WorldWideScience

Sample records for quasicrystalline al-based alloys

  1. Estimation of thermal expansion properties of quasicrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    齐育红; 张占平; 黑祖昆

    2004-01-01

    By investigating the thermal expansion properties of three quasicrystalline alloys Al65 Cu20 Cr15 quenched,Al65Cu20Cr15 cast and Al65Cu20Fe15 cast particles reinforced Al matrix composites from 25 ℃ to 500 ℃, the thermal expansion coefficients of three quasicrystalline alloys were theoretically estimated. The results show that the thermal expansion coefficients of the composites are much lower than that of pure Al, and the thermal expansion coefficients of the composites reinforced by Al-Cu-Cr quasicrystalline particles are lower than those of the composites reinforced by Al-Cu-Fe quasicrystalline particles. According to estimating, quasicrystalline alloys have negative thermal expansion coefficients, and the thermal expansion coefficients of Al-Cu-Cr quasicrystalline alloys are lower than those of Al-Cu-Fe quasicrystalline alloys. In the alloys, the more the qusicrystalline content, the lower the thermal expansion coefficient.

  2. Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed

    Science.gov (United States)

    Sekhar, J. A.; Mantri, A. S.; Yamjala, S.; Saha, Sabyasachi; Balamuralikrishnan, R.; Rao, P. Rama

    2015-12-01

    This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral `clusters' within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.

  3. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shamah, A.M.; Ibrahim, S. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt); Hanna, F.F., E-mail: fariedhanna@yahoo.com [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2011-02-03

    Research highlights: > Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  4. SWAXS analysis on some quasicrystalline alloys: Nanoclusters and nanoaggregates

    Energy Technology Data Exchange (ETDEWEB)

    Tükel, Caner [Hacettepe Univ., Dept. of Nanotechnology and Nanomedicine, Ankara (Turkey); İde, Semra, E-mail: side@hacettepe.edu.tr [Hacettepe Univ., Dept. of Physics Eng., Beytepe, 06800 Ankara (Turkey); Yıldırım, Leyla [Hacettepe Univ., Dept. of Physics Eng., Beytepe, 06800 Ankara (Turkey); Erbudak, Mehmet [Solid State Physics, ETHZ, CH-8093 Zürich (Switzerland)

    2013-12-25

    Highlights: •Quasicrystals have rotational symmetry yet no periodicity in the atomic structure. •SAXS/WAXS methods are firstly applied to the studied type quasicrystals (QCs). •It is found that the QCs (Al–Co–Ni and Al–Co–Cu) are cluster-assembled materials. •In the clusters, the distance between central and external Al atoms is about 0.7 nm. •Four types of aggregations located around of main decagonal phase are found. -- Abstract: Mesoscopic structure of two decagonal quasicrystalline samples, Al–Co–Ni and Al–Co–Cu, is investigated by XRD and SEM. Simultaneous SAXS and WAXS (SWAXS) measurements give information on the shape, size, and pair-distance distributions of nanometer-size aggregates contained in the analyzed volume. Decagonal single quasicrystal structures, quasicrystalline approximants, and nanometer-size domain structures are found to coexist in the samples.

  5. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  6. Role of Disclinations and Nanocrystalline State in the Formation of Quasicrystalline Phases on Mechanical Alloying of Cu-Fe Powders

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of quasicrystalline phases were monitored using X-ray diffraction. Diffusion of Fe into the Cu matrix is proposed as the cause which triggers the instability of crystalline phases and leads to the formation of quasicrystalline phases after 10 h of milling. Milling for 100 h resulted in two different quasicrystalline phases with different lattice constants. Role of the nanocrystalline microstructure as an important criterion for the destabilisation of crystalline phases is explained. It is suggested that the formation of nanocrystalline microstructure and their subsequent transformation into quasicrystalline phases may be associated with a continuous increase in the disclination content of the system, which had formed as a result of continued milling and mechanical deformation.

  7. Fabric cutting application of FeAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Sklad, S.P. [Univ. of Virginia, Charlottesville, VA (United States); Deevi, S.C. [Philip Morris U.S.A., Richmond, VA (United States); Shih, H.R. [Jackson State Univ., MS (United States)

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  8. Surface Reactivity of Quasicrystalline Materials

    Science.gov (United States)

    Jenks, Cynthia J.

    1997-03-01

    A fundamental knowledge and understanding of the reactivity of quasicrystalline materials is of great interest because of certain practical properties these materials possess, namely low coefficients of friction and oxidation resistance. A recent "hierarchical cluster" model proposed by Janot(C. Janot Phys. Rev. B 56 (1996) 181.) predicts that quasicrystal surfaces should be intrinsically inert and rough, and is useful in explaining their interesting properties. Surface structure and preparation may play a role in the applicability of this model. In this talk, we examine these factors and present experimental measurements of the surface reactivity of some Al-based quasicrystalline materials under ultra-high vacuum conditions (less than 2 x 10-10 Torr). To gain an understanding of what properties are unique to quasicrystals, we make comparisons with the surface reactivity of crystalline alloys of similar composition and pure, crystalline aluminum. note number.

  9. Icosahedral quasicrystalline phase in an as-cast Mg-Zn-Er alloy

    Institute of Scientific and Technical Information of China (English)

    LI Jianhui; DU Wenbo; LI Shubo; WANG Zhaohui

    2009-01-01

    The microstructure of an as-cast Mg-Zn-Er alloy was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The results indicate that two different second phases, one with eutectoid-lamellar morphology and the other with granular shape, distribute in the α-Mg matrix. The coexistence of the face-centered icosahedral quasicrystalline phase (I-phase) and W-phase with the face-centered cubic structure is found in the as-cast alloy. The coexistence of I-phase and W-phasc in the Mg-Zn-Er alloy is because the W-phase is the primary phase and the I-phase forms by peritectic reaction during solidification.

  10. Precipitation of Icosahedral Quasicrystalline Phase, R-phase and Laves Phase in Ferritic Alloys

    Institute of Scientific and Technical Information of China (English)

    Keisuke Yamamoto; Yoshisato Kimura; Yoshinao Mishima

    2004-01-01

    Ferritic heat resistant steels involving precipitation of intermetallic phases have drawn a growing interest for the enhancement of creep strength, while the brittleness of the intermetallic phases may lower the toughness of the alloy.Therefore, it is necessary to optimize the dispersion characteristics of the intermetallics phase through microstructural control to minimize the trade-off between the strength and toughness. The effects of α-Fe matrix substructures on the precipitation sequence, morphology, dispersion characteristics, and the stability of the intermetallic phases are investigated in Fe-Cr-W-Co-Si system. The precipitates of the Si-free Fe-10Cr-1.4W-4.5Co (at%) alloy aged at 873K are the R-phase but those of the Si-added Fe-10Cr-1.4W-4.5Co-0.3Si (at%) alloy are the icosahedral quasicrystalline phase. The precipitates in both the Si-free and Si-added alloys aged at 973K are the Laves phase. Matrix of the alloys is controlled by heat treatments as to provide three types of matrix substructures; ferrite, ferrite/martensite mixture and martensite. The hardening behavior of the alloys depends on the matrix substructures and is independent of the kinds of precipitates. In the alloys with ferrite matrix, the peak of hardness during aging at 873K shifts to longer aging time in comparison with that in the alloys with lath martensite matrix which contain numbers of nucleation sites.

  11. Synthesis of quasicrystalline film of Al–Ga–Pd–Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, T.P., E-mail: yadavtp@gmail.com; Singh, Devinder; Shahi, Rohit R.; Shaz, M.A.; Tiwari, R.S.; Srivastava, O.N.

    2013-05-01

    Present work describes the synthesis of Al (Ga)–Pd–Mn quasicrystalline films via flash evaporation followed by annealing. The icosahedral quasicrystal of Al{sub 65}Ga{sub 5}Pd{sub 17}Mn{sub 13} alloy has been used as a precursor material. An amorphous phase with very fine icosahedral grain was found in the as-deposited films of ∼ 1.5 μm thickness. After annealing at 300 °C for 120 h, the film completely transformed into an icosahedral phase showing micron size islands, these are precipitated on the surface of film. The X-ray diffraction and transmission electron microscopy confirms the formation of icosahedral phase. The energy dispersive X-ray analysis reveals that the final stoichiometry is maintained in the film. The formation of icosahedral Al–Ga–Pd–Mn film provides opportunities to investigate the useful properties of quasicrystals including the surface characteristics, which may well enhance the scientific interest in applied aspect of quasicrystals. - Highlights: • Al (Ga)–Pd–Mn quasicrystalline films synthesized via flash evaporation technique • Films synthesized by this method have a negligibly small change in composition. • Films provide surface characteristics which open up applied aspects of quasicrystals.

  12. Fabric cutting application of FeAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Sklad, S.P. [University of Virginia, Charlottesville, VA 22905 (United States); Deevi, S.C. [Research, Development, and Engineering Center, Philip Morris USA, Richmond, VA 23234 (United States); Shih, H.-R. [Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217 (United States)

    1998-12-31

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60) and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel. (orig.) 18 refs.

  13. Formation of quasicrystalline phase in Al70-x Ga x Pd17Mn13 alloys

    Science.gov (United States)

    Yadav, T. P.; Singh, Devinder; Shahi, Rohit R.; Shaz, M. A.; Tiwari, R. S.; Srivastava, O. N.

    2011-07-01

    In the present investigation, the formation and stability of icosahedral phase in Al70- x Ga x Pd17Mn13 alloys has been explored using X-ray diffraction, scanning, transmission electron microscopy and energy dispersive X-ray analysis. Cast alloys and melt-spun ribbons with x = 2.5, 5, 7.5, 10, 12.5, 15 and 20 have been investigated. In both cases, the alloys up to 5 at% Ga exhibit the formation of pure icosahedral phase. However, for x ≥5 at% Ga content, the cast alloy exhibits the formation of multiphase material, consisting of an icosahedral phase along with AlPd-type B2 and ξ‧ crystalline (orthorhombic structure with unit cell a = 23.5 Å, b = 16.6 Å and c = 12.4 Å) phases. In the case of the melt spun ribbon for x = 5 at% Ga, only an icosahedral phase has been found, but for 15 > x > 5 at% Ga, an icosahedral phase is the majority phase with AlPd-type B2 phase being the minority component. For x = 15 at% Ga, a Al3Pd2-type hexagonal phase together with a small amount of quasicrystalline phase is formed. However, for x = 20, only a hexagonal Al3Pd2 phase results.

  14. Effect of Mo on stability of quasicrystalline phase in Al–Mn–Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Katarzyna, E-mail: k.stan@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow 30-059, 25, Reymonta St. (Poland); Lityńska-Dobrzyńska, Lidia [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow 30-059, 25, Reymonta St. (Poland); Lábár, János L. [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege ut 29-33 (Hungary); Góral, Anna [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow 30-059, 25, Reymonta St. (Poland)

    2014-02-15

    Highlights: ► Microstructure evolution of melt spun Al–Mn–Fe–Mo ribbon after annealing was studied. ► In as spun state quasicrystals enriched in Fe, Mn and Mo coexist with α-(Al). ► After annealing Al{sub 6}(Mn, Fe) and Al{sub 12}(Mn, Mo) phases were formed. ► Small addition of Mo improves thermal stability of quasicrystals in Al–Mn–Fe alloy. -- Abstract: Microstructure evolution in rapidly solidified Al{sub 91}Mn{sub 6}Fe{sub 2}Mo{sub 1} ribbons after annealing was investigated using X-ray diffraction, scanning electron microscopy and analytical transmission electron microscopy including in situ heating experiment in TEM. As spun ribbons consisted of icosahedral quasicrystalline particles enriched in Fe, Mn and Mo embedded in an aluminium matrix. A small amount of quasicrystals containing Fe and Mn which coexisted with the Al{sub 3}(Fe, Mn) phase was also observed between the aluminium grains. Further annealing experiments and subsequent analysis of microstructure changes in the sample showed that the quasicrystalline particles underwent a transformation into stable crystalline phases at temperatures which depended on their composition. It was observed that quasicrystals enriched in Mn and Fe transformed at much lower temperatures than primary quasicrystals with Mo content. It was noticed that two different crystalline phases formed in dependence on the temperature of annealing. The Al{sub 6}(Mn, Fe) phase appeared first at the quasicrystal/matrix interface. At higher temperature, the Al{sub 12}(Mn, Mo) phase formed due to reaction of the Al{sub 6}(Mn, Fe) phase with the aluminium matrix. Microstructural and DSC investigations showed that addition of molybdenum improved thermal stability of the quasicrystals in Al–Mn–Fe system.

  15. On the Evolution of Quasicrystalline and Crystalline Phases in Rapidly Quenched Al-Co-Cu-Ni Alloy

    OpenAIRE

    Yadav, T. P.; Mukhopadhyay, N. K.; Tiwari, R. S.; O. N. Srivastava

    2006-01-01

    The occurrence of stable decagonal quasicrystalline phase in Al-Co-Ni and Al-Cu-Co alloys through conventional solidification is well established. Earlier, we have studied the effect of Cu substitution in place of Co in the Al70 Co15Ni15 alloy. Here we report the structural/micro-structural changes with substitution of Cu for Ni in rapidly solidified Al-Co-Ni alloys. The melt-spun ribbons have been characterized using X-ray diffractometry (XRD), Scanning and transmission electron microscopy (...

  16. Diffusion Bonding between TiAl Based Alloys and Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The joint of 40Cr steel and TiAl based alloy has been studied by means of a high frequency induction diffusion welder. The experimental results show that, the higher the temperature and pressure, the higher the strength of the joints. The optimum parameters are: T=1123~1323 K,t=10~30 min, P=5~20 MPa.

  17. Melt Protection of Mg-Al Based Alloys

    Directory of Open Access Journals (Sweden)

    María J. Balart

    2016-05-01

    Full Text Available This paper reports the current status of Mg melt protection in view to identify near-future challenges, but also opportunities, for Mg melt protection of Mg-Al based alloys. The goal is to design and manufacture sustainable Mg alloys for resource efficiency, recycling and minimising waste. Among alternative cover gas technologies for Mg melt protection other than SF6: commercially available technologies containing―HFC-134a, fluorinated ketone and dilute SO2―and developed technologies containing solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive by-products. On the other hand, additions of alkaline earth metal oxides to Mg and its alloys have developed a strong comparative advantage in the field of Mg melt protection. The near-future challenges and opportunities for Mg-Al based alloys include optimising and using CO2 gas as feedstock for both melt protection and grain refinement and TiO2 additions for melt protection.

  18. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  19. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Wilkening, D. [Columbia Falls Aluminum Co., 2000 Aluminum Dr., Columbia Falls, MT 59912 (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., P.O. Box 1071, Anaconda, MT 59711 (United States)

    1998-12-31

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{sup TM} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast. (orig.) 18 refs.

  20. Quasicrystalline Al{sub 9}3Fe{sub 3}Cr{sub 2}Ti{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A.; Natale, E.; Cremaschi, V. J.; Todd, I.; Lieblich, M.

    2015-07-01

    Aluminium alloy powder having a nominal composition of Al{sub 9}3Fe{sub 3}Cr{sub 2}Ti{sub 2} (at%) has been prepared using gas atomisation. The atomised powder present a microstructure of an aluminium matrix reinforced with a spherical quasicrystalline icosahedral phase, in the range of nano metre in size. The powder was consolidated into bars using warm extrusion. The microstructure of the extruded bars retains the quasicrystalline microstructure and the bars present outstanding mechanical properties, i.e. proof stress of 280 MPa at 300 degree centigrade. Upon heating the microstructure evolves towards the equilibrium. The thermal evolution was investigated by means of x-ray diffraction, differential scanning calorimeter, scanning electron microscopy and transmission electron microscopy. According to these observations a transformation in two steps is proposed. A first step consists in the decomposition of the supersaturated solid solution of the matrix and the quasicrystals, and a second step in the transformation of the quasicrystals into the equilibrium phases. (Author)

  1. Electron-ion plasma modification of Al-based alloys

    Science.gov (United States)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  2. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  3. Non-alloyed Ni3Al based alloys – preparation and evaluation of mechanical properties

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2013-07-01

    Full Text Available The paper reports on the fabrication and mechanical properties of Ni3Al based alloy, which represents the most frequently used basic composition of nickel based intermetallic alloys for high temperature applications. The structure of the alloy was controlled through directional solidification. The samples had a multi-phase microstructure. The directionally solidified specimens were subjected to tensile tests with concurrent measurement of acoustic emission (AE. The specimens exhibited considerable room temperature ductility before fracture. During tensile testing an intensive AE was observed.

  4. Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jason A. Barrow

    2003-08-05

    equations. Transport behavior is described in terms of charge carriers and the mean-free time between carrier collisions. It is concluded that the mean-free time is much longer in the periodic direction than in the aperiodic direction. This difference produces the observed anisotropy in thermal transport. The third study presented a detailed analysis of the reversible, sputter-induced phase transformation which occurs on the 5-fold surface of an icosahedral Al-Cu-Fe quasicrystal. Reflection high-energy electron diffraction (RHEED), x-ray photoemission spectroscopy (XPS), and ultra-violet photoemission spectroscopy (UPS) data were collected as a function of annealing temperature and were used to probe surface structure, surface composition, and electronic structure, respectively. The composition and structure of the sputtered surface are consistent with a transformation to the {beta}-Al-Cu-Fe cubic structure, and shows a sharp metallic cut-off in the spectral intensity of the electronic structure at the Fermi edge. Upon annealing the surface reverts to a quasicrystalline composition and structure. This transformation has been correlated with a reduction in the spectral intensity of the electronic structure at the Fermi level. This data clearly demonstrates that the observed reduction is intrinsic to a quasicrystalline surface. It is concluded that this is due to the opening of a pseudo-gap in the electronic density of states as the surface reverts from {beta}-Al-Cu-Fe to quasicrystalline.

  5. Analysis alloy quasicrystalline Al62,2 Cu25,3 Fe12,5 for steam reforming of methanol

    Directory of Open Access Journals (Sweden)

    Lourdes Cristina Lucena Agostinho Jamshidi

    2015-10-01

    Full Text Available This study shows a good performance of quasicrystal Al62,2Cu25,3Fe12,5 as catalyst in catalytic reactions. This metal catalyst, without being leached with acid or base, with dry stoichiometric composition, Al62,2Cu25,3Fe12,5 is revealed among the reactions which occurred to be a partial oxidation; and promoted the formation of products: methanol, methanal + methanoic acid, water and dimethyl ether. For this research were used such experimental techniques as X-ray Diffraction (XRD to follow the evolution of the alloy phase, the Scanning Electron Microscopy (SEM that provides the study of surface microstructure, and Transmission Electron Microscopy (MET. All these techniques study the morphology of the internal phase, and defect a quasicrystalline nucleus. Catalytic tests of methanol conversion and selectivity intermediate products were obtained using this catalyst quasicrystal. The activity and stability of quasicrystal catalyst for reforming of methanol vapor show sufficient growth compared to the other catalysts. Fe and Cu species are highly dispersed in the homogeneous layer of quasicrystal catalyst which increase the catalytic activity and suppress the aggregation of Cu particles. We suppose that the quasicrystal can be a good catalyst used in a catalytic steam reforming, with high catalytic activity and excellent thermal stability.

  6. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  7. Wear and isothermal oxidation kinetics of nitrided TiAl based alloys

    Institute of Scientific and Technical Information of China (English)

    赵斌; 吴建生; 孙坚

    2002-01-01

    Gas nitridation of TiAl based alloys in an ammonia atmosphere was c arried out. The evaluation of the surface wear resistance was performed to compare with those of the non-nitrided alloys. It is concluded that high temperature nitridation raised wear resistance of TiAl based alloys markedly. The tribol ogical behaviors of the nitrided alloys were also discussed. The oxidation kinetics of the nitrided TiAl based alloys were investigated at 800~1000 ℃ in hot air. It is concluded that nitridation is detrimental to the oxidation resistance of TiAl based alloys under the present conditions. The nitrided alloys exhibit increased oxidizing rate with the prolongation of nitridation time at 800 ℃. However, alloys nitrided at 940 ℃ for 50 hdisplay a sign of better oxidat ion resistance than the other nitrided alloys at more severe oxidizing conditions. The parabolic rate law is considered as the basis of the data processing and interpretation of the mass gainvs time data. As a comparison with it, attempts were made to fit the data with the power law. The oxidation kinetic parameter kn, kp and n were measured and the trends were discussed.

  8. Commercialization status of Ni{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-31

    The Ni{sub 3}Al-based alloys have been under development at the Oak Ridge National Laboratory (ORNL) and other research institutions in the United States and around the world for the last ten years. The incremental developments of composition, melting process, casting methods, property data, corrosion data, weldability development, and prototype component testing under production-like operating conditions have pushed the ORNL-developed Ni{sub 3}Al-based alloys closer to commercialization. This paper will present the highlights of incremental technical developments along with the approach and current status of commercialization. It is concluded that cast components are the primary applications of Ni{sub 3}Al-based alloys, and applications range from heat-treating fixtures of forging dies. It is also concluded that the commercialization process is accelerated when technology is licensed to an organization that can produce the alloy, has component manufacturing capability, and is also a user.

  9. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T, E-mail: takulik@rekt.pw.edu.p [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland)

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  10. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg-Li-Al

  11. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  12. Improvement on Hot Workability of γ-TiAl Base Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    γ-TiAl base alloys have potential usage in aerospace engine fortheir high specific strength. In order to improve their poor hot workability, a new approach of hot deformation processing was investigated. The starting microstructure of Ti-46.5Al-2.5V-1.0Cr (atom percent, %) alloy is fully lamellar (FL) microstructure. The near gamma (NG) microstructure can be obtained through Nickel microalloying and heat treatment at 1 150 ℃. The isothermal compression tests were conducted on both materials using MTS machine at temperatures of 950 ℃, 1 000 ℃, and 1 050 ℃, and the strain rates of 0.01, 0.1 and 1 s-1. Compared with the γ-TiAl alloy with FL microstructure, the Ni-bearing alloy with NG microstructure has better hot workability, such as enlarged hot workable region, decreased flow stresses, more uniform and finer deformed microstructure.

  13. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  14. Fundamentals of Manufacturing Technologies for Aircraft Engine Parts Made of TiAl Based Alloys

    Directory of Open Access Journals (Sweden)

    Szkliniarz W.

    2016-09-01

    Full Text Available The study presents fundamentals of manufacturing technologies for aircraft engine construction elements, made of light, intermetallic TiAl based alloy, which is characterized by high relative strength and good creep and oxidation resistance. For smelting of alloy, the vacuum metallurgy methods were used, including application of induction furnace equipped with special crucibles made of isostatic-pressed, high-density graphite. To produce good quality construction element for aircraft engine, such as low-pressure turbine blade, there were methods of gravity casting from a very high temperature to the preheated shell moulds applied.

  15. Vacuum Brazing of TiAl Based Alloy with 40Cr Steel

    Institute of Scientific and Technical Information of China (English)

    周昀; 薛小怀; 吴鲁海; 楼松年

    2004-01-01

    The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal.The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu2Ti compound which joins two parts to produce a brazing joint with higher strength.

  16. X-ray elastic constant determination and residual stress of two phase TiAl-based intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To evaluate the residual stress in TiAl-based alloys by X-ray diffraction, X-ray elastic constants (REC) of a γ-TiAl alloy were determined. From these results, the stress state of a given phase in a duplex TiAl-based alloy under a uniaxial tensile loading has been characterized by X-ray diffraction. The results show that the X-ray elastic constants and the microscopic stresses of the given phase are different from the apparent elastic constants and the macroscopic stresses of the alloy. The reason of the different distribution of the alloy was also discussed.

  17. Effects of can parameters on canned-forging process of TiAl base alloy(Ⅰ)--Microstructural analyses

    Institute of Scientific and Technical Information of China (English)

    刘咏; 韦伟峰; 黄伯云; 何双珍; 周科朝; 贺跃辉

    2002-01-01

    By using thermal simulation technique, the conventional canned-forging process of TiAl based alloy was studied. The effect of can parameters on the microstruct ures of TiAl alloy was analyzed in this process. The results show that, the defo rmation microstructure of TiAl based alloy without canning is inhomogeneous. In lateral area, crack and shearing lines can be found; while in central area, fine -grained shearing zone can be found. The effect of can is to reduce the seconda ry tensile stress. However, only when the deformation of the steel can is coinci dental with that of TiAl alloy ingot, can this effect be effective. Moreover, a thick can would enhance the microstructural homogeneity in TiAl based alloy. With the H/D ratio of the ingot increasing, the deformation of TiAl alloy would be more unsteady, therefore, a thicker can should be needed.

  18. Templated quasicrystalline molecular layers

    Science.gov (United States)

    Smerdon, Joe; Young, Kirsty; Lowe, Michael; Hars, Sanger; Yadav, Thakur; Hesp, David; Dhanak, Vinod; Tsai, An-Pang; Sharma, Hem Raj; McGrath, Ronan

    2014-03-01

    Quasicrystals are materials with long range ordering but no periodicity. We report scanning tunneling microscopy (STM) observations of quasicrystalline molecular layers on five-fold quasicrystal surfaces. The molecules adopt positions and orientations on the surface consistent with the quasicrystalline ordering of the substrate. Carbon-60 adsorbs atop sufficiently-separated Fe atoms on icosahedral Al-Cu-Fe to form a unique quasicrystalline lattice whereas further C60 molecules decorate remaining surface Fe atoms in a quasi-degenerate fashion. Pentacene (Pn) adsorbs at tenfold-symmetric points around surface-bisected rhombic triacontahedral clusters in icosahedral Ag-In-Yb. These systems constitute the first demonstrations of quasicrystalline molecular ordering on a template. EPSRC EP/D05253X/1, EP/D071828/1, UK BIS.

  19. Effect of carbon on tribological property of plasma carburized TiAl based alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-ping; TIAN Wen-huai; GUO Chao-li; HE Zhi-yong; XU Zhong

    2006-01-01

    Plasma carburization at two different methane-to-argon gas ratios (5:5 and 6:5) was carried out on the cast TiAl based alloy of Ti-46.5Al-2.5V-1Cr (mole fraction, %) in order to enhance its wear resistance. The results show that after carburization under both carburizing atmospheres, Ti2AlC and TiC are the main carbides in the carburized layer and the value of surface hardness reaches more than HK 822, but for the carburized TiAl treated at CH4-Ar of 5-5, the surface carbon concentration is higher and the carburized depth is slightly thicker than that of alloy carburized at CH4-Ar of 6-5. The result of the ball-on-disk test against hardening-steel counter bodies shows that the wear resistance of the TiAl based alloy carburized under two different carburizing atmospheres is improved compared with non-carburized TiAl. The tribological property is related to the carbon content, and the carburized layer obtained at CH4:Ar of 5:5 possesses a stable friction coefficient, lower volume loss or wear rate and narrow wear scar. The characteristic of the carburized layer was examined by using optical microscopy, glow discharge spectrum and micro-hardness tester.

  20. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  1. Processing and applications of intermetallic {gamma}-TiAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, H. [Stuttgart Univ. (Germany). Inst. fuer Metallkunde; Kestler, H. [Metallwerk Plansee AG, Reutte/Tyrol (Austria)

    2000-09-01

    Development and processing of high-temperature materials is the key to technological advancements in engineering areas where materials have to meet extreme requirements. Examples for such areas are the aerospace and spacecraft industry or the automotive industry. New structural materials have to be ''stronger, stiffer, hotter, and lighter'' to withstand the extremely demanding conditions in the next generation of aircraft engines, space vehicles, and automotive engines. Intermetallic {gamma}-TiAl-based alloys show a great potential to fulfill these demands. (orig.)

  2. Intragranular nucleation sites of massive gamma grains in a TiAl-based alloy

    DEFF Research Database (Denmark)

    Dey, Suhash Ranjan; Bouzy, E.; Hazotte, A.

    2007-01-01

    Massive gamma grains were generated in a TiAl-based alloy through ice-water quenching from the alpha domain. Apart from those located along alpha(2)/alpha(2) grain boundaries, a few massive gamma grains were detected inside the alpha(2) grains. Some of these intragranular grains were revealed...... to be attached to particular alpha(2) twins (K-1: "{212103}" eta(1): ), in a Blackburn orientation relationship with them. Others were identified as developing in feathery colonies of similar crystallographic orientation. Whatever the nucleation site, further growth of all massive gamma grains involves...

  3. Deformation behavior of NiAl-based alloys containing iron, cobalt, and hafnium

    Science.gov (United States)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1989-01-01

    The effects of alloying additions on the mechanical properties of the B2 intermetallic NiAl have been investigated in both the melt-spun ribbon and consolidated, bulk form. The study is based on a matrix of NiAl-based alloys with up to 20 at. pct Co and Fe additions and with reduced Al levels in the range of 30-40 at. pct. Characterization of the melt-spun ribbon by optical and scanning electron microscopy indicates a range of microstructures, including single-phase beta, gamma-prime necklace phase surrounding either martensitic or beta grains, and a mixture of equiaxed martensitic and gamma-prime grains. Bend ductility is present in melt-spun and annealed ribbons exhibiting the gamma-prime necklace structure and in a single-phase beta material containing 20 at. pct Fe. The analysis of compressive flow behavior on consolidated, bulk specimens indicates that the single-phase beta alloys exhibit a continuous decrease in yield stress with increasing temperature and profuse microcracking at grain boundaries. In contrast, multiphase (gamma-prime + either martensite or beta) alloys tend to display a peak in flow stress between 600 and 800 K, with little or no signs of microcracking. In general, heat treatments which convert the martensitic grains to beta + gamma-prime result in improved strength at temperatures above 600 K and better resistance to crack initiation.

  4. Effects of can parameters on canned-forging process of TiAl base alloy(Ⅱ)--Mechanical behavior

    Institute of Scientific and Technical Information of China (English)

    刘咏; 何双珍; 黄伯云; 韦伟峰; 贺跃辉; 周科朝

    2002-01-01

    By using thermal simulation technique and computer simulation, the conventional canned-forging process of TiAl base alloy was studied. The effect of can parame ters on the mechanical behavior of TiAl alloys with diffe rent H/D ratios was analyzed in this process. The results show that, the pea k stress of TiAl base alloy without canning is far higher than that with canning. Compared with the samples with the same H/D ratio, the peak stress decreases with increa sing can thickness; while compared with the samples with the same can thickness , the peak stress decreases with increasing H/D ratio. The decrease of t he true stress of TiAl base alloy with canning were analyzed according to the theory of plastic deformation and results of computer simulation.

  5. Dry sliding wear of Al-Fe-Cr-Mn quasicrystalline phase former alloy obtained by spray forming; Estudo do comportamento ao desgaste de liga Al-Fe-Cr-Mn obtida por conformacao por spray

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, S.M.T.; Rios, C.T.; Botta Filho, W.J.; Bolfarini, C.; Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Gargarella, P.; Mendes, M.A.B., E-mail: marcio.andreato@gmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Samples from different regions of a spray formed billet of Al{sub 92}Fe{sub 3}Cr{sub 2}Mn{sub 3} quasicrystalline phase former alloy were analyzed and their wear behavior has been studied. The microstructures observed depend on the cooling rate imposed to the material. The border of the billet exhibits a very fine structure with presence of quasicrystalline phase and the base showed a fine structure but without presence of quasicrystalline phase. Dry sliding wear tests were made using three loads and samples of these two different regions. The wear surfaces were analyzed by scanning electron microscopy and X-ray diffraction. Similar wear behavior was observed in the border and the base samples at the same load. The wear mechanism verified is the adhesive and the applied load increases the formation of Al{sub 2}O{sub 3}. These particles can take off the surface and act as abrasive, which can explain the large increase in the wear rate for the samples loaded at 30N.(author)

  6. Dissolution Mechanism of a Zr Rich Structure in a Ni3Al Base Alloy

    Institute of Scientific and Technical Information of China (English)

    H.B. Mote.jadded; M. Soltanieh; S. Rastegari

    2011-01-01

    In the present research, the dissolution mechanism of a Zr rich structure during annealing of a Ni3Al base alloy containing Cr, Mo, Zr and B, was investigated. The annealing treatments were performed up to 50 h at 900, 1000 and 1100℃. The alloy used in this investigation was produced by vacuum-arc remelting technique. The results show that at the beginning of the process, a mixed interface reaction and local equilibrium (long range diffusion) mechanism controls the dissolution process. After a short time, this mechanism changes and the dissolution mechanism of the Zr rich structure changes to only long range diffusion of Zr element. According to this mechanism, the activation energy of this process is estimated to be about 143.3 kJ.mol-1. Also the phases that contribute to this structure and the transformations that occur at the final steps of solidification of this alloy were introduced. According to the results, at the final step of solidification, a peritectic type reaction occurs in the form of L+ y→Ni7Zr2 and →-Ni7Zr2 segregates from the melt. Following this transformation, →-Ni7Zr2 eutectic separates from the remaining Zr rich liquid. The solidification process will be terminated by a ternary eutectic reaction in the form of L→y+Ni5Zr+Ni7Zr2.

  7. Yield anisotropy and tension/compression asymmetry of a Ni3Al based intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Wen Weidong; Cui Haitao; Zhang Hongjian; Xu Ying

    2013-01-01

    In order to investigate the yielding behavior of the newly developed Ni3Al-based intermetallic alloy IC10,yield stresses have been measured in tension and compression with different orientations.The specimens were cut from a sheet with different angles inclined from the solidification direction.The inclined angles were taken to be 0°,22.5°,45°,67.5° and 90°.All experiments were conducted at room temperature except for orientation 0°,whose deformation temperatures ranged from 298 to 1273 K.Experimental results show that the yield strength of alloy IC10 has the anomalous behavior which has been observed for other L12-1ong-range ordered intermetallic alloys,but it is less pronounced.The abnormalities show the following characteristics:(i) the yield strength increases as the temperature is raised below the peak temperature,(ii) yield strength anisotropy,(iii) tension/compression asymmetry.Compared to Ni3Al single crystals,the polycrystalline exhibits some different yielding behaviors which may be due to the high volume fraction of γ phase.

  8. Structural Changes of α Phase in Furnace Cooled Eutectoid Zn-Al Based Alloy

    Institute of Scientific and Technical Information of China (English)

    Y.H. Zhu; K.C. Chan; G.K.H. Pang; T.M. Yue; W.B. Lee

    2007-01-01

    Furnace cooling is a slow cooling process. It is of importance to study structural evolution and its effects on the properties of alloys during the furnace cooling. Decomposition of aluminium rich α phase in a furnace cooled eutectoid Zn-Al based alloy was studied by transmission electron microscopy. Two kinds of precipitates in the α phase were detected in the FCZA22 alloy during ageing at 170℃. One was the hcp transitional α"m phase which appears as directional rods and the round precipitates. The other was the fcc α'm phase.It was found that the transitional phase α'm grew in three preferential directions of , and . The orientation relationship between the α phase and transitional phase α'm was determined as (02-2)α'm(fcc)//(02-2)α(fcc), [-111]α'm(fcc)//[-233]α(fcc). The non-equilibrium phase decomposition of the α phase is discussed in correlation with the equilibrium phase relationships.

  9. Effects of induction heat treatment on mechanical properties of TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    彭超群; 黄伯云; 贺跃辉

    2002-01-01

    The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl-based alloy (Ti-33Al-3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully-lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.

  10. Microstructural evolution of TiAl base alloy during three-stepped thermo-mechanical treatment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A TiAl base alloy ingot with a height-to-diameter ratio of 2.2 was broken down by multiple step canned forging. The microstructures after every deformation and subsequent recrystallization were observed by optical microscopy. Results show that at the first step the reduction should be carefully controlled in case of double-bulge and crack of the ingot. After the first annealing, recrystallization occurred at the deformed grain boundaries and inside the grain. The recrystallized microstructure is favorable for further deformation. After the second deformation and annealing, coarsening of the lamellae occurred and the microstructure became equiaxed. By the final deformation and subsequent recrystallization, the coarse lamellar colony can be refined to about 20 μm, and homogeneous microstructure was obtained from the ingot with a large initial height-to-diameter ratio.

  11. Interface structure and formation mechanism of diffusion-bonded joints of TiAl-based alloy to titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Vacuum diffusion bonding of a TiAl-based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa. The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al-rich α(Ti)layer adjacent to TC2,and the other is (Ti3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three-stage mechanism,namely(a)the occurrence of a single-phase α(Ti)layer;(b)the occurrence of a duplex-phase(Ti3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti3Al+TiAl)layers.

  12. Crystal Nucleation and Growth of Al-based Alloys Produced by Electrolysis

    Institute of Scientific and Technical Information of China (English)

    Zhiyong LIU; Mingxing WANG; Yonggang WENG; Tianfu SONG; Yuping HUO; Jingpei XIE

    2003-01-01

    The nucleation and growth of grains in a series of Al-based alloys produced by electrolysis are observed under SEM. The atomicTi/Al ratios of the nuclei and the distribution of Ti at certain points are analyzed by point EDS. The particles in differentatomic Ti/Al ratios might act as the nuclei of α-Al. At the early stage of growth, the spherical Ti-enriched regions might formaround these particles within very limited temperature ranges in which the reactions such as the peritectic reactions etc occur.At the latter stage of growth, the dendrites freely develop in the radial orientations, and the concentration of Ti decreaseslinearly along the dendrite arm and becomes negligible in the region near the periphery of the dendrite. It is believed that thenucleation is closely related with the number and dispersion of primary spherical areas in the melts, and the segregation of Tileads to the free growth of dendrite, which is necessary for the formation of equiaxial grains.

  13. Study on Rare Earth-Containing Phases in TiAl Based Alloys Prepared by Non-Equilibrium Solidification Processing

    Institute of Scientific and Technical Information of China (English)

    马学著; 沈军; 贾均

    2001-01-01

    Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HA). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with γ/α2 lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.

  14. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  15. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  16. Processing and operating experience of Ni{sub 3}Al-based intermetallic alloy IC-221M

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Santella, M.L. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Orth, J.E. [United Defense LP, Anniston, AL (United States)

    1997-12-01

    The cast Ni{sub 3}Al-based intermetallic alloy IC-221M is the most advanced in its commercial applications. This paper presents progress made for this alloy in the areas of: (1) composition optimization; (2) melting process development; (3) casting process; (4) mechanical properties; (5) welding process, weld repairs, and thermal aging response; and (6) applications. This paper also reviews the operating experience with several of the components. The projection for future growth in the applications of nickel aluminide is also discussed. (orig.) 22 refs.

  17. MICROSTRUCTURE AND TENSILE PROPERTIES OF Fe3Al-BASED ALLOYS WITH VC AND TiC ADDITIONS

    Institute of Scientific and Technical Information of China (English)

    W.L.Xu; Y.S.Sun; S.S.Ding

    2001-01-01

    Microstructure and tensile properties of Fe3Al-based alloys with additions of TiC andVC particles have been investigated.Results show that the formation of TiC particlesresults in the refinement of the macrostructure of as-cast ingots.Although the additionof VC particles does not cause significant change of the as-cast microstructure,themicrostructure of the alloy after hot-working and recrystallization has been found tobe refined.The formation of both VC and TiC particles results in the increase of yieldstrength,especially at high temperature of 600℃.

  18. Synthesis of Micro- and Nanoparticles of Metal Oxides and Their Application for Reinforcement of Al-Based Alloys

    Directory of Open Access Journals (Sweden)

    S. Vorozhtsov

    2015-01-01

    Full Text Available This paper presents a comparative analysis of morphology, chemical and phase compositions, and particle size distribution of nanopowders produced by electric explosion of wire (EEW and plasma-chemical methods. The possibility of introduction of Al2O3 particles into Al alloy by means of a special master alloy and with ultrasonic processing is shown. The improvement of tensile properties of an Al-based composite material reinforced with 0.1 wt% of EEW Al2O3 is demonstrated.

  19. Influences of Alloying Elements W, Mo, Cr and Nb on Retained Beta Phase in 47Al Based near γ-TiAl Alloys

    Institute of Scientific and Technical Information of China (English)

    Limin DONG; Rui YANG

    2003-01-01

    The influences of alloying elements W, Mo, Cr, and Nb on retainedβ phase in 47Al based near γ-TiAl alloys have been studied.The results reveal that the amount of retained β phase is increased by the addition of Cr, Mo, W in rising rank, although the distribution of β phase in Cr-bearing alloys is different from that of Mo- or W-bearing alloys. For Nb-doped alloys, no retained β was found even when 5 at. pct Nb was added. The as-cast microstructural features and the distribution of theβ phase in the different alloy families were compared and interpreted in terms of the different segregation behaviour of these elements in Ti.

  20. Structural characteristics of Ni3Al based alloys depending on the preparation conditions

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2015-10-01

    Full Text Available The paper presents an evaluation of the influence of the composition of alloys based on Ni3Al on their mechanical characteristics. The structure of the alloy was controlled through directional solidification. The achieved values of mechanical characteristics are in good agreement with the material structure. The alloys with sub-stoichiometric contents of aluminium have a multiphase structure. These alloys contain network with high values of tensile strain. The microstructure of the samples was investigated and behaviour of dislocations in the alloys was analysed by Transmission electron microscopy methods (TEM.

  1. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    Science.gov (United States)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  2. Structural, electronic, magnetic and optical properties of Ni,Ti/Al-based Heusler alloys. A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2016-05-01

    In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.

  3. Phase Transformation and Residual Stress in a Laser Beam Spot-Welded TiAl-Based Alloy

    Science.gov (United States)

    Liu, Jie; Staron, Peter; Riekehr, Stefan; Stark, Andreas; Schell, Norbert; Huber, Norbert; Schreyer, Andreas; Müller, Martin; Kashaev, Nikolai

    2016-12-01

    The microstructure, chemical composition, residual stress, and lattice parameter evolution of the welding zone (WZ) and heat-affected zone (HAZ) of a laser-beam-welded TiAl-based alloy were investigated. It was found that both α 2 and γ phases remain highly restrained in the WZ edge, and the stresses are relieved in the HAZ. A grain refinement mechanism is proposed, which works by heating the material to the β or α + β phase field for a short time. The lamellar colonies are refined by the Nb-enriched segregations.

  4. THE INFLUENCE OF Mo DIFFUSION ON THE THERMAL BEHAVIOR OF TBCs ON Ni3Al BASED ALLOY IC-6

    Institute of Scientific and Technical Information of China (English)

    D.B.Zhang; S.K.Gong; H.B.Xu; Y.F.Han

    2002-01-01

    Conventional two-layered structure thermal barrier coatings (TBCs) were preparedonto γ'-Ni3Al based alloy IC-6 by electron beam physical vapor deposition (EB-PVD).Isothermal oxidation and thermal cycling tests were carried out to investigate theeffect of Mo content at the interface between bond coat and ceramic top coat causedby diffusion. It has been found that the alloy coated with TBCs presented the lowestoxidation weight gain value for the reason that the ceramic top coat in TBC systemcan effectively stop Mo oxides evaporating. The life time of TBCs has close relationwith Mo content at the interface between the bond coat and top coat. Spallation ofceramic top coat occurred during thermal cyclic testing when Mo atoms accumulatedat the interface up to certain amount to decline the combination between the bond coatand top coat.

  5. Experimental and theoretical analyses on the ultrasonic cavitation processing of Al-based alloys and nanocomposites

    Science.gov (United States)

    Jia, Shian

    Strong evidence is showing that microstructure and mechanical properties of a casting component can be significantly improved if nanoparticles are used as reinforcement to form metal-matrix-nano-composite (MMNC). In this paper, 6061/A356 nanocomposite castings are fabricated using the ultrasonic stirring technology (UST). The 6061/A356 alloy and Al2O3/SiC nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles are injected into the molten metal and dispersed by ultrasonic cavitation and acoustic streaming. The applied UST parameters in the current experiments are used to validate a recently developed multiphase Computational Fluid Dynamics (CFD) model, which is used to model the nanoparticle dispersion during UST processing. The CFD model accounts for turbulent fluid flow, heat transfer and the complex interaction between the molten alloy and nanoparticles using the ANSYS Fluent Dense Discrete Phase Model (DDPM). The modeling study includes the effects of ultrasonic probe location and the initial location where the nanoparticles are injected into the molten alloy. The microstructure, mechanical behavior and mechanical properties of the nanocomposite castings have been also investigated in detail. The current experimental results show that the tensile strength and elongation of the as-cast nanocomposite samples (6061/A356 alloy reinforced by Al2O 3 or SiC nanoparticles) are improved. The addition of the Al2O 3 or SiC nanoparticles in 6061/A356 alloy matrix changes the fracture mechanism from brittle dominated to ductile dominated.

  6. Macro-microscopic morphology and phase analysis of TiAl-based alloys sheet fabricated by EB-PVD method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM)and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniforrnization.

  7. 氢在Fe3Al基合金中的渗透行为%Hydrogen Permeation Behavior in Fe3Al-Based Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ultra-high vacuum gaseous hydrogen permeation experiments on Fe3Al-based alloy were performed in the temperature range of 330 ~450℃ with an upstream hydrogen pressure between 3.38 × 104 Pa and 7.28 × 104 Pa. The results show that the hydrogen diffusivity and permeability in Fe3Al-based alloy obey Arrhenius relationship in the experimental temperature range and the hydrogen permeation process is controlled by the lattice diffusion of hydrogen at relative high temperature. The activation energy of hydrogen diffusion in the Fe3Albased alloy was found to be 75 kJ/mol.

  8. Quasicrystalline structures and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining

    2017-02-14

    This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.

  9. Isothermal oxidation behavior of Ti3Al-based alloy at 700-1 000 ℃ in air

    Institute of Scientific and Technical Information of China (English)

    QIAN Yu-hai; LI Mei-shuan; LU Bin

    2009-01-01

    The isothermal oxidation behavior of a Ti3Al-based alloy (Ti-24Al-14Nb-3V-0.5Mo-0.3Si, molar fraction, %) at 700- 1 000 ℃ in air was investigated. The oxidation kinetics of tested alloy approximately obeys the parabolic law, which shows that the oxidation process is dominated by the diffusion of ions. The oxidation diffusion activity energy is 241.32 kJ/mol. The tested alloy exhibits good oxidation resistance at 700 ℃. However, when the temperature is higher than 900 ℃, the oxidation resistance becomes poor. The XRD results reveal that the oxide product consists of a mixture of TiO2 and Al2O3. Serious crack and spallation of oxide scale occur during cooling procedure after being exposed at 1 000 ℃ in air for 16 h. According to the analysis of SEM/EDS and XRD, it is concluded that the Al2O3 oxide forms at the initially transient oxidation stage and most of it keeps in the outer oxide layer during the subsequent oxidation procedure.

  10. Creep characterization of a duplex Ti-Al base alloy at 700 and 750 C

    Energy Technology Data Exchange (ETDEWEB)

    Spigarelli, S.; Francesconi, L.; Evangelista, E. [Ancona Univ. (Italy). Dept. of Mech.; Guardamagna, C. [ENEL CRAM, Via Volta 1, Cologno Monzese, I-20093 Milano (Italy)

    1997-08-30

    The constant load creep behaviour of a two phase Ti-46Al-2W-0.5Si alloy was investigated at 700 and 750 C, under stresses ranging from 225 to 370 MPa. The initial microstructure was found to be duplex, consisting of equiaxed primary {gamma} grains and of lamellar {gamma}+{alpha}{sub 2} colonies. The minimum creep rate dependence on applied stress was studied by means of the conventional power law equation; the stress exponent was found to vary between five (low stress regime, climb controlled creep) and ten (high stress regime). The transition between the two regimes occurs at stresses close to 300 MPa. The stress exponent, the apparent activation energy as well as the pre-exponential constant are comparable, at least in the low stress regime, with those observed in a Ti-48.7Al-2.2W alloy produced by powder metallurgy. (orig.) 12 refs.

  11. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  12. Microstructure and strength of brazed joints of TiB2 cermet to TiAl-based alloys

    Institute of Scientific and Technical Information of China (English)

    李卓然; 冯吉才; 曹健

    2003-01-01

    In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal. The microstructural analyses indicate that two reaction products, Ti(Cu, Al)2 and Ag based solid solution (Ag(s.s)), are present in the brazing seam, and the interface structure of the brazed joint is TiB2/TiB2+ Ag(s.s) /Ag(s.s)+Ti(Cu, Al)2/Ti(Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases as the brazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.

  13. Effect of Heat Treatment on the Microstructure of Multiphase NiAl-based Alloy

    Institute of Scientific and Technical Information of China (English)

    Yi XIE; Lanzhang ZHOU; Jianting GUO; Hengqiang YE

    2008-01-01

    The alloy Ni-Al26.6-Cr13.4-Co8.l-Ti4.3-W1.3-Mo0.9 (at. pct) was fabricated from superalloy K44 and Al element using vacuum induction and casting technique. Investigations to this alloy reveal that a new phase Cr3Ni2 possessing low melting point and poor ductility is formed, which is distributed as a network along NiAl matrix grain boundaries. Subsequent different solution and aging treatments are carried out and lead to microstructural changes to various extents. Rapid cooling after solution at 1250℃ for 20 h gives rise to macrocracks in the specimen while slow cooling after the same treatment results in the formation of spheric α-Cr solid solution and needle-like Ni3Al phase, which are embedded in NiAI matrix. It is comfirmed that aging treatments initiate lath-shaped Ni3Al phase and pearl-shaped a-Cr phase to precipitate from the NiAl matrix, which own orientation relationships with these precipitates.

  14. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    Science.gov (United States)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  15. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    produce results on precipitation hardened Al alloys which provide a good indicator of long term field exposure performance in natural environments [15...I \\ I I i i I i i i I 750 ZOO AI-0.15Cu-0.9Mg-0.6Si (wt%) J50 m 100 10000 1000 10000 100000 1000000 i 10o Time, min Time...for good corrosion resistance and simultaneous weld penetration to achieve bonding vi. Designed New Braze alloy based on combined metallurgical

  16. Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Space

    Science.gov (United States)

    Herlach, Dieter M.; Burggraf, Stefan; Galenko, Peter; Gandin, Charles-André; Garcia-Escorial, Asuncion; Henein, Hani; Karrasch, Christian; Mullis, Andrew; Rettenmayr, Markus; Valloton, Jonas

    2017-08-01

    Containerless processing of droplets and drops by atomization and electromagnetic levitation are applied to undercool metallic melts and alloys prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. Experiments are performed both under terrestrial (1 g) conditions and in reduced gravity ( µg) as well. Microgravity conditions are realized by the free fall of small droplets during atomization of a spray of droplets, individual drops in a drop tube and by electromagnetic levitation of drops during parabolic flights, sounding rocket missions, and using the electro-magnetic levitator multi-user facility on board the International Space Station. The comparison of both sets of experiments in 1 g and µg leads to an estimation of the influence of forced convection on dendrite growth kinetics and microstructure evolution.

  17. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  18. Thermal activation approaches to deformation mechanisms for high Nb containing TiAl base alloys

    Institute of Scientific and Technical Information of China (English)

    刘自成; 王艳丽; 林均品; 张卫军; 陈国良

    2002-01-01

    The deformation mechanisms in a wide temperature range from room temperature to 1200K were investigated by thermal activation approach. Using observed instantaneous stress response to the strain rate jump (Δσtr), the activation volume Va, then the activation enthalpy ΔH, activation free enthalpy ΔG and activation entropy ΔS were calculated. The apparent activation energy of high temperature deformation is estimated to be 3.66eV, which is larger than the self-diffusion coefficient of binary TiAl (3.01eV). The dislocations at 1173K are generally curved or bowed, even helical-shaped dislocations. The climb of ordinary dislocations as well as twinning has greatly contributed to the plastic deformation. The CRSS at 1173K is estimated to be 180MPa. The higher resisting stress at both room temperature and elevated temperature might relate to the high Nb content of the alloy.

  19. In situ X-ray observations of gas porosity interactions with dendritic microstructures during solidification of Al-based alloys

    Science.gov (United States)

    Murphy, A. G.; Browne, D. J.; Houltz, Y.; Mathiesen, R. H.

    2016-03-01

    In situ X-radiography solidification experiments were performed on Al-based alloys, using both synchrotron and laboratory-based X-ray sources, in conjunction with a gradient furnace and a newly developed isothermal furnace, respectively. The effect of gas porosity nucleation and growth within the semi-solid mush during both columnar and equiaxed solidification was thereby observed. In all experimental cases examined, gas porosity was observed to nucleate and grow within the field-of-view (FOV) causing various levels of distortion to the semi-solid mush, and thereafter disappearing from the sample leaving no permanent voids within the solidified microstructure. During columnar growth, a single bubble caused severe remelting and destruction of primary trunks leading to secondary fragmentation and evidence of blocking of the columnar front. Equiaxed solidification was performed under microgravity-like conditions with restricted grain motion in the FOV. The degree to which the nucleated gas bubbles affected the surrounding grain structure increased with increasing solid fraction. However, bubble sphericity remained unaffected by apparent solid fraction or grain coherency.

  20. Oxide Dispersion Strengthened Fe3Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    2002-02-08

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100% in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is

  1. Physical, mechanical, and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying

    Science.gov (United States)

    Lepeshev, A. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2013-12-01

    The physical, mechanical, and tribological properties of quasicrystalline coatings based on the Al65Cu23Fe12 alloy prepared by plasma spraying have been investigated. The specific features of the phase formation due to the competitive interactions of the icosahedral ψ and cubic β phases have been elucidated. A correlation between the microhardness and the content of the icosahedral phase in the coating has been determined. The decisive role of the quasicrystalline phase in the formation of high tribological characteristics of the coatings has been revealed and tested.

  2. The effect of grain refinement on the room-temperature ductility of as-cast Fe{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Andleigh, V.K.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Fe{sub 3}Al-based alloys exhibit poor room-temperature ductility in the as-cast condition. In this study, the effect of grain refinement of the as-cast alloy on room-temperature ductility was investigated. Small melts of Fe-28 at. % Al-5 at. % Cr were inoculated with various alloying additions and cast into a 50- x 30- x 30-mm graphite mold. The resulting ingots were examined metallographically for evidence of grain refinement, and three-point bend tests were conducted on samples to assess the effect on room-temperature ductility. Ductility was assumed to correlate with the strain corresponding to the maximum stress obtained in the bend test. The results showed that titanium was extremely effective in grain refinement, although it severely embrittled the alloy in contents exceeding 1%. Boron additions strengthened the alloy significantly, while carbon additions reduced both the strength and ductility. The best ductility was found in an alloy containing titanium, boron, and carbon. In order to verify the results of the grain refinement study, vacuum-induction melts of selected compositions were prepared and cast into a larger 25- x 150- x 100-mm graphite mold. Tensile specimens were machined from the ingots, and specimens were tested at room temperature. The results of the tensile tests agreed with the results of the grain refinement study; in addition, the addition of molybdenum was found to significantly increase room-temperature tensile ductility over that of the base alloy.

  3. The behavior of 3d electrons and defects in TiAl-based alloys containing V and Cu studied by positron annihilation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Information of defects and 3d electrons in transition metals (Ti,V,Cu) and TiAl-based alloys (Ti50Al50,Ti50Al48V2,Ti50Al48Cu2) can be extracted from the positron lifetime and coincidence Doppler broadening spectra. The results show that the 3d electron signals for the transition metals Ti,V and Cu increase with the number of 3d electrons. The 3d electron signal and the electron density for binary TiAl alloy are relatively low due to the (Ti)3d-(Al)3p interactions. The addition of V and Cu atoms to TiAl alloy leads to the increase in the electron densities in bulk and the defects on grain boundaries simultaneously,as well as the enhancement of the 3d electron signal. The 3d electron signal in the spectrum of Ti50Al48Cu2 alloy is higher than that of Ti50Al48V2 alloy.

  4. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2016-09-01

    Full Text Available Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  5. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  6. Spin Transfer Torque Switching and Perpendicular Magnetic Anisotropy in Full Heusler Alloy Co2FeAl-BASED Tunnel Junctions

    Science.gov (United States)

    Sukegawa, H.; Wen, Z. C.; Kasai, S.; Inomata, K.; Mitani, S.

    2014-12-01

    Some of Co-based full Heusler alloys have remarkable properties in spintronics, that is, high spin polarization of conduction electrons and low magnetic damping. Owing to these properties, magnetic tunnel junctions (MTJs) using Co-based full Heusler alloys are potentially of particular importance for spintronic application such as magnetoresistive random access memories (MRAMs). Recently, we have first demonstrated spin transfer torque (STT) switching and perpendicular magnetic anisotropy (PMA), which are required for developing high-density MRAMs, in full-Heusler Co2FeAl alloy-based MTJs. In this review, the main results of the experimental demonstrations are shown with referring to related issues, and the prospect of MTJs using Heusler alloys is also discussed.

  7. Interfacial Behavior of Sulfur and Yttrium in Yttrium Modified Ni3Al-Based Alloy IC6 during High Temperature Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The interfacial behavior of sulfur and yttrium in the yttrium-modified Ni3Al-based alloy IC6 during oxidation at 1100 ℃ was analyzed by X-ray line scan of electron probe microstructural analysis(EPMA). The results show that the migration and segregation of sulfur to the interface between oxide scale and the substrate at high temperature is retarded owing to the presence of yttrium. This is attributed to the desulfurization by yttrium in the melt and the trapping of sulfur by yttrium rich phases during oxidation, which leads to improving the coherence between oxide scale and substrate. Another reason of increasing the high temperature oxidation resistance of alloy IC6 by the addition of yttrium is that yttrium migrates to the grain boundaries of oxides during oxidation and hence improve their strength. This results in the transformation of the oxide scale spallation cracks from intergranular cracks for alloy without yttrium to transgranular ones for yttrium-modified alloy.

  8. Effects of composition and heat treatment at 1150{degrees}C on creep-rupture properties of Fe{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.; Marrero-Santos, Y. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The effects of composition and heat treatment at 1150{degrees}C on the creep-rupture properties of Fe3Al-based alloys were studied. Tests of alloy FA-180 (Fe-28Al-5Cr-0.5Nb-0.8Mo-0.025Zr-0.05C-0.005B, at.%) with this heat treatment were performed in air using various test temperatures and stresses in order to obtain creep activation energies and constants. An activation energy for creep of approximately 150 kcal/mole was determined, a value which is approximately twice that obtained earlier for the binary alloy heat treated at 750{degrees}C. Tests were also conducted on alloys containing various combinations of Cr, Mo, Nb, Zr, C, and B in order to better understand the effect of composition on the improved creep resistance with heat treating at 1150{degrees}C. The results suggest an interaction of Mo with Zr and Nb to produce increased creep life.

  9. Method of making quasicrystal alloy powder, protective coatings and articles

    Science.gov (United States)

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  10. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    Indian Academy of Sciences (India)

    S S Nayak; B S Murty; S K Pabi

    2008-06-01

    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  11. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for

  12. The crystallography of continuous precipitates with a newly observed orientation relationship in an Mg-Al-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, O.; Zhou, J.P. [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Zhao, D.S. [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China)], E-mail: dszhao@whu.edu.cn; Wang, J.B.; Wang, R.H.; Gui, J.N.; Xiong, D.X. [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Sun, Z.F. [College of Material Science and Engineering, Chongqing Institute of Technology, Chongqing 400050 (China)

    2009-05-15

    A new orientation relationship (OR) between {gamma}-Mg{sub 17}Al{sub 12} precipitate and magnesium matrix is identified by the selected-area electron diffraction technique, together with the convergent beam electron diffraction method. The stereogram for the new orientation relationship has been calculated and discussed along with the stereograms for the Pitsch-Schrader OR, the Burgers OR, the Potter OR, the Crawley OR, the Porter OR and the Gjoennes-Ostmoe OR in the Mg-Al-based system.

  13. Effect of hydrogen on the mechanical behaviour of carbon-alloyed Fe3Al-based iron aluminides

    Indian Academy of Sciences (India)

    M Sen; R Balasubramaniam

    2002-06-01

    The effect of hydrogen on the mechanical behaviour of two carbon-alloyed iron aluminides was studied. Weakening of some carbide–metal interfaces in the presence of hydrogen was indicated. The effect of cathodic hydrogen charging on the microstructure has also been addressed.

  14. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N [ORNL; Field, Kevin G [ORNL; Yamamoto, Yukinori [ORNL

    2016-09-01

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000 C). Furthermore, these alloys have the potential to survive greater durations under lost-of-coolant incident (LOCA) conditions compared to the more traditional cladding materials that are Zr-based or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility to mitigate welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary, working results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing. Also, a brief discussion of the irradiation at the High-Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in details focusing on the irradiation temperature role. Limited fractography results are also given and analyzed. The discussion highlights the limitations of the testing at the hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development Laboratory (LAMDA) and prepared for mechanical tests. Follow-on SEM

  15. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    Science.gov (United States)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  16. Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with Cu-P Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Peng HE; Jicai FENG; Heng ZHOU

    2005-01-01

    Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173~1273 K for 60~1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215~1225 K; brazing time is 250~300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 k J/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.

  17. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    Science.gov (United States)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  18. Complex metallic alloys as new materials for additive manufacturing.

    Science.gov (United States)

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  19. Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating

    Science.gov (United States)

    Wei, Ying-Kang; Luo, Xiao-Tao; Li, Cheng-Xin; Li, Chang-Jiu

    2017-01-01

    Magnesium-based alloys have excellent physical and mechanical properties for a lot of applications. However, due to high chemical reactivity, magnesium and its alloys are highly susceptible to corrosion. In this study, Al6061 coating was deposited on AZ31B magnesium by cold spray with a commercial Al6061 powder blended with large-sized stainless steel particles (in-situ shot-peening particles) using nitrogen gas. Microstructure and corrosion behavior of the sprayed coating was investigated as a function of shot-peening particle content in the feedstock. It is found that by introducing the in-situ tamping effect using shot-peening (SP) particles, the plastic deformation of deposited particles is significantly enhanced, thereby resulting in a fully dense Al6061 coating. SEM observations reveal that no SP particle is deposited into Al6061 coating at the optimization spraying parameters. Porosity of the coating significantly decreases from 10.7 to 0.4% as the SP particle content increases from 20 to 60 vol.%. The electrochemical corrosion experiments reveal that this novel in-situ SP-assisted cold spraying is effective to deposit fully dense Al6061 coating through which aqueous solution is not permeable and thus can provide exceptional protection of the magnesium-based materials from corrosion.

  20. Role of Fe substitution and quenching rate on the formation of various quasicrystalline and related phases

    Indian Academy of Sciences (India)

    Varsha Khare; R S Tiwari; O N Srivastava

    2001-06-01

    We have investigated Fe substituted versions of the quasicrystalline (qc) alloy corresponding to Al65Cu20(Cr, Fe)15 with special reference to the possible occurrence of various quasicrystalline and related phases. Based on the explorations of various compositions it has been found that alloy compositions Al65Cu20Cr12Fe3 and Al65Cu20Cr9Fe6 exhibit interesting structural phases and features at different quenching rates. At higher quenching rates (wheel speed ∼ 25 m/sec) all the alloys exhibit icosahedral phase. For Al65Cu20Cr12Fe3 alloy, however, both the icosahedral and even the decagonal phases get formed at higher quenching rates. At higher quenching rate, alloy having Fe 3 at% exhibits two bcc phases, bccI ( = 8.9 Å) and bccII ( = 15.45 Å). The orientation relationships between icosahedral and crystalline phases are: Mirror plane ∥[001]bcc I and [351]bcc II, 5-fold ∥ [113]bcc II and 3-fold ∥ [110]bcc II. At lower quenching rate, the alloy having Fe 6 at% exhibits orthorhombic phase ( = 23.6 Å, = 12.4 Å, = 20.1 Å). Some prominent orientation relationships of the orthorhombic phase with decagonal phase have also been reported. At lower quenching rate (∼ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasiperiodic direction of the decagonal phase. For making the occurrence of the sheets of intensities intelligible, a model based on the rotation and shift of icosahedra has been put forward.

  1. Vacuum tribological behaviour of self lubricant quasicrystalline composite coatings

    Science.gov (United States)

    Garcí de Blas, F. J.; Román, A.; de Miguel, C.; Longo, F.; Muelas, R.; Agüero, A.

    2003-09-01

    High temperature resistant self-lubricant coatings are needed in space vehicles for components that operate at high temperatures and/or under vacuum. Thick composite lubricant coatings containing quasicrystalline alloys (QC) as the hard phase for wear resistance, have been deposited by thermal spray. The coatings also comprise lubricating materials (silver and BaF2-CaF2 eutectic) and NiCr as the tough component. This paper describes the vacuum tribological properties of TH103, a coating belonging to this family, with excellent microstructural quality. The coating was deposited by HVOF and tested under vacuum on a pin-on-disc tribometer. Different loads, linear speeds and pin materials were studied. The pin scars and disc wear tracks were characterized by EDS-SEM. A minimum mean steady friction coefficient of 0.32 was obtained employing a X-750 Ni superalloy pin in vacuum conditions under 10 N load and 15 cm/s linear speed, showing moderate wear of the disc and low wear of the pin.

  2. Nanoquasicrystalline Al-based matrix/γ-Al{sub 2}O{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Galano, M., E-mail: marina.galano@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Marsh, A. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Audebert, F. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Advanced Materials Group, INTECIN, Faculty of Engineering, University of Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Xu, W. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Ramundo, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Materials Science and Engineering, Massachusetts Institute of Technology (United States)

    2015-09-15

    Highlights: • Nanoquasicrystalline alloy MCs containing 20–50 nm Al{sub 2}O{sub 3} particles were prepared. • The ball milling process effect on the powders, microstructure and microhardness was studied. • Three different steps during the milling process were observed and explained. • Extruded bars from the ball milled alloy and composite powders were produced. • A remarkable increase in hardness in the composite bar was obtained in comparison to the alloy bar. - Abstract: Quasicrystalline aluminium alloys have been studied in the past years achieving higher strength than commercial Al alloys and retaining high strength at high temperature. In this work a quasicrystalline Al alloy matrix nanocomposite containing nanoceramic particles has been manufactured using ball milling and hot extrusion. For that purpose a nanoquasicrystalline Al–Fe–Cr–Ti alloy was manufactured by powder atomisation. Nanocomposites consisting of a quasicrystalline Al–Fe–Cr–Ti alloy matrix and reinforcement of γ-Al{sub 2}O{sub 3} nano particles were manufactured. The effect of ball milling time on the microstructure and microhardness of the nanocomposite powders was investigated. Bulk materials were produced by consolidation and hot extrusion. The microstructure and microhardness of the extruded materials were characterised. The milling regime behaviour is discussed, and shows three different steps that have a significant effect on the rate of change of uniformity of the reinforcement distribution, matrix microstructure, powder size distribution and its microhardness. No significant decomposition of the quasicrystalline phase occurred over 30 h of milling. Strain increased and the crystallite size of the aluminium phase decreased with milling time, with the Al crystallite size reaching a steady state. Although the quasicrystalline phase decomposed during hot extrusion, the microhardness of the nanocomposite produced is significantly harder (227 ± 3 μHV{sub 500}) than

  3. Periodically distributed objects with quasicrystalline diffraction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Janusz, E-mail: wolny@fis.agh.edu.pl; Strzalka, Radoslaw [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kuczera, Pawel [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Laboratory of Crystallography, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland)

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  4. Structural aspects of the fivefold quasicrystalline Al-Cu-Fe surface from STM and dynamical LEED Studies

    Energy Technology Data Exchange (ETDEWEB)

    Cai, T.; Shi, F.; Shen, Z.; Gierer, M.; Goldman, A.I.; Kramer, M.J.; Jenks, C.J.; Lograsso, T.A.; Delaney, D.W.; Thiel, P.A.; Van, M.A.

    2001-04-15

    We investigate the atomic structure of the fivefold surface of an icosahedral Al-Cu-Fe alloy, using scanning tunneling microscopy (STM) imaging and a special dynamical low energy-electron diffraction (LEED) method. STM indicates that the step heights adopt (primarily) two values in the ratio of tau, but the spatial distribution of these two values does not follow a Fibonacci sequence, thus breaking the ideal bulk-like quasicrystalline layer stacking order perpendicular to the surface. The appearance of screw dislocations in the STM images is another indication of imperfect quasicrystallinity. On the other hand, the LEED analysis, which was successfully applied to Al-Pd-Mn in a previous study, is equally successful for Al-Cu-Fe. Similar structural features are found for both materials, in particular for interlayer relaxations and surface terminations. Although there is no structural periodicity, there are clear atomic planes in the bulk of the quasicrystal, some of which can be grouped in recurring patterns. The surface tends to form between these grouped layers in both alloys. For Al-Cu-Fe, the step heights measured by STM are consistent with the thicknesses of the grouped layers favored in LEED. These results suggest that the fivefold Al-Cu-Fe surface exhibits a quasicrystalline layering structure, but with stacking defects.

  5. Microstructural transformation of quasicrystalline AlFeCrTi extruded bars upon long thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    García-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Natale, E.; Cremaschi, V.J. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires (Argentina); Todd, I. [Dept. of Materials Science and Engineering Materials, University of Sheffield, Mappin St., Sheffield S1 3JD (United Kingdom); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2015-09-15

    Highlight: • Evolution upon heating of quasicrystalline AlFeCrTi alloy in bulk sample. • Warm extrusion of gas atomised powder particles. • Microstructural evolution of QC-AlFeCrTi extruded bars. - Abstract: Bulk Al{sub 93}Fe{sub 3}Cr{sub 2}Ti{sub 2} bars extruded from gas atomised powder particles present a microstructure of an aluminium matrix reinforced with a spherical nanoquasicrystalline phase. In this work the evolution of the microstructure of Al{sub 93}Fe{sub 3}Cr{sub 2}Ti{sub 2} extruded bars upon heating at 400 °C for up to 1000 h is investigated by means of X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. According to our observations we propose that the quasicrystalline alloy evolves in two steps: a first step consists in the decomposition of the supersaturated solid solution of the matrix and the quasicrystals, and a second step in the transformation of the quasicrystals into the equilibrium phases.

  6. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds; Diseno y fabricacion de un sistema de aleado mecanico para preparar compuestos intermetalicos, nanocristalinos, amorfos y cuasicristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  7. 稀土Y对SPS烧结TiAl基合金显微组织与力学性能的影响%Effect of Y Addition on Microstructure and Mechanical Properties of TiAl-based Alloys Prepared by SPS

    Institute of Scientific and Technical Information of China (English)

    肖树龙; 徐丽娟; 于宏宝; 陈玉勇

    2013-01-01

    TiAl alloys with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta(at%) (TA alloy) and Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y(at%) (TAY alloy) were prepared by double mechanical milling and spark plasma sintering (SPS).The effect of Y addition on microstructure and mechanical properties of TiAl-based alloys was studied.The results show that the morphology of double mechanical milling powder is regular with sizes in the range of 20~40 μtm.The main phases of TiAl and Ti3Al and few phases of Ti2Al and TiB2 were observed in the SPS bulk samples of TiAl-based alloys.The equiaxed crystal grainmicrostructure was achieved with sizes in the range of 100~400 nm in TA alloy samples.The samples exhibited compressive properties at room temperature with a compressive strength of 2614 MPa and a compression ratio of 20.57%.For TAY alloy,the sizes of equiaxed crystal grain obviously decreased.The samples exhibited compressive properties at room temperature with a compressive strength of 2677 MPa and a compression ratio of 22.91%.The micro-hardness of the SPS bulk samples of TA alloy was obviously higher than that of the SPS bulk samples of TAY alloy.On the base of analysis of fractographs,it showed that the compression fracture transform of the SPS TiAl-based alloys samples was intergranular rupture.%采用双步机械球磨和放电等离子烧结(SPS)相结合的方法制备Ti-45Al-2Cr-2Nb-1B-0.5Ta(at%)和Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y(at%)2种TiAl基合金(简称TA合金和TAY合金),并研究稀土元素Y对TiAl基合金显微组织和力学性能的影响.结果表明,通过双步机械球磨后的粉末形状比较规则,颗粒尺寸范围在20~40 μm之间.经过SPS烧结的TiAl基合金块体主要由TiAl相和Ti3Al相组成,还有少量的Ti2Al相和TiB2相.SPS烧结的TA合金块体试样等轴晶粒的尺寸在100~400 nm之间,合金的室温压缩强度为2614 MPa,压缩率为20.57%;而对于加入了稀土元素Y的TAY合金而言,等轴晶粒尺寸明显减

  8. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  9. Fabrication of ten-fold photonic quasicrystalline structures

    Energy Technology Data Exchange (ETDEWEB)

    Sun, XiaoHong, E-mail: iexhsun@zzu.edu.cn; Wu, YuLong; Liu, Wen; Liu, Wei [Henan Key Laboratory of Laser and Opto-electric Information Technology, Zhengzhou University, Henan 450052 (China); Han, Juan; Jiang, Lei [Center for Bioengineering and Biotechnology, State Key Laboratory of Heavy Oil Processing China University of Petroleum, Qingdao 266580 (China)

    2015-05-15

    Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  10. 一种新型铝基合金的制备及其与水反应性能研究%Study on Synthesis of a New Al-Based Alloy and its Reaction Properties with Water

    Institute of Scientific and Technical Information of China (English)

    崔海洋; 卜建杰; 郑邯勇; 赵文忠; 陈支厦

    2013-01-01

    为了降低铝水反应的启动温度,提高铝基燃料的反应速率,通过熔炼法制得一种新型铝基合金.采用原子发射光谱(AES)、差热分析(DTA)和水解性能测试考察了制备方法、合金表面形态、反应温度和两种不同添加剂对合金性能的影响,并且考察了合金作为阳极材料的性能.结果表明:合金常温与水反应速率为35.53mL/ (g-min),反应率为82.1%.球磨改变合金表面形态之后,不但反应速率提高10倍,反应率也得提高到90.52%.对体系预热能有效的降低反应启动时间,同时提高反应率也提高到92.69%.自行设计的熔炼装置能使金属镁的烧损率降低到3%.添加剂b的综合性能优于a,能使合金的熔化温度大幅降低为855 K.作为电池阳极时,由于自腐蚀析氢比较严重,放电性能不稳定,需进一步优化降低自腐蚀.%In order to reduce the startup temperature and increase the reactivity of Al-based composites,the new Al-based alloy was obtained via melting casting.The effects of preparing method,particle size,temperature and two different additives on their properties were studied through the measurments of Atomic Emission Spectroscopy(AES),Differential Thermal Analysis(DTA) and hydrolysis.The performance of alloy as battery anode was investigated and the results show that at room temperature,the reaction rate of Al-based alloy is 35.53 mL/(g · min) and the reactivity is 82.1%.However,the reaction rate increases over 10 times after milling and the reactivity also increases to 90.52%.Heating reactor can reduce its startup time and promote the reactivity to 92.69%.Using the device self-designed can decrease the burn-off rate of Mg to 3%.The additive b is better than a and results in the descent of the melting point of Al-based alloy to 855K.As battery anode,the performance of alloy is not stable due to hydrogen-evolution self-corrosion of alloy and need to be optimized.

  11. Safety-relevant components made of low-iron, Al-base die-casting alloys; Sicherheitsbauteile aus eisenarmen Aluminium-Druckgusslegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Hielscher, U. [Aluminium Rheinfelden GmbH, Rheinfelden (Germany)

    1999-07-01

    The modern automotive engineering requirements to be met by die-casting aluminium alloys with respect to the microstructure, casting process, compatibility with operating media, and weldability are such that they cannot be met by conventional alloys. Therefore, there was a quest for novel alloys, which at the Aluminium Rheinfelden company has led to the development of two low-iron alloys: Silafont-36 (AlSi9MgMnSr), and Magsimal-59 (AlMg5Si2Mn). The materials properties and some applications are explained. (orig./MM) [German] Von der Automobilindustrie werden an die Aluminiumguss-Legierungen folgende Anforderungen gestellt: 1. sehr duktiles Gefuege, 2. gute Giessbarkeit fuer das Druckgiessverfahren, 3. Vertraeglichkeit mit den Eisenwerkstoffen der Giesswerkzeuge sowie Trenn- und Schmierstoffen, 4. gute Schweissbarkeit und gute Boerdelbarkeit. Die herkoemmlichen Gusslegierungen erfuellen diese Anforderungen nicht; der Aluminium Rheinfelden gelang die Entwicklung von zwei eisenarmen Legierungen: Silafont-36 (AlSi9MgMnSr) und Magsimal-59 (AlMg5Si2Mn). (orig.)

  12. Effect of cooling rate on the microstructure of electron beam welded joints of two-phase TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Guoqing; Zhang Binggang; He Jingshan; Feng Jicai

    2007-01-01

    The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti-43Al-9V-0.3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ+α2 two-phase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and cross-layered characteristic.

  13. Multicomponent and High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Brian Cantor

    2014-08-01

    Full Text Available This paper describes some underlying principles of multicomponent and high entropy alloys, and gives some examples of these materials. Different types of multicomponent alloy and different methods of accessing multicomponent phase space are discussed. The alloys were manufactured by conventional and high speed solidification techniques, and their macroscopic, microscopic and nanoscale structures were studied by optical, X-ray and electron microscope methods. They exhibit a variety of amorphous, quasicrystalline, dendritic and eutectic structures.

  14. 铝基合金牺牲阳极在干湿交替环境中的耐腐蚀性能%Anti-corrosion Performance of Al-based Alloys for Sacrificial Anode in Wet-dry Cyclic Environment

    Institute of Scientific and Technical Information of China (English)

    方志刚; 刘斌; 王涛; 王洪仁

    2013-01-01

    Electrochemical impedance spectroscopy (EIS) was used to study the corrosion behavior of four Al-based alloys commonly used as sacrificial anode for submarine under wet-dry cyclic conditions with various drying periods. The EIS results showed that the failure of the sacrificial anodes was mainly attributed that the coverage effect of corrosion products on the surface of sacrificial anodes, leading to the decrease of the number of active sites on the anode surface. Thus, the further activation of the sacrificial anodes was prevented. After several wet-dry cycles, the severe accumulation of corrosion products on the anode surface resulted in enlargement at the capacitive loops, indicating significant decrease of the active dissolution of the anodes. The performance of the 4 Al-based alloys under wet-dry cyclic environment may be ranked as the following order: Zn-Al-Cd <Al-Zn-In-Cd <Al-Zn-In-Mg-Ti<Al-Zn-In-Mg-Ga-Mn.%测试潜艇常用的4种牺牲阳极在不同干湿交替周期的电化学阻抗谱,分析了它们的耐腐蚀性能.结果表明,干湿交替条件下阳极失效的主要原因是腐蚀产物覆盖致使阳极表面的活性溶解点减少,阻碍阳极的进一步活化.经过一定的干湿交替循环后有些阳极结壳严重,导致容抗弧增大,阳极的活化溶解能力大大降低.在干湿交替环境中,合金的使用性能从差到好的顺序为:Zn-Al-Cd<Al-Zn-In-Cd<Al-Zn-In-Mg-Ti<Al-Zn-In-Mg-Ga-Mn.

  15. γ-TiAl基合金汽车排气阀吸铸充型过程水模拟%WATER MODELING OF MOULD FILLING DURING SUCTION CASTING PROCESS OF AUTOMOTIVE EXHAUST VALVES OF γ-TiAl BASED ALLOYS

    Institute of Scientific and Technical Information of China (English)

    熊超; 马颖澈; 陈波; 刘奎; 李依依

    2011-01-01

    Investment and suction casting represents a more cost effective route to produce automotive exhaust valves of 7-TiAl based alloys, but the castings have severe gas porosities in the preliminary suction casting. It has been conferred that the generation of the porosity defects in the castings is a result directly associated with the entrapped air during filling flow. In order to investigate the filling patterns and the entrapped air during the suction casting process of automotive exhaust valves of 7-TiAl based alloys, water modeling experiments have been done. The effect of three types of filling pressure control methods and two types of moulds on the filling patterns are systematically investigated in this paper. Results show that serious entrapped air occur during the filling flow with an rough pressure control method by means of the vents at the top of the moulds (called a general suction casting); Tranquil filling patterns are obtained under an accurate pressure control method ( "gas charging" or "air leakage" ), and if the gas charging flow is smaller than 1.7 m3/h or the air leakage flow is smaller than 1.5 m3/h, the entrapped air phenomenon disappear. Meanwhile, the general and the "air leakage" suction casting of TiAl automotive exhaust valves are implemented using the conclusions of the corresponding water modeling experiments, and the real casting results claim good qualitative agreement with that of the water modeling experiments. Finally, The reasonable explanation for the aforementioned results of the water modeling experiments is given using the filling kinetic principle of suction casting.%熔模吸铸是一种经济的γ-TiAl基合金汽车排气阀成型方法,但早期的吸铸气阀存在严重的气孔缺陷,这种缺陷的产生与吸铸充型过程的合金液流动密切相关.为了直接观察和测量γ-TiAl基合金汽车排气阀吸铸充型过程中合金液的形态和卷气现象,采用水模拟实验模拟了3种充型压力控制

  16. 钛铝基合金精铸用氧化物陶瓷型壳工艺研究%Technology Research on the Oxide Ceramic Mould for Investment Casting of TiAl-based Alloys

    Institute of Scientific and Technical Information of China (English)

    孙敏杰; 陈玉勇; 李宝辉; 赵而团

    2012-01-01

      In this paper, the oxide ceramic mould for investment casting TiAl-based alloys has been investigated. Studies have shown that the Si-O bond generated by the phase transformation improved strength of mould in the roasting process of the binder. Alternating with silica sol and ethyl silicate binder as the binder using on the back layer of zirconium oxide ceramic can improve the mould strength, while providing a good deformability of the mould. Also by experiments, the best route of using alternating silica and ethyl silicate binder prepared as a background layer of zirconium oxide ceramic shell is roasting for one hour in 1000℃.%  研究了钛铝基合金熔模精铸氧化物陶瓷型壳的制备工艺,研究表明,粘结剂主要是在焙烧过程中通过晶相转变生成Si-O键来提高型壳强度的.采用硅溶胶和硅酸乙酯交替作为背层粘结剂可以改善氧化锆陶瓷型壳的强度,同时能够具有良好的退让性.另外,通过实验确定采用硅溶胶和硅酸乙酯交替作为背层粘结剂制备的氧化锆陶瓷型壳的最佳焙烧工艺是在1000℃保温1h.

  17. Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles

    Science.gov (United States)

    Namin, Farhad A.; Yuwen, Yu A.; Liu, Liu; Panaretos, Anastasios H.; Werner, Douglas H.; Mayer, Theresa S.

    2016-02-01

    In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements.

  18. Corrosion behavior of Mg–5Al based magnesium alloy with 1 wt.% Sn, Mn and Zn additions in 3.5 wt.% NaCl solution

    Directory of Open Access Journals (Sweden)

    Nguyen Dang Nam

    2014-06-01

    Full Text Available The corrosion properties of four Mg–5Al alloys with M-alloying elements (tin, manganese and zinc in a 3.5 wt.% NaCl solution were examined using electrochemical tests and surface analyses. The electrochemical results indicated that the addition of 1 wt.% M metal decreased the corrosion rate and hydrogen evolution rate of the Mg–5Al specimens. Moreover, the addition of 1Zn resulted in having the best corrosion resistance due to the interaction of Zn oxide with Mg and Al oxides which acted as a corrosion barrier.

  19. Corrosion behavior of Mg–5Al based magnesium alloy with 1 wt.% Sn, Mn and Zn additions in 3.5 wt.% NaCl solution

    OpenAIRE

    Nguyen Dang Nam

    2014-01-01

    The corrosion properties of four Mg–5Al alloys with M-alloying elements (tin, manganese and zinc) in a 3.5 wt.% NaCl solution were examined using electrochemical tests and surface analyses. The electrochemical results indicated that the addition of 1 wt.% M metal decreased the corrosion rate and hydrogen evolution rate of the Mg–5Al specimens. Moreover, the addition of 1Zn resulted in having the best corrosion resistance due to the interaction of Zn oxide with Mg and Al oxides which acted as ...

  20. Glassy and icosahedral phases in rapidly solidified Ti-Zr-Hf-(Fe, Co orNi) alloys

    OpenAIRE

    Chen, N.; Louzguine-Luzgin, DV; Ranganathan, S; Inoue, A.

    2005-01-01

    The icosahedral quasicrystalline, amorphous plus crystalline and glassy phases were formed in $Ti_{40}Zr_{20}Hf_{20}(3d-LTM)_{20}$ alloys (3d-LTM = 3d late transition metals Fe, Co and Ni). The icosahedral phase formed in the melt-spun $Ti_{40}Zr_{20}Hf_{20}Fe_{20}$ alloy is metastable and the average size ofthe quasicrystalline icosahedral particles precipitated in the amorphous matrix is 5 nm. The metastable icosahedral phase transformed to a big-cubic fcc $Hf_{2}Fe$ phase with the grain si...

  1. Fabrication of photonic quasicrystalline structures in the sub-micrometer scale

    Science.gov (United States)

    Wang, Shuai; Sun, XiaoHong; Li, WenYang; Liu, Wei; Jiang, Lei; Han, Juan

    2016-05-01

    Compared to periodic crystals, photonic quasicrystals (PQC) have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures in the sub-micro scale. Based on the difference of production conditions, a variety of quasicrystals have been obtained in the SU8 photoresist films. Scanning Probe Microscopy and laser diffraction are used to characterize the produced structures. The corresponding theoretical analysis is also provided to compare with the experimental results. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  2. GREEN FUNCTIONS FOR A DECAGONAL QUASICRYSTALLINE MATERIAL WITH A PARABOLIC BOUNDARY

    Institute of Scientific and Technical Information of China (English)

    Wang Xu

    2005-01-01

    This investigation presents the Green functions for a decagonal quasicrystalline material with a parabolic boundary subject to a line force and a line dislocation by means of the complex variable method. The surface Green functions are treated as a special case, and the explicit expressions of displacements and hoop stress at the parabolic boundary are also given.Finally, the stresses and displacements induced by a phonon line force acting at the origin of the lower half-space are presented.

  3. Microstructure and wear behaviour of FeAl-based composites containing in-situ carbides

    Indian Academy of Sciences (India)

    RAVI KANT; UJJWAL PRAKASH; VIJAYA AGARWALA; V V SATYA PRASAD

    2016-12-01

    Iron aluminides containing carbon are promising materials for tribological applications. Because of graphite formation at higher ($>$20 wt%) Al-contents the addition of carbon to FeAl-based alloys has not been successful.The graphite precipitation may be avoided by addition of Zr or Ti. Dry sliding wear behaviour of FeAl based alloys containing 1–1.5wt% carbon with quaternary addition of Ti or Zr has been studied using ball-on-disk wear test. Effect of sliding speeds and applied loads is investigated and correlated with mechanical properties. Wear resistance of FeAl-based alloys is found to be significantly improved on addition of Ti/Zr. This is attributed to the high hardness of alloy carbides. The lower load-bearing capacity of graphite flakes in localized region was found to increase the wear rate of the alloy. The carbides such as Fe$_3$AlC$_{0.5}$, TiC and ZrC are embedded in the matrix after sliding wear without destruction or delamination. This significantly affects the wear resistance of FeAl-based alloys.

  4. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    Science.gov (United States)

    Namin, Frank Farhad A.

    Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array

  5. Change of quasilattice constant during amorphous-to-quasicrystalline phase transformation in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Rasmussen, A.R.; Jensen, C.H.

    2002-01-01

    that the quasilattice constant decreases with annealing time and saturates after 90 min while the zirconium and silver contents in quasicrystalline particles differ from those in the remaining amorphous matrix. The results provide evidence that the amorphous-to-quasicrystalline phase transformation in the Zr65Al7.5Ni10...

  6. A Study on Melt-able metal Core Process for Permanent Mould Casting of Ti3Al-based Alloy%可熔金属芯在金属型铸造Ti3Al基合金中的应用

    Institute of Scientific and Technical Information of China (English)

    谢华生; 杨洪涛; 赵军; 王君卿

    2001-01-01

    本文通过对空心可熔金属芯制造工艺及表面处理工艺的研究,成功地实现了Ti3Al基合金铸件的金属型铸造。研究结果表明:(1)利用金属型及可熔性金属芯可以铸出合格的Ti3Al基合金铸件;(2)该技术的重点在于可熔性金属芯的应用,可熔性金属芯既要能使合金液圆满充型,又要在充型结束后熔化以减少收缩阻力;(3)金属芯上的涂层是保证合金成分稳定与圆满充型的关键。%Based on an experimental study of the melt-able core and itssurface treatment technique, the castings with intermetallic compound Ti3Al-based alloy have been successfully cast in the permanent mold. The result shows that first, the Ti3Al castings can be manufactured by permanent mold casting; second, key of the technology is the use of a melt-able core which should not only bear pressure of the mold filling metal melt, but also could reduce the resistance of the core to metal contraction by the core being molten; and finally, the coating of the core is also one of the key technology for ensuring the alloy melt being successfully filled and against its composition being changed.

  7. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  8. Isothermal forging of γ-TiAl based alloys

    Institute of Scientific and Technical Information of China (English)

    黄朝晖

    2003-01-01

    The true stress-strain curves and processing window of Ti-47Al-2Cr-1Nb were set up through thermal physical simulation.A method for refinement of the as-cast+ HIPped structure was submitted,which included twostep deformation with a short intermediate heat-treatment between double deformations.The break-down operation of the canned ingot was performed by the isothermal forging processing mentioned above.The refining mechanism is characterized as breaking and bending of the as-cast+HIPped lamellae,dynamic recrystallization,and static globularization.Thus,a uniform and refined billet microstructure is obtained for the final component by forging operation.The deformation of a model disc is accomplished by the subsequent single-step isothermal forging at 1 100-1 150℃ using a closed compression die.

  9. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol

    2005-10-10

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  10. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    Science.gov (United States)

    Andueza, Ángel; Wang, Kang; Pérez-Conde, Jesús; Sevilla, Joaquín

    2016-08-01

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slab width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.

  11. Optimal width of quasi-crystalline slabs of dielectric cylinders to light transmission contrast

    CERN Document Server

    Andueza, Angel; Perez-Conde, Jesus; Sevilla, Joaquin

    2016-01-01

    Light confinement induced by resonant states in aperiodic photonic structures are interesting for many applications. A particular case of these resonances can be found in 2D quasi-crystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper we study the transmission properties of a slab of glass cylinders arranged in approximants of decagonal quasi-crystalline structure. In particular, we investigate the influence of the slab width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around 3 times the radiation wavelength. The transmission at the band gap region is mediated by the resonances of the photonic molecules. If ...

  12. Evidence of polymorphous amorphous-to-quasicrystalline phase transformation in Zr66.7Pd33.3 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, K.; Saida, J.

    2002-01-01

    The amorphous-to-quasicrystalline phase transformation and the pressure effect on the transformation in a Zr66.7Pd33.3 metallic glass have been investigated by in situ x-ray diffraction measurements using synchrotron radiation. It is found that the transformation is a polymorphous reaction...

  13. Enthalpy of formation of quasicrystalline phase and ternary solid solutions in the Al-Fe-Cu system

    Institute of Scientific and Technical Information of China (English)

    I.A. Tomilin; S.D. Kaloshkin; V. V. Tcherdyntsev

    2006-01-01

    Standard enthalpies of formation of quasicrystalline phase and the ternary solid solutions in the Al-Fe-Cu system and the intermetallic compound FeAl were determined by the means of solution calorimetry. The quasicrystalline phase was prepared using two different methods. The first method (Ⅰ) consisted of ball milling the mixture of powders of pure aluminum copper and iron in a planetary mill with subsequent compacting by hot pressing and annealing. The second method (Ⅱ) consisted of arc melting of the components in argon atmosphere followed by annealing. The latter method was used for preparing the compound FeAl and the solid solutions. The phases were identified using the XRD method. The enthalpy of the formation was determined for the quasicrystalline phase of the composition Al62Cu25.5Fe12.5 and the ternary BCC solid solutions Al35Cu14Fe51, Al40Cu17Fe43, and Al50.4Cu19.6Fe30. The measured enthalpy of formation of the intermetallic com pound FeAl is in good agreement with the earlier published data. The enthaipies of formation of the quasicrystalline phases prepared using two different methods are close to each other, namely, -22.7±3.4 (method Ⅰ) and -21.3±2.1 (method Ⅱ)k J/mol.

  14. Effects of TM on stability of structure corresponding to prepeak of amorphous Al90TM5Ce5 Alloys

    Institute of Scientific and Technical Information of China (English)

    赵芳; 吴佑实

    2002-01-01

    X-ray diffraction and DSC were used to investigate the crystallization process of amorphous Al90Fe5Ce5 and Al90Ni5Ce5 alloys, and the stability of the structure corresponding to the prepeak. Both these amorphous alloys are crystallized by two stages. The stability of the structure corresponding to the prepeak has a large difference. The structure corresponding to the prepeak for amorphous Al90Fe5Ce5 alloy is more stable than the amorphous matrix. However, it is not stable for amorphous Al90Ni5Ce5 alloys during the first crystallization stage. The prepeak position of amorphous Al90Ni5Ce5 alloys is very close to that of amorphous Al90Fe5Ce5 alloys. It is estimated that the prepeak is also due to diffraction peak broadening caused by very fine quasi-crystalline structure and the structural unit is an icosahedral quasi-crystalline structure with Ni as the central atom. The large difference of the stability of the structure corresponding to the prepeak is likely caused by different stability of the quasi-crystalline structure.

  15. Melting behaviour of lead and bismuth nano-particles in quasicrystalline matrix - The role of interfaces

    Indian Academy of Sciences (India)

    Alok Singh; A P Tsai

    2003-02-01

    Nanomaterials are playing an increasingly important role in modern technologies. Interfaces are crucial in nanotechnology. In this study, we have examined the stability of nanoparticles. Major emphasis is on understanding the effect of interfaces on melting. Melting behaviour of nanocrystalline interfaces, created by embedding lead and bismuth nanoparticles in quasicrystalline matrices, was studied. Sharply faceted and coherent interfaces can be related to sharper melting transitions, while irregularly shaped and incoherent interfaces can be directly correlated with lowering of melting temperatures. It is shown here that solid lead forms a high energy interface with phason strain-free quasicrystal (resulting in a lowering of the melting temperature) while bismuth forms a low energy interface with the quasicrystal (resulting in superheating, unusual for bismuth).

  16. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Directory of Open Access Journals (Sweden)

    Pawel Jozwik

    2015-05-01

    Full Text Available The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS or Microtechnology-based Energy and Chemical Systems (MECS; as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  17. Plastic analysis of the crack problem in two-dimensional decagonal Al-Ni-Co quasicrystalline materials of point group 10,(10)

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Fan Tian You

    2011-01-01

    The fundamental plastic nature of the quasicrystalline materials remains an open problem due to its essential complicacy. By developing the proposed generalized cohesive force model, the plastic deformation of crack in point group 10,10 decagonal quasicrystals is analysed strictly and systematically. The crack tip opening displacement (CTOD) and the size of the plastic zone around the crack tip are determined exactly. The quantity of the crack tip opening displacement can be used as a parameter of nonlinear fracture mechanics of quasicrystalline material. In addition, the present work may provide a way for the plastic analysis of quasicrystals.

  18. Process Simulation and Modeling for Advanced Intermetallic Alloys.

    Science.gov (United States)

    1994-06-01

    34Microstructure-Property Correlation in TiAl-Base Alloys", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and...Gamma Titanium Aluminide Alloy", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and R.R. Boyer, The

  19. Characterization of aluminium matrix composites reinforced by Al–Cu–Fe quasicrystalline particles

    Energy Technology Data Exchange (ETDEWEB)

    Lityńska-Dobrzyńska, L.; Dutkiewicz, J.; Stan-Głowińska, K.; Wajda, W. [Institute of Metallurgy and Materials Science Polish Academy of Sciences, 30-059 Kraków, 25 Reymonta St. (Poland); Dembinski, L.; Langlade, C.; Coddet, C. [Universite de Technologie de Belfort-Montbeliard, Site de Sevenans 90010, Belfort (France)

    2015-09-15

    Highlights: • Al powder and atomised Al{sub 65}Cu{sub 20}Fe{sub 15} powder were consolidated by vacuum hot pressing. • No changes in microstructure of Al{sub 65}Cu{sub 20}Fe{sub 15} powder in 20% and 40% composites. • Al{sub 2}Cu precipitates at the interfaces and inside the matrix in the 60% composite. • Increase of microhardness and compressive strength with content of reinforcement. • The friction coefficient were in the range 0.5–0.7. - Abstract: Aluminium matrix composites were consolidated from elemental Al powder and atomised Al{sub 65}Cu{sub 20}Fe{sub 15} particles by vacuum hot pressing technique. The spherical Al{sub 65}Cu{sub 20}Fe{sub 15} particles consisted of icosahedral quasicrystalline dendrites or cells and cubic τ-AlCu(Fe) phase located in interdendritic areas. The composites with different content of the reinforcement particles (20, 40 and 60 wt%) were prepared. All composites showed density about 99% and a good bonding between the Al{sub 65}Cu{sub 20}Fe{sub 15} particles and the matrix. It was shown that the phase composition of the atomised particles did not change after consolidation for the composite containing 20% and 40% added particles while Al{sub 2}Cu precipitates formed at the Al/Al{sub 65}Cu{sub 20}Fe{sub 15} interfaces and inside the matrix in the composite with 60% of Al{sub 65}Cu{sub 20}Fe{sub 15} particles. With the increase of the volume fraction of the reinforcement in the composite the hardness as well as compressive strength increased reaching the value of 173 HV{sub 0.5} and 370 MPa, respectively for 60% of Al{sub 65}Cu{sub 20}Fe{sub 15} particles. The friction coefficient slightly varied in the range 0.5–0.7 depending on the composition.

  20. Nanocrystallization of Al-based glasses via nucleation and growth under soft impingement conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rassolov, Sergey; Svyrydova, Kateryna; Zhikharev, Igor [A.A. Galkin Donetsk Institute for Physics and Engineering of NAS of Ukraine, 72 R. Luxemburg Str., Donetsk 83114 (Ukraine); Luhansk Taras Shevchenko National University, 2 Oboronna Str., Luhansk 91011 (Ukraine); Tkatch, Victor; Maksimov, Victor [A.A. Galkin Donetsk Institute for Physics and Engineering of NAS of Ukraine, 72 R. Luxemburg Str., Donetsk 83114 (Ukraine); Maslov, Valeriy [G.V. Kurdymov Institute for Metal Physics of the NAS of Ukraine, Kyiv (Ukraine)

    2010-05-15

    The nanocrystallization behaviour of Al{sub 86}Ni{sub 6}Co{sub 2}Gd{sub 3}Y{sub 2}Tb{sub 1} amorphous alloy has been studied by X-ray diffraction methods involving small angle scattering, resistance measurements and differential scanning calorimetry. It has been established that the transformation in amorphous alloy investigated occurs mainly by the growth process at initial state of transformation while at final stage nucleation contributes into formation of nanocomposite structure. In order to describe the nanocrystallization kinetics of the Al-based glasses the analytical kinetic equations in the frames of Kolmogorov-Johnson-Mehl-Avrami model have been proposed and the effective volume diffusion coefficient values which govern the diffusion-limited growth nanocrystals have been determined. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  2. Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Mei-Qiang [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China). Materials and Thermochemistry Laboratory; Graduate School of the Chinese Academy of Sciences, Beijing (China); Xu, Fen; Sun, Li-Xian [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China). Materials and Thermochemistry Laboratory

    2007-09-15

    In this paper, a series of Al-based materials were prepared by ball milling and/or melting. The XRD, SEM and TG-DTA techniques were used for sample analyses. Effects of different metals such as Zn, Ca, Ga, Bi, Mg, In and Sn on the hydrogen generation through hydrolysis of the Al alloy were evaluated in pure water. The results showed that mechanical milling was more favorable than the melting method to synthesize the Al alloys containing some metals with lower melting point and easier vaporization in the melting process. Addition of Bi and Sn could more significantly enhance Al reactivity with water in Al alloy than other metals such as Zn, Ca and Ga. Especially Al-Bi alloy had a faster hydrolysis rate than Al-Sn alloy at room temperature. For Al-Bi alloy, the addition of Zn and Ga accelerated the alloy hydrolysis while the effect of addition of other metals (Sn, In, Mg) on the hydrolysis of the alloy was reverse. Furthermore, the effect of some compounds (NaCl, MgCl{sub 2}, CaH{sub 2}) on the hydrolysis of the Al-Bi alloy was explored. It showed that the milling Al-Bi alloy together with the compounds could accelerate the formation of its mico-galvanic cell between the anode (Al) and cathode (Bi). The alloy composition was therefore optimized to be Bi, Zn, Ga, CaH{sub 2} and Al. The optimized Al alloy demonstrated a high hydrogen generation rate and theoretic hydrogen yields. (author)

  3. Weak crystallization theory of metallic alloys

    Science.gov (United States)

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-01

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theory cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. We identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. As an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.

  4. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  5. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders

    Indian Academy of Sciences (India)

    Musa Göğebakan; Bariş Avar

    2011-10-01

    Elemental mixtures of Al, Cu, Fe powders with the nominal composition of Al70Cu20Fe10 were mechanically alloyed in a planetary ball mill for 80 h. Subsequent annealing of the as-milled powders were performed at 600–800°C temperature range for 4 h. Structural characteristics of the mechanically alloyed Al70Cu20Fe10 powders with the milling time and the heat treatment were investigated by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and differential thermal analysis (DTA). Mechanical alloying of the Al70Cu20Fe10 did not result in the formation of icosahedral quasicrystalline phase (i-phase) and a long time milling resulted in the formation of -Al(Cu,Fe) solid solution phase (-phase). The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The -phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation indicated that a suitable technique to obtain a large amount of quasicrystalline powders is to use a combination of short-time milling and subsequent annealing.

  6. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    Science.gov (United States)

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  7. Investigation of Structure, Properties and Deformation Mechanisms of Elevated Temperature Al Alloys with High Specific Properties

    Science.gov (United States)

    2007-11-02

    stage – the porous filter from material with size pores amount 1 µm. Aluminum- oxide -coating AW, and Zirconium -coating ZR-M are used for coating of...5 we used a heat resistant aluminum alloy reinforced by quasicrystalline nanosize particles, which was elaborated in frames of Task 3 and 6, as the...formation of a composite that consists of an amorphous matrix with embedded nanosize (5-10 nm) α-Al particles and has a high hardness HV = 3.5 GPa is

  8. A study on the structure of AlMnNiTi alloy powders

    Science.gov (United States)

    Lijun, Wu; Lihua, Zhao; Qiaoqin, Yang; Shaolu, Li; Zhenjua, Chen; Yukun, Wu

    1996-02-01

    The structure of AlMnNiTi alloy powders has been studied by transmission electron microscope and X-ray diffraction. Two cubic phases are found and determined. One phase has a BCC lattice with a = 0.8905 nm, the other phase belongs to an FCC lattice with a = 1.1875 nm. The Al 3(Mn,Ni,Ti) phase, the Al solid solution and an unknown metastable phase are also found in the rapidly solidified sample. After annealing at 800°C for 1 h, the unknown metastable phase transforms into the decagonal quasicrystalline phase and the Al solid solution.

  9. INTERFACE STRUCTURE AND BOND STRENGTH OF DIFFUSIONG -BONDED JOINT OF TiAl-BASE ALLOY TO 40Ct STEEL%TiAl基合金与40Cr钢扩散连接的界面结构及接合强度

    Institute of Scientific and Technical Information of China (English)

    冯吉才; 何鹏; 张秉刚; 钱乙余; 郭德伦; 侯金保

    2000-01-01

    TiA1 alloy was diffusion bonded to 40Cr steel in vacuum furnace. Results showed, at the TiA1 -40Cr inter face, the reaction layer of mixture was formed closest to TiA1 base, TiC layer was formed in the middle and obvious decarbonised layer was formed closest to 40Cr steel side. The widths of the three reaction layer increased with the increase of the bond temperature and the bond time. The ambient ultimate tensile strengths of the tested joints were poor, and fractography revealed that all joints fractured in the TiC layer, producing brittle cleavage fracture surface. High bond temperature and short bong time was propitious to decresing metallic compounds resulting in brittleness of the weld joint and obtaining high good properties of bonding.%用真空扩散连接的方法对TiAl/40Cr钢进行了扩散连接。结果表明,在TiAl/40Cr钢接头的界面处中出现了三个扩散层,它们分别是:邻接TiAl侧的金属间化合物混合层,中间的TiC层,靠近40Cr钢侧的脱碳固溶层;并且随着焊接温度的提高,保温时间的延长,三个扩散层的厚度均显著增大。力学性能测试表明,TiAl/40Cr扩散连接接头的拉伸强度很低,断口为脆性断裂,主要断裂在界面层中的TiC处。为了获得结合较好拉的伸强度较高的TiAl/40Cr钢扩散连接接头,宜采用高温短时规范,以达到控制及减少脆性相及金属间化合物的目的。

  10. Processing of CNTs Reinforced Al-Based Nanocomposites Using Different Consolidation Techniques

    Directory of Open Access Journals (Sweden)

    N. Al-Aqeeli

    2013-01-01

    Full Text Available In this work, the development of two types of Al-based alloys with different concentrations of Si reinforced with MWCNT’s at 0.5–2.0 wt% is presented. Sonication of the CNT’s in ethyl alcohol was carried out for dispersion, and the mixtures were ball milled for 1, 3, and 5 hrs. SEM/EDS were used to study the morphology and the effects of changing milling parameters in addition to changes caused due to increasing concentration of the CNT’s. Furthermore, three sintering techniques, namely, Spark Plasma Sintering (SPS, Microwave Sintering (μWS, and Hot Isostatic Press Sintering (HIP were employed to consolidate the ball milled powders at varying temperatures of 400, 450, and 500°C. It was found that SPS consolidated samples showed the most promising results amongst the three with the highest hardness values; around 100% densification, as well as the finest microstructure. On the other hand, microwave sintered samples showed the least appealing results, this could be attributed to the poor temperature distribution and the pressureless nature of the technique. A sintering temperature of 500°C was found to be the most suitable for these types of alloys.

  11. Structural phase transitions in the Ti{sub 45}Zr{sub 38}Ni{sub 17−x}Fe{sub x} nano-alloys and their deuterides

    Energy Technology Data Exchange (ETDEWEB)

    Rusinek, D.; Czub, J.; Niewolski, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-059 Kraków (Poland); Gondek, Ł., E-mail: lgondek@agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-059 Kraków (Poland); Gajewska, M. [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Kraków (Poland); Takasaki, A. [Department of Engineering Science and Mechanics, Shibaura Institute of Technology, Toyosu, Kotoku, Tokyo 135-8548 (Japan); Hoser, A. [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Żywczak, A. [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-10-15

    The mechanically alloyed Ti–Zr–Ni materials are extensively studied due to their promising properties concerning biomedical, electronic or hydrogen related applications (for example the gaseous hydrogen storage and the MNiH batteries). In this paper we address the very crucial issue of the structural properties and transformations of the amorphous and quasicrystalline Ti{sub 45}Zr{sub 38}Ni{sub 17−x}Fe{sub x} (x = 0, 4, 8) and their hydrides. According to the neutron diffraction results, the transformation of the amorphous Ti{sub 45}Zr{sub 38}Ni{sub 17} phase into the icosahedral quasicrystalline state (the i-phase) is quasi-continuous and starts at the relatively low temperature of 300 °C. At 500 °C the i-phase is well-developed. At higher temperatures the i-phase transforms into the approximant w-phase and eventually into the cubic phase (the c-phase). Interestingly, the deuterided i-phase exhibits completely different thermal evolution. Namely, this phase decomposes into the simple intermetallic compounds above 625 °C. What is worth-mentioning is that the release of deuterium is strictly related to that structural decomposition. The possibility of hydrogenation of the amorphous Ti{sub 45}Zr{sub 38}Ni{sub 17−x}Fe{sub x} phases with maintaining the amorphous nature of the alloys is the other extremely important field of our interest. We established a processing route to meet our goal. Finally, we show that introducing deuterium triggers an exciting phase transition from the deuterided amorphous phase into the unknown before, partially disordered, quasicrystalline-like phase (the glassy quasicrystal) without releasing of deuterium. - Highlights: • Formation and evolution of the quasicrystalline Ti{sub 45}Zr{sub 38}Ni{sub 17} phase is evidenced. • Fully deuterided Ti{sub 45}Zr{sub 38}Ni{sub 17−x}Fe{sub x} alloys, that remained amorphous, were obtained. • The deuterium atoms are likely the equivalent constituent of the amorphous alloys. • Glassy

  12. Quasi-ordered C60 molecular films grown on the pseudo-ten-fold (1 0 0) surface of the Al13Co4 quasicrystalline approximant

    Science.gov (United States)

    Fournée, V.; Gaudry, É.; Ledieu, J.; de Weerd, M.-C.; Diehl, R. D.

    2016-09-01

    The growth of C60 films on the pseudo-ten-fold (1 0 0) surface of the orthorhombic Al13Co4 quasicrystalline approximant was studied experimentally by scanning tunneling microscopy, low-energy electron diffraction and photoemission spectroscopy. The (1 0 0) surface terminates at bulk-planes presenting local atomic configurations with five-fold symmetry—similar to quasicrystalline surfaces. While the films deposited at room temperature were found disordered, high-temperature growth (up to 693 K) led to quasi-ordered molecular films templated on the substrate rectangular unit mesh. The most probable adsorption sites and geometries were investigated by density functional theory (DFT) calculations. A large range of adsorption energies was determined, influenced by both symmetry and size matching at the molecule-substrate interface. The quasi-ordered structure of the film can be explained by C60 adsorption at the strongest adsorption sites which are too far apart compared to the distance minimizing the intermolecular interactions, resulting in some disorder in the film structure at a local scale. Valence band photoemission indicates a broadening of the molecular orbitals resulting from hybridization between the substrate and overlayer electronic states. Dosing the film at temperature above 693 K led to molecular damage and formation of carbide thin films possessing no azimuthal order with respect to the substrate.

  13. Microstructure and mechanical properties of a Mg–Zn–Y alloy produced by a powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Asgharzadeh, H. [Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, P.O. Box 51666-16471, Tabriz (Iran, Islamic Republic of); Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, E.Y. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Chae, H.J.; Kim, T.S. [Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, J.W. [Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-02-15

    In this paper, a bulk Mg–Zn–Y alloy reinforced by quasicrystalline particles was produced by hot extrusion of rapidly-solidified powders. MgZn{sub 4.3}Y{sub 0.7} powders with different particle sizes were prepared by an inert gas atomizer and then extruded at 380 °C with extrusion ratios of 10:1, 15:1, and 20:1. Microstructural studies were performed using an optical microscope, scanning electron microscope, transmission electron microscope, and X-ray diffraction. The mechanical strength and hardness of the extruded materials were enhanced by employing finer Mg alloy powders. More uniform deformation of powders in extruded billets with good tensile properties was achieved at higher extrusion ratios, especially for finer powders. The high strength of the MgZn{sub 4.3}Y{sub 0.7} alloy was preserved at elevated temperatures due to the presence of icosahedral phase nanoparticles.

  14. Structural feature of cast Al-base composite

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.; Li, Y.; Wang, G.

    1986-02-01

    An observation was carried out on the features of microstructure, fracture, and worn surface of an Al-base composite prepared by rheocasting with graphite, SiC, and SiO/sub 2/. The alpha solid solution, Si, CuAl/sub 2/, and allied eutectics are found to nucleate and to grow up along the surface of particulates added during solidification of the compslurry. The short-range movement of the particulates may distribute more uniformly in matrix owing to rapidly raising temperature of the compslurry before casting. Over the particulate, a transition layer connects with the matrix, and the active element Mg accumulates more or less. Thus, a firm bond is joined between the particulate and matrix, and no more pores and cracks form on the microstructure of fractured or worn surface. 11 references.

  15. Strain rate sensitivity of Al-based composites reinforced with MnO{sub 2} additions

    Energy Technology Data Exchange (ETDEWEB)

    Blaz, L.; Lobry, P.; Zygmunt-Kiper, M.; Koziel, J.; Wloch, G. [AGH-University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow (Poland); Dymek, S. [AGH-University of Science and Technology, Faculty of Metals Engineering and Industrial Informatics, Cracow (Poland)

    2015-01-15

    Highlights: • Fine-grained Al–MnO{sub 2} and Al–MnO{sub 2}–Mg composites were processed and studied. • Powder metallurgy (PM) and mechanical alloying (MA) methods were used. • Increase of strain rate sensitivity (SRS) vs. temperature was observed at 300–600 K. • Efficiency of the SRS increase was reduced above ∼600 K for PM composites. • Decrease of SRS above ∼600 K was observed for MA Al–MnO{sub 2} composite. - Abstract: Fine-grained Al-based composites reinforced with MnO{sub 2} particles were manufactured by means of powder metallurgy (PM) and mechanical alloying (MA) methods. It was found that the applied powder consolidation methods, including KOBO extrusion, did not induce any chemical reaction between thermodynamically unstable components. However, it was shown that addition of magnesium to the Al-matrix initiated a reaction in the vicinity of MnO{sub 2} particles that resulted in the nucleation and growth of nano-sized aluminum–magnesium oxides. This led to a local refining of structural components. The most intense refining of structural components was observed for the MA Al–MnO{sub 2} composite. Strain rate sensitivity (SRS) of as-extruded materials was tested in compression in the range 293–773 K. SRS was determined by making a rapid change in the basic true strain rate from ε-dot=1.2·10{sup -3} to ε-dot=1.2·10{sup -2}. It is found that SRS did not practically depend on strain. The highest value of SRS was observed for the PM Al–MnO{sub 2}–Mg composite. SRS of PM materials evidently increases with deformation temperature; however, it becomes smaller above a temperature of ∼600 K. For the MA Al–MnO{sub 2} composite, tested at high temperatures, primary mechanical alloying resulted in relatively low increase of SRS with temperature that also becomes smaller above ∼600 K. Suppression of the increase in SRS at high temperatures can be attributed to the specific features of grain boundaries created by the adhesive

  16. aTrunk—An ALS-Based Trunk Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Sebastian Lamprecht

    2015-08-01

    Full Text Available This paper presents a rapid multi-return ALS-based (Airborne Laser Scanning tree trunk detection approach. The multi-core Divide & Conquer algorithm uses a CBH (Crown Base Height estimation and 3D-clustering approach to isolate points associated with single trunks. For each trunk, a principal-component-based linear model is fitted, while a deterministic modification of LO-RANSAC is used to identify an optimal model. The algorithm returns a vector-based model for each identified trunk while parameters like the ground position, zenith orientation, azimuth orientation and length of the trunk are provided. The algorithm performed well for a study area of 109 trees (about 2/3 Norway Spruce and 1/3 European Beech, with a point density of 7.6 points per m2, while a detection rate of about 75% and an overall accuracy of 84% were reached. Compared to crown-based tree detection methods, the aTrunk approach has the advantages of a high reliability (5% commission error and its high tree positioning accuracy (0.59m average difference and 0.78m RMSE. The usage of overlapping segments with parametrizable size allows a seamless detection of the tree trunks.

  17. Orientation relationships between icosahedral clusters in hexagonal MgZn2 and monoclinic Mg4Zn7 phases in Mg-Zn(-Y) alloys

    Science.gov (United States)

    Rosalie, Julian M.; Somekawa, Hidetoshi; Singh, Alok; Mukai, Toshiji

    2011-07-01

    Intermetallic precipitates formed in heat-treated and aged Mg-Zn and Mg-Zn-Y alloys have been investigated via electron microscopy. Coarse spheroidal precipitates formed on deformation twin boundaries contained domains belonging to either the MgZn2 hexagonal Laves phase or the monoclinic Mg4Zn7 phase. Both phases are structurally related to the quasi-crystalline phase formed in Mg-Zn-Y alloys, containing icosahedrally coordinated zinc atoms arranged as a series of broad rhombohedral units. This rhombohedral arrangement was also visible in intragranular precipitates where local regions with the structures of hexagonal MgZn2 and Mg4Zn7 were found. The orientation adopted by the MgZn2 and Mg4Zn7 phases in twin-boundary and intragranular precipitates was such that the icosahedral clusters were aligned similarly. These results highlight the close structural similarities between the precipitates of the Mg-Zn-Y alloy system.

  18. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... and growth models together with the Johnson-Mehl-Avrami model. The Avrami exponent was found to be near I at all four temperatures, also indicating that atomic diffusion might involve in the amorphous-to-quasicrystalline phase transformation for the Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. It is found...

  19. MICROSTRUCTURES AND PROPERTIES OF RECIPROCATINGLY EXTRUDED Mg-6.4Zn-1.IY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Z.M. Zhang; C.J. Xu; X.F. Guo

    2008-01-01

    An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn-Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the a-Mg solid solution, icosahedral Mg3 YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.

  20. Al基块体金属玻璃的研究进展%Research Progress in Al-based Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    陈思泉; 李艳辉; 张伟

    2016-01-01

    Al-based metallic glasses (MGs)exhibit high strength,high toughness,and good corrosion resis-tance.Especially,Al-based MGs possess high special strength which is up to 330 kN·m/kg.Therefore,Al-based MGs are promising for applications as a new type of structural materials in aerospace fields.In recent years,Al-based MGs with high glass-forming ability (GFA)and high supercooled liquid stability have been developed,and the MG samples in bulk form have been produced via copper mold casting and consolidation of Al-based MG powders as well, which will promote their practical use.In this paper,the research progress in the development,GFA,stabilization of supercooled liquid,and mechanical properties of Al-based MGs,together with the structure and properties of sintered Al-based MGs powder are reviewed.The problems during the development of the alloys are discussed.%Al基金属玻璃具有高强度、高韧性、良好的耐蚀性,特别是其比强度高达330 kN·m/kg,作为新结构材料在航空航天领域具有潜在的应用前景。近年不仅研发出了具有大过冷液相区以及能形成块体金属玻璃的Al基合金,还通过粉体温热固化成形工艺实现了Al基金属玻璃的大块体化,推动了其在实际生产中的应用。简述了有关Al基金属玻璃合金的玻璃形成能力、过冷液体热稳定性、力学性能及其粉末烧结体的组织和性能等方面的最新研究进展,并对其发展存在的问题进行了探讨。

  1. NiAl alloys for structural uses

    Science.gov (United States)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  2. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    Science.gov (United States)

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  3. Tribological properties of high velocity arc sprayed Fe-Al based composite coatings at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; ZHANG Shu; XU Wei-pu; ZU Zi-xin; XU Bin-shi

    2004-01-01

    Fe-Al based intermetallic composite coatings were in-situ synthesized using Fe-Al/Cr3C2 or Fe-Al/WC cored wires and high velocity are spraying (HVAS) technology. The tribological properties of the Fe-Al based intermetallic composite coatings were investigated using a ball-on-disc tribotester from room temperature to 650 ℃. The results show that the coatings have relatively high bond strength and micro-hardness. The tribological properties of Fe-Al/Cr3C2 and Fe-Al/WC composite coatings were further analyzed and compared. Low and stable wear rates of the Fe-Al based intermetallic composite coatings were indicated from room temperature to 650 ℃. The excellent wear resistance of the composite coatings in high temperature was discussed.

  4. Effect of composition and cooling rate on structures and properties of quenched or cast Al-V-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shek, C.H.; He, G.; Bian, Z.; Chen, G.L.; Lai, J.K.L

    2003-09-25

    Rapidly solidified Al-V-Fe alloys are promising structural materials because of the high tensile strength of up to 1400 MPa combined with the light weight. In this investigation, the authors prepared Al-V-Fe alloys of various V and Fe contents by melt-spinning and water-cooled copper mould casting. The alloy samples were characterized with X-ray diffraction (XRD), SEM, TEM, nanoindention, and tensile test. It was shown that the V and Fe contents strongly affect the microstructure and hence the mechanical properties. Increasing V and Fe content causes an increase of the volume fraction of the quasicrystalline phase which gives rise to the strengthening of the alloy. The amount of quasicrystals depends also on the cooling rate during solidification. At very high cooling rate, dispersions of quasicrystals and amorphous nanoscale clusters are favored while at low cooling rate, a stable Al{sub 10}V crystalline phase form instead in the {alpha}-Al matrix. A gradual transition between these two extremes is observed at intermediate cooling rates.

  5. Prediction of Hardness of the Zn-Al-Cu Alloys of Agreement by Composition in Weight

    Directory of Open Access Journals (Sweden)

    Villegas-Cárdenas José David

    2013-06-01

    Full Text Available Ten alloys Zn – Al – Cu were developed in two parts, in agreement to two zones presented in the isopleth diagrams (Villas et al., 1995. The percentage of Cu and Al was systematically varied. Subsequently, hardness measurements were performed. These measurements allowed establishing two equations that predict the hardness with an error lower than 5%. With these equations, it is possible to obtain alloys that replace Al base alloys by a Zn base alloy, having the same hardness. This implicates also the elimination of the volumetric change in the presence of ε phase.

  6. ON DEVELOPMENT OF OPTIMAL METALLURGICAL PROCESS FOR PREPARATION OF A NEW GENERATION OF INTERMETALLIC ALLOYS

    Directory of Open Access Journals (Sweden)

    Viliam Hrnčiar

    2009-06-01

    Full Text Available Intermetallic TiAl based alloys are used in extreme conditions, e.g. high temperature, aggressive atmosphere and combined high temperature mechanical loading. The contribution deals with development and optimization of plasma melting metallurgical process in new developed crystallizer with rotational and axial movement of melt, for preparation of new intermetallic alloys based on Ti-(45-48Al-(1-10Ta (at.%. The melting process parameters and their influence to final microstructure and properties of alloys are discussed. The aim of this work is to produce alloys with lower number of technological steps necessary to achieve chemical composition, homogeneity and purity as well.

  7. Formation and characterization of Al-Ti-Nb alloys by electron-beam surface alloying

    Science.gov (United States)

    Valkov, S.; Petrov, P.; Lazarova, R.; Bezdushnyi, R.; Dechev, D.

    2016-12-01

    The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V1 = 0.5 cm/s and V2 = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al3 fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al3 particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al3 lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a formation of surface alloys with very high hardness. Our results demonstrate maximal values of 775 HV [kg/cm2] and average hardness of 673 HV [kg/cm2].

  8. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  9. Cost-Effective Powder Metallurgy TiAl-Based Components For Aerospace Use Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma titanium aluminide (TiAl) alloys with their low density (~3.9g/cm3), good elevated temperature strength, stiffness, creep resistance and acceptable burn and...

  10. High Temperature Evolution of PtNiAl-Based Thermal Barrier Coatings from First Principles Simulations

    Science.gov (United States)

    2010-08-29

    directly and seriously weaken the interface between the thermally grown oxide (TGO) and the underlying NiAI-based bond coat alloy components of the...TBC due to strong repulsions between Sand 0 electron pairs. • Hafnium additives to the bond coat dramatically increase the adhesion of the TGO to the...bond coat alloy , by forming very strong Hf-0 bonds. These strong bonds are formed because of Hf’s open d-shell, which allows for both polar covalent

  11. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  12. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  13. Quasicrystalline three-dimensional foams

    Science.gov (United States)

    Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.

    2017-03-01

    We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.

  14. Formation Mechanism of Curved Martensite Structures in Cu-based Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The curved martensite structures have been observed in CuZnAl-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.

  15. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  16. Reducing Uncertainty in Fatigue Life Limits of Turbine Engine Alloys

    Science.gov (United States)

    2014-03-01

    this behavior in turbine engine alloys , we have developed a physically- based approach for describing fatigue var- iability, and this approach has been...of competing mechanisms in the fatigue life variability of a nearly fully-lamellar c-TiAl based alloy . Acta Mater 2005;53:1293–304. [50] Buchanan DJ...Burns JT, Larsen JM, Gangloff RP. Driving forces for localized corrosion -to- fatigue crack transition in Al–Zn– Mg –Cu. Fatigue Fract Eng Mater Struct

  17. Correlation of recalescence with grain refinement of magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The grain refinement of Mg-Al based alloys with carbon inoculation was investigated by a computer-aided cooling curve analysis(CA-CCA)system.The results show that carbon inoculation decreases the main parameters of the recalescence regime during the initial stage of solidification.These parameters include the recalescence undercooling(△θrec),duration of recalescence (trec),and liquid peak parameter(LPP)which is firstly introduced into magnesium alloys.The resultant grain size decreases with increasing nucleation temperature(θn)and decreasing values of △θrec,trec and LPE

  18. Rare Earth Application in Sealing Anodized Al-Based Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method for corrosion protection of Al-based metal matrixcomposites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance of the treated surface was evaluated with polarization curves.The results showed that the effect of the protection using rare earth sealing is equivalent to that using chromate sealing for Al6061/SiCp. The rare earth metal salt can be an alternative to the toxic chromate for sealing anodized Al MMC.

  19. Recent developments in Inorganic polymers: A Review with focus on Si-Al based inorganic polymers

    Directory of Open Access Journals (Sweden)

    Shrray Srivastava

    2015-12-01

    Full Text Available Inorganic polymers are a unique classification of polymers. They contain inorganic atoms in the main chain. Hybrids with organic polymers as well as those chains that contain metals as pendant groups are considered in a special sub-classification as organo-metallic polymers. The networks containing only inorganic elements in main chain are called inorganic polymers. The silicone rubber is the most commercial inorganic polymer. The organo-metallic and inorganic polymers have a different set of applications. The current paper is a review of current applications of polymers with inorganic back-bone networks, especially focusing on Si and Al based inorganic polymeric materials.

  20. Fracture toughness of TiAl-Cr-Nb-Mo alloys produced via centrifugal casting

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2012-10-01

    Full Text Available Fracture toughness of a TiAl base intermetallic alloy has been investigated at room temperature. The Ti-48Al-2.5Cr-0.5Nb-2Mo (at. % alloy produced via centrifugal casting exhibits fine nearly lamellar microstructures, consisting mainly of fine lamellar grains, together with a very small quantity of residual β phases along lamellar colony boundaries. In order to determine the alloy fracture toughness compact tension specimens were tested and the results were compared with those available in literature.

  1. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    Science.gov (United States)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  2. Shape Memory Alloys (Part II: Classification, Production and Application

    Directory of Open Access Journals (Sweden)

    I. Ivanic

    2014-09-01

    Full Text Available Shape memory alloys (SMAs have been extensively investigated because of their unique shape memory behaviour, i.e. their ability to recover their original shape they had before deformation. Shape memory effect is related to the thermoelastic martensitic transformation. Austenite to martensite phase transformation can be obtained by mechanical (loading and thermal methods (heating and cooling. Depending on thermomechanical conditions, SMAs demonstrate several thermomechanical phenomena, such as pseudoelasticity, superelasticity, shape memory effect (one-way and two-way and rubber-like behaviour. Numerous alloys show shape memory effect (NiTi-based alloys, Cu-based alloys, Fe-based alloys etc.. Nitinol (NiTi is the most popular and the most commonly used SMA due to its superior thermomechanical and thermoelectrical properties. NiTi alloys have greater shape memory strain and excellent corrosion resistance compared to Cu – based alloys. However, they are very costly. On the other hand, copper-based alloys (CuZn and CuAl based alloys are much less expensive, easier to manufacture and have a wider range of potential transformation temperatures. The characteristic transformation temperatures of martensitic transformation of CuAlNi alloys can lie between −200 and 200 °C, and these temperatures depend on Al and Ni content. Among the Cu – based SMAs, the most frequently applied are CuZnAl and CuAlNi alloys. Although CuZnAl alloys with better mechanical properties are the most popular among the Cu-based SMAs, they lack sufficient thermal stability, while CuAlNi shape memory alloys, in spite of their better thermal stability, have found only limited applications due to insufficient formability owing to the brittle γ2 precipitates. The most important disadvantage of polycrystalline CuAlNi alloys is a small reversible deformation (one-way shape memory effect: up to 4 %; two-way shape memory effect: only approximately 1.5 % due to intergranular

  3. Microstructure and mechanical properties of cast Ti-47Al-2Cr-2Nb alloy melted in various crucibles

    Directory of Open Access Journals (Sweden)

    Wang Ligang

    2012-02-01

    Full Text Available The main factors limiting the mass production of TiAl-based components are the high reactivity of TiAl-based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y2O3 ceramic crucibles and water-cooled copper crucible were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAl alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.

  4. Effects of the manufacturing process on fracture behaviour of cast TiAl intermetallic alloys

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-01-01

    Full Text Available The γ -TiAl based intermetallic alloys are interesting candidate materials for high-temperature applications with the efforts being directed toward the replacement of Ni-based superalloys. TiAl-based alloys are characterised by a density (3.5-4 g/cm3 which is less than half of that of Ni-based superalloys, and therefore these alloys have attracted broad attention as potential candidate for high-temperature structural applications. Specific composition/microstructure combinations should be attained with the aim of obtaining good mechanical properties while maintaining satisfactory oxidation resistance, creep resistance and high temperature strength for targeted applications. Different casting methods have been used for producing TiAl based alloys. In our experimental work, specimens were produced by means of centrifugal casting. Tests carried out on several samples characterised by different alloy compositions highlighted that solidification shrinkage and solid metal contraction during cooling produce the development of relevant residual stresses that are sufficient to fracture the castings during cooling or to produce a delayed fracture. In this work, crack initiation and growth have been analysed in order to identify the factors causing the very high residual stresses that often produce explosive crack propagation throughout the casting.

  5. Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor

    Science.gov (United States)

    Gul, Fatih; Efeoglu, Hasan

    2017-01-01

    In this study, a direct-current reactive sputtered Al/ZnO/Al-based memristor device was fabricated and its resistive switching (RS) characteristics investigated. The optical and structural properties were confirmed by using UV-vis spectrophotometry and x-ray diffraction, respectively. The memristive and resistive switching characteristics were determined using time dependent current-voltage (I-V-t) measurements. The typical pinched hysteresis I-V loops of a memristor were observed. In addition, the device showed forming-free, uniform and bipolar RS behavior. The low electric field region exhibited ohmic conduction, while the Schottky emission (SE) was found to be the dominant conduction mechanism in the high electric field region. A weak Poole-Frenkel (PF) emission also appeared. In conclusion, it was suggested that the SE and PF mechanisms were related to the oxygen vacancies in the ZnO.

  6. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength

    Energy Technology Data Exchange (ETDEWEB)

    Tiwary, C.S., E-mail: cst311@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kashyap, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kim, D.H. [Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Chattopadhyay, K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2015-07-15

    Developments of aluminum alloys that can retain strength at and above 250 °C present a significant challenge. In this paper we report an ultrafine scale Al–Fe–Ni eutectic alloy with less than 3.5 at% transition metals that exhibits room temperature ultimate tensile strength of ~400 MPa with a tensile ductility of 6–8%. The yield stress under compression at 300 °C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al–Al{sub 3}Ni rod eutectic with spacing of ~90 nm enveloped by a lamellar eutectic of Al–Al{sub 9}FeNi (~140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al–Al{sub 3}Ni eutectic colony indicates accommodation of plasticity in α-Al with dislocation accumulation at the α-Al/Al{sub 3}Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy.

  7. Al-based magnetic composites produced by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, F.; Reihanian, M., E-mail: reihanian@scu.ac.ir; Gheisari, Kh.

    2016-04-15

    Graphical abstract: - Highlights: • Al-based magnetic composites are produced by accumulative roll bonding (ARB). • Ni and Fe{sub 3}O{sub 4} are used as the reinforcing and magnetizing materials in the Al. • The tensile strength of Al/Ni composites is higher than that of Al/Ni/Fe{sub 3}O{sub 4}. • Saturation magnetization increases linearly with increasing the Ni fraction. • Electrical resistivity increases with increasing the number of ARB cycle. - Abstract: Accumulative roll bonding (ARB) was used to fabricate Al/Ni (with two initial Ni thicknesses) and Al/Ni/Fe{sub 3}O{sub 4} composites. During ARB, Ni layers necked and fractured owing to the difference in flow properties of Al and Ni. In addition, large and elongated clusters of Fe{sub 3}O{sub 4} particles were broken into smaller ones and distributed gradually in Al matrix. After the fourth and sixth cycle, weak bonding and several pores were observed at particle/matrix interface while the bonding quality increased after the eighth cycle. Results show that after eight cycles, an Al-based composite with a satisfactorily magnetic behavior was produced. The Al/Ni (0.5) composite exhibited the highest tensile strength (182 MPa) with the highest value of saturation magnetization (13.47 emu/g). The relative permeability decreased with increasing frequency for a given number of ARB cycles. The Fe{sub 3}O{sub 4} particles caused the saturation magnetization to decrease and the critical frequency to increase due to the eddy current effects.

  8. Grain size influences the corrosion and cavitation of Ni3Al intermetallic alloys

    Directory of Open Access Journals (Sweden)

    D. Zasada

    2015-01-01

    Full Text Available Influence of grain size on corrosion and cavitation of the Ni3Al - based intermetallic alloy was studied in recent paper. The research was conducted on Ni3Al - based intermetallic alloy doped with boron and zirconium. The initial grain size of 6, 20 and 45 μm the investigated samples was obtained through cold rolling followed by recrystallization annealing. It was found that initial grain size does not influence the breakthrough potential neither repassivation potential. On the other hand, various types of pits were found for alloys with different grain size during corrosion tests in sodium chloride solutions. It was found that increase of grain size results with reducing the depth of cavitational pits. However, surface area of the pits increases with increasing grain size.

  9. Current research progress in grain refinement of cast magnesium alloys: A review article

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Yahia; Qiu, Dong [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Jiang, Bin; Pan, Fusheng [College of Materials Science and Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Ming-Xing, E-mail: Mingxing.Zhang@uq.edu.au [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-01-15

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants.

  10. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  11. Nomenclature of magnetic, incommensurate, composition-changed morphotropic, polytype, transient-structural and quasicrystalline phases undergoing phase transitions. II. Report of an IUCr Working Group on Phase Transition Nomenclature.

    Science.gov (United States)

    Tolédano, J C; Berry, R S; Brown, P J; Glazer, A M; Metselaar, R; Pandey, D; Perez-Mato, J M; Roth, R S; Abrahams, S C

    2001-09-01

    A general nomenclature applicable to the phases that form in any sequence of transitions in the solid state has been recommended by an IUCr Working Group [Acta Cryst. (1998). A54, 1028-1033]. The six-field notation of the first Report, hereafter I, was applied to the case of structural phase transitions, i.e. to transformations resulting from temperature and/or pressure changes between two crystalline (strictly periodic) phases involving modifications to the atomic arrangement. Extensive examples that illustrate the recommendations were provided. This second Report considers, within the framework of a similar six-field notation, the more complex nomenclature of transitions involving magnetic phases, incommensurate phases and transitions that occur as a function of composition change. Extension of the nomenclature to the case of phases with less clearly established relevance to standard schemes of transition in equilibrium systems, namely polytype phases, radiation-induced and other transient phases, quasicrystalline phases and their transitions is recommended more tentatively. A uniform notation for the translational periodicity, propagation vector or wavevector for magnetic and/or incommensurate substances is specified. The notation adopted for incommensurate phases, relying partly on the existence of an average structure, is also consistent with that for commensurate phases in a sequence. The sixth field of the nomenclature is used to emphasize the special features of polytypes and transient phases. As in I, illustrative examples are provided for each category of phase sequence.

  12. Advances in positron studies of age hardening in light alloys

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, A. [IFIMAT, UNCentro and CICPBA, Pinto, Tandil (Argentina); Dupasquier, A.; Ferragut, R. [LNESS and CNISM, Politecnico di Milano, Como (Italy)

    2009-11-15

    The extensive experimental work on age hardening of Al- and Mg-based alloys, performed by the associated groups at IFIMAT (UNCentro, Argentina) and at LNESS (Politecnico di Milano, Italy) in recent years, is discussed here in a comprehensive way, with attention to experimental procedures and to results of general validity. For Al-based alloys, the established knowledge regarding the different action of Zn, Cu, Mg and Ag in the formation of vacancy-solute clusters is presented. For Mg-based alloys, the limits of positron annihilation spectroscopy are discussed on the basis of experience in progress. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Melting and solidification behavior of Pb–Sn embedded alloy nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Patan Yousaf [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India); Bhattacharya, Victoria [Indian Institute of Science, Department of Materials Engineering (India); Biswas, Krishanu, E-mail: kbiswas@iitk.ac.in [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India); Chattopadhyay, Kamanio [Indian Institute of Science, Department of Materials Engineering (India)

    2013-11-15

    Nano-sized bimetallic dispersoids consisting of (Pb) and β-(Sn) phases of eutectic composition (Pb{sub 26.1}Sn{sub 73.9}) embedded in aluminum and Al–Cu–Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, β-(Sn) solid solution co-exist in all the embedded nano-particles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and β-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

  14. Effect of Nano Cr2O3 in HTPB/AP/Al Based Composite Propellant Formulations

    Directory of Open Access Journals (Sweden)

    Dhirendra Kshirsagar

    2016-03-01

    Full Text Available Different compositions have been prepared by incorporating nano sized chromium oxide from 0.25 % to 1 % in HTPB/AP/Al based composite propellant formulation having 86% of solid loading and studied its effect on viscosity build-up, thermal, mechanical and ballistic properties. The findings reveal that on increasing the percentage of nano Cr2O3 in the composition, there is an increase in end of mix viscosity, elastic modulus and tensile strength while elongation decreases accordingly. The data on thermal properties envisage the reduction in thermal decomposition temperature of ammonium perchlorate as well as formulations based on HTPB/AP/Al. The data on ballistic properties reveal that there is an enhancement in burning rate from 6.11 mm/s to 7.88 mm/s at 6.86 MPa, however, marginal increase in  pressure exponent (‘n’ values from 0.35 to 0.53 with 1 wt % of nano Cr2O3 was observed  in comparison to reference composition without chromium oxide. Defence Science Journal, Vol. 66, No. 2, March 2016, pp. 100-106, DOI: http://dx.doi.org/10.14429/dsj.66.9250

  15. Co-Zn-Al based hydrotalcites as catalysts for Fischer-Tropsch process

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.L.; Pirola, C.; Boffito, D.C.; Di Fronzo, A. [Univ. degli Studi di Milano (Italy). Dipt. di Chimica Fisica ed Elettrochimica; Di Michele, A. [Univ. degli Studi di Perugia (Italy). Dipt. di Fisica; Vivani, R.; Nocchetti, M.; Bastianini, M.; Gatto, S. [Univ. degli Studi di Perugia (Italy). Dipt. di Chimica

    2011-07-01

    Co-Zn-Al based hydrotalcites have been investigated as catalysts for the well-known Fischer- Tropsch synthesis. A series of ternary hydrotalcites in nitrate form was prepared with the urea method in order to obtain active catalysts for the above mentioned process. The thermal activation at 350 C gives raise to finely dispersed metallic Co on the mixed oxides, so resulting in retaining the metal distribution of the parent compounds. An optimization study concerning the amount of cobalt of the prepared catalysts (range 15-70% mol, metal based) and the reaction temperature (220-260 C) is reported. All the samples have been fully characterized (BET, ICP-OES, XRPD, TG-DTA, FT-IR, SEM and TEM) and tested in a laboratory pilot plant. Tests to evaluate the stability of these materials were carried out in stressed conditions concerning both the activation and the operating temperatures and pressures (up to 350 C and 2.0 MPa). The obtained results suggest the possibility of using synthetic hydrotalcites as suitable Co-based catalysts for the Fischer-Tropsch synthesis. (orig.)

  16. Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback

    CERN Document Server

    Hidasi, Balázs

    2012-01-01

    Albeit, the implicit feedback based recommendation problem - when only the user history is available but there are no ratings - is the most typical setting in real-world applications, it is much less researched than the explicit feedback case. State-of-the-art algorithms that are efficient on the explicit case cannot be straightforwardly transformed to the implicit case if scalability should be maintained. There are few if any implicit feedback benchmark datasets, therefore new ideas are usually experimented on explicit benchmarks. In this paper, we propose a generic context-aware implicit feedback recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor factorization learning method that scales linearly with the number of non-zero elements in the tensor. The method also allows us to incorporate diverse context information into the model while maintaining its computational efficiency. In particular, we present two such context-aware implementation variants of iTALS. The first incorporates sea...

  17. Electrochemical performances of Al-based composites as anode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhongxue; Qian Jiangfeng; Ai Xinping [Hubei Key Lab. of Electrochemical Power Sources, Department of Chemistry, Wuhan University, Wuhan 430072 (China); Cao Yuliang [Hubei Key Lab. of Electrochemical Power Sources, Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: ylcao@whu.edu.cn; Yang Hanxi [Hubei Key Lab. of Electrochemical Power Sources, Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2009-06-30

    Al-C, Al-Fe and Al-Fe-C composite materials have been prepared by high-energy ball milling technique. The electrochemical measurements demonstrated that the Al-Fe-C composites have greatly improved electrochemical performances in comparison with Al, Al-C and Al-Fe anode. For example, Al{sub 71}Fe{sub 9}C{sub 20} can deliver the reversible capacity of 436 mAh g{sup -1} at first cycle and 255 mAh g{sup -1} at 15th cycle. This improved electrochemical performance could be attributed to the alloying formation of Al with Fe and the buffering effect by the graphite matrix. This suggests that the Al-Fe-C composite has a potential possibility to be developed as an anode material for lithium-ion batteries.

  18. Microstructure and mechanical properties of WC-Ni-Al based cemented carbides developed for engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Edmilson O.; Santos, Julio N. [Universidade Federal de Itajuba, Minas Gerais (Brazil). Inst. de Engenharia Mecanica; Klein, Aloisio N. [Universidade Federal de Santa Catarina, Florianopolis (Brazil). Dept. de Engenharia de Materiais

    2011-11-15

    In this paper the influence of the Ni binder metal and Al as an additional alloying element on the microstructure and mechanical properties of WC-based cemented carbides processed by conventional powder metallurgy was studied. Microstructural examinations of the cemented carbides with 3 and 5 wt.% of Al in the binder metal indicated the presence of a very low and evenly distributed porosity as well as the presence of islands of metal binder in the microstructure. With the cemented carbide with 7 wt.% of Al in the metal binder, the presence of brittle needle-like regions was observed. The WC particles inside these regions were rounded and had a larger mean free path. Vickers hardness and flexural strength tests indicated that the cemented carbide WC-Ni - Al with addition of 5 wt.% of Al in the binder metal presented bulk hardness similar to the conventional WC-Co cemented carbides as well as superior flexure strength and fracture toughness. (orig.)

  19. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations.

    Science.gov (United States)

    Sato, T; Ramirez-Cuesta, A J; Daemen, L; Cheng, Y-Q; Tomiyasu, K; Takagi, S; Orimo, S

    2016-09-27

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4](-) was investigated using inelastic neutron scattering viewed from vibrational dynamics. The hydrogen release followed the softening of translational and [AlH4](-) librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  20. Tensile Properties and Microstructure of DS NiAl-28Cr-5.8Mo-0.2Hf Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A multiphase alloy NiAl-28Cr-5.8Mo-0.2Hf was directionally solidified in Ar atmosphere in an Al2O3-SiO2 mold by standard Bridgman method. The fracture toughness and tensile properties at 980℃ as well as tensile creep at 1050℃were studied. It was found that the strength of the present alloy is higher than that of many NiAl-based alloy and the stress exponent n for creep is about 6.69. Then the possible strengthening mechanism and creep mechanism are also discussed.

  1. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    . Traditionally, theorem provers are used to prove that specifications are correct but this process is highly dependent on expert users. Alternatively, model finding has proved to be useful for validation of specifications. The Alloy Analyzer is an automated model finder for checking and visualising Alloy...... specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  2. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ming; Liu, Haiqiang, E-mail: Liuhaiqiang1980@126.com

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAlAl based on result from UV–vis analysis. • CuMgAl shows the highest stability and lowest photocatalytic activity, while CuNiAl just opposite.

  3. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  4. Turbine Blade Alloy

    Science.gov (United States)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  5. Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

    Science.gov (United States)

    Zhang, Yuzheng; Topping, Troy D.; Yang, Hanry; Lavernia, Enrique J.; Schoenung, Julie M.; Nutt, Steven R.

    2015-03-01

    A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

  6. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  7. Mg-Al Alloys Manufactured by Casting and Hot Working Process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mechanical properties of Mg-Al based alloys at different fabrication state, namely as-cast, hot rolled, and annealed, were investigated to develop the alloys that are suitable for the casting/hot working process. Experimental results indicated that the castability such as hot cracking resistance tends to improve with increasing the aluminum content. However, the elongation at elevated temperatures was observed to decrease as the Al content increases, implying difficulties in hot forming. A small amount of Zr additions could significantly enhance the room temperature mechanical properties of hot-rolled Mg-6%Al-1%Zn alloy. The tendency of remarkable grain coarsening at high temperatures was effectively reduced by the Zr additions. TEM analyses suggested that very fine Al3Zr precipitates formed in the Zr-added alloy are responsible for the obtained results.

  8. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  9. Mechanical and Corrosion Behaviour of Zn-27Al Based Composites Reinforced with Groundnut Shell Ash and Silicon Carbide

    OpenAIRE

    K.K. Alaneme; B.O. Fatile; J.O. Borode

    2014-01-01

    The mechanical and corrosion behaviour of Zn-27Al alloy based composites reinforced with groundnut shell ash and silicon carbide was investigated. Experimental test composite samples were prepared by melting Zn-27Al alloy with pre-determined proportions of groundnut ash and silicon carbide as reinforcements using double stir casting. Microstructural examination, mechanical properties and corrosion behaviour were used to characterize the composites produced. The results show that hardness and ...

  10. Effect of Cerium on Chemical Short-Range Order of Al-Fe-Ce Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The chemical short-range order of Al-Fe-Ce amorphous alloy was studied by means of X-ray diffraction(XRD) and differential scanning calorimetry(DSC). It is found that the prepeak position in X-ray diffraction intensity curve shifts to higher angles as the content of Fe increases, but it shifts to smaller angles as the content of Ce increases. The crystallization character of the amorphous alloy changes with the variation of the content of Fe and Ce. Ce can improve the interaction between atoms and the capacity of compound formation, so it is favorable to Al-based glass formability.

  11. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  12. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  13. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  14. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    Science.gov (United States)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  15. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  16. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  17. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  18. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    Science.gov (United States)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  19. Survey of the Mg-Al Based Elevated Temperature Magnesium Casting Alloys%镁铝基耐热铸造镁合金的进展

    Institute of Scientific and Technical Information of China (English)

    刘子利; 丁文江; 袁广银; 朱燕萍

    2001-01-01

    总结了镁合金的蠕变特点和提高镁合金高温蠕变性能的措施,分析了现有Mg-Al基镁合金耐热性差的原因,综述了当前AZ、AS、AE、Mg-AlCa系耐热铸造镁合金的研究和应用状况并指出了以后的发展方向.

  20. Laser Cladding of an Al-11.7Wt% Si Alloy on ZM5 Magnesium Alloy to Enhance the Corrosion Resistance

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-jun; WANG Mao-cai; WANG Dong-sheng

    2004-01-01

    Magnesium alloy is an important engineering materials, but the wider application is restricted by poor corrosion resistance. An attempt was made to enhance the corrosion resistance and microhardness of a Mg-Al base ZM5 alloy by laser cladding of Al-11.7Wt%Si alloy powder with thickness 1.1mm and 1.7mm. The microstructure, phase and corrosion properties were analyzed by scanning electron micrographic (SEM), electron probe microanalysis(EPMA), vicker hardness tester and corrosion measurement system, respectively. Microhardness of the cladding layer was enhanced to 150-375Hv as compared to 60-99Hv of the substrate. The corrosion potential (Ecorr) of the cladding sample was 80mv higher than the substrate, while the corrosion current (Icorr) was lower than the substrate.

  1. Laser Cladding of an Al-11.7Wt% Si Alloy on ZM5 Magnesium Alloy to Enhance the Corrosion Resistance

    Institute of Scientific and Technical Information of China (English)

    CHENChang-jun; WANGMao-cai; WANGDong-sheng

    2004-01-01

    Magnesium alloy is an important engineering materials, but the wider application is restricted by poor corrosion resistance. An attempt was made to enhance the corrosion resistance and microhardness of a Mg-Al base ZM5 alloy by laser cladding of A1-11.7Wt%Si alloy powder with thickness 1.1 mm and 1.7inm. The microstructure, phase and corrosion properties were analyzed by scanning electron micrographic (SEM), electron probe microanalysis(EPMA), vicker hardness tester and corrosion measurement system, respectively. Microhardness of the cladding layer was enhanced to 150-375Hv as compared to 60-99Hv of the substrate. The corrosion potential (Ecorr) of the cladding sample was 80mv higher than the substrate, while the corrosion current (lcorr) was lower than the substrate.

  2. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions.

    Science.gov (United States)

    Zhang, Kaisong; Zhou, Qixing

    2005-04-01

    The ecotoxicological effects of aluminum (Al)-based coagulants are of concern because of their wide-ranging applications in wastewater treatment and water purification. As important Al-based coagulants, AlCl(3) and PAC (polyaluminum-chloride) were selected as examples to examine the toxic effects on representative vegetables including the cabbage Brassica chinensis and the radish Raphanus sativus over a range of exposure concentrations in neutral (pH 7.00) and acidic (pH 4.00) conditions, using seed germination and root elongation in the early-growth stage as indicators of toxicity. The results showed that root elongation of the two vegetables was a more sensitive indicator than was seed germination for evaluating the toxicity of Al. As a single influencing factor, H(+) had no significant direct effects on root elongation of Brassica chinensis and Raphanus sativus under the experimental conditions. The toxicity of Al played the main role in inhibiting root elongation and seed germination and was strongly related to changes in pH. There was a markedly positive relationship between the inhibitory rate of root elongation, seed germination, and the concentration of Al at pH 4.00 (p < 0.01). The toxic effect of AlCl(3) on Brassica chinensis was less with a neutral pH than at pH 4.00, but Raphanus sativus was more susceptible to AlCl(3) toxicity at a neutral pH than at pH 4.00. Both Raphanus sativus and Brassica chinensis had a more toxic response to a low concentration (<64 mg . L(-1)) of PAC in a neutral condition than in an acidic condition. Undoubtedly, the Al toxicity caused by Al-based coagulants at a neutral pH is relevant when treatment solids are used in agriculture.

  3. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  4. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    Science.gov (United States)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  5. Corrosion performance of Fe-Cr-Al and Fe aluminide alloys in complex gas environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States); Johnson, R.N. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    Alumina-forming structural alloys can offer superior resistance to corrosion in the presence of sulfur-containing environments, which are prevalent in coal-fired fossil energy systems. Further, Fe aluminides are being developed for use as structural materials and/or cladding alloys in these systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. In addition, surface coatings of Fe aluminide are being developed to impart corrosion resistance to structural alloys. This paper describes results from an ongoing program that is evaluating the corrosion performance of alumina-forming structural alloys, Fe-Al and Fe aluminide bulk alloys, and Fe aluminide coatings in environments typical of coal-gasification and combustion atmospheres. Experiments were conducted at 650-1000{degrees}C in simulated oxygen/sulfur gas mixtures. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HCl-containing gases. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales and to determine the modes of corrosion degradation that occur in the materials when they are exposed to S/Cl-containing gaseous environments.

  6. Surface recrystallization of a Ni_3Al based single crystal superalloy at different annealing temperatures and blasting pressure

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interde...

  7. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  8. Corrosion Behavior of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys in NaCl Aqueous Solution

    Science.gov (United States)

    Kumar, Vinod; Shekhar, Rajiv; Balani, Kantesh

    2015-10-01

    Corrosion behavior of two multiphase Mg-Li-Al-based alloys in 0.6 M NaCl aqueous solution is investigated by hydrogen gas evolution measurement and electrochemical test. This paper reports, for the first time, the comparison of hydrogen evolution and Tafel extrapolation results of Mg-Li-Al-based alloys. The corrosion rate of Mg-9Li-7Al-1Sn is observed to be reasonably higher when compared to that of Mg-9Li-5Al-3Sn-1Zn, and both the alloys have shown higher corrosion rate than that of Mg-3Al-1Zn alloy (AZ31B). The micro-galvanic corrosion of primary precipitates and hcp α-phase (Mg-rich) is not as severe as was observed in case of the secondary precipitates and bcc β-phase (Li-rich). Corrosion mechanism of multiphase Mg-Li-Al-based alloys in chloride solution, which has not been adequately reported in the literature, is lucidly articulated based on the early stages of corrosion, film morphology, and in situ hydrogen bubble study.

  9. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  10. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant.

    Science.gov (United States)

    Jin, Xin; Jin, Pengkang; Hou, Rui; Yang, Lei; Wang, Xiaochang C

    2017-04-05

    A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1mgO3/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O3-resistant hydroxyl radical (OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of OH compared with pre-ozonation process. This indicates that the OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  12. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  13. The Effect of Aluminum Content on the Microstructure and Cavitation Wear of Feal Intermetallic Alloys

    Directory of Open Access Journals (Sweden)

    Jasionowski Robert

    2014-03-01

    Full Text Available Intermetallic-based alloys (so called intermetallics of the Fe-Al binary system are modern construction materials, which in recent decades have found application in many branches of the power, chemical and automotive industries. High resistance of FeAl based alloys to cavitational erosion results first of all from their high hardness in the as-cast state, large compressive stresses in the material, as well as homogeneous structure. In the present paper, the effect of aluminum content on the microstructure, texture and strain implemented upon cavitation wear of FeAl intermetallic alloys, have been analyzed by field emission gun scanning electron microscopy (FEG SEM and electron backscatter diffraction (EBSD analysis. Obtained results of structural characterization indicates that with increasing aluminium content effects of orientation randomization (weakening of //ND casting texture, grain refinement and rising of mechanical strenght (and so cavitational resistance take place.

  14. Short-Range Order in Liquid Al-Cu-Ni-Ce Alloy

    Institute of Scientific and Technical Information of China (English)

    孙民华; 边秀房

    2002-01-01

    The liquid and amorphous structures of Al85Ni10Ce5 and Al85Cu5Ni5Ce5 alloy were studied by X-ray diffraction. The position of the first peak shifts to bigger Q-values as the concentration of Cu increases. Gaussian decomposition of first peak in radical distribution function (RDF) was applied to Al-Ni(Cu)-Ce system. The bond lengths of Al-Al, Al-TM(Transition metal) and TM-TM increase with the substitution of Ni by Cu. Viscosity measurement shows that viscosity of Al-Ni-Ce alloy increases faster than that of Al-Ni-Cu-Ce alloy. The addition of Cu can decrease the interaction between atoms, so it is unfavorable to Al-based glass formability.

  15. Mg based alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, S. [Univ. de Santiago de Chile (Chile). Fac. de Ingenieria; Garcia, G.; Serafini, D.; San Martin, A.

    1999-07-01

    In the present work, we studied the production of magnesium alloys, of stoichiometry 2Mg + Ni, by mechanical alloying (MA) and the behavior of the alloys under hydrogen in a Sievert`s type apparatus. The elemental powders were milled under argon atmosphere in a Spex 8000 high energy ball mill. The milled materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Only minimum amounts of the Mg{sub 2}Ni intermetallic compound was obtained after 22 h of milling time. Most of the material was sticked to the inner surface of the container as well as to the milling balls. Powders milled only for 12 hours transforms to the intermetallic at around 433 K. Effects of the MA on the hydrogen absorption kinetics were also studied. (orig.) 10 refs.

  16. X-ray diffraction study on the microstructure of a Mg-Zn-Y alloy consolidated by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Jenei, Peter [Department of Materials Physics, Eoetvoes Lorand University, Budapest, P.O.B. 32, H-1518 (Hungary); Gubicza, Jeno, E-mail: gubicza@metal.elte.hu [Department of Materials Physics, Eoetvoes Lorand University, Budapest, P.O.B. 32, H-1518 (Hungary); Yoon, Eun Yoo; Kim, Hyoung Seop [Department of Materials Science and Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Mg{sub 95}Zn{sub 4.3}Y{sub 0.7} powder was consolidated by HPT at RT and 373 K. Black-Right-Pointing-Pointer The consolidated disks comprised ultrafine grains with high density of dislocations. Black-Right-Pointing-Pointer Quasicrystalline dispersoids strengthen the material by increasing the dislocation density. Black-Right-Pointing-Pointer Twinning in the Mg matrix was marginal during HPT. - Abstract: Mg{sub 95}Zn{sub 4.3}Y{sub 0.7} (at.%) alloy powder produced by an inert gas-atomizer was consolidated by high-pressure torsion (HPT) at room temperature and 373 K. The phase composition and the microstructure were investigated by X-ray diffraction and the microstructural parameters were correlated to the yield strength. HPT-processing yielded an ultrafine-grained microstructure with high dislocation density, leading to a large yield strength of the samples. Both the gas-atomized powder and the consolidated samples contained an icosahedral Mg{sub 3}YZn{sub 6} phase (I-phase) besides the main phase of {alpha}-Mg. It turned out that the I-phase dispersoids strengthen the consolidated material indirectly by increasing the dislocation density due to their pinning effect.

  17. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Weizierl, Barbara; Wester, Ture

    2001-01-01

    Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells....... The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden...

  18. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Wester, Ture; Weinzieri, Barbara

    The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells with fivefold symmetry in 3D space...

  19. Mechanical and Corrosion Behaviour of Zn-27Al Based Composites Reinforced with Groundnut Shell Ash and Silicon Carbide

    Directory of Open Access Journals (Sweden)

    K.K. Alaneme

    2014-06-01

    Full Text Available The mechanical and corrosion behaviour of Zn-27Al alloy based composites reinforced with groundnut shell ash and silicon carbide was investigated. Experimental test composite samples were prepared by melting Zn-27Al alloy with pre-determined proportions of groundnut ash and silicon carbide as reinforcements using double stir casting. Microstructural examination, mechanical properties and corrosion behaviour were used to characterize the composites produced. The results show that hardness and ultimate tensile strength of the hybrid composites decreased with increase in GSA content. Although the % Elongation somewhat decreased with increase the GSA content, the trend was not as consistent as that of hardness and tensile strength. The fracture toughness of the hybrid composites however, increased with increase in the GSA content of the composites. In 3.5 % NaCl solution, the composites were resistant to corrosion with some of the hybrid composite grades containing GSA exhibiting relatively superior corrosion resistance to the grades without GSA. In 0.3M H2SO4 solution, the composites were generally a bit more susceptible to corrosion (compared to 3.5 % NaCl solution, but the effect of GSA content on the corrosion resistance of the composites was not consistent for the Zn-27Al alloy based composites.

  20. Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy

    Science.gov (United States)

    Zhai, W.; Wang, B. J.; Liu, H. M.; Hu, L.; Wei, B.

    2016-11-01

    The production of Al based monotectic alloys with uniform microstructure is usually difficult due to the large density difference between the two immiscible liquid phases, which limits the application of such alloys. Here, we apply three orthogonal ultrasounds during the liquid phase separation process of ternary Al71.9Sn20.4Cu7.7 immiscible alloy. A uniform microstructure consisting of fine secondary (Sn) phase dispersed on Al-rich matrix is fabricated in the whole alloy sample with a large size of 30 × 30 × 100 mm. The numerical calculation results indicate that the coupled effect of three ultrasounds promotes the sound pressure level and consequently enlarges the cavitation zone within the alloy melt. The strong shockwaves produced by cavitation prevent the (Sn) droplets from coalescence, and keep them suspended in the parent Al-rich liquid phase. This accounts for the formation of homogeneous composite structures. Thus the introduction of three orthogonal ultrasounds is an effective way to suppress the macrosegregation caused by liquid phase separation and produce bulk immiscible alloys with uniform structures.

  1. SURFACE MELTING OF ALUMINIUM ALLOYS

    OpenAIRE

    Veit, S.; Albert, D; Mergen, R.

    1987-01-01

    The wear properties of aluminium base alloys are relatively poor. Laser surface melting and alloying has proved successful in many alloy systems as a means of significantly improving the surface properties. The present work describes experiments designed to establish the scope of laser treatment of aluminium alloys. Aluminium does not absorb CO2 laser light as well as other metals which necessitated first a general study of absorption caotings. Aluminium alloys offer fewer opportunities than ...

  2. Analysis of niobium alloys.

    Science.gov (United States)

    Ferraro, T A

    1968-09-01

    An ion-exchange method was applied to the analysis of synthetic mixtures representing various niobium-base alloys. The alloying elements which were separated and determined include vanadium, zirconium, hafnium, titanium, molybdenum, tungsten and tantalum. Mixtures containing zirconium or hafnium, tungsten, tantalum and niobium were separated by means of a single short column. Coupled columns were employed for the resolution of mixtures containing vanadium, zirconium or titanium, molybdenum, tungsten and niobium. The separation procedures and the methods employed for the determination of the alloying elements in their separate fractions are described.

  3. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  4. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  5. Alloy Selection System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  6. Strength of Hard Alloys,

    Science.gov (United States)

    Partial replacement of titanium carbide by tantalum carbide in three-phase WC-TiC-Co alloys tends to have a favorable effect on mechanical properties such as fatigue strength under bending and impact durability.

  7. First Everlasting Alloy

    Institute of Scientific and Technical Information of China (English)

    杨仲言

    1994-01-01

    There′s new alloy that apparently just won′t give up. When a pin was scraped along it the equivalent of one million times, the alloy-made of zirconium, palladium, and ruthenium—displayed no net loss of surface material. When astonished researchers at the National Institute of Standards and Technology(NIST) persevered with a five-million-cycle wear test, they got the same result.

  8. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  9. Hot corrosion behaviour of Fe-Al based intermetallic in molten NaVO{sub 3} salt

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Medina, M.A. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte No. 152, Col. San Bartolo Atepehuacan, C.P. 07730 Mexico, D.F. (Mexico)], E-mail: maespin@imp.mx; Carbajal-De la Torre, G. [Facultad de Ingenieria Mecanica, UMSNH, Santiago Tapia 403 Col. Centro, C.P. 58098 Morelia, Michoacan (Mexico); Liu, H.B. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte No. 152, Col. San Bartolo Atepehuacan, C.P. 07730 Mexico, D.F. (Mexico); Martinez-Villafane, A. [CIMAV, Complejo Industrial Chihuahua, Chihuahua (Mexico); Gonzalez-Rodriguez, J.G. [CIMAV, Complejo Industrial Chihuahua, Chihuahua (Mexico); UAEM-CIICAP, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos (Mexico)

    2009-06-15

    The hot corrosion of sprayed Fe-40 (at.%)Al intermetallic alloy with additions of boron and alumina whiskers in molten NaVO{sub 3} at 700 deg. C has been evaluated by potentiodynamic polarization curves and electrochemical impedance spectroscopy, EIS, techniques. For short exposure times, the corrosion mechanism under these conditions was observed to be controlled by an activation process, whereas for longer exposure times, the corrosion process was under diffusion control due to the growing of an Al{sub 2}O{sub 3} oxide scale, which made the diffusion of both reducing and oxidizing species through the scale to the alloy or scale surfaces more difficult. Equivalent electric model used to simulate the EIS data showed that a finite length Warburg diffusion could properly characterize the diffusion process, which confirmed the formation of a compact corrosion product scales containing rich aluminium oxide. Thus, the corrosion process was under diffusion control of aggressive ions through the formed scale. The electrochemical study was complemented by scanning electronic microscopy characterization and micro chemical analysis.

  10. Evaluation of the Transient Liquid Phase (TLP) Bonding Process for Ti3Al-Based Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Bird, R. Keith; Hoffman, Eric K.

    1998-01-01

    The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.

  11. Amorphous Li-Al-Based Compounds: A Novel Approach for Designing High Performance Electrode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2013-11-01

    Full Text Available A new amorphous compound with the initial atomic composition Al43Li43Y6Ni8 applied as electrode material for Li-ion batteries is investigated. Unlike other amorphous compounds so-far investigated as anode materials, it already contains Li as a base element in the uncycled state. The amorphous compound powder is prepared by high energy ball milling of a master alloy. It shows a strongly enhanced specific capacity in contrast to amorphous alloys without Li in the initial state. Therewith, by enabling a reversible (delithiation of metallic electrodes without the phase transition caused volume changes it offers the possibility of much increased specific capacities than conventional graphite anodes. According to the charge rate (C-rate, the specific capacity is reversible over 20 cycles at minimum in contrast to conventional crystalline intermetallic phases failing by volume changes. The delithiation process occurs quasi-continuously over a voltage range of nearly 4 V, while the lithiation is mainly observed between 0.1 V and 1.5 V. That way, the electrode is applicable for different potential needs. The electrode stays amorphous during cycling, thus avoiding volume changes. The cycling performance is further enhanced by a significant amount of Fe introduced as wear debris from the milling tools, which acts as a promoting element.

  12. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Directory of Open Access Journals (Sweden)

    J. Rogge

    2015-07-01

    Full Text Available We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs. By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR ratio of -10% is found for Co2FeAl (24 nm / BaO (5 nm / Fe (7 nm MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM, it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  13. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan, E-mail: liudandan_upc@126.com [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Dai, Fangna, E-mail: fndai@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Collage of Science, China University of Petroleum (East China), Qingdao 266580 (China); Tang, Zhe, E-mail: tangzhe1983@163.com [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yunqi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chenguang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China)

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.

  14. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan;

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  15. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  16. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  17. Selective dissolution in binary alloys

    Science.gov (United States)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  18. Effect of cerium addition on microstructures of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    S Sriram; R Balasubramaniam; M N Mungole; S Bharagava; R G Baligidad

    2005-10-01

    The effect of Ce addition on the microstructure of carbon-alloyed Fe3Al-based intermetallic has been studied. Three different alloys of composition, Fe–18.5Al–3.6C, Fe–20.0Al–2.0C and Fe–19.2Al–3.3C–0.07Ce (in at%), were prepared by electroslag remelting process. Their microstructures were characterized using optical and scanning electron microscopies. Stereological methods were utilized to understand the observed microstructures. All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes were finer and uniformly distributed throughout the matrix. The effect of Ce addition on the carbide morphology has been explained based on the known effect of Ce in modifying carbide morphology in cast irons.

  19. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  20. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  1. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xuezheng Zhang

    2016-05-01

    Full Text Available Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF was investigated in comparison with the PTF and permanent mold cast (PMC 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  2. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    Science.gov (United States)

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  3. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  4. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  5. Experimental and calculated liquid-liquid interfacial tension in demixing metal alloys

    Institute of Scientific and Technical Information of China (English)

    Walter Hoyer; Ivan Kaban

    2006-01-01

    Liquid-liquid interfacial tension in binary and ternary Al-based monotectic systems has been determined experimentally with a tensiometric method in a wide temperature interval. The temperature dependence of the interfacial tension is well described by a power law function of the type σαβ~ (1 - T/Tc)δ with the critical exponent δ = 1.3 and a critical tem perature TC. Theoretical models describing the liquid-liquid interface in monotectic alloys and their applicability for calculation of the interfacial tension and its temperature dependence in binary systems are considered.

  6. Phase decomposition of cast alloy ZnAl11Cu3

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.H. [Hong Kong Polytechnic Univ. (China). Dept. of Mfg. Engineering; Inst. de Investigaciones en Materiales-UNAM, Mexico (Mexico); Yeung, C.F.; Lee, W.B. [Hong Kong Polytechnic Univ. (China). Dept. of Mfg. Engineering

    2001-12-01

    Microstructure and phase transformation of a cast Zn-Al-based alloy (ZnAl11Cu3) are studied during ageing using X-ray diffraction and back-scattered scanning electron microscopy techniques. Decomposition of a zinc-rich {eta}'{sub s} phase is observed to take place in the way of continuous precipitation. A four-phase transformation, {alpha} + {epsilon} {yields} T'+ {eta}, occurs during prolonged ageing. It is found that the phases involved in the phase transformation can be distinctly identified by using different atomic contrasts in the back-scattered scanning electron image of precipitates. (orig.)

  7. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  8. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  9. Effects of gas to melt ratio on the microstructure of an Al–10.83Zn–3.39Mg–1.22Cu alloy produced by spray atomization and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center of Analysis Measurement, Harbin Institute of Technology, Harbin 150001 (China); Ning, Z.L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Zhang, M.X. [School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072 (Australia); Cao, F.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Sun, J.F., E-mail: jfsun@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2014-01-15

    Various gas to melt ratios (GMR) that govern the cooling rate of spray forming can be achieved through controlling the atomizer form and the atomization pressure. The effect of the GMR on microstructures of an Al–10.83Zn–3.39Mg–1.22Cu alloy produced through spray forming has been studied using electron microscopy. When the GMR is high at 3.5, dendritic structure and quasi-crystalline i-Mg{sub 32}(AlZn){sub 49} particles inherited from the original powders can be observed. Spray forming at medium GMR of 2.3 produces equiaxed α-Al grains and MgZn{sub 2} phase that discontinuously distributes along the grain boundaries and within the grains as small particles. The low GMR of 1.4 corresponds to low cooling rate. Coarse and equiaxed α-Al grains together with eutectic structure consisting of b.c.c.-Mg{sub 32}(AlZn){sub 49} and α-Al phases along the grain boundaries are obtained. - Highlights: • At high GMR, the broken fragments and i-Mg{sub 32}(AlZn){sub 49} quasicrystal are observed. • At medium GMR, microstructure consists of α-Al equiaxed grains and MgZn{sub 2} phase. • At low GMR, the coarsened α-Al grains and bcc-Mg{sub 32}(AlZn){sub 49} eutectic appear.

  10. Pemilihan Bahan Alloy Untuk Konstruksi Gigitiruan

    OpenAIRE

    Medila Dahlan

    2008-01-01

    Pada kedokteran gigi bahan alloy sangat banyak digunakan dalam segala bidang. Dalam pembuatan konstruksi gigitiman biasanya digunakan alloy emas, alloy kobalt kromium, alloy nikei kromium dan alloy stainless steel sebagai komponen gigitiman kerangka logam serta pembuatan mahkota dan jembatan. Pemilihan bahan alloy dapat dilakukan berdasarkan sifat yang dimiiiki oleh masing-masing bahan alloy sehingga akan didapat hasil konstmksi gigitiruan yang memuaskan. Pada pemakaiannya didaiam mulut...

  11. Strip Casting of High Performance Structural Alloys

    Institute of Scientific and Technical Information of China (English)

    S S Park; J G Lee; Nack J Kim

    2004-01-01

    There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys.

  12. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of

  13. High temperature creep behaviour of Al-rich Ti-Al alloys

    Science.gov (United States)

    Sturm, D.; Heilmaier, M.; Saage, H.; Aguilar, J.; Schmitz, G. J.; Drevermann, A.; Palm, M.; Stein, F.; Engberding, N.; Kelm, K.; Irsen, S.

    2010-07-01

    Compared to Ti-rich γ-TiAl-based alloys Al-rich Ti-Al alloys offer an additional reduction of in density and a better oxidation resistance which are both due to the increased Al content. Polycrystalline material was manufactured by centrifugal casting. Microstructural characterization was carried out employing light-optical, scanning and transmission electron microscopy and XRD analyses. The high temperature creep of two binary alloys, namely Al60Ti40 and Al62Ti38 was comparatively assessed with compression tests at constant true stress in a temperature range between 1173 and 1323 K in air. The alloys were tested in the cast condition (containing various amounts of the metastable phases Al5Ti3 and h-Al2Ti) and after annealing at 1223 K for 200 h which produced (thermodynamically stable) lamellar γ-TiAl + r-Al2Ti microstructures. In general, already the as-cast alloys exhibit a reasonable creep resistance at 1173 K. Compared with Al60Ti40, both, the as-cast and the annealed Al62Ti38 alloy exhibit better creep resistance up to 1323 K which can be rationalized by the reduced lamella spacing. The assessment of creep tests conducted at identical stress levels and varying temperatures yielded apparent activation energies for creep of Q = 430 kJ/mol for the annealed Al60Ti40 alloy and of Q = 383 kJ/mol for the annealed Al62Ti38 material. The latter coincides well with that of Al diffusion in γ-TiAl, whereas the former can be rationalized by the instability of the microstructure containing metastable phases.

  14. High temperature creep behaviour of Al-rich Ti-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, D; Heilmaier, M; Saage, H [Otto von Guericke University Magdeburg, Institute for Materials and Joining Technology, PO Box 4120, D-39016 Magdeburg (Germany); Aguilar, J; Schmitz, G J; Drevermann, A [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany); Palm, M; Stein, F; Engberding, N [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany); Kelm, K; Irsen, S, E-mail: daniel.sturm@ovgu.d [Stiftung caesar, Electron Microscopy, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany)

    2010-07-01

    Compared to Ti-rich {gamma}-TiAl-based alloys Al-rich Ti-Al alloys offer an additional reduction of in density and a better oxidation resistance which are both due to the increased Al content. Polycrystalline material was manufactured by centrifugal casting. Microstructural characterization was carried out employing light-optical, scanning and transmission electron microscopy and XRD analyses. The high temperature creep of two binary alloys, namely Al{sub 60}Ti{sub 40} and Al{sub 62}Ti{sub 38} was comparatively assessed with compression tests at constant true stress in a temperature range between 1173 and 1323 K in air. The alloys were tested in the cast condition (containing various amounts of the metastable phases Al{sub 5}Ti{sub 3} and h-Al{sub 2}Ti) and after annealing at 1223 K for 200 h which produced (thermodynamically stable) lamellar {gamma}-TiAl + r-Al{sub 2}Ti microstructures. In general, already the as-cast alloys exhibit a reasonable creep resistance at 1173 K. Compared with Al{sub 60}Ti{sub 40}, both, the as-cast and the annealed Al{sub 62}Ti{sub 38} alloy exhibit better creep resistance up to 1323 K which can be rationalized by the reduced lamella spacing. The assessment of creep tests conducted at identical stress levels and varying temperatures yielded apparent activation energies for creep of Q = 430 kJ/mol for the annealed Al{sub 60}Ti{sub 40} alloy and of Q = 383 kJ/mol for the annealed Al{sub 62}Ti{sub 38} material. The latter coincides well with that of Al diffusion in {gamma}-TiAl, whereas the former can be rationalized by the instability of the microstructure containing metastable phases.

  15. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    Science.gov (United States)

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-05

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility.

  16. Early stages of superplasticity and positron lifetime spectroscopy in an Al-Mg-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ayciriex, M.D.; Romero, R.; Somoza, A. [Universidad Nacional del Centro de la Provincia de Buenos Aires (Argentina). Instituto de Fisica de Materiales Tandil

    1996-07-01

    In the present paper, by using positron lifetime technique, a careful study is carried out to analyze the microstructural changes induced on samples of an Al-based commercial alloy (Al-Mg-Cu-Mn-Cr) by superplastic deformation in the early stages of superplastic behavior of the alloy (strain range from 0.2% to 100%). These results are compared with those obtained on specimens only heat treated at the same temperature and for a time equivalent to the elapsed time during each tensile test, in order to evaluate the thermal contribution to the microstructural changes induced during the superplastic deformation process. Moreover, the positron results were linked with the microstructural evolution of the samples followed by means of optical microscopy and Vickers microhardness technique.

  17. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei;

    2003-01-01

    and the cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory...

  18. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  19. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  20. Martensitic and magnetic transformation of Co41Ni32Al24Sb3 and Co41Ni32Al27 alloys

    Institute of Scientific and Technical Information of China (English)

    XU Guo-fu; YIN Zhi-min; LUO Feng-hua; MOU Shen-zhou; K.OIKAWA

    2006-01-01

    The martensitic transformation and magnetic property of Co41Ni32Al27 and Co41Ni32Al24Sb3 alloys were investigated by optical microscopy(OM), scanning electric microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), X-ray diffractometry (XRD), differential scanning calorimeter analysis(DSC) and vibration sample magnetometer(VSM) methods. The results show that martensitic crystal structure of Co41Ni32Al24Sb3 alloy is still L10 type. Both martensitic transformation temperature Tm and Curie point Tc are in linear relation to quenching temperature. Tm increases by 9 K and Tc increases by 7.5 K for every 10 K increasing in quenched temperature. Quenched from same temperature, Tm of Co41Ni32Al24Sb3 alloy is higher than that of Co41Ni32Al27 alloy by 76 K, meanwhile Tc is higher by 18 K. The melting point of Co-Ni-Al alloy is decreased by the Sb addition, eutectic structure appears in Co41Ni32Al24Sb3 alloy annealed at 1 573 K, which indicates that the alloy is partially melted, whereas Co41Ni32Al27 alloy can be annealed at 1 623 K without melted. The martensitic transformation temperature range of Co41Ni32Al24Sb3 alloy is 22-29 K, only half that of Co41Ni32Al27 alloy. This is a very important result to benefit the achievement of large magnetic field induced strain on Co-Ni-Al based alloy. The results of Tm and Tc were explained by total average s+d electron concentration and magnetic valence number Zm respectively.

  1. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  2. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    Directory of Open Access Journals (Sweden)

    Zongxia LIU

    2005-05-01

    Full Text Available This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties. The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fineequiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing is superior to that of the later (tradition, leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  3. Progress on Numerical Modeling of the Dispersion of Ceramic Nanoparticles During Ultrasonic Processing and Solidification of Al-Based Nanocomposites

    Science.gov (United States)

    Zhang, Daojie; Nastac, Laurentiu

    2016-08-01

    In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.

  4. Progress on Numerical Modeling of the Dispersion of Ceramic Nanoparticles During Ultrasonic Processing and Solidification of Al-Based Nanocomposites

    Science.gov (United States)

    Zhang, Daojie; Nastac, Laurentiu

    2016-12-01

    In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.

  5. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  6. Tungsten carbide laser alloying of a low alloyed steel

    Science.gov (United States)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  7. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  8. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  9. Materials data handbook, Inconel alloy 718

    Science.gov (United States)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on Inconel alloy 718 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  10. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  11. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    Science.gov (United States)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  12. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  13. Development and Processing of Nickel Aluminide-Carbide Alloys

    Science.gov (United States)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  14. Porosity of porous Al alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  15. Dynamic mechanical analyze of superelastic CuMnAl shape memory alloy

    Science.gov (United States)

    (Dragoș Ursanu, A. I.; Stanciu, S.; Pricop, B.; Săndulache, F.; Cimpoeșu, N.

    2016-08-01

    A new shape memory alloy was obtain from high purity Cu, Mn and Al elements using a induce furnace. The intelligent material present negative transformation temperatures and an austenite like state at room temperature. The austenite state of CuMnAl shape memory alloy present superelasticity property. Five kilograms ingot was obtain of Cu10Mn10Al alloy. From the base material (melted state) were cut samples with 6 mm thickness using a mechanical saw. After an homogenization heat treatment the samples were hot rolled through four passes with a reduction coefficient of 20%. Experimental lamellas were obtained with 1.5 mm thickness and 90x10 mm length and width. After the hot rolled treatment the materials were heat treated at 800°C for 20 minutes and chilled in water. Four samples, one just laminated and three heat treated by aging, were analyzed with a Netzsch DMA equipment to establish the elastic modulus and the internal friction values of the materials. Metallic materials microstructure was analyzed using a scanning electron microscope Vega Tescan LMH II type. After the aging heat treatment a decrease of internal friction is observed on the entire analyze range which is assigned to formation of Al-based precipitates that block the internal movement of the alloy characteristic phases.

  16. Core-multishell globular oxidation in a new TiAlNbCr alloy at high temperatures.

    Science.gov (United States)

    Tang, S Q; Qu, S J; Feng, A H; Feng, C; Shen, J; Chen, D L

    2017-06-14

    Oxidation resistance is one of key properties of titanium aluminide (TiAl) based alloys for high-temperature applications such as in advanced aero-engines and gas turbines. A new TiAlNbCr alloy with micro-addition of yttrium has been developed, but its oxidation behavior is unknown. To provide some fundamental insights, high-temperature oxidation characteristics of this alloy are examined via scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, and X-ray diffraction. We show that distinctive core-multishell globular oxidation and "daisy" flower-like oxidation occur exclusively around Y2O3 particles. Globular oxides exhibit multi-layered Y2O3/TiO2/Al2O3-rich/TiO2-rich shell structures from the inside to outside. Flower-like inner oxides consist of core Y2O3 particles surrounded by divergent Al2O3 and oxygen-rich α2-Ti3Al in the near-scale substrate. As the scale-substrate interface moves inward, the inner oxide structures suffer deeper oxidation and transform into the globular oxide structures. Our results demonstrate that the unique oxidation characteristics and the understanding of formation mechanisms pave the way for the exploration and development of advanced oxidation-resistant TiAl-based materials.

  17. Duct and cladding alloy

    Science.gov (United States)

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  18. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  19. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.

    1981-04-01

    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  20. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  1. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Influence of Y, Gd and Sm on the glass forming ability and thermal crystallization of aluminum based alloy; Efeito das terras raras Y, Gd e Sm na tendencia a formacao de amorfo e na cristalizacao termica em ligas a base de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J., E-mail: aliaga@ufscar.b [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Danez, G.P. [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Al-based amorphous alloys represent an important family of metals and a great scientific activity has been devoted to determine the main features of both glass forming ability (GFA) and crystallization behavior in order to have a comprehensive framework aimed at potential technological applications. Nowadays, it is well known that the best Al-based amorphous alloys are formed in ternary systems such as Al- RE-TM, where RE is a rare earth and TM a transition metal. This paper presents results of research in Al{sub 85}Ni{sub 10}RE{sub 5} alloys (RE = Y, Gd and Sm). Amorphous ribbons were processed by melt-spinning under the same conditions and subsequently characterized by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show appreciable micro structural differences as function of the rare earth, thus crystal is obtained for Y, nano-glassy for Gd and, fully amorphous structure for Sm. (author)

  3. ALLOY DESIGN AND PROPERTY EVALUATION OF TI ALLOY ...

    African Journals Online (AJOL)

    eobe

    The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. ... composites and ceramics, are being explored for use as biomaterials ... ALLOY OF TI-MO-NB-SN ALLOY FOR BIOMEDICAL APPLICATIONS ..... Almeida, C. A. “Least Square Unit Cell Refinement”. Program ...

  4. Radiation Effects in Refractory Alloys

    Science.gov (United States)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  5. Properties of laser alloyed surface layers on magnesium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The investigations have shown that laser surface alloying is a promising process to improve the wear and corrosion properties of magnesium base alloys without affecting the initial bulk properties like the low density. With an alloying element combination of aluminium and nickel the wear rate in the scratch test was reduced by 90% compared to untreated pure magnesium. Additionally the corrosion resistance was improved by laser alloying with this element combination. Because of distortion or crack formation in the case of large area treatments, the laser alloying should be limited to the treatment of smaller areas. In the near future this process could be an interesting alternative to surface coating or to a partially reinforcement with ceramic fibres or particles. (orig.)

  6. Shape memory alloy thaw sensors

    Science.gov (United States)

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  7. Electron Theory in Alloy Design

    CERN Document Server

    Pettifor, DG

    1992-01-01

    Presents recent developments in electron theory which have impacted upon the search for novel alloys with improved mechanical or magnetic properties. The ten chapters outline the ability of electron theory to make quantitative predictions (such as heats of formation, planar fault energies, shear moduli and magnetic anisotropy), and to provide simplifying concepts for understanding trends in alloy behaviour.

  8. PREPARATION AND ACTIVATION OF RAPIDLY SOLIDIFIED Ni-Zr-Al AMORPHOUS ALLOY FOR CATALYTIC PURPOSE%快速凝固Ni-Zr-Al非晶态催化合金的制备与活化处理

    Institute of Scientific and Technical Information of China (English)

    张国胜; 张海峰; 沈宁福

    1999-01-01

    @@ As new catalytic materials, amorphous alloys have attracted much attention since 1980s. Rapid solidification is one of the main techniques to prepare amorphous alloys.However, as-cast rapidly solidified alloys usually can not be directly used as the catalyst for their poor surface area, oxide film on their surface, etc. Therefore, activation pretreatment must be carried out. Recently, leaching aluminum has been attempted to activate rapidly solidified amorphous catalytic alloys containing aluminum. In order to carry out such an activation pretreatment, the Al-rich amorphous precursor alloys must be obtained first, in which the content of active component must be sufficiently high so that the catalytic activity of the activated catalyst can be attained. On the other hand, the chemical composition of the precursor must approach eutectic point or contribute to the range of low liquidus temperature so that the glass transition can be easily achieved according to the solidification theory[1]. So far Al-based alloys which meet the dual confinement have not been found yet. For Ni-Al and Cu-Al systems,only the microcrystalline alloys can be obtained through rapid solidification[2,3].In the present study, glass formation was achieved by introducing promotion elements in Ni-Al system precursor alloys.

  9. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  10. Heat storage in alloy transformations

    Science.gov (United States)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  11. Corrosion behavior of 6061/Al-15 vol. pct. SiC(p composite and the base alloy in sodium hydroxide solution

    Directory of Open Access Journals (Sweden)

    P.D. Reena Kumari

    2016-11-01

    Full Text Available The corrosion behavior of 6061/Al-15 vol. pct. SiC(p composite and 6061 Al base alloy was investigated in a sodium hydroxide solution. The electrochemical parameters were derived from potentiodynamic polarization and electrochemical impedance spectroscopic (EIS techniques. The results showed that the corrosion resistance of the composite was lower than that of the base alloy in selected corrosion media. The corrosion rates of both the composite and the base alloy increased with the increase in the concentration of sodium hydroxide and also with the increase in temperature. The surface morphology of the metal surface was investigated using scanning electron microscope (SEM. Activation energy was evaluated using Arrhenius equation, and enthalpy of activation and entropy of activation values were calculated using transition state equation.

  12. Fabrication and characterization of nanocrystalline Al/Al12(Fe,V)3Si alloys by consolidation of mechanically alloyed powders

    Institute of Scientific and Technical Information of China (English)

    Hamid Ashrafi; Rahmatollah Emadi; Mohammad Hosein Enayati

    2014-01-01

    The aim of this study was to produce bulk nanocrystalline Al/Al12(Fe,V)3Si alloys by mechanical alloying (MA) and subsequent hot pressing (HP) of elemental powders. A nanostructured Al-based solid solution was formed by MA of elemental powders for 60 h. After HP of the as-milled powders at 550°C for 20 min, the Al12(Fe,V)3Si phase was precipitated in a nanocrystalline Al matrix. Scanning electron microscopy (SEM) images of the bulk samples represented a homogeneous and uniform microstructure that was superior to those previously obtained by rapid solidification–powder metallurgy (RS–PM). Nanostructured Al−8.5Fe−1.3V−1.7Si and Al−11.6Fe−1.3V−2.3Si alloys ex-hibited high HV hardness values of~205 and~254, respectively, which are significantly higher than those reported for the RS–PM counter-parts.

  13. Wedlable nickel aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  14. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  15. About Alloying of Aluminum Alloys with Transition Metals

    Science.gov (United States)

    Zakharov, V. V.

    2017-05-01

    An attempt is made to advance Elagin's principles of alloying of aluminum alloys with transition metals (TM) such as Mn, Cr, Zr, Ti, V with allowance for the ternary equilibrium and metastable Al - TM - TM phase diagrams. The key moments in the analysis of the phase diagrams are the curves (surfaces) of joint solubility of TM in aluminum, which bound the range of the aluminum solid solution. It is recommended to use combinations of such TM (two and more), the introduction of which into aluminum alloys widens the phase range of the aluminum solid solution.

  16. Effect of Cu addition on microstructure and properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy

    Directory of Open Access Journals (Sweden)

    You Zhiyong

    2012-02-01

    Full Text Available To improve the strength, hardness and heat resistance of Mg-Zn based alloys, the effects of Cu addition on the as-cast microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy were investigated by means of Brinell hardness measurement, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, XRD and tensile tests at room and elevated temperatures. The results show that the microstructure of as-cast Mg-10Zn-5Al-0.1Sb alloy is composed of α-Mg, t-Mg32(Al, Zn49, φ-Al2Mg5Zn2 and Mg3Sb2 phases. The morphologies of these phases in the Cu-containing alloys change from semi-continuous long strip to black herringbone as well as particle-like shapes with increasing Cu content. When the addition of Cu is over 1.0wt.%, the formation of a new thermally-stable Mg2Cu phase can be observed. The Brinell hardness, room temperature and elevated temperature strengths firstly increase and then decrease as the Cu content increases. Among the Cu-containing alloys, the alloy with the addition of 2.0wt.% Cu exhibits the optimum mechanical properties. Its hardness and strengths at room and elevated temperatures are 79.35 HB, 190 MPa and 160 MPa, which are increased by 9.65%, 21.1% and 14.3%, respectively compared with those of the Cu-free one. After T6 heat treatment, the strengths at room and elevated temperatures are improved by 20% and 10%, respectively compared with those of the as-cast alloy. This research results provide a new way for strengthening of magnesium alloys at room and elevated temperatures, and a method of producing thermally-stable Mg-10Zn-5Al based high zinc magnesium alloys.

  17. An electrochemical study of the effect of Li on the corrosion behavior of Ni{sub 3}Al intermetallic alloy in molten (Li + K) carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rodriguez, J.G. [Universidad Autonoma del Estado de Morelos, CIICAp, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Mor. (Mexico); Centro de Investigacion en Materiales Avanzados. S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih. (Mexico)], E-mail: ggonzalez@uaem.mx; Mejia, E. [Universidad Autonoma del Estado de Morelos, CIICAp, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Mor. (Mexico); Lucio-Garcia, M.A. [Centro de Investigacion en Materiales Avanzados. S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih. (Mexico); Salinas-Bravo, V.M.; Porcayo-Calderon, J. [Instituto de Inv. Electricas, Gerencia de Procesos Termicos, Reforma 108, Temixco, Mor. (Mexico); Martinez-Villafane, A. [Centro de Investigacion en Materiales Avanzados. S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih. (Mexico)

    2009-08-15

    A study of the effect of lithium content (1, 3 and 5 wt.%) and heat treatment (400 deg. C during 144 h) on the corrosion behavior of Ni{sub 3}Al alloy has been carried out in a 62 mol.%Li{sub 2}CO{sub 3}-38 mol.%K{sub 2}CO{sub 3} mixture at 650 deg. C using electrochemical techniques. Employed electrochemical techniques included potentiodynamic polarization curves, linear polarization resistance, LPR, electrochemical impedance spectroscopy, EIS, and electrochemical noise, measurements EN. Results have shown that the alloys exhibited an active-passive behavior regardless of the heat treatment. For alloys without heat treatment, the most corrosion resistant was the Ni{sub 3}Al base alloy, but when they were heat treated, the most corrosion resistant was the alloy containing 3%Li. EIS results showed that for short immersion tests, the corrosion process was under diffusion control, but for longer exposure times, the presence of a protective scale was evident. All the alloys were highly susceptible to a localized type of corrosion according to EN measurements and supported by SEM micrographs.

  18. [Prosthetic dental alloys. 1].

    Science.gov (United States)

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  19. [Prosthetic dental alloys (2)].

    Science.gov (United States)

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  20. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  1. Effects of rolling deformation on microstructure and hardness of Ti-45Al-9Nb-0.3Y alloy

    Institute of Scientific and Technical Information of China (English)

    张树志; 张长江; 侯赵平; 孔凡涛; 陈玉勇

    2016-01-01

    The microstructure evolution of as-rolled Ti-45Al-9Nb-0.3Y alloy as well as the nanohardness ofβ/B2 matrix was investigated by means of scanning electron microscopy (SEM) in backscattered electron mode (BSE) mode, transmission electron microscopy (TEM) and nanoindentation. This high Nb containing TiAl based alloy was rolled with 50%, 60%, 65% reduction, respectively. Omega phase precipitated in B2 phase with an orientation relationship of {110}β//{1120}ω and β//ω. Moreover, with the increase of de-formation reduction, rod-like structure which was formed inγ grain transformed from (α2+γ) lamellae structure intoα2 phase only. Addi-tionally, nanoinentation experiment revealed that the precipitation hardening ofω phase increased the hardness ofβ/B2 phase.

  2. Mechanically Alloyed High Entropy Composite

    Science.gov (United States)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  3. Corrosion resistance of Al-based coatings in flowing Pb–15.7Li produced by aluminum electrodeposition from ionic liquids

    Directory of Open Access Journals (Sweden)

    Sven-Erik Wulf

    2016-12-01

    Full Text Available Reduced activation ferritic–martensitic steels are intended to serve as structural materials in different blanket designs, e.g. HCLL, DCLL and WCLL. In these designs the material is supposed to be in direct contact with the flowing liquid breeder material Pb–15.7Li at an operating temperature of up to 550°C. These conditions will lead to severe corrosion attack of the steel and high corrosion rates of up to 400µm per year are reported in the literature. To avoid or reduce corrosion Al-based corrosion barriers were developed in the last years by using electrochemical techniques to deposit aluminum. Until now two processes have been developed. The first one, so called ECA process, is based on volatile toluene electrolytes. Long-term corrosion experiments on these coatings indicated reduced corrosion rates compared to bare Eurofer steel in flowing Pb–15.7Li. However, these Fe–Al scales showed inhomogeneous corrosion attack of the corrosion barrier itself. In this study the improved ECX process was applied to produce Al-based coatings. The short-term corrosion behavior of such barrier coatings was analyzed for up to 4000h by diameter measurements and metallographic examinations. The investigation revealed uniform corrosion in comparison to inhomogeneous attack in case of ECA coated samples and reduced corrosion rates of around 20µm/a even for low exposure times of 4000h.

  4. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  5. Rapidly solidified aluminum alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.S.; Chun, B.S.; Won, C.W.; Lee, B.S.; Kim, H.K.; Ryu, M. [Chungnam National Univ., Taejon (Korea, Republic of); Antolovich, S.D. [Washington State Univ., Pullman, WA (United States)

    1997-01-01

    Miniaturization and weight reduction are becoming increasingly important in the fabrication of vehicles. In particular, aluminum-silicon alloys are the logical choice for automotive parts such as pistons and cylinders liners because of their excellent wear resistance and low coefficient of thermal expansion. However, it is difficult to produce aluminum-silicon alloys with silicon contents greater than 20 wt% via ingot metallurgy, because strength is drastically reduced by the coarsening of primary silicon particles. This article describes an investigation of rapid solidification powder metallurgy techniques developed in an effort to prevent coarsening of the primary silicon particles in aluminum-silicon alloys.

  6. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  7. Alloy design for intrinsically ductile refractory high-entropy alloys

    Science.gov (United States)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  8. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    Science.gov (United States)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  9. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  10. Highly Efficient and Air Stable Inverted Polymer Solar Cells Using LiF-Modified ITO Cathode and MoO3/AgAl Alloy Anode.

    Science.gov (United States)

    Jia, Xiangkun; Jiang, Ziyao; Chen, Xiaohong; Zhou, Jianping; Pan, Likun; Zhu, Furong; Sun, Zhuo; Huang, Sumei

    2016-02-17

    The performance and air stability of inverted polymer solar cells (PSCs) were greatly improved using a combination of LiF-modified ITO cathode and a MoO3/AgAl alloy anode. The power conversion efficiency (PCE) of PSCs with AgAl contact reached 9.4%, which is higher than that of the cells with Ag (8.8%) and Al electrode (7.6%). The PCE of AgAl-based PSCs can further increase up to 10.3% through incorporating an ultrathin LiF-modified ITO. AgAl-based cells also exhibit a superior stability compared to the cells with Ag and Al contacts. PCE of the AgAl-based cells without encapsulation remains 78% of its original value after the cells were aged for 380 days in air. The presence of a LiF-modified ZnO interlayer between ITO and the organic active layer improves the charge collection. The improvement in PCE and stability of the AgAl-based cells is primarily attributed to the formation of AlOx at the MoO3/AgAl interface, preventing Ag diffusion and improving the built-in potential across the active layer in the cells.

  11. Metallic alloy stability studies

    Science.gov (United States)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  12. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  13. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  14. On amorphization and nanocomposite formation in Al–Ni–Ti system by mechanical alloying

    Indian Academy of Sciences (India)

    K Das; G K Dey; B S Murty; S K Pabi

    2005-11-01

    Amorphous structure generated by mechanical alloying (MA) is often used as a precursor for generating nanocomposites through controlled devitrification. The amorphous forming composition range of ternary Al–Ni–Ti system was calculated using the extended Miedema's semi-empirical model. Eleven compositions of this system showing a wide range of negative enthalpy of mixing (− mix) and amorphization (− amor) of the constituent elements were selected for synthesis by MA. The Al88Ni6Ti6 alloy with relatively small negative mix (−0.4 kJ/mol) and amor (−14.8 kJ/mol) became completely amorphous after 120 h of milling, which is possibly the first report of complete amorphization of an Al-based rare earth element free Al–TM–TM system (TM = transition metal) by MA. The alloys of other compositions selected had much more negative mix and amor; but they yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition, evidencing a high degree of stability of the intermetallic phases under the MA environment. Hence, the negative mix and amor are not so reliable for predicting the amorphization in the present system by MA.

  15. Ni{sub 3}Al aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  16. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor

    Science.gov (United States)

    Li, Zhihong; Zuo, Zhijun; Huang, Wei; Xie, Kechang

    2011-01-01

    A series of Si-Al based DME synthesis catalysts were prepared by complete liquid-phase method and characterized by in situ XPS, XRD, N 2 adsorption and NH 3-TPD analyses. Based on the results, the addition of Si could adjust the pore structure and surface acidity of catalyst, exhibiting a strong promoting effect on the CO conversion and DME selectivity. However, when Si/Al ratio is higher, Si would cover active sites and increase the amount of strong acidity sites, causing the reduction in catalytic activity. It was found from in situ XPS characterization that Cu 0 is the active center of methanol synthesis in DME production, and the addition of Si changes the chemical surroundings of active components and weaken the interaction between Cu, Zn and Al, which maybe give rise to the decrease in catalyst stability.

  17. Rotating bending fatigue property of the Ni3Al-based single crystal superalloy IC6SX at 900°C

    Science.gov (United States)

    Jiang, Liwu; Li, Shusuo; Han, Yafang

    2017-03-01

    The high cycle fatigue behavior of a Ni3Al base single crystal superalloy IC6SX has been investigated at 900°C in this work. The specimens used for the fatigue tests were prepared by screw selection crystal method in a directional solidification furnace. The rotating bending fatigue tests were carried out at 900°Cin air, the stress ratio of R(σmax/σmin) was -1, and the rotating speed of the fatigue tests was 6500r/min(108Hz). The stress-fatigue cycle life (S-Nf) curve was obtained based on the fatigue tests, and the fracture surfaces were examined using scanning electron microscopy (SEM). It has been found that the median fatigue strength is 457.5MPa and the safety fatigue strength is 413.93MPa. And the fatigue fracture was composed of three different characteristic regions.

  18. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements.

    Science.gov (United States)

    Pogorielov, Maksym; Husak, Eugenia; Solodivnik, Alexandr; Zhdanov, Sergii

    2017-03-01

    In recent years, the paradigm about the metal with improved corrosion resistance for application in surgery and orthopedy was broken. The new class of biodegradable metal emerges as an alternative for biomedical implants. These metals corrode gradually with an appropriate host response and release of corrosion products. And it is absolutely necessary to use essential metals metabolized by hosting organism with local and general nontoxic effect. Magnesium serves this aim best; it plays the essential role in body metabolism and should be completely excreted within a few days after degradation. This review summarizes data from Mg discovery and its first experimental and clinical application of modern concept of Mg alloy development. We focused on biodegradable metal application in general surgery and orthopedic practice and showed the advantages and disadvantages Mg alloys offer. We focused on methods of in vitro and in vivo investigation of degradable Mg alloys and correlation between these methods. Based on the observed data, a better way for new alloy pre-clinical investigation is suggested. This review analyzes possible alloying elements that improve corrosion rate, mechanical properties, and gives the appropriate host response.

  19. Kinetics of aluminum lithium alloys

    Science.gov (United States)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  20. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  1. Atom-probe investigations of TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Menand, A.; Zapolsky-Tatarenko, H.; Nerac-Partaix, A. [Rouen Univ., Mont-Saint-Aignan (France). Fac. des Sci.

    1998-07-15

    Atom probe field ion microscopy (APFIM) and tomographic atom probe (TAP) have been used to study TiAl-based alloys. The element concentrations, the influence of additional elements such as Cr or Nb as well as the solubility of oxygen in {alpha}{sub 2} (Ti{sub 3}Al) and {gamma} (TiAl) phases in compounds with nominal concentration Ti{sub 54}Al{sub 46} and Ti{sub 58}Al{sub 42} have been determined. By using the detection of oxygen atoms as a very local probe, the present investigation revealed the existence of some intermediate phases during the phase transformation {alpha}{yields}{gamma}. The presence of the oxygen atoms during this transformation gives some peculiarities on the transformation path. The appearance of some metastable phases may be explained by the existence of the homologous series Ti{sub 2n-1}Al{sub n} where n is an integer varying from 1 (stoichiometry TiAl) to {infinity} (phase {alpha}{sub 3} Ti{sub 2}Al). (orig.) 35 refs.

  2. Structural and dynamical properties of liquid Al-Au alloys

    Science.gov (United States)

    Peng, H. L.; Voigtmann, Th.; Kolland, G.; Kobatake, H.; Brillo, J.

    2015-11-01

    We investigate temperature- and composition-dependent structural and dynamical properties of Al-Au melts. Experiments are performed to obtain accurate density and viscosity data. The system shows a strong negative excess volume, similar to other Al-based binary alloys. We develop a molecular-dynamics (MD) model of the melt based on the embedded-atom method (EAM), gauged against the available experimental liquid-state data. A rescaling of previous EAM potentials for solid-state Au and Al improves the quantitative agreement with experimental data in the melt. In the MD simulation, the admixture of Au to Al can be interpreted as causing a local compression of the less dense Al system, driven by less soft Au-Au interactions. This local compression provides a microscopic mechanism explaining the strong negative excess volume of the melt. We further discuss the concentration dependence of self- and interdiffusion and viscosity in the MD model. Al atoms are more mobile than Au, and their increased mobility is linked to a lower viscosity of the melt.

  3. Effects of various Mg-Sr master alloys on microstructural refinement of ZK60 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of various Mg-Sr master alloys (conventional as-cast, rapidly-solidified, rolled and solutionized) on microstructural refinement of ZK60 magnesium alloy were investigated. The results indicate that the refinement efficiency of various Mg-Sr master alloys in ZK60 alloy is different. The rolled Mg-Sr master alloy is found to have relatively higher refinement efficiency than the conventional as-cast, solutionized and rapidly-solidified Mg-Sr master alloys. After being treated with the rolled Mg-Sr master alloy, the ZK60 alloy obtains the minimum average grain size of 33 μm. The difference of various Mg-Sr master alloys in refinement efficiency might be related to the initial microstructure change of various Mg-Sr master alloys.

  4. Laser cladding of titanium alloy coating on titanium aluminide alloy substrate

    Institute of Scientific and Technical Information of China (English)

    徐子文; 黄正; 阮中健

    2003-01-01

    A new diffusion bonding technique combined with laser cladding process was developed to join TiAl alloy to itself and Ti-alloys. In order to enhance the weldability of TiAl alloys, Ti-alloy coatings were fabricated by laser cladding on the TiAl alloy. Ti powder and shaped Ti-alloy were respectively used as laser cladding materials. The materials characterization was carried out by OM, SEM, EDS and XRD analysis. The results show that the laser cladding process with shaped Ti-alloy remedy the problems present in the conventional process with powder, such as impurities, cracks and pores. The diffusion bonding of TiAl alloy with Ti-alloy coating to itself and Ti-alloy was carried out with a Gleeble 1500 thermal simulator. The sound bonds of TiAl/TiAl, TiAl/Ti were obtained at a lower temperature and with shorter time.

  5. TEM microstructure of rapidly solidified Mg-6Zn- 1Y-1Ce alloy%快速凝固Mg-6Zn-1Y-1Ce合金的TEM组织

    Institute of Scientific and Technical Information of China (English)

    杨文朋; 郭学锋; 卢正欣

    2012-01-01

    利用单辊甩带技术制备快速凝固Mg-6Zn-1Y-1Ce薄带,并利用透射电子显微镜和能谱仪分析薄带组织.结果表明:薄带近辊面区域晶粒内部和晶界处分布着高密度颗粒,颗粒密度在中间区域和自由面区域有所降低;快速凝固合金主要由过饱和α-Mg固溶体、T相和W相组成,同时还存在少量的二十面体准晶相颗粒和Mg4Zn7相颗粒;其中T相为体心正交晶体结构,是由于体心正方结构的Mg12Ce相中部分Mg原子被Zn原子代替而形成的.%Rapidly solidified (RS) Mg-6Zn-1Y-1Ce ribbons were prepared by single roller melt-spinning technique.Transmission electron microscopy and energy dispersive X-ray spectroscopy were employed to characterize the microstructure of RS ribbons.The results show that there is high density of particles distributed within grains and at grain boundaries in the region near wheel side.The particle density is decreased in the middle region and free surface region.The alloy is predominantly composed of supersaturated α-Mg solid solution,T phase and W phase; meanwhile,a few icosahedral quasicrystalline and Mg4Zn7 particles are also observed.The T phase is confirmed having a body-centered orthorhombic structure that is transformed from the body-centered tetragonal structure Mg12Ce phase due to the partial substitution of Mg atoms by Zn.

  6. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    Science.gov (United States)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle. Copyright © 2015, American Association for the Advancement of Science.

  7. Shape memory alloy flexures

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Yves; Clavel, Reymond

    2003-07-25

    Flexures are used in precision engineering where highly accurate, wear-free, smooth and repeatable motion is desired. Flexures are based on deformation of material to achieve a motion between elastically joined parts. They are used in a variety of precision mechanisms such as high-resolution balances or high accuracy optical positioning stages. Shape memory alloys (SMA) are an attractive option in designing flexures. Superelastic flexures can withstand larger deformations for the same weight as a conventional flexure. In addition, the damping properties of SMA, controllable through the phase transformation, offer new design opportunities for adaptive compliant mechanisms. The martensitic phase transformation can also be used to shift the natural frequency of flexures adding useful functionalities such as vibration rejection. This paper presents design principles of SMA flexures based on non-linear beam theory. Results show a good agreement between measured and predicted data. In addition, experimental results on phase transformation effects on damping behavior are also presented. Both, natural-frequency shift and increased damping were observed in bulk-micro machined flexures using the R-phase transformation. These results demonstrate the feasibility of natural-frequency-tunable flexures.

  8. Zinc alloy enhances strength and creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  9. Thermomechanical behavior of comercial yellow gold alloy

    Directory of Open Access Journals (Sweden)

    Miloš G. Djordjević

    2016-03-01

    Full Text Available With the development of science and technology, in the late 19th century, began the research and application of new alloys for making jewelry. By adding different amounts of Cu and Ag alloy of Au, as well as adding some new elements (Zn, alloys were obtained with different color spectrum (from red to yellow and different technological and metallurgical characteristics. This paper aims to show thermomechanical behavior of commercial yellow Au alloys for making jewelry.

  10. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys

    Directory of Open Access Journals (Sweden)

    Bingqing Chen

    2014-08-01

    Full Text Available Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy has been carried out using gas tungsten arc (GTA welding technology with Ti–Nb and Ti–Ni–Nb filler alloys. The joint welded with the Ti–Nb filler alloy contained much less interfacial brittle phases than the one using the Ti–Ni–Nb filler alloy. The average room-temperature tensile strength of the joint welded with Ti–Nb was 202 MPa and the strength value of the one welded with Ti–Ni–Nb was 128 MPa. For both fillers, the weak links of the dissimilar joints were the weld/In718 interfaces. The presence of TiNi, TiNi3 and Ni3Nb intermetallic compounds in the joint welded with Ti–Ni–Nb induced microcracks at the weld/In718 interface and deteriorated the mechanical properties of the joint. And the adoption of the Ti–Nb filler alloy decreased the formation tendency of interfacial brittle phases to some extent and thus enhanced the tensile strength of the joint.

  11. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    Science.gov (United States)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  12. Oxidation of low cobalt alloys

    Science.gov (United States)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  13. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    Science.gov (United States)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-11-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  14. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    Science.gov (United States)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-10-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  15. Improved thermal treatment of aluminum alloy 7075

    Science.gov (United States)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  16. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and the impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  17. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  18. Effects of High Al and Hf Content on Weldability of Ni3Al Based Alloy by Laser Welding%高Al、Hf含量对Ni3Al基合金激光焊接性能的影响

    Institute of Scientific and Technical Information of China (English)

    高海芸; 何润; 张冬云; 鹿堃

    2015-01-01

    为了研究高Al、Hf含量对Ni3Al基合金焊接性能的影响,采用激光焊接3种成分合金,分析焊缝凝固机理,并对比所得裂纹敏感性,同时从预热温度、激光光源性质等方面研究激光焊接工艺.Al元素成分增加,使合金降低了焊缝裂纹中偏析较严重的Mo元素含量,并使凝固过程的脆性温度范围减小,离共晶区较远,致使凝固组织(γ+γ')共晶相减少.Hf元素含量增加使枝晶间得到良好的填充,使其相变成细密羽毛状(γ+γ ')共晶体,明显降低合金的裂纹敏感性.通过调节母材预热温度,激光波长,在冷却速度较快时能够在一定程度上降低裂纹的敏感性,但仍未完全消除裂纹.而采用波长较短、光斑面积较大的半导体激光焊接得到无裂纹焊缝.

  19. 硬型铸造Ti-Al合金的组织与拉伸性能%Microstructures and Tensile Properties of Ti-Al Based Alloys by Permanent Mold Casting

    Institute of Scientific and Technical Information of China (English)

    李胜; 骆晨; 朱春雷; 张继

    2011-01-01

    试验研究了石墨和铸钢两种硬型铸造Ti-Al合金板片状试样的缺陷、层片间距和室温拉伸性能,并与用陶瓷型壳铸造的Ti-Al合金进行对比.结果表明,采用硬型铸造Ti-Al合金在比较高的冷却速度下凝固的板片状试样无宏观和微观裂纹;与陶瓷型壳铸造的组织相比,硬型铸造Ti-Al合金的板片状试样铸态组织平均层片间距大幅度减小,其中石墨型铸造的减小了近一半;由于硬型铸造Ti-Al合金的板片状试样的层片间距的减小使得其室温拉伸强度有较大幅度的提高,其中石墨型铸造板片试样的层片问距减小了0.35 μm,屈服强度提高了40 MPa.%The properties the casting plate were studied in this paper, such as, the casting defect, lamellar spacing and room temperature tensile properties of Ti-AI based plate by graphite mold and cast-steel mold, and were compared with the Ti-AI based plate by ceramics mold. The experimental results show that there was no macro and micro crack in these permanent mold casting plates at the higher cooling rate during the solidification; the lamellar spacing of permanent mold casting plate was greatly reduced, compared with that of ceramics mold casting plate, and the lamellar spacing of the graphite mold casting plate was reduced approximately one half; the lamellar spacing was decreased so that the tensile properties clearly increased, for example, the lamellar spacing of the graphite mold casting plate was reduced 0.35 \\im, but the yield strength was increased 40 Mpa.

  20. 含Ca、Ba合金和Al基合金的复合脱氧实验研究%Experiment Research on Deoxidation of Ca, Ba-bearing and Al-based alloys

    Institute of Scientific and Technical Information of China (English)

    王军文; 顾文兵; 李阳; 姜周华

    2003-01-01

    通过250 kg底吹气非真空感应炉,对FeSiAl、SiAlBaCaSr和SiAlBaCa三种合金及SiCaBa、SiCa包芯线进行了组合对比脱氧实验,实验表明三种合金的脱氧效果相当,SiAlBaCa合金的脱氧产物具有明显的聚集长大上浮现象,处理结束时夹杂物的总面积和数量均为最低,脱氧产物为复合型夹杂,形状多为球状.通过与喂丝处理的比较,SiAlBaCa合金脱氧可以起到喂丝处理效果.

  1. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    Science.gov (United States)

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-04-12

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  2. Current research situation of titanium alloys in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Titanium and its alloys possess excellent comprehensive properties, and they are widely used in many fields. China pays great attentions to the research on new titanium alloys. This paper mainly reviews the research on new Ti alloys in China, for example, high strength and high toughness Ti alloys, burn resistant Tialloys, high temperature Ti alloys, low cost Ti alloys and so on.New basic theories on Ti alloys developed in China in recent years are also reviewed.

  3. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  4. High strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  5. Alloy 718 for Oilfield Applications

    Science.gov (United States)

    deBarbadillo, John J.; Mannan, Sarwan K.

    2012-02-01

    Alloy 718 (UNS N07718) was developed for use in aircraft gas turbine engines, but its unique combination of room-temperature strength and aqueous corrosion resistance made it a candidate for oilfield fasteners, valves, drill tools, and completion equipment. As well environments became more severe, stress corrosion and hydrogen embrittlement failures in production equipment drove the evolution of the composition and microstructure that distinguish today's oilfield-grade 718 from aerospace grades. This paper reviews the development of the grade and its applications and describes some of its unique characteristics, testing, and manufacturing methods as well as newer alloys designed for high-pressure high-temperature (HPHT) conditions.

  6. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  7. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  8. Alloy softening in binary iron solid solutions

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  9. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  10. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  11. Microstructure and property characterization of a modified zinc-base alloy and comparison with bearing alloys

    Science.gov (United States)

    Prasad, B. K.; Patwardhan, A. K.; Yegneswaran, A. H.

    1998-02-01

    The microstructure and physical, mechanical, and tribological properties of a modified zinc-base alloy have been characterized. In order to assess its utility as a bearing alloy, its properties have also been compared with those of a similarly processed conventional zinc-base alloy and a leaded-tin bronze (conforming to ZA27 and SAE 660 specifications, respectively) used for bearing applications. The modified zinc-base alloy shows promise in terms of better elevated-temperature strength and wear response at higher sliding speeds relative to the conventional zinc-base alloy. Interestingly, the wear behavior (especially the seizure pressure) of the modified alloy was also comparable to that of the bronze specimens at the maximum sliding speed, and was superior at the minimum sliding speed. The modified alloy also attained lower density and better hardness. Alloy behavior has been linked to the nature and type of the alloy microconstituents.

  12. In-depth study of the mechanical properties for Fe{sub 3}Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-07-04

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe{sub 3}Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe{sub 3}AlC{sub 0.5} precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  13. Hot Extrusion Process Effect on Mechanical Behavior of Stir Cast Al Based Composites Reinforced with Mechanically Milled B4C Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    A. Alizadeh1; E. Taheri-Nassaj; M. Hajizamani

    2011-01-01

    In this study, aluminum alloy (Al-2 wt% Cu) matrix composites reinforced with 1, 2 and 4 wt% boron carbide nanoparticles fabricated through mechanical milling with average size of 100 nm were fabricated via stir casting method at 850℃. Cast ingots of the matrix alloy and the composites were extruded at 500℃ at an extrusion ratio of 10:1 to investigate the effects of hot extrusion on the mechanical properties of the composites. The microstructures of the as-cast and the extruded composites were investigated by scanning electron microscopy (SEM). Density measurement, hardness and tensile tests were carried out to identify the mechanical properties of the composites. The extruded samples revealed a more uniform distribution of B4C nanoparticles. Also, the extruded samples had strength and ductility values superior to those of the as-cast counterparts. In the as-cast and the extruded samples, with increasing amount of B4C nanoparticles, yield strength and tensile strength increased but elongation to fracture decreased.

  14. Applications of shape memory alloys in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asai, M.; Suzuki, Y. [Furukawa Electric Co., Ltd., Yokohama, Kanagawa (Japan). R and D Labs.

    2000-07-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and otherfield today. (orig.)

  15. High Damping Alloys and Their Application

    Institute of Scientific and Technical Information of China (English)

    Fuxing Yin

    2000-01-01

    Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.

  16. Passive Corrosion Behavior of Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  17. Paracrystalline property of high-entropy alloys

    Directory of Open Access Journals (Sweden)

    Shaoqing Wang

    2013-10-01

    Full Text Available Atomic structure models of six-component high-entropy alloys with body-centered cubic structure are successfully built according to the principle of maximum entropy for the first time. The lattice distortion parameters g of seven typical high-entropy alloys are calculated. From the optimized lattice configuration of high-entropy alloys, we show that these alloys are ideal three-dimensional paracrystals. The formation mechanism, structural feature, mechanical property, and application prospect of high-entropy alloys are discussed in comparison with the traditional alloys. The novel properties of body-centered cubic high-entropy alloys are attributed to the failure of dislocation deformation mechanism and the difficulty of directed particle diffusion.

  18. Passive Corrosion Behavior of Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  19. STUDY ON Al-BASED AMORPHOUS AND NANOCRYSTALLINE COMPOSITE COATING%铝基非晶纳米晶复合涂层研究

    Institute of Scientific and Technical Information of China (English)

    梁秀兵; 张志彬; 陈永雄; 徐滨士

    2012-01-01

    An Al-Ni-Y-Co amorphous and nanocrystalline composite coating was prepared on the surface of the AZ91 Mg alloy by using an automatic high velocity arc spraying system. Its microstructures were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The results show that the coatings compose of amorphous, nanocrystalline and microcrystalline phases, which has a compact structure with low porosity about 1.8%. The average Vickers microhardness and bond strength of this coating are 311.7 HVo 1 and 26.8 MPa. Its relative wear resistance is about 10 times than that of Al coating and 6 times than that of AZ91 magnesium alloy. The corrosion potential of this coating is more positive than that of Al coating and AZ91 magnesium alloy, and the corresponding corrosion current density value is about 1/2 the same as that of Al coating and 1/5 as that of AZ91 Mg alloy. Especially, compared with the surface on corroded Al coating and AZ91 Mg alloy, the corroded Al-Ni-Y-Co coating has a more flattered surface with less corrosive piting than Al coating. It is confirmed that the Al-Ni-Y-Co coating is an excellent coatinig with higher wear-resistance and corrosion resistance.%采用自动化高速电弧喷涂系统,用自行研制的粉芯丝材,在AZ91镁合金基体表面上制备出Al-Ni-Y-Co非晶纳米晶复合涂层.采用扫描电子显微镜(SEM).X射线衍射仪(XRD)、透射电子显微镜(TEM)分析了A1-Ni-Y-Co非晶纳米晶复合涂层的微观形貌和组织结构,结果表明Al-Ni-Y-Co非晶纳米晶复合涂层是由非晶相和纳米晶化相共同组成的,涂层结构致密,孔隙率约为1.8%.Al-Ni-Y-Co非晶纳米晶复合涂层的平均显微Vickers硬度值为311.7 HV0.1,结合强度为26.8 MPa.涂层的抗磨损耐腐蚀性能优于Al涂层和AZ91镁合金基体;其相对耐磨性约为Al涂层的10倍,为AZ91镁合金的6倍;其自腐蚀电位值正于Al涂层及AZ91镁合金,自腐蚀电

  20. Effect of dendrite arm spacing and the γ’ phase size on stress rupture properties of Ni3Al-base single crystal superalloy IC6SX

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of dendrite arm spacing and the size of γ’ phase on stress rupture properties of as-cast Ni3Al-based single crystal superalloy IC6SX was studied.It has been found that the stress rupture properties were affected by dendrite arm spacing and the size of γ’ phase significantly,i.e.,the stress rupture lives of as-cast specimens under the test condition of 1100°C/120 MPa were significantly increased from about 10 h to 31 h with decreasing dendrite arm spacing and the size of γ’ phase from 3.0 μm and 1.6 μm to 1.3 μm and 0.8 μm,respectively.The creep cracks generated easily in the brittle Y-NiMo phase.Then the cracks gradually mergered and grew up during creep,and finally led to specimens fracture.The orientated coarsening of γ’ phase has been found in the stress ruptured specimens,due to the elements diffusion.However,the γ’ phase did not form the integrated structure during the short periods of 10-31 h as the creep tests lasted.

  1. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  2. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  3. Gold color in dental alloys.

    Science.gov (United States)

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  4. Ultrasonic processing of aluminum alloys

    NARCIS (Netherlands)

    Zhang, L.

    2013-01-01

    The research in ultrasonic processing for metallurgical application shows a promising influence on improving casting properties of aluminium alloys. The principle of ultrasonic processing is introduction of acoustic waves with a frequency higher than 17 kHz into liquid metal. Several promising

  5. Superb nanocrystalline alloys for plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With high rigidity and antiwear performance,nanocrystalline metals and their alloys can find wide applications in surface protection.However, the existence of grain boundaries often leads to erosive micro-batteries which accelerate the process of corrosion.Therefore, it has already become a key issue for surface engineering researchers to find nano materials with higher lubricating, anticorrosion and antiwear capacities.

  6. Microstructure and thermal stability of mechanically alloyed Al3Ti/Al alloy

    Institute of Scientific and Technical Information of China (English)

    林建国; 魏浩岩; 黄正

    2001-01-01

    The microstructure stability of Al3Ti/Al alloy prepared by mechanical alloying (MA) was investigated in the simulating environment in which they may be used. The results show that the MA alloy possesses fine microstructure (the grain size is about 0.5  μm). After cycling loaded followed by heat exposure at 350  ℃ for 24  h, no microstructure coarsening of the alloy occurred, which means that the Al3Ti/Al alloy behaves good microstructure stability at high temperature. The compression yield strength of the alloy reaches up to 247  MPa at 350  ℃.

  7. Method of producing superplastic alloys and superplastic alloys produced by the method

    Science.gov (United States)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  8. PERSPECTIVES OF MOLIBDENUM CONTAINING MATERIALS APPLICATION FOR ALLOYING OF IRONCARBON ALLOYS DURING MANUFACTURING OF CRITICAL CASTINGS

    Directory of Open Access Journals (Sweden)

    A. G. Slutsky

    2015-01-01

    Full Text Available Motor is one of most important part of automobile determine its economical effectiveness of usage. On the other hand, sleeves, pistons and rings are crucible parts as they determine the service life of a motor. These parts are producing in big scale – dozens of millions pieces. Increase of cylinder sleeves physical-mechanical properties results in prolongation of motor service life and improvement of motor’s characteristics. Nowadays low alloyed cast irons with perlite structure are used to manufacture motor’s sleeves. For alloying purposes such traditional elements as Cr, Ni, Cu, and V are applied. But it is interesting to use molybdenum for cast iron alloying. It is known that alloying of alloys allows considerable increasing of consumption properties of castings. But in spite of advantages of alloys alloying the increase of molybdenum containing iron-carbon alloys production is restricted by economical reasons – high cost of alloying additions. Expenditures on alloying additions can be reduced by the application cheap secondary alloys in the charge. So, the present paper is devoted to investigation of alloying peculiarities during the treatment of ferrous alloys with molybdenum applying different initial materials.

  9. Hydrogen ingress into copper-nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B.G. (SRI International, Menlo Park, CA (United States). Materials Research Center)

    1994-04-01

    Hydrogen (H) ingress into two copper (Cu)-nickel (Ni) alloys -- a commercial 77% Cu-15% Ni alloy (aged) and alloy K-500 (UNS N05500, aged and unaged) --- was studied using a technique referred to as hydrogen ingress analysis by potentiostatic pulsing (HIAPP). Anodic current transients obtained for these alloys in an acetate buffer (1 mol/L acetic acid + 1 mol/L sodium acetate [NaAc]) were analyzed using a diffusion-trapping model to determine trapping constants and H entry fluxes. A small increase was observed in the irreversible trapping constant for alloy K-500 with aging. Trapping constants of the aged alloys were similar within the limits of uncertainty, but H entry flux for the 77% Cu alloy was lower than that for aged or unaged alloy K-500. The lower flux may have accounted at least partly, for the Cu alloy's higher resistance to H embrittlement. Trap densities were consistent qualitatively with levels of sulfur (S) and phosphorus (P) in the two alloys. This finding supported an assumption that S and P provided the primary irreversible traps.

  10. Alloy substantially free of dendrites and method of forming the same

    Science.gov (United States)

    de Figueredo, Anacleto M.; Apelian, Diran; Findon, Matt M.; Saddock, Nicholas

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  11. Nucleation, growth and coarsening of {gamma}'-precipitates in a Ni-Cr-Al-based commercial superalloy during artificial aging

    Energy Technology Data Exchange (ETDEWEB)

    Picasso, A. [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG, Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina); Somoza, A. [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG, Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)], E-mail: asomoza@exa.unicen.edu.ar; Tolley, A. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, and CONICET, Avda. Bustillo 9500, R8400AGQ, San Carlos de Bariloche (Argentina)

    2009-06-24

    A study of the decomposition kinetics of the IN-X750 Ni-based superalloy using positron annihilation lifetime spectroscopy (PALS), microhardness and transmission electron microscopy (TEM) is presented. PALS results confirmed that nucleation and growth of {gamma}'-precipitates are assisted by vacancies. Due to the high sensitivity of positrons for vacancy-like defects, information regarding vacancy-solute clusters formed during the very early stages of aging was obtained. The positron lifetime and TEM results were analyzed following classical precipitation models to interpret the kinetics of the {gamma}'-precipitate formation. Finally, from TEM measurements a value of the {gamma}'-precipitate coarsening rate for the alloy studied was obtained.

  12. Mechanical properties and microstructure of Fe3Al intermetallics fabricated by mechanical alloying and spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    HE Qing; JIA Cheng-chang; MENG Jie

    2006-01-01

    Fabrication technology and mechanical properties of the Fe3Al based alloys were studied by spark plasma sintering from elemental powders (Fe-30Al, volume fraction, %) and mechanically alloying powders. The mechanically alloying powders were processed by the high-energy ball milling the elemental mixture powders with the milling time of 5, 8 and 10 min, respectively. The spark plasma sintering process was performed under the pressure of 50 MPa at 1 050 ℃ for 5 min. The phase identification by X-ray diffraction presents the Fe reacts with Al completely during the processing time. The samples are nearly full density (e.g. the relative density of sinter of raw powder is 99%). The microstructure was observed by TEM. The mechanical properties were tested by three-point bending at room temperature in air. The results show that the mechanical properties are better (e.g. bend strength of 1 500 MPa ) than those of the ordinary Fe3Al casting.

  13. Microstructural evolution of aluminium/Al–Ni–Sm glass forming alloy laminates obtained by Controlled Accumulative Roll Bonding

    Energy Technology Data Exchange (ETDEWEB)

    Anghelus, Adrian, E-mail: anghelus.adrian@yahoo.com; Avettand-Fènoël, Marie-Noëlle, E-mail: marie-noelle.avettand-fenoel@univ-lille1.fr; Cordier, Catherine, E-mail: catherine.cordier@univ-lille1.fr; Taillard, Roland, E-mail: roland.taillard@univ-lille1.fr

    2015-05-15

    Highlights: • Elaboration of a UFG material by controlled ARB of Al/glass forming alloy multilayers. • Effect of the crystalline or amorphous nature of the reinforcement on the formability. • Investigation of the thermo-mechanical stability of the metallic glass. - Abstract: The current work deals with the early steps of the unprecedented elaboration of aluminium/Al based glass forming alloy laminates by only accumulative rolling at room temperature. The Al{sub 1−(x+y)}Ni{sub x}Sm{sub y} metallic glass forming alloy was introduced either in its original amorphous state or after total crystallization. This change of atomic structure, and therefore of both thermal and thermo-mechanical stability and mechanical behaviour, is shown to govern at once the processing parameters, the uniformity of the laminates microstructure and the bond strength at the matrix-reinforcement interfaces. The potential of the process so as to synthesize composite materials with a stable ultrafine structure is finally outlined.

  14. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [ORNL; Babu, Prof. Sudarsanam Suresh [University of Tennessee, Knoxville (UTK); Shassere, Benjamin [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  15. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys

    Science.gov (United States)

    Jiang, Jian-Jun; Gasik, Michael

    The electrochemical properties of amorphous MgNi-based hydrogen storage alloys synthesized by mechanical alloying (MA) were evaluated. The results show that these amorphous Mg 50Ni 50 alloys exhibit a higher discharge capacity and relatively good rate capacity at a suitable grinding time while their cycle life is very poor. In order to improve the cycle life, the surface of the amorphous Mg 50Ni 50 alloy was coated with Ti, Al and Zr in Spex 8000 mill/mixer and the coating effects were further investigated. Based on experimental results, two kinds of MgNi-based amorphous alloys are designed by substituting part of Mg in MgNi-based alloys by suitable elements. These alloys are then composed of four components. Thus, the cycle life of electrodes consisting of these quaternary amorphous alloys is greatly improved.

  16. Grain refinement of AZ31 magnesium alloy by Al-Ti-C-Y master alloy

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiang; LU Binfeng; L(U) Zhengling; LIANG Wei

    2008-01-01

    Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and EDS. Experimental results indicated that the prepared master alloy consisted of α-Al, TiAl3, TiC and Al3Y phases, and exhibited good grain-refining performance of AZ31 alloy. Morphology of α-Mg changed from coarse dendritic to fine equiaxed and the average grain size of α-Mg matrix reduced from the original 580 to 170 μm after adding 1.0 wt.% master alloy. The grain refining efficiency of Al-Ti-C-Y master alloy on AZ31 alloy was mainly attributed to heterogeneous nucleation of TiC particles and grain growth restriction of Al-Y compound or TiC at grain boundaries.

  17. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    Science.gov (United States)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-01-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  18. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Santella, Michael L [ORNL; Battiste, Rick [ORNL; Terry, Totemeier [Idaho National Laboratory (INL); Denis, Clark [Idaho National Laboratory (INL)

    2006-08-01

    Status and progress in testing and characterizing CMS Alloy 617 and Alloy 230 tasks in FY06 at ORNL and INL are described. ORNL research has focused on CMS Alloy 617 development and creep and tensile properties of both alloys. In addition to refurbishing facilities to conduct tests, a significant amount of creep and tensile data on Alloy 230, worth several years of research funds and time, has been located and collected from private enterprise. INL research has focused on the creep-fatigue behavior of standard chemistry Alloy 617 base metal and fusion weldments. Creep-fatigue tests have been performed in air, vacuum, and purified Ar environments at 800 and 1000 C. Initial characterization and high-temperature joining work has also been performed on Alloy 230 and CCA Alloy 617 in preparation for creep-fatigue testing.

  19. Evidence of a stable binary CdCa quasicrystalline phase

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jensen, C.H.; Rasmussen, A.R.;

    2001-01-01

    Quasicrystals with a primitive icosahedral structure and a quasilattice constant of 5.1215 Angstrom have been synthesized in a binary Cd-Ca system. The thermal stability of the quasicrystal has been investigated by in situ high-temperature x-ray powder diffraction using synchrotron radiation. It ....... It is demonstrated that the binary CdCa quasicrystal is thermodynamic stable up to its melting temperature. The linear thermal expansion coefficient of the quasicrystal is 2.765x10(-5) K-1. (C) 2001 American Institute of Physics.......Quasicrystals with a primitive icosahedral structure and a quasilattice constant of 5.1215 Angstrom have been synthesized in a binary Cd-Ca system. The thermal stability of the quasicrystal has been investigated by in situ high-temperature x-ray powder diffraction using synchrotron radiation...

  20. Nonstochastic magnetic reversal in artificial quasicrystalline spin ice

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, B.; Bhat, V. S.; Woods, J.; Teipel, E.; Smith, N.; De Long, L. E., E-mail: delong@pa.uky.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States); Sklenar, J.; Ketterson, J. B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Hastings, J. T. [Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-05-07

    We have measured the isothermal DC magnetization of Penrose P2 tilings (P2T) composed of wire segments of permalloy thin film. Micromagnetic simulations reproduce the coercive fields and “knee anomalies” observed in experimental data and show magnetic shape anisotropy constrains segments to be single-domain (Ising spins) at low fields, similar to artificial spin ice (ASI). Mirror symmetry controls the initial reversal of individual segments oriented parallel to the applied field, followed by complex switching of multiple adjacent segments (“avalanches”) of various orientations such that closed magnetization loops (“vortices”) are favored. Ferromagnetic P2T differ from previously studied ASI systems due to their aperiodic translational symmetry and numerous inequivalent pattern vertices, which drive nonstochastic switching of segment polarizations.

  1. Nonstochastic magnetic reversal in artificial quasicrystalline spin ice

    Science.gov (United States)

    Farmer, B.; Bhat, V. S.; Sklenar, J.; Woods, J.; Teipel, E.; Smith, N.; Ketterson, J. B.; Hastings, J. T.; De Long, L. E.

    2014-05-01

    We have measured the isothermal DC magnetization of Penrose P2 tilings (P2T) composed of wire segments of permalloy thin film. Micromagnetic simulations reproduce the coercive fields and "knee anomalies" observed in experimental data and show magnetic shape anisotropy constrains segments to be single-domain (Ising spins) at low fields, similar to artificial spin ice (ASI). Mirror symmetry controls the initial reversal of individual segments oriented parallel to the applied field, followed by complex switching of multiple adjacent segments ("avalanches") of various orientations such that closed magnetization loops ("vortices") are favored. Ferromagnetic P2T differ from previously studied ASI systems due to their aperiodic translational symmetry and numerous inequivalent pattern vertices, which drive nonstochastic switching of segment polarizations.

  2. New Dental Alloys with Special Consumer Properties

    Institute of Scientific and Technical Information of China (English)

    TYKOCHINSKIY D. S.; VASEKIN V. V.

    2012-01-01

    The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal-ceramic dentures.The yellow color corresponds to the consumer and aesthetic needs of some patients,because it is a sign of the metal,which is noble and innocuous.The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium,which increase the strength characteristics.Copper,tin,and other precious metals and base metals are also introduced in these alloys.At the same time,it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame.For this purpose,the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 × 10-6 K-1 when heated from 20 to 600 ℃.The two-component alloys,alloying of gold with platinum and palladium results in a decrease in the TEC,and the introduction of copper,silver,and tin,increases it.Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy.In multicomponent systems,however,the mutual influence of individual components on the properties of the alloy is unpredictable.This also applies to the color characteristics of the alloys,which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium,while other elements may have the opposite effect on the results.Yellowness index (YI),calculated according to the results of spectrophotometric studies,has been chosen as an objective indicator of color.In this study,the requirement for YI was given not less than 25; the color of such alloys can be called light yellow.All the alloys investigated contained 85% (by weight)of gold.Therefore,higher corrosion resistance and biological inertness of a finished dental products were ensured.Among the alloys that met the yellowness/TEC requirements,two alloys have been selected that were "most yellow

  3. First principles theory of disordered alloys and alloy phase stability

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, G.M.; Nicholson, D.M.C.; Shelton, W.A. [and others

    1993-06-05

    These lecture notes review the LDA-KKR-CPA method for treating the electronic structure and energetics of random alloys and the MF-CF and GPM theories of ordering and phase stability built on the LDA- KKR-CPA description of the disordered phase. Section 2 lays out the basic LDA-KKR-CPA theory of random alloys and some applications. Section 3 reviews the progress made in understanding specific ordering phenomena in binary solid solutions base on the MF-CF and GPM theories of ordering and phase stability. Examples are Fermi surface nesting, band filling, off diagonal randomness, charge transfer, size difference or local strain fluctuations, magnetic effects; in each case, an attempt is made to link the ordering and the underlying electronic structure of the disordered phase. Section 4 reviews calculations of electronic structure of {beta}-phase Ni{sub c}Al{sub 1-c} alloys using a version of the LDA-KKR-CPA codes generalized to complex lattices.

  4. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...... on the creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  5. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    Science.gov (United States)

    2013-11-01

    alloys are based on a rather small group of alloying elements, there are often limited differences between them in properties (strength, corrosion ...Research Laboratory (ARL). Initially, the discussions focused on ways to improve the corrosion resistance of magnesium ( Mg ) alloys to increase the...elements display little tendency to alter precipitates or otherwise adversely influence the corrosion performance of the base alloy . Based on these

  6. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  7. Magnetic Characteristics of Two Metglas Alloys

    Science.gov (United States)

    Blatnik, Marie; SNS nEDM Collaboration

    2016-09-01

    Magnetic shielding is gaining greater significance as precision experiments become more sensitive, such as for the Spallation Neutron Source nEDM [neutron electric dipole moment] measurement. Targeting a sensitivity of 10-28 e-cm, the SNS nEDM collaboration minimizes magnetic shield gradients and magnetic noise with a superconducting lead shield and several shield layers that include using a Metglas layer as a primary component. Metglas is a thin ribbon of proprietary engineered alloy that comes in many varieties. One alloy with high (as cast) permeability is Metglas alloy 2705M, which is primarily composed of Cobalt. However, this alloy will activate under neutron radiation and is therefore unsuitable. However, another high-performance Metglas alloy, 2826 MB, contains only trace amounts of Cobalt. A study of the shielding characteristics of the two alloys was performed, paying close attention to field oscillation frequency and magnitude.

  8. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  9. Bonding theory for metals and alloys

    CERN Document Server

    Wang, Frederick E

    2005-01-01

    Bonding Theory for Metals and Alloys exhorts the potential existence of covalent bonding in metals and alloys. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. The physical phenomena of metals and alloys covered in this book are: Miscibility Gap between two liquid metals; Phase Equilibrium Diagrams; Phenomenon of Melting. Superconductivity; Nitinol; A Metal-Alloy with Memory; Mechanical Properties; Liquid Metal Embrittlement; Superplasticity; Corrosion; The author introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. This new approach not only explains the many observations made on the phenomenon of superconductivity but also makes predictions that ha...

  10. A lightweight shape-memory magnesium alloy.

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  11. Wetting behavior of alternative solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  12. Recrystallization of Al-Sc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Drits, M.E.; Toropova, L.S.; Bykov, Yu.G.; Ber, L.B.

    Scandium effect on the temperature range of aluminium recrystallization was investigated. Al-Sc alloys were studied under cold rolled and hot pressed conditions. It is found that the temperature range of Al-Sc alloy recrystallization depends on ScAl/sub 3/ particle dispersion during recrystallization heats. During heating in quenched alloys at 200-300 deg C decomposition occurs which prevents recrystallization, In the alloys with scandium contents less 0.2% decomposition and recrystallization processes pass simultaneously. In quenched alloys with scandium contents over 0.2% and in aged alloys the initiation and subsequent development of recrystallization are determined by the processes of coalescence and solution of ScAl/sub 3/ phase particles.

  13. Biocorrosion study of titanium-nickel alloys.

    Science.gov (United States)

    Chern Lin, J H; Lo, S J; Ju, C P

    1996-02-01

    The present study provides results of the corrosion behaviour in Hank's physiological solution and some other properties of three Ti-Ni alloys with 18, 25 and 28.4 wt% Ni, respectively. Results indicate that alpha-titanium and Ti2Ni were the two major phases in all three Ti-Ni alloys. The relative amount of the Ti2Ni phase increased with additional Ni content. Hardness of the Ti-Ni alloys also increased with added nickel content, ranging from 310 to 390 VHN, similar to the hardness of enamel. Melting temperatures of the Ti-Ni alloys were all lower than that of pure titanium by least 600 degrees C. The three Ti-Ni alloys behaved almost identically when potentiodynamically polarized in Hank's solution at 37 degrees C. The critical anodic current densities of the alloys were nearly 30 microA/cm2 and the breakdown potentials were all above 1100 mV (SCE).

  14. Kinetics and Structure of Refractory Compounds and AlloysObtained by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Refractory compounds are material with interesting properties for structural applications. However, the processing of such material is a great challenge because of their high melting temperature and limited ductility. Mechanical alloying is a novel technique of producing refractory compounds with specific properties. Kinetical and structural peculiarities of refractory compounds and alloys obtained by mechanical alloying are discussed.

  15. Spark alloying of VK8 and T15K6 hard alloys

    Science.gov (United States)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  16. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    Science.gov (United States)

    2006-01-01

    effect from alloying additions of Nb, Mo, V, Cr and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the...that transition metal Nb achieves the best strengthening effect in Fe-Ga alloys. The solid solution strengthening follows a trend from larger to

  17. Pressure effect on crystallization temperature in Zr70Pd30 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jeppesen, S; Saida, J.

    2004-01-01

    -to-icosahedral quasicrystalline and (2) icosahedral quasicrystalline-to-intermetallic Zr2 + xPd alloy. The intermetallic alloy has a tetragonal structure with lattice parameters, a = 3.310(1) Å and c = 10.974(1) Å, and a space group of I4/mmm. External pressure enhances the onset temperatures for the formation......The pressure effect on amorphous-to-quasicrystalline-to-intermetallic phase transformations in a Zr70Pd30 metallic glass has been investigated by in situ x-ray diffraction measurements using synchrotron radiation. It is found that the glass crystallizes in two steps: (1) amorphous...... of quasicrystalline phase and intermetallic compound with rates of 11±3 and 9±4 K/GPa, respectively, while the temperature interval for the stability of quasicrystals remains almost unchanged in the pressure range of 0–3 GPa. External pressure does not affect the phase-selection sequence. The enhancement of the onset...

  18. High toughness-high strength iron alloy

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  19. The Fatigue of Powder Metallurgy Alloys.

    Science.gov (United States)

    2014-09-26

    v1o -2- MATERIALS AND TESTS Table 1 provides a complete listing of the alloys studied in this program together with their chemical compositions ...use can minimize material waste and minimize machining costs. In addition there is the potential for the development of more fine-grained and...out under fully reversed loading conditions in the high cycle range with smooth specimens. X7090 and X7091 are P/M alloys, 7075 is an ingot alloy

  20. Aspects of precipitation in alloy Inconel 718

    OpenAIRE

    Azadian, Saied

    2004-01-01

    A study was made of the microstructure of the Ni-base alloy Inconel 718 with emphasis on the precipitation and stability of intermetallic phases as affected by heat treatments. In addition the effect of the precipitation on selected mechanical properties namely hardness, creep notch sensitivity and hot ductlity were investigated. The materials studied were a spray-formed version and three wrought versions of the alloy. The spray-formed version of the alloy was of interest since it exhibited a...

  1. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  2. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  3. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  4. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  5. Cobalt-Base Alloy Gun Barrel Study

    Science.gov (United States)

    2014-07-01

    are presented in Section 5. 2. Materials and methods The composition of the cobalt -base alloy (CBA) is presented in Table 1. The production of this... Cobalt -Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt -Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials

  6. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    Rolling, Acta Materiala (08 2014) Zhe Wang , John H Perepezko, David Larson, David Reinhard. Mixing Behaviors in Cu/Ni and Ni/V Multilayers Induced...by Cold Rolling, Journal of Alloys and Compounds (07 2014) Zhe Wang , John H. Perepezko. Deformation-Induced Nanoscale Mixing Reactions in Cu/Ni...FTE Equivalent: Total Number: Discipline Zhe Wang 0.50 0.50 1 Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students

  7. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  8. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  9. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  10. Ultralow-fatigue shape memory alloy films

    National Research Council Canada - National Science Library

    Chluba, C; Ge, W; Lima de Miranda, R; Strobel, J; Kienle, L; Quandt, E; Wuttig, M

    2015-01-01

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning...

  11. Design, Selection and Application of High Efficient Complex Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are di scussed. The designed complex alloys containing calcium, barium, magne sium, strontium, rare earth elements, etc. should not only be able to deoxidize, desulphurize and refine liquid steel, but also alloy it. Th e application principles of alloys are as follows: using Si-Mn or Si-M n-Al alloys for pre-deoxidizing, Si-Al-Ba or Si-Al-Ca-Ba alloys for fi nal deoxidizing and Si-Ca-Ba-Mg(Sr) alloys for refining.

  12. Nanodispersed boriding of titanium alloy

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-12-01

    Full Text Available The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemo-thermal treatment. Aim: The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. Results: It is established that boriding of paste compounds allows obtaining the surface hardness within 30...29 GPa and with declining to 27...26 GPa in layer to the transition zone (with total thickness up to 110 μm owing to changes of the layer phase composition where Ti2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30...110 µm and transition zone (30...190 µm. Conclusions: Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2...3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening.

  13. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  14. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  15. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    Directory of Open Access Journals (Sweden)

    Bi-Cheng Zhou

    2015-12-01

    Full Text Available Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp Mg calculated from first-principles calculations based on density functional theory (DFT by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1].

  16. The Properties of 7xxx Series Alloys Formed by Alloying Additions

    Directory of Open Access Journals (Sweden)

    Kwak Z.

    2015-06-01

    Full Text Available Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking.

  17. Influence of alloy ingredients on mechanical properties of ternary boride hard alloy clad materials

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-tian; SONG Shi-xue; YANG Jun-ru; HUANG Wei-ling; HUANG Chuan-zhen; CHENG Xin; LI Zhao-qian

    2004-01-01

    Using Mo, B-Fe alloy and Fe powders as raw materials, and adding C, Cr and Ni ingredients, respectively, or C, Cr and Ni mixed powders, ternary boride hard alloy clad materials was prepared on Q235 steel substrate by means of in-situ reaction and vacuum liquid phase sintering technology. The influence of alloy ingredients on the mechanical properties of ternary boride hard alloy clad materials was investigated. The results indicate that a mixture of 0.8% C, 5% Cr and 2% Ni ingredients gives a ternary boride hard alloy clad material with optimal mechanical properties, such as high transverse rupture strength, high hardness and good wear resistance.

  18. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  19. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  20. Influence of mechanical alloying time on the properties of Fe3Al intermetallics prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Chengchang Jia; Qing He; Jie Meng; Lina Guo

    2007-01-01

    The Fe3Al-based intermetallics were prepared by mechanical alloying and spark plasma sintering (SPS), and the influence of milling time on the properties of materials was investigated. The phase identification was investigated by X-ray, and the surface morphology and fractography were observed by scanning electron microscope (SEM). The mechanical properties such as bending strength, strain, and microhardness were tested. The results show that Fe reacts with Al completely to form Fe3Al during short SPS processing time. The relative densities of the sintered samples were nearly 100%. The mechanical properties of the sintered samples can be improved along with the milling time. The representative values are the bend strength of 1327 MPa and the microhardness of 434.

  1. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    Science.gov (United States)

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  2. Zirconium alloys produced by recycling zircaloy tunings

    Energy Technology Data Exchange (ETDEWEB)

    Gamba, N.S. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Carbajal-Ramos, I.A. [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina); Ulla, M.A.; Pierini, B.T. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Gennari, F.C., E-mail: gennari@cab.cnea.gov.ar [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2013-11-25

    Highlights: •Zr–Ti alloys were successfully produced by two-step procedure. •Zircaloy tunings were used as a valuable source of Zr. •Zircaloy tunings and Ti powders was milled under hydrogen to produce hydride powders. •Hydride powders were decomposed by heating at 900 °C to synthesize the Zr-based alloy. •The procedure could be extended to the production of other Zr-based alloys. -- Abstract: Zircaloy chips were recycled to successfully produce Zr–Ti alloys with bcc structure and different compositions. The procedure developed involves two steps. First, the reactive mechanical alloying (RMA) of the zircaloy tunings and Ti powders was performed to produce metal hydride powders, with a high refinement of the microstructure and a Zr–Ti homogeneous composition. Second, the metal hydride powders were thermally decomposed by heating up to 900 °C to synthesize the Zr-based alloy with a selected composition. The change in the nature of the powders from ductile to brittle during milling avoids both cold working phenomena between the metals and the use of a control agent. A minimum milling time is necessary to produce the solid solution with the selected composition. The microstructure and structure of the final alloys obtained was studied. The present procedure could be extended to the production of Zr-based alloys with the addition of other metals different from Ti.

  3. Measurement of oxide adherence to PFM alloys.

    Science.gov (United States)

    Mackert, J R; Parry, E E; Hashinger, D T; Fairhurst, C W

    1984-11-01

    A method has been reported for evaluating adherence of an oxide to its substrate metal to a maximum value of about 40 MPa. Oxidized alloy plates were cemented between two aluminum cylinders with a high-strength cyanoacrylate cement and loaded in tension until failure occurred either at the oxide/metal interface, within the oxide layer, or in the cement itself. Significant differences were found among the oxide adherence values obtained from different PFM alloys. The oxides formed on five of the alloys exhibited adherence strengths in excess of the published value for cohesive strength of dental opaque porcelain, indicating that they possess sufficient adherence to act as the transition zone between the porcelain and the alloy. In addition, a correspondence was found between the quality of porcelain bond for a given alloy and its oxide adherence strength. These results remove the principal objection to the oxide-layer theory of porcelain bonding in dental alloy systems and emphasize the importance of oxide adherence in the establishment of a bond. It is therefore suggested that future work devoted to porcelain-metal bonding should seek to elucidate the mechanism of oxide adherence to PFM alloys and explore the development of new alloys which form adherent oxides.

  4. Progress in High-Entropy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  5. STRUCTURE OF LIQUID CESIUM LEAD ALLOYS

    NARCIS (Netherlands)

    PRICE, DL; SABOUNGI, ML; DEWIJS, GA; VANDERLUGT, W

    1993-01-01

    Neutron diffraction measurements have been made on liquid Cs-Pb alloys at the Intense Pulsed Neutron Source. Equiatomic CsPb has been shown in previous work to be a Zintl alloy with well-defined Cs4Pb4 structural units, explaining the anomalously high electrical resistivity and specific heat observe

  6. Castable nickel aluminide alloys for structural applications

    Science.gov (United States)

    Liu, Chain T.

    1992-01-01

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.

  7. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  8. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  9. Ti-Pt Alloys form mechanical milling

    CSIR Research Space (South Africa)

    Nxumalo, S

    2009-12-01

    Full Text Available orthorhombic structure at a temperature of approximately 1000oC. The martensite phase results in shape memory effect being observed in this alloy at this temperature. Other alloys such as TiNi and TiPd have also been investigated for the martensitic...

  10. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  11. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available analysed by menas of X-ray diffraction (XRD), optical and scanning electron microscopy (SEM). It was found that when alloying with Fe-rich mixtures, the thin surface layers contained a number of cracks in the heat affected zones (HAZ). Alloying with Ni...

  12. Trends of Chinese RE Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Ⅰ . Status of Chinese RE Hydrogen Storage Alloys 1. R εt D of RE Hydrogen Storage Alloys in China AB5 hydrogen storage materials, taking rare earth mischmetals as raw materials, developed rapidly in China in recent years. Today, different countries attach importance to the development and application of the new environmental protection reproducible power sources.

  13. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  14. Electroplating Zn-Al Alloy Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of controlling separating anode and separating power source was used to perform orthogonal optimization for the parameters in electroplating Zn-Al alloy.The electroplating Zn-Al alloy technology was decided, in which the content of Al is about 12%-15%.

  15. Thermally activated martensite formation in ferrous alloys

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    Magnetometry was applied to investigate the formation of α/α´martensite in 13ferrous alloys during immersion in boiling nitrogen and during re-heating to room temperature at controlled heating rates in the range 0.0083-0.83 K s-1. Data showsthat in 3 of the alloys, those that form {5 5 7}γ...

  16. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  17. [Use of titanium alloys for medical instruments].

    Science.gov (United States)

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  18. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  19. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    N Eswara Prasad; A A Gokhale; P Rama Rao

    2003-02-01

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has been developed of the microstructure-based micromechanisms of strengthening, of fatigue and fracture as well as of anisotropy in mechanical properties. However, these alloys have not yet greatly displaced the conventionally used denser Al alloys on account of their poorer ductility, fracture toughness and low cycle fatigue resistance. This review aims to summarise the work pertaining to study of structure and mechanical properties with a view to indicate the directions that have been and can be pursued to overcome property limitations.

  20. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  1. Rapidly solidified ferromagnetic shape memory alloys

    Science.gov (United States)

    Craciunescu, C. M.; Ercuta, A.; Mitelea, I.; Valeanu, M.; Teodorescu, V. S.; Lupu, N.; Chiriac, H.

    2008-05-01

    Ferromagnetic shape memory alloys have been manufactured by various techniques involving rapid solidification. Bulk alloys have been obtained by extracting the melted alloy in especially designed copper molds; glass coated wires have been obtained by drawing the melt from glass recipients followed by water cooling and ribbons have been fabricated by melt-spinning. Microstructural observations show particular solidification aspects of fractured areas, while ferromagnetic behavior has been detected in glass coated wires obtained by rapid solidification. The martensitic microstructure was observed on Co-Ni-Ga rapid solidified bulk alloys and Fe-Pd ribbons. The memory effect was detected using a Vibran system that allows the detection of the phase transition for the ribbons and by visual observation for other specimens. The conclusions of the observations are related to the comparison between the ferromagnetic behaviors of shape memory alloys solidified using different techniques.

  2. Long - range foundry Al composite alloys

    Directory of Open Access Journals (Sweden)

    A. D. Mekhtiev

    2014-10-01

    Full Text Available The technology of obtaining nanostructural composite aluminum alloys consists in the plasma injection of refractory nanometric particles with simultaneous two-plane magnetic dynamic mixing of the melt. Particularly important in obtaining composite aluminum matrix alloys is the provision of the introduced particles wettability with the matrix melt for forming stable adhesive bonds. Nanostructured powder components can be considered not only to be a starting product for producing nanostructural composite aluminum alloys but as an independent commerce product. Nanostructural composite metal matrix alloys make one of the most prospective structural materials of the future, and liquid-phase technologies of their obtaining are the most competitive in producing products of nanostructural composite aluminum alloys in the industrial scale.

  3. Concepts in surface alloying of metals

    Directory of Open Access Journals (Sweden)

    Santosh S. Hosmani

    2013-03-01

    Full Text Available Surface alloying is widely used method in industries to improve the surface properties of metals/alloys. Significance of the various surface engineering techniques to improve the properties of engineering components in various applications, for example, automobile industries, has grown substantially over the many years. The current paper is focused on the fundamental scientific aspects of the surface alloying of metals. Widely used surface alloying elements involved are interstitial elements such as nitrogen, carbon, and substitutional element, chromium. This topic is interdisciplinary in nature and various science and engineering streams can work together for the further development in this topic. This paper has attempted to cover the essential concepts of surface alloying along with some of the interesting results in this research area.

  4. Superior hydrogen storage in high entropy alloys

    Science.gov (United States)

    Sahlberg, Martin; Karlsson, Dennis; Zlotea, Claudia; Jansson, Ulf

    2016-11-01

    Metal hydrides (MHx) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements. In this study we demonstrate, for the first time to the best of our knowledge, that a high entropy alloy of TiVZrNbHf can absorb much higher amounts of hydrogen than its constituents and reach an H/M ratio of 2.5. We propose that the large hydrogen-storage capacity is due to the lattice strain in the alloy that makes it favourable to absorb hydrogen in both tetrahedral and octahedral interstitial sites. This observation suggests that high entropy alloys have future potential for use as hydrogen storage materials.

  5. Superconductivity in Metals and Alloys

    Science.gov (United States)

    1963-02-01

    sintered material (Reed, Gatos , LaFleur, and Roddy, 1962). It has great importance for any materials work, since generalizations based only on stoichio...1961),Phys. Rev. Letters 6, 597. Goodman, B. B., (1962) IBM J. Research and Development 6, 63. Gor’kov, L. P., (1960), Soy . Phys. JETP 10, 998...34Superconductivity in Metals and Alloys-Technical Documentary Report No. ASD-TDR-62-269, Contract No. AF 33(616)-640 5. Reed, T. B., Gatos , H. C., LaFleur, W. j

  6. REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Z.Yaug; J.P.Li; J.X.Zhang; G.W.Lorimer; J.Robson

    2008-01-01

    The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study arc listed in the final section.

  7. Phase transformations during sintering of mechanically alloyed TiPt

    CSIR Research Space (South Africa)

    Nxumalo, S

    2010-10-01

    Full Text Available A TiPt alloy was produced by mechanically alloying the desired quantities of titanium and platinum. The resultant TiPt alloy powder was cold pressed to produce green bodies. Several sintering conditions were used to sinter this alloy...

  8. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  9. Nucleation promotion of Sn-Ag-Cu lead-free solder alloys via micro alloying

    Science.gov (United States)

    Mao, Jie

    Sn-Ag-Cu (SAC) alloy system is widely accepted as a viable Pb-free alternative to Sn-Pb alloys for microelectronics packaging applications. Compared with its Pb-containing predecessor SAC alloys tend to have coarse grain structure, which is believed to be caused by high undercooling prior to nucleation. This work explores the possibility of modifying the nucleation process and reducing the undercooling of SAC alloys via introducing minor alloying elements. The mechanisms through which effective alloying elements influenced the nucleation process of SAC alloys are investigated with microstructural and chemical analyses. Minor alloying elements (Mn and Zn) are found promoting beta-Sn nucleation and reducing the undercooling of SAC. Manganese promotes beta-Sn primary phase nucleation through the formation of MnSn2 intermetallic compound. Experimental results in this work support the claim by previous researchers that zinc promotes beta-Sn primary phase nucleation through the formation of zinc oxide. In addition to nucleation, this work also assesses the microstructural impact of minor elements on Sn-Ag-Cu based alloys. Methods have been developed to quantify and compare microstructural impacts of minor elements and efficiently study their partitioning behaviors. LA-ICPMS was introduced to SAC alloy application to efficiently study partitioning behaviors of minor elements.

  10. Photonic crystal digital alloys and their band structure properties.

    Science.gov (United States)

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  11. An Alternate to Cobalt-Base Hardfacing Alloys

    Science.gov (United States)

    Hickl, Anthony J.

    1980-03-01

    The price of cobalt has risen dramatically in the last few years, and supply has often been uncertain. The most popular hardfacing alloys contain substantial amounts of cobalt, and have thus been especially affected by these factors. The present study has developed a new hardfacing alloy, HAYNES Alloy No. 716, with lower cobalt content, to replace the most popular alloy, HAYNES STELLITE Alloy No. 6 which is cobalt based. The alloy design which led to the development of the new alloy is discussed, and properties are compared with Alloy No. 6. Hardness at room temperature and elevated temperatures, weldability, and corrosion and abrasion resistance of the new alloy compare favorably with Alloy No. 6.

  12. Environmentally Assisted Cracking of Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  13. Abridgment of nano and micro length scale mechanical properties of novel Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn alloys using object oriented finite element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ankur [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826 (United States); Kumar, Vinod [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India); Nair, Jitin [Department of Materials and Metallurgical Engineering, National Institute of Foundry and Forge Technology, Ranchi 834003 (India); Bansal, Ankit [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Tata Steel Ltd., Jamshedpur, Jharkhand 831001 (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2015-06-15

    Highlights: • Dual phase (α + β) Mg–9Li–7Al–1Sn (LAT971) and Mg–9Li–5Al–3Sn–1Zn (LATZ9531) alloys. • Effective elastic modulus estimated from finite element method (FEM). • Correlation of nanoscale mechanical data with microstress distribution. • Precipitates of Mg–Al–Li act as stress relaxer and Mg–Li–Sn as stress concentrator. • Higher local heterogeneous stress distribution (∼0.6–5.7 GPa) in LATZ9531 alloys. - Abstract: In the recent years, magnesium–lithium (Mg–Li) alloys have attracted considerable attention/interest due to their high strength-to-density ratio and damping characteristic; and have found potential use in structural and biomedical applications. Here the mechanical behavior of novel Mg–9 wt.% Li–7 wt.% Al–1 wt.% Sn (LAT971) and Mg–9 wt.% Li–5 wt.% Al–3 wt.% Sn–1 wt.% Zn (LATZ9531) alloys is reported. Both, as cast and thermomechanically processed alloys have been studied which possess dual phase microstructure. Nanoindentation data have been utilized to envisage the elastic modulus of alloy via various micromechanics models (such as rule of mixtures, Voigt–Reuss, Cox model, Halpin–Tsai and Guth model) in order to estimate the elastic modulus. Object oriented finite element modeling (FEM) has been performed to predict stress distribution under tensile and compressive strain state. Close match between Halpin–Tsai model and FEM results show the abridgment of nano length scale property to evolution of microscopic stress distribution in novel LAT971 and LATZ9531 Mg–Li–Al based alloys.

  14. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  15. Indium Helps Strengthen Al/Cu/Li Alloy

    Science.gov (United States)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  16. Thermal aging effects in refractory metal alloys

    Science.gov (United States)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  17. Aeronautical requirements for Inconel 718 alloy

    Science.gov (United States)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  18. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatiana, E-mail: kobzarevatanya@mail.ru; Budovskikh, Evgeniy, E-mail: budovskih-ea@physics.sibsiu.ru; Baschenko, Lyudmila, E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, 42, Kirov Str., Novokuznetsk, 654007 (Russian Federation); Ivanov, Yuryi, E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, 4, Akademicheskii Av. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 30, Lenina Av. Tomsk, 634034 (Russian Federation)

    2016-01-15

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  19. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Science.gov (United States)

    Gromov, Victor; Kobzareva, Tatiana; Ivanov, Yuryi; Budovskikh, Evgeniy; Baschenko, Lyudmila

    2016-01-01

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  20. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  1. Fabrication of high strength conductivity submicroncrystalline Cu-5 % Cr alloy by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cu-5%Cr alloy bulk material with submicron grains were fabricated by mechanical alloying and subsequanthot hydrostatic extruaion. The micrestructure, mechanical properties and electrical conductivity of the alloy were experimentally investigated, and the influence of the extrusion temperature on its microstructure and properties was made clear.Also, the strengthening mechanism of the alloy was diacussed. It was revealed that the microstructure of the alloy is veryfine, with an average grain size being about 100 ~ 120nm, and thus possesses significant fine-grain strengthening effect,leading to very high mechanical strength of 800 ~ 1 000 MPa. Meanwhile, the alloy also possesses quite good electricalconductivity and moderate tensile elongation, with the former in the range of 55% ~ 70%(IACS) and the latter about5 % respectively.

  2. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Science.gov (United States)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  3. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  4. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  5. Electroplated solder alloys for flip chip interconnections

    Science.gov (United States)

    Annala, P.; Kaitila, J.; Salonen, J.

    1997-01-01

    Flip chip mounting of bare dice is gaining widespread use in microelectronics packaging. The main drivers for this technology are high packaging density, improved performance at high frequency, low parasitic effects and potentially high reliability and low cost. Many companies have made significant efforts to develop a technology for bump processing, bare die testing and underfill encapsulation to gain the benefit of all potential advantages. We have focussed on low cost bumping of fully processed silicon wafers to develop a flexible scheme for various reflow requirements. The bumping process is based on galvanic plating from an alloy solution or, alternatively, from several elemental plating baths. Sputtered Mo/Cu or Cr/Cu is used as a wettable base for electroplating. Excess base metal is removed by using the bumps as an etching mask. Variation of the alloy composition or the layer structure, allows the adjustment of the bump reflow temperature for the specific requirements of the assembly. Using binary tin-lead and ternary tin-lead-bismuth alloys, reflow temperatures from 100 °C (bismuth rich alloys) to above 300 °C (lead rich alloys) can be covered. The influence of the plating current density on the final alloy composition has been established by ion beam analysis of the plated layers and a series of reflow experiments. To control the plating uniformity and the alloy composition, a new cup plating system has been built with a random flow pattern and continuous adjustment of the current density. A well-controlled reflow of the bumps has been achieved in hot glycerol up to the eutectic point of tin-lead alloys. For high temperature alloys, high molecular weight organic liquids have been used. A tensile pull strength of 20 g per bump and resistance of 5 mΩ per bump have been measured for typical eutectic tin-lead bumps of 100 μm in diameter.

  6. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  7. Comparison of Lost Foam Casting of AM60B Alloy and A356 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval; Nedkova, Teodora [Kaiser Aluminum

    2007-01-01

    The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings in order to compare the difference in castability between magnesium alloys and aluminum alloy using the lost foam casting process. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  8. Combustion synthesis of bulk nanocrystalline iron alloys

    OpenAIRE

    Licai Fu; Jun Yang; Weimin Liu

    2016-01-01

    The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on...

  9. Graded coatings for metallic implant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  10. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  11. Thermodynamics and Structure of Plutonium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  12. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  13. Electrochemical behaviour of passive zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patrito, E.M.; Torresi, R.M.; Leiva, E.P.M.; Macagno, V.A. (Universidad Nacional de Cordoba (Argentina). Inst. de Investigaciones en Fisicoquimica de Cordoba)

    1991-02-01

    The potentiodynamic oxidation of zirconium, zircaloy-2 (Zry-2) and zircaloy-4 (Zry-4) was studied in the O V{<=}V{<=}8 V potential range. Side reactions take place during the oxidation of Zry-2 and Zry-4 in phosphate electrolytes. With Zry-2, oxygen evolution occurs at high anodic potentials. The oxidation of the alloys in nitric acid shows dissolution of their minor alloying elements but no oxygen evolution at high potentials. The role played by the alloying elements in connection with the appearance of side reactions is discussed. The oxide film were characterized by impedance measurements, X-ray photoelectron spectroscopy and Auger spectroscopy. (author).

  14. Corrosion behavior of magnesium and magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    I.M.Baghni; WU Yin-shun(吴荫顺); LI Jiu-qing(李久青); ZHANG Wei(张巍)

    2004-01-01

    The automotive industry has crossed the threshold from using magnesium alloys in interior applications such as instrument panels and steering wheels to unprotected environment such as oil pan, cylinder head and wheels. The expanding territory of magnesium leads to new challenges: mainly environmental degradation of the alloys used and how they can be protected. The present critical review is aimed at understanding the corrosion behavior of magnesium and magnesium alloys in industrial and marine environments, and the effect of microstructure, additive elements and inhibitors on the corrosion mechanism.

  15. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  16. New alloys to conserve critical elements

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  17. Medical applications of shape memory alloys

    Directory of Open Access Journals (Sweden)

    Machado L.G.

    2003-01-01

    Full Text Available Shape memory alloys (SMA are materials that have the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. Pseudoelastic and shape memory effects are some of the behaviors presented by these alloys. The unique properties concerning these alloys have encouraged many investigators to look for applications of SMA in different fields of human knowledge. The purpose of this review article is to present a brief discussion of the thermomechanical behavior of SMA and to describe their most promising applications in the biomedical area. These include cardiovascular and orthopedic uses, and surgical instruments.

  18. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  19. Superelastic effect in polycrystalline ferrous alloys.

    Science.gov (United States)

    Omori, T; Ando, K; Okano, M; Xu, X; Tanaka, Y; Ohnuma, I; Kainuma, R; Ishida, K

    2011-07-01

    In superelastic alloys, large deformation can revert to a memorized shape after removing the stress. However, the stress increases with increasing temperature, which limits the practical use over a wide temperature range. Polycrystalline Fe-Mn-Al-Ni shape memory alloys show a small temperature dependence of the superelastic stress because of a small transformation entropy change brought about by a magnetic contribution to the Gibbs energies. For one alloy composition, the superelastic stress varies by 0.53 megapascal/°C over a temperature range from -196 to 240°C.

  20. Wear resistance of alloy вт-22 with non-ferrous alloys at reverse

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2010-01-01

    Full Text Available  The article presents the results of tests of non hardened titanium alloy ВТ-22 with aviation non-ferrous alloys in reverse sliding friction. The main objective of the work is the selection of the optimum combination of materials depending on changes in loading conditions. Study of alloy ВТ-22 wear resistance was carried out in pairs with БрОФ-10-1, БрБ2, БрАЖ-9-4, ВТ-22, МЛ5, Д16Т, 7Х21ГАН5Ш and 95Х18Ш. The dependencies of the materials wear at pressures 10, 20 and 30 Mpa we determined. The linear nature of titanium alloy wear curves indicates that the change in the wear mechanism occurs gradually. The histograms of non-ferrous materials wear and the total wear of the friction pair are presented. It is established that the bronze БрАЖ-9-4 is the most preferable material for contact with non hardened titanium alloy ВТ-22, the least wear among the tested materials. The established coefficients of the titanium alloy ВТ-22 friction in pair with aviation structural non-ferrous alloys are presented. The results of research will be relevant for the engineering industry, where non hardened titanium alloy ВТ-22 in pair with non-ferrous alloys is applied.