaBH{sub 4}–NaI were found to undergo something more akin to ‘tetrahedral’ tumbling motions, where the H atoms visit all four corners of a tetrahedron. Despite a noticeable softening of the BH{sub 4}{sup −} torsional energies with increasing lattice constant amongst NaBH{sub 4} and the two solid solutions, all three compounds exhibited similar activation energies for reorientation of about 11–12 kJ mol{sup −1}.
Energy Technology Data Exchange (ETDEWEB)
Patrick, Cheryl [Northwestern U.
2016-01-01
Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.
Energy Technology Data Exchange (ETDEWEB)
Trantham, E.C.; Rorschach, H.E.; Clegg, J.S.; Hazlewood, C.F.; Nicklow, R.M.; Wakabayashi, N.
1984-05-01
Results have been obtained on the quasi-elastic spectra of neutrons scattered from pure water, 20% agarose gel (hydration four grams H/sub 2/O per gram of dry solid) and cysts of the brine shrimp Artemia for hydrations between 0.10 and 1.2 grams H/sub 2/O per gram of dry solids. The spectra were interpreted using a two-component model that included contributions from the covalently bonded protons and the hydration water, and a mobile water fraction. The mobile fraction was described by a jump-diffusion correlation function for the translation motion and a simple diffusive orientational correlation function. The results for the line widths ..gamma..(Q/sup 2/) for pure water were in good agreement with previous measurements. The agarose results were consistent with NMR measurements that show a slightly reduced translational diffusion for the mobile water fraction. The Artemia results show that the translational diffusion coefficient of the mobile water fraction was greatly reduced from that of pure water. The line width was determined mainly by the rotational motion, which was also substantially reduced from the pure water value as determined from dielectric relaxation studies. The translational and rotational diffusion parameters were consistent with the NMR measurements of diffusion and relaxation. Values for the hydration fraction and the mean square thermal displacement as determined from the Q-dependence of line areas were also obtained.
Energy Technology Data Exchange (ETDEWEB)
Huang, H.W.
1995-04-10
Proteins are formed from long polymer chains of amino acids that have been cross linked into a complex three dimensional structure. The structure is not unique, since there are many conformation substates of nearly equal energy, separated by small energy barriers, that are obtained by slight shifts in positions of various segments of the molecule. Transitions among these conformations substates are of a diffusive nature, and they can lead to substantial changes in the shape of the molecule. These changes in shape are important for the biological reactions in the cell. Such diffusive motion is inaccessible to the diffraction methods or to the computer simulations, since it occurs on a long time scale. It is accessible to incoherent quasi-elastic neutron scattering (QNS) studies, which permit a direct determination of the properties of the diffusive motion of the protons in the molecules. The authors have used the IQNS method to study the motions of the side chains in trypsin, a protein of beta-sheet structures and myoglobin, a protein of {alpha}-helical structures, at various D{sub 2}O hydration levels.
Quasielastic neutron scattering study of hydrogen motion in C15-type YMn sub 2 H sub x
Skripov, A V; Udovic, T J; González, M A; Hempelmann, R; Kozhanov, V N
2003-01-01
In order to study the mechanism and parameters of hydrogen diffusion in the cubic (C15-type) Laves phase YMn sub 2 , we have performed quasielastic neutron scattering measurements in YMn sub 2 H sub x (x = 0.4, 0.65 and 1.26) over the temperature range 30-395 K. It is found that the diffusive motion of hydrogen in this system can be described in terms of two jump processes: the fast localized H motion with the jump rate tau sub l sup - sup 1 and the slower process with the rate tau sub d sup - sup 1 associated with H jumps leading to long-range diffusion. The ratio tau sub d /tau sub l at room temperature is close to 10 sup 2. Our results suggest that the localized H motion in YMn sub 2 H sub x corresponds to back-and-forth jumps of hydrogen atoms within pairs of interstitial g (Y sub 2 Mn sub 2) sites. The parameters of the long-range diffusion of hydrogen in the samples with different H content are found to be close to each other. In the range 210-395 K, the temperature dependences of tau sub d sup - sup 1 ...
Weak Polarized Electron Scattering
Erler, Jens; Mantry, Sonny; Souder, Paul A
2014-01-01
Scattering polarized electrons provides an important probe of the weak interactions. Precisely measuring the parity-violating left-right cross section asymmetry is the goal of a number of experiments recently completed or in progress. The experiments are challenging, since A_{LR} is small, typically between 10^(-4) and 10^(-8). By carefully choosing appropriate targets and kinematics, various pieces of the weak Lagrangian can be isolated, providing a search for physics beyond the Standard Model. For other choices, unique features of the strong interaction are studied, including the radius of the neutron density in heavy nuclei, charge symmetry violation, and higher twist terms. This article reviews the theory behind the experiments, as well as the general techniques used in the experimental program.
Energy Technology Data Exchange (ETDEWEB)
Pakou, A.; Aslanoglou, X.; Sgouros, O.; Soukeras, V. [The University of Ioannina, Department of Physics and HINP, Ioannina (Greece); Keeley, N. [National Centre for Nuclear Research, Otwock (Poland); Pierroutsakou, D.; Boiano, A.; Parascandolo, C. [INFN, Napoli (Italy); Mazzocco, M.; Soramel, F.; Strano, E.; Torresi, D. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Padova (Italy); Acosta, L. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico (Mexico); INFN, Catania (Italy); Boiano, C. [INFN, Milano (Italy); Carbone, D.; Cavallaro, M. [INFN Laboratori Nazionali del Sud, Catania (Italy); Grebosz, J. [The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN), Krakow (Poland); La Commara, M. [INFN, Napoli (Italy); Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); Manea, C. [INFN, Padova (Italy); Marquinez-Duran, G.; Martel, I. [Universidad de Huelva, Departamento de Fisica Aplicada, Huelva (Spain); Rusek, K.; Trzcinska, A. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Sanchez-Benitez, A.M. [Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa (Portugal); Signorini, C. [LNL, INFN, Legnaro (Italy); Stiliaris, E. [University of Athens, Institute of Accelerating Systems and Applications and Department of Physics, Athens (Greece); Watanabe, Y.X. [High Energy Accelerator Research Organization (KEK), Institute of Particle and Nuclear Studies (IPNS), Ibaraki (Japan); Yamaguchi, H. [University of Tokyo, RIKEN campus, Center for Nuclear Study (CNS), Saitama (Japan)
2015-07-15
Quasi-elastic scattering data were obtained for the radioactive nucleus {sup 8}Li on a {sup 90}Zr target at the near-barrier energy of 18.5 MeV over the angular range θ{sub lab} = 15 {sup circle} to 80 . They were analyzed within the coupled channels and coupled reaction channels frameworks pointing to a strong coupling effect for single neutron stripping, in contrast to {sup 6,} {sup 7}Li + {sup 90}Zr elastic scattering at similar energies, a non-trivial result linked to detailed differences in the structure of these Li isotopes. (orig.)
Borah, Bhaskar J; Jobic, H; Yashonath, S
2010-04-14
We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime. Activation energy is in the order E(a)(n-pentane)>E(a)(isopentane)>E(a)(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen that D(n-pentane)>D(isopentane)>D(neopentane) and E(a)(n-pentane)
Li, Hua; Zhang, Li-Li; Yi, Zhou; Fratini, Emiliano; Baglioni, Piero; Chen, Sow-Hsin
2015-08-15
Cement is a widely used construction material in the world. The quality and durability of aged cement pastes have a strong relationship with the water contained in it. The translational and rotational dynamics of water in ordinary Portland cement (OPC) pastes cured for 7, 14 and 30days were studied by analyzing Quasi-elastic Neutron Scattering (QENS) data. The effect of a new super-plasticizer (SP) additive was also studied by comparing the samples with and without the additive. By fitting the QENS spectra with the Jump-diffusion and Rotation-diffusion Model (JRM), six important parameters including the bound water index (BWI), the self-diffusion coefficient, D(t), the average residence time, τ0, the rotational diffusion constant, D(r), the rotational residence time, τ(r), and the mean squared displacement (MSD), 〈u(2)〉, were obtained. From these parameters, we can quantitatively follow the evolution of the bound water fraction (BWI). We can clearly see the different time ranges for the translational and rotational dynamics of water contained in the OPC pastes by τ0 and τ(r). From the MSD values compared with those of molecular dynamics simulation, we can distinguish between immobile water (mainly bound water) and mobile water, which includes confined water and ultraconfined water. Furthermore, by the fitted parameters' values and their change of slopes with increasing setting time for cement pastes with and without additive SP, it becomes clear that the effect of additive SP is to make the mobile water more confined and induce a more uniform the aging process during the evolution of the OPC pastes.
Swenson, Jan; Elamin, Khalid; Chen, Guo; Lohstroh, Wiebke; Sakai, Victoria Garcia
2014-12-01
The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H2O (or D2O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0-90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.
Energy Technology Data Exchange (ETDEWEB)
Swenson, Jan, E-mail: jan.swenson@chalmers.se; Elamin, Khalid; Chen, Guo [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Lohstroh, Wiebke [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching (Germany); Sakai, Victoria Garcia [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX Oxfordshire (United Kingdom)
2014-12-07
The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H{sub 2}O (or D{sub 2}O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0–90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.
Kyriakos, Konstantinos; Philipp, Martine; Silvi, Luca; Lohstroh, Wiebke; Petry, Winfried; Müller-Buschbaum, Peter; Papadakis, Christine M
2016-05-26
The solvent dynamics of concentrated solutions of poly(N-isopropylacrylamide) (PNIPAM, 25 wt %) in water/methanol mixtures (85:15 v/v) are measured with the aim of shedding light onto the cononsolvency effect. Quasi-elastic neutron scattering (QENS) with contrast variation has been carried out at temperatures below and above the cloud point by using in the first set of experiments the mixture H2O:d-MeOD (d-MeOD denotes fully deuterated methanol) as a solvent and in the second set of experiments the mixture D2O:MeOH (MeOH denotes methanol). As a reference, bulk H2O, bulk MeOH and the mixtures H2O:d-MeOD and D2O:MeOH (both 85:15 v/v) have been investigated as well. In the PNIPAM solution in H2O:d-MeOD, two water populations are identified, namely strongly and less strongly arrested water. At the cloud point, the former is partially released from PNIPAM. The diffusion coefficient of the latter one is similar to the one in the water/methanol mixture, and its residence time decreases at the cloud point. The PNIPAM solution in D2O:MeOH reveals similar dynamics to the one in H2O:d-MeOD which may reflect that the dynamics of MeOH near the PNIPAM chain is similar to the one of H2O. The similarity may, however, partially be due to H/D exchange between D2O and MeOH. In both PNIPAM solutions, the mean-square displacement of the PNIPAM chain decreases gradually above the cloud point.
Energy Technology Data Exchange (ETDEWEB)
Liu Li [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chen, S-H [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Faraone, Antonio [NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899 (United States); Yen, C-W [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Mou, C-Y [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Kolesnikov, Alexander I [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Mamontov, Eugene [NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899 (United States); Leao, Juscelino [NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899 (United States)
2006-09-13
We investigated, using quasi-elastic and inelastic neutron scattering, the slow single-particle dynamics of water confined in laboratory synthesized nanoporous silica matrices, MCM-41-S, with pore diameters ranging from 10 to 18 A. Inside the pores of these matrices, the freezing process of water is strongly inhibited down to 160 K. We analysed the quasi-elastic part of the neutron scattering spectra with a relaxing-cage model and determined the temperature and pressure dependence of the Q-dependent translational relaxation time and its stretch exponent {beta} for the time dependence of the self-intermediate scattering function. The calculated Q-independent average translational relaxation time shows a fragile-to-strong (FS) dynamic crossover for pressures lower than 1600 bar. Above this pressure, it is no longer possible to discern the characteristic feature of the FS crossover. Identification of this end point with the predicted second low-temperature critical point of water is discussed. A subsequent inelastic neutron scattering investigation of the librational band of water indicates that this FS dynamic crossover is associated with a structural change of the hydrogen-bond cage surrounding a typical water molecule from a denser liquid-like configuration to a less-dense ice-like open structure.
The nucleon axial mass and the MiniBooNE quasielastic neutrino-nucleus scattering problem
Energy Technology Data Exchange (ETDEWEB)
Nieves, J., E-mail: jmnieves@ific.uv.es [Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, E-46071 Valencia (Spain); Ruiz Simo, I.; Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, E-46071 Valencia (Spain)
2012-01-16
The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucleon scattering. We find that MiniBooNE data are fully compatible with the world average of the nucleon axial mass in contrast with several previous analyses which have suggested an anomalously large value. We also discuss the reliability of the algorithm used to estimate the neutrino energy.
The nucleon axial mass and the MiniBooNE Quasielastic Neutrino-Nucleus Scattering problem
Nieves, J; Vacas, M J Vicente
2011-01-01
The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucleon scattering. We find that MiniBooNE data are fully compatible with the world average of the nucleon axial mass in contrast with several previous analyses which have suggested an anomalously large value. We also discuss the reliability of the algorithm used to estimate the neutrino energy.
Craig, T; Hallett, F R; Nickel, B
1982-04-01
The Rayleigh-Gans-Debye approximation is used to predict the electric field autocorrelation functions of light scattered from circularly swimming bull spermatozoa. Using parameters determined from cinematography and modeling the cells as coated ellipsoids of semiaxes a = 0.5 micrometers, b = 2.3 micrometers, and c = 9.0 micrometers, we were able to obtain model spectra that mimic the data exactly. A coat is found to be a necessary attribute of the particle. It is also clear that these model functions at 15 degrees may be represented by the relatively simple function used before by Hallett et al. (1978) to fit data from circularly swimming cells, thus giving some physical meaning to these functional shapes. Because of this agreement the half-widths of experimental functions can now be interpreted in terms of an oscillatory frequency for the movement of the circularly swimming cell. The cinematographic results show a trend to chaotic behavior as the temperature of the sample is increased, with concomitant decrease in overall efficiency. This is manifested by a decrease in oscillatory frequency and translational speed.
Bhattacharya, Bhubanjyoti; Tropiano, Anthony J
2015-01-01
Understanding the charged current quasielestic (CCQE) neutrino-nucleus interaction is important for precision studies of neutrino oscillations. The theoretical description of the interaction depends on the combination of a nuclear model with the knowledge of form factors. While the former has received considerable attention, the latter, in particular the axial form factor, is implemented using the historical dipole model. Instead, we use a model-independent approach, presented in a previous study, to analyze the muon antineutrino CCQE mineral oil data published by the MiniBooNE collaboration. We combine the cross section for scattering of antineutrinos off protons in carbon and hydrogen, using the same axial form factor for both. The extracted value of the axial mass parameter $m_A = 0.84^{+0.12}_{-0.04} \\pm {0.11} \\, {\\rm GeV}$ is in very good agreement with the model-independent value extracted from MiniBooNE's neutrino data. Going beyond a one-parameter description of the axial form factor, we extract valu...
Magnetic relaxations in a Tb-based single molecule magnet studied by quasielastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Kofu, Maiko [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Kajiwara, Takashi [Faculty of Science, Nara Women’s University, Nara, Nara 630-8506 (Japan); Gardner, Jason S. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Simeoni, Giovanna G. [Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II, D-85747 Garching (Germany); Tyagi, Madhusudan; Faraone, Antonio [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science, University of Maryland, College Park, MD 20742 (United States); Nakajima, Kenji; Ohira-Kawamura, Seiko [Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Nakano, Motohiro [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Yamamuro, Osamu, E-mail: yamamuro@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan)
2013-12-12
Highlights: • We examined a Tb based single molecule magnet by ac susceptibility and QENS. • We found two distinct magnetic relaxations in a wide time range from 0.1 ms to 1 ps. • The slower relaxation corresponds to the thermally activated tunneling process. • The faster one couples with the motion of H atoms around the magnetic ions. • The two relaxations exhibit a crossover around 100 ns. - Abstract: By using ac magnetic susceptibility and quasielatic neutron scattering (QENS) techniques, we have investigated a magnetization relaxation phenomenon of a rare-earth based single molecule magnet, TbCuC{sub 19}H{sub 20}N{sub 3}O{sub 16}. We clearly identified and characterized two magnetic relaxations. The slower relaxation observed in the ac susceptibility is at the ms timescale around T=2 K and its activation energy is 16 K. On the other hand, the faster relaxation in the QENS measurements occurs on the timescale between ns and ps with activation energy of 174 K. The slower relaxation may occur through thermally activated tunneling among magnetic substates. We discuss two possible origins for the faster relaxation; one is a thermally activated tunneling between the higher excited states, the other is the magnetic relaxation coupled with the motion of ligands around the magnetic ions. This is the first clear observation of magnetic relaxation on the single molecule magnet revealed by QENS.
Quasielastic Scattering from Relativistic Bound Nucleons: R{sub TL} Response
Energy Technology Data Exchange (ETDEWEB)
J. A. Caballero; E. Moya de Guerra; J. M. Udias; J. E. Amaro; T. W. Donnelly
1999-12-31
Predictions of relativistic calculations for electron induced knock-out from the p{sub 1/2} and p{sub 3/2} shells in {sup 16}O are presented. Results for differential cross-section, TL response function and left-right asymmetry are compared to recent (e,e'p) data at Q{sup 2} = 0.8 (GeV/c){sup 2} taken at TJNAF. We show that the trend of the fully relativistic results is closely followed by the experimental data, pointing to the importance of both kinematical and dynamical relativistic effects in the nucleonic current.
Rytov approximation in electron scattering
Krehl, Jonas; Lubk, Axel
2017-06-01
In this work we introduce the Rytov approximation in the scope of high-energy electron scattering with the motivation of developing better linear models for electron scattering. Such linear models play an important role in tomography and similar reconstruction techniques. Conventional linear models, such as the phase grating approximation, have reached their limits in current and foreseeable applications, most importantly in achieving three-dimensional atomic resolution using electron holographic tomography. The Rytov approximation incorporates propagation effects which are the most pressing limitation of conventional models. While predominately used in the weak-scattering regime of light microscopy, we show that the Rytov approximation can give reasonable results in the inherently strong-scattering regime of transmission electron microscopy.
Holewinski, Adam; Sakwa-Novak, Miles A; Carrillo, Jan-Michael Y; Potter, Matthew E; Ellebracht, Nathan; Rother, Gernot; Sumpter, Bobby G; Jones, Christopher W
2017-07-13
Composite gas sorbents, formed from an active polymer phase and a porous support, are promising materials for the separation of acid gases from a variety of gas streams. Significant changes in sorption performance (capacity, rate, stability etc.) can be achieved by tuning the properties of the polymer and the nature of interactions between polymer and support. Here we utilize quasielastic neutron scattering (QENS) and coarse-grained molecular dynamics (MD) simulations to characterize the dynamic behavior of the most commonly reported polymer in such materials, poly(ethylenimine) (PEI), both in bulk form and when supported in a mesoporous silica framework. The polymer chain dynamics (rotational and translational diffusion) are characterized using two neutron backscattering spectrometers that have overlapping time scales, ranging from picoseconds to a few nanoseconds. Two modes of motion are detected for the PEI molecule in QENS. At low energy transfers, a "slow process" on the time scale of ∼200 ps is found and attributed to jump-mediated, center-of-mass diffusion. A second, "fast process" at ∼20 ps scale is also found and is attributed to a locally confined, jump-diffusion. Characteristic data (time scale and spectral weight) of these processes are compared to those characterized by MD, and reasonable agreement is found. For the nanopore-confined PEI, we observe a significant reduction in the time scale of polymer motion as compared to the bulk. The impacts of silica surface functionalization and of polymer fill fraction in the silica pores (controlling the portion of polymer molecules in contact with the pore walls), are both studied in detail. Hydrophobic functionalization of the silica leads to an increase of the PEI mobility above that in native silanol-terminated silica, but the dynamics are still slower than those in bulk PEI. Sorbents with faster PEI dynamics are also found to be more efficient for CO2 capture, possibly because sorption sites are more
Energy Technology Data Exchange (ETDEWEB)
Zhu, Hongguo [Univ. of Virginia, Charlottesville, VA (United States)
2000-08-01
The form factors of the neutron give information on fundamental properties of the nucleons and provide a critical testing ground for models based on QCD. In late 1998, Jefferson Lab (JLAB) experiment E93-026 measured the spin-dependent part of the exclusive (e, e'n) scattering cross section from a polarized deuterated ammonia (^{15}ND_{3}) target at a four momentum transfer squared of Q^{2} = 0.5 (GeV/c)_{2}. A longitudinally polarized electron beam was scattered from the polarized target and the quasi-elastically scattered electron was detected in coincidence with the knocked-out neutron. The data have been analyzed in terms of the spin-correlation parameter, or the electron-deuteron vector asymmetry (A$V\\atop{ed}$), of (e, e'n) to determine the neutron electric form factor G$n\\atop{E}$. The result is consistent with data from existing experiments and shows a good agreement with the Galster parameterization of G$n\\atop{E}$ within experimental uncertainty.
Energy Technology Data Exchange (ETDEWEB)
Hongguo Zhu
2000-08-01
The form factors of the neutron give information on fundamental properties of the nucleons and provide a critical testing ground for models based on QCD. In late 1998, Jefferson Lab (JLAB) experiment E93-026 measured the spin-dependent part of the exclusive (e, e'n) scattering cross section from a polarized deuterated ammonia ({sup 15}ND{sub 3}) target at a four momentum transfer squared of Q{sup 2} = 0.5 (GeV/c){sub 2}. A longitudinally polarized electron beam was scattered from the polarized target and the quasi-elastically scattered electron was detected in coincidence with the knocked-out neutron. The data have been analyzed in terms of the spin-correlation parameter, or the electron-deuteron vector asymmetry (A{sub ed}{sup V}), of (e, e'n) to determine the neutron electric form factor G{sub E}{sup n}. The result is consistent with data from existing experiments and shows a good agreement with the Galster parameterization of G{sub E}{sup n} within experimental uncertainty.
Milliman, T. E.; Connelly, J. P.; Heisenberg, J. H.; Hersman, F. W.; Wise, J. E.; Papanicolas, C. N.
1990-06-01
Differential cross sections for electron scattering from 92Mo have been measured for excitation energies less than 5.1 MeV over a range of momentum transfer of 0.5 to 3.1 fm-1. The elastic scattering data are analyzed along with existing electron and muonic atom data to provide an improved description of the ground-state charge distribution. The inelastic scattering data have been analyzed to extract electromagnetic transition densities. These densities are interpreted in terms of the underlying nuclear structure.
Energy Technology Data Exchange (ETDEWEB)
Al-Wahish, Amal [Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200 (United States); Armitage, D.; Hill, B.; Mills, R.; Santodonato, L.; Herwig, K. W. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37861-6475 (United States); Al-Binni, U. [Department of Physics, Astronomy and Geology, Berry College, Mount Berry, Georgia 30149 (United States); Jalarvo, N. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), Outstation at Spallation Neutron Source (SNS), and Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6473 (United States); Mandrus, D. [Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200 (United States); Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-1200 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100 (United States)
2015-09-15
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.
Electron scattering violates parity
2004-01-01
Parity violation has been observed in collisions between electrons at the Stanford Linear Accelerator Center (SLAC) in the US. The resuls, which are in agreement with the Stanford Model of particle physics, also provide a new measurement of the weak charge of the electron (½ page)
Capponi, S; Arbe, A; Alvarez, F; Colmenero, J; Frick, B; Embs, J P
2009-11-28
Quasielastic neutron scattering experiments (time-of-flight, neutron spin echo, and backscattering) on protonated poly(vinyl methyl ether) (PVME) have revealed the hydrogen dynamics above the glass-transition temperature. Fully atomistic molecular dynamics simulations properly validated with the neutron scattering results have allowed further characterization of the atomic motions accessing the correlation functions directly in real space. Deviations from Gaussian behavior are found in the high-momentum transfer range, which are compatible with the predictions of mode coupling theory (MCT). We have applied the MCT phenomenological version to the self-correlation functions of PVME atoms calculated from our simulation data, obtaining consistent results. The unusually large value found for the lambda-exponent parameter is close to that recently reported for polybutadiene and simple polymer models with intramolecular barriers.
Electron scattering experiments
Heisenberg, J.
1984-11-01
Because of the elementary structure of the electron, it is considered a precise probe of the constituent nature of hadronic matter. Use of the electron as a probe of subnucleonic degrees of freedom in nuclei is discussed in this presentation. Experimentally determined charge distributions for a wide variety of nuclei are presented and compared with shell model calculations which include single particle modes, core polarization, corrections due to delta-hole components, and corrections due to inclusion of meson exchange currents. (AIP)
Nuclear matter and electron scattering
Energy Technology Data Exchange (ETDEWEB)
Sick, I. [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
Megias, G D; Moreno, O; Williamson, C F; Caballero, J A; Gonzalez-Jimenez, R; De Pace, A; Barbaro, M B; Alberico, W M; Nardi, M; Amaro, J E
2014-01-01
We evaluate and discuss the impact of meson-exchange currents (MEC) on charged-current quasielastic (QE) neutrino cross sections. We consider the nuclear transverse response arising from 2p-2h states excited by the action of electromagnetic, purely isovector meson-exchange currents in a fully relativistic framework, based on the work by the Torino collaboration [1]. An accurate parametrization of this MEC response as a function of the momentum and energy transfers involved is presented. Results of neutrino-nucleus cross sections using this MEC parametrization together with a recent scaling approach for the 1p-1h contributions (SuSAv2) are compared with experimental data (MiniBooNE, MINERvA, NOMAD and T2K Collaborations).
Inclusive Electron Scattering From Nuclei at x >1 and High Q^{2}
Energy Technology Data Exchange (ETDEWEB)
Arrington, John [California Inst. of Technology (CalTech), Pasadena, CA (United States)
1998-06-02
CEBAF experiment e89-008 measured inclusive electron scattering from nuclei in a Q^{2} range between 0.8 and 7.3 (GeV/c)^{2} for x_{Bjorken} approximately greater than 1. The cross sections for scattering from D C, Fe, and Au were measured. The C, Fe, and Au data have been analyzed in terms of F(y) to examine y-scaling of the quasielastic scattering, and to study the momentum distribution of the nucleons in the nucleus. The data have also been analyzed in terms of the structure function vW_{2} to examine scaling of the inelastic scattering in x and xi and to study the momentum distribution of the quarks. In the regions where quasielastic scattering dominates the cross section (low Q^{2} or large negative values of y), the data are shown to exhibit y-scaling. However, the y-scaling breaks down once the inelastic contributions become large. The data do not exhibit x-scaling, except at the lowest values of x, while the structure function does appear to scale in the Nachtmann variable, xi.
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
Ito, T M; Averett, T; Barkhuff, D; Batigne, G; Beck, D H; Beise, E J; Blake, A; Breuer, H; Carr, R; Clasie, B; Covrig, S D; Danagulyan, A S; Dodson, G; Dow, K; Dutta, D; Farkhondeh, M; Filippone, B W; Franklin, W; Furget, C; Gao, H; Gao, J; Gustafsson, K K; Hannelius, L; Hasty, R; Hawthorne-Allen, A M; Herda, M C; Jones, C E; King, P; Korsch, W; Kowalski, S; Kox, S; Krämer, K; Lee, P; Liu, J; Martin, J W; McKeown, R D; Müller, B; Pitt, M L; Plaster, B; Quéméner, G; Real, J S; Ritter, J; Roche, J; Savu, V; Schiavilla, R; Seely, J; Spayde, D T; Suleiman, R; Taylor, S; Tieulent, R; Tipton, B; Tsentalovich, E; Wells, S P; Yang, B; Yuan, J; Yun, J; Zwart, T
2004-01-01
We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2= 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/- 0.58(sys)ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.
Zhang, Y -W; Mihovilovič, M; Jin, G; Allada, K; Anderson, B; Annand, J R M; Averett, T; Boeglin, W; Bradshaw, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J P; Chudakov, E; De Leo, R; Deng, X; Deur, A; Dutta, C; Fassi, L El; Flay, D; Frullani, S; Garibaldi, F; Gao, H; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Ibrahim, H; de Jager, C W; Jensen, E; Jiang, X; John, J St; Jones, M; Kang, H; Katich, J; Khanal, H P; King, P; Korsch, W; LeRose, J; Lindgren, R; Lu, H -J; Luo, W; Markowitz, P; Meziane, M; Michaels, R; Moffit, B; Monaghan, P; Muangma, N; Nanda, S; Norum, B E; Pan, K; Parno, D; Piasetzky, E; Posik, M; Punjabi, V; Puckett, A J R; Qian, X; Qiang, Y; Qiu, X; Riordan, S; Ron, G; Saha, A; Sawatzky, B; Schiavilla, R; Schoenrock, B; Shabestari, M; Shahinyan, A; Širca, S; Subedi, R; Sulkosky, V; Tobias, W A; Tireman, W; Urciuoli, G M; Wang, D; Wang, K; Wang, Y; Watson, J; Wojtsekhowski, B; Ye, Y; Ye, Z; Zhan, X; Zhang, Y; Zheng, X; Zhao, B; Zhu, L
2015-01-01
We report the first measurement of the target single-spin asymmetry, $A_y$, in quasi-elastic scattering from the inclusive reaction $^3$He$^{\\uparrow}(e,e^\\prime)$ on a $^3$He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero $A_y$ can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at $Q^{2}=$ 0.13, 0.46 and 0.97 GeV$^{2}$. These measurements demonstrate, for the first time, that the $^3$He asymmetry is clearly non-zero and negative with a statistical significance of (8-10)$\\sigma$. Using measured proton-to-$^{3}$He cross-section ratios and the effective polarization approximation, neutron asymmetries of $-$(1-3)% were obtained. The neutron asymmetry at high $Q^2$ is related to moments of the Gene...
Rubinson, Kenneth A; Faraone, Antonio
2016-05-14
X-ray and neutron scattering have been used to provide insight into the structures of ionic solutions for over a century, but the probes have covered distances shorter than 8 Å. For the non-hydrolyzing salt SrI2 in aqueous solution, a locally ordered lattice of ions exists that scatters slow neutrons coherently down to at least 0.1 mol L(-1) concentration, where the measured average distance between scatterers is over 18 Å. To investigate the motions of these scatterers, coherent quasielastic neutron scattering (CQENS) data on D2O solutions with SrI2 at 1, 0.8, 0.6, and 0.4 mol L(-1) concentrations was obtained to provide an experimental measure of the diffusive transport rate for the motion between pairs of ions relative to each other. Because CQENS measures the motion of one ion relative to another, the frame of reference is centered on an ion, which is unique among all diffusion measurement methods. We call the measured quantity the pairwise diffusive transport rate Dp. In addition to this ion centered frame of reference, the diffusive transport rate can be measured as a function of the momentum transfer q, where q = (4π/λ)sin θ with a scattering angle of 2θ. Since q is related to the interion distance (d = 2π/q), for the experimental range 0.2 Å(-1)≤q≤ 1.0 Å(-1), Dp is, then, measured over interion distances from 40 Å to ≈6 Å. We find the measured diffusional transport rates increase with increasing distance between scatterers over the entire range covered and interpret this behavior to be caused by dynamic coupling among the ions. Within the model of Fickian diffusion, at the longer interionic distances Dp is greater than the Nernst-Hartley value for an infinitely dilute solution. For these nm-distance diffusional transport rates to conform with the lower, macroscopically measured diffusion coefficients, we propose that local, coordinated counter motion of at least pairs of ions is part of the transport process.
DEFF Research Database (Denmark)
Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.;
2012-01-01
In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units......, around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...
Energy Technology Data Exchange (ETDEWEB)
Sniechowski, M. [Laboratoire de Spectrometrie Physique, UMR5588 (CNRS-UJF), Universite J. Fourier, Grenoble I, Domaine Universitaire, B.P. 87, 38402 St. Martin d' Heres, Cedex (France); Faculty of Physics and Nuclear Techniques, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Djurado, D. [Laboratoire de Physique des Metaux Synthetiques, CEA Grenoble, DRFMC/SI3M/SPrAM, UMR 5819 (CEA/CNRS/UJF), 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France)], E-mail: djurado@drfmc.ceng.cea.fr; Bee, M. [Laboratoire de Spectrometrie Physique, UMR5588 (CNRS-UJF), Universite J. Fourier, Grenoble I, Domaine Universitaire, B.P. 87, 38402 St. Martin d' Heres, Cedex (France); Institut Laue Langevin, 6 rue Jules Horovitz, B.P. 156, 38042 Grenoble, Cedex 9 (France); Gonzalez, M.A. [Institut Laue Langevin, 6 rue Jules Horovitz, B.P. 156, 38042 Grenoble, Cedex 9 (France); Johnson, M.R. [Institut Laue Langevin, 6 rue Jules Horovitz, B.P. 156, 38042 Grenoble, Cedex 9 (France); Rannou, P. [Laboratoire de Physique des Metaux Synthetiques, CEA Grenoble, DRFMC/SI3M/SPrAM, UMR 5819 (CEA/CNRS/UJF), 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France); Dufour, B. [Laboratoire de Physique des Metaux Synthetiques, CEA Grenoble, DRFMC/SI3M/SPrAM, UMR 5819 (CEA/CNRS/UJF), 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France); Luzny, W. [Faculty of Physics and Nuclear Techniques, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)
2005-10-31
Dynamics of counter-ions in poly(aniline) doped with di-(2-butoxyethoxyethyl)ester of 4-sulfophthalic acid have been simulated using force field based molecular dynamics involving a semi-empirical charge equilibration procedure and charge rescaling based on DFT calculations. Due to particular relaxational and structural characteristics of such 'plastdoped' poly(anilines), these simulations have proved to be a very effective tool for reproducing the main structural and dynamic features of the material. The experiment/simulation comparison for dynamics is very good in the 10{sup -10}-10{sup -13} s time range. In particular, mean square displacements extracted from the molecular dynamics simulations for atoms in the counter-ions are in good agreement with the analytical model used to analyse the quasi-elastic neutron scattering data. The use of a larger simulation box and longer simulation time give good agreement in the extended time domain and reveal a dynamical heterogeneity between the counter-ions that was not foreseen in the analytical model.
Indian Academy of Sciences (India)
J Colmenero; A Arbe; F Alvarez; A Narros; D Richter; M Monkenbush; B Farago
2004-07-01
The combination of molecular dynamics simulations and neutron scattering measurements on three different glass-forming polymers (polyisoprene, poly(vinyl ethylene) and polybutadiene) has allowed to establish the existence of a crossover from Gaussian to non-Gaussian behavior for the incoherent scattering function in the -relaxation regime. The deviation from Gaussian behavior observed can be reproduced assuming the existence of a distribution of discrete jump lengths underlying the sublinear diffusion of the atomic motions during the structural relaxation.
Electronic Raman Scattering in Graphene
Institute of Scientific and Technical Information of China (English)
LU Hong-Yan; WANG Qiang-Hua
2008-01-01
Linear dispersion near the Dirac points in the band structure of graphenes can give rise to novel physical properties.We calculate the electronic contribution to the Raman spectra in graphenes, which also shows novel features.In the clean limit, the Raman spectrum in the undoped graphene is linear (with a universal slope against impurity scattering) at low energy due to the linear dispersion near the Dirac points, and it peaks at a position corresponding to the van Hove singularity in the band structure. In a doped graphene, the electronic Raman absorption is forbidden up to a vertical inter-band particle-hole gap. Beyond the gap the spectrum follows the undoped case. In the presence of impurities, absorption within the gap (in the otherwise clean case) is induced, which is identified as the intra-band contribution. The Drude-like intra-band contribution is seen to be comparable to the higher energy inter-band Raman peak. The results are discussed in connection to experiments.
Concept of a multichannel spin-resolving electron analyzer based on Mott scattering
Energy Technology Data Exchange (ETDEWEB)
Strocov, Vladimir N., E-mail: vladimir.strocov@psi.ch [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Petrov, Vladimir N. [St Petersburg Polytechnical University, Polytechnicheskaya Str. 29, St Petersburg RU-195251 (Russian Federation); Dil, J. Hugo [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)
2015-04-10
The concept of a two-dimensional multichannel electron spin detector based on Mott scattering and imaging-type electron optics is presented. The efficiency increase of about four orders of magnitude opens new scientific fields including buried magnetic interfaces. The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 10{sup 4} which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities.
DEFF Research Database (Denmark)
Zsigmond, G.; Manoshin, S.; Lieutenant, K.
2007-01-01
Handling of polarization became very important in simulations of neutron scattering. One of the very comprehensive and open-source neutron simulation package, VITESS, has been intensely involved in polarized neutron simulations. Several examples will be shown here. Another similar package NISP al...
Radiative corrections to electron-proton scattering
Maximon, LC; Tjon, JA
2000-01-01
The radiative corrections to elastic electron-proton scattering are analyzed in a hadronic model including the finite size of the nucleon. For initial electron energies above 8 GeV and large scattering angles, the proton vertex correction in this model increases by at least 2% of the overall factor
González Sánchez, Fátima; Gimmi, Thomas; Jurányi, Fanni; Van Loon, Luc; Diamond, Larryn W
2009-05-15
Diffusion of water and solutes through compacted clays or claystones is important when assessing the barrier function of engineered or geological barriers in waste disposal. The shape and the connectivity of the pore network as well as electrostatic interactions between the diffusant and the charged clay surfaces or cations compensating negative surface charges affect the resistance of the porous medium to diffusion. Comparing diffusion measurements performed at different spatial or time scales allows identification and extraction of the different factors. We quantified the electrostatic constraint q for five different highly compacted clays (rhob = 1.85 +/- 0.05 g/cm3) using quasielastic neutron scattering (QENS) data. We then compared the QENS data with macroscopic diffusion data for the same clays and could derive the true geometric tortuosities G of the samples. Knowing the geometric and electrostatic factors for the different clays is essential when trying to predict diffusion coefficients for other conditions. We furthermore compared the activation energies Ea for diffusion at the two measurement scales. Because Ea is mostly influenced by the local, pore scale surroundings of the water, we expected the results to be similar at both scales. This was indeed the case for the nonswelling clays kaolinite and illite, which had Ea values lower than that of bulk water, but not for montmorillonite, which had values lower than that in bulk water at the microscopic scale, but larger at the macroscopic scale. The differences could be connected to the strongly temperature dependent mobility of the cations in the clays, which may act as local barriers in the narrow pores at low temperatures.
Androic, D; Arvieux, J; Asaturyan, R; Averett, T D; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Benmokhtar, F; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Breuer, H; Brindza, P; Capuano, C L; Carlini, R D; Carr, R; Chant, N; Chao, Y -C; Clark, R; Coppens, A; Covrig, S D; Cowley, A; Dale, D; Davis, C A; Ellis, C; Falk, W R; Fenker, H; Finn, J M; Forest, T; Franklin, G; Frascaria, R; Furget, C; Gaskell, D; Gericke, M T W; Grames, J; Griffioen, K A; Grimm, K; Guillard, G; Guillon, B; Guler, H; Gustafsson, K; Hannelius, L; Hansknecht, J; Hasty, R D; Allen, A M Hawthorne; Horn, T; Ito, T M; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kuhn, J; Lachniet, J; Laszewski, R; Lee, L; Lenoble, J; Liatard, E; Liu, J; Lung, A; MacLachlan, G A; Mammei, J; Marchand, D; Martin, J W; Mack, D J; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mihovilovic, M; Micherdzinska, A; Mkrtchyan, H; Moffit, B; Morlet, M; Muether, M; Musson, J; Nakahara, K; Neveling, R; Niccolai, S; Nilsson, D; Ong, S; Page, S A; Papavassiliou, V; Pate, S F; Phillips, S K; Pillot, P; Pitt, M L; Poelker, M; Porcelli, T A; Quemener, G; Quinn, B P; Ramsay, W D; Rauf, A W; Real, J -S; Ries, T; Roos, J Roche P; Rutledge, G A; Schaub, J; Secrest, J; Seva, T; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Suleiman, R; Tadevosyan, V; Tieulent, R; van de Wiele, J; van Oers, W T H; Versteegen, M; Voutier, E; Vulcan, W F; Wells, S P; Warren, G; Williamson, S E; Woo, R J; Wood, S A; Yan, C; Yun, J; Zeps, V
2011-01-01
In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.
Köper, Ingo; Combet, Sophie; Petry, Winfried; Bellissent-Funel, Marie-Claire
2008-07-01
The molecular understanding of protein stabilization by the disaccharide trehalose in extreme temperature or hydration conditions is still debated. In the present study, we investigated the role of trehalose on the dynamics of the protein C-phycocyanin (C-PC) by neutron scattering. To single out the motions of C-PC hydrogen (H) atoms in various trehalose/water environments, measurements were performed in deuterated trehalose and heavy water (D2O). We report that trehalose decreases the internal C-PC dynamics, as shown by a reduced diffusion coefficient of protein H atoms. By fitting the Elastic Incoherent Structure Factor--which gives access to the "geometry" of the internal proton motions--with the model of diffusion inside a sphere, we found that the presence of trehalose induces a significantly higher proportion of immobile C-PC hydrogens. We investigated, by elastic neutron scattering, the mean square displacements (MSDs) of deuterated trehalose/D2O-embedded C-PC as a function of temperature in the range of 40-318 K. Between 40 and approximately 225 K, harmonic MSDs of C-PC are slightly smaller in samples containing trehalose. Above a transition temperature of approximately 225 K, we observed anharmonic motions in all trehalose/water-coated C-PC samples. In the hydrated samples, MSDs are not significantly changed by addition of 15% trehalose but are slightly reduced by 30% trehalose. In opposition, no dynamical transition was detected in dry trehalose-embedded C-PC, whose hydrogen motions remain harmonic up to 318 K. These results suggest that a role of trehalose would be to stabilize proteins by inhibiting some fluctuations at the origin of protein unfolding and denaturation.
Energy Technology Data Exchange (ETDEWEB)
Wang Xu; Dipangkar Dutta; Feng Xiong; Brian Anderson; Leonard Auerbach; Todd Averett; William Bertozzi; Tim Black; John Calarco; Lawrence Cardman; Gordon Cates; Zhengwei Chai; Jian-ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; G.S. Corrado; C. Crawford; Daniel Dale; Alexandre Deur; Pibero Djawotho; Bradley Filippone; John Finn; Haiyan Gao; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Walter Gloeckle; J. Golak; Javier Gomez; Viktor Gorbenko; Jens-ole Hansen; F. Hersman; Douglas Higinbotham; Richard Holmes; Calvin Howell; Emlyn Hughes; Thomas Humensky; Sebastien Incerti; Cornelis De Jager; John Jensen; Xiaodong Jiang; C.E. Jones; Mark Jones; R. Kahl; H. Kamada; A. Kievsky; Ioannis Kominis; Wolfgang Korsch; Kevin Kramer; Gerfried Kumbartzki; Michael Kuss; Enkeleida Lakuriqi; Meihua Liang; Nilanga Liyanage; John Lerose; Sergey Malov; Demetrius Margaziotis; J.W. Martin; Kathy Mccormick; Robert Mckeown; Kevin Mcilhany; Zein-eddine Meziani; Robert Michaels; G.W. Miller; Joseph Mitchell; Sirish Nanda; E. Pace; Tina Pavlin; Gerassimos Petratos; Roman Pomatsalyuk; D. Pripstein; David Prout; Ronald Ransome; Yves Roblin; Marat Rvachev; Arunava Saha; G. Salme; Michael Schnee; Taeksu Shin; Karl Slifer; Paul Souder; Steffen Strauch; Riad Suleiman; Mark Sutter; Bryan Tipton; Luminita Todor; Michele Viviani; Branislav Vlahovic; J. Watson; Claude Williamson; H. Witala; Bogdan Wojtsekhowski; Jen-chuan Yeh; Piotr Zolnierczuk
2000-10-01
We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized {sup 3}He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2%.
Xu, W; Xiong, F; Anderson, B; Auberbach, L; Averett, T; Bertozzi, W; Black, T; Calarco, J R; Cardman, L S; Cates, G D; Chai, Z W; Chen, J P; Choi, S; Chudakov, E A; Churchwell, S; Corrado, G S; Crawford, C; Dale, D; Deur, A; Djawotho, P; Filippone, B W; Finn, J M; Gao, H; Gilman, R; Glamazdin, A V; Glashausser, C; Glöckle, W; Golak, J; Gómez, J; Gorbenko, V G; Hansen, J O; Hersman, F W; Higinbotham, D W; Holmes, R; Howell, C R; Hughes, E; Humensky, B; Incerti, S; De Jager, C W; Jensen, J S; Jiang, X; Jones, C E; Jones, M; Kahl, R; Kamada, H; Kievsky, A; Kominis, I; Korsch, W; Krämer, K; Kumbartzki, G J; Kuss, M W; Lakuriqi, E; Liang, M; Liyanage, N K; Le Rose, J J; Malov, S Y; Margaziotis, D J; Martin, J W; McCormick, K; McKeown, R D; McIlhany, K; Meziani, Z E; Michaels, R; Miller, G W; Mitchell, J; Nanda, S; Pace, E; Pavlin, T; Petratos, G G; Pomatsalyuk, R I; Pripstein, D A; Prout, D L; Ransome, R D; Roblin, Y; Rvachev, M M; Saha, A; Salmè, G; Schnee, M; Shin, T; Slifer, K J; Souder, P A; Strauch, S; Suleiman, R; Sutter, M F; Tipton, B; Todor, L; Viviani, M; Vlahovic, B; Watson, J; Williamson, C F; Witala, H; Wojtsekhowski, B B; Yeh, J
2000-01-01
We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.
Local orbitals in electron scattering calculations*
Winstead, Carl L.; McKoy, Vincent
2016-05-01
We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Concept of a multichannel spin-resolving electron analyzer based on Mott scattering
Strocov, Vladimir N.; Petrov, Vladimir N.; Dil, J. Hugo
2015-01-01
The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 104 which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities. PMID:25931087
Modelling the inelastic scattering of fast electrons
Energy Technology Data Exchange (ETDEWEB)
Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); D' Alfonso, A.J., E-mail: a.j@dalfonso.com.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia)
2015-04-15
Imaging at atomic resolution based on the inelastic scattering of electrons has become firmly established in the last three decades. Harald Rose pioneered much of the early theoretical work on this topic, in particular emphasising the role of phase and the importance of a mixed dynamic form factor. In this paper we review how the modelling of inelastic scattering has subsequently developed and how numerical implementation has been achieved. A software package μSTEM is introduced, capable of simulating various imaging modes based on inelastic scattering in both scanning and conventional transmission electron microscopy. - Highlights: • Harald Rose was a pioneer of important work on atomic resolution imaging using inelastic scattering. • We review how the modelling of inelastic scattering has subsequently developed and been applied. • A software package μSTEM is introduced, capable of simulating various inelastic imaging modes.
Concept of multichannel spin-resolving electron analyzer based on Mott scattering
Strocov, Vladimir N; Dil, J Hugo
2014-01-01
Concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 keV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared to the single-channel Mott detector can be a factor of 1.5e4 and above, opening new prospects of spin-resolved spectroscopies in application not only to standard bulk and sur...
Nonelastic electron scattering in mercury telluride
Malik, O P
2002-01-01
By exact solution of the Boltzmann equation, the nonequilibrium charge carrier distribution function is obtained. In the temperature range 4.2 - 300 K, main electron scattering mechanisms are considered by taking into account the nonelastic electron interaction with optical vibrations of the crystal lattice.
Indirect processes in electron-ion scattering
Energy Technology Data Exchange (ETDEWEB)
Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.
1983-10-01
A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination.
Magnetic neutrino scattering on atomic electrons revisited
Kouzakov, Konstantin A
2010-01-01
We reexamine the role of electron binding effects in the inelastic neutrino-atom scattering induced by the neutrino magnetic moment. The differential cross section of the process is presented as a sum of the longitudinal and transverse components, according to whether the force that the neutrino magnetic moment exerts on electrons is parallel or perpendicular to momentum transfer. The atomic electrons are treated nonrelativistically. On this basis, it is shown that the recently published theoretical studies devoted to the magnetic neutrino scattering on atoms are deficient. Numerical calculations are performed for ionization of a hydrogenlike Ge$^{+31}$ ion by neutrino impact.
Distorted Coulomb field of the scattered electron
Thomsen, H D; Andersen, K K; Lund, M D; Knudsen, H; Uggerhøj, E; Uggerhøj1, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Ballestrero, S; Connell, S H
2010-01-01
Experimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%–5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation inten...
Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter
Whelan, Colm T
2005-01-01
Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.
The Proton Radius from Electron Scattering Data
Higinbotham, Douglas W; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad
2015-01-01
In an attempt to understand the discrepancy between the proton radius determined the muonic hydrogen Lamb shift and elastic electron-proton scattering measurements, we carefully review two classic, high precision electron scattering charge form factor, ${G_E}$, results. Upon examination, it was noted that the covariance matrices of common three parameter fits show large parameter correlations. Thus, we reanalyzed the classic data guided by statistical constraints and found low $q^2$, two-parameter fits were actually consistent with muonic hydrogen results. By subsequently including the highest measured values of ${G_E}(q^2)$ in the fits, we found that a dipole function, $G_E(q^2) = ( 1 + q^2/0.66[\\rm{GeV}^2])^{-2}$, with the muonic hydrogen radius, 0.84087(39) fm, not only describes the low $q^2$ electron scattering data, but also describes the highest measured $q^2$ $G_E$ values.
Rotational nuclear models and electron scattering
Energy Technology Data Exchange (ETDEWEB)
Moya de Guerra, E.
1986-05-01
A review is made of the basic formalism involved in the application of nuclear rotational models to the problem of electron scattering from axially symmetric deformed nuclei. Emphasis is made on the use of electron scattering to extract information on the nature of the collective rotational model. In this respect, the interest of using polarized beam and target is discussed with the help of illustrative examples. Concerning the nuclear structure four rotational models are considered: Two microscopic models, namely the Projected Hartree-Fock (PHF) and cranking models; and two collective models, the rigid rotor and the irrotational flow models. The problem of current conservation within the different models is also discussed.
Theory of Compton scattering by anisotropic electrons
Poutanen, Juri
2010-01-01
Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describin...
Electron scattering and reactions from exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)
2017-04-15
The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)
Electron scattering by molecules. II - Experimental methods and data
Trajmar, S.; Chutjian, A.; Register, D. F.
1983-01-01
Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.
Correlations in neutrino-nucleus scattering
Van Cuyck, Tom; Jachowicz, Natalie; González-Jiménez, Raul; Martini, Marco; Ryckebusch, Jan; Van Dessel, Nils
2016-01-01
We present a detailed study of charged-current quasielastic neutrino-nucleus scattering and of the influence of correlations on one- and two-nucleon knockout processes. The quasielastic neutrino-nucleus scattering cross sections, including the influence of long-range correlations, are evaluated within a continuum random phase approximation approach. The short-range correlation formalism is implemented in the impulse approximation by shifting the complexity induced by the correlations from the wave functions to the operators. The model is validated by confronting $(e,e^\\prime)$ cross-section predictions with electron scattering data in the kinematic region where the quasielastic channel is expected to dominate. Further, the $^{12}$C$(\
Scattering of ultrarelativistic electrons in ultrathin crystals
Shul'ga, N. F.; Shulga, S. N.
2017-06-01
Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
Gran, R; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, Yu K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Mayer, B; Vasseur, G; Yéche, C; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihályi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H; Back, B B
2006-01-01
The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \\pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.
Low energy electron scattering from fuels
Energy Technology Data Exchange (ETDEWEB)
Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)
2011-07-01
Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist
Differential elastic electron scattering by pentane
Fedus, Kamil; Navarro, C.; Hargreaves, L. R.; Khakoo, M. A.; Barbosa, Alessandra Souza; Bettega, M. H. F.
2015-04-01
We report measurements and calculations of the differential cross sections for elastic scattering of low-energy electrons by pentane, C5H12 . The incident energies measured are at 1, 1.5, 2, 3, 5, 10, 15, 20, 30, 50, and 100 eV, and the calculations covered energies up to 100 eV. The range of experimental scattering angles is from 5° to 130°. We compare our experimental and theoretical values to each other and to available experimental and theoretical data for linear n -alkanes.
Energy Technology Data Exchange (ETDEWEB)
Soloninin, Alexei V.; Dimitrievska, Mirjana; Skoryunov, Roman V.; Babanova, Olga A.; Skripov, Alexander V.; Tang, Wan Si; Stavila, Vitalie; Orimo, Shin-ichi; Udovic, Terrence J.
2016-12-13
The disordered phases of the 1-carba-closo-decaborates LiCB9H10 and NaCB9H10 exhibit the best solid-state ionic conductivities to date among all known polycrystalline competitors, likely facilitated in part by the highly orientationally mobile CB9H10- anions. We have undertaken both NMR and quasielastic neutron scattering (QENS) measurements to help characterize the monovalent anion reorientational mobilities and mechanisms associated with these two compounds and to compare their anion reorientational behaviors with those for the divalent B10H102- anions in the related Li2B10H10 and Na2B10H10 compounds. NMR data show that the transition from the low-T ordered to the high-T disordered phase for both LiCB9H10 and NaCB9H10 is accompanied by a nearly two-orders-of-magnitude increase in the reorientational jump rate of CB9H10- anions. QENS measurements of the various disordered compounds indicate anion jump correlation frequencies on the order of 1010-1011 s-1 and confirm that NaCB9H10 displays jump frequencies about 60% to 120% higher than those for LiCB9H10 and Na2B10H10 at comparable temperatures. The Q-dependent quasielastic scattering suggests similar small-angular-jump reorientational mechanisms for the different disordered anions, changing from more uniaxial in character at lower temperatures to more multidimensional at higher temperatures, although still falling short of full three-dimensional rotational diffusion below 500 K within the nanosecond neutron window.
Electron and pion scattering off nuclei
Energy Technology Data Exchange (ETDEWEB)
Buss, O.; Mosel, U. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany); Alvarez-Ruso, L. [Dept. de Fisica Teorica and IFIC, Centro Mixto Univ. de Valencia-CSIC (Spain)
2007-07-01
We present a treatment of pion and electron scattering off nuclei within the framework of a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. In this approach we realize a full coupled channel treatment and include medium modifications such as mean-field potentials, Fermi motion and width modifications. We have applied the GiBUU model to the description of the double charge exchange (DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120-180 MeV. The DCX process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. We discuss the impact of surface effects and the dependence on the nuclear mass number. We have achieved a good quantitative agreement with the extensive data set obtained at LAMPF. Furthermore, we present a description of electron induced reactions, i.e. pion production, off nuclei. We consider the scattering of electrons off the bound nucleons in an impulse approximation and investigate medium modifications to exclusive particle production cross sections and compare our results to available data. (orig.)
Future of Electron Scattering and Diffraction
Energy Technology Data Exchange (ETDEWEB)
Hall, Ernest [GE Global Research, Niskayuna, New York (United States); Stemmer, Susanne [Univ. of California, Santa Barbara, CA (United States); Zheng, Haimei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Maracas, George [Dept. of Energy (DOE), Washington DC (United States). Office of Science
2014-02-25
The ability to correlate the atomic- and nanoscale-structure of condensed matter with physical properties (e.g., mechanical, electrical, catalytic, and optical) and functionality forms the core of many disciplines. Directing and controlling materials at the quantum-, atomic-, and molecular-levels creates enormous challenges and opportunities across a wide spectrum of critical technologies, including those involving the generation and use of energy. The workshop identified next generation electron scattering and diffraction instruments that are uniquely positioned to address these grand challenges. The workshop participants identified four key areas where the next generation of such instrumentation would have major impact: A – Multidimensional Visualization of Real Materials B – Atomic-scale Molecular Processes C – Photonic Control of Emergence in Quantum Materials D – Evolving Interfaces, Nucleation, and Mass Transport Real materials are comprised of complex three-dimensional arrangements of atoms and defects that directly determine their potential for energy applications. Understanding real materials requires new capabilities for three-dimensional atomic scale tomography and spectroscopy of atomic and electronic structures with unprecedented sensitivity, and with simultaneous spatial and energy resolution. Many molecules are able to selectively and efficiently convert sunlight into other forms of energy, like heat and electric current, or store it in altered chemical bonds. Understanding and controlling such process at the atomic scale require unprecedented time resolution. One of the grand challenges in condensed matter physics is to understand, and ultimately control, emergent phenomena in novel quantum materials that necessitate developing a new generation of instruments that probe the interplay among spin, charge, orbital, and lattice degrees of freedom with intrinsic time- and length-scale resolutions. Molecules and soft matter require imaging and
Berger, D
2000-01-01
scanning electron microscope is examined. By means of the scattering at mono-crystalline samples the influence of channeling (anomalous absorption and transmission) on backscattered electron spectra is shown. Captions are given in English language. This work presents high resolution measurements of the energy and complete angular distribution of the scattering of 20 keV electrons (energy resolution 0.55%). The examinations include take-off angles close to the target surface and non-perpendicular incidences of electrons partly for the first time. The results are of interest for the understanding of fundamental scattering processes, the interpretation of signals and new detector systems in electron microscopy and electron spectroscopy. Furthermore, they are used for the verification of electron scattering models and simulations. The applied compact electrostatic spectrometers with spherical and toroidal geometries are characterized and compared. High resolution spectra are obtained by deconvolution of the measu...
Proton radius from electron scattering data
Energy Technology Data Exchange (ETDEWEB)
Higinbotham, Douglas W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad
2016-05-01
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N=M=1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2)=(1+Q2/0.66GeV2)−2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger range of
Future of Electron Scattering and Diffraction
Energy Technology Data Exchange (ETDEWEB)
Hall, Ernest [GE Global Research, Niskayuna, New York (United States); Stemmer, Susanne [Univ. of California, Santa Barbara, CA (United States); Zheng, Haimei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Maracas, George [Dept. of Energy (DOE), Washington DC (United States). Office of Science
2014-02-25
The ability to correlate the atomic- and nanoscale-structure of condensed matter with physical properties (e.g., mechanical, electrical, catalytic, and optical) and functionality forms the core of many disciplines. Directing and controlling materials at the quantum-, atomic-, and molecular-levels creates enormous challenges and opportunities across a wide spectrum of critical technologies, including those involving the generation and use of energy. The workshop identified next generation electron scattering and diffraction instruments that are uniquely positioned to address these grand challenges. The workshop participants identified four key areas where the next generation of such instrumentation would have major impact: A – Multidimensional Visualization of Real Materials B – Atomic-scale Molecular Processes C – Photonic Control of Emergence in Quantum Materials D – Evolving Interfaces, Nucleation, and Mass Transport Real materials are comprised of complex three-dimensional arrangements of atoms and defects that directly determine their potential for energy applications. Understanding real materials requires new capabilities for three-dimensional atomic scale tomography and spectroscopy of atomic and electronic structures with unprecedented sensitivity, and with simultaneous spatial and energy resolution. Many molecules are able to selectively and efficiently convert sunlight into other forms of energy, like heat and electric current, or store it in altered chemical bonds. Understanding and controlling such process at the atomic scale require unprecedented time resolution. One of the grand challenges in condensed matter physics is to understand, and ultimately control, emergent phenomena in novel quantum materials that necessitate developing a new generation of instruments that probe the interplay among spin, charge, orbital, and lattice degrees of freedom with intrinsic time- and length-scale resolutions. Molecules and soft matter require imaging and
Weak Quasi-elastic Production of Hyperons
Singh, S K
2006-01-01
The quasielastic weak production of $\\Lambda$ and $\\Sigma$ hyperons from nucleons and nuclei induced by antineutrinos is studied in the energy region of some ongoing neutrino oscillation experiments in the intermediate energy region. The hyperon nucleon transition form factors determined from neutrino nucleon scattering and an analysis of high precision data on semileptonic decays of neutron and hyperons using SU(3) symmetry have been used. The nuclear effects due to Fermi motion and final state interaction effects due to hyperon nucleon scattering have also been studied. The numerical results for differential and total cross sections have been presented.
Advances in positron and electron scattering*
Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime
2016-10-01
The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.
Scattering of electrons from neon atoms
Dasgupta, A.; Bhatia, A. K.
1984-01-01
Scattering of electrons from neon atoms is investigated by the polarized-orbital method. The perturbed orbitals calculated with use of the Sternheimer approximation lead to the polarizability 2.803 a(0)-cube in fairly good agreement with the experimental value 2.66 a(0)-cube. Phase shifts for various partial waves are calculated in the exchange, exchange-adiabatic, and polarized-orbital approximations. They are compared with the previous results. The calculated elastic differential, total, and momentum-transfer cross sections are compared with the experimental results. The polarized-orbital approximation yields results which show general improvement over the exchange-adiabatic approximation.
Weak Quasielastic Production of Hyperons
Athar, M Sajjad; Alam, M Rafi; Chauhan, S; Singh, S K
2016-01-01
We present the results for antineutrino induced quasielastic hyperon production from nucleon and nuclear targets \\cite{Alam:2014bya,Singh:2006xp}. The inputs are the nucleon-hyperon(N--Y) transition form factors determined from the analysis of neutrino-nucleon scattering and semileptonic decays of neutron and hyperons using SU(3) symmetry. The calculations for the nuclear targets are done in local density approximation. The nuclear medium effects(NME) like Fermi motion, Pauli blocking and final state interaction(FSI) effects due to hyperon-nucleon scattering have been taken into account. The hyperons giving rise to pions through weak decays also contribute to the weak pion production in addition to the $\\Delta$ excitation mechanism which dominates in the energy region of $<$ 0.7 GeV. We also present the results of longitudinal and perpendicular components of polarization of final hyperon \\cite{Akbar:2016awk}. These measurements in the future accelerator experiments with antineutrinos may give some informat...
Electron Scattering with Polarized Targets at TESLA
Anselmino, M; Belostotskii, S; Bialowons, W; Blümlein, Johannes; Braun, V M; Brinkmann, R; Düren, M; Ellinghaus, F; Göke, K; Görtz, S; Gute, A; Harmsen, J; Von Harrach, D; Jakob, R; Kabuss, E M; Kaiser, R; Korotkov, V A; Kroll, P; Leader, Elliot; Lehmann-Dronke, B; Mankiewicz, L; Meier, A; Meyer, Werner T; Meyners, N; Müller, D; Mulders, P J; Nowak, Wolf-Dieter; Niedermeier, L; Oganesyan, K A; Pobilitsa, P V; Polyakov, M V; Reicherz, G; Rith, K; Ryckbosch, D; Schäfer, A; Sinram, K; Steenhoven, G; Steffens, E; Steijger, J; Weiss, C; Goertz, St.
2000-01-01
Measurements of polarized electron-nucleon scattering can be realized at the TESLA linear collider facility with projected luminosities that are about two orders of magnitude higher than those expected of other experiments at comparable energies. Longitudinally polarized electrons, accelerated as a small fraction of the total current in the e+ arm of TESLA, can be directed onto a solid state target that may be either longitudinally or transversely polarized. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time. A main goal of the experiment is the precise measurement of the x- and Q^2-dependence of the experimentally totally unknown quark transversity distributions that will complete the information on the nucleon's quark spin structure as relevant for high energy processes. Comparing their Q^2-evolution to that of the corresponding helicity distributions constitutes an important precision test of the predic...
Inelastic electron scattering from a moving nucleon
Energy Technology Data Exchange (ETDEWEB)
Kuhn, S.E. [Old Dominion Univ., Norfolk, VA (United States); Griffioen, K. [College of William and Mary, Williamsburg, VA (United States)
1994-04-01
The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).
Laser light scattering basic principles and practice
Chu, Benjamin
1994-01-01
Geared toward upper-level undergraduate and graduate students, this text introduces the interdisciplinary area of laser light scattering, focusing chiefly on theoretical concepts of quasielastic laser scattering.
Low-energy electron scattering from cyanamide
Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng
2016-09-01
The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.
Future studies on electron scattering; a renaissance
Mason, Nigel J.
2014-12-01
2014 is the centenary of the first announcement of the Franck-Hertz experiment [1], now regarded as one of the pivotal experiments of modern physics. The Franck-Hertz experiment is widely regarded as an experiment that provided validation of the Bohr theory of atomic structure, itself only published in 2013, however it should also be viewed as the first quantitative experiment in electron scattering and the birth of scientific study of atomic and molecular phenomena by collisions. Today we recognize that electron-atom and electron- molecule collisions are prevalent across nature, describing disparate phenomena whilst the exploitation of such collisions underpins many of the technologies upon which modern society relies. The centenary of the Franck-Hertz experiment is thus a suitable opportunity to review both our current knowledge of electron interactions and to consider the directions of future research. In this article I therefore aim to both review our current state of knowledge and look forward, proposing that recent advances are providing something of a renaissance to the field and are vital for emerging technologies as well as answering some of the greatest scientific challenges of the 21st century.
Inelastic electron scattering from 48Ca
Wise, J. E.; McCarthy, J. S.; Altemus, R.; Norum, B. E.; Whitney, R. R.; Heisenberg, J.; Dawson, J.; Schwentker, O.
1985-05-01
Inelastic electron scattering from 48Ca has been performed over a momentum transfer range from 0.6 to 3.0 fm-1 in both forward and backward directions. Form factors have been obtained for 25 levels up to 10 MeV excitation. Charge and current densities for 11 low lying electric transitions and current densities for two magnetic transitions have been reconstructed in Fourier Bessel analysis. Three high spin states observed in the region of 9 MeV excitation are found to have the dominant configuration ν(1g9/2,1f-17/2)8 - but with a total strength of only 36% predicted for the first 8- in a random-phase-approximation calculation. This is interpreted as evidence for particle-phonon coupling. Comparisons of the extracted densities are made with random-phase-approximation calculations using a zero-range, density-dependent Migdal interaction.
Quark-Hadron Duality in Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Wally Melnitchouk; Rolf Ent; Cynthia Keppel
2004-08-01
The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.
The Jupiter Electron Scattering Program at Jefferson Lab
Energy Technology Data Exchange (ETDEWEB)
Arie Bodek
2004-08-01
JUPITER (Jlab Unified Program to Investigate nuclear Targets and Electroproduction of Resonances) is a new collaboration between the Nuclear Physics Electron Scattering and High Energy Physics Neutrino Scattering Communities to Investigate the Structure of Nucleons and Nuclei with Electron and Neutrino Beams. The first phase of JUPITER is Hall C experiment E04-001 on Inclusive Electron Scattering from Nuclear Targets. First data run of E04-001 is currently scheduled for January of 2005.
Entanglement manifestation in spin resolved electron–electron scattering
Energy Technology Data Exchange (ETDEWEB)
Artamonov, O.M., E-mail: artaoleg@gmail.com [Institute of Physics, St Petersburg State University, St Petersburg (Russian Federation); Samarin, S.N., E-mail: sergey.samarin@uwa.edu.au [Institute of Physics, St Petersburg State University, St Petersburg (Russian Federation); School of Physics, the University of Western Australia, Crawley, Perth 6009, WA (Australia); Vetlugin, A.N.; Sokolov, I.V. [Institute of Physics, St Petersburg State University, St Petersburg (Russian Federation); Williams, J.F. [School of Physics, the University of Western Australia, Crawley, Perth 6009, WA (Australia)
2015-11-15
Highlights: • Spin entangled pairs is created by the Coulomb scattering of polarized electrons. • Polarization and separability of scattered electrons is investigated. • The model comparison with the experimental results shows qualitative agreement. • Analytical correlation between polarization and separability of pairs is found. - Abstract: The polarization vector P of scattered electrons interacting with a polarized target electrons is compared with the entanglement (or non-separability) of the electron states of the interacting electron pair. The separability S is defined as a linear function of the von Neumann entropy. The shapes of the functions P (θ,Ω,φ) and S (θ,Ω,φ) are similar and simultaneously achieve their maximum value at the scattering angle θ values close to 0 and π and simultaneously tend to zero in the case of symmetric scattering at θ ≈ π/2. In the latter case the scattered electrons are described by an asymmetric spin part of the wave function, which by definition corresponds to the spin entangled (S ≈ 0) electron states of the interacting electron pair. Comparison of the model calculation results with experimental results of the spin polarized electron spectroscopy of the ferromagnetic solid shows qualitative agreement. The analytical expression relating polarization and separability of the two interacting particles enables use the measured polarization of scattered electrons for estimation of the spin-entanglement or separability of the two particle systems.
Electron Scattering by biomass molecular fragments
Lima, Marco
2015-09-01
The replacement of fossil fuels by biofuels from renewable sources may not be a definite answer for greenhouse gas emissions problems, but it is a good step towards a sustainable energy strategy. Few per cent of ethanol is being mixed to gasoline in many countries and in some of them, like Brazil, a very aggressive program has been developed, using, in large scale, flex fuel engines that can run with any mixture of gasoline and ethanol, including 100% ethanol. Important points are how to produce ethanol in a sustainable way and with which technology? Biomass is a good candidate to enhance the first generation (produced from Corn in USA and from sugarcane in Brazil) production towards the so-called second-generation ethanol, since it has cellulose and hemicellulose as source of sugars. In order to liberate these sugars for fermentation, it is important to learn how to separate the main components. Chemical routes (acid treatment) and biological routes (enzymatic hydrolysis) are combined and used for these purposes. Atmospheric plasmas can be useful for attacking the biomass in a controlled manner and low energy electrons may have an important role in the process. Recently, we have been studying the interaction of electrons with lignin subunits (phenol, guaiacol, p-coumaryl alcohol), cellulose components, β-D-glucose and cellobiose (β(1-4) linked glucose dimer) and hemicellulose components [2] (β-D-xylose). We also obtained results for the amylose subunits α-D-glucose and maltose (α(1-4) linked glucose dimer). Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical-chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production. In order to describe a more realistic system (where molecules are ``wet''), we have obtained the shape resonance spectra of phenol-water clusters, as obtained previously from elastic electron scattering calculations. Our results, obtained in a simple
Electron Elastic-Scattering Cross-Section Database
SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge) This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).
Flux profile scanners for scattered high-energy electrons
Hicks, R. S.; Decowski, P.; Arroyo, C.; Breuer, M.; Celli, J.; Chudakov, E.; Kumar, K. S.; Olson, M.; Peterson, G. A.; Pope, K.; Ricci, J.; Savage, J.; Souder, P. A.
2005-11-01
The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.
Theory of scattering of crystal electrons at magnons
Haag, Michael; Illg, Christian; Fähnle, Manfred
2013-06-01
Electron-magnon scatterings are very important for many effects in spintronics and therefore an ab initio treatment of these processes is highly desirable. Based on the spin-density functional electron theory, an operator for the electron-magnon scattering is constructed in a second-quantization formalism for crystal electron states which are represented by linear-muffin-tin-orbital basis functions. An outlook is given as to how this operator can be used to investigate the possible contribution of these scattering processes to the ultrafast demagnetization of films after exposure to a fs optical laser pulse.
Laser-Assisted Elastic Electron Scattering from Argon
Institute of Scientific and Technical Information of China (English)
HU Qiu-Bo; SUN Jin-Feng
2009-01-01
The second Born approximation (SBA) theory is applied to the study of electron-atom scattering in the presence of a CO2 laser field. The absolute differential cross sections of e-At scattering are calculated with multiphoton exchange in two special scattering geometries G1 (for small-angle scattering) and G2. For geometry G1, compared with the results of two different model potentials for electron elastic scattering by atoms, it is found that electronatom polarization potential plays an important role in laser-assisted electron-atom scattering. Some calculational results in geometries G2 are given. Our results are found to be better than other theoretical results as compared with the experimental data in geometries G1 and G2.
Recent progress in electron scattering from atoms and molecules
Energy Technology Data Exchange (ETDEWEB)
Brunger, M. J. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Buckman, S. J. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia and Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Sullivan, J. P.; Palihawadana, P. [Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Chiari, L.; Pettifer, Z. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Lopes, M. C. A. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Duque, H. V. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Masin, Z.; Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Garcia, G. [Instituto de Fisica Fundamental, CSIC, Madrid E-28006 (Spain); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)
2014-03-05
We present and discuss recent results, both experimental and theoretical (where possible), for electron impact excitation of the 3s[3/2 ]{sub 1} and 3s′[1/2 ]{sub 1} electronic states in neon, elastic electron scattering from the structurally similar molecules benzene, pyrazine, and 1,4-dioxane and excitation of the electronic states of the important bio-molecule analogue α-tetrahydrofurfuryl alcohol. While comparison between theoretical and experimental results suggests that benchmarked cross sections for electron scattering from atoms is feasible in the near-term, significant further theoretical development for electron-molecule collisions, particularly in respect to discrete excitation processes, is still required.
Inelastic electron-pion scattering at FNAL (SELEX)
Moinester, M A; Steiner, V; Moinester, Murray A.; Ocherashvili, Aharon; Steiner, Victor
1999-01-01
In this report we describe the analysis status of electron-pion inelastic scattering $\\pi e \\to \\pi' e' \\gamma$ and $\\pi e \\to \\pi' e' \\pi^0$ reaction data, measured in inverse pion-electron scattering at 590 GeV/c at FNAL. The data give information on reactions that were never previously measured: (1) radiative width from a measurement of the transition form factor near zero momentum transfer, (2) $ \\pi e \\to e' \\pi' \\pi^0$ scattering near threshold for a determination of the chiral anomaly transition form factor and the $\\gamma field is Compton scattered on the pion, for a determination of the never previously measured generalized pion polarizabilities.
Mott scattering of polarized electrons in a strong laser field
Manaut, B; Attaourti, Y
2004-01-01
We present analytical and numerical results of the relativistic calculation of the transition matrix element $S_{fi}$ and differential cross section for Mott scattering of initially polarized Dirac particles (electrons) in the presence of strong laser field with linear polarization. We use exact Dirac-Volkov wave functions to describe the dressed electrons and the collision process is treated in the first Born approximation. The influence of the laser field on the degree of polarization of the scattered electron is reported.
Completing electron scattering studies with the inert gas column:e - Rn scattering and Ionization
Joshi, Foram M; Chaudhari, Asha S; Modi, Hitesh S; Pindaria, Manish J
2016-01-01
Interest in the inert or noble- gas atoms in general arises because they are ideal as test systems for various theoretical models of electron scattering and also since their interaction processes serve as reference for the determination of instrumental responses in electron scattering experiments. The ionization cross section data of ground state inert gas atoms He through Xe are considered to be benchmark data. Our aim in this paper is to provide theoretical results on electron scattering with Radon atoms, as it would complete the studies on the entire inert gas column. That is possible with this particular column only, in view of the preceding literature on He through Xe . Inert gas radon is radioactive, and would be a difficult target for electron scattering experiments. In the present calculations, the complications arising from radioactivity are not considered. We provide hitherto unavailable cross sections on atomic radon, and also provide opportunity of the comparison of electron impact cross sections ...
Scattering problems involving electrons, photons, and Dirac fermions
Snyman, Izak
2008-01-01
The theoretical foundation for the work reported here is provided by Landauer's scattering theory of electron transport. The three main ingredients of a scattering problem are (1) a set of reservoirs that emit and absorb particles, (2) the particles themselves, that propagate as waves between the re
Electron scattering from the octupole band in /sup 238/U
Energy Technology Data Exchange (ETDEWEB)
Hirsch, A.; Creswell, C.; Bertozzi, W.; Heisenberg, J.; Hynes, M.V.; Kowalski, S.; Miska, H.; Norum, B.; Rad, F.N.; Sargent, C.P.; Sasanuma, T.; Turchinetz, W.
1978-03-06
A simple model for nuclear surface vibrations in permanently deformed nuclei does well in reproducing electron scattering cross sections of rotational levels built on a K/sup ..pi../= 0/sup -/ intrinsic octupole vibration in /sup 238/U.
Total cross sections for electron scattering from sulfur compounds
Institute of Scientific and Technical Information of China (English)
Tan Xiao-Ming; Wang Yan-Wen
2013-01-01
The original additivity rule method cannot give good results for electron scattering from SO,SO2,SO2C12,SO2C1F,and SO2F2 molecules at low energy,because the electron-molecule scattering is simply reduced to electron-atom scattering.Considering the difference between the bound atom in a molecule and the corresponding free atom,the original additivity rule is revised.With the revised additivity rule,the total cross sections for electron scattering from these molecules are calculated over a wide energy range below 3000 eV and compared with the available experimental and theoretical data.A better agreement between them is obtained.
Relativistic effects in elastic scattering of electrons in TEM.
Rother, Axel; Scheerschmidt, Kurt
2009-01-01
Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.
Structure functions in electron-nucleon deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)
1982-06-26
The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.
High resolution inelastic electron scattering and nuclear structure
Blok, H. B.; Heisenberg, J. H.
Thanks to the improved characteristics of the experimental set-up electron scattering has become an excellent tool to study the structure of the nucleus. After describing globally how the nuclear structure enters in the formalism of (e,e') reactions and how the high experimental resolution is obtained, several examples of the use of electron scattering for the study of specific nuclear structure questions are discussed.
Magnetic field contribution to the last electron-photon scattering
Giovannini, Massimo
2010-01-01
When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tens...
Thomson scattering off a pair (electron-positron) plasma
Institute of Scientific and Technical Information of China (English)
Zheng Jian
2006-01-01
Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering offa collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.
A discrete variable representation for electron-hydrogen atom scattering
Energy Technology Data Exchange (ETDEWEB)
Gaucher, L.F.
1994-08-01
A discrete variable representation (DVR) suitable for treating the quantum scattering of a low energy electron from a hydrogen atom is presented. The benefits of DVR techniques (e.g. the removal of the requirement of calculating multidimensional potential energy matrix elements and the availability of iterative sparse matrix diagonalization/inversion algorithms) have for many years been applied successfully to studies of quantum molecular scattering. Unfortunately, the presence of a Coulomb singularity at the electrically unshielded center of a hydrogen atom requires high radial grid point densities in this region of the scattering coordinate, while the presence of finite kinetic energy in the asymptotic scattering electron also requires a sufficiently large radial grid point density at moderate distances from the nucleus. The constraints imposed by these two length scales have made application of current DVR methods to this scattering event difficult.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Quasi-elastic cross sections for 1GeV proton incident on {sup 4}He and {sup 12}C
Energy Technology Data Exchange (ETDEWEB)
Nishimura, M.; Nakamoto, T.; Shigyo, N. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering] [and others
1997-03-01
The experiment of p-n quasi-elastic scattering cross sections was carried out for 1GeV protons on {sup 4}He and {sup 12}C. The coincident measurement was made at c.m. angles of {+-} 90deg. The experiment was simulated by the use of HETC (High Energy Transport Code). It was examined to apply the p-n quasi-elastic scattering cross sections to neutron flux measurement. (author)
Energy Technology Data Exchange (ETDEWEB)
Malikova, N
2005-09-15
Montmorillonite clays in low hydration states, with Na{sup +} and Cs{sup +} compensating counter ions, are investigated by a combination of microscopic simulation and quasi-elastic neutron scattering to obtain information on the local structure and dynamics of water and ions in the interlayer. At first predictions of simulation into the dynamics of water and ions at elevate temperatures are shown (0 deg C 80 deg C, pertinent for the radioactive waste disposal scenario) Marked difference is observed between the modes of diffusion of the Na{sup +} and C{sup +} counter ions. In water dynamics, a significant step towards bulk water behaviour is seen on transition from the mono- to bilayer states. Secondly, a detailed comparison between simulation and quasi-elastic neutron scattering (Neutron Spin Echo and Time-of-Flight) regarding ambient temperature water dynamics is presented. Overall, the approaches are found to be in good agreement with each other and limitations of each of the methods are clearly shown. (author)
Scattered radiation from applicators in clinical electron beams.
Battum, L.J. van; Zee, W. van der; Huizenga, H.
2003-01-01
In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight
Electron Scattering by Ar Atoms in a Laser Field
Institute of Scientific and Technical Information of China (English)
ZHANG Sheng-Hai; QIAN Xing-Zhong; JIANG Yu-Hai; SUN Jin-Feng
2000-01-01
The differentialcross sections of electron-Ar atom scattering for free-free transition with one and two photons absorption in the presence of CO2 laser field is obtained by the second Born approximation, the direction of laser polarization being perpendicular to the change of electron momentum. Compared with the more recent available experimental data, the present results are very good.
Electronic Structure of Dense Plasmas by X-Ray Scattering
Energy Technology Data Exchange (ETDEWEB)
Gregori, G; Glenzer, S H; Rogers, F J; Pollaine, S M; Froula, D H; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R; Landen, O L
2003-10-07
We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.
Lobato, I; Van Dyck, D
2015-08-01
The steadily improving experimental possibilities in instrumental resolution as in sensitivity and quantization of the data recording put increasingly higher demands on the precision of the scattering factors, which are the key ingredients for electron diffraction or high-resolution imaging simulation. In the present study, we will systematically investigate the accuracy of fitting of the main parameterizations of the electron scattering factor for the calculation of electron diffraction intensities. It is shown that the main parameterizations of the electron scattering factor are consistent to calculate electron diffraction intensities for thin specimens and low angle scattering. Parameterizations of the electron scattering factor with the correct asymptotic behavior (Lobato and Dyck [5], Kirkland [4], and Weickenmeier and Kohl [2]) produce similar results for both the undisplaced lattice model and the frozen phonon model, except for certain thicknesses and reflections.
Influence of scattering processes on electron quantum states in nanowires
Directory of Open Access Journals (Sweden)
Pozdnyakov Dmitry
2007-01-01
Full Text Available AbstractIn the framework of quantum perturbation theory the self-consistent method of calculation of electron scattering rates in nanowires with the one-dimensional electron gas in the quantum limit is worked out. The developed method allows both the collisional broadening and the quantum correlations between scattering events to be taken into account. It is an alternativeper seto the Fock approximation for the self-energy approach based on Green’s function formalism. However this approach is free of mathematical difficulties typical to the Fock approximation. Moreover, the developed method is simpler than the Fock approximation from the computational point of view. Using the approximation of stable one-particle quantum states it is proved that the electron scattering processes determine the dependence of electron energy versus its wave vector.
Induced Compton Scattering by Relativistic Electrons in Magnetized Astrophysical Plasmas.
Sincell, Mark William
1994-01-01
The effects of stimulated scattering on high brightness temperature radiation are studied in two important contexts. In the first case, we assume that the radiation is confined to a collimated beam traversing a relativistically streaming magnetized plasma. When the plasma is cold in the bulk frame, stimulated scattering is only significant if the angle between the photon motion and the plasma velocity is less than gamma^{-1} , where gamma is the bulk Lorentz factor. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam. In the second case, we present a model of the radio emission from synchrotron self-absorbed sources, including the effects of induced Compton scattering by the relativistic electrons in the source. Order of magnitude estimates show that stimulated scattering becomes the dominant absorption process when (kTB/m ec^2)tau_{T }_sp{~}> 0.1. Numerical simulations
Variational methods in electron-atom scattering theory
Nesbet, Robert K
1980-01-01
The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...
Energy distribution of elastically scattered electrons from double layer samples
Tőkési, K.; Varga, D.
2016-02-01
We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.
Generalized Levinson theorem: Applications to electron-atom scattering
Rosenberg, Leonard; Spruch, Larry
1996-12-01
A recent formulation provides an absolute definition of the zero-energy phase shift δ for multiparticle single-channel scattering of a particle by a neutral compound target in a given partial wave l. This formulation, along with the minimum principle for the scattering length, leads to a determination of δ that represents a generalization of Levinson's theorem. In its original form that theorem is applicable only to potential scattering of a particle and relates δ/π to the number of bound states of that l. The generalized Levinson theorem relates δ/π for scattering in a state of given angular momentum to the number of composite bound states of that angular momentum plus a calculable number that, for a system described in the Hartree-Fock approximation, is the number of states of that angular momentum excluded by the Pauli principle. Thus, for example, for electron scattering by Na, with its (1s)2(2s)2(2p)63s configuration and with one L=0 singlet composite bound state, δ would be π+2π for s-wave singlet scattering, 0+3π for s-wave triplet scattering, and 0+π for both triplet and singlet p-wave scattering; the Pauli contribution has been listed first. The method is applicable to a number of e+/--atom and nucleon-nucleus scattering processes, but only applications of the former type are described here. We obtain the absolute zero-energy phase shifts for e--H and e--He scattering and, in the Hartree-Fock approximation for the target, for atoms that include the noble gases, the alkali-metal atoms, and, as examples, B, C, N, O, and F, which have one, two, three, four, and five p electrons, respectively, outside of closed shells. In all cases, the applications provide results in agreement with expectations.
Parity nonconservation in polarized electron scattering at high energies
Energy Technology Data Exchange (ETDEWEB)
Prescott, C.Y.
1979-10-01
Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) ..-->.. e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references. (JFP)
Electron Scattering in Intrananotube Quantum Dots
Buchs, G.; Bercioux, D.; Ruffieux, P.; Gröning, P.; Grabert, H.; Gröning, O.
2009-01-01
Intratube quantum dots showing particle-in-a-box-like states with level spacings up to 200 meV are realized in metallic single-walled carbon nanotubes by means of low dose medium energy Ar+ irradiation. Fourier-transform scanning tunneling spectroscopy compared to results of a Fabry-Perot electron r
Spin entanglement in elastic electron scattering from lithium atoms
Bartschat, K
2016-01-01
In two recent papers (Phys. Rev. Lett. {\\bf 116} (2016) 033201; Phys. Rev. A {\\bf 94} (2016) 032331), the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali target was discussed. In order to estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1$-$5~eV and the full range of scattering angles $0^\\circ - 180^\\circ$. The most promising regime for Bell-correlations in this particular collision system are energies between about 1.5 eV and 3.0 eV, in an angular range around $110^\\circ \\pm 10^\\circ$. In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system.
Relativistic description of electron scattering on the deuteron
Hummel, E
1994-01-01
Within a quasipotential framework a relativistic analysis is presented of the deuteron current. Assuming that the singularities from the nucleon propagators are important, a so-called equal time approximation of the current is constructed. This is applied to both elastic and inelastic electron scattering. As dynamical model the relativistic one boson exchange model is used. Reasonable agreement is found with a previous relativistic calculation of the elastic electromagnetic form factors of the deuteron. For the unpolarized inelastic electron scattering effects of final state interactions and relativistic corrections to the structure functions are considered in the impulse approximation. Two specific kinematic situations are studied as examples.
Electron-atom scattering in a circularly polarized laser field
Cionga, Aurelia; Zloh, Gabriela; 10.1103/PhysRevA.61.063417
2013-01-01
We consider electron-atom scattering in a circularly polarized laser field at sufficiently high electron energies, permitting to describe the scattering process by the first order Born approximation. Assuming the radiation field has sufficiently moderate intensities, the laser-dressing of the hydrogen target atom in its ground state will be treated in second order perturbation theory. Within this approximation scheme, it is shown that the nonlinear differential cross sections of free-free transitions do neither depend on the {\\it dynamical phase} $\\phi$ of the radiative process nor on the {\\it helicity} of the circularly polarized laser light. Relations to the corresponding results for linear laser polarization are established.
Measurement of $T_{20}$ in Elastic Electron-Deuteron Scattering
Bouwhuis, M; Botto, T; Van den Brand, J F J; Bulten, H J; Dolfini, S M; Ent, R; Ferro-Luzzi, M; Higinbotham, D W; De Jager, C W; Lang, J; De Lange, D J; Papadakis, N H; Passchier, I; Poolman, H R; Six, E; Steijger, J J M; Vodinas, N P; De Vries, H; Zhou, Z L
1999-01-01
We report on a measurement of the tensor-analyzing power T20 in elastic electron-deuteron scattering in the range of four-momentum transfer from 1.8 to 3.2 fm-1. Electrons of 704 MeV were scattered from a polarized deuterium internal target. The tensor polarization of the deuterium nuclei was determined with an ion-extraction system, allowing an absolute measurement of T20. The data are described well by a non-relativistic calculation that includes the effects of meson-exchange currents.
Quasielastic production of polarized hyperons in antineutrino--nucleon reactions
Akbar, F; Athar, M Sajjad; Singh, S K
2016-01-01
We have studied the longitudinal and perpendicular polarizations of final hyperon($\\Lambda$,$\\Sigma$) produced in the antineutrino induced quasielastic charged current reactions on nucleon targets. The nucleon-hyperon transition form factors are determined from the experimental data on quasielastic $(\\Delta S =0)$ charged current (anti)neutrino--nucleon scattering and the semileptonic decay of neutron and hyperons assuming G--invariance, T--invariance and SU(3) symmetry. The vector transition form factors are obtained in terms of nucleon electromagnetic form factors for which various parameterizations available in literature have been used. A dipole parameterization for the axial vector form factor and the pseudoscalar transition form factor derived in terms of axial vector form factor assuming PCAC and GT relation extended to strangeness sector have been used in numerical evaluations. The flux averaged cross section and polarization observables corresponding to CERN Gargamelle experiment have been calculated...
Study of Compton Broadening Due to Electron-Photon Scattering
Directory of Open Access Journals (Sweden)
Srinivasa Rao, M.
2010-06-01
Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radiation field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation.The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons.It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle.We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.
Directory of Open Access Journals (Sweden)
Manvir S. Kushwaha
2012-09-01
Full Text Available The most fundamental approach to an understanding of electronic, optical, and transport phenomena which the condensed matter physics (of conventional as well as nonconventional systems offers is generally founded on two experiments: the inelastic electron scattering and the inelastic light scattering. This work embarks on providing a systematic framework for the theory of inelastic electron scattering and of inelastic light scattering from the electronic excitations in GaAs/Ga1−xAlxAs quantum wells. To this end, we start with the Kubo's correlation function to derive the generalized nonlocal, dynamic dielectric function, and the inverse dielectric function within the framework of Bohm-Pines’ random-phase approximation. This is followed by a thorough development of the theory of inelastic electron scattering and of inelastic light scattering. The methodological part is then subjected to the analytical diagnoses which allow us to sense the subtlety of the analytical results and the importance of their applications. The general analytical results, which know no bounds regarding, e.g., the subband occupancy, are then specified so as to make them applicable to practicality. After trying and testing the eigenfunctions, we compute the density of states, the Fermi energy, the full excitation spectrum made up of intrasubband and intersubband – single-particle and collective (plasmon – excitations, the loss functions for all the principal geometries envisioned for the inelastic electron scattering, and the Raman intensity, which provides a measure of the real transitions induced by the (laser probe, for the inelastic light scattering. It is found that the dominant contribution to both the loss peaks and the Raman peaks comes from the collective (plasmon excitations. As to the single-particle peaks, the analysis indicates a long-lasting lack of quantitative comparison between theory and experiments. It is inferred that the inelastic electron
Very Low Energy Electron Scattering from Ozone and Chlorine Dioxide
Gulley, R. J.; Field, T. A.; Steer, W. A.; Mason, N. J.; Ziesel, J. P.; Lunt, S. L.; Field, D.
1998-10-01
Total cross-sections are reported for the scattering of electrons from ozone (O_3) and chlorine dioxide (OClO) for energies in the range of 9 meV to 10 eV. The measurements were made in transmission experiments using a synchrotron photoionization apparatus with an energy resolution in the incident electron beam of ~ 3.5 meV (FWHM). The cross section for O3 shows strong rotational scattering at low energy, through the presence of the permanent dipole moment of O_3. Superposed on this strong scattering signal, there is evidence of a weak structure around 50 meV associated with dissociative attachment. A shape resonance, known from earlier work at ~ 4 meV, is also observed. Electron scattering from OClO is dominated by rotationally inelastic scattering decreasing from a peak at essentially zero eV to an energy of 40 meV, where p-wave attachment becomes more important, peaking at 50--60 meV and extending to several hundred meV.
Characteristics of scattered electron beams shaped with a multileaf collimator.
Moran, J M; Martel, M K; Bruinvis, I A; Fraass, B A
1997-09-01
Characteristics of dual-foil scattered electron beams shaped with a multileaf collimator (MLC) (instead of an applicator system) were studied. The electron beams, with energies between 10 and 25 MeV, were produced by a racetrack microtron using a dual-foil scattering system. For a range of field sizes, depth dose curves, profiles, penumbra width, angular spread in air, and effective and virtual source positions were compared. Measurements were made when the MLC alone provided collimation and when an applicator provided collimation. Identical penumbra widths were obtained at a source-to-surface distance of 85 cm for the MLC and 110 cm for the applicator. The MLC-shaped beams had characteristics similar to other machines which use trimmers or applicators to collimate scanned or scattered electron beams. Values of the effective source position and the angular spread parameter for the MLC beams were similar to those of the dual-foil scattered beams of the Varian Clinac 2100 CD and the scanned beams of the Sagittaire linear accelerators. A model, based on Fermi-Eyges multiple scattering theory, was adapted and applied successfully to predict penumbra width as a function of collimator-surface distance.
Neutrino-Electron Scattering and the Little Higgs Models
Institute of Scientific and Technical Information of China (English)
LI Na; YUE Chong-Xing; LI Xu-Xin
2011-01-01
The neutrino-electron scattering process is sensitive to the standard model (SM) and the new physics beyond the SM.We calculate the corrections of the littlest Higgs model and the SU(3) simple group model to the vee scattering cross section.Using the LSND experimental measured values,we obtain the bounds on the relevant free parameters,which might be compatible with those from the electroweak precision data.Neutrino-electron scattering is a simple and purely leptonic weak interaction process that can play an important role to perform precision tests of the standard model (SM) and probe various kinds of new physics models beyond the SM.[1-3] Thus,this process provides an ideal tool for electroweak studies.%The neutrino-electron scattering process is sensitive to the standard model (SM) and the new physics beyond the SM. We calculate the corrections of the littlest Higgs model and the SU(3) simple group model to the vee scattering cross section. Using the LSND experimental measured values, we obtain the bounds on the relevant free parameters, which might be compatible with those from the electroweak precision data.
Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation
DEFF Research Database (Denmark)
Holm, Sonja Lindahl
are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... is not taken into account in previous reports on the field effect of magnetic scattering, since usually only L 0 is probed. A paper draft submitted for publication describing the results of elastic and inelastic neutron scattering experiments performed on the oxygen-doped La2CuO4+y HTSC is appended (Tc 40 K...
Energy Technology Data Exchange (ETDEWEB)
Lobato, I., E-mail: Ivan.Lobato@uantwerpen.be; Van Dyck, D.
2015-08-15
The steadily improving experimental possibilities in instrumental resolution as in sensitivity and quantization of the data recording put increasingly higher demands on the precision of the scattering factors, which are the key ingredients for electron diffraction or high-resolution imaging simulation. In the present study, we will systematically investigate the accuracy of fitting of the main parameterizations of the electron scattering factor for the calculation of electron diffraction intensities. It is shown that the main parameterizations of the electron scattering factor are consistent to calculate electron diffraction intensities for thin specimens and low angle scattering. Parameterizations of the electron scattering factor with the correct asymptotic behavior (Lobato and Dyck [5], Kirkland [4], and Weickenmeier and Kohl [2]) produce similar results for both the undisplaced lattice model and the frozen phonon model, except for certain thicknesses and reflections. - Highlights: • Parameterizations of the electron scattering factor with the correct asymptotic behavior produce similar electron diffraction intensities. • Peng et al. parameterization is not adequate for calculations that involves higher-order Laue zones reflections. • Electron diffraction calculations of Cu-crystal with and without inclusion of phonons.
Fast electron scattering as a tool to study target structure
Amusia, M Ya
2006-01-01
We concentrate on several relatively new aspects of the study of fast electron scattering by atoms and atom-like objects, namely endohedral atoms and fullerenes. We show that the corresponding cross sections, being expressed via so-called Generalized Oscillator Strengths (GOS), give information on the electronic structure of the target and on the role of electron correlations in it. We consider what sort of information became available when analyzing the dependence of GOS upon their multipolarity, transferred momentum and energy. We demonstrate the role of nondipole corrections in the small-angle fast-electron inelastic scattering. There dipole contribution dominates while non-dipole corrections can be considerably and controllably enhanced as compared to the case of low and medium energy photoionization. We show also that analyses of GOS for discrete level excitations permit to clarify their multipolarity. The results of calculations of Compton excitation and ionization cross-sections for noble gas atoms are...
Electronic states of doped semiconductors: A multiple scattering approach
Ghazali, A.; Serre, J.
1983-03-01
The electronic structure of doped (and compensated) semiconductors is studied by using the Klauder's best multiple-scattering approximation. Electron correlations are also included. It is shown that as the impurity concentration is decreased, the band tail gradually splits off from the main band giving an impurity band. The domains of existence of extended states and localized states have been recognized by analyzing the shape of spectral densities. Lastly, our results are confronted with various experiments.
A different view of deep inelastic electron-proton scattering
Benhar, O
2000-01-01
Deep inelastic electron-proton scattering is analyzed in the target rest frame using a theoretical approach suitable to describe many-body systems of {\\em bound} constituents subject to {\\em interactions}. At large three-momentum transfer $\\magq$, this approach predicts the onset of scaling in the variable $\\yt=\
Terrestrial effects on dark matter-electron scattering experiments
DEFF Research Database (Denmark)
Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.
2017-01-01
techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...
Applying a Trochoidal Electron Monochromator in Dissociative Electron Attachment Scattering
Arreola, Esmeralda
2016-03-01
Since the pioneering work of Boudiaffa et al., it has been understood that electrons, even with energies near or below the ionization threshold, are capable of initiating strand-breaks in human DNA. This discovery raised important questions for cancer treatments, since sub-ionizing electrons are known to be the most copiously produced secondary product of radiation therapy. But even to date these factors are largely excluded from dosimetry calculations. This lack of inclusion is, at least in part, certainly due to the dearth of fundamental data describing low-energy electron interactions with nucleotide molecules that form the basis of DNA. Understanding of how such slow electrons are able to damage DNA remains incomplete, but the strongly peaked nature of Boudiaffa et al.'s data gives strong hints at resonantly driven collision processes. DNA damage is therefore most likely driven by ``dissociative electron attachment'' (DEA). DEA is a rather complicated process to model due to the coupling of electronic and nuclear degrees of freedom in the molecule. At the California State University Fullerton, we are currently commissioning a new spectrometer to study dissociation channels, reaction rates and orientation effects in DEA collisions between slow electrons and nucleotide molecules. At the meeting we will present design parameters and commissioning data for this new apparatus.
Electron-electron scattering in linear transport in two-dimensional systems
DEFF Research Database (Denmark)
Hu, Ben Yu-Kuang; Flensberg, Karsten
1996-01-01
We describe a method for numerically incorporating electron-electron scattering in quantum wells for small deviations of the distribution function from equilibrium, within the framework of the Boltzmann equation. For a given temperature T and density n, a symmetric matrix needs to be evaluated only...... once, and henceforth it can be used to describe electron-electron scattering in any Boltzmann equation linear-response calculation for that particular T and n. Using this method, we calculate the distribution function and mobility for electrons in a quantum well, including full finite...
Quasifree scattering with electrons at ELISe/FAIR experiment
Energy Technology Data Exchange (ETDEWEB)
Vignote, Javier R. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006, Madrid (Spain); Simon, Haik [GSI, Helmholtz Centre for Heavy Ion Research GmbH, Planckstrasse 1, D-64291, Darmstadt (Germany)
2009-07-01
An electron-ion scattering experiment ELISe is a part of the installations envisaged in the new experimental storage ring at the international facility for antiproton and ion research (FAIR) in Darmstadt, Germany. It offers the worldwide unique opportunity to use electrons as probe particle in investigations of the structure of exotic nuclei. The use of electrons as a probe particle provides a powerful tool for examining nuclear structure. The most reliable evidence how nuclei look like originates from electron scattering. Up to now, the scattering of electrons is still restricted to stable isotopes. ELISe aims at an extension of this powerful method to nuclei beyond the valley of stability. ELISe will be a unique and unprecedented tool for precisely measuring nuclear charge distributions, transition current matrix elements and spectroscopic factors. In this talk I present a review of the electro-nuclear coincidence experiments from a theoretical point of view and I focus my attention to the inverse or beam to beam kinematics set up that will be used at the ELISe experiment.
Electron gyroharmonic effects on ionospheric stimulated Brillouin scatter
Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Isham, B.; Kendall, E.; Briczinski, S. J.; Fuentes, N. E. B.; Vega-Cancel, O.
2014-08-01
Stimulated Brillouin scattering (SBS) and resonant phenomena are well known in the context of laser fusion, fiber optics, and piezoelectric semiconductor plasmas, as well as in various biological applications. Due to recent advances, active space experiments using high-power high-frequency (HF) radio waves may now produce stimulated Brillouin scattering (SBS) in the ionospheric plasma. The sensitivity of the narrowband SBS emission lines to pump frequency stepping across electron gyroharmonics is reported here for the first time. Experimental observations show that SBS emission sidebands are suppressed as the HF pump frequency is stepped across the second and third electron gyroharmonics. A correlation of artificially enhanced airglow and SBS emission lines excited at the upper hybrid altitude is observed and studied for second gyroharmonic heating. The SBS behavior near electron gyroharmonics is shown to have important diagnostic applications for multilayered, multi-ion component plasmas such as the ionosphere.
Ideas for fundamental electron scattering at the S-DALINAC
Energy Technology Data Exchange (ETDEWEB)
Enders, J. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, D-64289 Darmstadt (Germany)
2013-11-07
A source of polarized electrons has recently been added to the superconducting Darmstadt electron linear accelerator S-DALINAC. This contribution briefly addresses the present status of the facility and foreseen extensions along with examples for possible future experiments with polarized beams. In particular, the determination of the fifth structure function in (e,e′x) reactions, the measurement of the Mott scattering analyzing strength at several 10 MeV near 180°, and the determination of bremsstrahlung polarization depending on electron spin polarization will be discussed.
Resonance electronic Raman scattering in rare earth crystals
Energy Technology Data Exchange (ETDEWEB)
Williams, G.M.
1988-11-10
The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.
APD detector electronics for the NSTX Thomson scattering system
Energy Technology Data Exchange (ETDEWEB)
D.W. Johnson; B.P. LeBlanc; D.L. Long; G. Renda
2000-08-07
An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.
Measurement Of The Cross Section For Elastic Scattering Of Electron Neutrinos On Electrons
Wadia-Neville, D
1998-01-01
In this dissertation, we measure the cross section for the elastic scattering of electron neutrinos on electrons. We use data from the LSND experiment which is located at the Los Alamos Neutron Scattering Center at Los Alamos National Laboratory, New Mexico. The neutrino beam is produced when an 800 MeV proton beam from a linear accelerator is incident on a target located 29.8 m from the detector. The LSND veto system allows us to reject charged cosmic-ray particles entering the detector with high efficiency. The detector consists of 180 tons of mineral oil, to which a small quantity of scintillator is added. This combination enables us to detect both Č erenkov and scintillation light produced by highly relativistic charged particles. For the neutrino-electron elastic scattering process, we detect the recoil electron and require it to be scattered along the direction of the incident neutrino.
Studying neutrino oscillations using quasi-elastic events in MINOS
Energy Technology Data Exchange (ETDEWEB)
Kumaratunga, Sujeewa Terasita [Univ. of Minnesota, Minneapolis, MN (United States)
2008-02-01
MINOS (Main Injector Neutrino Oscillation Search), is a long baseline neutrino experiment designed to search for neutrino oscillations using two detectors at Fermi National Accelerator Laboratory, IL (Near Detector) and Soudan, MN (Far Detector). It will study v_{μ} → v_{τ} oscillations and make a measurement on the oscillation parameters, Δm$2\\atop{23}$ and sin^{2} 2θ_{23}, via a v_{μ} beam made at Fermilab. Charge current neutrino interactions in the MINOS detectors are of three types: quasi-elastic scattering (QEL), resonance scattering (RES) and deep inelastic scattering (DIS). Of these, quasi-elastic scattering leaves the cleanest signal with just one μ and one proton in the final state, thus rendering the reconstruction of the neutrino energy more accurate. This thesis will outline a method to separate QEL events from the others in the two detectors and perform a calculation of Δm$2\\atop{23}$ and sin^{2} 2θ_{23} using those events. The period under consideration was May 2005 to February 2006. The number of observed quasi-elastic events with energies below 10 GeV was 29, where the expected number was 60 ± 3. A fit to the energy distribution of these events gives Δm$2\\atop{23}$ = 2.91$+0.49\\atop{-0.53}$(stat)$+0.08\\atop{-0.09}$(sys) x 10^{-3} eV^{2} and sin^{2} 2θ_{23} = 0.990_{-0.180}(stat)_{-0.030}(sys).
Unified Description of Electron-Nucleus Scattering within the Spectral Function Formalism.
Rocco, Noemi; Lovato, Alessandro; Benhar, Omar
2016-05-13
The formalism based on factorization and nuclear spectral functions has been generalized to treat transition matrix elements involving two-nucleon currents, whose contribution to the nuclear electromagnetic response in the transverse channel is known to be significant. We report the results of calculations of the inclusive electron-carbon cross section, showing that the inclusion of processes involving two-nucleon currents appreciably improves the agreement between theory and data in the dip region, between the quasielastic and Δ-production peaks. The relation to approaches based on the independent particle of the nucleus and the implications for the analysis of flux-integrated neutrino-nucleus cross sections are discussed.
Gai, Pratibha; Midgley, Paul; Weyland, Matthew; Thomas, John; Boyes, Edward
2003-03-01
Back-scattered electron (BSE) imaging, combined with scanning transmission electron microscopic (STEM) high angle annular dark field (HAADF) imaging, both using Rutherford-scattered electrons, are ideal in recording images of supported nanocatalysts. The incoherent scattering process ensures that images are ideal for electron tomography and the reconstruction of three-dimensional (3D) nanocatalyst distribution such as Pd on carbon.
Elastic Electron Scattering from Tritium and Helium-3
Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.
1964-10-01
The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.
Electron-phonon coupling in perovskites studied by Raman Scattering
Sathe, V. G.; Tyagi, S.; Sharma, G.
2016-10-01
Raman scattering is an unique technique for characterization and quantification of electron-phonon, spin-phonon and spin-lattice coupling in many of the currently prominent compounds like multiferroics and manganites. In manganites, it is understood now that a phase separated landscape with coexisting metallic and insulating regions exist in most of the compounds and application of small external perturbation causes an alteration in this landscape. In such scenario, local metallic regions grow suddenly at the expense of insulating regions below the magnetic ordering temperature. Such regions can be characterized effectively using Raman scattering measurements where delocalized electrons couple with the adjacent phonon peaks giving a Fano resonance in the form of asymmetric line shape.
Form factor ratio from unpolarized elastic electron-proton scattering
Pacetti, Simone; Tomasi-Gustafsson, Egle
2016-11-01
A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information to the controversy on the deviation of the proton form factors from the dipole dependence.
Magnetic field contribution to the last electron-photon scattering
Giovannini, Massimo
2010-01-01
When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.
Magnetic field contribution to the last electron-photon scattering
Energy Technology Data Exchange (ETDEWEB)
Giovannini, Massimo, E-mail: massimo.giovannini@cern.c [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); INFN, Section of Milan-Bicocca, 20126 Milan (Italy)
2010-11-21
When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.
Magnetic field contribution to the last electron-photon scattering
Giovannini, Massimo
2010-11-01
When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.
Parity Violating Electron Scattering in the Relativistic Eikonal Approximation
Institute of Scientific and Technical Information of China (English)
DONG Tie-Kuang; REN Zhong-Zhou
2008-01-01
The parity violating electron scattering is investigated in the relativistic Eikonal approximation. The parity violating asymmetry parameters for many isotopes are calculated. In calculations the proton and neutron densities are obtained from the relativistic mean-field theory. We take Ni isotopes as examples to analyse the behaviour of the parity violating asymmetry parameters. The results show that the parity violating asymmetry parameter is sensitive to the difference between the proton and neutron densities. The amplitude of the parity violating asymmetry parameter increases with the distance between the minima of proton and neutron form factors. Our results are useful for future parity violating electron scattering experiments. By comparing our results with experimental data one can test the validity of the relativistic mean-field theory in calculating the neutron densities of nuclei.
Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.
2013-09-01
Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.
Electron Scattering at Surfaces and Interfaces of Transition Metals
Zheng, Pengyuan
The effect of surfaces on the electron transport at reduced scales is attracting continuous interest due to its broad impact on both the understanding of materials properties and their application for nanoelectronics. The size dependence of for conductor's electrical resistivity rho due to electron surface scattering is most commonly described within the framework of Fuchs and Sondheimer (FS) and their various extensions, which uses a phenomenological scattering parameter p to define the probability of electrons being elastically (i.e. specularly) scattered by the surface without causing an increase of rho at reduced size. However, a basic understanding of what surface chemistry and structure parameters determine the specularity p is still lacking. In addition, the assumption of a spherical Fermi surface in the FS model is too simple for transition metals to give accurate account of the actual surface scattering effect. The goal of this study is to develop an understanding of the physics governing electron surface/interface scattering in transition metals and to study the significance of their Fermi surface shape on surface scattering. The advancement of the scientific knowledge in electron surface and interface scattering of transition metals can provide insights into how to design high-conductivity nanowires that will facilitate the viable development of advanced integrated circuits, thermoelectric power generation and spintronics. Sequential in situ and ex situ transport measurements as a function of surface chemistry demonstrate that electron surface/interface scattering can be engineered by surface doping, causing a decrease in the rho. For instance, the rho of 9.3-nm-thick epitaxial and polycrystalline Cu is reduced by 11--13% when coated with 0.75 nm Ni. This is due to electron surface scattering which exhibits a specularity p = 0.7 for the Cu-vacuum interface that transitions to completely diffuse (p = 0) when exposed to air. In contrast, Ni-coated surfaces
Parity Violation in Atoms and Polarized Electron Scattering
Bouchiat, Marie-Anne; PAVI'97
1999-01-01
This work is an extensive review of the advances in the field of parity violation experiments in electron scattering at high energy and and in atomic physics. The results are a challenge to the standard electroweak theory and the understanding of hadron structure. The theoretical framework is presented at a pedagogical level, experiments and future projects are reviewed, and the results and their interpretation are discussed.
Elastic cross sections for electron-carbon scattering
Institute of Scientific and Technical Information of China (English)
Liu Jun-Bo; Wang Yang; Zhou Ya-Jun
2007-01-01
We used the close-coupling optical (CCO) approach to investigate the open-shell carbon atom. The elastic cross sections have been presented at the energies below 90eV, and the present CCO results have been compared with other theoretical results. We found that polarization and the continuum states have significant contributions to the elastic cross sections. The present calculations show that the CCO method is capable of calculating electron scattering from open-shell atoms.
Hot electron attenuation of direct and scattered carriers across an epitaxial Schottky interface
Parui, S.; Klandermans, P. S.; Venkatesan, S.; Scheu, C.; Banerjee, T.
2013-11-01
Hot electron transport of direct and scattered carriers across an epitaxial NiSi2/n-Si(111) interface, for different NiSi2 thickness, is studied using ballistic electron emission microscopy (BEEM). We find the BEEM transmission for the scattered hot electrons in NiSi2 to be significantly lower than that for the direct hot electrons, for all thicknesses. Interestingly, the attenuation length of the scattered hot electrons is found to be twice as large as that of the direct hot electrons. The lower BEEM transmission for the scattered hot electrons is due to inelastic scattering of the injected hot holes while the larger attenuation length of the scattered hot electrons is a consequence of the differences in the energy distribution of the injected and scattered hot electrons and the increasing attenuation length, at lower energies, of the direct hot electrons in NiSi2.
Electron scattering off rare isotopes - the ELISe experiment at FAIR
Energy Technology Data Exchange (ETDEWEB)
Simon, Haik [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
2008-07-01
The international accelerator facility FAIR at the GSI laboratory at Darmstadt will provide intense, high-quality secondary beams of ions and antiprotons. The basic features of the facility are described in the baseline technical report. The ELISe experiment at FAIR aims for implementing electron scattering off exotic nuclei in colliding beam kinematics. These studies will allow for the first time to use the leptonic probe to study the ground state properties and excitation modes of radioactive, short lived, bare ions, and to analyze the excitation process and target like (decay) products independently. Elastic and inelastic electron scattering are considered being bench-mark reactions in nuclear structure investigations as the well-understood interaction allows reliable and virtually model-independent extraction of (transition) charge and current densities by means of form-factor measurements. The desing of the very demanding ELISe detector systems aiming for a coincident detection of decay scattered electrons, decay particles and reaction fragments are presented. Simulation calculations for the beam-beam kinematics and the resulting high selectivity for measuring the excitation and the decays of nuclear modes from threshold up into the continuum are shown.
Lorentz Violation in Deep Inelastic Electron-Proton Scattering
Lunghi, Enrico
2016-01-01
Lorentz violation in the quark sector induces a sidereal time dependence in electron-proton, proton-antiproton and proton-proton cross sections. At high energies nonperturbative effects are buried in universal nucleon parton distribution functions and Lorentz violating effects are calculable in perturbation theory. We focus on deep inelastic electron-proton scattering data collected from ZEUS and H1 at HERA and show that a sideral time analysis of these events is able to set strong constraints on most of the coefficients we consider.
Electron and proton elastic scattering in water vapour
Energy Technology Data Exchange (ETDEWEB)
Champion, C., E-mail: champion@univ-metz.fr [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, 1 Boulevard Arago, Technopole 2000, 57078 Metz (France); Universite Bordeaux 1, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, CENBG, Chemin du Solarium, BP120, 33175 Gradignan (France); Incerti, S.; Tran, H.N. [Universite Bordeaux 1, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, CENBG, Chemin du Solarium, BP120, 33175 Gradignan (France); El Bitar, Z. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP28, 67037 Strasbourg, Cedex 2 (France)
2012-02-15
In the present work, we report theoretical differential and integrated cross sections of the elastic scattering process for sub-thermalization electrons (E{sub inc} {approx_equal} 10 meV-10 keV) and 1 keV-1 MeV protons in water vapour. The calculations are performed within the quantum mechanical framework for electrons whereas classical calculations are provided for protons. The results obtained in this free-parameter theoretical treatment are compared to available data and quantitative differences are reported.
Low-energy electron scattering from molecules, biomolecules and surfaces
Carsky, Petr
2011-01-01
Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule
New electron multiple scattering distributions for Monte Carlo transport simulation
Energy Technology Data Exchange (ETDEWEB)
Chibani, Omar (Haut Commissariat a la Recherche (C.R.S.), 2 Boulevard Franz Fanon, Alger B.P. 1017, Alger-Gare (Algeria)); Patau, Jean Paul (Laboratoire de Biophysique et Biomathematiques, Faculte des Sciences Pharmaceutiques, Universite Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse cedex (France))
1994-10-01
New forms of electron (positron) multiple scattering distributions are proposed. The first is intended for use in the conditions of validity of the Moliere theory. The second distribution takes place when the electron path is so short that only few elastic collisions occur. These distributions are adjustable formulas. The introduction of some parameters allows impositions of the correct value of the first moment. Only positive and analytic functions were used in constructing the present expressions. This makes sampling procedures easier. Systematic tests are presented and some Monte Carlo simulations, as benchmarks, are carried out. ((orig.))
Long-range effects in electron scattering by polar molecules
Fabrikant, Ilya I.
2016-11-01
We review long-range effects in electron collisions with polar molecules, starting with elastic scattering. We then go to rotationally and vibrationally inelastic processes and dissociative electron attachment. The last two are strongly affected by vibrational Feshbach resonances which have been observed and described theoretically in many systems from simple diatomic molecules to more complex polyatomics, biologically relevant molecules, and van der Waals clusters. We then review environmental effects which include electron interaction with molecules adsorbed on surfaces and molecules in cluster environments. We concentrate on physics rather than on listing results of ab initio calculations. With increasing complexity of targets and processes model approaches become more relevant. We demonstrate their success in the theoretical description of electron attachment to polyatomic molecules and to molecules in complex environments.
Parity Violation in Forward Angle Elastic Electron-Proton Scattering
Energy Technology Data Exchange (ETDEWEB)
Miller, IV, Grady Wilson [Princeton Univ., NJ (United States)
2001-01-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton at Jefferson Laboratory. The kinematic point (θ_{lab} = 12.3 deg. and (Q^{2}) = 0.48 (GeV/c)^{2}) is chosen to provide sensitivity to the strange electric form factor G^{s}_{E}. A 3.36 GeV beam of longitudinally polarized electrons was scattered from protons in a liquid hydrogen target. The scattered flux was detected by a pair of spectrometers which focussed the elastically-scattered electrons onto total-absorption detectors. The detector signals were integrated and digitized by a custom data acquisition system. A feedback system reduced systematic errors by controlling helicity-correlated beam intensity differences at the sub-ppm (part per million) level. The experimental result, A = 14.5 +/- 2.0 (stat) ± 1.1 (syst) ppm, is consistent with the electroweak Standard Model with no additional contributions from strange quarks. In particular, the measurement implies G^{S}_{E} + 0.39 G^{s}_{M} = 0.023 ± 0.040 ± 0.026 (ζG^{n}_{E}), where the last uncertainty is due to the estimated uncertainty in the neutron electric form factor G^{n}_{E} . This result represents the first experimental constraint of the strange electric form factor.
Distinguishing attosecond electron-electron scattering and screening in transition metals
Chen, Cong; Tao, Zhensheng; Carr, Adra; Matyba, Piotr; Szilvási, Tibor; Emmerich, Sebastian; Piecuch, Martin; Keller, Mark; Zusin, Dmitriy; Eich, Steffen; Rollinger, Markus; You, Wenjing; Mathias, Stefan; Thumm, Uwe; Mavrikakis, Manos; Aeschlimann, Martin; Oppeneer, Peter M.; Kapteyn, Henry; Murnane, Margaret
2017-07-01
Electron-electron interactions are the fastest processes in materials, occurring on femtosecond to attosecond timescales, depending on the electronic band structure of the material and the excitation energy. Such interactions can play a dominant role in light-induced processes such as nano-enhanced plasmonics and catalysis, light harvesting, or phase transitions. However, to date it has not been possible to experimentally distinguish fundamental electron interactions such as scattering and screening. Here, we use sequences of attosecond pulses to directly measure electron-electron interactions in different bands of different materials with both simple and complex Fermi surfaces. By extracting the time delays associated with photoemission we show that the lifetime of photoelectrons from the d band of Cu are longer by ˜100 as compared with those from the same band of Ni. We attribute this to the enhanced electron-electron scattering in the unfilled d band of Ni. Using theoretical modeling, we can extract the contributions of electron-electron scattering and screening in different bands of different materials with both simple and complex Fermi surfaces. Our results also show that screening influences high-energy photoelectrons (≈20 eV) significantly less than low-energy photoelectrons. As a result, high-energy photoelectrons can serve as a direct probe of spin-dependent electron-electron scattering by neglecting screening. This can then be applied to quantifying the contribution of electron interactions and screening to low-energy excitations near the Fermi level. The information derived here provides valuable and unique information for a host of quantum materials.
Electron-silane scattering cross section for plasma assisted processes
Verma, Pankaj; Kaur, Jaspreet; Antony, Bobby
2017-03-01
Silane is an important molecule with numerous applications to natural and technological plasmas. In such environments, where plasma assisted processes are vital, electron induced reactions play a major role in its chemistry. In view of this, electron induced scattering of molecules such as silane finds significance. This article reports a comprehensive study of electron impact cross sections for silane over a wide energy range. In particular, the emphasis is given in providing a complete dataset for various electron scattering events possible with silane. Such dataset is the need for the plasma modeling community. Moreover, literature survey shows that the cross section database for silane is fragmentary. To fill this void, we have computed the differential elastic, total, rotational excitation, and momentum transfer cross sections. Two formalisms that are reliable in their energy domain are employed to accomplish the task: the R-matrix method through QUANTEMOL-N at low incident energies and the spherical complex optical potential formalism at intermediate to high energies. Interestingly, the comparison of the present cross section exhibits a good concurrence with the previous data, wherever available.
A Guide to Electronic Multipoles in Photon Scattering and Absorption
Lovesey, Stephen William; Balcar, Ewald
2013-02-01
The practice of replacing matrix elements in atomic calculations by those of convenient operators with strong physical appeal has a long history, and in condensed matter physics it is perhaps best known through use of operator equivalents in electron resonance by Elliott and Stevens. Likewise, electronic multipoles, created with irreducible spherical-tensors, to represent charge-like and magnetic-like quantities are widespread in modern physics. Examples in recent headlines include a magnetic charge (a monopole), an anapole (a dipole) and a triakontadipole (a magnetic-like atomic multipole of rank 5). In this communication, we aim to guide the reader through use of atomic, spherical multipoles in photon scattering, and resonant Bragg diffraction and dichroic signals in particular. Applications to copper oxide CuO and neptunium dioxide (NpO2) are described. In keeping with it being a simple guide, there is sparse use in the communication of algebra and expressions are gathered from the published literature and not derived, even when central to the exposition. An exception is a thorough grounding, contained in an Appendix, for an appropriate version of the photon scattering length based on quantum electrodynamics. A theme of the guide is application of symmetry in scattering, in particular constraints imposed on results by symmetry in crystals. To this end, a second Appendix catalogues constraints on multipoles imposed by symmetry in crystal point-groups.
How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.
Shi, Tian; Li, Hao; Tretiak, Sergei; Chernyak, Vladimir Y
2014-11-20
Effects of disorder and exciton-phonon interactions are the major factors controlling photoinduced dynamics and energy-transfer processes in conjugated organic semiconductors, thus defining their electronic functionality. All-atom quantum-chemical simulations are potentially capable of describing such phenomena in complex "soft" organic structures, yet they are frequently computationally restrictive. Here we efficiently characterize how electronic excitations in branched conjugated molecules interact with molecular distortions using the exciton scattering (ES) approach as a fundamental principle combined with effective tight-binding models. Molecule geometry deformations are incorporated to the ES view of electronic excitations by identifying the dependence of the Frenkel-type exciton Hamiltonian parameters on the characteristic geometry parameters. We illustrate our methodology using two examples of intermolecular distortions, bond length alternation and single bond rotation, which constitute vibrational degrees of freedom strongly coupled to the electronic system in a variety of conjugated systems. The effect on excited-state electronic structures has been attributed to localized variation of exciton on-site energies and couplings. As a result, modifications of the entire electronic spectra due to geometric distortions can be efficiently and accurately accounted for with negligible numerical cost. The presented approach can be potentially extended to model electronic structures and photoinduced processes in bulk amorphous polymer materials.
Measurement of muon-neutrino and -antineutrino scattering off electrons
Faissner, Helmut; Bobisut, F; De Witt, H; Fasold, H G; Frenzel, E; Hansl, T; Hoffmann, D; Huzita, H; Loreti, M; Maull, K; Puglierin, G; Radermacher, E; Reithler, H; Scotoni, I; Vascon, Mario
1978-01-01
Muon-neutrino and -antineutrino scattering off electrons was detected in a 19-ton Al spark chamber, exposed to the wide-band nu ( nu ) beam from the CERN proton synchrotron. The background was determined experimentally. 11 (10) genuine nu /sub mu -/( nu /sub mu -/) e scattering events were found. The respective cross sections are (1.1+or-0.6)*10/sup -42/ (E/sub nu //GeV) cm/sup 2/ and (2.2+or-1.0) *10/sup -42/ (E/sub nu //GeV) cm/sup 2/. The analysis excludes a pure V-A interaction, and makes a pure V or A theory improbable. The data agree well with the Salam-Weinberg model and sin/sup 2/ theta /sub w /=0.35+or-0.08. (13 refs).
Comparison between electron and neutron Compton scattering studies
Directory of Open Access Journals (Sweden)
Moreh Raymond
2015-01-01
Full Text Available We compare two techniques: Electron Compton Scattering (ECS and neutron Compton scattering (NCS and show that using certain incident energies, both can measure the atomic kinetic energy of atoms in molecules and solids. The information obtained is related to the Doppler broadening of nuclear levels and is very useful for deducing the widths of excited levels in many nuclei in self absorption measurements. A comparison between the atomic kinetic energies measured by the two methods on the same samples is made. Some results are also compared with calculated atomic kinetic energies obtained using the harmonic approximation where the vibrational frequencies were taken from IR/Raman optical measurements. The advantages of the ECS method are emphasized.
Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation
DEFF Research Database (Denmark)
Holm, Sonja Lindahl
are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... magnetism. This is in contrast to what is observed as the critical temperature is slightly lower for this system compared to other co-doped systems, suggesting that the magnetic and superconducting phases co-exist. A published manuscript describes the study of magnetic and superconducting properties of Ba...
Electron scattering times in ZnO based polar heterostructures
Energy Technology Data Exchange (ETDEWEB)
Falson, J., E-mail: j.falson@fkf.mpg.de [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Smet, J. H. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Arima, T. [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)
2015-08-24
The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.
Polarized electron-muon neutrino scattering to electron and neutrino in noncommutative space
Directory of Open Access Journals (Sweden)
MM Ettefaghi
2011-06-01
Full Text Available For neutrino scattering from polarized electron, the weak interaction term in the cross section is significantly suppressed by the polarized term. The magnetic moment term does not receive any correction from the electron polarization. Hence, the study of the magnetic moment of neutrinos through scattering from the polarized electron leads to a stronger bound on the neutrino magnetic moment compared with the unpolarized case. On the other hand, neutrinos which are electrically neutral can couple directly with photons in Noncommutative (NC QED. In this paper, we calculate the NC QED corrections on this scattering are calculated. The phase difference between the NC term and the polarized weak interaction term is π/2. Therefore, the NC term does not destroy the above suppression.
Kumar, Vijay; Subramanian, K. P.; Krishnakumar, E.
1987-01-01
Absolute electron-helium and electron-neon scattering cross sections have been measured at low electron energies using the powerful technique of photoelectron spectroscopy. The measurements have been carried out at 17 electron energies varying from 0.7 to 10 eV with an accuracy of + or - 2.7 percent. The results obtained in the present work have been compared with other recent measurement and calculations.
Scattering of positrons and electrons by alkali atoms
Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.
1990-01-01
Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.
Measurement of parity violation in electron-quark scattering.
2014-02-01
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u - C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
Scalar-pseudoscalar interactions in neutrino-electron scattering
Gaitán, R; Miranda, O G; de Oca, J H Montes
2013-01-01
Many extensions to the Standard Model imply the existence of new charged scalar Higgs bosons. We study the contribution of a general scalar or pseudoscalar coupling for the neutrino-electron scattering. We take a phenomenological approach in order to obtain model independent limits to the couplings that arise in this picture. We illustrate the reach of the constraints by studying the particular case of the type III two Higgs doublet model, where we have found new constraints to some elements of the Yukawa couplings mixing matrix ($|Y_{ee}| \\leq 1 \\times 10^{-1}$ and $|Y_{e\\mu}| \\leq 7\\times10^{-2}$ at 90% CL).
Transition probability functions for applications of inelastic electron scattering.
Löffler, Stefan; Schattschneider, Peter
2012-09-01
In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations.
Proton root-mean-square radii and electron scattering
Sick, Ingo
2014-01-01
The standard procedure of extracting the proton root-mean-square radii from models for the Sachs form factors $G_e (q)$ and $G_m (q)$ fitted to elastic electron-proton scattering data %has a serious flaw. is more uncertain than traditionally assumed. The extrapolation of $G(q)$, from the region $q_{min} < q < q_{max}$ covered by data to momentum transfer $q=0$ where the $rms$-radius is obtained, often depends on uncontrolled properties of the parameterization used. Only when ensuring that the corresponding densities have a physical behavior at large radii $r$ can reliable $rms$-radii be determined.
Radiative corrections and parity violating electron-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
S. Barkanova; A. Aleksejevs; P.G. Blunden
2002-11-01
Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combines with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.
Radiative corrections and parity-violating electron-nucleon scattering
Barkanova, S; Blunden, P G
2002-01-01
Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combined with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.
ELECTRON SCATTERING EXPERIMENTS ON THE NEUTRON AND PROTON
Energy Technology Data Exchange (ETDEWEB)
Berkelman, Karl
1963-06-15
The electric and magnetic helicity form factors of the proton are measured at 4-momentum transfers (squared) of 25 to 45 f/sup -2/, by means of electron scattering by protons at high energies. The results are combined with other e/sup -/--p and e/sup -/--d experimental findings in order to show the proton form fuctors from 0 to 45 f/sup -2/ and the neutron form factors from 0 to 25 f/sup -2/. (T.F.H.)
Scattered electron beams shaped by a multileaf collimator
Moran, Jean Marie
Recent developments in conformal radiation therapy have focused primarily on applying computer-controlled equipment and techniques to photon beams. Despite favorable characteristics of the dose fall-off with depth for electron beams, their application to conformal therapy has been limited. Factors such as geometrically limiting applicator systems, lack of automatic field shaping, and dose calculation model limitations must be addressed before routine clinical use of electron beams for conformal radiotherapy becomes common. This work evaluates dose characteristics and modeling of dose distributions and output factors for a system specifically designed for computer-controlled collimation of dual-foil scattered and scanned electron beams. Dose characteristics determined from measured depth dose curves and profiles were evaluated for multileaf- collimated and applicator-collimated beams produced by the dual-foil scattered gantry of a two-gantry racetrack microtron system. The resulting dose distributions and characteristics were used to evaluate and modify the existing 3-D electron pencil beam algorithm in UMPlan, the University of Michigan treatment planning system, to predict relative dose distributions for MLC-shaped fields. Output factors (dose of a field relative to that of a reference field) were measured, analyzed, and modeled for MLC-collimated rectangular and shaped fields. For output factor calculations, two models were evaluated: a pencil beam-derived model and an empirical edge model originally developed for photon dose calculations. The current work shows that the dosimetric characteristics of MLC and applicator-collimated beams of the racetrack microtron are similar once the collimation geometry is accounted for. The dosimetric characteristics are also consistent with those for other dual-foil scattered machines with applicator systems and earlier generation scanned beams collimated with trimmer bars. By accounting for collimation geometry, electron
Electron scattering by O2 at intermediate and high energies
Institute of Scientific and Technical Information of China (English)
Deheng Shi; Jinfeng Sun; Xiangdong Yang; Zunlue Zhu; Yufang Liu
2005-01-01
@@ A complex optical model potential correlated by the concept of bonded atoms, which considers the overlapping effect of electron clouds between two atoms in a molecule, is firstly employed to calculate the absolute differential cross sections, the integrated and momentum transfer cross sections for electrons scattered by O2 at intermediate and high energies by using additivity rule model at Hartree-Fock level. In the study,the complex optical model potential is composed of static, exchange, correlation polarization plus absorption contributions. The quantitative absolute differential cross sections, the integrated and momentum transfer cross sections are obtained. Compared with available experimental data, this approach presents good results. It is shown that the additivity rule model together with the complex optical model potential correlated by the concept of bonded atoms is completely suitable for the calculations of the absolute differential cross sections, the integrated and momentum transfer cross sections.
Electronic Raman scattering and the renormalization of the electron spectrum in LuB{sub 12}
Energy Technology Data Exchange (ETDEWEB)
Ponosov, Yu. S., E-mail: ponosov@imp.uran.ru; Streltsov, S. V., E-mail: streltsov@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Levchenko, A. V.; Filippov, V. B. [National Academy of Sciences of Ukraine, Frantsevich Institute of Materials Science Problems (Ukraine)
2016-09-15
The electronic Raman scattering in LuB{sub 12} single crystals of various isotope compositions is studied in the temperature range 10–650 K. The shape and the energy position of spectral maxima depend on the direction and magnitude of a probe wavevector, the temperature, and the excitation symmetry and remain unchanged when the isotope composition changes. Experimental spectra are compared with the spectra simulated on the basis of a calculated electronic structure. The experimental results are successfully described when the electron spectrum renormalization effects caused by electron–phonon coupling are taken into account. This confirms that the origin of the observed spectra in LuB{sub 12} is due to Raman scattering by electrons. A comparison of the calculated and experimental data makes it possible to determine the coupling constant (λ{sub ep} = 0.32) that gives the correct superconducting transition temperature.
Ivanov, M V; Caballero, J A; Antonov, A N; de Guerra, E Moya; Gaidarov, M K
2008-01-01
The superscaling analysis using the scaling function obtained within the coherent density fluctuation model is extended to calculate charge-changing neutrino and antineutrino scattering on $^{12}$C at energies from 1 to 2 GeV not only in the quasielastic but also in the delta excitation region. The results are compared with those obtained using the scaling functions from the relativistic Fermi gas model and from the superscaling analysis of inclusive scattering of electrons from nuclei.
Nuclear isospin mixing and elastic parity-violating electron scattering
Energy Technology Data Exchange (ETDEWEB)
Moreno, O. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain)], E-mail: sarriguren@iem.cfmac.csic.es; Moya de Guerra, E.; Udias, J.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Donnelly, T.W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Sick, I. [Departement fuer Physik, Universitaet Basel, CH-4056 Basel (Switzerland)
2009-09-15
The influence of nuclear isospin mixing on parity-violating elastic electron scattering is studied for the even-even, N=Z nuclei {sup 12}C, {sup 24}Mg, {sup 28}Si, and {sup 32}S. Their ground-state wave functions have been obtained using a self-consistent axially-symmetric mean-field approximation with density-dependent effective two-body Skyrme interactions. Some differences from previous shell-model calculations appear for the isovector Coulomb form factors which play a role in determining the parity-violating asymmetry. To gain an understanding of how these differences arise, the results have been expanded in a spherical harmonic oscillator basis. Results are obtained not only within the plane-wave Born approximation, but also using the distorted-wave Born approximation for comparison with potential future experimental studies of parity-violating electron scattering. To this end, for each nucleus the focus is placed on kinematic ranges where the signal (isospin-mixing effects on the parity-violating asymmetry) and the experimental figure-of-merit are maximized. Strangeness contributions to the asymmetry are also briefly discussed, since they and the isospin mixing contributions may play comparable roles for the nuclei being studied at the low momentum transfers of interest in the present work.
Review of two-photon exchange in electron scattering
Energy Technology Data Exchange (ETDEWEB)
J. Arrington, P. G. Blunden, W. Melnitchouk
2011-10-01
We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.
Electron scattering from neon via effective range theory
Energy Technology Data Exchange (ETDEWEB)
Fedus, Kamil, E-mail: kamil@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun (Poland)
2014-07-01
Elastic cross-sections for electron scattering on neon from 0 energy up to 16 eV are analyzed by an analytical approach to the modified effective range theory (MERT). It is shown that energy and angular variations of elastic differential, integral and momentum transfer cross sections can be accurately parameterized by six MERT coefficients up to the energy threshold for the first Feshbach resonance. MERT parameters are determined empirically by numerical comparison with large collection of available experimental data of elastic total (integral) cross-sections. The present analysis is validated against numerous electron beams and swarm experiments. The comparison of derived MERT parameters with those found for other noble gases, helium, argon and krypton, is done. The derived scattering length (for the s-partial wave) in neon, 0.227a0, agrees well with recent theories; it is small but, differently from Ar and Kr, still positive. Analogue parameters for the p-wave and the d-wave are negative and positive respectively for all the four gases compared. (author)
Duda, G; Kemper, A; Duda, Gintaras; Gondolo, Paolo; Kemper, Ann
2006-01-01
Theoretical calculations of neutralino cross sections with various nuclei are of great interest to direct dark matter searches such as CDMS, EDELWEISS, ZEPLIN, and other experiments. These cross sections and direct detection rates are generally computed with standard, one or two parameter model-dependent nuclear form factors, which may not exactly mirror the actual form factor for the particular nucleus in question. As is well known, elastic electron scattering can allow for very precise determinations of nuclear form factors and hence nuclear charge densities for spherical or near-spherical nuclei. We use charge densities derived from elastic electron scattering data to calculate model independent form factors for various target nuclei important in dark matter searches, such as Si, Ge, S, Ca and others. We have found that for nuclear recoils in the range of 1-100 keV significant differences in cross sections and rates exist when the model independent form factors are used. DarkSUSY, a publicly-available adva...
Energy Technology Data Exchange (ETDEWEB)
Lee, Young S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2015-02-12
The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.
Energy Technology Data Exchange (ETDEWEB)
Bailey, Stephanie L. [College of William and Mary, Williamsburg, VA (United States)
2007-05-01
The goal of Experiment E04-115 (the G0 backward angle measurement) at Jefferson Lab is to investigate the contributions of strange quarks to the fundamental properties of the nucleon. The experiment measures parity-violating asymmetries in elastic electron scattering off hydrogen and quasielastic electron scattering off deuterium at backward angles at Q^{2} = 0.631 (GeV/c)^{2} and Q^{2} = 0.232 (GeV/c)^{2}. The backward angle measurement represents the second phase of the G0 experiment. The first phase, Experiment E00-006 (the G0 forward angle experiment), measured parity-violating asymmetries in elastic electron scattering off hydrogen at forward angles over a Q^{2} range of 0.1-1.0 (GeV/c)^{2}. The experiments used a polarized electron beam and unpolarized hydrogen and deuterium liquid targets. From these measurements, along with the electromagnetic form factors, one can extract the contribution of the strange quark to the proton's charge and magnetization distributions. This thesis represents a fi
Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules
Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio
2012-06-01
The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.
Electron Scattering From a High-Momentum Neutron in Deuterium
Energy Technology Data Exchange (ETDEWEB)
Klimenko, Alexei [Old Dominion Univ., Norfolk, VA (United States)
2004-05-01
The deuterium nucleus is a system of two nucleons (proton and neutron) bound together. The configuration of the system is described by a quantum-mechanical wave function and the state of the nucleons at a given time is not know a priori. However, by detecting a backward going proton of moderate momentum in coincidence with a reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred if we assume that the proton was a spectator to the reaction. This method, known as spectator tagging, was used to study the electron scattering from high-momentum neutrons in deuterium. The data were taken with a 5.765 GeV polarized electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. The accumulated data cover a wide kinematic range, reaching values of the invariant mass of the unobserved final state W* up to 3 GeV. A data sample of approximately 5 - 10^{5} events, with protons detected at large scattering angles (as high as 136 degrees) in coincidence with the forward electrons, was selected. The product of the neutron structure function with the initial nucleon momentum distribution F_{2n}. S was extracted for different values of W*, backward proton momenta p_{s} and momentum transfer Q^{2}. The data were compared to a calculation based on the spectator approximation and using the free nucleon form factors and structure functions. A strong enhancement in the data, not reproduced by the model, was observed at cos(theta_{pq}) > -0.3 (where theta{sub pq} is the proton scattering angle relative to the direction of the momentum transfer) and can be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. The bound nucleon structure function F_{2n} was studied in the region cos(theta_{pq}) < -0.3 as a function of W* and scaling variable x*. At high spectator proton momenta the struck neutron is
Signals of strong electronic correlation in ion scattering processes
Bonetto, F.; Gonzalez, C.; Goldberg, E. C.
2016-05-01
Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.
van Lammeren, A. C. A. P.; Barth, C. J.; Vanest, Q. C.; Schüller, F. C.
1992-01-01
The Thomson scattering spectrum represents the projection of the three-dimensional electron velocity distribution on the scattering vector. From this the local electron temperature and density can be derived. To determine the three-dimensional electron velocity distribution it is necessary to have s
Hot electron attenuation of direct and scattered carriers across an epitaxial Schottky interface
Parui, S.; Klandermans, P. S.; Venkatesan, S.; Scheu, C.; Banerjee, T.
2013-01-01
Hot electron transport of direct and scattered carriers across an epitaxial NiSi2/n-Si(111) interface, for different NiSi2 thickness, is studied using ballistic electron emission microscopy (BEEM). We find the BEEM transmission for the scattered hot electrons in NiSi2 to be significantly lower than
Electronic structure of CaCO₃: a Compton scattering study.
Mohammed, S F; Mohammad, F M; Sahariya, Jagrati; Mund, H S; Bhamu, K C; Ahuja, B L
2013-02-01
In the present work, we have studied electron momentum density of CaCO₃ using a Compton scattering technique. The experiment has been performed using a 100 mCi (241)Am (59.54 keV) Compton spectrometer. The experimental data have been interpreted in terms of theoretical Compton profiles. To compute the theoretical momentum densities, energy bands and density of states, we have used linear combination of atomic orbitals method as embodied in CRYSTAL09 code. We have used local density approximation, generalized gradient approximation (GGA) and second order GGA (SOGGA) within the frame work of density functional theory. It is seen that the GGA gives a better agreement with the experimental data than other approximations. We have also discussed the energy bands and density of states of CaCO₃.
Giant magnetic quadrupole resonance studied with 180 deg. electron scattering
Neumann-Cosel, P V
1999-01-01
The nuclei sup 4 sup 8 Ca and sup 9 sup 0 Zr were investigated in 180 deg. high-resolution inelastic electron scattering for momentum transfers q approx =0.35-0.8 fm sup - sup 1. Complete M2 strength distributions could be extracted in both nuclei up to excitation energies of about 15 MeV utilizing a fluctuation analysis technique. Second-RPA calculations successfully describe the experimentally observed strong fragmentation of the M2 mode. The quenching of the spin part is found to be comparable to the M1 case, contrary to previous claims suggesting a stronger reduction. A quantitative reproduction of the data requires the presence of appreciable orbital strength which can be interpreted as a torsional elastic vibration (the so-called twist mode).
The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data
Kushner, Mark J.
2015-09-01
Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.
Neutron scattering study on U-dichalcogenides
Energy Technology Data Exchange (ETDEWEB)
Metoki, N; Kaneko, K; Ikeda, S; Sakai, H; Yamamoto, E; Haga, Y; Shiokawa, Y [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Homma, Y, E-mail: naoto.metoki@jaea.go.jp [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)
2010-03-15
We will report the results of our recent inelastic neutron scattering study on {beta}-US{sub 2}. This compound shows a semi-metallic or narrow gap semi-conducting behaviour at room temperature. A clear exponential up-turn of the resistivity in the order of {approx}10{sup 6} {Omega}cm has been observed below 100 K. We found a sharp inelastic peak at the excitation energy of about 7 meV at 8 K. The Q-dependence of the peak intensity is in good agreement with the magnetic form factor of U{sup 4+} ion and no clear dispersion relation has been observed. Therefore we concluded that this is a crystalline electric field (CEF) excitation peak. The excitation energy is in good agreement with the CEF level scheme obtained from the susceptibility data. The CEF peak intensity decreases with increasing temperature and becomes much weaker than the calculated temperature factor expected from the CEF level scheme. Furthermore a quasi-elastic response appears, and coexists with a broadened CEF peak at higher temperatures. The quasi-elastic component is not due to phonon, because the temperature dependence of the intensity is inconsistent with calculation. We concluded that this quasi-elastic response is a hybridization effect of U-5f electrons with, most likely, p-electrons of sulfur. It is highly interesting that the energy scale of the CEF peak ({approx}7 meV) is very close to the conduction gap (90K), and the quasi-elastic component appears above the characteristic temperature of about 100 K. Our data strongly suggest that the crossover of 5f character plays an import role for the metal-insulating transition in {beta}-US{sub 2}.
Horne, R. B.; Thorne, R. M.; Meredith, N. P.; Anderson, R. R.
2003-07-01
There are two main theories for the origin of diffuse auroral electron precipitation: precipitation by electrostatic ECH waves and precipitation by whistler mode waves. Here we analyze a case event where whistler mode hiss, chorus, and ECH waves are intensified during a weak substorm injection event to identify the source of particle precipitation. Examination of the particle data shows that there are three sources of free energy: a temperature anisotropy, a loss cone, and a pancake distribution. Instability analysis shows that the temperature anisotropy excites whistler mode hiss whereas both the temperature anisotropy and the pancake distribution contribute to the excitation of chorus. ECH waves are driven unstable by the loss cone. Wave propagation studies show that the path integrated gain of hiss and chorus is almost unaffected by changes in the depth of the loss cone, whereas ECH waves are very sensitive. Analysis of the changes in the resonant energy during propagation shows that the hiss resonates with electrons above a few keV while chorus resonates below a few hundred eV. As a result, neither hiss nor chorus are likely to cause significant electron precipitation from a few hundred eV to a few keV for this event. On the other hand, ECH waves resonate with electrons in the energy range between that for chorus and hiss. ECH waves can scatter electrons with pitch angles of up to 80° into the loss cone. We conclude that ECH waves are responsible for the formation of the pancake distribution and are probably the main component of diffuse auroral precipitation during this event. We suggest that substorm-injected electrons are responsible for the intensification of hiss and ECH waves and that rapid scattering of electrons by ECH waves forms the pancake distribution which then excites chorus. We also suggest that rapid pitch angle scattering by ECH waves could be responsible for double frequency banded chorus emissions.
Entanglement dynamics of electron-electron scattering in low-dimensional semiconductor systems
Buscemi, F; Bordone, P; Bertoni, Andrea; Bordone, Paolo; Buscemi, Fabrizio
2006-01-01
We perform the quantitative evaluation of the entanglement dynamics in scattering events between two insistinguishable electrons interacting via Coulomb potential in 1D and 2D semiconductor nanostructures. We apply a criterion based on the von Neumann entropy and the Schmidt decomposition of the global state vector suitable for systems of identical particles. From the timedependent numerical solution of the two-particle wavefunction of the scattering carriers we compute their entanglement evolution for different spin configurations: two electrons with the same spin, with different spin, singlet, and triplet spin state. The procedure allows to evaluate the mechanisms that govern entanglement creation and their connection with the characteristic physical parameters and initial conditions of the system. The cases in which the evolution of entanglement is similar to the one obtained for distinguishable particles are discussed.
Electron to Muon Conversion in Low-Energy Electron-Nucleus Scattering
Diener, Kai-Peer O
2004-01-01
We present an estimate of the electron to muon conversion cross section in fixed-target elastic electron scattering. The matrix element $$ is calculated analytically in two scenarios introducing suitable approximations. We consider on the one hand side the case of three light Dirac neutrinos with CKM-type leptonic mixing and on the other hand a typical see-saw scenario. We evaluate the coulombic contribution to the scattering cross section in the limit of vanishing energy transfer to the nucleus and, thus, obtain a realistic estimate for the total conversion cross section. Although we find that in the see-saw scenario the cross section can be enhanced by as much as twenty orders of magnitude in comparison to the Dirac case, it is still not experimentally accessible.
High resolution electron scattering on {sup 96}Zr
Energy Technology Data Exchange (ETDEWEB)
Kremer, Christoph; Bassauer, Sergej; Krugmann, Andreas; Krumbholz, Anna Maria; Pietralla, Norbert; Singer, Maxim; Neumann-Cosel, Peter von [Institut fuer Kernphysik, TU Darmstadt (Germany)
2015-07-01
The low-energy structure of the nucleus {sup 96}Zr is interesting for numerous reasons - especially the strong octupole correlation leading to an excitation of the prominent 3{sup -}{sub 1} state with the largest known ground-state transition strength (B(E3, 3{sup +}{sub 1} → 0{sup +}{sub 1}) = 57(4) W.u.) of all nuclei. Even though this nucleus is a good testing ground for nuclear structure theories some low-energy observables are known with insufficient precision. Especially the transition strength of low-lying 2{sup +} states, which are important for the identification of mixed-symmetry states, have large uncertainties. Electron scattering at low impulse transfer has been shown to be capable of obtaining these B(E2) values with high precision. A {sup 96}Zr(e,e{sup '}) experiment has recently been performed at the superconducting electron linear accelerator S-DALINAC at Darmstadt using the high-resolution LINTOTT spectrometer. The experiment and preliminary results are presented.
Electron Scattering From High-Momentum Neutrons in Deuterium
Klimenko, A V; Ambrozewicz, P; Anghinolo, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Biselli, A S; Bltmann, S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Cazes, A; Chen, S; Cole, P L; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Cummings, J P; Dashyan, N B; De Sanctis, E; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Eugenio, P; Fatemi, R; Fedotov, G; Fersch, R G; Feuerbach, R J; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gonenc, A; Gordon, C I O; Gothe, R W; Grioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Kramer, L H; Kubarovski, V; Kuhn, S E; Kuleshov, S V; Kühn, J; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Li, J; Livingston, K; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Mutchler, G S; Müller, J; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A V; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B
2006-01-01
We report results from an experiment measuring the semi-inclusive reaction $d(e,e'p_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $\\vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that ...
Influence of Heat-radiating on Multi-photon Compton Scattering High-energy Electron
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; WANG Xin-min
2007-01-01
Using the model of the inverse Compton scattering between high-energy electrons and heat-radiation photons, the influence of heat-radiating photons on multi-photon Compton scattering high-energy electrons is studied . The results show that the energy loss, power loss, light resistance and light pressure of the high-energy electron formed by heat radiating are all proportional to the temperature T4 of the vacuum cavity of the electron,the Lorentz factor γ2 of the high-energy electrons, the scattering section of the electron and the number of photons acting at the same time with high-energy electrons. A good method for lessening the energy loss of the high-energy electron by using the one-photon Compton scattering between high-energy electrons and heat radiation photons is proposed.
Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne
2014-04-25
We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840 eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.
Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.
2016-04-01
We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.
Register, D. F.; Trajmar, S.; Fineman, M. A.; Poe, R. T.; Csanak, G.; Jensen, S. W.
1983-01-01
Differential (in angle) electron scattering experiments on laser-excited Ba-138 1P were carried out at 30- and 100-eV impact energies. The laser light was linearly polarized and located in the scattering plane. The superelastic scattering signal was measured as a function of polarization direction of the laser light with respect to the scattering plane. It was found at low electron scattering angles that the superelastic scattering signal was asymmetric to reflection of the polarization vector with respect to the scattering plane. This is in contradiction with theoretical predictions. An attempt was made to pinpoint the reason for this observation, and a detailed investigation of the influence of experimental conditions on the superelastic scattering was undertaken. No explanation for the asymmetry has as yet been found.
Aguilar-Arevalo, A A; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; Coney, L; Conrad, J M; Cox, D C; Curioni, A; Djurcic, Z; Finley, D A; Fleming, B T; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, C; Green, J A; Hart, T L; Hawker, E; Imlay, R; Johnson, R A; Karagiorgi, G; Kasper, P; Katori, T; Kobilarcik, T; Kourbanis, I; Koutsoliotas, S; Laird, E M; Linden, S K; Link, J M; Liu, Y; Liu, Y; Louis, W C; Mahn, K B M; Marsh, W; Mauger, C; McGary, V T; McGregor, G; Metcalf, W; Meyers, P D; Mills, F; Mills, G B; Monroe, J; Moore, C D; Mousseau, J; Nelson, R H; Nienaber, P; Nowak, J A; Osmanov, B; Ouedraogo, S; Patterson, R B; Pavlovic, Z; Perevalov, D; Polly, C C; Prebys, E; Raaf, J L; Ray, H; Roe, B P; Russell, A D; Sandberg, V; Schirato, R; Schmitz, D; Shaevitz, M H; Shoemaker, F C; Smith, D; Soderberg, M; Sorel, M; Spentzouris, P; Spitz, J; Stancu, I; Stefanski, R J; Sung, M; Tanaka, H A; Tayloe, R; Tzanov, M; Van de Water, R G; Wascko, M O; White, D H; Wilking, M J; Yang, H J; Zeller, G P; Zimmerman, E D
2010-01-01
A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ($\\frac{d^2\\sigma}{dT_\\mu d\\cos\\theta_\\mu}$) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ($\\sigma[E_\
Quasi-elastic events and nuclear effects with the K2K Sci-Fi detector
Energy Technology Data Exchange (ETDEWEB)
Walter, Christopher W. E-mail: walter@budoe.bu.edu
2002-11-01
The near detector complex of the K2K long-baseline neutrino experiment contains a scintillating fiber tracking detector. It is capable of detecting not only the muon but also the outgoing proton in neutrino-nucleon scattering. This allows for the enhancement of quasi-elastic interactions in the data sample. However, a proper modeling of the nuclear re-interactions of the proton is necessary to achieve reliable results.
Strange quarks in the nucleon and parity violation in polarized electron scattering
Van de Wiele, J
2001-01-01
In this review, we show that the measurement of asymmetry in polarized electron- nucleon scattering provides information about the quark structure of the nucleon.. The formalism of parity-violating electron-nucleon scattering with the theoretical assumptions is presented. An experimental overview of specific experiments with recent results as well as upcoming experiments is discussed.
Chiral recognition in electron scattering by S- and R-2-butanol
DEFF Research Database (Denmark)
Jones, Nykola C.; Hoffmann, Søren Vrønning; Field, David
2015-01-01
Experiments are described involving the low energy scattering of electrons from the two optical enantiomers S- and R- 2-butanol. Using a synchrotron radiation photoionization source on the ASTRID storage ring, scattering spectra are reported between a few meV and 140 meV at an electron energy...
Ni, B.; Liang, J.; Thorne, R. M.; Angelopoulos, V.; Horne, R. B.; Kubyshkina, M.; Spanswick, E. L.; Donovan, E.; Lummerzheim, D.
2011-12-01
We report a causal connection between the intensification of electrostatic ECH waves and the postmidnight diffuse auroral activity in the absence of whistler-mode chorus waves at L = 11.5 on the basis of simultaneous observations from THEMIS spacecraft and NORSTAR optical instruments during 8 - 9 UT on February 5, 2009. We use the THEMIS particle and wave measurements together with the magnetically conjugate auroral observations for this event to illustrate an example where electrostatic electron cyclotron harmonic (ECH) waves are the main contributor to the diffuse auroral precipitation. We use the wave and particle data to perform a comprehensive theoretical and numerical analysis of ECH wave driven resonant scattering rates. We find that the observed ECH wave activity can cause intense pitch angle scattering of plasma sheet electrons between 100 eV and 5 keV at a rate of > 10-4 s-1 for equatorial pitch angles < 30°. The scattering approaches the strong diffusion limit in the realistic ambient magnetic field to produce efficient precipitation loss of < ~ 5 keV electrons on a timescale of a few hours or less. Using the electron differential energy flux inside the loss cone estimated based upon the energy-dependent efficiency of ECH wave scattering for an 8-second interval with high resolution wave data available, the auroral electron transport model developed by Lummerzheim [1987] produced an intensity of ~ 2.3 kR for the green-line diffuse aurora. Separately, Maxwellian fitting to the electron differential flux spectrum produced a green-line auroral intensity of ~ 2.6 kR. This is in good agreement with the ~2.4 kR green-line auroral intensity observed simultaneously at the magnetic footpoint (as inferred using the event-adaptive model of Kubyshkina et al. [2009, 2011]) of the location where the in situ observations were obtained. Our results support the scenario that enhanced ECH emissions in the central plasma sheet (CPS) can be an important or even dominant
Robinson, P. A.; Newman, D. L.
1990-01-01
Strong turbulence and transit-time scattering theory are applied here to calculate the statistical distribution of intense Langmuir fields and the consequent beam scattering in plasma turbulence driven by an electron beam. The experimentally observed electric-field distributions are compared with predictions of strong-turbulence theory, concentrating on the wave levels, the Gaussian tail of the high-field distribution observed in one experiment, the arrest scale of collapse, and the fractional volume occupied by the highest fields. The Guassian form of the tail is confirmed, and the results imply that the collapse is arrested at a scale where the peak electrostatic energy density is of the same order as the thermal energy density. The theory of transit-time interactions is generalized to include relativistic particle dynamics and is applied to predict the scattering of the beam electrons in energy and angle as they pass through strong Langmuir turbulence. The results support the validity of the recently developed scaling theory of strong turbulence.
Electron Scattering From High-Momentum Neutrons in Deuterium
Energy Technology Data Exchange (ETDEWEB)
A.V. Klimenko; S.E. Kuhn
2005-10-12
We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.
Electron scattering disintegration processes on light nuclei in covariant approach
Kuznietsov, P. E.; Kasatkin, Yu. A.; Klepikov, V. F.
2016-07-01
We provide general analysis of electro-break up process of compound scalar system. We use covariant approach with conserved EM current, which gives the ability to include strong interaction into QED. Therefore, we receive the ability to describe disintegration processes on nonlocal matter fields applying standard Feynman rules of QED. Inclusion of phase exponent into wave function receives a physical sense while we deal with the dominance of strong interaction in the process. We apply Green's function (GF) formalism to describe disintegration processes. Generalized gauge invariant electro-break up process amplitude is considered. One is a sum of traditional pole series and the regular part. We explore the deposits of regular part of amplitude, and its physical sense. A transition from virtual to real photon considered in photon point limit. The general analysis for electro-break up process of component scalar system is given. Precisely conserved nuclear electromagnetic currents at arbitrary square of transited momentum are received. The only undefined quantity in theory is vertex function. Therefore, we have the opportunity to describe electron scattering processes taking into account minimal necessary set of parameters.
Two photon exchange in elastic electron-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Peter Blunden; Wolodymyr Melnitchouk; John Tjon
2005-06-01
A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio. The two-photon exchange contribution to the longitudinal polarization transfer ratio P{sub L} is small, whereas the contribution to the transverse polarization transfer ratio P{sub T} is enhanced at backward angles by several percent, increasing with Q{sup 2}. This gives rise to a several percent enhancement of the polarization transfer ratio P{sub T}/P{sub l} at large Q{sup 2} and backward angles. We compare the two-photon exchange effects with data on the ratio of e{sup +p} to e{sup -p} cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the {sup 3}He form factors.
Electron scattering disintegration processes on light nuclei in covariant approach
Directory of Open Access Journals (Sweden)
Kuznietsov P.E.
2016-01-01
Full Text Available We provide general analysis of electro-break up process of compound scalar system. We use covariant approach with conserved EM current, which gives the ability to include strong interaction into QED. Therefore, we receive the ability to describe disintegration processes on nonlocal matter fields applying standard Feynman rules of QED. Inclusion of phase exponent into wave function receives a physical sense while we deal with the dominance of strong interaction in the process. We apply Green’s function (GF formalism to describe disintegration processes. Generalized gauge invariant electro-break up process amplitude is considered. One is a sum of traditional pole series and the regular part. We explore the deposits of regular part of amplitude, and its physical sense. A transition from virtual to real photon considered in photon point limit. The general analysis for electro-break up process of component scalar system is given. Precisely conserved nuclear electromagnetic currents at arbitrary square of transited momentum are received. The only undefined quantity in theory is vertex function. Therefore, we have the opportunity to describe electron scattering processes taking into account minimal necessary set of parameters.
Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation
Energy Technology Data Exchange (ETDEWEB)
Afanasev, Andrei; /Hampton U. /Jefferson Lab; Brodsky, Stanley J.; /SLAC; Carlson, Carl E.; /William-Mary Coll.; Mukherjee, Asmita; /Indian Inst. Tech., Mumbai
2009-03-31
We propose measurements of the deeply virtual Compton amplitude (DVCS) {gamma}* {yields} H{bar H}{gamma} in the timelike t = (p{sub H} + p{sub {bar H}}){sup 2} > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e{sup +}e{sup -} {yields} H{bar H}{gamma}. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H{bar H} hadron pairs such as {pi}{sup +}{pi}{sup -}, K{sup +}K{sup -}, and D{bar D} as well as p{bar p}. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C = - form factors. The interference between the amplitudes measures the phase of the C = + timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e{sup +} {leftrightarrow} e{sup -} asymmetry. The J = 0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.
Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation
Energy Technology Data Exchange (ETDEWEB)
Andrei Afanaciev,Andrei Afanasev, Stanley J. Brodsky, Carl E. Carlson, Asmita Mukherjee
2010-02-01
We propose measurements of the deeply virtual Compton amplitude (DVCS), gamma* to H H-bar gamma, in the timelike t = (p_{H} + p_{H-bar})^2 > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e+ e- to H H-bar gamma. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H H-bar hadron pairs such as pi+ pi-, K+ K-, and D D-bar as well as p p-bar. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C= - form factors. The interference between the amplitudes measures the phase of the C=+ timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e+ \\leftrightarrow e- asymmetry. The J=0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.
Electronic structure of the palladium hydride studied by compton scattering
Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y
2003-01-01
The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)
Energy Technology Data Exchange (ETDEWEB)
Megias, G.D. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); Amaro, J.E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teorica y Computacional, Universidad de Granada, 18071 Granada (Spain); Barbaro, M.B., E-mail: barbaro@to.infn.it [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Caballero, J.A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); Donnelly, T.W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2013-08-09
We compare the predictions of the SuperScaling model for charged-current quasielastic muonic neutrino and antineutrino scattering from {sup 12}C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti)neutrino cross sections relevant for the νSTORM facility.
Amaro, J E; Caballero, J A; Donnelly, T W; Megias, G D
2013-01-01
We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from $^{12}$C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the $\
Fine structure of inelastic electron scattering cross-section spectra for MN
Parshin, A. S.; Igumenov, A. Yu; Mikhlin, Yu L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-04-01
The comparative analysis of the reflection electron energy loss spectra and the inelastic electron scattering cross-section spectra for Mn was carried out. It is shown that inelastic electron scattering cross-section spectra have certain advantages in the study of the interaction of electrons with the substance as compared to the electron energy loss spectra. The inelastic electron scattering cross section spectra fine structure was analysed by fitting the experimental spectra using the 3 parameters Lorentzian-type formula of Tougaard. This method was used for the quantitative analysis of the contributions of various loss processes in the inelastic electron scattering cross section spectra, determination of the loss peaks energies and origin.
Energy Technology Data Exchange (ETDEWEB)
Blais, N.; Podgorsak, E.B. (Montreal General Hospital, PQ (Canada). Dept. of Medical Physics)
1992-10-01
A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author).
Construction of the SCRIT electron scattering facility at the RIKEN RI Beam Factory
Wakasugi, M.; Ohnishi, T.; Wang, S.; Miyashita, Y.; Adachi, T.; Amagai, T.; Enokizono, A.; Enomoto, A.; Haraguchi, Y.; Hara, M.; Hori, T.; Ichikawa, S.; Kikuchi, T.; Kitazawa, R.; Koizumi, K.; Kurita, K.; Miyamoto, T.; Ogawara, R.; Shimakura, Y.; Takehara, H.; Tamae, T.; Tamaki, S.; Togasaki, M.; Yamaguchi, T.; Yanagi, K.; Suda, T.
2013-12-01
The SCRIT electron scattering facility, aiming at electron scattering off short-lived unstable nuclei, has been constructed at the RIKEN RI Beam Factory. This facility consists of a racetrack microtron (RTM), an electron storage ring (SR2) equipped with the SCRIT system, and a low-energy RI separator (ERIS). SCRIT (self-confining radioactive isotope ion targeting) is a novel technique to form internal targets in an electron storage ring. Experiments for evaluating performance of the SCRIT system have been carried out using the stable 133Cs1+ beam and the 132Xe1+ beam supplied from ERIS. Target ions were successfully trapped in the SCRIT system with 90% efficiency at a 250 mA electron beam current, and luminosity exceeding 1026/(cm2 s) was maintained for more than 1 s. Electrons elastically scattered from the target ions were successfully measured. Applicability of the SCRIT system to electron scattering for unstable nuclei has been established in experiments.
Electron-scattering mechanisms in single-crystal K sub 3 C sub 60
Energy Technology Data Exchange (ETDEWEB)
Crespi, V.H.; Hou, J.G.; Xiang, X.; Cohen, M.L.; Zettl, A. (Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States) Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))
1992-11-01
The temperature-dependent resistivity of single-crystal K{sub 3}C{sub 60} is studied from the point of view of electron-electron and electron-phonon scattering. The electron-phonon analysis suggests that conventional electron-phonon coupling would be sufficient to account for the superconductivity, with contributions to the coupling from both high-frequency intraball and low-frequency interball modes. The resistivity was also compared to a quadratic temperature dependence, suggestive of electron-electron scattering at anomalously high temperatures.
Bounce resonance scattering of radiation belt electrons by H+ band EMIC waves
Cao, Xing; Ni, Binbin; Summers, Danny; Bortnik, Jacob; Tao, Xin; Shprits, Yuri Y.; Lou, Yuequn; Gu, Xudong; Fu, Song; Shi, Run; Xiang, Zheng; Wang, Qi
2017-02-01
We perform a detailed analysis of bounce-resonant pitch angle scattering of radiation belt electrons due to electromagnetic ion cyclotron (EMIC) waves. It is found that EMIC waves can resonate with near-equatorially mirroring electrons over a wide range of L shells and energies. H+ band EMIC waves efficiently scatter radiation belt electrons of energy >100 keV from near 90° pitch angles to lower pitch angles where the cyclotron resonance mechanism can take over to further diffuse electrons into the loss cone. Bounce-resonant electron pitch angle scattering rates show a strong dependence on L shell, wave normal angle distribution, and wave spectral properties. We find distinct quantitative differences between EMIC wave-induced bounce-resonant and cyclotron-resonant diffusion coefficients. Cyclotron-resonant electron scattering by EMIC waves has been well studied and found to be a potentially crucial electron scattering mechanism. The new investigation here demonstrates that bounce-resonant electron scattering may also be very important. We conclude that bounce resonance scattering by EMIC waves should be incorporated into future modeling efforts of radiation belt electron dynamics.
Two-photon exchange corrections in elastic electron-proton scattering
Tomalak, O
2016-01-01
We apply a subtracted dispersion relation (DR) formalism with the aim to improve predictions for the two-photon exchange (TPE) corrections to elastic electron-proton scattering observables at small momentum transfers. We study the formalism on the elastic TPE contribution in comparison with existing data for unpolarized cross sections. We extend the general formalism of TPE to elastic scattering with massive lepton and perform a numerical estimate of the muon-proton scattering at low momentum transfer in view of the upcoming muon-proton scattering experiment (MUSE). We study the influence of the double-virtual Compton scattering (VVCS) subtraction function on the unpolarized lepton-proton scattering cross-section. We show that the resulting TPE correction is negligible in the electron-proton scattering and smaller than planned uncertainties of the MUSE experiment for the subtraction functions evaluated in chiral perturbation theory.
Energy Technology Data Exchange (ETDEWEB)
Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2016-11-15
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.
2016-11-01
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Gustafson, Gosta; Ster, Andras; Corgo, Tamas
2015-01-01
In order to understand the initial partonic state in proton-nucleus and electron-nucleus collisions, we investigate the total, inelastic, and (quasi-)elastic cross sections in pA and gamma-A collisions, as these observables are insensitive to possible collective effects in the final state interactions. We used as a tool the DIPSY dipole model, which is based on BFKL dynamics including non-leading effects, saturation, and colour interference, which we have extended to describe collisions of protons and virtual photons with nuclei. We present results for collisions with O, Cu, and Pb nuclei, and reproduce preliminary data on the pPb inelastic cross section at LHC by CMS and LHCb. The large NN cross section results in pA scattering that scales approximately with the area. The results are compared with conventional Glauber model calculations, and we note that the more subtle dynamical effects are more easily studied in the ratios between the total, inelastic and (quasi-)elastic cross sections. The smaller photon ...
Elastic scattering of vortex electrons provides direct access to the Coulomb phase
Ivanov, I P; Surzhykov, A; Fritzsche, S
2016-01-01
Vortex electron beams are freely propagating electron waves carrying adjustable orbital angular momentum with respect to the propagation direction. Such beams were experimentally realized just a few years ago and are now used to probe various electromagnetic processes. So far, these experiments used the single vortex electron beams, either propagating in external fields or impacting a target. Here, we investigate the elastic scattering of two such aligned vortex electron beams and demonstrate that this process allows one to experimentally measure features which are impossible to detect in the usual plane-wave scattering. The scattering amplitude of this process is well approximated by two plane-wave scattering amplitudes with different momentum transfers, which interfere and give direct experimental access to the Coulomb phase. This phase (shift) affects the scattering of all charged particles and has thus received significant theoretical attention but was never probed experimentally. We show that a properly ...
Coulomb scattering in a 2D interacting electron gas and production of EPR pairs.
Saraga, D S; Altshuler, B L; Loss, Daniel; Westervelt, R M
2004-06-18
We propose a setup to generate nonlocal spin Einstein-Podolsky-Rosen pairs via pair collisions in a 2D interacting electron gas, based on constructive two-particle interference in the spin-singlet channel at the pi/2 scattering angle. We calculate the scattering amplitude via the Bethe-Salpeter equation in the ladder approximation and small r(s) limit and find that the Fermi sea leads to a substantial renormalization of the bare scattering process. From the scattering length, we estimate the current of spin-entangled electrons and show that it is within experimental reach.
Alloy-disorder scattering in the quasi-one dimensional electron gas
Gold, A.; Ghazali, A.
1992-08-01
We calculate the mobility μ due to alloy-disorder scattering in a quasi-one-dimensional electron gas. In the one-subband approximation the screening effects are taken into account. We discuss the dependence of μ on the wire radius and the electron density and derive analytical results. We compare our results with the mobility due to interface-roughness scattering and conclude that in In 0.53Ga 0.47As/InP wires alloy-disorder scattering is more important than interface-roughness scattering. Our results should apply to recently realized In 0.53Ga 0.47As/InP wires.
Schwarm, F -W; Falkner, S; Pottschmidt, K; Wolff, M T; Becker, P A; Sokolova-Lapa, E; Klochkov, D; Ferrigno, C; Fuerst, F; Hemphill, P B; Marcu-Cheatham, D M; Dauser, T; Wilms, J
2016-01-01
Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron...
Low-energy electron elastic scattering from Os atom: New electron affinity
Felfli, Z.; Kiros, F.; Msezane, A. Z.
2013-05-01
Bilodeau and Haugan measured the binding energies (BEs) of the ground state and the excited state of the Os- ion to be 1.07780(12) eV and 0.553(3) eV, respectively. These values are consistent with those calculated in. Here our investigation, using the recent complex angular momentum methodology wherein is embedded the crucial electron-electron correlations and the vital core polarization interaction, has found that the near threshold electron-Os elastic scattering total cross section (TCS) is characterized by three stable bound states of the Os- ion formed as resonances during the slow electron collision, with BEs of 1.910 eV, 1.230 eV and 0.224 eV. The new extracted electron affinity (EA) value from the TCS of 1.910 eV for the Os atom is significantly different from that measured in. Our calculated elastic differential cross sections (DCSs) also yield the relevant BEs for the ground and the two excited states of the Os- ion. The complex characteristic resonance structure in the TCS for the Os atom is ideal for catalysis, but makes it difficult to execute the Wigner threshold law in describing the threshold detachment behavior of complex atoms and extracting the reliable attendant EAs. Supported by U.S. DOE, AFOSR and CAU CFNM, NSF-CREST Program.
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V., E-mail: ante0226@gmail.com [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS - University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.
differential cross sections of electron silver scattering at varying ...
African Journals Online (AJOL)
occur in quantum mechanics, quantum electrodynamics and partial wave expansion. The main ... The differential cross section is the main observable in quantum scattering experiments. .... program at run-time and have the exertion. DAT.
A new method for detecting pulse gamma ray with scattered electrons
Institute of Scientific and Technical Information of China (English)
Xia Liang-Bin; Ouyang Xiao-Ping; Wang Oun-Shu; Zang Ke-Jun; Tan Xin-Jian
2008-01-01
This paper describes a newly designed gamma pulse detector of current mode that uses the scattered electron method. Tungsten is used as the scattering target, an organic thin film scintillator ST401 is used to collect the scattered electrons. The spatial distribution of the electronic energy-flux density is studied by using the MCNP code. The optimization of the target and the thickness of the scintillator are also discussed. The results indicate that the energy response is relatively flat in the range of 0.4 to 5 MeV.
Zhidkov, A; Bulanov, S S; Hosokai, T; Koga, J; Kodama, R
2013-01-01
Non-linear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including the radiation damping for the quantum parameter hwx-ray/E<1 and an arbitrary radiation parameter Kai. The electron energy loss, along with its side scattering by the ponderomotive force, makes the scattering in the vicinity of high laser field nearly impossible at high electron energies. The use of a second, co-propagating laser pulse as a booster is shown to solve this problem.
Electron Scattering from Freely Moveable spin-$\\frac{1}{2}$ fermion in Strong Laser Field
Liu, Ai-Hua
2014-01-01
We study the electron scatter from the freely movable spin-$\\frac{1}{2}$ particle in the presence of a linearly polarized laser field in the first Born approximation. The dressed state of electrons is described by a time-dependent wave function derived from a perturbation treatment (of the laser field). With the aid of numerical results we explore the dependencies of the differential cross section on the laser field properties such as the strength, the frequency, as well as on the electron-impact energy, etc. Due to the targets are movable, the DCS of this process reduced comparing to the Mott scattering, especially in small scattering angles.
2017-01-20
AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...SUBTITLE The Strength of Chaos: accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos...Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence of quantum chaos” Date 13
Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light
Seipt, D; Fritzsche, S
2014-01-01
The inverse Compton scattering of laser light on high-energetic twisted electrons is investigated with the aim to construct spatially structured x-ray beams. In particular, we analyze how the properties of the twisted electrons, such as the topological charge and aperture angle of the electron Bessel beam, affects the energy and angular distribution of scattered x-rays. We show that with suitably chosen initial twisted electron states one can synthesize tailor-made x-ray beam profiles with a well-defined spatial structure, in a way not possible with ordinary plane-wave electron beams.
Intersection of low-energy electron-atom scattering and photodetachment of negative ions
Felfli, Zineb
2014-01-01
We propose to use the near-threshold electron scattering data for atoms to guide the reliable experimental determination of their electron affinities (EAs), extracted using the Wigner Threshold Law, from laser photodetachment threshold spectroscopy measurements. Data from the near-threshold electron elastic scattering from W, Te, Rh, Sb and Sn atoms calculated using our complex angular momentum method, wherein is embedded the electron-electron correlations and core polarization interaction, are used as illustrations. We conclude with a remark on the relativistic effects on the EA calculation for the heavy At atom.
Weatherford, Charles A.
1993-01-01
One version of the multichannel theory for electron-target scattering based on the Schwinger variational principle, the SMC method, requires the introduction of a projection parameter. The role of the projection parameter a is investigated and it is shown that the principal-value operator in the SMC equation is Hermitian regardless of the value of a as long as it is real and nonzero. In a basis that is properly orthonormalizable, the matrix representation of this operator is also Hermitian. The use of such basis is consistent with the Schwinger variational principle because the Lippmann-Schwinger equation automatically builds in the correct boundary conditions. Otherwise, an auxiliary condition needs to be introduced, and Takatsuka and McKoy's original value of a is one of the three possible ways to achieve Hermiticity. In all cases but one, a can be uncoupled from the Hermiticity condition and becomes a free parameter. An equation for a based on the variational stability of the scattering amplitude is derived; its solution has an interesting property that the scattering amplitude from a converged SMC calculation is independent of the choice of a even though the SMC operator itself is a-dependent. This property provides a sensitive test of the convergence of the calculation. For a static-exchange calculation, the convergence requirement only depends on the completeness of the one-electron basis, but for a general multichannel case, the a-invariance in the scattering amplitude requires both the one-electron basis and the N plus 1-electron basis to be complete. The role of a in the SMC equation and the convergence property are illustrated using two examples: e-CO elastic scattering in the static-exchange approximation, and a two-state treatment of the e-H2 Chi(sup 1)Sigma(sub g)(+) yields b(sup 3)Sigma(sub u)(+) excitation.
The electron-furfural scattering dynamics for 63 energetically open electronic states
da Costa, Romarly F.; do N. Varella, Márcio T.; Bettega, Márcio H. F.; Neves, Rafael F. C.; Lopes, Maria Cristina A.; Blanco, Francisco; García, Gustavo; Jones, Darryl B.; Brunger, Michael J.; Lima, Marco A. P.
2016-03-01
We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at either the static-exchange (Nopen ch-SE) or the static-exchange-plus-polarisation (Nopen ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.
Winge, David O.; Franckie, Martin; Verozzi, Claudio; Wacker, Andreas; Pereira, Mauro F.
2016-10-01
Regardless of all the success of Mid Infrared Quantum Cascade Lasers (QCLs), they still do not operate at room temperature in the THz range. The main temperature degrading mechanism for THz QCLs is not known in time of writing this abstract and it is still a topic of debate by the community [S. Khanal et al, J. Opt. 16 094001, 2014]. This is a challenge to theory and it is crucial to treat all possible scattering channels with the same mathematical footing. A summary of different methods for simulating these structures is found in [C. Jirauschek et al, Appl. Phys. Rev. 1 011307, 2014]. In this work we include and study the effects of electron-electron scattering via the Single Plasmon Pole Approximation (SPPA). In this approximation we capture both the static limit as well as dynamic effects. This gives an energy dependent (non-local in time) interaction beyond the Hartree-Fock approximation. This has been studied in a similar model with promising results [T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, 2009], and with this work we want to adapt the idea into the model described in Ref. [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, 2013]. We start by summarizing the theory underlying the SPPA and we show how it is implemented in the context of our formalism, by showing good agreement with the results for a four well quantum cascade laser [M. Amanti et al, New J. Phys. 11 125022, 2009].
Energy Technology Data Exchange (ETDEWEB)
Videbaek, F.; Goldstein, R.B.; Grodzins, L.; Steadman, S.G.; Belote, T.A.; Garrett, J.D.
1976-01-01
The total quasielastic (inelastic plus few nucleon transfer) and fission cross sections were measured for /sup 16/O + /sup 208/Pb at incident energies of 80, 83, 88, 90, 96, and 102 MeV and for /sup 16/O + /sup 181/Ta at incident energies of 83, 90 and 96 MeV. The total quasielastic cross sections account for about 50 percent of the total /sup 16/O + /sup 208/Pb reaction cross section at the lowest incident energy which is near the Coulomb barrier. At the highest incident energy the /sup 16/O + /sup 208/Pb quasielastic cross section still accounts for 25 percent of the total cross section. The measured ratio of quasielastic to total cross section for /sup 16/0 + /sup 181/Ta is less than for /sup 16/O + /sup 208/Pb; however, in the case of the /sup 181/Ta target the inelastic transitions to the low lying levels in /sup 181/Ta were not resolved from elastic scattering. Within the uncertainties of the measurements the sum of the measured quasielastic and fission cross sections for /sup 16/O on /sup 208/Pb accounts for the total reaction cross section, indicating that the probability of fission of the /sup 224/Th compound and Th daughter systems is large. In contrast for /sup 16/O + /sup 181/Ta (/sup 197/Tl compound system) the fission and quasielastic channels account for only a small fraction of the total reaction cross section.
Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment
Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.
2012-01-01
We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…
High-magnetic-field-assisted scattering of electrons with atomic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Ajoy [Laban Hrad Vidyapith, AD-369, Salt Lake City, Kolkata 700064 (India)
2007-04-28
We have investigated quantum mechanically the scattering of electrons off atomic hydrogen in a strong magnetic field. Elastic, inelastic, backward and total scattering cross sections are reported. Near-resonance behaviour of the system is analysed. Results are presented after evaluating and summing all-order Born series under suitable physical conditions.
Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment
Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.
2012-01-01
We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…
ELRADGEN: Monte Carlo generator for radiative events in elastic electron-proton scattering
Afanasiev, A V; Ilyichev, A N; Niczyporuk, B B
2003-01-01
We discuss the theoretical approach and practical algorithms for simulation of radiative events in elastic ep-scattering. A new Monte Carlo generator for real photon emission events in the process of elastic electron-proton scattering is presented. We perform a few consistency checks and present numerical results.
Standard model extensions for PV electron scattering, g-2, EDM: Overview
Erler, Jens
2011-01-01
I review how various extensions of the Standard Model, in particular supersymmetry and extra neutral gauge bosons, may affect low energy observables, including parity-violating electron scattering and related observables, as well as electric and magnetic dipole moments.
Ivanov, V. Y.; Sipov, N. K.; Shneyder, V. A.
1977-01-01
Analytical representations of the elastic scattering cross sections of electrons with energies of 0.01-1 keV in atmospheric gases of N2, O2, O are given. These representations are suitable for the Monte Carlo method.
On the importance of electron-electron scattering for hot-carrier degradation
Tyaginov, Stanislav; Bina, Markus; Franco, Jacopo; Wimmer, Yannick; Kaczer, Ben; Grasser, Tibor
2015-04-01
Using our physics based model for hot-carrier degradation (HCD) we analyze the importance of the effect of electron-electron scattering (EES) on HCD in transistors with different channel lengths. The model is based on a thorough treatment of carrier transport and is implemented into the deterministic Boltzmann transport equation solver ViennaSHE. Two competing mechanism of Si-H bond-breakage are captured by the model: the one triggered by the multiple vibrational excitation of the bond and another which is due to excitation of one of the bonding electrons to an antibonding state by a solitary hot carrier. These processes are considered self-consistently as competing pathways of the same dissociation reaction. To analyze the importance of the EES process we use a series of nMOSFETs with identical architecture but different gate lengths. The gate length varies in the wide range of 44-300 nm to cover short-channel MOSFETs as well as their longer counterparts. According to previous findings, EES starts to become important at a channel length of 180 nm. This situation is captured in the targeted gate length interval. Our results show that the channel length alone is not a sufficient criterion on the importance of EES and that the applied bias conditions have to be taken into account as well.
Institute of Scientific and Technical Information of China (English)
孙卫国; Michael; A.Morrison
1999-01-01
The vibrational excitation differential cross sections （DCS） of low-energy electron-N2 scattering are studied using vibrational close-coupling （VCC） scattering method and quantum scattering potentials which include static, exchange, and polarization contributions based on ab initio calculations. By including the contributions of 11 partial waves （up to l=21）, 15 vibrational states, and 16 molecular symmetries （up to Λ=7）, the converged vibrational excitation （0→2, 0→3, 0→4） DCSs, the scattering resonance, and the vibrational multi-peak structure agree well with experimental results.
MUNU: study of the neutrino-electron scattering; MUNU: etude de la diffusion neutrino-electron
Energy Technology Data Exchange (ETDEWEB)
Cerna, C
2000-11-01
MUNU is an experiment dedicated to electron-neutrino scattering studies and in particular to neutrino magnetic moment search at a nuclear power plant in Bugey (France). MUNU is based on a gaseous time projection chamber (TPC) immersed in 8 tons of liquid scintillator acting as an active anti-Compton shielding. A preliminary analysis of the first results of this experiment corresponding to about 24 days of data collecting draws a line on the value of the neutrino magnetic moment: {mu}{sub {nu}}-bar{sub {sub e}} {<=} 1.97 10{sup -10} {mu}{sub B} (68% confidence level). All along this work, it is shown that the combined use of a TPC and of a light detection system is valuable for discriminating particles and for discarding signals from background noise.
Electron-Phonon Scattering in Atomically Thin 2D Perovskites.
Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai
2016-11-22
Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.
Energy Technology Data Exchange (ETDEWEB)
Smith, D. R.; Mazzucato, E.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, Jr., N. C.
2009-02-13
A collective scattering system has been installed on the National Spherical Torus Experiment (NSTX) to measure electron gyroscale fluctuations in NSTX plasmas. Up to five distinct wavenumbers are measured simultaneously, and the large toroidal curvature of NSTX plasmas provides enhanced spatial localization. Steerable optics can position the scattering volume throughout the plasma from the magnetic axis to the outboard edge. Initial measurements indicate rich turbulent dynamics on the electron gyroscale. The system will be a valuable tool for investigating the connection between electron temperature gradient turbulence and electron thermal transport in NSTX plasmas.
Inclusive results for electron and photon scattering in the resonance region
Buss, O; Mosel, U; Alvarez-Ruso, L
2008-01-01
We present a model for electron scattering off nuclei and photon absorption in the resonance energy region (W <= 2 GeV). The elementary gamma/gamma* N-vertex is described using in-medium kinematics and up-to-date form factors for QE-scattering, pion-production form-factors and resonance helicity amplitudes of the MAID analysis. We find good agreement with inclusive data on electron scattering off Oxygen. For photon absorption in Carbon we find a large impact of the momentum dependent mean-field acting on initial- and final-state baryons.
Spin-dependent electron scattering at graphene edges on Ni(111).
Garcia-Lekue, A; Balashov, T; Olle, M; Ceballos, G; Arnau, A; Gambardella, P; Sanchez-Portal, D; Mugarza, A
2014-02-14
We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of the Shockley bands of Ni, which we attribute to their distinct coupling to bulk states. Moreover, we find a strong dependence of the scattering amplitude on the atomic structure of the edges, depending on the orbital character and energy of the surface states.
Quantum and classical theories of scattering of relativistic electrons in ultrathin crystals
Shulga, N F
2016-01-01
Quantum and classical theories are proposed of scattering of high energy electrons in ultrathin crystals. The quantum theory is based upon a special representation of the scattering amplitude in the form of the integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The classical theory is based upon the solution of the equation of motion by numerical methods. The comparison is performed of quantum and classical differential cross-sections of scattering in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is realized. It is shown that in this range of crystal thicknesses substantial difference of quantum and classical scattering cross-sections takes place for the electrons with the energy up to tens of MeV. With the energy increase such difference decreases but some quantum effects in scattering still remain.
Evaluation of angular scattering models for electron-neutral collisions in Monte Carlo simulations
Janssen, J. F. J.; Pitchford, L. C.; Hagelaar, G. J. M.; van Dijk, J.
2016-10-01
In Monte Carlo simulations of electron transport through a neutral background gas, simplifying assumptions related to the shape of the angular distribution of electron-neutral scattering cross sections are usually made. This is mainly because full sets of differential scattering cross sections are rarely available. In this work simple models for angular scattering are compared to results from the recent quantum calculations of Zatsarinny and Bartschat for differential scattering cross sections (DCS’s) from zero to 200 eV in argon. These simple models represent in various ways an approach to forward scattering with increasing electron energy. The simple models are then used in Monte Carlo simulations of range, straggling, and backscatter of electrons emitted from a surface into a volume filled with a neutral gas. It is shown that the assumptions of isotropic elastic scattering and of forward scattering for the inelastic collision process yield results within a few percent of those calculated using the DCS’s of Zatsarinny and Bartschat. The quantities which were held constant in these comparisons are the elastic momentum transfer and total inelastic cross sections.
Amusia, Miron Ya; Yarzhemsky, Victor
2012-01-01
The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomi...
Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales
Energy Technology Data Exchange (ETDEWEB)
Knoops, Harm C. M., E-mail: H.C.M.Knoops@tue.nl; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M.; Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)
2015-03-15
In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific
Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers
Höll, A
2006-01-01
We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.
Multislice theory of fast electron scattering incorporating atomic inner-shell ionization.
Dwyer, C
2005-09-01
It is demonstrated how atomic inner-shell ionization can be incorporated into a multislice theory of fast electron scattering. The resulting theory therefore accounts for both inelastic scattering due to inner-shell ionization and dynamical elastic scattering. The theory uses a description of the ionization process based on the angular momentum representation for both the initial and final states of the atomic electron. For energy losses near threshold, only a small number of independent states of the ejected atomic electron need to be considered, reducing demands on computing time, and eliminating the need for tabulated inelastic scattering factors. The theory is used to investigate the influence of the collection aperture size on the spatial origin of the silicon K-shell EELS signal generated by a STEM probe. The validity of a so-called local approximation is also considered.
Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers
Energy Technology Data Exchange (ETDEWEB)
Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U
2006-11-21
We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.
Electron elastic scattering off $A$@C$_{60}$: The role of atomic polarization under confinement
Dolmatov, V K; Chernysheva, L V
2015-01-01
The present paper explores possible features of electron elastic scattering off endohedral fullerenes $A$@C$_{60}$. It focuses on how dynamical polarization of the encapsulated atom $A$ by an incident electron might alter scattering off $A$@C$_{60}$ compared to the static-atom-$A$ case, as well as how the C$_{60}$ confinement modifies the impact of atomic polarization on electron scattering compared to the free-atom case. The aim is to provide researchers with a "relative frame of reference" for understanding which part of the scattering processes could be due to electron scattering off the encapsulated atom and which due to scattering off the C$_{60}$ cage. To meet the goal, the C$_{60}$ cage is modeled by an attractive spherical potential of a certain inner radius, thickness, and depth which is a model used frequently in a great variety of fullerene studies to date. Then, the Dyson equation for the self-energy part of the Green's function of an incident electron moving in the combined field of an encapsulat...
Electron Scattering in Solid Matter A Theoretical and Computational Treatise
Zabloudil, Jan; Szunyogh, Laszlo
2005-01-01
Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the Screened Korringa-Kohn-Rostoker method that have emerged during the last 5 – 10 years are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Going beyond ordered matter and translationally invariant systems, special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties...
Sobków, W
2015-01-01
In this paper, we show how a presence of the exotic scalar, tensor weak interactions in addition to the standard vector-axial (V-A) one may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of (anti)neutrino beam off the unpolarized electrons in the limit of vanishing (anti)neutrino mass. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral mixture with assigned direction of the transversal spin polarization with respect to the production plane. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is distinct from the one for the Dirac neutrinos through the absence of interference between the standard and tensor couplings. Additionally, the inter...
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
Investigation of the Electronic Structure of Solid Density Plasmas by X-Ray Scattering
Energy Technology Data Exchange (ETDEWEB)
Gregori, G; Glenzer, S H; Forest, F J; Kuhlbrodt, S; Redmer, R; Faussurier, G; Blancard, C; Renaudin, P; Landen, O L
2003-05-19
We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.
Electronic Structure Measurement of Solid Density Plasmas using X-Ray Scattering
Energy Technology Data Exchange (ETDEWEB)
Gregori, G; Glenzer, S H; Rogers, F J; Landen, O L; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R
2003-08-23
We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.
Tokamak Plasmas : Electron temperature $(T_{e})$ measurements by Thomson scattering system
Indian Academy of Sciences (India)
R Rajesh; B Ramesh Kumar; S K Varshney; Manoj Kumar; Chhaya Chavda; Aruna Thakkar; N C Patel; Ajai Kumar; Aditya Team
2000-11-01
Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (e) and density (e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above parameters. In Thomson scattering experiment, the light scattered by the plasma electrons is used for the measurements. The plasma electron temperature is measured from the Doppler shifted scattered spectrum and density from the total scattered intensity. A single point Thomson scattering system involving a -switched ruby laser and PMTs as the detector is deployed in ADITYA tokamak to give the plasma electron parameters. The system is capable of providing the parameters e from 30 eV to 1 keV and e from 5 × 1012 cm-3-5× 1013 cm-3. The system is also able to give the parameter proﬁle from the plasma center ( = 0 cm) to a vertical position of = +22 cm to = -14 cm, with a spatial resolution of 1 cm on shot to shot basis. This paper discusses the initial measurements of the plasma temperature from ADITYA.
Diffuse Surface Scattering in the Plasmonic Resonances of Ultra-Low Electron Density Nanospheres
Monreal, R Carmina; Apell, S Peter
2015-01-01
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here we investigate the role that different surface effects, namely electronic spill-out and diffuse surface scattering, play in the optical properties of these ultra-low electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior both in position and width for large particles and a strong blueshift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultra-low electron density ...
Spin dynamics in Kapitza-Dirac scattering of electrons from bichromatic laser fields
Dellweg, Matthias M; Müller, Carsten
2016-01-01
Kapitza-Dirac scattering of nonrelativistic electrons from counterpropagating bichromatic laser waves of linear polarization i s studied. The focus lies on the electronic spin dynamics in the Bragg regime when the laser fields possess a frequency ratio of two. To this end, the time-dependent Pauli equation is solved numerically, both in coordinate space and momentum space. Our numerical results are corroborated by analytical derivations. We demonstrate that, for certain incident electron momenta, the scattering crucially relies on the electron spin which undergo es characteristic Rabi-like oscillations. A parameter regime is identified where the Rabi oscillations reach maximum amplitude. We also briefly discuss spin-dependent Kapitza-Dirac scattering of protons.
Sauer, Stephan P. A.; Paidarová, Ivana; Čársky, Petr; Čurík, Roman
2016-05-01
In this paper we present calculations of the static polarizability and its derivatives for the adamantane molecule carried out at the density functional theory level using the B3LYP exchange-correlation functional and Sadlej's polarized valence triple zeta basis set. It is shown that the polarizability tensor is necessary to correct long-range behavior of DFT functionals used in electron-molecule scattering calculations. The impact of such a long-range correction is demonstrated on elastic and vibrationally inelastic electron collisions with adamantane, a molecule representing a large polyatomic target for electron scattering calculations. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Projections for measuring the size of the solar core with neutrino-electron scattering
Davis, Jonathan H
2016-01-01
We quantify the amount of data needed in order to measure the size of the solar core with future experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the incident directions of the neutrinos, however this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different sizes of the solar core, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that after approximately 5 years of data-taking an experiment the size of Hyper Kamiokande could measure the solar core radius with an uncertainty of 20% of the total solar radius at 95% confidence, and could exclude the scenario where the neutrinos are produced throughout the entire sun at 3 $\\sigma$.
Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry
Institute of Scientific and Technical Information of China (English)
Re. Betancourt-Riera; Ri. Betancourt-Riera; J. M. Nieto Jalil; R. Riera
2015-01-01
We study the electron states and the differential cross section for an electron Raman scattering process in a semi-conductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al0.35Ga0.65As matrix. The system is modeled by considering T =0 K and also a single parabolic con-duction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted.
Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires
Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas
One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).
Projections for Measuring the Size of the Solar Core with Neutrino-Electron Scattering
Davis, Jonathan H.
2016-11-01
We quantify the amount of data needed in order to measure the size and position of the 8B neutrino production region within the solar core, for experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the incident directions of the neutrinos; however, this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different neutrino production profiles, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that with approximately 20 years worth of data the Super Kamiokande experiment could constrain the central radius of the shell in which 8B neutrinos are produced to be less than 0.22 of the total solar radius at 95% confidence.
Institute of Scientific and Technical Information of China (English)
Zhijie; JianminYuan
1990-01-01
Applicability of the correlation potential,which is currently used in the local density functional theory,to the low-energy electron-atom and molecule scattering is investigated with some examples of scattering processes.
Scattering of near-zero-energy electrons and positrons by H2
Zhang, J.-Y.
2014-04-15
The parameters for S-wave elastic scattering of near-zero-energy electrons and positrons by H2 molecules are calculated using the stabilization method with explicitly correlated Gaussians. The confined variational method is applied to optimize the Gaussians to describe the short-range interaction of incident e± with H2 in the fixed-nuclei approximation. For e+-H2 scattering the scattering length of previous work [Phys. Rev. Lett. 103, 223202 (2009)] is substantially improved. More importantly, for e−-H2 scattering, from first principles, the scattering length is computed as a function of the internuclear distance. In the case that the two nuclei are at the equilibrium distance the results are in a good agreement with values derived from fitting experimental total and diffusion cross sections to the modified effective range theory.
Lara, O
1995-01-01
continued fractions are now in progress. It is well known that multichannel effects strongly influence the low-energy electron scattering by atoms and molecules. Nevertheless, the inclusion of such effects on the calculations of scattering cross sections remains a considerable task for the area researches due to the complexity of the problem. In the present study we aim to develop a new theoretical method which can be efficiently applied to the multichannel scattering studies. Two new theoretical formalisms namely the Multichannel sup - C-Functional Method have been proposed. Both methods were developed on the base of well-known distorted-wave method combined with Schwinger variational principle. In addition, an integrative method proposed by Horacek and Sasakawa in 1983, the method of continued fractions is adapted by the first time to multichannel scatterings. Numerical test of these three methods were carried out through applications to solve the multichannel scattering problems involving the interaction o...
Precision determination of electron scattering angle by differential nuclear recoil energy method
Energy Technology Data Exchange (ETDEWEB)
Liyanage, N. [Physics Department, University of Virginia, Charlottesville, VA 22903 (United States); Saenboonruang, K., E-mail: fscikssa@ku.ac.th [Physics Department, University of Virginia, Charlottesville, VA 22903 (United States); Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)
2015-12-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this paper, we present a new technique for determination of the electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.
Bogdanov, O V
2014-01-01
The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...
Effect of the third π ∗ resonance on the angular distributions for electron-pyrimidine scattering
Mašín, Zdeněk; Gorfinkiel, Jimena D.
2016-07-01
We present a detailed analysis of the effect of the well known third π∗ resonance on the angular behaviour of the elastic cross section in electron scattering from pyrimidine. This resonance, occurring approximately at 4.7 eV, is of mixed shape and core-excited character. Experimental and theoretical results show the presence of a peak/dip behaviour in this energy range, that is absent for other resonances. Our investigations show that the cause of the peak/dip is an interference of background p-wave to p-wave scattering amplitudes with the amplitudes for resonant scattering. The equivalent resonance in pyrazine shows the same behaviour and the effect is therefore likely to appear in other benzene-like molecules. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam
Energy Technology Data Exchange (ETDEWEB)
Paley, J.; Djurcic, Z.; /Argonne; Harris, D.; Tesarek, R.; /Fermilab; Feldman, G.; /Harvard U.; Corwin, L.; Messier, M.D.; Mayer, N.; Musser, J.; Paley, J.; Tayloe, R.; /Indiana U. /Iowa State U. /Minnesota U. /South Carolina U. /Wichita State U. /William-Mary Coll.
2010-10-15
We propose to construct and deploy a fine-grained detector in the Fermilab NOvA 2 GeV narrow-band neutrino beam. In this beam, the detector can make unique contributions to the measurement of quasi-elastic scattering, neutral-current elastic scattering, neutral-current {pi}{sup 0} production, and enhance the NOvA measurements of electron neutrino appearance. To minimize cost and risks, the proposed detector is a copy of the SciBar detector originally built for the K2K long baseline experiment and used recently in the SciBooNE experiment.
Construction of the SCRIT electron scattering facility at the RIKEN RI Beam Factory
Energy Technology Data Exchange (ETDEWEB)
Wakasugi, M., E-mail: wakasugi@riken.jp [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa,Wako, Saitama 351-0198 (Japan); Ohnishi, T. [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa,Wako, Saitama 351-0198 (Japan); Wang, S. [Research Center for Electron Photon Science, Tohoku University, 1-2-1 Mikamine, Taihakuku, Sendai, Miyagi 982-0826 (Japan); Miyashita, Y. [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa,Wako, Saitama 351-0198 (Japan); Adachi, T.; Amagai, T. [Research Center for Electron Photon Science, Tohoku University, 1-2-1 Mikamine, Taihakuku, Sendai, Miyagi 982-0826 (Japan); Enokizono, A. [Department of Physics, Rikkyo University, 3-34-1 Nishiikebukuro, Toshimaku, Tokyo 171-8501 (Japan); Enomoto, A. [Department of Physics, Saitama University, Urawa, Saitama 338-8570 (Japan); Haraguchi, Y. [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata 940-2188 (Japan); Hara, M.; Hori, T.; Ichikawa, S. [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa,Wako, Saitama 351-0198 (Japan); Kikuchi, T. [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata 940-2188 (Japan); Kitazawa, R. [Research Center for Electron Photon Science, Tohoku University, 1-2-1 Mikamine, Taihakuku, Sendai, Miyagi 982-0826 (Japan); Koizumi, K.; Kurita, K. [Department of Physics, Rikkyo University, 3-34-1 Nishiikebukuro, Toshimaku, Tokyo 171-8501 (Japan); Miyamoto, T. [Research Center for Electron Photon Science, Tohoku University, 1-2-1 Mikamine, Taihakuku, Sendai, Miyagi 982-0826 (Japan); Ogawara, R.; Shimakura, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishiikebukuro, Toshimaku, Tokyo 171-8501 (Japan); Takehara, H. [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata 940-2188 (Japan); and others
2013-12-15
The SCRIT electron scattering facility, aiming at electron scattering off short-lived unstable nuclei, has been constructed at the RIKEN RI Beam Factory. This facility consists of a racetrack microtron (RTM), an electron storage ring (SR2) equipped with the SCRIT system, and a low-energy RI separator (ERIS). SCRIT (self-confining radioactive isotope ion targeting) is a novel technique to form internal targets in an electron storage ring. Experiments for evaluating performance of the SCRIT system have been carried out using the stable {sup 133}Cs{sup 1+} beam and the {sup 132}Xe{sup 1+} beam supplied from ERIS. Target ions were successfully trapped in the SCRIT system with 90% efficiency at a 250 mA electron beam current, and luminosity exceeding 10{sup 26}/(cm{sup 2} s) was maintained for more than 1 s. Electrons elastically scattered from the target ions were successfully measured. Applicability of the SCRIT system to electron scattering for unstable nuclei has been established in experiments.
Parity violation in electron scattering; Violation de parite en diffusion d'electrons
Energy Technology Data Exchange (ETDEWEB)
Lhuillier, D
2007-09-15
The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)
Dorset; Dumas; Cartier; Lotz
1999-09-01
Strong violations of Friedel symmetry are observed in hk0 electron diffraction patterns from lamellar crystals of poly(tert-butylethylene sulfide) obtained at 120 kV. These deviations are largely explained by a multislice dynamical scattering calculation based on the crystal structure model. Further improvement is found when a secondary scattering component is added, in keeping with a perfect crystallite thickness less than that of the lamellar thickness. Despite the multiple-scattering perturbations, the frustrated chain packing can still be determined by direct methods followed by Fourier refinement. However, the Friedel-related intensities must be averaged before calculation of normalized structure factors.
Energy Technology Data Exchange (ETDEWEB)
Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen
2005-01-01
We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.
A dressing of zero-range potentials and electron-molecule scattering problem at low energies
Leble, S B
2002-01-01
A dressing of a nonspherical potential, which includes $n$ zero range potentials, is considered. The dressing technique is used to improve ZRP model. Concepts of the partial waves and partial phases for non-spherical potential are used in order to perform Darboux transformation. The problem of scattering on the regular $\\hbox{X}_n$ and $\\hbox{YX}_n$ structures is studied. The possibilities of dressed ZRP are illustrated by model calculation of the low-energy electron-Silane ($\\hbox{SiH}_4$) scattering. The results are discussed. Key words: multiple scattering, silane, zero range potential.
Electronic transport and scattering times in tungsten-decorated graphene
Elias, Jamie A.; Henriksen, Erik A.
2017-02-01
The electronic transport properties of a monolayer graphene device have been studied before and after the deposition of a dilute coating of tungsten adatoms on the surface. For coverages up to 2.5% of a monolayer, we find tungsten adatoms simultaneously donate electrons to graphene and reduce the carrier mobility, impacting the zero- and finite-field transport properties. Two independent transport analyses suggest the adatoms lie nearly 1 nm above the surface. The presence of adatoms is also seen to impact the low-field magnetoresistance, altering the signatures of weak localization.
Spectrum of recoil nucleons in quasi-elastic neutrino-nucleus interactions
Energy Technology Data Exchange (ETDEWEB)
Juszczak, C.; Nowak, J.A.; Sobczyk, J.T. [Wroclaw University, Institute of Theoretical Physics, Wroclaw (Poland)
2005-02-01
We have analyzed the consequences of introducing the local density approximation combined with an effective nuclear momentum-dependent potential into the CC quasi-elastic neutrino-nucleus scattering. We note that the distribution of recoil nucleons momenta becomes smooth for low momentum values and the sharp threshold is removed. Our results may be relevant for Sci-Fi detector analysis of K2K experiments. The total amount of observed recoil protons is reduced because some of them remain bound inside the nucleus. We compare theoretical predictions for a probability of such events with the results given by NUX+FLUKA MC simulations. (orig.)
Stimulated terahertz emission due to electronic Raman scattering in silicon
Pavlov, S. G.; Bottger, U.; Hovenier, J. N.; Abrosimov, N. V.; Riemann, H.; Zhukavin, R. K.; Shastin, V. N.; Redlich, B.; van der Meer, A. F. G.; Hubers, H. W.
2009-01-01
Stimulated Raman emission in the terahertz frequency range (4.8-5.1 THz and 5.9-6.5 THz) has been realized by optical excitation of arsenic donor centers in silicon at low temperatures. The Stokes shift of the observed laser emission is 5.42 THz which is equal to the Raman-active donor electronic tr
Electron scattering at surfaces and grain boundaries in thin Au films
Energy Technology Data Exchange (ETDEWEB)
Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Flores, Marcos; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, German [Bachillerato, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); González-Fuentes, Claudio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)
2013-05-15
The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ{sub 0}(T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K < T < 300 K. Cooling the samples to 4 K increases ℓ{sub 0}(T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ{sub 0}(300) = 37 nm, the electron mean
Scattering-induced quantum correlation in electronic waveguides with static magnetic impurities
Ghanbari-Adivi, E.; Soltani, M.; Alami, Z.; Sheikhali, M.
2016-10-01
Entanglement generation due to low-energy scattering of the transporting electrons in an electronic waveguide by a quantum dot magnetic impurity is theoretically investigated. The transverse confining potential of the waveguide is considered as a two-dimensional harmonic potential, and the interaction of the electron with the impurity is described by a zero-range pseudopotential modulated by an Ising or a Heisenberg spin interaction. Our calculation shows that the scattering process leads to creation of a considerable amount of entanglement in the state of the reflected and transmitted electrons. The situation is extended to the scattering of the electrons by two well-separated magnetic impurities localized on the nanowire axis. It is shown that the scattering process causes the magnetic impurities embedded in the nanowire to share their quantum information; subsequently, they can be entangled by spin interaction with the injected electron. The created entanglement between the impurities is calculated and discussed. It is shown that the exact three-dimensional problem can be approximated as a one-dimensional problem under certain circumstances. The approximate results are compared to exact calculations and discussed.
Positron and electron scattering by glycine and alanine: Shape resonances and methylation effect
Nunes, Fernanda B.; Bettega, Márcio H. F.; Sanchez, Sergio d'Almeida
2016-12-01
We report integral cross sections (ICSs) for both positron and electron scattering by glycine and alanine amino acids. These molecules differ only by a methyl group. We computed the scattering cross sections using the Schwinger multichannel method for both glycine and alanine in different levels of approximation for both projectiles. The alanine ICSs are greater in magnitude than the glycine ICSs for both positron and electron scattering, probably due to the larger size of the molecule. In electron scattering calculations, we found two resonances for each molecule. Glycine presents one at 1.8 eV, and another centered at around 8.5 eV, in the static-exchange plus polarization (SEP) approximation. The ICS for alanine shows one resonance at 2.5 eV and another at around 9.5 eV, also in SEP approximation. The results are in good agreement with most of the data present in the literature. The comparison of the electron scattering ICSs for both molecules indicates that the methylation of glycine destabilizes the resonances, shifting them to higher energies.
Total and elastic electron scattering cross sections from Xe at intermediate and high energies
Energy Technology Data Exchange (ETDEWEB)
Garcia, G [Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, 28006 Madrid (Spain); Pablos, J L de [Departamento de Fusion y Particulas Elementales, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); Williart, A [Departamento de Fisica de los Materiales, UNED, Senda del Rey 9, 28040 Madrid (Spain)
2002-11-28
Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV.
A split-electrode for clearing scattered electrons in the RHIC e-lens
Energy Technology Data Exchange (ETDEWEB)
Gu X.; Pikin, A.; Thieberger, P.; Fischer, W.; Hock, J.; Hamdi, K.; Gassner,D.; Luo, Y.; Montag, C.; Okamura, M.
2012-05-20
We are designing two electron lenses that will be installed at RHIC IR10 to compensate for the head-on beam-beam effect. To clear accumulated scattered electrons from 100 GeV proton-electron head-on collisions in the e-lens, a clearing split electrode may be constructed. The feasibility of this proposed electrode was demonstrated via the CST Particle Studio and Opera program simulations. By splitting one of the drift tubes in the e-lens and applying {approx} 380 V across the two parts, the scattered electrons can be cleared out within several hundred micro-seconds. At the same time we can restrict the unwanted shift of the primary electron-beam that already passed the 2-m interaction region in e-lens, to less than 15um.
Patimisco, Pietro; Scamarcio, Gaetano; Santacroce, Maria Vittoria; Spagnolo, Vincenzo; Vitiello, Miriam Serena; Dupont, Emmanuel; Laframboise, Sylvain R; Fathololoumi, Saeed; Razavipour, Ghasem S; Wasilewski, Zbigniew
2013-04-22
We measured the lattice and subband electronic temperatures of terahertz quantum cascade devices based on the optical phonon-scattering assisted active region scheme. While the electronic temperature of the injector state (j = 4) significantly increases by ΔT = T(e)(4) - T(L) ~40 K, in analogy with the reported values in resonant phonon scheme (ΔT ~70-110 K), both the laser levels (j = 2,3) remain much colder with respect to the latter (by a factor of 3-5) and share the same electronic temperature of the ground level (j = 1). The electronic population ratio n(2)/n(1) shows that the optical phonon scattering efficiently depopulates the lower laser level (j = 2) up to an electronic temperature T(e) ~180 K.
Bogdanov, O. V.; Kazinski, P. O.
2015-02-01
The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Gustafsson, Kenneth K. [Univ. of Maryland, College Park, MD (United States)
2000-01-01
Nuclear physics traces it roots back to the very beginning of the last century. The concept of the nuclear atom was introduced by Rutherford around 1910. The discovery of the neutron Chadwick in 1932 gave us the concept of two nucleons: the proton and the neutron. The Jlab electron accelerator with its intermediate energy high current continuous wave beam combined with the Hall C high resolution electron spectrometer and a deutron recoil polarimeter provided experiment E94018 with the opportunity to study the deuteron electomagnetic structure, in particular to measure the tensor polarization observable t_{20}, at high four momentum transfers than ever before. This dissertation presents results of JLab experiment E94018.
Focussing effects in laser-electron Thomson scattering
Harvey, C; Holkundkar, A R
2016-01-01
We study the effects of laser pulse focussing on the spectral properties of Thomson scattered radiation. Modelling the laser as a paraxial beam we find that, in all but the most extreme cases of focussing, the temporal envelope has a much bigger effect on the spectrum than the focussing itself. For the case of ultra-short pulses where the paraxial model is no longer valid, we adopt a sub-cycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focussing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to sub-wavelength spot sizes produce spectra that are qualitatively similar to those from sub-cycle pulses due to the shortening of the pulse with focussing. Finally, we study high-intensity fields and find ...
Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux
Energy Technology Data Exchange (ETDEWEB)
Park, Jaewon [Univ. of Rochester, NY (United States)
2013-01-01
Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\
Probing proton halo of the exotic nucleus 28S by elastic electron scattering
Institute of Scientific and Technical Information of China (English)
WANG; Zaijun; REN; Zhongzhou
2004-01-01
Elastic electron scattering on the exotic light nucleus 28S is investigated in the plane wave Born approximation. The variation of the squared form factors of 28S with momentum transfer is compared with that of 32S. It is found that the behavior of the form factors near the second minimum (with a moderate momentum transfer) is sensitive to the alteration of the charge density distribution of halo protons in 28S. This indicates that elastic electron scattering can be a good probe of the structure of proton-halo nuclei.
Elastic electron scattering from CH sub 3 I molecules oriented in the gas phase
Energy Technology Data Exchange (ETDEWEB)
Volkmer, M.; Meier, C.; Mihill, A.; Fink, M.; Boewering, N. (Fakultaet fuer Physik, Universitaet Bielefeld, D-4800 Bielefeld 1 (Germany))
1992-04-13
A novel experiment on elastic electron scattering from free, spatially oriented molecules has been performed. CH{sub 3}I molecules state selected by an electrostatic hexapole lens were oriented in a homogeneous electric field. The differential scattering cross sections were measured at an electron energy of 1 keV in the angular range of 4{degree}--14{degree} with the orientation switched on and off. From these data the orientation-dependent contribution to the molecular interference was determined. The results show a distinct oscillatory pattern as a function of momentum transfer as predicted by theory.
Proton radius from electron-proton scattering and chiral perturbation theory
Horbatsch, Marko; Pineda, Antonio
2016-01-01
We determine the root-mean-square proton charge radius, $R_{\\rm p}$, from a fit to low-$Q^2$ electron-proton elastic scattering cross section data with the higher moments fixed (within uncertainties) to the values predicted by chiral perturbation theory. We obtain $R_{\\rm p}=0.844(12)$ fm. This number is perfectly consistent with the value obtained from muonic hydrogen analyses and disagrees with the CODATA value (based upon atomic hydrogen spectroscopy and electron-proton scattering determinations) by more than two standard deviations.
Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma
Energy Technology Data Exchange (ETDEWEB)
Dzhumagulova, K. N., E-mail: dzhumagulova.karlygash@gmail.com; Shalenov, E. O.; Ramazanov, T. S. [IETP, Al Farabi Kazakh National University, 71al Farabi Street, Almaty 050040 (Kazakhstan)
2015-08-15
Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.
Electron beam final focus system for Thomson scattering at ELBE
Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.
2016-09-01
The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.
Electron beam final focus system for Thomson scattering at ELBE
Energy Technology Data Exchange (ETDEWEB)
Krämer, J.M., E-mail: jmkr@danfysik.dk [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Budde, M.; Bødker, F. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Irman, A.; Jochmann, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kristensen, J.P. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Lehnert, U.; Michel, P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany)
2016-09-11
The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.
Electron beam final focus system for Thomson scattering at ELBE
Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067
2016-01-01
The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...
Electron Beam Final Focus System For Thomson Scattering At Elbe
Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067
2016-01-01
The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...
Energy Technology Data Exchange (ETDEWEB)
Regan, S P; Radha, P B; Boehly, T R; Goncharov, V N; McCrory, R L; Meyerhofer, D D; Sangster, T C; Smalyuk, V A [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299 (United States); Doeppner, T; Glenzer, S H; Landen, O L; Neumayer, P [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Falk, K; Gregori, G, E-mail: sreg@lle.rochester.ed [Oxford University, Oxford OX1 3PU (United Kingdom)
2010-08-01
An experiment designed to launch laser-ablation-driven shock waves (10 to 70 Mbar) in a planar liquid-deuterium target on the OMEGA Laser System and to diagnose the shocked conditions using inelastic x-ray scattering is described. The electron temperature (T{sub e}) is inferred from the Doppler-broadened Compton-downshifted peak of the noncollective ({alpha}{sub s} = 1k{lambda}{sub D} > 1) x-ray scattering for T{sub e} > T{sub Fermi}. The electron density (n{sub e}) is inferred from the downshifted plasmon peak of the collective ({alpha}{sub scatter} > 1) x-ray scattering. A cylindrical layer of liquid deuterium is formed in a cryogenic cell with 8-{mu}m-thick polyimide windows. The polyimide ablator is irradiated with peak intensities in the range of 10{sup 13} to 10{sup 15} W/cm{sup 2} and shock waves are launched. Predictions from a 1-D hydrodynamics code show the shocked deuterium has a thickness of {approx}0.1 mm with spatially uniform conditions. For the drive intensities under consideration, electron density up to {approx}5 x 10{sup 23} cm{sup -3} and electron temperature in the range of 10 to 25 eV are predicted. A laser-irradiated saran foil produces Cl Ly{sub {alpha}e}mission. The spectrally resolved x-ray scattering is recorded at 90{sup 0} for the noncollective scattering and at 40{sup 0} for the collective scattering with a highly oriented pyrolytic graphite (HOPG) crystal spectrometer and an x-ray framing camera.
Ni, Binbin; Thorne, Richard M.; Horne, Richard B.; Meredith, Nigel P.; Shprits, Yuri Y.; Chen, Lunjin; Li, Wen
2011-04-01
Using statistical wave power spectral profiles obtained from CRRES and the latitudinal distributions of wave propagation modeled by the HOTRAY code, a quantitative analysis has been performed on the scattering of plasma sheet electrons into the diffuse auroral zone by multiband electrostatic electron cyclotron harmonic (ECH) emissions near L = 6 within the 0000-0600 MLT sector. The results show that ECH wave scattering of plasma sheet electrons varies from near the strong diffusion rate (timescale of an hour or less) during active times with peak wave amplitudes of an order of 1 mV/m to very weak scattering (on the timescale of >1 day) during quiet conditions with typical wave amplitudes of tenths of mV/m. However, for the low-energy (˜100 eV to below 2 keV) electron population mainly associated with the diffuse auroral emission, ECH waves are only responsible for rapid pitch angle diffusion (occasionally near the limit of strong diffusion) for a small portion of the electron population with pitch angles αeq 70°. Computations of the bounce-averaged coefficients of momentum diffusion and (pitch angle, momentum) mixed diffusion indicate that both mixed diffusion and energy diffusion of plasma sheet electrons due to ECH waves are very small compared to pitch angle diffusion and that ECH waves have little effect on local electron acceleration. Consequently, the multiple harmonic ECH emissions cannot play a dominant role in the occurrence of diffuse auroral precipitation near L = 6, and other wave-particle interaction mechanisms, such as whistler mode chorus-driven resonant scattering, are required to explain the global distribution of diffuse auroral precipitation and the formation of the pancake distribution in the inner magnetosphere.
Direct extraction of nuclear effects in quasielastic scattering on carbon
Wilkinson, Callum
2016-01-01
The differences between neutrino and antineutrino CCQE cross sections measured on hydrocarbon targets are due to fundamental differences in the cross section, different neutrino and antineutrino fluxes from the same beamline, and the additional interactions on hydrogen for antineutrinos that are absent for neutrinos. In this analysis we correct for the former two differences to extract a constraint on the ratio of the CCQE cross section for free and bound protons from MINERvA and MiniBooNE data. This measures nuclear effects in carbon, and we compare this measurement to models.
Bahcivan, H.; Cosgrove, R. B.; Tsunoda, R. T.
2006-07-01
This article investigates the combined electron heating and streaming effects of low-frequency parallel electric fields on the incoherent scatter measurements of the high-latitude E region. The electric fields distort the electron distribution function, inducing changes on the amplitude and frequency of the ion-acoustic line in the measured incoherent scatter spectrum. If one assumes Maxwellian electrons, the measurements of electron and ion temperatures and electron density are subject to significant percentage errors during geomagnetically active conditions.
Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering
Gray, Valerie M.
2013-10-01
Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.
Convergent close-coupling calculations of electron-helium scattering
Energy Technology Data Exchange (ETDEWEB)
Fursa, D.V.; Bray, I. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre
1996-11-01
We present a review of the recent electron-helium calculations and experiments concentrating on the extensive application of the convergent close-coupling (CCC) method. Elastic, excitation, and ionization processes are considered, as well as excitation of the metastable states. The present status of agreement between theory and experiment for elastic and discrete excitations of the ground state is, in our view, quite satisfactory. However, discrepancies for excitation of the metastable states are substantial and invite urgent attention. Application of the CCC method to the calculation of differential ionization cross sections is encouraging, but also shows some fundamental difficulties. (authors). 92 refs., 15 figs.
Convergent close-coupling calculations of electron-helium scattering
Energy Technology Data Exchange (ETDEWEB)
Fursa, D.V.; Bray, I. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre
1996-11-01
We present a review of the recent electron-helium calculations and experiments concentrating on the extensive application of the convergent close-coupling (CCC) method. Elastic, excitation, and ionization processes are considered, as well as excitation of the metastable states. The present status of agreement between theory and experiment for elastic and discrete excitations of the ground state is, in our view, quite satisfactory. However, discrepancies for excitation of the metastable states are substantial and invite urgent attention. Application of the CCC method to the calculation of differential ionization cross sections is encouraging, but also shows some fundamental difficulties. (authors). 92 refs., 15 figs.
Interface Roughness Scattering on Electronic Transport in a Quantum Well
Institute of Scientific and Technical Information of China (English)
郑以松; 吕天全; 张程祥; 苏文辉
2003-01-01
Several theoretical models are established to simulate the interface roughness in a quantum well. The numerical result shows that the roughness correlation function always deviates from the extensively used Gaussian form to some extent, which depends on what a model is used. The influence of such a deviation on the electronic transport property is investigated by assuming several different analytical forms of the correlation function. It is found that the Fermi wavevector is crucial to determine whether the conductivity depends sensitively on the details of the correlation function.
Hyperfine-changing transitions in $^3$He II and other one-electron ions by electron scattering
Bartschat, Klaus
2014-01-01
We consider the spin-exchange (SE) cross section in electron scattering from $^3$He\\,{\\scriptsize II}, which drives the hyperfine-changing \\hbox{3.46 cm} (8.665 GHz) line transition. Both the analytical quantum defect method --- applicable at very low energies --- and accurate R-matrix techniques for electron-He$^+$ scattering are employed to obtain SE cross sections. The quantum defect theory is also applied to electron collisions with other one-electron ions in order to demonstrate the utility of the method and derive scaling relations. At very low energies, the hyperfine-changing cross sections due to e$-$He$^+$ scattering are much larger in magnitude than for electron collisions with neutral hydrogen, hinting at large rate constants for equilibration. Specifically, we obtain rate coefficients of $K(10\\,{\\rm K}) = 1.10 \\times 10^{-6}\\,\\rm cm^3/s$ and $K(100\\,{\\rm K}) = 3.49\\times 10^{-7}\\,\\rm cm^3/s$.
Study of the (e,e'p) quasi-elastic reaction in complex nuclei: theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Herraiz, Joaquin Lopez [Complutense Univ. of Madrid (Spain)
2010-03-01
Experimental coincidence cross section and transverse-longitudinal asymmetry _{ATL} have been obtained for the quasielastic (e,e'p) reaction in ^{16}O, ^{12}C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p_{miss} < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A_{TL} asymmetry have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A_{TL} measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A_{TL}, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.
On the role of inelastic scattering in phase-plate transmission electron microscopy
Energy Technology Data Exchange (ETDEWEB)
Hettler, Simon, E-mail: simon.hettler@kit.edu [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Wagner, Jochen; Dries, Manuel [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Oster, Marco; Wacker, Christian; Schröder, Rasmus R. [CellNetworks, BioQuant, Universität Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg (Germany); Gerthsen, Dagmar [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany)
2015-08-15
The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic–inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. - Highlights: • Combined application of electrostatic Zach phase plate and energy filter in a TEM. • Contrast analysis of Au nanoparticles on amorphous carbon films. • Phase contrast inversion in unfiltered images by Zach phase plate. • Phase contrast in plasmon-filtered images by inelastic–elastic scattering process. • Analysis of different effects on nanoparticle contrast.
Calculation of multiple-scattering angular distributions of electrons and positrons
Energy Technology Data Exchange (ETDEWEB)
Negreanu, C. [Paul Scherrer Institute, CH-5232 PSI Villigen (Switzerland); Swiss Federal Institute of Technology (EPFL), CH-1015 Laussane (Switzerland); Llovet, X. [Serveis Cientifico-Tecnics, Universitat de Barcelona, Societat Catalana de Fisica (IEC), Lluis Sole i Sabaris 1-3, ES-08028 Barcelona (Spain); Chawla, R. [Paul Scherrer Institute, CH-5232 PSI Villigen (Switzerland); Swiss Federal Institute of Technology (EPFL), CH-1015 Laussane (Switzerland); Salvat, F. [Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, ES-08028 Barcelona (Spain)]. E-mail: cesc@ecm.ub.es
2005-12-15
A robust numerical algorithm for the calculation of multiple-scattering angular distributions of high-energy electrons and positrons is described. This algorithm implements the multiple-scattering theories of Goudsmit-Saunderson, which disregards energy losses, and of Lewis, which accounts for energy losses within the continuous slowing down approximation. We have used partial-wave elastic scattering differential cross sections, generated with a recently developed program ELSEPA, in the calculations. The contribution of inelastic collisions to multiple-scattering angular distributions is treated in detail using inelastic scattering angular differential cross sections obtained from the Sternheimer-Liljequist generalised oscillator strength model. The stopping powers adopted in the calculations are consistent with the values recommended in the ICRU 37 report. The coefficients in the Legendre expansion of the single-scattering distribution are calculated by using the N-point Gauss-Legendre integration formula, coded in such a way that it allows the generation of a large number of expansion coefficients simultaneously. A computer program has been written to calculate angular multiple-scattering distributions for given path lengths, which can be readily adopted for class I Monte Carlo simulations.
Conductivity of disordered 2d binodal Dirac electron gas: Effect of the internode scattering
Sinner, Andreas
2016-01-01
We study the dc conductivity of a weakly disordered 2d Dirac electron gas with two bands and two spectral nodes, employing a field theoretical version of the Kubo--Greenwood conductivity formula. In this paper we are concerned with the question how the internode scattering affects the conductivity. We use and compare two established techniques for treating the disorder scattering: The perturbation theory, there ladder and maximally crossed diagrams are summed up, and the functional integral approach. Both turn out to be entirely equivalent. For a large number of random potential configurations we have found only two different conductivity scenarios. Both scenarios appear independently of whether the disorder does or does not create the internode scattering. In particular we do not confirm the conjecture that the internode scattering tends to Anderson localization.
Total and ionization cross sections of electron scattering by fluorocarbons
Energy Technology Data Exchange (ETDEWEB)
Antony, B K [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat (India); Joshipura, K N [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat (India); Mason, N J [Department of Physics and Astronomy, Open University, Milton Keynes-MK7 6AA (United Kingdom)
2005-02-14
Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF{sub 4}, C{sub 2}F{sub 4}, C{sub 2}F{sub 6}, C{sub 3}F{sub 8} and CF{sub 3}I and the CF{sub x} (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF{sub x} (x = 1-3) radicals presented here are first estimates on these species.
Anomalously Hot Electrons due to Rescatter of Stimulated Raman Scattering in the Kinetic Regime
Winjum, B J; Tsung, F S; Mori, W B
2012-01-01
Using particle-in-cell simulations, we examine hot electron generation from electron plasma waves excited by stimulated Raman scattering and rescattering in the kinetic regime where the wavenumber times the Debye length (k\\lambda_D) is greater than 0.3 for backscatter. We find that for laser and plasma conditions of possible relevance to experiments at the National Ignition Facility (NIF), anomalously energetic electrons can be produced through the interaction of a discrete spectrum of plasma waves generated from SRS (back and forward scatter), rescatter, and the Langmuir decay of the rescatter-generated plasma waves. Electrons are bootstrapped in energy as they propagate into plasma waves with progressively higher phase velocities.
The study of electron scattering mechanisms in single crystal oxide nanowires
Energy Technology Data Exchange (ETDEWEB)
Berengue, Olivia M; Chiquito, Adenilson J [NanO LaB - Departamento de Fisica, Universidade Federal de Sao Carlos, CEP 13565-905, CP 676, Sao Carlos, Sao Paulo (Brazil); Simon, Ricardo A [UTFPR - Campus Apucarana, Rua MarcIlio Dias, 635, CEP 86812-460, Apucarana, Parana (Brazil); Leite, Edson R, E-mail: oliberengue@yahoo.com.br [Laboratorio Interdisciplinar de EletroquImica e Ceramicas, Departamento de Quimica, Universidade Federal de Sao Carlos, CEP 13565-905, CP 676, Sao Carlos, Sao Paulo (Brazil)
2011-06-01
We report on transport measurements of individual Sn doped In{sub 2}O{sub 3} nanowires. From these measurements we point out that spin-orbit and boundary scattering mechanisms seem to give a negligible contribution to the transport of electrons in these nanowires. In fact, these results can be extended to other oxide systems: the presence of a weak disorder arising from the random potential at the boundaries screen electrons away from the surface into the nanowire. Electrons travelling through the nanowire in inner conducting channels are not directly influenced by the surfaces and the boundary scattering is decreased. These findings were also supported by calculations of the electron distribution in the cross-section of the nanowires when some disorder is taken into account.
Model independent extraction of the proton magnetic radius from electron scattering
Epstein, Zachary; Paz, Gil; Roy, Joydeep
2014-10-01
We combine constraints from analyticity with experimental electron-proton scattering data to determine the proton magnetic radius without model-dependent assumptions on the shape of the form factor. We also study the impact of including electron-neutron scattering data, and ππ→NN ¯ data. Using representative data sets we find for a cut of Q2≤0.5 GeV2, rMp=0.91-0.06+0.03±0.02 fm using just proton scattering data; rMp=0.87-0.05+0.04±0.01 fm adding neutron data; and rMp=0.87-0.02+0.02 fm adding ππ data. We also extract the neutron magnetic radius from these data sets obtaining rMn=0.89-0.03+0.03 fm from the combined proton, neutron, and ππ data.
Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)
2006-11-15
The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
The second Born approximation in electron-helium scattering in a Nd-YAG laser field
Energy Technology Data Exchange (ETDEWEB)
Khalil, D.; Makhoute, A.; Rahali, G.; Zitane, M. [Universite Moulay Ismail, UFR de Physique Atomique, Moleculaire et Optique Appliquee, Faculte des Sciences (Morocco); Rahali, G.; Makhoute, A. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Maquet, A. [Universite Pierre et Marie Curie, Lab. de Chimie Physique, Matiere et Rayonnement, 75 - Paris (France)
2007-02-15
The dynamics of laser-assisted elastic collisions in helium is studied using the second-order Born approximation. Detailed calculations of the scattering amplitudes are performed by using the Sturmian basis expansion. Differential cross sections for elastic scattering with the net absorption/emission of up to two photons are calculated for collision energies of 5 eV, 10 eV, and 20 eV. We discuss the influence of the low-energy electrons on the differential cross section (DCS) as a function of the scattering angle for selected choices of the laser frequency and the number of photons exchanged between the external field and electron-helium system. (authors)
Energy Technology Data Exchange (ETDEWEB)
Zecca, A; Trainotti, E; Chiari, L [Department of Physics, University of Trento, Povo, I-38123 Trento (Italy); GarcIa, G [Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 121, 28006 Madrid (Spain); Blanco, F [Facultad de Ciencias Fisicas, Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense, Avda. Complutense s/n, E-28040 Madrid (Spain); Bettega, M H F [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990 Curitiba, Parana (Brazil); Varella, M T do N [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo, SP (Brazil); Lima, M A P [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Caixa Postal 6165, 13083-970 Campinas, Sao Paulo (Brazil); Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Brunger, M J, E-mail: Michael.Brunger@flinders.edu.au [ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)
2011-10-14
We report on measurements of total cross sections (TCSs) for positron scattering from the fundamental organic molecule formaldehyde (CH{sub 2}O). The energy range of these measurements was 0.26-50.3 eV, whereas the energy resolution was {approx}260 meV. To assist us in interpreting these data, Schwinger multichannel level calculations for positron elastic scattering from CH{sub 2}O were also undertaken (0.5-50 eV). These calculations, incorporating an accurate model for the target polarization, are found to be in good qualitative agreement with our measured data. In addition, in order to compare the behaviour of positron and electron scattering from this species, independent atom model-screened additivity rule theoretical electron TCSs, now for energies in the range 1-10 000 eV, are also reported.
Ab initio electron scattering cross-sections and transport in liquid xenon
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes
Potylitsyn, A. P.; Kolchuzhkin, A. M.
2017-04-01
The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.
Electron-hole pair contributions to scattering, sticking, and surface diffusion: CO on Cu(100)
Energy Technology Data Exchange (ETDEWEB)
Kindt, J.T.; Tully, J.C. [Department of Chemistry, Yale University, New Haven, Connecticut 06511 (United States); Head-Gordon, M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Gomez, M.A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1998-09-01
To assess the importance of coupling to electron-hole pair (ehp) excitations for molecular sticking, scattering, and diffusion dynamics at metal surfaces, simulations of the CO/Cu(100) system were performed using the {open_quotes}molecular dynamics with electronic frictions{close_quotes} method. Over a range of incident translational energies, energy losses to ehp excitations produce a moderate increase in sticking probability and account for 5{percent}{endash}10{percent} of initial translational energy in scattered molecules, significantly less than phonon losses. Vibrational excitation and deexcitation of scattered molecules, while remaining a minor pathway for energy flow, is strongly affected by the inclusion of ehp excitations. Finally, although equilibrium diffusion constants are unaffected by the inclusion of coupling to ehp, it causes a significant quenching of transient mobility following adsorption of translationally hot molecules. {copyright} {ital 1998 American Institute of Physics.}
Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon
Chu, Yanbiao; Gautreau, Pierre; Basaran, Cemal
2014-09-01
In contrast with carbon nanotubes, the absence of translational symmetry (or periodical boundary condition) in the restricted direction of zigzag graphene nanoribbon removes the selection rule of subband number conservation. However, zigzag graphene nanoribbons with even dimers do have the inversion symmetry. We, therefore, propose a selection rule of parity conservation for electron-phonon interactions. The electron-phonon scattering matrix in zigzag graphene nanoribbons is developed using the tight-binging model within the deformation potential approximation.
On higher order radiative corrections to elastic electron-proton scattering
Energy Technology Data Exchange (ETDEWEB)
Arbuzov, A.B. [Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Dubna State University, Department of Higher Mathematics, Dubna (Russian Federation); Kopylova, T.V. [Dubna State University, Department of Higher Mathematics, Dubna (Russian Federation)
2015-12-15
QED radiative corrections to elastic electron-proton scattering at low energies are discussed. Corrections to the electron line and effects due to vacuum polarization are computed. Higher order effects are estimated for the conditions of the experiment on the electric and magnetic proton form factors by the A1 Collaboration. Calculations are performed within the next-to-leading approximation. The inclusion of the higher order effects can affect the value of the proton charge radius extracted from the experimental data. (orig.)
Electron scattering cross sections with HF, OH, NH and CH molecules
Energy Technology Data Exchange (ETDEWEB)
Joshipura, K.N. [Sardar Patel Univ., Vallabh Vidyanagar (India). Dept. of Physics; Vinodkumar, M. [Sardar Patel Univ., Vallabh Vidyanagar (India). Dept. of Physics
1997-01-20
Total cross sections including elastic scattering, electronic excitation-ionisation and the dipole rotational excitation are calculated for electron impact on HF, OH, NH, and CH molecules. The additivity rules as well as single-centre expansion are employed for this purpose. A comparison was possible for the e-HF system only. Our results are expected to be good at intermediate to high energies (>50 eV). (orig.).
Kotkin, G L; Telnov, V I
2003-01-01
In a number of papers an attractive method of laser polarization of electrons (positrons) at storage rings or linear colliders have been proposed. We show that these suggestions are incorrect and based on errors in simulation of multiple Compton scattering and in calculation of the Compton spin-flip cross sections. We argue that the equilibrium polarization in this method is zero.
Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime
DEFF Research Database (Denmark)
Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.;
2013-01-01
In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...
Solution of a multiple-scattering inverse problem: electron diffraction from surfaces.
Saldin, D K; Seubert, A; Heinz, K
2002-03-18
We present a solution to the multiple-scattering inverse problem for low-energy electron diffraction that enables the determination of the three-dimensional atomic structure of an entire surface unit cell directly from measured data. The solution requires a knowledge of the structure of the underlying bulk crystal and is implemented by a maximum entropy algorithm.
Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E
2014-11-01
At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.
Multiple scattering in electron fluid and energy loss in multi-ionic targets
Energy Technology Data Exchange (ETDEWEB)
Deutsch, C., E-mail: claude.deutsch@u-psud.fr [LPGP, UParis-Sud, 91405-Orsay (France); Tahir, N.A. [GSI, 1Planck Str., 64291-Darmstadt (Germany); Barriga-Carrasco, M. [ETSII, UCastilla-la-Mancha, 13071 Ciudad-Real (Spain); Ceban, V. [LPGP, UParis-Sud, 91405-Orsay (France); Fromy, P. [CRI, UParis-Sud, 91405-Orsay (France); Gilles, D. [CEA/Saclay/DSM/IRFU/SAP, 91191-Gif-s-Yvette (France); Leger, D. [Laboratoire Monthouy, UValenciennes-Hainaut Cambresis (France); Maynard, G. [LPGP, UParis-Sud, 91405-Orsay (France); Tashev, B. [Department of Physics, KazNu, Tole Bi82, Almaty (Kazakhstan); Volpe, L. [Department of Physics, UMilano-Bicocca, Milano 20126 (Italy)
2014-01-01
Extensions of the standard stopping model (SSM) for ion projectiles interacting with dense targets of timely concern for ICF and WDM are reviewed. They include multiple scattering on partially degenerate electrons, low velocity ion slowing down in demixing H–He mixtures within Jovian planets core or multiionic target such as Kapton.
Raman scattering and quantum confinement in heavily electron-irradiated alkali halides
Shtyrkov, E.I.; Klimovitskii, A.; Hartog, H.W. den; Vainshtein, D.I.
2002-01-01
In this paper we will study the properties of several unusual Raman scattering peaks in heavily irradiated NaCl with vast amounts of colloidal sodium and chlorine precipitates. It appears that the laser excitation light interacts with both the electronic and vibration systems of the Na colloids, whi
Energy Technology Data Exchange (ETDEWEB)
Mirnov, V. V.; Hartog, D. J. Den; Duff, J.; Parke, E. [Physics Department, University of Wisconsin - Madison and the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)
2014-11-15
At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.
Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering
Jones, Donald
2016-01-01
The Qweak experiment which ran at Jefferson Lab in Newport News, VA, measured the weak charge of the proton $Q_W^p$ via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The Standard Model predicts a small parity-violating asymmetry of scattering rates between electron right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 with a measured parity-violating asymmetry of $-279\\pm 35(\\text{stat})\\pm 31$ (syst) parts per billion (ppb). This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be $Q_W^p=0.064\\pm0.012$, in agreement with the Standard Model prediction of $Q_W^p(SM)=0.0708\\pm0.0003$. The results of the full dataset are expected to decrease the statistical error from the initial publication by a facto...
Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering
Energy Technology Data Exchange (ETDEWEB)
Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)
2015-10-01
The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton Q^{p}_{W} via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be ^{p}_{W} = 0.064 ± 0.012, in good agreement with the Standard Model prediction of ^{p}_{W}(SM) = 0.0708 ± 0.0003[2].
Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.;
2017-01-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Bound-state methods for low-energy electron-ion scattering
Rosenberg, Leonard
1996-02-01
An effective-potential formalism, previously developed for electron scattering by a neutral target, is extended to apply to electron-ion scattering, with the requirement of antisymmetrization now accounted for explicitly. A minimum principle for the effective potential is derived, valid for scattering below the ionization threshold and applicable when, as is usually the case, the target wave functions are imprecisely known. The basis for the minimum principle is the Rayleigh-Ritz property that is satisfied by the modified Hamiltonian in terms of which the effective potential is defined. An analysis of single-channel, zero-energy scattering for a particular partial wave is presented; it is based on the effective-potential formalism and leads to an absolute definition of the zero-energy phase shift δ(0) of the form δ(0)=μ(∞)π, where μ(n) is the quantum defect of the nth energy level. This result may be thought of as an extension of Levinson's theorem for scattering by short-range potentials.
Effect of Compton Scattering on the Electron Beam Dynamics at the ATF Damping Ring
Chaikovska, I; Delerue, N; Variola, A; Zomer, F; Kubo, K; Naito, T; Omori, T; Terunuma, N; Urakawa, J
2011-01-01
Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of $e^-$ -- $e^+$ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-P\\'erot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering \\cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed...
Desjarlais, Michael P.; Scullard, Christian R.; Benedict, Lorin X.; Whitley, Heather D.; Redmer, Ronald
2017-03-01
We compute electrical and thermal conductivities of hydrogen plasmas in the nondegenerate regime using Kohn-Sham density functional theory (DFT) and an application of the Kubo-Greenwood response formula, and demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessen's Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kinetic theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.
New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon
Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien
2017-08-01
We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.
Institute of Scientific and Technical Information of China (English)
S. H. Kim
2009-01-01
We derive the cross section of scattering through the three-quantum interaction of an electron with the incident laser field, the emitted photon, and an axial electrostatic field produced by the magnetic wiggler in the magnetic wiggler acting as the sole zeroth-order perturbing classical field in the first free-electron laser (FEL). In the derivation, we apply quantum-wiggler electrodynamics (QWD). We find that this scattering predominates the usual two-quantum scattering. The output power of spontaneous free-electron two-quantum Stark emission driven by the above electrostatic field attenuated by the three-quantum scattering agrees within a factor of 10 with the measured power in the case of the first FEL.
Design of a collective scattering system for electron gyroscale turbulence study in KSTAR
Lee, Woochang; Park, Hyeon; Lee, Dongjae; Leem, Juneeok; Nam, Yongun
2015-11-01
The design characteristics of a multi-channel collective (or coherent) scattering system for electron scale turbulence study in KSTAR, which is planned to be installed in 2016, are investigated. A few critical issues are discussed in depth such as effect of the Faraday rotation of the electric field polarization of probing and scattered, the probing wave frequency which is related to the optics for measurement of electron gyro scale turbulence, the wave polarization to minimize absorption of the probing power by electron cyclotron resonant layers, and the probing power. A proper and feasible optics with 300 GHz probing wave, which is based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wave numbers up to 21 cm-1. The upper limit corresponds to the normalized wave number k⊥ρe of 0.2 in KSTAR plasmas. To detect scattered wave power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed. Work supported by NRF Korea under grant numbers NRF-2015M1A7A1A02002627 and NRF-2014M1A7A1A03029865.
An investigation into electron scattering from pyrazine at intermediate and high energies
Energy Technology Data Exchange (ETDEWEB)
Sanz, A. G.; Fuss, M. C. [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Almeida, D.; Ferreira da Silva, F.; Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); García, G., E-mail: g.garcia@iff.csic.es [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)
2013-11-14
Total electron scattering cross sections for pyrazine in the energy range 10–500 eV have been measured with a new magnetically confined electron transmission-beam apparatus. Theoretical differential and integral elastic, as well as integral inelastic, cross sections have been calculated by means of a screening-corrected form of the independent-atom representation (IAM-SCAR) from 10 to 1000 eV incident electron energies. The present experimental and theoretical total cross sections show a good level of agreement, to within 10%, in the overlapping energy range. Consistency of these results with previous calculations (i.e., the R-matrix and Schwinger Multichannel methods) and elastic scattering measurements at lower energies, below 10 eV, is also discussed.
Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering
Energy Technology Data Exchange (ETDEWEB)
Andrei Afanasev; Mykola Merenkov
2004-06-01
We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.
Buică, Gabriela
2017-01-01
We theoretically study the influence of laser polarization in inelastic scattering of electrons by hydrogen atoms in the presence of a circularly polarized laser field in the domain of field strengths below 107 V/cm and high projectile energies. A semi-perturbative approach is used in which the interaction of the projectile electrons with the laser field is described by Gordon-Volkov wave functions, while the interaction of the hydrogen atom with the laser field is described by first-order time-dependent perturbation theory. A closed analytical solution is derived in laser-assisted inelastic electron-hydrogen scattering for the 1 s → nl excitation cross section which is valid for both circular and linear polarizations. For the excitation of the n=2 levels simple analytical expressions of differential cross section are derived for laser-assisted inelastic scattering in the perturbative domain, and the differential cross sections by the circularly and linearly polarized laser fields and their ratios for one- and two-photon absorption are calculated as a function of the scattering angle. Detailed numerical results for the angular dependence and the resonance structure of the differential cross sections are discussed for the 1 s → 4 l excitations of hydrogen in a circularly polarized laser field.
Electronic Raman scattering and the Fano resonance in metallic carbon nanotubes
Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Sato, Kentaro; Dresselhaus, Mildred S.; Saito, Riichiro
2013-09-01
The Fano resonance spectra for the G band in metallic carbon nanotubes are calculated as a function of laser excitation energy, in which the origin of the resonance is given by an interference between the continuous electronic Raman spectra and the discrete phonon spectra. We found that the second-order scattering process of the q≠0 electron-electron interaction is more relevant to the continuous spectra rather than the q=0 first-order process because the q=0 direct Coulomb interaction vanishes due to the symmetry of the two sublattices of a carbon nanotube.
Low-energy elastic electron scattering form chloroethane, C2H5Cl
Sakaamini, A.; Navarro, C.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.
2015-10-01
We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloroethane, C2H5Cl, also known as ethyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 1 to 30 eV and at scattering angles from {10}\\circ to {125}\\circ . We compare our data to previous results for C2H5Cl and for the related molecule chloromethane.
Low-energy elastic electron scattering from chloromethane, CH3Cl
Navarro, C.; Sakaamini, A.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.
2015-10-01
We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloromethane, CH3Cl, also known as methyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 0.5 to 100 eV and at scattering angles from {5}\\circ to {125}\\circ . We compare our data to earlier previous results for this molecule.
Rayleigh x-ray scattering from many-electron atoms and ions
Surzhykov, A.; Yerokhin, V. A.; Stöhlker, Th; Fritzsche, S.
2015-07-01
A theoretical analysis is presented for the elastic Rayleigh scattering of x-rays by many-electron atoms and ions. Special emphasis is placed on the angular distribution and linear polarization of the scattered photons for the case when the incident light is completely (linearly) polarized. Based on second-order perturbation theory and the independent particle approximation, we found that the Rayleigh angular distribution is strongly affected by the charge state and shell structure of the target ions or atoms. This effect can be observed experimentally at modern synchrotron facilities and might provide further insight into the structure of heavy atomic systems.
Weber, Hannes; Maj, Omar; Poli, Emanuele
2015-03-01
The physics and first results of the new WKBeam code for electron cyclotron beams in tokamak plasmas are presented. This code is developed on the basis of a kinetic radiative transfer model which is general enough to account for the effects of diffraction and density fluctuations on the beam. Our preliminary numerical results show a significant broadening of the power deposition profile in ITER due to scattering from random density fluctuations at the plasma edge, while such scattering effects are found to be negligible in medium-size tokamaks like ASDEX upgrade.
Numerical Study of Coulomb Scattering Effects on Electron Beamfrom a Nano-Tip
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Corlett, John N.; Lidia, Steven M.; Padmore, HowardA.; Wan, Weishi; Zholent, Andrew A.; Zolotorev, Max
2007-06-25
Nano-tips with high acceleration gradient around the emission surface have been proposed to generate high brightness beams. However, due to the small size of the tip, the charge density near the tip is very high even for a small number of electrons. The stochastic Coulomb scattering near the tip can degrade the beam quality and cause extra emittance growth and energy spread. In the paper, we present a numerical study of these effects using a direct relativistic N-body model. We found that emittance growth and energy spread, due to Coulomb scattering, can be significantly enhanced with respect to mean-field space-charge calculations.
Ghazali, A.; Serre, J.
1985-02-01
Using a multiple-scattering method, we estimate the relative importance of both scattering and concentration-fluctuation effects on the band tailing and on interband optical absorption spectra. In addition, we show that as the impurity concentration decreases, the band tail gradually splits off from the main band, forming an impurity band. Spectral-density analysis allows one to distinguish between quasi-atomic and extended states. It is found that even when no gap appears, a significant part of electrons in the tail has a quasi-atomic character. Compensation effects have also been analyzed. Finally, our results are discussed and compared with various experiments.
Schwarm, F.-W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; Hemphill, P. B.; Marcu-Cheatham, D. M.; Dauser, T.; Wilms, J.
2017-01-01
Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. Aims: We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. Methods: The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. Results: We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 × 1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1). The electronic tables described here are available at http://www.sternwarte.uni-erlangen.de/research/cyclo