Localization from near-source quasi-static electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Mosher, John Compton [Univ. of Southern California, Los Angeles, CA (United States)
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
Quasi-Static Electric Field Generator
Generazio, Edward R. (Inventor)
2017-01-01
A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.
The Quasi-Static Electromagnetic Approximation for Weakly Conducting Media
Heubrandtner, T
2002-01-01
In a conducting dielectric charge and electric field decay with a time constant tau_R = \\varepsilon/\\sigma. In a weakly conducting medium, as e.g. glass or melamine-phenolic laminate in use in RPC's, this time is about 10^{-3} s; so it is long as compared to the time the charge cloud needs to move through the gap and to the time the signal needs to propagate through a dielectric to the electrode. A quasi-static theory to deal with transient phenomena in weakly conducting media has been developed in Haus and Melcher (1989), Fano, Chu and Adler (1963); it simplifies the analysis considerably since it requires only the solution of a scalar diffusion-type equations in place of the time-dependent Maxwell equations. This little known theory is applied to treat the generation of signals in simple models for chambers with such materials.
Electromagnetic angular momentum in quasi-static conditions
Jiménez, J. L.; Campos, I.; E Roa-Neri, J. A.
2017-07-01
The correct definition of electromagnetic momentum in matter, either Abraham’s g A = (1/4πc) (E × H), or Minkowski’s g M = (1/4πc) (D × B) has been a theme of controversy for a century. Therefore, we can find those who favor one or the other of these proposals. We present here an alternative view, considering that both of the aforementioned equations are equivalent since they pertain to different balance equations derived from the macroscopic Maxwell equations. This is done through their application to a device proposed by Lai in 1980, and recovering his results. Advanced undergraduate and graduate students can find in this work an introduction to a controversial issue and an alternative point of view about it.
Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981
Directory of Open Access Journals (Sweden)
M. Gousheva
2009-01-01
Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.
Quasi-static electric field in a cylindrical volume conductor induced by external coils.
Esselle, K P; Stuchly, M A
1994-02-01
An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.
Measurement of quasi-static and low frequency electric fields on the Viking satellite
International Nuclear Information System (INIS)
Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.
1987-03-01
The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)
Quasi-static crack tip fields in rate-sensitive FCC single crystals
Indian Academy of Sciences (India)
In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip ﬁelds in a FCC single crystal are studied. ... Global General Motors R&D, India Science Lab, GM Technical Centre (India), Bangalore 560 066, India; Department of Mechanical Engineering, Indian Institute of Science, ...
Directory of Open Access Journals (Sweden)
V. I. Ovchinnikov
2007-01-01
Full Text Available The paper is devoted to the development of measuring device to register dynamic processes of electromagnetic irradiation during the treatment of materials with energy of explosion. Standard units to register main parameters of the explosion do not allow predict and control results of the process. So, to overcome disadvantages of former control units a new one has been developed applying Hall’s sensors. The device developed allows effectively register of the inductive component of the electromagnetic irradiation in wide range of temperature for many shot-time processes.
Pun, S H; Gao, Y M; Mou, P A; Mak, P U; Vai, M I; Du, M
2010-01-01
Intra-body communication (IBC) is a new, emerging, short-range and human body based communication methodology. It is a technique to network various devices on human body, by utilizing the conducting properties of human tissues. For currently fast developed Body area network(BAN)/Body sensor network(BSN), IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, the authors propose an improved mathematical model, which includes both electrical properties and proportion of human tissues, for IBC on a human limb. By solving the mathematical model analytically on four-layer system (skin, fat, muscle, and bone) and conducting in-vivo experiment, a comparison has been conducted.
Solving the quasi-static field model of the pulse-line accelerator; relationship to a circuit model
International Nuclear Information System (INIS)
Friedman, Alex
2005-01-01
The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an ion beam at high line charge density. A recent note by R. J. Briggs suggests that a 'sheath helix' model of such a system can be solved numerically in the quasi-static limit. Such a model captures the correct macroscopic behavior from first principles without the need to time-advance the full Maxwell equations on a grid. This note describes numerical methods that may be used to effect such a solution, and their connection to the circuit model that was described in an earlier note by the author. Fine detail of the fields in the vicinity of the helix wires is not obtained by this approach, but for purposes of beam dynamics simulation such detail is not generally needed
Quasi-static electric fields, turbulence and VLF waves in the ionosphere and magnetosphere
International Nuclear Information System (INIS)
Temerin, M.A.
1978-01-01
Two rocket payloads launched from Greenland in December 1974 and January 1975 into the dayside auroral oval measured large scale electric fields. Sunward convection in regions of polar cusp type particle precipitation argues for the existence of a turbulent entry region at the magnetopause. Smaller scale changes in the electric field and energetic electron precipitation require field-aligned currents predominately at the boundaries of auroral arcs. Measurements of electric fields parallel to the magnetic field place upper limits to the parallel electric field. An analysis of the effect of zero-frequency electric field turbulence on the output of an electric field double probe detector is applied to data from two satellites, OVI-17 and S3-3. It is found that the electric field of high latitude low frequency turbulence is polarized perpendicular to the magnetic field and that the frequency is measured by the satellites is due to the Doppler shift of near zero frequency turbulence both in the ionosphere and magnetosphere. In addition, rocket measurements of low frequency turbulence in the dayside auroral oval reveal characteristics similar to those of the large electric field regions recently seen on S3-3 indicating that the turbulence from those regions extends into the ionosphere. VLF waves were also observed during the two rocket flights into the dayside auroral oval. The correlation of the VLF hiss intensity with the fluxes of precipitating electrons above 500 eV on a short spatial and time scale is often poor, even when a positive slope exists in the electron phase space density. The frequency of the lower hybrid waves were used to measure the ratio of NO + and O 2 + to O + . Electrostatic waves were observed during a barium release
Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
Czech Academy of Sciences Publication Activity Database
Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.
2015-01-01
Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015
Directory of Open Access Journals (Sweden)
Min Du
2012-11-01
Full Text Available Intra-Body Communication (IBC, which modulates ionic currents over the human body as the communication medium, offers a low power and reliable signal transmission method for information exchange across the body. This paper first briefly reviews the quasi-static electromagnetic (EM field modeling for a galvanic-type IBC human limb operating below 1 MHz and obtains the corresponding transfer function with correction factor using minimum mean square error (MMSE technique. Then, the IBC channel characteristics are studied through the comparison between theoretical calculations via this transfer function and experimental measurements in both frequency domain and time domain. High pass characteristics are obtained in the channel gain analysis versus different transmission distances. In addition, harmonic distortions are analyzed in both baseband and passband transmissions for square input waves. The experimental results are consistent with the calculation results from the transfer function with correction factor. Furthermore, we also explore both theoretical and simulation results for the bit-error-rate (BER performance of several common modulation schemes in the IBC system with a carrier frequency of 500 kHz. It is found that the theoretical results are in good agreement with the simulation results.
Directory of Open Access Journals (Sweden)
CHETAN VASUDEVA
2017-10-01
Full Text Available Researchers have always shown keen interest in predetermining the electromagnetic field behavior inside an electrical machine at the design stage. Material properties of permanent magnet, selection of optimum air gap during the electromagnetic, thermal and structural design of generator are considered to be vital factors for an ideal machine. Generator output, heat rise, weight, and cost are a few of the characteristics which are directly influenced by the selection of the most advantageous material properties. Moreover, most theoretical studies have been conducted assuming that the air gap flux is sinusoidally distributed. The actual conduct of the air gap flux with the length of air gap and its impression on the performance of the generator has not been analyzed so far. In this paper, field analysis of permanent magnet generator using finite element method has been carried out to show the best material properties and air gap for optimum pattern.
International Nuclear Information System (INIS)
Knudsen, D.J.; Kelley, M.C.; Earle, G.D.; Vickrey, J.F.; Boehm, M.
1990-01-01
The authors present and analyze sounding rocket and HILAT satellite measurements of the low frequency ( 0 in the auroral oval. By examining the time-domain field data it is often difficult to distinguish temporal fluctuations from static structures which are Doppler shifted to a non-zero frequency in the spacecraft frame. However, they show that such a distinction can be made by constructing the impedance function Z(f). Using Z(f) they find agreement with the static field interpretation below about 0.1 Hz in the spacecraft frame, i.e. Z(f) = Σ p -1 where Σ p is the height-integrated Pedersen conductivity of the ionosphere. About 0.1 Hz the authors find Z(f) > Σ p -1 , which they argue to be due to the presence of Alfven waves incident from the magnetosphere and reflecting from the lower ionosphere, forming a standing wave pattern. These waves may represent an electromagnetic coupling mechanism between the auroral acceleration region and the ionosphere
International Nuclear Information System (INIS)
Vemareddy, P.; Wiegelmann, T.
2014-01-01
We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology and is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.
Mechanics of quasi-static crack growth
Energy Technology Data Exchange (ETDEWEB)
Rice, J R
1978-10-01
Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.
Quasi-static Multilayer Electrical Modeling of Human Limb for IBC
Directory of Open Access Journals (Sweden)
S. H. Pun
2011-06-01
Full Text Available Home health care system and long term physiologic parameters monitoring system are important for elevating the living quality of chronic disease patients and elderly. Elaborating towards a sophisticated and comprehensive home health care system, Intra-Body Communication (IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, we start from quasi-static Maxwell
Quasi-static acoustic tweezing thromboelastometry.
Holt, R G; Luo, D; Gruver, N; Khismatullin, D B
2017-07-01
Essentials Blood coagulation measurement during contact with an artificial surface leads to unreliable data. Acoustic tweezing thromboelastometry is a novel non-contact method for coagulation monitoring. This method detects differences in the blood coagulation state within 10 min. Coagulation data were obtained using a much smaller sample volume (4 μL) than currently used. Background Thromboelastography is widely used as a tool to assess the coagulation status of critical care patients. It allows observation of changes in material properties of whole blood, beginning with early stages of clot formation and ending with clot lysis. However, the contact activation of the coagulation cascade at surfaces of thromboelastographic systems leads to inherent variability and unreliability in predicting bleeding or thrombosis risks. Objectives To develop acoustic tweezing thromboelastometry as a non-contact method for perioperative assessment of blood coagulation. Methods Acoustic tweezing is used to levitate microliter drops of biopolymer and human blood samples. By quasi-statically changing the acoustic pressure we control the sample drop location and deformation. Sample size, deformation and location are determined by digital imaging at each pressure. Results Simple Newtonian liquid solutions maintain a constant, reversible location vs. deformation curve. In contrast, the location/deformation curves for gelatin, alginate, whole blood and blood plasma uniquely change as the samples solidify. Increasing elasticity causes the sample to deform less, leading to steeper stress/strain curves. By extracting a linear regime slope, we show that whole blood or blood plasma exhibits a unique slope profile as it begins to clot. By exposing blood samples to pro- or antithrombotic agents, the slope profile changes, allowing detection of hyper- or hypocoagulable states. Conclusions We demonstrate that quasi-static acoustic tweezing can yield information about clotting onset, maturation
Biomagnetic localization from transient quasi-static events
Energy Technology Data Exchange (ETDEWEB)
Mosher, J.C.; Leahy, R.M.; Lewis, P.S. [Los Alamos National Lab., NM (United States)]|[University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.
1993-02-01
Sensory stimuli, such as auditory, visual, or somatosensory, evoke neural responses in very localized regions of the brain. A SQUID biomagnetometer can measure the very weak fields that are generated outside of the head by this response. A simple source and head model of current dipoles inside a conducting sphere is typically used to interpret these magnetic field measurements or magnetoencephalogram (MEG). Locating dipole sources using data recorded from an array of biomagnetic sensors is distinguished from conventional array source localization techniques by the quasi-static transient nature of the data. Here, the basic MEG model is reviewed, then a localization example is given to motivate the need for partitioning the data to improve estimator performance. Tune-eigenspectrum analysis is introduced as a means of partitioning and interpreting spatio-temporal biomagnetic data. Examples using both simulated and somatosensory data are presented.
Biomagnetic localization from transient quasi-static events
Energy Technology Data Exchange (ETDEWEB)
Mosher, J.C.; Leahy, R.M.; Lewis, P.S. (Los Alamos National Lab., NM (United States) University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.)
1993-01-01
Sensory stimuli, such as auditory, visual, or somatosensory, evoke neural responses in very localized regions of the brain. A SQUID biomagnetometer can measure the very weak fields that are generated outside of the head by this response. A simple source and head model of current dipoles inside a conducting sphere is typically used to interpret these magnetic field measurements or magnetoencephalogram (MEG). Locating dipole sources using data recorded from an array of biomagnetic sensors is distinguished from conventional array source localization techniques by the quasi-static transient nature of the data. Here, the basic MEG model is reviewed, then a localization example is given to motivate the need for partitioning the data to improve estimator performance. Tune-eigenspectrum analysis is introduced as a means of partitioning and interpreting spatio-temporal biomagnetic data. Examples using both simulated and somatosensory data are presented.
Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.
Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka
2013-09-07
The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.
Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system
International Nuclear Information System (INIS)
Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka
2013-01-01
The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance. (note)
Covariant electromagnetic field lines
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Quasi-static structural optimization under the seismic loads
International Nuclear Information System (INIS)
Choi, W. S.; Lee, K. M.; Kim, T. W.
2001-01-01
For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method
Pregnancy and electromagnetic fields
International Nuclear Information System (INIS)
Bisseriex, Ch.; Laurent, P.; Cabaret, Ph.; Bonnet, C.; Marteau, E.; Le Berre, G.; Tirlemont, S.; Castro, H.; Becker, A.; Demaret, Ph.; Donati, M.; Ganem, Y.; Moureaux, P.
2011-07-01
This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields
Electromagnetic fields and their impacts
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
Implementation of the quasi-static method for neutron transport
International Nuclear Information System (INIS)
Alcaro, Fabio; Dulla, Sandra; Ravetto, Piero; Le Tellier, Romain; Suteau, Christophe
2011-01-01
The study of the dynamic behavior of next generation nuclear reactors is a fundamental aspect for safety and reliability assessments. Despite the growing performances of modern computers, the full solution of the neutron Boltzmann equation in the time domain is still an impracticable task, thus several approximate dynamic models have been proposed for the simulation of nuclear reactor transients; the quasi-static method represents the standard tool currently adopted for the space-time solution of neutron transport problems. All the practical applications of this method that have been proposed contain a major limit, consisting in the use of isotropic quantities, such as scalar fluxes and isotropic external neutron sources, being the only data structures available in most deterministic transport codes. The loss of the angular information produces both inaccuracies in the solution of the kinetic model and the inconsistency of the quasi-static method itself. The present paper is devoted to the implementation of a consistent quasi-static method. The computational platform developed by CEA in Cadarache has been used for the creation of a kinetic package to be coupled with the existing SNATCH solver, a discrete-ordinate multi-dimensional neutron transport solver, employed for the solution of the steady-state Boltzmann equation. The work aims at highlighting the effects of the angular treatment of the neutron flux on the transient analysis, comparing the results with those produced by the previous implementations of the quasi-static method. (author)
Neutron kinetics of fluid-fuel systems by the quasi-static method
International Nuclear Information System (INIS)
Dulla, S.; Ravetto, P.; Rostagno, M.M.
2004-01-01
The quasi-static method for the neutron kinetics of nuclear reactors is generalized for application to neutron multiplying systems fueled by a fluid multiplying material, typically a mixture of fissile molten salts. The method is derived by the application of factorization formulae for both the neutron density and the delayed precursor concentrations and the projection of the balance equations upon a weighting function. A physically meaningful weight can be assumed as the solution of the adjoint model, which is constructed for the situation considered, including delayed neutrons. The quasi-static scheme is then applied to calculations of some transients for a typical configuration of a molten-salt reactor, in a multigroup diffusion model with a one-dimensional slug-flow velocity field. The physical features associated to the motion of the fissile material are highlighted
Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
Electromagnetic fields in biological systems
National Research Council Canada - National Science Library
Lin, James C
2012-01-01
"Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...
Improved quasi-static nodal green's function method
International Nuclear Information System (INIS)
Li Junli; Jing Xingqing; Hu Dapu
1997-01-01
Improved Quasi-Static Green's Function Method (IQS/NGFM) is presented, as an new kinetic method. To solve the three-dimensional transient problem, improved Quasi-Static Method is adopted to deal with the temporal problem, which will increase the time step as long as possible so as to decrease the number of times of space calculation. The time step of IQS/NGFM can be increased to 5∼10 times longer than that of Full Implicit Differential Method. In spatial calculation, the NGFM is used to get the distribution of shape function, and it's spatial mesh can be nearly 20 times larger than that of Definite Differential Method. So the IQS/NGFM is considered as an efficient kinetic method
A Planar Quasi-Static Constraint Mode Tire Model
2015-07-10
strikes a balance between simple tire models that lack the fidelity to make accurate chassis load predictions and computationally intensive models that...strikes a balance between heuristic tire models (such as a linear point-follower) that lack the fidelity to make accurate chassis load predictions...UNCLASSIFIED: Distribution Statement A. Cleared for public release A PLANAR QUASI-STATIC CONSTRAINT MODE TIRE MODEL Rui Maa John B. Ferris
Convergence of the Quasi-static Antenna Design Algorithm
2013-04-01
was the first antenna design with quasi-static methods. In electrostatics, a perfect conductor is the same as an equipotential surface . A line of...which can cause the equipotential surface to terminate on the disk or feed wire. This requires an additional step in the solution process; the... equipotential surface is sampled to verify that the charge is enclosed by the equipotential surface . The final solution must be verified with a detailed
Low frequency electromagnetic field sensor
International Nuclear Information System (INIS)
Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun
2000-01-01
The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz
Electromagnetic Fields in Reverberant Environments
Vogt-Ardatjew, Robert Andrzej
2017-01-01
The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical
Electromagnetic fields and life
Presman, A S
1970-01-01
A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also all most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...
Nonstationary random acoustic and electromagnetic fields as wave diffusion processes
International Nuclear Information System (INIS)
Arnaut, L R
2007-01-01
We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It o-hat and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases
Modeling Quasi-Static and Fatigue-Driven Delamination Migration
De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.
2014-01-01
An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.
Electromagnetic fields and cancer
International Nuclear Information System (INIS)
Singh, Neeta; Mathur, R.; Behari, J.
1997-01-01
Several studies in recent years have raised the possibility that exposure to electromagnetic fields (EMFs) may be hazardous to human health, in particular by promotion or initiation of cancer. Recent reports have indicated increased cancer risk from industrial and domestic exposure to environmental ELF fields and to RF fields that are amplitude modulated at ELF. EMF fields have been reported to affect biological systems in various ways, affecting changes in the morphology and or functional behavior of cells, which have been observed in a variety of tissues. Although the mechanism of interaction of EMFs with living cells are not known, it has been proposed that they have multiple effects and can affect cell signalling, including modification of plasma membrane permeability and ion transport. Our findings suggest that EMFs can affect post translational modification of proteins such as poly ADP-ribosylation by epigenetic mechanism and that the effect of EMFs are highly specific regarding both the cell type and the frequency and amplification of the applied field. (author)
Hot accreting white dwarfs in the quasi-static approximation
International Nuclear Information System (INIS)
Iben, I. Jr.
1982-01-01
Properties of white dwarfs which are accreting hydrogen-rich matter at rates in the range 1.5 x 10 -9 to 2.5 x 10 -7 M/sub sun/ yr -1 are investigated in several approximations. Steady-burning models, in which matter is processed through nuclear-burning shells as rapidly as it is accreted, provide a framework for understanding the properties of models in which thermal pulses induced by hydrogen burning and helium burning are allowed to occur. In these latter models, the underlying carbon-oxygen core is chosen to be in a cycle-averaged steady state with regard to compressional heating and neutrino losses. Several of these models are evolved in the quasi-static approximation. Combining results obtained in the steady-burning approximation with those obtained in the quasi-static approximation, expressions are obtained for estimating, as functions of accretion rate and white dwarf mass, the thermal pulse recurrence period and the duration of hydrogen-burning phases. The time spent by an accreting model burning hydrogen as a large star of giant dimensions versus time spent burning hydrogen as a hot dwarf is also estimated as a function of model mass and accretion rate. Finally, suggestions for detecting observational counterparts of the theoretical models and suggestions for further theoretical investigations are offered. Subject headings: stars: accretion: stars: interiors: stars: novae: stars: symbiotic: stars: white dwarfs
Quasi-static responses and variational principles in gradient plasticity
Nguyen, Quoc-Son
2016-12-01
Gradient models have been much discussed in the literature for the study of time-dependent or time-independent processes such as visco-plasticity, plasticity and damage. This paper is devoted to the theory of Standard Gradient Plasticity at small strain. A general and consistent mathematical description available for common time-independent behaviours is presented. Our attention is focussed on the derivation of general results such as the description of the governing equations for the global response and the derivation of related variational principles in terms of the energy and the dissipation potentials. It is shown that the quasi-static response under a loading path is a solution of an evolution variational inequality as in classical plasticity. The rate problem and the rate minimum principle are revisited. A time-discretization by the implicit scheme of the evolution equation leads to the increment problem. An increment of the response associated with a load increment is a solution of a variational inequality and satisfies also a minimum principle if the energy potential is convex. The increment minimum principle deals with stables solutions of the variational inequality. Some numerical methods are discussed in view of the numerical simulation of the quasi-static response.
A Minimum Leakage Quasi-Static RAM Bitcell
Directory of Open Access Journals (Sweden)
Adam Teman
2011-05-01
Full Text Available As SRAMs continue to grow and comprise larger percentages of the area and power consumption in advanced systems, the need to minimize static currents becomes essential. This brief presents a novel 9T Quasi-Static RAM Bitcell that provides aggressive leakage reduction and high write margins. The quasi-static operation method of this cell, based on internal feedback and leakage ratios, minimizes static power while maintaining sufficient, albeit depleted, noise margins. This paper presents the concept of the novel cell, and discusses the stability of the cell under hold, read and write operations. The cell was implemented in a low-power 40 nm TSMC process, showing as much as a 12× reduction in leakage current at typical conditions, as compared to a standard 6T or 8T bitcell at the same supply voltage. The implemented cell showed full functionality under global and local process variations at nominal and low voltages, as low as 300 mV.
Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.
Energy Technology Data Exchange (ETDEWEB)
Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-12-01
A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.
A quasi-static treatment of multiple phase jumps
International Nuclear Information System (INIS)
Englman, R; Vertesi, T
2005-01-01
A quasi-static, WKB-type treatment accounts well for the surprising phase jumps that are odd multiples of π (1 + 2n)π, found as a molecular system journeys adiabatically in a configuration coordinate plane that contains several points of degeneracies. We show that the number n in the phase jump is an integer close to |n'| that appears in the expression for the complex wavefunction amplitude valid (approximately) for times close to when the phase jump occurs: -δT + 2πθ+πn'sinδT -i[1-πn'cosδT](δT is a shifted and rescaled trajectory-time parameter and θ is a numerical fraction (<1) which depends on the adiabaticity of the motion.) The central quantity n' is local, i.e., depends on the values of the parameters in the Hamiltonian only at the beginning of the trajectory and at the instant of the phase jump
Quasi-Static Condensation of Aeroelastic Suspension Bridge Model
DEFF Research Database (Denmark)
Møller, Randi N.; Krenk, Steen; N. Svendsen, Martin
2017-01-01
For long span bridges the wind-induced dynamic response is a design driving factor and therefore continuously a subject for detailed analysis. Traditionally both buffeting and stability calculations have been considered in the frequency domain. However, this yields alimitation in accounting...... for turbulence when considering the stability limit and further it is not possible to account for non-linear effects. These limitations suggest to do simulations of the aeroelastic response of long span bridges in the time domain. For this it is of interest to have an efficient model while still maintaining...... sufficient accuracy. This contribution is on quasi-static reduction of an aeroelastic finite element model of a 3000m suspension bridge proposed for crossing Sulafjorden in Norway. The model is intended for stability limit calculation where the representation of higher modes is of less importance...
The classical electromagnetic field
Eyges, Leonard
2010-01-01
This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Ren, Peng; Guo, Zitao
Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM
2008-08-26
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Electromagnetic Fields Exposure Limits
2018-01-01
Mr. T.P. (Tjerk) KUIPERS Senior Adviser Health Physics Military Healthcare & Occupational Health Expertise Co-ordination Centre Support...Test of Biological Integrity in Dogs Exposed to an Electromagnetic Pulse Environment”, Health Physics 36:159-165, 1979. [11] Baum, S.J., Ekstrom, M.E...Electromagnetic Radiation”, Health Physics 30:161-166, 1976. [12] Baum, S., Skidmore, W. and Ekstrom, M., “Continuous Exposure of Rodents to 108 Pulses
Electromagnetic field sources in radiofrequency
International Nuclear Information System (INIS)
Oliveira, C.; Sebastiao, D.; Ladeira, D.; Antunes, M.; Correia, L.M.
2010-01-01
In the scope of the monIT Project, several measurements were made of electromagnetic fields in Portugal. This paper presents an analysis of the sources operating in the radiofrequency range, resulting from 2429 measurements in 466 locations.
Micromechanical definition of an entropy for quasi-static deformation of granular materials
Rothenburg, L.; Kruyt, Nicolaas P.
2009-01-01
A micromechanical theory is formulated for quasi-static deformation of granular materials, which is based on information theory. A reasoning is presented that leads to the definition of an information entropy that is appropriate for quasi-static deformation of granular materials. This definition is
Energy based study of quasi-static delamination as a low cycle fatigue process
Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.
2015-01-01
This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Quasi-static elastography comparison of hyaline cartilage structures
McCredie, A. J.; Stride, E.; Saffari, N.
2009-11-01
Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.
Modeling of magnetorheological fluid in quasi-static squeeze flow mode
Horak, Wojciech
2018-06-01
This work presents a new nonlinear model to describe MR fluid behavior in the squeeze flow mode. The basis for deriving the model were the principles of continuum mechanics and the theory of tensor transformation. The analyzed case concerned quasi-static squeeze with a constant area, between two parallel plates with non-slip boundary conditions. The developed model takes into account the rheological properties or MR fluids as a viscoplastic material for which yield stress increases due to compression. The model also takes into account the formation of normal force in the MR fluid as a result of the magnetic field impact. Moreover, a new parameter has been introduced which characterizes the behavior of MR fluid subjected to compression. The proposed model has been experimentally validated and the obtained results suggest that the assumptions made in the model development are reasonable, as good model compatibility with the experiments was obtained.
Moving Manifolds in Electromagnetic Fields
Directory of Open Access Journals (Sweden)
David V. Svintradze
2017-08-01
Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
Clinical importance of electromagnetic fields
International Nuclear Information System (INIS)
Ruppe, I.
1993-01-01
The clinical importance of most of the electromagnetic fields is not highly. Mostly they only have thermal effects, produced by energy-absorption. About 1 C increase of whole-body-temperature is valid for tolerable limit. For measuring is used the SAR-Value (Specific Absorption Rate) in W/kg body mass. SAR = 0,8W/kg for the whole body is valid to be safety. For the evaluation of possible other effects of electromagnetic fields the scientific knowledges are till now not sufficient to allow a final statement. That could be impacts of electromagnetic fields to conduction or switch processes in the nerves or brains, in the framwork of cellular regulations, in the genetic reactions are occurig is little, but if is necessary to find it out in scinentific investigations. (orig.) [de
Self-consistent quasi-static radial transport during the substorm growth phase
Le Contel, O.; Pellat, R.; Roux, A.
2000-06-01
We develop a self-consistent description of the slowly changing magnetic configuration of the near-Earth plasma sheet (NEPS) during substorm growth phase. This new approach is valid for quasi-static fluctuations ωcurrent. The quasi-neutrality condition (QNC) is solved via an expansion in the small parameter Te/Ti (Te/Ti is the ratio between the electronic and ionic temperatures). To the lowest order in Te/Ti, we find that the enforcement of QNC implies the presence of a global electrostatic potential which is constant for a given magnetic field line but varies across the magnetic field. The corresponding electric field shields the effect of the inductive component of the electric field, thereby producing a partial reduction of the motion that would correspond to the inductive electric field. Furthermore, we show that enforcing the QNC implies a field-aligned potential drop which is computed to the next order in Te/Ti in a companion paper [Le Contel et al., this issue]. In the present paper, we show that the direction of the azimuthal electric field varies along the field line, thus the equatorial electric field cannot be mapped onto the ionosphere. Furthermore during the growth phase, the (total) azimuthal electric field is directed eastward, close to the equator, and westward, off-equator. Thus large equatorial pitch angle particles drift tailward, whereas small pitch angle particles drift earthward.
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
David, E.
1993-01-01
In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de
Quasi-static modeling of human limb for intra-body communications with experiments.
Pun, Sio Hang; Gao, Yue Ming; Mak, PengUn; Vai, Mang I; Du, Min
2011-11-01
In recent years, the increasing number of wearable devices on human has been witnessed as a trend. These devices can serve for many purposes: personal entertainment, communication, emergency mission, health care supervision, delivery, etc. Sharing information among the devices scattered across the human body requires a body area network (BAN) and body sensor network (BSN). However, implementation of the BAN/BSN with the conventional wireless technologies cannot give optimal result. It is mainly because the high requirements of light weight, miniature, energy efficiency, security, and less electromagnetic interference greatly limit the resources available for the communication modules. The newly developed intra-body communication (IBC) can alleviate most of the mentioned problems. This technique, which employs the human body as a communication channel, could be an innovative networking method for sensors and devices on the human body. In order to encourage the research and development of the IBC, the authors are favorable to lay a better and more formal theoretical foundation on IBC. They propose a multilayer mathematical model using volume conductor theory for galvanic coupling IBC on a human limb with consideration on the inhomogeneous properties of human tissue. By introducing and checking with quasi-static approximation criteria, Maxwell's equations are decoupled and capacitance effect is included to the governing equation for further improvement. Finally, the accuracy and potential of the model are examined from both in vitro and in vivo experimental results.
Electromagnetic Fields and Cancer
... and magnetic fields (1 Hz to 100 kHz) . Health Physics 2010; 99(6):818-36. doi: 10.1097/ ... and health: review of current status of research. Health Physics 2013; 105(6):561-75. [PubMed Abstract] AGNIR. ...
What Are Electromagnetic Fields?
... field causes a compass needle to orient in a North-South direction and is used by birds and fish for navigation. Human-made sources of ... and form the basis of telecommunications as well as radio and television ... In microwaves ovens, we use them to quickly heat food. At ...
Quasi-static Design of Electrically Small Ultra-Wideband Antennas
2017-02-01
Equations. The ACD uses a constant line charge distribution and image line charge distribution (both on the -axis) to generate equipotential surfaces ...Each equipotential surface represents an ACD antenna design with a different height. In the Quasi-static Antenna Design Algorithm [2, 3, 4, 5, 6...quasi- static approximation used in the algorithm. A static charge distribution is used to generate equipotential surfaces . The equipotential surfaces
Forces in electromagnetic field and gravitational field
Weng, Zihua
2008-01-01
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...
Electromagnetic Fields and Public Health: Mobile Phones
... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ...
A System for Electromagnetic Field Conversion
DEFF Research Database (Denmark)
2003-01-01
A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.
2018-04-01
In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.
Particle physics in intense electromagnetic fields
International Nuclear Information System (INIS)
Kurilin, A.V.
1999-01-01
The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed
Quasi-static puncture resistance behaviors of high-strength polyester fabric for soft body armor
Directory of Open Access Journals (Sweden)
Qiu-Shi Wang
Full Text Available A series of economical and flexible fabrics were prepared using high-strength polyester yarns with different fabric structures, weft density and number of layers. The effect of these factors on quasi-static puncture resistance was comparatively studied. The failure mode of the fabrics was analyzed with SEM photographs. Findings indicate that the structure and the weft density affected the quasi-static puncture resistance property of the fabrics, the plain fabrics had better puncture resistance property than twill and satin fabrics. The max puncture force and puncture energy of the plain fabrics with 160 yarn/10 cm reached the max values which were 107.43 N and 0.44 J, respectively. The number of layers had a linear relationship to quasi-static puncture resistance. The contact pressure and friction of the probe against the fibers were the main hindrance during the quasi-static puncture process and the breakage of the fibers during the penetration was caused by the bend and tensile deformation. Keywords: High-strength polyester fabrics, Fabric structure, Multiple-layer fabrics, Quasi-static puncture resistance
Electromagnetic fields, environment and health
Perrin, Anne
2013-01-01
A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r
Numerical analysis of electromagnetic fields
Zhou Pei Bai
1993-01-01
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...
Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
Energy Technology Data Exchange (ETDEWEB)
Hoffmeister, Juergen; Schulze, Volker [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials; Hessert, Roland; Koenig, Gerhard [MTU Aero Engines, Munich (Germany)
2012-01-15
The residual stress state induced by shot peening should be taken into account in the dimensioning of turbine components. Understanding the changes in the residual stress state caused by the application of quasi-static and cyclic loads is a prerequisite. In order to describe the residual stress state after quasi-static loading, several different shot peened Inconel 718 specimens were loaded isothermally up to specific tensile loadings. To analyze the residual stress state after cyclic loading, isothermal low cycle fatigue tests were performed. These tests were stopped after a defined number of cycles. Finally, after the specimens had been subjected to different loads, the surface residual stresses and - for special loadings - the residual stress depth distributions were determined experimentally by using X-ray diffraction. The surface - core model was adapted so that the complete residual stress depth distribution after quasi-static and cyclic loading can now be described. (orig.)
Electromagnetic field effects in explosives
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
A Monte Carlo implementation of the predictor-corrector Quasi-Static method
International Nuclear Information System (INIS)
Hackemack, M. W.; Ragusa, J. C.; Griesheimer, D. P.; Pounders, J. M.
2013-01-01
The Quasi-Static method (QS) is a useful tool for solving reactor transients since it allows for larger time steps when updating neutron distributions. Because of the beneficial attributes of Monte Carlo (MC) methods (exact geometries and continuous energy treatment), it is desirable to develop a MC implementation for the QS method. In this work, the latest version of the QS method known as the Predictor-Corrector Quasi-Static method is implemented. Experiments utilizing two energy-groups provide results that show good agreement with analytical and reference solutions. The method as presented can easily be implemented in any continuous energy, arbitrary geometry, MC code. (authors)
International Nuclear Information System (INIS)
Ruffino, E.; Scalerandi, M.
2000-01-01
As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented
Electromagnetic fields in stratified media
Li, Kai
2009-01-01
Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.
Electromagnetic fields in cased borehole
International Nuclear Information System (INIS)
Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro
2001-01-01
Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring
Universal formula for quasi-static density perturbation by a magnetoplasma wave
International Nuclear Information System (INIS)
Kaufman, A.N.; Cary, J.R.; Pereira, N.R.
1979-01-01
The general expression for the ponderomotive Hamiltonian is used to obtain the quasi-static quasi-neutral density change caused by the ponderomotive force of a cold magnetoplasma wave of arbitrary frequency and polarization: deltan (x) =-[vertical-barE(x) vertical-bar 2 -vertical-barB(x) vertical-bar 2 ] /4π
Development of temperature stable charge based piezoelectric composite quasi-static pressure sensors
Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der
2010-01-01
In this work piezoelectric composite charge based sensors are developed, aimed at quasi-static pressure sensor or switch type applications. The use of piezoelectric composite materials allows for manufacturing robust devices which can easily be integrated with conventional polymer processing.
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
Gabriel, C.
1996-01-01
The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)
Medical applications of electromagnetic fields
Lai, Henry C.; Singh, Narendra P.
2010-04-01
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Medical applications of electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lai, Henry C; Singh, Narendra P, E-mail: hlai@u.washington.ed [Department of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States)
2010-04-15
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Medical applications of electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry C; Singh, Narendra P
2010-01-01
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Faults self-organized by repeated earthquakes in a quasi-static antiplane crack model
Directory of Open Access Journals (Sweden)
D. Sornette
1996-01-01
Full Text Available We study a 2D quasi-static discrete crack anti-plane model of a tectonic plate with long range elastic forces and quenched disorder. The plate is driven at its border and the load is transferred to all elements through elastic forces. This model can be considered as belonging to the class of self-organized models which may exhibit spontaneous criticality, with four additional ingredients compared to sandpile models, namely quenched disorder, boundary driving, long range forces and fast time crack rules. In this 'crack' model, as in the 'dislocation' version previously studied, we find that the occurrence of repeated earthquakes organizes the activity on well-defined fault-like structures. In contrast with the 'dislocation' model, after a transient, the time evolution becomes periodic with run-aways ending each cycle. This stems from the 'crack' stress transfer rule preventing criticality to organize in favour of cyclic behaviour. For sufficiently large disorder and weak stress drop, these large events are preceded by a complex spacetime history of foreshock activity, characterized by a Gutenberg-Richter power law distribution with universal exponent B = 1±0.05. This is similar to a power law distribution of small nucleating droplets before the nucleation of the macroscopic phase in a first-order phase transition. For large disorder and large stress drop, and for certain specific initial disorder configurations, the stress field becomes frustrated in fast time: out-of-plane deformations (thrust and normal faulting and/or a genuine dynamics must be introduced to resolve this frustration.
Genetic effects of nonionizing electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry
2001-01-01
Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)
Interactions between electromagnetic fields and matter
Steiner, Karl-Heinz
2013-01-01
Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.
Electromagnetic-gravitational conversion cross sections in external electromagnetic fields
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.
1994-09-01
The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs
Nanomechanical electric and electromagnetic field sensor
Datskos, Panagiotis George; Lavrik, Nickolay
2015-03-24
The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.
Biological effects of electromagnetic fields
African Journals Online (AJOL)
2012-02-28
Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...
The quasi-equilibrium response of MOS structures: Quasi-static factor
Okeke, M.; Balland, B.
1984-07-01
The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.
An improved technique for quasi-static C-V measurements
International Nuclear Information System (INIS)
Turan, R.; Finstad, T.G.
1990-10-01
A new automated quasi-static C-V measurement technique for MOS capacitors has been developed. This techniques uses an integrating electrometer to measure the charge accumulated on a MOS capacitor in response of a small voltage step. Making use of the internal data storage system of a commercial electrometer and a personal computer, the charge Q on the MOS capacitor is measured as a function of time t and stored. The capacitance is then obtained by analyzing this Q-t data set. A Si MOS sample is measured and analyzed in terms of interface charges as an example. Advantages over a commercial quasi-static meter which uses similar measurement technique are presented. It is also shown that this technique is potentially capable of measuring both high and low frequency C-V curves simultaneously. 9 refs. 5 figs
Triaxial quasi-static compression and creep behavior of bedded salt from southeastern New Mexico
International Nuclear Information System (INIS)
Hansen, F.D.
1979-11-01
This report summarizes the results obtained from a series of triaxial quasi-static compression and creep tests on specimens of bedded salt recovered at depth intervals of 1953 to 1954 and 2711 to 2722 feet in AEC Hole No. 7 in southeastern New Mexico. The primary objective was the determination of the deformational characteristics of the salt for prescribed stress and temperature states under quasi-static and time-dependent conditions. The test conditions encompassed confining pressures of 500 and 2000 psi, differential axial stresses of 1500, 3000 and 4500 psi, temperatures of 23 and 100 0 C, and time durations of several hours to ten days. The data analysis was confined primarily to power law fits to the creep strain-time measurements and to an evaluation of the principal strain ratio behavior for the various test conditions and axial strain magnitudes
Application of genetic algorithm in quasi-static fiber grating wavelength demodulation technology
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A modified genetic algorithm (GA) has been proposed, which was used to wavelength demodulation in quasi-static fiber grating sensing system. The modification method of GA has been introduced and the relevant mathematical model has been established. The objective function and individual fitness evaluation strategy interrelated with GA are also established. The influence of population size, chromosome size, generations, crossover probability and mutation probability on the GA has been analyzed, and the optimal parameters of modified GA have been obtained. The simulations and experiments, show that the modified GA can be applied to quasi-static fiber grating sensing system, and the wavelength demodulation precision is equal to or less than 3 pm.
Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone
Mottez, Fabrice
2016-02-01
There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.
Directory of Open Access Journals (Sweden)
José Ricardo Tarpani
2006-06-01
Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.
Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes
2016-12-30
Ropes James Chen Beam Physics Branch Plasma Physics Division December 30, 2016 Approved for public release; distribution is unlimited. i REPORT...pressure gradient force combine to balance the major radial hoop force. The macroscopic forces on the flux ropes and onset conditions are quantified...Solar physics theory 67-4989-07 Quasi-Static Evolution, Catastrophe, and “Failed” Eruption of Solar Flux Ropes James Chen1 Plasma Physics Division
ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES
International Nuclear Information System (INIS)
Willems, B.; Deloye, C. J.; Kalogera, V.
2010-01-01
We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 M sun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 M sun to 10 5 M sun . The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.
A quasi-static polynomial nodal method for nuclear reactor analysis
International Nuclear Information System (INIS)
Gehin, J.C.
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation
A quasi-static polynomial nodal method for nuclear reactor analysis
Energy Technology Data Exchange (ETDEWEB)
Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
Electromagnetic fields: the new European directive
International Nuclear Information System (INIS)
Moureaux, Patrick
2014-01-01
A European directive is specifying the thresholds for exposure to electromagnetic fields. The risk assessment approach proposed should enable worker health to be taken better into account. An overview of the new provisions. (author)
Electromagnetic field computation by network methods
Felsen, Leopold B; Russer, Peter
2009-01-01
This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.
Narrow field electromagnetic sensor system and method
International Nuclear Information System (INIS)
McEwan, T.E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs
Wireless data transmission from inside electromagnetic fields.
Huertas, José Ignacio; Barraza, Roberto; Echeverry, Julian Mauricio
2010-01-01
This paper describes analytical and experimental work developed to evaluate the effects of the electromagnetic fields produced by high-voltage lines (400 kV) on wireless data transmission at the 900MHz band. In this work the source of the data transmission is located inside the electromagnetic field and the reception station is located at different distances from the power lines. Different atmospheric conditions are considered.
Liu, Jinxing; El Sayed, Tamer S.
2013-01-01
When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice
International Nuclear Information System (INIS)
Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.
1993-01-01
Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)
International Nuclear Information System (INIS)
Gong, C.; Miller, R.F.
1995-01-01
This analysis of the plutonium oxide/metal storage containers is in support of the design and testing project The results from the dynamic analysis show some important facts that have not been considered before. The internal bagless transfer can will have higher stress than the primary container. The quasi-static analysis provides a conservative solution. In both vertical upright drop (dynamic) and inclined upside down drop (quasi-static) the containers are structurally sound
INVESTIGATION OF ELECTROMAGNETIC FIELDS IN RESIDENTIAL AREAS
Directory of Open Access Journals (Sweden)
Dušan MEDVEĎ
2017-09-01
Full Text Available This article is devoted to investigation of impact of electromagnetic fields around the electrical equipment used in a residential area and their impact on the human body. This paper was based on sets of measurements of magnetic induction B with magnetometer and on computational simulations in ANSYS for particular appliances often used in household. The results from measurements and simulations led to setting out the recommendations for practical action in the form of elimination of harmful electromagnetic radiation.
International Nuclear Information System (INIS)
2009-01-01
The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)
Electromagnetic fields in fractal continua
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)
2013-04-01
Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.
Quantum processes in an intense electromagnetic field
International Nuclear Information System (INIS)
Gitman, D.M.
1976-01-01
An approach is proposed to the consideration of processes in an external electromagnetic field which produces real pairs. Interaction with the field is taken into account precisely with the aid of solutions of the Dirac's equation. Processes of arbitrary order with respect to electron-photon interaction are considered
Research on Monte Carlo improved quasi-static method for reactor space-time dynamics
International Nuclear Information System (INIS)
Xu Qi; Wang Kan; Li Shirui; Yu Ganglin
2013-01-01
With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)
Small-Scale Quasi-Static Tests on Non-Slender Piles Situated in Sand
DEFF Research Database (Denmark)
Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo
In the period from February 2009 till March 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests the piles have been exposed to quasi-static loading and all the tests have been conducted in a pressure tank. The objective of the tests has...... been to investigate the effect of pile diameter and length to diameter ratio on the soil response in sand for non-slender piles. Further, the tests have been conducted to calibrate a three-dimensional numerical model in the commercial program FLAC3D....
A New Energy Efficiency Measure for Quasi-Static MIMO Channels
Belmega , Elena Veronica; Lasaulce , Samson; Debbah , Merouane; Hjorungnes , Are
2009-01-01
International audience; In this paper, we consider the multiple input multiple out- put (MIMO) quasi static channel. Our objective is to study the power allocation (over the transmit antennas) problem where not only the performance with respect to (w.r.t.) the transmission reliability but also the cost in terms of the consumed power is accounted for. We first review the existing results w.r.t energy effciency functions (benefit per cost) which focus mainly on the single input single output (S...
International Nuclear Information System (INIS)
Scalerandi, M; Delsanto, P P; Johnson, P A
2003-01-01
Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model
Scalerandi, M; Johnson, P A
2003-01-01
Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.
Charged particles in external electromagnetic fields
International Nuclear Information System (INIS)
Giovannini, N.P.D.
1976-01-01
The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential
Differential form representation of stochastic electromagnetic fields
Directory of Open Access Journals (Sweden)
M. Haider
2017-09-01
Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Differential form representation of stochastic electromagnetic fields
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Liu, Jinxing
2013-04-24
When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice, the characteristic relaxation time of the lattice, both of which are infinitesimal compared with Tload, the characteristic loading period. The load-unload (L-U) method is used for one extreme, Telem << Tlattice, whereas the force-release (F-R) method is used for the other, Telem T lattice. For cases between the above two extremes, we develop a new algorithm by combining the L-U and the F-R trial displacement fields to construct the new trial field. As a result, our algorithm includes both L-U and F-R failure characteristics, which allows us to observe the influence of the ratio of Telem to Tlattice by adjusting their contributions in the trial displacement field. Therefore, the material dependence of the snap-back instabilities is implemented by introducing one snap-back parameter γ. Although in principle catastrophic failures can hardly be predicted accurately without knowing all microstructural information, effects of γ can be captured by numerical simulations conducted on samples with exactly the same microstructure but different γs. Such a same-specimen-based study shows how the lattice behaves along with the changing ratio of the L-U and F-R components. © 2013 The Author(s).
Atom collisions in a strong electromagnetic field
International Nuclear Information System (INIS)
Smirnov, V.S.; Chaplik, A.V.
1976-01-01
It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed
Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun
2017-01-01
The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649
Quasi-static Cycle Performance Analysis of Micro Modular Reactor for Heat Sink Temperature Variation
Energy Technology Data Exchange (ETDEWEB)
Cho, Seong Kuk; Lee, Jekyoung; Ahn, Yoonhan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)
2015-10-15
A Supercritical CO{sub 2} (S-CO{sub 2}) cycle has potential for high thermal efficiency in the moderate turbine inlet temperature (450 - 750 .deg. C) and achieving compact system size because of small specific volume and simple cycle layouts. Owing to small specific volume of S-CO{sub 2} and the development of heat exchanger technology, it can accomplish complete modularization of the system. The previous works focused on the cycle performance analysis for the design point only. However, the heat sink temperature can be changed depending on the ambient atmosphere condition, i.e. weather, seasonal change. This can influence the compressor inlet temperature, which alters the cycle operating condition overall. To reflect the heat sink temperature variation, a quasi-static analysis code for a simple recuperated S-CO{sub 2} Brayton cycle has been developed by the KAIST research team. Thus, cycle performance analysis is carried out with a compressor inlet temperature variation in this research. In the case of dry air-cooling system, the ambient temperature of the local surrounding can affect the compressor inlet temperature. As the compressor inlet temperature increases, thermal efficiency and generated electricity decrease. As further works, the experiment of S-CO{sub 2} integral test loop will be performed to validate in-house codes, such as KAIST{sub T}MD and the quasi-static code.
Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties
Directory of Open Access Journals (Sweden)
José Ricardo Tarpani
2006-06-01
Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.
Muyshondt, Pieter G G; Claes, Raf; Aerts, Peter; Dirckx, Joris J J
2018-01-01
The nature of the movement of the columellar footplate (CFP) in birds is still a matter of ongoing debate. Some sources claim that rocking motion is dominant, while others propose a largely piston-like motion. In this study, motions of the CFP are experimentally investigated in the ostrich using a post-mortem approach. For quasi-static loads, micro-CT scans of ostrich heads were made under positive and negative middle-ear pressures of 1 kPa. For dynamic loads, laser Doppler vibrometry was used to measure the velocity on multiple locations of the CFP as a function of excitation frequency from 0.125 to 4 kHz, and digital stroboscopic holography was used to assess the 1D full-field out-of-plane displacement of the CFP at different excitation frequencies. To expose the CFP in the experiments, measurements were made from the medial side of the CFP after opening and draining the inner ear. To determine the influence of the inner-ear load on CFP motions, a finite element model was created of the intact ostrich middle ear with inner-ear load included. For quasi-static loads, the CFP performed largely piston-like motions under positive ME pressure, while under negative ME pressure the difference between piston and rocking motion was smaller. For dynamic loads, the CFP motion was almost completely piston-like for frequencies below 1 kHz. For higher frequencies, the motions became more complicated with an increase of the rocking components, although they never exceeded the piston component. When including the inner-ear load to the model, the rocking components started to increase relative to the piston component when compared to the result of the model with unloaded CFP, but only at high frequencies above 1 kHz. In this frequency range, the motion could no longer be identified as purely piston-like or rocking. As a conclusion, the current results suggest that CFP motion is predominantly piston-like below 1 kHz, while at higher frequencies the motion becomes too
Health protection guidelines for electromagnetic field exposures
International Nuclear Information System (INIS)
Taki, Masao
1999-01-01
In order to protect human health from excessive exposure to electromagnetic fields safety guidelines have been established by national and international organizations. The International Commission on Nonionization Radiation Protection is one of these organizations, whose guidelines are briefly regarded as typical. The activities on this issue in various countries are reviewed. Recent situations and the problems still unsolved are also discussed. (author)
Simple economical stabilizer for electromagnet field
International Nuclear Information System (INIS)
Vas'kov, O.S.; Domanevskij, D.S.; Zinkevich, Yu.V.; Soroka, E.V.; Shavel', N.N.
1988-01-01
Field stabilizer within high-power electromagnet gap at direct current up to 75 A and up to 100 V voltage in the winding is described. 15 parallel-connected KT 945A transistors, operation mode of which allows to do without radiators and forced cooling are used as controlling element of pulsed stabilizer
Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming
2017-04-13
The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.
At the heart of the waves - Electromagnetic fields in question
International Nuclear Information System (INIS)
Ndagijimana, Fabien; Gaudaire, Francois
2013-01-01
This document briefly presents a book in which the author describes what an electromagnetic wave is, the use of electromagnetic waves, how an information is transmitted by means of an electromagnetic wave, what wave modulation is, what multiplexing is, what the characteristics of an antenna are, how waves propagate, how electromagnetic shielding works, what the CEM (electromagnetic compatibility) is, and how a cellular phone network works, in the framework of electromagnetic fields risk assessment
Electromagnetic fields in an expanding universe
International Nuclear Information System (INIS)
Hogan, P.A.; Ellis, G.F.R.
1989-01-01
The asymptotic form of the electromagnetic field due to a bounded distribution of charge current in an open, expanding Friedmann--Lemaitre--Robertson--Walker universe is studied. The technique used is to first describe a mechanism for passing from a solution of Maxwell's vacuum field equations on Minkowskian space-time to a solution of Maxwell's field equations in a region free of charge current on the cosmological background. This is tested on the field of an accelerating point charge and then applied to the rigorous treatment of the asymptotic electromagnetic field of a bounded charge-current distribution in Minkowskian space-time given by Goldberg and Kerr [J. Math. Phys. 5, 172 (1964)]. A ''peeling expansion'' of the electromagnetic field in the expanding universe is obtained in inverse powers of a parameter that is proportional to the area distance along the generators of future null cones with vertices on the world line of a fundamental observer. The algebraic character of the two leading coefficients in the expansion is the same as that of the two leading coefficients in the Goldberg--Kerr expansion in Minkowskian space-time. In addition, bounds can be calculated, at any instant in the history of a fundamental observer, on all the coefficients in the peeling expansion, as a consequence of the evaluation of such bounds by Goldberg and Kerr in the case treated by them
Liu, J. X.; Deng, S. C.; Liang, N. G.
2008-02-01
Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.
Energy Technology Data Exchange (ETDEWEB)
Jovanovic, S M [Nikola Tesla Inst., Belgrade (YU)
1990-01-01
This paper presents a model and an appropriate numerical procedure for a four-level time decomposition quasi-static power flow and successive disturbances analysis of power systems. The analysis consists of the sequential computation of the zero, primary, secondary and tertiary quasi-static states and of the estimation of successive structural disturbances during the 1200 s dynamics after a structural disturbance. The model is developed by detailed inspection of the time decomposition characteristics of automatic protection and control devices. Adequate speed of the numerical procedure is attained by a specific application of the inversion matrix lemma and the decoupled model constant coefficient matrices. The four-level time decomposition quasi-static method is intended for security and emergency analysis. (author).
Electromagnetic fields - introduction to relevant issues
International Nuclear Information System (INIS)
Brueggemeyer, H.; Csicsaky, M.
1993-01-01
This introductory paper surveys potential sources of electric magnetic, and electro-magnetic fields. Various cases are discussed to exemplify the total frequency range: nuclear magnetic resonance tomography, high-voltage transmission lines, transformer stations, effect lighting balls, military transmitters, transmitter towers of the Postal Services and other operators, mobile radiotelephone equipment, large broadcasting transmitters, radar radiation, high-frequency heat therapy. There is evidence suggesting that electric, magnetic and electro-magnetic fields may possibly represent a certain nuisance or health hazard even at field strength occuring in equipment used for every-day-life purposes, with an emphasis on their possible actions and effects in children and adolescents. The author discusses, in conclusion, the aerial equipment ordinance issued by Lower Saxony. (Uhe) [de
Radiofrequency Electromagnetic Field Map of Timisoara
Stefu, N.; Solyom, I.; Arama, A.
2015-12-01
There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.
Ionization in a quantized electromagnetic field
International Nuclear Information System (INIS)
Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.
2007-01-01
An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field
PROBABILISTIC APPROACH OF STABILIZED ELECTROMAGNETIC FIELD EFFECTS
Directory of Open Access Journals (Sweden)
FELEA. I.
2017-09-01
Full Text Available The effects of the omnipresence of the electromagnetic field are certain and recognized. Assessing as accurately as possible these effects, which characterize random phenomena require the use of statistical-probabilistic calculation. This paper aims at assessing the probability of exceeding the admissible values of the characteristic sizes of the electromagnetic field - magnetic induction and electric field strength. The first part justifies the need for concern and specifies how to approach it. The mathematical model of approach and treatment is presented in the second part of the paper and the results obtained with reference to 14 power stations are synthesized in the third part. In the last part, are formulated the conclusions of the evaluations.
Coherent polarization driven by external electromagnetic fields
International Nuclear Information System (INIS)
Apostol, M.; Ganciu, M.
2010-01-01
The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.
Calibration and uncertainty in electromagnetic fields measuring methods
International Nuclear Information System (INIS)
Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.
1999-01-01
Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it
Topology optimization of nanoparticles for localized electromagnetic field enhancement
DEFF Research Database (Denmark)
Christiansen, Rasmus Ellebæk; Vester-Petersen, Joakim; Madsen, Søren Peder
2017-01-01
We consider the design of individual and periodic arrangements of metal or semiconductor nanoparticles for localized electromagnetic field enhancement utilizing a topology optimization based numerical framework as the design tool. We aim at maximizing a function of the electromagnetic field...
International Nuclear Information System (INIS)
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-01-01
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Electromagnetic field induced biological effects in humans.
Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J
2015-01-01
Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF
Cooling and quasi-static contraction of the primitive solar nebula after gas accretion
International Nuclear Information System (INIS)
Watanabe, Seichiro; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi
1990-01-01
The evolution of the primitive solar nebula in the quasi-static contraction phase where the nebula cools down toward the thermal steady state is studied. The solar irradiation onto the nebula keeps the surface temperature constant, so that the convective ozone retreats from the surface as the nebula cools. Thus if thermal convection is the only source of turbulence, convection will quiet down in an early time of the cooling. Afterward, the nebula evolves toward an isothermal structure in a time scale of 1000 yr. The cooling rates in the vicinity of the midplate at 1 AU are 0.003 K/hr at T(c) = 1000 K and 3 x 10 to the -5th K/hr at T(c) = 300 K for the standard model. If some turbulence exists irrespective of convection, convection may continue for sufficiently strong turbulent heating. 39 refs
Levitation force of melt-textured YBCO superconductors under non-quasi-static situation
Zhao, Z. M.; Xu, J. M.; Yuan, X. Y.; Zhang, C. P.
2018-06-01
The superconducting levitation force of a simple superconductor-magnet system under non-quasi-static situation is investigated experimentally. Two yttrium barium copper oxide (YBCO) samples with different performances are chosen from two small batches of samples prepared by the top-seeded melt-textured growth process. The residual carbon content of the precursor powders of the two batches is different due to different heat treatment processes. During the experimental process for measuring the levitation force, the value of the relative speed between the YBCO sample and the permanent magnet is higher than that in conventional studies. The variation characteristics of the superconducting levitation force are analyzed and a crossing phenomenon in the force-displacement hysteresis curves is observed. The results indicate that the superconducting levitation force is different due to the different residual carbon contents. As residual carbon contents reduce, the crossing phenomenon is more obvious accordingly.
Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions
Energy Technology Data Exchange (ETDEWEB)
Balch, Dorian K. [Northwestern University, Evanston, IL (United States); O' Dwyer, John G. [Waterford Institute of Technology (Ireland); Davis, Graham R. [Queen Mary, University of London (United Kingdom); Cady, Carl M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gray, George T. [Los Alamos National Laboratory, Los Alamos, NM (United States); Dunand, David C. [Northwestern University, Evanston, IL (United States)]. E-mail: dunand@northwestern.edu
2005-01-25
Syntactic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres. The foams exhibited peak strengths during quasi-static compression ranging from -100 to -230 MPa, while dynamic compression loading showed a 10-30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum-matrix composite materials. X-ray tomographic investigation of the post-compression loaded foam microstructures revealed sharp differences in deformation modes, with the unalloyed-Al foam failing initially by matrix deformation, while the alloy-matrix foams failed more abruptly through the formation of sharp crush bands oriented at about 45 deg. to the compression axis. These foams displayed pronounced energy-absorbing capabilities, suggesting their potential use in packaging applications or for impact protection; proper tailoring of matrix and microsphere strengths would result in optimized syntactic foam properties.
Study of damage of graphite/epoxy composites submitted to repeated quasi-static shear loadings
International Nuclear Information System (INIS)
Khadhraoui-Lattreche, Malika
1984-01-01
Quasi static loading tests on composite materials with organic matrix allow the behaviour of the materials under repeated loadings to be studied while avoiding viscoelastic effects. In this research thesis, the author reports the study of one-directional composite samples submitted to static pure shear loadings which represent the most severe stress state for this type of material. The material behaviour has been determined by application of loads greater than the yield strength, and of zero torque unloads. This allowed cumulative residual deformations to be monitored, and the increasing evolution of this parameter to be studied with respect to the number of applied cycles. The author deduces from these results a characteristic law for the material which introduces a decoupling between the stress and the cumulative residual deformation. Thus, a method of prediction of cumulative residual deformations is developed. Besides, a brief application to another material seems to confirm this type of law, and suggests that its generalisation should be studied [fr
Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment
Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.
2018-04-01
The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.
Zhao, Yun-Jin; Tian, Meng; Wang, Xiao-Yun; Yang, Hong; Zhao, Heping; Huang, Yong-Gang
2018-01-22
We provide numerical demonstrations of the applicability and accuracy of the quasi-static method and the finite-element method in the investigation of the modifications of the spontaneous emission rate and the energy level shift of an emitter placed near a silver-air interface or a silver nano-sphere. The analytical results are presented as a reference. Our calculations show that the finite element method is an accurate and general method. For frequency away from the radiative mode, the quasi-static method can be applied more effectively for calculating the energy level shift than the spontaneous emission rate. But for frequency around, there is a blue shift for both and this shift increases with the increasing of emitter-silver distance. Applying the theory to the nanosphere dimmer, we see similar phenomenon and find extremely large modifications of the spontaneous emission rate and energy level shift. These findings are instructive in the fields of quantum light-matter interactions.
Directory of Open Access Journals (Sweden)
Marcisz J.
2017-12-01
Full Text Available Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×102 s−1 compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×103 s−1 was realized by the Split Hopkinson Pressure Bar method (SHPB. Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.
Effect of electromagnetic fields on the bacteria bioluminescent activity
International Nuclear Information System (INIS)
Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.
1995-01-01
The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs
Electromagnetic fields with vanishing scalar invariants
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2016-01-01
Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein-Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010
Electromagnetic fields with vanishing quantum corrections
Ortaggio, Marcello; Pravda, Vojtěch
2018-04-01
We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.
International Nuclear Information System (INIS)
Jmal, Hamdi; Ju, Ming Lei; Dupuis, Raphael; Aubry, Evelyne
2014-01-01
Polyurethane foam is a cellular material characterized by an interesting mechanical spectrum of properties: low density, capacity to absorb the deformation energy and low stiffness. This spectrum of properties makes polyurethane foam commonly used in many thermal, acoustic and comfort applications. Several models, such as memory, hyper-elastic and pseudo-elastic models have been developed in the literature to describe the mechanical response of polyurethane foam under quasi-static and dynamic test conditions. The main disadvantage of these models is the dependence of their parameters against the test conditions (strain rate, maximum compression level, etc). This affects the general character of their representativeness to the quasi-static and dynamic behaviours of polyurethane foam. The main goal of this article is to implement reliable mechanical model which is able to provide the quasi-static response of the polyurethane foam under different strain rates and large compressive deformation. The dimensional parameters of our model can be expressed by the product of two independent parts; the first contain only the test conditions and the second define the dimensionless and invariant parameters that characterize the foam material. The developed model has been proposed after several experimental studies allowing the apprehension of the quasi-static behaviour (through unidirectional compression tests). The polyurethane foam, under large deformations, exhibits a nonlinear elastic behaviour and viscoelastic behaviour. To assess the ability of our model to be a general representation, three industrial polyurethane foams have been considered.
A PSP-based small-signal MOSFET model for both quasi-static and nonquasi-static operations
Aarts, A.C.T.; Smit, G.D.J.; Scholten, A.J.; Klaassen, D.B.M.
2008-01-01
In this paper, a small-signal MOSFET model is described, which takes the local effects of both velocity saturation and transverse mobility reduction into account. The model is based on the PSP model and is valid for both quasi-static and nonquasi-static (NQS) operations. Recently, it has been found
Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control
DEFF Research Database (Denmark)
Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.
2015-01-01
This paper presents a quasi-static hybrid simulation performed on a single component structure. Hybrid simulation is a substructural technique, where a structure is divided into two sections: a numerical section of the main structure and a physical experiment of the remainder. In previous cases...
On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel
Abediseid, Walid; Alouini, Mohamed-Slim
2013-01-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding
High range electromagnetic fields. Experimental investigations
International Nuclear Information System (INIS)
Comino, E.; Boccardo, D.; Quaglino, A.
2001-01-01
It has been often discussed on the health effects from the electromagnetic fields, and nowadays this theme is particularly controlled and studied by the research-workers. It needs to know what is the risk connected to the exposure to the electromagnetism during a short or a long quantity of time and what are the health pathologies caused by the continue exposure. On one hand the results from epidemiological research can not still define the effect of the dose, on the other hand the legislative frame is variously fragmented and based on cautious concepts. But in this work, under the collaboration of Energy Resources Laboratory in Lausanne and the Geo resources and Territory Department in Turin University, are presented the early results on the experiments got out on high frequency (950 MHZ) in order to give a contribution to the debate between the scientific community and the public opinion [it
Energy Technology Data Exchange (ETDEWEB)
Guiguet, J.C. [Agence Nationale des Frequences (ANFR), 94 - Maisons Alfort (France); Dodinot, B.; Sadoul, N.; Blangy, H. [Centre Hospitalier Universitaire Nancy-Brabois, Clinique Cardiologique, 54 - Vandoeuvre Brabois (France); Nadi, M.; Hedjiedj, A.; Schmitt, P. [Universite Henri Poincare-Nancy, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France); Joly, L.; Dodinot, B.; Aliot, E. [Centre Hospitalier Universitaire Nancy-Brabois, Service de Cardiologie, 54 - Vandoeuvre-les-Nancy (France); Silny, J. [Aachen University (Germany); Franck, R.; Himbert, C.; Hidden-Lucet, F.; Petitot, J.C.; Fontaine, G. [Hopital Pitie-Salpetriere, Institut de Cardiologie, Service de Rythmologie, 75 - Paris (France); Souques, M.; Lambrozo, J. [Electricite de France (EDF-Gaz de France), Service des Etudes Medicales, 75 - Paris (France); Magne, I.; Bailly, J.M. [Electricite de France (EDF-Gaz de France), Div. Recherche Developpement, 77 - Moret sur Loing (France); Trigano, J.A. [Centre Hospitalier Universitaire, Hopital Nord, 13 - Marseille (France); Burais, N. [CEGELY, Ecole Centrale de Lyon, 69 - Ecully (France); Gaspard, J.Y. [Magtech, 69 - Ecully (France); Andrivet, Ph. [Societe Medtronic France, 92 - Boulogne-Billancourt (France)
2004-07-01
Presentation of electromagnetic sources constituted by various radio transmitters contributing to different radio communication services in the environment. Results of a measures campaign to assess the electromagnetic field in the close neighbourhood of various stations. Analysis by frequency domains. (author)
Low frequency electromagnetic fields and health problems
International Nuclear Information System (INIS)
Zahedi, A.; Cosic, I.
1996-01-01
Full text: Electromagnetic fields developed around the electric circuits are considered as magnetic pollution and these fields are produced wherever electric appliances or machinery are used at home as well as at workplace. Electric fields and magnetic fields around the home are produced by anything with electric current flowing through it including: the street power lines, the home wiring system, electric ovens, refrigerators, washing machines, electric clothes dryers, vacuum cleaners, television sets, video cassette recorders, toasters, light bulbs, clock radios, electric blankets, mobile phones, etc. In the workplace they would be produced by: nearby power lines, factory machinery, computers/video display units, lights, photocopiers, electrical cabling etc. As one can see, human life is strongly dependent on using-electric appliance. A large number of studies have been undertaken to find out the correlation between electromagnetic fields and health problems. The following significant results have been reported [Lerner E.J., IEEE Spectrum, 57-67, May 1984]: (a) Induction of chromosomal defects in mice spermatogenetic cells following microwave radiation in the Ghz range; (b) Changes in the calcium balance of living cats' brains exposed to microwaves modulated at extremely low frequencies; (c) Alternation of nerve and bone cells exposed to extremely low frequency fields; (d) Decreased activity of the immune cells of mice exposed to modulated microwaves; (e) Apparent increase in deformed foetuses among miniature swine exposed to intense power-line frequency fields. The mostly investigated effect is the effect of electromagnetic irradiation in particular one produced by power lines, and cancer. More than 100 epidemiological studies have been reported but no conclusive result was achieved. A number of studies with laboratory animals were also inconclusive. However, some of these experiments have shown improvements in immune system and tumour suppression when
Electromagnetic fields on a quantum scale. I.
Grimes, Dale M; Grimes, Craig A
2002-10-01
This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.
Self field electromagnetism and quantum phenomena
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2018-02-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
Child leukaemia and low frequency electromagnetic fields
International Nuclear Information System (INIS)
Clavel, J.
2009-01-01
The author discusses the possible causes of child leukaemia: exposure to natural ionizing radiation (notably radon), to pesticides, and to hydrocarbons emitted by road traffic. Some studies suggested that an inadequate reaction of the immune system to an ordinary infection could result in leukaemia. Other factors are suspected, notably extremely low frequency electromagnetic fields, the influence of which is then discussed by the author. She evokes and discusses results of different investigations on this topic which have been published since the end of the 1970's. It appears that a distance less than 50 meters from high voltage lines or the vicinity of transformation stations may double the risk of child leukaemia
The Biological Effects of Weak Electromagnetic Fields
International Nuclear Information System (INIS)
Algattawi, A.; Elshyrih, H.
2010-01-01
Many studies investigated that weak electromagnetic fields remove calcium ions bound to the membranes of living cells, making them more likely to tear,. There is an enzyme that destroys DNA this enzyme leaking through the membranes of lysosomes explains the fragmentation of DNA. This case was seen in cells exposed to mobile phone signals. When this occurs in the germ line it reduces fertility and predicts genetic damage in future generations. Although leakage of calcium ions into the cytosol (the main part of the cell) accelerates the growth, but it also promotes the growth of tumors. Leakage of calcium ions into neurons (brain cells) makes nerve impulses accounting for pain and other neurological symptoms in electro sensitive. It also reduces the signal to noise ratio of the brain making it less likely to respond. This may be partially responsible for the increased accident rate of drivers using mobile phones. More details for the molecular mechanisms to explain characteristics of electromagnetic exposure are needed, e.g. I) why weak fields are more effective than strong ones, II) why some frequencies such as 16 Hz are especially potent and III) why pulsed fields do more damage
Electromagnetic processes in strong crystalline fields
2007-01-01
We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.
The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses
Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.
2017-06-01
Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.
Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses
Directory of Open Access Journals (Sweden)
Fauzan Djamaluddin
Full Text Available AbstractFuel consumption and safety are currently key aspects in automobile design. The foam-filled thin-walled aluminium tube represents a potentially effective material for use in the automotive industry, due to its energy absorption capability and light weight. Multi-objective crashworthiness design optimization for foam-filled double cylindrical tubes is presented in this paper. The double structures are impacted by a rigid wall simulating quasi-static and dynamic loadings. The optimal parameters under consideration are the minimum peak crushing force and maximum specific energy absorption, using the non-dominated sorting genetic algorithm-II (NSGA-II technique. Radial basis functions (RBF and D-Optimal are adopted to determine the more complex crashworthiness functional objectives. The comparison is performed by finite element analysis of the impact crashworthiness characteristics in tubes under static and dynamic loads. Finally, the optimum crashworthiness performance of empty and foam-filled double tubes is investigated and compared to the traditional single foam-filled tube. The results indicate that the foam-filled double aluminium circular tube can be recommended for crashworthy structures.
Effect of Elastin Digestion on the Quasi-static Tensile Response of Medial Collateral Ligament
Henninger, Heath B.; Underwood, Clayton J.; Romney, Steven J.; Davis, Grant L.; Weiss, Jeffrey A.
2014-01-01
Elastin is a structural protein that provides resilience to biological tissues. We examined the contributions of elastin to the quasi-static tensile response of porcine medial collateral ligament through targeted disruption of the elastin network with pancreatic elastase. Elastase concentration and treatment time were varied to determine a dose response. Whereas elastin content decreased with increasing elastase concentration and treatment time, the change in peak stress after cyclic loading reached a plateau above 1 U/ml elastase and 6 hr treatment. For specimens treated with 2 U/ml elastase for 6 hr, elastin content decreased approximately 35%. Mean peak tissue strain after cyclic loading (4.8%, p≥0.300), modulus (275 MPa, p≥0.114) and hysteresis (20%, p≥0.553) were unaffected by elastase digestion, but stress decreased significantly after treatment (up to 2 MPa, p≤0.049). Elastin degradation had no effect on failure properties, but tissue lengthened under the same pre-stress. Stiffness in the linear region was unaffected by elastase digestion, suggesting that enzyme treatment did not disrupt collagen. These results demonstrate that elastin primarily functions in the toe region of the stress-strain curve, yet contributes load support in the linear region. The increase in length after elastase digestion suggests that elastin may pre-stress and stabilize collagen crimp in ligaments. PMID:23553827
Pore network modeling of drainage process in patterned porous media: a quasi-static study
Zhang, Tao
2015-04-17
This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.
Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1999-01-01
An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Tensile characterisation of the aorta across quasi-static to blast loading strain rates
Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline
2017-06-01
The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.
Quasi-static characterisation and impact testing of auxetic foam for sports safety applications
International Nuclear Information System (INIS)
Duncan, Olly; Alderson, Andrew; Foster, Leon; Senior, Terry; Allen, Tom
2016-01-01
This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo–mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress–strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ∼10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required. (paper)
The Cross-Flow Mixing Analysis of Quasi-Static Pebble Flow in Pebble Bed Reactor
International Nuclear Information System (INIS)
Fang Xiang; Liu Zhiyong; Sun Yanfei; Yang Xingtuan; Jiang Shengyao
2014-01-01
In the pebble bed reactor, large number of fuel pebbles’ movement law and moving state can affect the reactor’s design, operation and safety directly. Therefore the pebble flow, which is based on the theory of particle streaming, is one of the most important research subjects of the pebble bed reactor engineering. The in-core pebble flow is a very slow particle flow (or called quasi-static particle flow), which is very different from the usual particle motion. How to accurately describe the characteristics of in-core pebble flow is a central issue for this subject. Due to the presence of random flow, the cross-mixing phenomenon will occur inevitably. In the present paper, the mixing phenomenon of pebble flow is generalized on the basis of experiment results. The pebble flow cross-mixing probability serves as the parameter which describes both the regularity and the randomness of pebble flow. The results are provided in the form of diagrammatic presentation. (author)
Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min
2017-08-01
The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of an athermal quasi static plastic deformation in a 2D granular material
Zhang, Jie
2017-11-01
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning
2017-09-01
The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
Electromagnetic fields of rotating magnetized NUT stars
International Nuclear Information System (INIS)
Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.
2004-01-01
Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit
On absorption of low frequency electromagnetic fields
International Nuclear Information System (INIS)
Brunner, S.; Vaclavik, J.
1993-03-01
The drift kinetic equation (DKE) is used to establish a formula for power absorption of small amplitude, low frequency electromagnetic (EM) fields in a hot toroidal axisymmetric plasma. The stationary plasma is first considered. Electrons and ions are described by local Maxwellian distributions, alpha particles by a local slowing-down distribution. The fluctuating part of the distribution function for each species is then evaluated from the linearized DKE in terms of the EM fields using a perturbation method. The parameter b p =B p /B o , where B p is the poloidal component of the magnetostatic field B o , and the parameter v d /λω, where v d is the magnetic curvature drift, λ the wavelength perpendicular to B o and ω the frequency of the EM fields, are considered to be small. By integrating the resulting distribution function over velocity space, an explicit formula for the power absorbed by each species is obtained. To obtain an expression suitable for direct implementation in an ideal-MHD code, the electric field component parallel to the magnetostatic field is evaluated using the quasi-neutrality equation. (author) 4 refs
Evaluation of uncertainty in the measurement of environmental electromagnetic fields
International Nuclear Information System (INIS)
Vulevic, B.; Osmokrovic, P.
2010-01-01
With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty. (authors)
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
Open bosonic string in background electromagnetic field
International Nuclear Information System (INIS)
Nesterenko, V.V.
1987-01-01
The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found
Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field
Bethe, H. A.
1972-09-01
The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.
Static and quasi-static analysis of lobed-pumpkin balloon
Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki
The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.
Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM
Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan
2015-04-01
Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal
International Nuclear Information System (INIS)
Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.
2016-01-01
We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step
AL EMRAN ISMAIL
2010-01-01
The concerns of automotive safety have been given special attention in order to reduce human fatalities or injuries. One of the techniques to reduce collision impact or compression energy is by filling polymeric foam into metallic tubes. In this work, polyurethane foam was introduced into the steel extrusion tubes and quasi-statically compressed at constant cross-head displacement. Different tube thicknesses and foam densities were used and these parameters were related to the crashwor...
Energy Technology Data Exchange (ETDEWEB)
Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)
2016-11-15
We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.
Directory of Open Access Journals (Sweden)
Ali Reza Ghanizadeh
2018-01-01
Full Text Available New trend in design of flexible pavements is mechanistic-empirical approach. The first step for applying this method is analyzing the pavement structure for several times and computation of critical stresses and strains, which needs a fast analysis method with good accuracy. This paper aims to introduce a new rapid pavement analysis approach, which can consider the history of loading and rate effect. To this end, 1200 flexible pavement sections were analyzed, and equivalent frequencies (EF were calculated using Fast Fourier Transform (FFT method at various depths of asphalt layer. A nonlinear regression equation has been presented for determining EF at different depths of asphalt layer. For more accurate predicting of EF at low frequencies, a feed-forward Artificial Neural Network (ANN was employed, which allows accurate prediction of EF. The frequencies obtained by the proposed regression equation and ANN were compared with frequencies observed in Virginia Smart Road project, and it was found that there is a good agreement between observed and predicted frequencies. Comparison of quasi-static analysis of flexible pavements by frequencies obtained using FFT method and full dynamic analysis by 3D-Move program approves that the critical responses of pavement computed by proposed quasi-static analysis approach are comparable to critical responses computed using full dynamic analysis. Keywords: Equivalent frequency, Fast Fourier Transform (FFT, Pavement quasi-static analysis, Dynamic modulus, Artificial Neural Network (ANN
Kannan, Manigandan
The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
The improved quasi-static method vs the direct method: a case study for CANDU reactor transients
International Nuclear Information System (INIS)
Kaveh, S.; Koclas, J.; Roy, R.
1999-01-01
Among the large number of methods for the transient analysis of nuclear reactors, the improved quasi-static procedure is one of the most widely used. In recent years, substantial increase in both computer speed and memory has motivated a rethinking of the limitations of this method. The overall goal of the present work is a systematic comparison between the improved quasi-static and the direct method (mesh-centered finite difference) for realistic CANDU transient simulations. The emphasis is on the accuracy of the solutions as opposed to the computational speed. Using the computer code NDF, a typical realistic transient of CANDU reactor has been analyzed. In this transient the response of the reactor regulating system to a substantial local perturbation (sudden extraction of the five adjuster rods) has been simulated. It is shown that when updating the detector responses is of major importance, it is better to use a well-optimized direct method rather than the improved quasi-static method. (author)
Directory of Open Access Journals (Sweden)
Tao Zhang
2017-12-01
Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Electromagnetic field and mechanical stress analysis code
International Nuclear Information System (INIS)
1978-01-01
Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem
The response of nuclei to electromagnetic fields
International Nuclear Information System (INIS)
Bernstein, A.M.
1987-01-01
The purpose of these lectures is to give a general introduction to intermediate energy electromagnetic physics at the graduate student level. The aim is to convey physical insight, to attempt to explain the motivation for the measurements, what the results are, what has been understood, and what puzzles remain for the future. The author hopes to give a panorama and to convey the present sense of excitement in this very active and developing field. The topics which are treated include: elastic and quasi-elastic electron scattering, electro excitation of the Δ in nuclei, (γ,π) reactions and a brief introduction to hypernuclear production by the (γ,Κ/sup +/) reaction. Time doses not allow the coverage of many important topics such as coincidence reactions, polarization phenomena, and inelastic scattering to discrete nuclear states
Visualizing electromagnetic fields in metals by MRI
Directory of Open Access Journals (Sweden)
Chandrika Sefcikova Chandrashekar
2017-02-01
Full Text Available Based upon Maxwell’s equations, it has long been established that oscillating electromagnetic (EM fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI utilizes radiofrequency (r.f. EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels of identical size (=Δx Δy Δz. By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI results that discriminate different faces (surfaces of a metal block according to their distinct nuclear magnetic resonance (NMR chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.
The electromagnetic field equations for moving media
International Nuclear Information System (INIS)
Ivezić, T
2017-01-01
In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F ( x ) and ℳ ( x ) are presented and then these equations are written with the 4D vectors E ( x ), B ( x ), P ( x ) and M ( x ). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime (paper)
Motion of charged particles in a knotted electromagnetic field
International Nuclear Information System (INIS)
Arrayas, M; Trueba, J L
2010-01-01
In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.
Motion of charged particles in a knotted electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)
2010-06-11
In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.
Geometrization of the electromagnetic field and dark matter
International Nuclear Information System (INIS)
Pestov, I.B.
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field
The Universal C*-Algebra of the Electromagnetic Field
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2016-02-01
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
Electromagnetic field, excited by monodirected X-radiation pulse
International Nuclear Information System (INIS)
Zhemerov, A.V.; Metelkin, E.V.
1994-01-01
Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface
Feng, Bing
Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac
Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes
Othman, A.; Ismail, AE
2018-04-01
Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.
Interacting massless scalar and source-free electromagnetic fields
International Nuclear Information System (INIS)
Ayyangar, B.R.N.; Mohanty, G.
1985-01-01
The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)
Exposure to power frequency electromagnetic fields
International Nuclear Information System (INIS)
Skotte, J.
1993-01-01
The purpose was to asses personal exposure to power frequency electromagnetic fields in Denmark. Exposure to electrical and magnetic 50 Hz fields were measured with personal dosimeters in periods of 24 hours covering both occupational and residential environments. The study included both highly exposed and 'normal' exposed jobs. Measurements were carried out with dosimeters, which sample electrical and magnetic fields every 5 sec. Participants also wore the dosimeter during transportation. The dynamic range of the dosimeters was 0.01-200 μT and 0.6-10000 V/m. The highest average exposure in homes near high power lines was 2.24 μT. In most homes without nearby high power lines the average exposure was below 0.05 μT. Average values of '24-hour-dose' (μT times hours) for the generator facility, transmission line and substation workers were approximately the same as for the people living near high power lines (5 μT x hours). Electric field measurements with personal dosimeters involve several factors of uncertainty, as the body, posture, position of dosimeter etc. influence the results. The highest exposed groups were transmission line workers (GM: 44 V/m) and substation workers (GM: 23 V/m) but there were large variations (GSD: 4.7-4.8). In the work time the exposure level was the same for office workers and workers in the industry groups (GM: 12-13 V/m). In homes near high power lines (GM: 23 V/m) there was a non-significant tendency to higher exposure compared to homes without nearby high power lines. (AB) (11 refs.)
Electromagnetic field in higher-dimensional black-hole spacetimes
International Nuclear Information System (INIS)
Krtous, Pavel
2007-01-01
A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved
New foundations for applied electromagnetics the spatial structure of fields
Mikki, Said
2016-01-01
This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.
Exposure of Nurses to Electromagnetic Fields
International Nuclear Information System (INIS)
Zmyslony, M.; Mamrot, P.; Politanski, P.
2004-01-01
Devices that produce electromagnetic fields (EMF) within the range of 0-300 GHz are widely used in surgical and diagnostic procedures. As a result a large number of physicians and other groups of medical personnel may be exposed to EMF. Even if patients' exposure, sometimes quite high, is inevitable or even recommended, medical personnel should be substantially protected against EMF exposure. Evaluation of nurses' exposure to EMF was based on an analysis of EMF magnitudes in the surrounding of magnetic resonance imaging (MRI) and electrosurgical units. These two kinds of apparatus are the strongest EMF sources in health service facilities. The measurements were performed according to the norms and hygiene regulations binding in Poland. Measurements performed by the Nofer Institute of Medicine in Lodz, and data collected by the Central Database on EMF Sources were used in the analysis. The Central Database is run by the Nofer Institute of Medicine at the behest of the Chief Sanitary Inspector. The study showed that nurses' exposure to EMF emitted by MRI and electrosurgical units complies with Polish norms and hygiene regulations and can be classified as negligible or allowable. It was found that work of nurses in exposure to EMF emitted by MRI and electrosurgical units can be regarded as safe, which means that their health should not be endangered by the performed job. (author)
Electromagnetic multipole fields of neutron stars
International Nuclear Information System (INIS)
Roberts, W.J.
1979-01-01
There is now indisputable evidence that some pulsars possess space velocities so high that internal asymmetries in the dynamics of their formation are strongly implied. We develop in this paper a complete formalism for the calculation of the only such mechanism that has yet been subjected to quantitative analysis: electromagnetic recoil radiation. To make the general problem tractable without doing violence to the physics, we have made the following simplifying assumptions: (1) the magnetic induction B in athin shell enclosing the surface can be satisfactorily approximated by a sum of vacuum multipole fields; (2) the star is spherical, and all parts are in good electrical contact; (3) vertical-bar Ω X r vertical-barvery-much-less-thanc everywhere within the star; and (4) the star is surrounded by a vacuum. Our qualitative conclusions hold even if these assumptions are violated, but corrections to our quantitative results required by a relaxation of our assumptions are not easily computed.Given this simple electrodynamic model of a neutron star, we solve the following problems: (1) What electric multipoles are induced by each magnetic multipole. (2) What is the general formula for the recoil produced by the projection on the rotational axis of a net linear momentum flux produced by the rotation of any two magnetic multipoles. (3) What is the set of centered multipoles that represents the field of an arbitrary off-centered multipole. We use these general results go perform a detailed analysis of the linear momentum radiated by an off-centered dipole. We find a force larger by a factor 6 than that obtained for the special case treated in the best previous calculation. In spite of this considerable increase in the computed strengrh of the effect, we still believe it to be too weak to produce the large space velocities observed for pulsars. For the mechanism to be effective, the pulsar must be born rotating near the breakup velocity
[Dynamics of biomacromolecules in coherent electromagnetic radiation field].
Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I
2014-01-01
It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.
Overview on the standardization in the field of electromagnetic compatibility
Goldberg, Georges
1989-04-01
Standardization in the domain of electromagnetic compatibility (EMC) is discussed, with specific reference to the standards of the International Electrotechnical Commission, the Comite International Special des Perturbations Radioelectriques, and the Comite Europeen de Normalisation Electrotechnique. EMC fields considered include radiocommunications, telecommunications, biological effects, and data transmission. Standards are presented for such electromagnetic disturbances as low-frequency, high-frequency, conduction, and radiation phenomena.
Spin and intrinsic angular momentum; application to the electromagnetic field
International Nuclear Information System (INIS)
Paillere, P.
1993-05-01
Within the framework of the field theory governed by a Lagrangian, function of the tensor quantities and their covariant first derivatives, and starting with the third order intrinsic angular momentum tensor obtained from a variational principle, the intrinsic angular momentum vector of the electromagnetic field in vacuum is determined. This expression leads to spin matrices for the electromagnetic field, with unity as eigenvalue, thus allowing to bridge the gap between continuous physics and quantum physics. 6 refs
International Nuclear Information System (INIS)
Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi
2009-01-01
The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.
Energy Technology Data Exchange (ETDEWEB)
Chin, Eric Brian [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-09-01
V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.
Dobrev, Ivo; Sim, Jae Hoon; Aqtashi, Baktash; Huber, Alexander M; Linder, Thomas; Röösli, Christof
2018-01-01
Intra-operative quantification of the ossicle mobility could provide valuable feedback for the current status of the patient's conductive hearing. However, current methods for evaluation of middle ear mobility are mostly limited to the surgeon's subjective impression through manual palpation of the ossicles. This study investigates how middle ear transfer function is affected by stapes quasi-static stiffness of the ossicular chain. The stiffness of the middle ear is induced by a) using a novel fiber-optic 3-axis force sensor to quantify the quasi-static stiffness of the middle ear, and b) by artificial reduction of stapes mobility due to drying of the middle ear. Middle ear transfer function, defined as the ratio of the stapes footplate velocity versus the ear canal sound pressure, was measured with a single point LDV in two conditions. First, a controlled palpation force was applied at the stapes head in two in-plane (superior-inferior or posterior-anterior) directions, and at the incus lenticular process near the incudostapedial joint in the piston (lateral-medial) direction with a novel 3-axis PalpEar force sensor (Sensoptic, Losone, Switzerland), while the corresponding quasi-static displacement of the contact point was measured via a 3-axis micrometer stage. The palpation force was applied sequentially, step-wise in the range of 0.1-20 gF (1-200 mN). Second, measurements were repeated with various stages of stapes fixation, simulated by pre-load on the stapes head or drying of the temporal bone, and with severe ossicle immobilization, simulated by gluing of the stapes footplate. Simulated stapes fixation (forced drying of 5-15 min) severely decreases (20-30 dB) the low frequency (4 kHz) response. Stapes immobilization (gluing of the footplate) severely reduces (20-40 dB) the low and mid frequency response (force (Force-displacement measurements around the incudostapedial joint showed quasi-static stiffness in the range of 200-500 N/m for normal middle
Schwinger mechanism in electromagnetic field in de Sitter spacetime
Directory of Open Access Journals (Sweden)
Bavarsad Ehsan
2018-01-01
Full Text Available We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.
Algebraic structure of general electromagnetic fields and energy flow
International Nuclear Information System (INIS)
Hacyan, Shahen
2011-01-01
Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
International Nuclear Information System (INIS)
Caron, D.; Dulla, S.; Ravetto, P.
2016-01-01
Highlights: • The implementation of the quasi-static method in 3D nodal diffusion theory model in hexagonal-z geometry is described. • Different formulations of the quasi-static technique are discussed. • The results presented illustrate the features of the various formulations, highlighting advantages and drawbacks. • A novel adaptive procedure for the selection of the time interval between shape recalculations is presented. - Abstract: The ability to accurately model the dynamic behaviour of the neutron distribution in a nuclear system is a fundamental aspect of reactor design and safety assessment. Due to the heavy computational burden associated to the direct time inversion of the full model, the quasi-static method has become a standard approach to the numerical solution of the nuclear reactor dynamic equations on the full phase space. The present paper is opened by an introductory critical review of the basics of the quasi-static scheme for the general neutron kinetic problem. Afterwards, the implementation of the quasi-static method in the context of a three-dimensional nodal diffusion theory model in hexagonal-z geometry is described, including some peculiar aspects of the adjoint nodal equations and the explicit formulation of the quasi-static nodal equations. The presentation includes the discussion of different formulations of the quasi-static technique. The results presented illustrate the features of the various formulations, highlighting the corresponding advantages and drawbacks. An adaptive procedure for the selection of the time interval between shape recalculations is also presented, showing its usefulness in practical applications.
Geometrization of the Electromagnetic Field and Dark Matter
Pestov, I B
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...
Impact of electromagnetic field on the pathogenicity of selected ...
African Journals Online (AJOL)
Rhipicephalus decoloratus) to variable intensities of electromagnetic field for different periods of time was examined on their pathogenicity on tick. Some bacterial isolates from the macerate of tick cadavers were used in the infection of healthy engorged ...
Effect of Mobile Phone Radiofrequency Electromagnetic Fields on ...
African Journals Online (AJOL)
olayemitoyin
Summary: Since cell phones emit radiofrequency electromagnetic fields (EMFs), this study tested the hypothesis that cell phones placed ... mobile phones on autonomic modulation of the heart. ..... Electrocardiogram and Its Technology. J. Am.
Influence of storm electromagnetic field on the aircraft crew
Directory of Open Access Journals (Sweden)
Э. Г. Азнакаев
2000-12-01
Full Text Available Considered is the biophysical influence of alternative electromagnetic fields, caused by electrical discharges in atmosphere. Analyzed are conditions which may provoke inadequate actions and errors of the crew in airplane flight control
On quantization of the electromagnetic field in radiation gauge
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)
Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua
2017-11-10
As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.
Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y
2011-06-15
The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.
The Mechanical and Reaction Behavior of PTFE/Al/Fe2O3 under Impact and Quasi-Static Compression
Directory of Open Access Journals (Sweden)
Jun-yi Huang
2017-01-01
Full Text Available Quasi-static compression and drop-weight test were used to characterize the mechanical and reaction behavior of PTFE/Al/Fe2O3 composites. Two kinds of PTFE/Al/Fe2O3 composites were prepared with different mass of PTFE, and the reaction phenomenon and stress-strain curves were recorded; the residuals after reaction were analyzed by X-ray diffraction (XRD. The results showed that, under quasi-static compression condition, the strength of the materials is increased (from 37.1 Mpa to 77.2 Mpa with the increase of PTFE, and the reaction phenomenon occurred only in materials with high PTFE content. XRD analysis showed that the reaction between Al and Fe2O3 was not triggered with identical experimental conditions. In drop-weight tests, PTFE/Al/Fe2O3 specimens with low PTFE content were found to be more insensitive by high-speed photography, and a High Temperature Metal Slag Spray (HTMSS phenomenon was observed in both kinds of PTFE/Al/Fe2O3 composites, indicating the existence of thermite reaction, which was confirmed by XRD. In PTFE/Al/Fe2O3 system, the reaction between PTFE and Al precedes the reaction between Al and Fe2O3.
International Nuclear Information System (INIS)
Horrein, L.; Bouscayrol, A.; Cheng, Y.; El Fassi, M.
2015-01-01
Highlights: • Internal Combustion Engine (ICE) dynamical and static models. • Organization of ICE model using Energetic Macroscopic Representation. • Description of the distribution of the chemical, thermal and mechanical power. • Implementation of the ICE model in a global vehicle model. - Abstract: In the simulation of new vehicles, the Internal Combustion Engine (ICE) is generally modeled by a static map. This model yields the mechanical power and the fuel consumption. But some studies require the heat energy from the ICE to be considered (i.e. waste heat recovery, thermal regulation of the cabin). A dynamical multi-physical model of a diesel engine is developed to consider its heat energy. This model is organized using Energetic Macroscopic Representation (EMR) in order to be interconnected to other various models of vehicle subsystems. An experimental validation is provided. Moreover a multi-physical quasi-static model is also derived. According to different modeling aims, a comparison of the dynamical and the quasi-static model is discussed in the case of the simulation of a thermal vehicle. These multi-physical models with different simulation time consumption provide good basis for studying the effects of the thermal energy on the vehicle behaviors, including the possibilities of waste heat recovery
Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd; Merzuki, M. N. M.
2018-03-01
The response of the aluminium/carbon laminate was examined by an experimental work. The investigation on fibre metal laminate behaviour was done through an indentation test in a quasi-static loading. The hybrid laminate was fabricated by a compression moulding technique and used two types of carbon fibre orientations; plain weave and unidirectional. The plain weave orientation is dry fibre, and unidirectional orientation is prepreg type fibre. The plain weave carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy while the unidirectional carbon fibre was pressed by using a hot press machine and cured under a specific temperature and pressure. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variation of the crosshead speeds in the quasi-static loading. Based on the experimental data of the test, the result of 1 mm/min in the plain weave CFRP has lower loading than unidirectional fibre which the value of both was 4.11 kN and 4.69 kN, respectively.
Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina
2018-01-30
New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.
Yu, Ying-Song; Xia, Xue-Lian; Zheng, Xu; Huang, Xianfu; Zhou, Jin-Zhi
2017-09-01
In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.
The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039
Energy Technology Data Exchange (ETDEWEB)
Perez-Bergquist, Sara J., E-mail: sara.perezbergquist@gmail.com [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States); Gray, G.T.; Cerreta, Ellen K.; Trujillo, Carl P.; Perez-Bergquist, Alex [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States)
2011-11-15
Highlights: {yields} Aluminum alloys for use in armor applications. {yields} Mechanical response in dynamic and quasi-static regimes with temperature dependence. {yields} Shear localization with evidence of early stages of dynamic recrystallization. - Abstract: The mechanical response and microstructural evolution of aluminum alloys 5083, 5059 and 7039 was examined in compression and shear in both the quasi-static (0.001 s{sup -1}) and dynamic ({approx}2000 s{sup -1}) strain rate regimes. Electron Back Scattered Diffraction was utilized for detailed post-mortem analysis of the specimens following loading. The mechanical responses in shear were found to be strain-rate sensitive. At the slowest strain rates, all of the alloys had relatively large volumes of highly deformed material with 5083 and 5059 having the largest shear affected volumes. The dynamic strain rate test samples all formed highly compact shear localized volumes across the sheared zone with 7039 consistently displaying the narrowest shear regions. The morphology of these shear bands, along with the limited hardening during deformation, indicate a mechanism change at the higher strain rates. Higher resolution orientation image mapping has shown that between the three alloys there are varying degrees of crystallographic order within the shear bands. Transmission electron microscopy revealed various stages of dynamic recrystallization were present suggesting that while low strain rate deformation is controlled by dislocation multiplication and glide, high strain and strain-rate deformation is influenced in part due to mechanical recrystallization.
The power and beauty of electromagnetic fields
Morgenthaler, Frederic R
2011-01-01
Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.
The Electromagnetic Field of Elementary Time-Dependent Toroidal Sources
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Stepanovskij, Yu.P.
1994-01-01
The radiation field of toroidal-like time-dependent current configurations is investigated. Time-dependent charge-current sources are found outside which the electromagnetic strengths disappear but the potentials survive. This can be used to carry out time-dependent Aharonov-Bohm-like experiments and the information transfer. Using the Neumann-Helmholtz parametrization of the current density we present the time-dependent electromagnetic field in a form convenient for applications. 17 refs
Rydberg atoms ionization by microwave field and electromagnetic pulses
International Nuclear Information System (INIS)
Kaulakys, B.; Vilutis, G.
1995-01-01
A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory
Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals
2015-09-01
era was the most widespread in the electromagnetic literature. Further details on tensorial alge- bra and calculus can be found in a plethora of...conjugate gradient solver type was specified, with an iteration stopping tolerance of 10−16. 6.4 Initial and Boundary Conditions The ALEGRA
Symmetry considerations in the quasi-static approximation of volume conductor theory
de Munck, J.C.; de Munck, J.C.; van Dijk, B.W.
1991-01-01
In living subjects electromagnetic signals are generated which can be measured electrically with electrodes and normal amplifiers or magnetically, by means of SQUID-magnetometers. The former technique is called EEG (electro-encephalography), the latter MEG (magneto-encephalography). Since the
Mechanical property evaluation of apricot fruits under quasi-static and dynamic loading
Directory of Open Access Journals (Sweden)
E Ahmadi
2016-04-01
of fruit per level × 3 (impact energy level × 2 (both red and yellow × 2 (at 25oC and 3oC} was selected. In this study, using a factorial experiment in a completely randomized design, the effect of different factors (impact energy in 3 levels, temperature in 2 levels 3oC and 25°C and color in 2 levels red and yellow on acoustic stiffness, radius of curvature, color characteristic a* and b*, precent Brix, penetration force, penetration work and penetration deformation in apricot under the quasi-static forces were studied. In order to conduct this experiment, the universal testing machine of biological materials was used. After the determination of mechanical properties of the products, the SAS statistical program (1.9 was applied to analyze and normalize the resulted data. Factorial test also was used to determine the effects of independent variables on the dependent variables. Data analyses were performed using Statistical Package for the Social Sciences (SAS version 19.0.The variance analysis of the data was conducted in the form of multivariate factorial (2×2×3 design. The data were collected by three controlling factors: two temperature levels (3 and 20°C, two types of colour (Yellow and Red fruits and three levels of impact energy. The Duncan’s multiple range tests was used to compare the means. The values of reducible sugars were measured by the fruit juice standard - test methods No. 2685 (Institute of Standards and Industrial Research of Iran. The apricots TSS (total soluble solids for each temperature level by Refractomete (Model: 3820 (PAL-2, Resolution: ± 0.1% Brix were obtained. Results and Discussion: Respectively, the main and interaction effects of these variables were examined. The results of analysis of variance showed that,, the radius of curvature, color characteristic, acoustics stiffness, elastic modulus, percent Brix, penetration force and penetration deformation on main and interaction effects were significant at 5% and 1% probability
Numerical Analysis of Electromagnetic Fields in Multiscale Model
International Nuclear Information System (INIS)
Ma Ji; Fang Guang-You; Ji Yi-Cai
2015-01-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)
Pair production of arbitrary spin particles by electromagnetic fields
International Nuclear Information System (INIS)
Kruglov, S.I.
2006-01-01
The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied
Directory of Open Access Journals (Sweden)
Sergio Solorio-Meza
2012-02-01
Full Text Available Durante las últimas décadas, el interés por explicar el efecto de la radiación no ionizante, como es el caso de los campos electromagnéticos (CEM sobre sistemas celulares ha aumentado considerablemente. En este artículo se describe la interacción que existe entre los CEM y sistemas biológicos. Se discute el efecto de la estimulación electromagnética a diferentes frecuencias e intensidades en cultivos celulares. Resultados preliminares al estimular células de neuroblastomas SK-NSH con campos electromagnéticos de extra baja frecuencia (CEM-EBF, CEM que van del rango de 3 a 30 Hz, indican que se induce un estrés celularque se refleja en variaciones en la expresión de proteínas respecto al grupo de células no estimuladas. En particular, la expresión de las proteínas muestra que los CEM-EBF producen cambios en las proteínas presentes en condiciones normales o basales en las células, es decir, aparecen nuevas proteínas o existe un aumento en la cantidad de ellas.In the last decades the interest to study the effect of non-ionizing radiation, such as the electromagnetic fields (EMF on cellular systems has increased. In this article the interaction between EMF and biological systems is described. An analysis of the effect of the electromagnetic stimulation at different frequencies and intensities on cell cultures is performed. Preliminary results show that the stimulation with extremely low frequency electromagnetic fields (ELF-EMF, EMF from 3 to 30 Hz, on the cellular line of neuroblastomaSK-NSH induces cellular stress. This is reflected by a variation in the proteins expression in comparison with the group of cells no stimulated. In particular, the proteins expression shows that the ELF-EMF produce changes in the current proteins in normal or basal conditionsin the cells, that is, new proteins appear or there is evidence of an increasing in theamount of them.
[The influence of electromagnetic fields on flora and fauna].
Rochalska, Małgorzata
2009-01-01
This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.
Electromagnetic waves in optical fibres in a magnetic field
International Nuclear Information System (INIS)
Gorelik, V S; Burdanova, M G
2016-01-01
A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er 3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion–polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field. (paper)
International Nuclear Information System (INIS)
Li, Yang; Lian, Yong; Samudra, Ganesh S
2015-01-01
Due to internal voltage amplification induced by the negative capacitance of ferroelectrics, the metal–ferroelectric–metal–insulator–semiconductor (MFMIS) FET has been widely investigated to explore its potential application in low power devices. Based on Landau theory and stability criterion, a simulation program is implemented and MFMIS structure is quantitatively analyzed. The results show that it can be appropriately designed for both integrated circuits and memory devices by tuning capacitances contributed by MOSFET dielectric stack and ferroelectrics. Our simulation results on electrical characteristics of ferroelectric devices agree well with both quasi-static and dynamic experimental observations. The influence of the ferroelectric/dielectric layer thickness and area as well as temperature on hysteretic polarization-electric field characteristic of a ferroelectric are successfully explained. For a C–V loop sweeping over the gate voltage in MFMIS, possible asymmetry in the accessible negative capacitance region is also interpreted. Moreover, experimentally observed reduction in the equivalent capacitance of the ferroelectric–dielectric bilayer at high frequency is confirmed by Landau–Khalatnikov theory based simulation. Our work provides a more complete and explicit analytical treatment to understand the effect of negative capacitance of a ferroelectric on device performance. (paper)
Biological effects from electromagnetic fields: Research progress and exposure measurements
International Nuclear Information System (INIS)
Mauro, F.; Lovisolo, G.A.; Raganella, L.
1992-01-01
Although it is commonly accepted that exposure to high levels of electromagnetic, micro- and radiofrequency waves produces harmful effects to the health of man, the formulation of exposure limits is still an open process and dependent upon the evolving level of knowledge in this field. This paper surveys the current level of knowledge gained through 'in vitro' and 'in vivo' radiological and epidemiological studies on different types of electromagnetic radiation derived effects - chromosomal, mutagenic, carcinogenic. It then reviews efforts by international organizations, e. g., the International Radiation Protection Association, to establish exposure limits for radiofrequency electromagnetic fields. Brief notes are given on the electromagnetic radiation monitoring campaign being performed by public health authorities in the Lazio Region of Italy
Gu, Tingwei; Kong, Deren; Jiang, Jian; Shang, Fei; Chen, Jing
2016-12-01
This paper applies back propagation neural network (BPNN) optimized by genetic algorithm (GA) for the prediction of pressure generated by a drop-weight device and the quasi-static calibration of piezoelectric high-pressure sensors for the measurement of propellant powder gas pressure. The method can effectively overcome the slow convergence and local minimum problems of BPNN. Based on test data of quasi-static comparison calibration method, a mathematical model between each parameter of drop-weight device and peak pressure and pulse width was established, through which the practical quasi-static calibration without continuously using expensive reference sensors could be realized. Compared with multiple linear regression method, the GA-BPNN model has higher prediction accuracy and stability. The percentages of prediction error of peak pressure and pulse width are less than 0.7% and 0.3%, respectively.
Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions
International Nuclear Information System (INIS)
Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.
1979-01-01
Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given
On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel
Abediseid, Walid
2013-06-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria. In this paper, we analyze in detail the performance of diagonal lattice space-time codes under lattice decoding. We present both upper and lower bounds on the average error probability. We derive a new closed form expression of the lower bound using the so-called sphere-packing bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is simply derived using the union-bound and demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. © 2013 IEEE.
Contact forces between a particle and a wet wall at both quasi-static and dynamic state
Directory of Open Access Journals (Sweden)
Zhang Huang
2017-01-01
Full Text Available The contact regime of particle-wall is investigated by the atomic force microscope (AFM and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH. Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.
Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling
2014-11-12
Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.
Energy Technology Data Exchange (ETDEWEB)
Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)
2009-05-07
The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.
Energy Technology Data Exchange (ETDEWEB)
Zachary M. Prince; Jean C. Ragusa; Yaqi Wang
2016-02-01
Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape and is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.
High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage
Directory of Open Access Journals (Sweden)
Verleysen P.
2012-08-01
Full Text Available It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.
Directory of Open Access Journals (Sweden)
Yee Lee Sim
2016-01-01
Full Text Available For the past decades, usage of natural fiber reinforced composites in low bearing load applications are increasing tremendously due to drawbacks concerning the use of synthetic fibers. Kenaf fibers have a good potential to be used as composite reinforcements as they possesses excellent fiber strength compared to own self-weight. Current work concentrates on mechanical properties of woven fabric kenaf composites with single-lap hybrid joints configurations. Four width to diameter ratio, (W/d of cross-ply lay-up joints as designed in testing series were tested by using quasi static mechanical testing. Experimental results showed that the failure load increased with the increasing of W/d ratios. Thinner lay-up had better bearing strength compared to thicker lay-up as found in current study.
DEFF Research Database (Denmark)
Skafte, Anders; Kristoffersen, Julie; Vestermark, Jonas
2017-01-01
into two parts using complementary filters: Low frequency response caused by the quasi-static effect of the waves acting on the structure, and the high frequency response given by the modal properties of the structure. The high frequency response is then decomposed into modal coordinates using...... the experimental mode shapes. Strain histories are predicted by multiplying the modal coordinates with the expanded strain mode shapes. The low frequency response is decomposed using Ritz-vectors corresponding to the shapes that the structure vibrates with due to the wave loading. Strain Ritz......-vectors are then extracted from the finite element model by applying a load corresponding to a representative wave and the strain history for the low frequency response is found by multiplying the decomposed signal with the strain Ritz-vectors. Finally the combined strain history is found by adding the strain histories from...
Suppression and control of leakage field in electromagnetic helical microwiggler
Energy Technology Data Exchange (ETDEWEB)
Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others
1995-12-31
Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
Reasearch and Evaluation of Electromagnetic Fields of Refrigerators
Directory of Open Access Journals (Sweden)
Pranas Baltrėnas
2013-12-01
Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian
Verma, Rahul
2018-01-06
Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry
Verma, Rahul; Icardi, Matteo; Prodanović, Maša
2018-01-01
Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry
Multipole interactions of charged particles with the electromagnetic field
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)
The U(1) Higgs model in an external electromagnetic field
International Nuclear Information System (INIS)
Damgaard, P.H.; Heller, U.M.
1988-01-01
An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)
Thermodynamic properties of open noncritical string in external electromagnetic field
International Nuclear Information System (INIS)
Lichtzier, I.M.; Odintsov, S.D.; Bytsenko, A.A.
1991-01-01
We investigate the thermodynamics of open noncritical string (charged and neutral) in an external constant magnetic field. The free energy and Hagedorn temperature are calculated. It is shown that Hagedorn temperature is the same as in the absence of constant magnetic field. We present also the expressions for the free energy and Hagedorn temperature of the neutral open noncritical string in an external constant electromagnetic field. In this case Hagedorn temperature depends on the external electric field. (author)
International Nuclear Information System (INIS)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)
Anisotropic Bianchi II cosmological models with matter and electromagnetic fields
International Nuclear Information System (INIS)
Soares, D.
1978-01-01
A class of solutions of Einstein-Maxwell equations is presented, which corresponds to anisotropic Bianchi II spatially homogeneous cosmological models with perfect fluid and electromagnetic field. A particular model is examined and shown to be unstable for perturbations of the electromagnetic field strength parameter about a particular value. This value defines a limiar unstable case in which the ratio epsilon, of the fluid density to the e.m. energy density is monotonically increasing with a minimum finite value at the singularity. Beyond this limiar, the model has a matter dominated singularity, and a characteristic stage appears where epsilon has a minimum, at a finite time from the singularity. For large times, the models tend to an exact solution for zero electromagnetic field and fluid with p = (1/5)p. Some cosmological features of the models are calculated, as the effect of anisotropy on matter density and expansion time scale factors, as compared to the corresponding Friedmann model [pt
The electromagnetic bio-field: clinical experiments and interferences.
Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L
2012-06-12
One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.
International Nuclear Information System (INIS)
Tao Fuzhen; He Zhiqiang
1983-01-01
If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)
Nonlinear properties of gated graphene in a strong electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)
2017-03-15
We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.
Energy Technology Data Exchange (ETDEWEB)
Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)
2017-05-02
In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.
Carmeliet, J.; Abeele, van den K.E.A.
2004-01-01
The non-linear quasi-static and dynamic elastic behaviour of Berea sandstone has been experimentally analysed showing hysteresis and a strong influence of moisture especially in the lower saturation range. It is shown that non-linear hysteretic response originates within the "bond system" of the
Method for imaging with low frequency electromagnetic fields
Lee, Ki H.; Xie, Gan Q.
1994-01-01
A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.
E-coil: an inverse boundary element method for a quasi-static problem
International Nuclear Information System (INIS)
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez; Power, Henry
2010-01-01
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
E-coil: an inverse boundary element method for a quasi-static problem
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)
2010-06-07
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
Occupational exposure to electromagnetic fields in the Polish Armed Forces.
Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda
2017-06-19
Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Occupational exposure to electromagnetic fields in the Polish Armed Forces
Directory of Open Access Journals (Sweden)
Jarosław Kieliszek
2017-08-01
Full Text Available Objectives: Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Material and Methods: Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems. Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Results: Portable radios emit the electric field strength between 20–80 V/m close to a human head. The manpack radio operator’s exposure is 60–120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF band radios, the electric field strength is between 7–30 V/m and inside the radar cabin it ranges between 9–20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7–15 V/m and the personnel of non-directional radio beacons – 100–150 V/m. Conclusions: In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% – only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4:565–577
Uniqueness of time-independent electromagnetic fields
DEFF Research Database (Denmark)
Karlsson, Per W.
1974-01-01
As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...
Electromagnetic fields and Green functions in elliptical vacuum chambers
AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department
2017-01-01
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...
A physically motivated quantization of the electromagnetic field
International Nuclear Information System (INIS)
Bennett, Robert; Barlow, Thomas M; Beige, Almut
2016-01-01
The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field. (paper)
Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A
2014-01-01
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (psquats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.
New theory of radiative energy transfer in free electromagnetic fields
International Nuclear Information System (INIS)
Wolf, E.
1976-01-01
A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon
Electromagnetic field for an open magnetosphere
International Nuclear Information System (INIS)
Heikkila, W.J.
1984-01-01
The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions. 23 references
The electromagnetic field for an open magnetosphere
Heikkila, W. J.
1984-01-01
The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.
Effects of extremely low frequency electromagnetic fields on growth ...
African Journals Online (AJOL)
Electromagnetic fields are an important environmental factor that can influence the growth and development of plants. Exposure to EMFs was performed by a locally designed EMF generator. Our investigations were focused on plants grown from wet pretreated seeds with 3 and 10 mT for a 4 h exposure time and compared ...
Effect of Electromagnetic Fields on Transfer Processes in Heterogeneous Systems
Czech Academy of Sciences Publication Activity Database
Levdansky, V.V.; Kim, H. Y.; Kim, H. C.; Smolík, Jiří; Moravec, Pavel
2001-01-01
Roč. 44, č. 5 (2001), s. 1065-1071 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : electromagnetic field * transfer processes * heterogeneous system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.240, year: 2001
Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide
International Nuclear Information System (INIS)
Rybachek, S.T.
1985-01-01
This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented
Generation of a Desired Three-Dimensional Electromagnetic Field
DEFF Research Database (Denmark)
2005-01-01
The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...
Energy conservation law for randomly fluctuating electromagnetic fields
International Nuclear Information System (INIS)
Gbur, G.; Wolf, E.; James, D.
1999-01-01
An energy conservation law is derived for electromagnetic fields generated by any random, statistically stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced spectral changes. The results are illustrated by an example. copyright 1999 The American Physical Society
Vacuum energy of the electromagnetic field in a rotating system
International Nuclear Information System (INIS)
Hacyan, S.; Sarmiento, A.
1986-01-01
The vacuum energy of the electromagnetic field is calculated for a uniformly rotating observer. The spectrum of vacuum fluctuations is composed of the zero-point energy with a modified density of states and a contribution due to the rotation which is not thermal. (orig.)
The concept of free electromagnetic field in quantum domain
SHUMOVSKY, Alexander; MÜSTECAPLIOĞLU, Özgür
1999-01-01
By virtue of the consideration of polarization and phase properties of dipole radiation in the quantum domain, it is shown that the concept of free electromagnetic field should be considered as a quite risky approximation in the description of quantum fluctuations of some physical observables.
Effect of Mobile Phone Radiofrequency Electromagnetic Fields on ...
African Journals Online (AJOL)
Summary: Since cell phones emit radiofrequency electromagnetic fields (EMFs), this study tested the hypothesis that cell phones placed near the heart may interfere with the electrical rhythm of the heart or affect the blood pressure. Following informed consent, eighteen randomly selected apparently healthy male volunteers ...
Interaction of strong electromagnetic fields with atoms
International Nuclear Information System (INIS)
Brandi, H.S.; Davidovich, L.; Zagury, N.
1982-06-01
Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt
Electromagnetic fields from mobile phone base station - variability analysis.
Bienkowski, Pawel; Zubrzak, Bartlomiej
2015-09-01
The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.
Electromagnetically induced transparency with quantized fields in optocavity mechanics
International Nuclear Information System (INIS)
Huang Sumei; Agarwal, G. S.
2011-01-01
We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.
Design of a high field uniformity electromagnet for Penning trap
International Nuclear Information System (INIS)
Itteera, Janvin; Singh, Kumud; Teotia, Vikas; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K.; Joshi, Manoj; Rao, Pushpa
2013-01-01
An ion trap (Penning trap) facility is being developed at BARC for spectroscopy studies. This requires the design of an iron core electromagnet capable of generating high magnetic fields (∼1.7T) at the centre of an 88 mm long air gap. This electromagnet provides the requisite dipole magnetic field which when superimposed on the electrostatic quadrupoles ensures a stable trapping of ions. To conduct high precision spectroscopy studies, we need to ensure a high degree of magnetic field uniformity ( 3 volume (Trap zone). Various pole shoe profiles were studied and modelled, FEM simulation of the same were conducted to compute the magnetic field intensity and field uniformity. Owing to the large air gap and requirement of high field intensity in the GFR, the exciting coils need to handle high current densities, which require water cooled systems. Double Pan-Cake coil design is selected for powering the magnet. Electrical, thermal and hydraulic designs of the coils are completed and a prototype double pancake coil was fabricated and tested for verifying the electrical and thermal parameter. The spatial field homogeneity is achieved by shimming the pole tip. Temporal stability of magnet requires a highly stable power supply for exciting the coils and its stability class is derived from FEM simulations. This paper discusses the electromagnetic design and development of the penning trap magnet being developed at BARC. (author)
Beta decay and other processes in strong electromagnetic fields
International Nuclear Information System (INIS)
Akhmedov, E. Kh.
2011-01-01
We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear β decay as an example, we study the weak- and strong-field limits, as well as the field-induced β decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear β decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total β-decay rates are unobservably small.
International Nuclear Information System (INIS)
Arrayás, Manuel; Trueba, José L
2015-01-01
An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)
Electromagnetic field scattering by a triangular aperture.
Harrison, R E; Hyman, E
1979-03-15
The multiple Laplace transform has been applied to analysis and computation of scattering by a double triangular aperture. Results are obtained which match far-field intensity distributions observed in experiments. Arbitrary polarization components, as well as in-phase and quadrature-phase components, may be determined, in the transform domain, as a continuous function of distance from near to far-field for any orientation, aperture, and transformable waveform. Numerical results are obtained by application of numerical multiple inversions of the fully transformed solution.
Design of Electric Field Sensors for Measurement of Electromagnetic Pulse
Directory of Open Access Journals (Sweden)
Hui ZHANG
2014-01-01
Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.
Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields
Hipp, Susanne
2015-01-01
This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...
Effects of RF low levels electromagnetic fields on Paramecium primaurelia
International Nuclear Information System (INIS)
Tofani, S.; Testa, B.; Agnesod, G.; Tartagbino, L.; Bonazzola, G.C.
1988-01-01
In the last years many studies have been performed to examine biological effects of prolonged exposure at electric field low levels. This great interest is linked to a specific interaction possibility, also related to the exposure length, between electromagnetic fields and biological systems without remarkable enhancement of organism's temperature. Hence the need to investigate in vitro the possible cellular regulation mechanisms involved in these interactions, varying physical exposure parameters
Classical electromagnetic field theory in the presence of magnetic sources
Chen, Wen-Jun; Li, Kang; Naón, Carlos
2001-01-01
Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.
Observation of asymmetric electromagnetic field profiles in chiral metamaterials
Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi
2018-02-01
We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.
Occupational exposure to electromagnetic fields and chronic diseases
Håkansson, Niclas
2003-01-01
This thesis consider two exposures from the electromagnetic spectrum extremely low-frequency magnetic fields (ELF MF) and ultraviolet (UV) radiation. ELF MF are the lowest and UV radiation ranges among the highest frequencies of non-ionizing radiation. The exposure prevalence of these fields is high in the general population. Most people are exposed daily to either or both types and potential health effects are of great concern. The aim of the thesis was to study occupationa...
On Huygens' principle for Dirac operators associated to electromagnetic fields
Directory of Open Access Journals (Sweden)
CHALUB FABIO A.C.C.
2001-01-01
Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.
Setting research strategy on electromagnetic-field pollution of Ecuador
International Nuclear Information System (INIS)
Becerra, C.A.
1989-01-01
General population and occupational groups are being exposed to electromagnetic field (EMF) nonionizing radiation that come from all electric or electronic equipment that work either with extremely low frequency (ELF) or radiofrequency (RF) fields. This preoccupation has generated research and regulation plans in some countries int he world, in order to set a clear configuration of bioeffects and other environmental implications derived from exposures to ELF/RF EMF
Occupational exposure to electromagnetic fields in physiotherapy departments
International Nuclear Information System (INIS)
Macca, I.; Scapellato, M. L.; Carrieri, M.; Di Bisceglie, A. P.; Saia, B.; Bartolucci, G. B.
2008-01-01
To assess occupational exposure to electromagnetic fields, 11 microwave (MW), 4 short-wave diathermy and 15 magneto therapy devices were analysed in eight physiotherapy departments. Measurements taken at consoles and environmental mapping showed values above European Directive 2004/40/EC and ACGIH exposure limits at ∼50 cm from MW applicators (2.45 GHz) and above the Directive magnetic field limit near the diathermy unit (27.12 MHz). Levels in front of MW therapy applicators decreased rapidly with distance and reduction in power; this may not always occur in work environments where nearby metal structures (chairs, couches, etc.) may reflect or perturb electromagnetic fields. Large differences in stray field intensities were found for various MW applicators. Measurements of power density strength around MW electrodes confirmed radiation fields between 30 deg. and 150 deg., with a peak at 90 deg., in front of the cylindrical applicator and maximum values between 30 deg. and 150 deg. over the whole range of 180 deg. for the rectangular parabolic applicator. Our results reveal that although most areas show substantially low levels of occupational exposure to electromagnetic fields in physiotherapy units, certain cases of over-occupational exposure limits do exist. (authors)
Particles in spherical electromagnetic radiation fields
International Nuclear Information System (INIS)
Mitter, H.; Thaller, B.
1984-03-01
If the time-dependence of a Hamiltonian can be compensated by an appropriate symmetry transformation, the corresponding quantum mechanical problem can be reduced to an effectively stationary one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation field produced by a rotating source. Then the symmetry transformation corresponds to a rotation. We calculate the transition probabilities in Born approximation. The extension to problems involving an additional Coulomb potential is briefly discussed. (Author)
Propagation of quasi-static wave and resonance cone in magnetized plasma
International Nuclear Information System (INIS)
Serbeto, A.P.B.
1980-08-01
The potential created by an oscillating punctual source in a magnetized homogeneous cold plasma, using quasistatic approximation is studied. The resonance cone structure in this plasma is theoretically obtained and it is verified that the conic field structure remains finite for an inhomogeneous cold plasma. The temperature effect in the resonance cone structure in layers where w->Ω e ,w->w PC and w->w nh for magnetized homogeneous electron plasma is studied. An approximated expression for dispersion relations is obtained, so that an analytical solution for the potential in these layers can be calculated. The theorem of energy conservation for quasistatic waves is developed. (M.C.K.) [pt
Energy Technology Data Exchange (ETDEWEB)
Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)
2017-02-15
This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.
Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar
2017-08-01
Thanks to their efficiency enhancement systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting. The post-buckling snap-through behavior of bilaterally constrained beams has been exploited to create sensing or energy harvesting mechanisms for quasi-static applications. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy has been generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism’s efficiency. This study aims to maximize the levels of harvestable power by controlling the location of snap-throughs along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometric properties of a uniform beam, non-uniform cross-sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-prismatic beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. The experimentally validated results show that changing the shape and geometric dimensions of non-uniform beams allows for the accurate controlling of the snap-through location at different buckling transitions. A 78.59% improvement in harvested energy levels has been achieved by optimization of beam shape.
Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman
2018-05-01
In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.
Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich
2018-01-01
The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107
Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu
2018-04-01
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.
International Nuclear Information System (INIS)
Biffle, J.H.
1991-01-01
1 - Description of program or function: JAC is a two-dimensional finite element program for solving large deformation, temperature dependent, quasi-static mechanics problems with the nonlinear conjugate gradient (CG) technique. Either plane strain or axisymmetric geometry may be used with material descriptions which include temperature dependent elastic-plastic, temperature dependent secondary creep, and isothermal soil models. The nonlinear effects examined include material and geometric nonlinearities due to large rotations, large strains, and surface which slide relative to one another. JAC is vectorized to perform efficiently on the Cray1 computer. A restart capability is included. 2 - Method of solution: The nonlinear conjugate gradient method is employed in a two-dimensional plane strain or axisymmetric setting with various techniques for accelerating convergence. Sliding interface conditions are also implemented. A four-node Lagrangian uniform strain element is used with orthogonal hourglass viscosity to control the zero energy modes. Three sets of continuum equations are needed - kinematic statements, constitutive equations, and equations of equilibrium - to describe the deformed configuration of the body. 3 - Restrictions on the complexity of the problem - Maxima of: 10 load and solution control functions, 4 materials. The strain rate is assumed constant over a time interval. Current large rotation theory is applicable to a maximum shear strain of 1.0. JAC should be used with caution for large shear strains. Problem size is limited only by available memory
DATA ACQUISITION AND ANALYSIS OF LOW FREQUENCY ELECTROMAGNETIC FIELD
Directory of Open Access Journals (Sweden)
PETRICA POPOV
2016-06-01
Full Text Available In recent years more and more studies have shown that, the low frequency field strength (particularly magnetic, 50 / 60Hz are a major risk factor; according to some specialists - even more important as the radiation field. As a result, the personnel serving equipment and facilities such as: electric generators, synchronous, the motors, the inverters or power transformers is subjected continually to intense fields, in their vicinity, with possible harmful effects in the long term by affecting metabolism cell, espectively, the biological mechanisms.Therefore, finding new methods and tools for measurement and analysis of low frequency electromagnetic fields may lead to improved standards for exposure limits of the human body.
Radiation corrections to quantum processes in an intense electromagnetic field
International Nuclear Information System (INIS)
Narozhny, N.B.
1979-01-01
A derivation of an asymptotic expression for the mass correction of order α to the electron propagator in an intense electromagnetic field is presented. It is used for the calculation of radiation corrections to the electron and photon elastic scattering amplitudes in the α 3 approximation. All proper diagrams contributing to the amplitudes and containing the above-mentioned correction to the propagator were considered, but not those which include vertex corrections. It is shown that the expansion parameter of the perturbation theory of quantum electrodynamics in intense fields grows not more slowly than αchi/sup 1/3/ at least for the electron amplitude, where chi = [(eF/sub μν/p/sub ν/) 2 ] 12 /m 3 , p is a momentum of the electron, and F is the electromagnetic field tensor
Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.
Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil
2014-10-28
Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency.
Instrumentation for electromagnetic field generation in biological measurements
International Nuclear Information System (INIS)
Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.
2005-01-01
Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)
An integrated model for interaction of electromagnetic fields with biological systems
International Nuclear Information System (INIS)
Apollonio, F.; Liberti, M.; Cavagnaro, M.; D'Inzeo, G.; Tarricone, L.
1999-01-01
In this work is described a methodology for evaluation of interaction of high frequency electromagnetic field. Biological systems via connection of many macroscopic models. In particular the analysis of neuronal membrane exposed to electromagnetic fields [it
Electromagnetic processes in strong crystalline fields
Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A
2009-01-01
As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...
Designing localized electromagnetic fields in a source-free space
International Nuclear Information System (INIS)
Borzdov, George N.
2002-01-01
An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space - localized fields defined by the rotation group - are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated
Studies of exposure of rabbits to electromagnetic pulsed fields
International Nuclear Information System (INIS)
Cleary, S.F.; Nickless, F.; Liu, L.M.; Hoffman, R.
1980-01-01
Dutch rabbits were acutely exposed to electromagnetic pulsed (EMP) fields (pulse duration 0.4 mus, field strengths of 1--2 kV/cm and pulse repetition rates in the range of 10 to 38 Hz) for periods of up to two hours. The dependent variables investigated were pentobarbital-induced sleeping time and serum chemistry (including serum triglycerides, creatine phosphokinase (CPK) isoenzymes, and sodium and potassium). Core temperature measured immediately pre-exposure and postexposure revealed no exposure-related alterations. Over the range of field strengths and pulse durations investigated no consistent, statistically significant alterations were found in the end-points investigated
Steady electric fields and currents elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
2013-01-01
Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr
Photoproduction of gravitons and dilatons in an external electromagnetic field
International Nuclear Information System (INIS)
Le Khac Huong; Hoang Ngoc Long.
1990-07-01
An attempt is made to present experimental predictions of the Kaluza-Klein based models. We consider the creation of gravitons and dilatons by photons in an external electromagnetic field, namely in the electric field of a flat condenser and in the static magnetic field. The relation between the cross sections of these two processes is given. A numerical evaluation shows that in the present technical scenario the creation of high frequency gravitons and dilatons may be indirectly observable. (author). 10 refs, 2 figs
Biological effects of electromagnetic fields | Yalçın | African Journal ...
African Journals Online (AJOL)
Recently, the possible effects of extra low frequency electromagnetic fields on the public health have become an interesting subject. Generally, electromagnetic fields occur around the high voltage lines. However, electromagnetic fields also occur with some electrical machines use for fun and TV used routinely at our home ...
Energy-momentum tensor of the electromagnetic field
International Nuclear Information System (INIS)
Horndeski, G.W.; Wainwright, J.
1977-01-01
In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources
Retraction: Evaluation of Carcinogenic Effects of Electromagnetic Fields (Emf
Directory of Open Access Journals (Sweden)
Bakir Mehic
2010-08-01
Full Text Available This retracts the article "EVALUATION OF CARCINOGENIC EFFECTS OF ELECTROMAGNETIC FIELDS (EMF" on page 245. The Editor-in-chief of the Bosnian Journal ofBasic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: “Evaluation of carcinogenic effects of electromagnetic fields (EMF” published in Bosn J Basic Med Sci. 2010 Aug;10(3:245-50.After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.
Assisted of electromagnetic fields in glucose production from cassava stems
Lismeri, Lia; Haryati, Sri; Djoni Bustan, M.; Darni, Yuli
2018-03-01
Decrease in fossil fuel reserves that led to high price has become major problem in many countries around the world. To acquire the sustainability of energy reserves, the renewable energies obtained from plant biomass will therefore have to play an increasing role in fulfilling energy demand throughout the century. Renewable energy source must be explored by innovative techniques which is safe to the environment and low in energy consumptions. This research conducted to produce glucose from cassava stems assisted by electromagnetic field inductions process. The parameters used in this research were pretreatment solvent, concentration, temperature and electrical currents. The electromagnetic field inductions could be applied to increase glucose productivity with the maximum yield of glucose was 47.43%.
Uniform electromagnetic field as viscous medium for moving particles
International Nuclear Information System (INIS)
Amusia, M.Ya.; Baltenkov, A.S.; Felfli, Z.; Msezane, A.Z.; Voitkiv, A.B.
2002-01-01
The mechanism of transverse radiation viscosity acting on free charges, atomic, and small macroscopic particles in uniform electromagnetic fields is analyzed. It is shown that in the process of light scattering by these particles, besides the force accelerating them in the direction of propagation of the radiation, there is a force in the transverse direction slowing them down. The general expression for this force is obtained. It is considered how this force can influence: (i) the motion of ultrarelativistic electrons in transverse photon fluxes; (ii) the behavior of a beam of nonrelativistic electrons moving in a copropagating uniform electromagnetic field; (iii) the transverse motion of atoms under the action of resonant radiation and (iv) the motion of small macroscopic particles
Radiofrequency electromagnetic fields in the Cookridge area of Leeds
Fuller, K; Judd, P M; Lowe, A J; Shaw, J
2002-01-01
On the 8 and 9 May 2002 representatives of the National Radiological Protection Board (NRPB) performed a radiofrequency electromagnetic field survey in the Cookridge area of Leeds in order to assess exposure to radio signals from transmitters mounted on a water tower/a lattice tower and a radio station tower. Guidelines on limiting exposure to radio signals have been published by NRPB and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These guidelines are designed to prevent established adverse effects on human health. During this survey, the total exposures due to all radio signals from 30 MHz to 18000 MHz (18 GHz) were measured. This frequency range was chosen as it includes mobile phone base station transmissions, which are at around 900 and 1800 MHz and super high frequency (SHF) transmissions from most of the large microwave dish antennas mounted on the towers. In addition, other major sources of radiofrequency electromagnetic fields in the environment such as broadcast radio...
Electromagnetic fields and health impact: measurements, monitoring and environmental indicators
International Nuclear Information System (INIS)
Lubritto, C.; Vetromile, C.; Petraglia, A.; Racioppoli, M.; D'Onofrio, A.
2008-01-01
Full text: During the last 10 years there has been a remarkable growth of the attention for problems related to the electromagnetic pollution, motivated by the alert connected to potential risk for the health of persons and due to the increasing diffusion of Bats for mobile telecommunication as EMF sources. Many projects are being realized about the environmental and health impact of electromagnetic field and an important social role is played by specific actions to minimize the risk perception of the population. This study aims to find an innovative approach to these problems through the use of a system of continuous time monitoring of the electromagnetic fields and the individuation of appropriate environmental indicators. The proposed system monitors the electromagnetic fields continuously over time, and is already operating in many southern Italian cities. It works in a very efficient way as a mean for: a) Info to the citizens, thanks to diffusion of daily collected data on Internet Web; b) Control for local administrations and Authorities, due to capability of the system itself to alert when measured values exceed the limits reported by the Italian laws; c) Planning, for the implementation of : 1) New procedures agreed among local environmental control agency, local administrations and mobile Companies for network planning and management of alarm situations; 2) New local guidelines documents concerning the installation and operation of telecommunications apparatus. Moreover, starting from the general principles of the Strategic Environmental Evaluation (VAS), the environmental impacts of EMS field is studied. Based on the model DPSIR (Drivers, Pressure, State, Impacts, Responses), 12 environmental indicators have been chosen providing an immediate and understandable tool to obtain very important information on electromagnetic pollution generated by radio-telecommunication systems. The selected environmental indicators have been applied to 11 cities of the
Electromagnetic processes during phase commutation in field regulated reluctance machine
Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.
2018-03-01
The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.
Immune Response to Electromagnetic Fields through Cybernetic Modeling
International Nuclear Information System (INIS)
Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan
2008-01-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen
Immune Response to Electromagnetic Fields through Cybernetic Modeling
Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán
2008-08-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.
Electromagnetic field and the theory of conformal and biholomorphic invariants
International Nuclear Information System (INIS)
Lawrynowicz, J.
1976-01-01
This paper contains sections on: 1. Conformal invariance and variational principles in electrodynamics. 2. The principles of Dirichlet and Thomson as a physical motivation for the methods of conformal capacities and extremal lengths. 3. Extension to pseudoriemannian manifolds. 4. Extension to hermitian manifolds. 5. An extension of Schwarz's lemma for hermitian manifolds and its physical significance. 6. Variation of ''complex'' capacities within the admissible class of plurisubharmonic functions. The author concentrates on motivations and interpretations connected with the electromagnetic field. (author)
Low-frequency electromagnetic field in a Wigner crystal
Stupka, Anton
2016-01-01
Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.
Electron scattering in the presence of an intense electromagnetic field
International Nuclear Information System (INIS)
Mohan, M.; Chand, P.
1977-03-01
The general theory of electron scattering in the presence of an external electromagnetic field, provided by an intense laser beam, accompanied by absorption of n photons, each with energy hω, is discussed. The calculation leads to many summations over intermediate states. A general method for exactly evaluating several sums is described in detail. Numerical results show that the cross-section varies with intensity in a power law fashion
On the geometry of electromagnetic fields of second class
International Nuclear Information System (INIS)
Duggal, K.L.
1983-01-01
The notion of almost contingent manifolds was introduced by the author (1978) with a view to modify the standard Hermitian and Kaehlerian geometry applicable in relativity. The purpose of this paper is to use this extension as a free-way for developing the geometry of electromagnetic fields of second class under the framework of Hlavaty's (1961) classification. A mathematical model of the universe, called D-universe, having constant curvature has been created. (author)
Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields
Delion, D. S.; Ghinescu, S. A.
2017-11-01
We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.
Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.
Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou
2018-04-25
Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.
Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2015-02-01
The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.
Directory of Open Access Journals (Sweden)
Ayad Abed Ramadhan
2017-12-01
Full Text Available This paper has presented an experimental study of quasi-static compressive and tensile loading of cutout hole specimens of Kevlar-29/epoxy-Al2O3 laminated composite. The experimental procedure hasbeen developed to study the performance of (50%, 55% and 60% volume fraction (vf and (0o/90o and +45o/-45o fiber orientation angle effects of these composites under quasi-static tensile and compressiveload using a servo-hydraulic testing machine. The study was concluded that the ultimate load capacity increases as volume fraction increases in tensile test. While, the maximum load bearing capacity increaseswith the decrease of volume fraction in compression test. Hence, from the results obtained it can have considered the 55% volume fraction of composite panels is a good value for tensile and compressionapplications.
Lockerbie, N. A.; Tokmakov, K. V.
2014-10-01
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.
Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.
2017-12-01
A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.
HyPEP FY-07 Report: Initial Calculations of Component Sizes, Quasi-Static, and Dynamics Analyses
International Nuclear Information System (INIS)
Chang Oh
2007-01-01
The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept a VHTR outlet temperature of 900 C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. This report describes component sizing studies and control system strategies for achieving plant production and operability goals for these two reference systems. The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated using an analytic model. A partial load schedule and control system was designed for the integrated plant using a quasi-static simulation. Reactor stability for temperature perturbations in the hydrogen plant was investigated using both a simple analytic method and a dynamic simulation. Potential efficiency improvements over the VHTR/HTSE plant were investigated for an alternative design that directly couples a High Temperature Steam Rankin Cycle (HTRC) to the HTSE process. This work was done using the HYSYS code and results for the HTRC/HTSE system were compared to the VHTR/HTSE system. Integration of the VHTR with SI process plants was begun. Using the ASPEN plus code the efficiency was estimated. Finally, this report describes planning for the validation and verification of the HYPEP code
Fillion, Anthony; Bocquet, Marc; Gratton, Serge
2018-04-01
The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.
Liu, Suihan; Burgueño, Rigoberto
2016-12-01
Axially compressed bilaterally constrained columns, which can attain multiple snap-through buckling events in their elastic postbuckling response, can be used as energy concentrators and mechanical triggers to transform external quasi-static displacement input to local high-rate motions and excite vibration-based piezoelectric transducers for energy harvesting devices. However, the buckling location with highest kinetic energy release along the element, and where piezoelectric oscillators should be optimally placed, cannot be controlled or isolated due to the changing buckling configurations. This paper proposes the concept of stiffness variations along the column to gain control of the buckling location for optimal placement of piezoelectric transducers. Prototyped non-prismatic columns with piece-wise varying thickness were fabricated through 3D printing for experimental characterization and numerical simulations were conducted using the finite element method. A simple theoretical model was also developed based on the stationary potential energy principle for predicting the critical line contact segment that triggers snap-through events and the buckling morphologies as compression proceeds. Results confirm that non-prismatic column designs allow control of the buckling location in the elastic postbuckling regime. Compared to prismatic columns, non-prismatic designs can attain a concentrated kinetic energy release spot and a higher number of snap-buckling mode transitions under the same global strain. The direct relation between the column’s dynamic response and the output voltage from piezoelectric oscillator transducers allows the tailorable postbuckling response of non-prismatic columns to be used as multi-stable energy concentrators with enhanced performance in micro-energy harvesters.
Directory of Open Access Journals (Sweden)
H. M. Chandima Chathuranga Somarathna
2016-05-01
Full Text Available In recent years, attention has been focused on elastomeric polymers as a potential retrofitting material considering their capability in contributing towards the impact resistance of various structural elements. A comprehensive understanding of the behavior and the morphology of this material are essential to propose an effective and feasible alternative to existing structural strengthening and retrofitting materials. This article presents the findings obtained from a series of experimental investigations to characterize the physical, mechanical, chemical and thermal behavior of eight types of palm-based polyurethane (PU elastomers, which were synthesized from the reaction between palm kernel oil-based monoester polyol (PKO-p and 4,4-diphenylmethane diisocyanate (MDI with polyethylene glycol (PEG as the plasticizer via pre-polymerization. Fourier transform infrared (FT-IR spectroscopy analysis was conducted to examine the functional groups in PU systems. Mechanical and physical behavior was studied with focus on elongation, stresses, modulus, energy absorption and dissipation, and load dispersion capacities by conducting hardness, tensile, flexural, Izod impact, and differential scanning calorimetry tests. Experimental results suggest that the palm-based PU has positive effects as a strengthening and retrofitting material against dynamic impulsive loadings both in terms of energy absorption and dissipation, and load dispersion. In addition, among all PUs with different plasticizer contents, PU2 to PU8 (which contain 2% to 8% (w/w PEG with respect to PKO-p content show the best correlation with mechanical response under quasi-static conditions focusing on energy absorption and dissipation and load dispersion characteristics.
Directory of Open Access Journals (Sweden)
B Ghasemi
2015-09-01
Full Text Available Introduction: Apple is one of the most important horticultural crops of Iran. Its production in the country stands in the second place after citrus. Iran holds the fourth place in the world production of apples and gains a major share in the export of this product. Therefore, it is necessary to enhance the quantity and quality of the fruit in order to maintain and promote its position among the countries importing this product from Iran. Most of the mechanical damages to fruits and vegetables occur due to contact stresses under static, quasi-static and impact loading. To obtain stress distribution inside the fruit we can use finite element analysis. The aim of this study was to simulate the behavior of the apple as a viscoelastic body subjected to quasi-static loading and also to determine the failure criteria (maximum normal stress or shear stress of apple flesh to estimate its susceptibility to mechanical bruising. Materials and methods: In this study, Golab kohanz apple was used. Two samples were removed from each apple using a core sampler, one was used for uniaxial compression and the other was used for confined compression test using Instron universal tension and compression machine. Spherical indenter and parallel plate tests were performed in order to study apple susceptibility to bruising at four deformation levels (1, 2, 3 and 4 mm and the bruise volume was then measured after 24 hours. Stress-strain curves were plotted and then, the elastic and viscoelastic properties were obtained. Then, by using the data obtained from apple properties, the apple was modeled in Abaqus software as spherical and cylindrical shapes with viscoelastic behavior subjected to quasi-static loadings. Results and Discussion: The normal stress distribution of the modeled apple in the shape of a cylindrical sample is shown in Fig. 4. The value of maximum normal stress was obtained (0.51 MPa at the contact point of the loading plate with the sample. Experimental
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2018-04-01
This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.
Maurer, M M; Badir, S; Pensalfini, M; Bajka, M; Abitabile, P; Zimmermann, R; Mazza, E
2015-06-25
Measuring the stiffness of the uterine cervix might be useful in the prediction of preterm delivery, a still unsolved health issue of global dimensions. Recently, a number of clinical studies have addressed this topic, proposing quantitative methods for the assessment of the mechanical properties of the cervix. Quasi-static elastography, maximum compressibility using ultrasound and aspiration tests have been applied for this purpose. The results obtained with the different methods seem to provide contradictory information about the physiologic development of cervical stiffness during pregnancy. Simulations and experiments were performed in order to rationalize the findings obtained with ultrasound based, quasi-static procedures. The experimental and computational results clearly illustrate that standardization of quasi-static elastography leads to repeatable strain values, but for different loading forces. Since force cannot be controlled, this current approach does not allow the distinction between a globally soft and stiff cervix. It is further shown that introducing a reference elastomer into the elastography measurement might overcome the problem of force standardization, but a careful mechanical analysis is required to obtain reliable stiffness values for cervical tissue. In contrast, the maximum compressibility procedure leads to a repeatable, semi-quantitative assessment of cervical consistency, due to the nonlinear nature of the mechanical behavior of cervical tissue. The evolution of cervical stiffness in pregnancy obtained with this procedure is in line with data from aspiration tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electro-Magnetic Fields and Plasma in the Cosmos
International Nuclear Information System (INIS)
Scott, Donald E.
2006-01-01
It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories
Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng
2013-01-01
Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.
Thermodynamic fluctuations of electromagnetic field in slightly absorbing media
Directory of Open Access Journals (Sweden)
B.A.Veklenko
2004-01-01
Full Text Available A theory of thermodynamic fluctuations of electromagnetic field in slightly absorbing media is developed using the quantum electrodynamics - method of $Gamma$-operators - without phenomenology. The hypothesis offered by Yury L. Klimontovich is under consideration. The necessity of correct consideration of photon-photon correlation functions is shown. The results are compared with the ones obtained with the help of standard theory based upon fluctuation-dissipation theorem (FDT. The latter results are shown to have no field of application at least for the case of thermally excited media of the atoms described with two-level model.
Electromagnetic field properties in the vicinity of a massive wormhole
Energy Technology Data Exchange (ETDEWEB)
Novikov, I. D.; Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru [Russian Academy of Sciences, Astro Space Centre, Lebedev Physical Institute (Russian Federation)
2011-12-15
It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.
Radiation reaction force and unification of electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Lo, C.Y.; Goldstein, G.R.; Napier, A.
1981-04-01
A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration
Additional external electromagnetic fields for laser microprocessing of metals.
Schütz, V; Bischoff, K; Brief, S; Koch, J; Suttmann, O; Overmeyer, L
2016-11-14
Ultra-short pulsed laser processing is a potent tool for microstructuring of a lot of materials. At certain laser parameters, particular periodical and/or quasi-periodical µm-size surface structures evolve apparently during processing. With extended plasmonics theory, it is possible to predict the structure formation, and a systematic technology can be derived to alter the surface for laser processing. In this work, we have demonstrated the modification of the laser processing with applying tailored dynamic surface electro-magnetic fields. Possible improvement in applications is seen in the fields of process efficiency of laser ablation and a superior control of the surface topography.
Control of the electromagnetic drag using fluctuating light fields
Pastor, Víctor J. López; Marqués, Manuel I.
2018-05-01
An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Magnetization reversal in ferromagnetic film through solitons by electromagnetic field
International Nuclear Information System (INIS)
Veerakumar, V.; Daniel, M.
2001-07-01
We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)
Spin light of neutrino in matter and electromagnetic fields
International Nuclear Information System (INIS)
Lobanov, A.; Studenikin, A.
2003-01-01
A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. This radiation originates from the quantum spin flip transitions and we have named it as 'spin light of neutrino' (SLν). The neutrino initially unpolarized beam (equal mixture of ν L and ν R ) can be converted to the totally polarized beam composed of only ν R by the neutrino spin light in matter and electromagnetic fields. The quasi-classical theory of this radiation is developed on the basis of the generalized Bargmann-Michel-Telegdi equation. The considered radiation is important for environments with high effective densities, n, because the total radiation power is proportional to n 4 . The spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new radiation are: (i) the total power of the radiation is proportional to γ 4 , and (ii) the radiation is beamed within a small angle δθ∼γ -1 , where γ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, and the early universe should be important
Nambu-Jona-Lasinio model in a parallel electromagnetic field
Wang, Lingxiao; Cao, Gaoqing; Huang, Xu-Guang; Zhuang, Pengfei
2018-05-01
We explore the features of the UA (1) and chiral symmetry breaking of the Nambu-Jona-Lasinio model without the Kobayashi-Maskawa-'t Hooft determinant term in the presence of a parallel electromagnetic field. We show that the electromagnetic chiral anomaly can induce both finite neutral pion condensate and isospin-singlet pseudo-scalar η condensate and thus modifies the chiral symmetry breaking pattern. In order to characterize the strength of the UA (1) symmetry breaking, we evaluate the susceptibility associated with the UA (1) charge. The result shows that the susceptibility contributed from the chiral anomaly is consistent with the behavior of the corresponding η condensate. The spectra of the mesonic excitations are also studied.
Seminal magnetic fields from inflato-electromagnetic inflation
Energy Technology Data Exchange (ETDEWEB)
Membiela, Federico Agustin; Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Buenos Aires (Argentina)
2012-10-15
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B{sub ij} in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)
Seminal magnetic fields from inflato-electromagnetic inflation
Membiela, Federico Agustín; Bellini, Mauricio
2012-10-01
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance.
Seminal magnetic fields from inflato-electromagnetic inflation
International Nuclear Information System (INIS)
Membiela, Federico Agustin; Bellini, Mauricio
2012-01-01
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)
Atom ionization in a nonclassical intense electromagnetic field
International Nuclear Information System (INIS)
Popov, A.M.; Tikhonova, O.V.
2002-01-01
The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru
Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field
International Nuclear Information System (INIS)
Chajkovskij, I.A.
1974-01-01
A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2017-02-01
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
Electromagnetic fields in small systems from a multiphase transport model
Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang
2018-02-01
We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.
Effects of electromagnetic fields on fecundity in the chicken.
Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A
1975-02-28
Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good
Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach
International Nuclear Information System (INIS)
Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R
2015-01-01
Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)
Electromagnetic field of a circular beam of relativistic particles
International Nuclear Information System (INIS)
Vybiral, B.
1978-01-01
The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)
ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.
Energy Technology Data Exchange (ETDEWEB)
BELEGGIA,M.; POZZI, G.; TONOMURA, A.
2007-01-01
It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.
An electromagnetic field measurement protocol for monitoring power lines
International Nuclear Information System (INIS)
Lubritto, C.; Iavazzo, A.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.
2002-01-01
In the actions aiming to prevent risks related to the exposure to Low Frequencies Non Ionising electromagnetic Radiations (ELF-NIR), always arises the need to perform measurements in order to assess the field level existing in the considered sites. As a matter of fact very often it turns out difficult to predict, on the base of calculations, with sufficient approximation the field levels, due to extended variability of environmental conditions (e.g. coexistence of several sources, ground and building conformation, etc..). The measurement procedures must follow a methodology that could allow to minimise the interferences with the measurement set-up and the systematic and accidental errors. Risks for the operator and damages to the instrument should also be taken into account. One of the goal set for this research program was then the definition of the measurement protocol for electromagnetic field generated by low frequency non ionising radiation sources. In particular sources like power lines will be considered in order to validate the protocol by means of in-field measurements
Denis, T.; Reijnders, B.; Lee, J.H.H.; Vos, Willem L.; Boller, Klaus J.; van der Slot, Petrus J.M.
2013-01-01
We present a method to map the absolute electromagnetic field strength inside photonic crystals. We demonstrate our method by applying it to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to create a
The Characteristics of Electromagnetic Fields Induced by Different Type Sources
Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.
2011-12-01
Controlled source audio-frequence magnetotelluric (CSAMT) method has played an important role in the shallow exploration (less than 1.5km) in the field of resources, environment and engineering geology. In order to prospect the deeper target, one has to increase the strength of the source and offset. However, the exploration is nearly impossible for the heavy larger power transmitting source used in the deeper prospecting and mountain area. So an EM method using a fixed large power source, such as long bipole current source, two perpendicular "L" shape long bipole current source and large radius circle current source, is beginning to take shape. In order to increase the strength of the source, the length of the transmitting bipole in one direction or in perpendicular directions has to be much larger, such as L=100km, or the radius of the circle current source is much larger. The electric field strength are IL2and IL2/4π separately for long bipole source and circle current source with the same wire length. Just considering the effectiveness of source, the strength of the circle current source is larger than that of long bipole source if is large enough. However, the strength of the electromagnetic signal doesn't totally depend on the transmitting source, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source for the long bipole source or the large radius circle current source. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using the integral equation (IE) code developed by our research group for a three layers earth-ionosphere model which consists of ionosphere, atmosphere and earth media. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale source can be ignorable, which means the integral equation
The Mathematics of Charged Particles interacting with Electromagnetic Fields
DEFF Research Database (Denmark)
Petersen, Kim
In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...... in Coulomb gauge and we show that the one-body Maxwell-Schrödinger system as well as the related one-body Maxwell-Pauli system both admit travelling wave solutions....
Delayed consequences of biological action of electromagnetic fields
International Nuclear Information System (INIS)
Grigor'ev, Yu.G.
2000-01-01
Based on available data the real possibility of development of delayed effects in people of long-term electromagnetic fields (EMF) exposure is considered. It is shown that is a relation between long-term EMF-exposure and development of the breast cancer, brain tumors, leukemia and neurodegenerative diseases (Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis). Analysis of up-to-date publications permit to conclude that this problem is urgent and further researches of the conditions promoting the development of delayed effects are required [ru
Clinical update of pulsed electromagnetic fields on osteoporosis
Institute of Scientific and Technical Information of China (English)
HUANG Li-qun; HE Hong-chen; HE Cheng-qi; CHEN Jian; YANG Lin
2008-01-01
Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain,bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis.Data sources Using the key words "pulsed electromagnetic fields" and "osteoporosis", we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3)case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English.Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.
International conference on electromagnetic fields hazard protection of the human being
International Nuclear Information System (INIS)
Grigor'ev, Yu.G.
1999-01-01
The Second International conference concerning the problems of electromagnetic protection of the human being, fundamental and applied studies, normalization of the EMP: philosophy, criteria and harmonization which took place in Moscow in September 1999 is reported. The topics of reports covered both the mechanism of biological action of electromagnetic fields and aspects of impact of electromagnetic fields from various household appliances on the health of practically all modern people (television, radio, energetic, communication). The plenary section on evaluation of hazards of the mobile communication electromagnetic fields and the round table meeting dealing with evaluation of hazards of electromagnetic fields of the cellular communication base stations were conducted in the course of the conference. The plenary meetings were devoted to harmonization of the electromagnetic protection standards of Russia and western countries. The above conference constitutes one of the stages of the WHO international program concerning electromagnetic fields and the human being [ru
The question of health effects from exposure to electromagnetic fields
International Nuclear Information System (INIS)
Grandolfo, M.
1996-01-01
The question of health effects related to exposures from non-ionizing and non-optical electromagnetic fields is currently concentrated in two frequency ranges: extremely low frequency (ELF) electric and magnetic fields, mainly at the overhead high-voltage power line frequencies of 50/60 Hz, and radiofrequency (RF) radiation, encompassing the frequency range from a few kilohertz to 300 GHz. The part between 300 MHz and 300 GHz is also usually named microwaves (MW); from this point of view, microwaves are part of the whole RF spectrum. The following brief overview is aimed at evaluating the state of knowledge regarding the question of health effects associated to exposures to ELF and RF/MW fields
Sensor Interaction as a Source of the Electromagnetic Field Measurement Error
Directory of Open Access Journals (Sweden)
Hartansky R.
2014-12-01
Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-09-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS
Directory of Open Access Journals (Sweden)
Valentino Straser
2009-12-01
Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.
Interaction of extremely-low-frequency electromagnetic fields with humans
International Nuclear Information System (INIS)
Tenforde, T.S.
1991-07-01
At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs
Simple formula for photoprocesses in ultrashort electromagnetic field
International Nuclear Information System (INIS)
Astapenko, V.A.
2010-01-01
Within the framework of the perturbation theory, a simple formula for the probability of a photoprocess for the whole time of action of an ultrashort electromagnetic pulse has been derived, when the concept of spectral intensity of radiation and probability per unit time is inapplicable. In the obtained formula the total probability is expressed in terms of the cross-section of a photoprocess in a monochromatic field and the Fourier transform of electric field strength. The advanced approach is applied for the analysis of photoabsorption of an atom and a metal nanosphere under the action of a subcycle laser pulse with a changeable value of the carrier-envelope phase. The expressions for probability and energy of photoabsorption in the limit of a zero pulse duration have been obtained.
Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities
International Nuclear Information System (INIS)
Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J.
2003-01-01
The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)
Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities
Energy Technology Data Exchange (ETDEWEB)
Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J
2003-07-01
The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)
Electromagnetic field limits set by the V-Curve.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jorgenson, Roy Eberhardt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hudson, Howard Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-07-01
When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.
International Nuclear Information System (INIS)
Cai Xun-Ming
2015-01-01
Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency (RF) field. Both electromagnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor
International Nuclear Information System (INIS)
Kholmetskii, A L; Missevitch, O V; Yarman, T
2011-01-01
We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j·E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.
Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor
Energy Technology Data Exchange (ETDEWEB)
Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)
2011-05-01
We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.
The Norwegian public's perception of risk from electromagnetic fields
International Nuclear Information System (INIS)
Maerli, M.B.
1996-01-01
A survey with a representative sample of the adult Norwegian population reveals that the public is concerned about the health effects of electromagnetic fields; almost 2/3 of the population regard health effects as a likely consequence if exposed, the level of exposure is regarded as higher today than previously, and a clear majority now consider the fields to be more dangerous than they formerly believed. Despite this general concern, fewer consider personal effects to be probable; approximately one of six reports concern for personal injuries due to the fields. Further, the reported will to act in situations of known exposure from a (hypothetical) power line nearby is high, either by gathering information or putting up shielding against the fields. More concerned parts of the public also show a more committed engagement, including a higher willingness to make economic sacrifices for limiting the fields. There are special features of risk perception across the sample, and gender differences are particularly prominent. Women regard health effects more probable, and respond more strongly to situations of known exposure. People living near to power lines seem to be more aware of the fields, but at the same time cancer is regarded less probable by this group. (author)
Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A
2014-12-01
The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those
Energy flow in a bound electromagnetic field: resolution of apparent paradoxes
International Nuclear Information System (INIS)
Kholmetskii, A L; Yarman, T
2008-01-01
In this paper, we present a resolution of apparent paradoxes formulated in (Kholmetskii A L 2006 Apparent paradoxes in classical electrodynamics: the energy-momentum conservation law for a bound electromagnetic field Eur. J. Phys. 27 825-38; Kholmetskii A L and Yarman T 2008 Apparent paradoxes in classical electrodynamics: a fluid medium in an electromagnetic field Eur. J. Phys. 29 1127) and dealing with the energy flux in a bound electromagnetic field
ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS
Directory of Open Access Journals (Sweden)
N. G. Ptitsyna
2013-03-01
Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.
Effects of extremely low frequency electromagnetic fields on human beings
International Nuclear Information System (INIS)
Lilien, J.L.; Dular, P.; Sabariego, R.; Beauvois, V.; Barbier, P.P.; Lorphevre, R.
2010-01-01
Since the early seventies, potential health risks from ELF (Extremely Low frequency electromagnetic Fields) exposure (50 Hz) have been extensively treated in the literature (more than 1000 references registered by WHO (World Health Organisation), 2007). After 30 years of worldwide research, the major epidemiological output is the possible modest increased risk (by a factor 2) of childhood leukaemia in case of a long exposure to an ambient magnetic flux density (B-field) higher than 0.4 μT. However, this fact has not been confirmed by in vivo and in vitro studies. Moreover it has not been validated by any adverse health biological mechanisms neither for adults nor for children. International recommendations (ICNIRP, International Commission on Non-Ionising Radiation Protection) are currently, for general public, not to exceed a B-field of 100 μT (50 Hz) and an E-field of 5 kV/m (50 Hz). Herein, a rough overview of typical values of ELF fields will be presented followed by a brief literature survey on childhood leukaemia and ELF The potential carcinogenic effect of ELF would be linked to electrical disturbances in cell behaviour. The major concern linking child-hood leukaemia and ELF is thus to determine the response of bone marrow cells under ELF fields. With that purpose, transmembrane potential will be targeted and linked to the E-field at that level. This paper is three-folded: (1) the electric interactions between ambient ELF fields and the body are studied both qualitatively and quantitatively. Different sources of internal E-field are analysed and classified according to their potential risk; (2) the hypothesis of contact current is detailed; (3) key actions to undertake are highlighted. Based on the current state of the art and some authors' own developments, this paper proposes simple low cost enhancements of private electrical installations in order to annihilate the major source of potential effects of ELF. (authors)
International Nuclear Information System (INIS)
Galilo, Bogdan V.; Nedelko, Sergei N.
2011-01-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.
Numerical modelling of GPR electromagnetic fields for locating burial sites
Directory of Open Access Journals (Sweden)
Carcione José M.
2017-01-01
Full Text Available Ground-penetrating radar (GPR is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability. The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
Probing intergalactic magnetic fields with simulations of electromagnetic cascades
Energy Technology Data Exchange (ETDEWEB)
Alves Batista, Rafael [Oxford Univ. (United Kingdom). Dept. of Physics and Astrophysics; Saveliev, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Russian Academy of Sciences, Moscow (Russian Federation). Keldysh Inst. of Applied Mathematics; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vachaspati, Tanmay [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics
2016-12-15
We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10{sup -15} G and magnetic coherence lengths L{sub c}>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.
Probing intergalactic magnetic fields with simulations of electromagnetic cascades
International Nuclear Information System (INIS)
Alves Batista, Rafael; Saveliev, Andrey; Russian Academy of Sciences, Moscow; Sigl, Guenter; Vachaspati, Tanmay
2016-12-01
We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10"-"1"5 G and magnetic coherence lengths L_c>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.
Motionally-induced electromagnetic fields generated by idealized ocean currents
Tyler, R. H.; Mysak, L. A.
Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport
Retraction: Evaluation of carcinogenic effects of electromagnetic fields (EMF).
Mehic, Bakir
2010-11-01
The Editor-in-chief of the Bosnian Journal of Basic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: "Evaluation of carcinogenic effects of electromagnetic fields (EMF)" published in Bosn J Basic Med Sci. 2010 Aug;10(3):245-50. After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.
The generalized canonical formalism for the electromagnetic field
Constantinescu, R
2001-01-01
The possibility of the Hamiltonian description of the electromagnetic field as a constrained dynamical system is analyzed. We use the BRST technique and we study the consequences of the implementation of a third order symmetry, that is a symmetry related to the symplectic group sp(3). The connection between this larger symmetry and the standard BRST one is also discussed. The following results are underlined: building a generalized BRST symmetry appears as possible; the standard and the sp(2) theories prove themselves as the first two stages of this global theory. By it, a more extended symmetry asks for a larger ghost spectrum and, so, more nonminimal terms can be employed in the gauge fixing procedure. (authors)
Quantizing the electromagnetic field near two-sided semitransparent mirrors
Furtak-Wells, Nicholas; Clark, Lewis A.; Purdy, Robert; Beige, Almut
2018-04-01
This paper models light scattering through flat surfaces with finite transmission, reflection, and absorption rates, with wave packets approaching the mirror from both sides. While using the same notion of photons as in free space, our model also accounts for the presence of mirror images and the possible exchange of energy between the electromagnetic field and the mirror surface. To test our model, we derive the spontaneous decay rate and the level shift of an atom in front of a semitransparent mirror as a function of its transmission and reflection rates. When considering limiting cases and using standard approximations, our approach reproduces well-known results but it also paves the way for the modeling of more complex scenarios.
Electromagnetic field pretreatment of Sinapis alba seeds improved cadmium phytoextraction.
Bulak, Piotr; Lata, Lesia; Plak, Andrzej; Wiącek, Dariusz; Strobel, Wacław; Walkiewicz, Anna; Pietruszewski, Stanisław; Bieganowski, Andrzej
2018-03-21
It was hypothesized that electromagnetic field (EMF) pretreatment of white mustard (Sinapis alba L.) seeds could increase the accumulation of non-essential, pollutant heavy metals such as cadmium (Cd) in shoots. Seeds of white mustard were treated with either 60 or 120 mT of alternating EMF (50 Hz) for 1 minute and then grown in a Petri dish in the presence of Cd, in comparison to the control (seeds grown without EMF pretreatment). Biomass production and content of calcium (Ca) and Cd in seedling shoots were measured. The Cd content in shoots from the EMF-treated seeds was higher in both variants than in the control (by 73% and 78%, respectively; p phytoextraction, but more research is needed.
Electromagnetic field theory. Solely theories with plasma in focus
International Nuclear Information System (INIS)
Stenstrom, L.
1979-01-01
The Institute of Electromagnetic Field Theory at Chalmers Technical University is concerned with purely theoretical work on plasma physics for nuclear fusion. The team concerned is looking at nonlinear effects in the plasma energy exchange mechanism. Both inertia restricted and magnetically enclosed plasma are considered. Analytic and computer methods are used upon the model equations of the plasma. The Institute has associations with Euratom and with work in Maryland and in Grenoble. Work on particle paths is of interst. It also is associated with the construction at Sundsvik of an accelerator to give zero keV negative ions. A problem is to find staff of a sufficiently high quality for such complex work. The difficulties are not economic, but mainly that the desired practical results appear to be so far into the future. (G.P.)
Resonant scattering in the presence of an electromagnetic field
International Nuclear Information System (INIS)
Rosenberg, L.
1983-01-01
The theory of resonant reactions, in the projection-operator formulation of Feshbach, is generalized to account for the presence of an external electromagnetic field. The theory is used as the basis for the construction of low-frequency approximations for the transition amplitude. Results obtained here for scattering in a laser field confirm earlier versions of the low-frequency approximation when the resonances are isolated. However, if there are several closely spaced resonances additional terms must be included (their importance magnified by the appearance of near singularities) which account for the effect of radiative transitions between pairs of nearly degenerate resonant states. The weak-field limit of this result yields a low-frequency approximation for single-photon spontaneous bremsstrahlung which, through the inclusion of correction terms associated with closely spaced resonances, provides an improvement over the Feshbach-Yennie version derived some time ago. A separate treatment is required to deal with the limiting case of a static external field and this is worked out here in the context of a time-dependent formulation of the scattering problem. Linear and quadratic Stark splitting of the resonance positions, and resonance broadening due to the tunneling mechanism, are expected to play a significant role in the static limit and these effects are included in the approximation derived here for the transition amplitude
Fast propagation of electromagnetic fields through graded-index media.
Zhong, Huiying; Zhang, Site; Shi, Rui; Hellmann, Christian; Wyrowski, Frank
2018-04-01
Graded-index (GRIN) media are widely used for modeling different situations: some components are designed considering GRIN modulation, e.g., multi-mode fibers, optical lenses, or acousto-optical modulators; on the other hand, there are other components where the refractive-index variation is undesired due to, e.g., stress or heating; and finally, some effects in nature are characterized by a GRIN variation, like turbulence in air or biological tissues. Modeling electromagnetic fields propagating in GRIN media is then of high importance for optical simulation and design. Though ray tracing can be used to evaluate some basic effects in GRIN media, the field properties are not considered and evaluated. The general physical optics techniques, like finite element method or finite difference time domain, can be used to calculate fields in GRIN media, but they need great numerical effort or may even be impractical for large-scale components. Therefore, there still exists a demand for a fast physical optics model of field propagation through GRIN media on a large scale, which will be explored in this paper.
Radiofrequency electromagnetic fields in the Cookridge area of Leeds
International Nuclear Information System (INIS)
Fuller, K.; Gulson, A.D.; Judd, P.M.; Lowe, A.J.; Shaw, J.
2002-01-01
On the 8 and 9 May 2002 representatives of the National Radiological Protection Board (NRPB) performed a radiofrequency electromagnetic field survey in the Cookridge area of Leeds in order to assess exposure to radio signals from transmitters mounted on a water tower/a lattice tower and a radio station tower. Guidelines on limiting exposure to radio signals have been published by NRPB and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These guidelines are designed to prevent established adverse effects on human health. During this survey, the total exposures due to all radio signals from 30 MHz to 18000 MHz (18 GHz) were measured. This frequency range was chosen as it includes mobile phone base station transmissions, which are at around 900 and 1800 MHz and super high frequency (SHF) transmissions from most of the large microwave dish antennas mounted on the towers. In addition, other major sources of radiofrequency electromagnetic fields in the environment such as broadcast radio and television transmissions are included in this range. Measurements of power density were made at eight locations in the vicinity of the transmitter sites. Comparison of the measurements with the guidelines showed that the total exposure from radio signals measured between 30 MHz and 18 GHz ranged from 0.26 millionths (0.000026%) to 190 millionths (0.019%) of the NRPB investigation level and from 1.6 millionths (0.00016%) to 1400 millionths (0.14%) of the ICNIRP reference level for exposure of the general public. All the measured exposures are therefore many times below guideline levels and are not considered hazardous. (author)
High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in
Directory of Open Access Journals (Sweden)
Amaneh Mohammadi Roushandeh
2010-06-01
Full Text Available Objective(sNeutrophil gelatinase-associated lipocalin (NGAL/Lcn2, comprise a group of small extracellular proteins with a common β-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic field (EMF produces reactive oxygen species (ROS in different tissues. Expression of Lcn2 following exposure to electromagnetic field has been investigated in this study. Materials and MethodsBalb/c mice (8 weeks old were exposed to 3 mT, 50 HZ EMF for 2 months, 4 hr/day. Afterwards, the mice were sacrificed by cervical dislocation and livers were removed. The liver specimens were stained with Haematoxylin- Eosin (H&E and analyzed under an optical microscope. Total RNA was extracted from liver and reverse transcription was performed by SuperScript III reverse transcriptase with 1 µg of total RNA. Assessment of Lcn2 expression was performed by semiquantitative and real time- PCR.ResultsThe light microscopic studies revealed that the number of lymphocyte cells was increased compared to control and dilation of sinosoids was observed in the liver. Lcn2 was up-regulated in the mice exposed to EMF both in mRNA and protein levels.ConclusionTo the extent of our knowledge, this is the first report dealing with up-regulation of Lcn2 in liver after exposure to EMF. The up-regulation might be a compensatory response that involves cell defense pathways and protective effects against ROS. However, further and complementary studies are required in this regards.
Dombeck, J.; Cattell, C.; McFadden, J.
2013-09-01
Utilizing FAST satellite electron measurements, we present the first reported investigation of the dependency on latitude of quasi-static structure ("inverted-V") potential drop magnitude (Φ). A trend of lower Φ at lower latitudes in the premidnight sector on field lines with dark foot points was observed. This trend is supported both statistically and in individual satellite crossings. The existence of two distinct peaks in occurrence probability for Φ was also observed: one between ~2 kV and 10 kV and the other at somewhat less than 1 kV. The relative occurrence of structures with Φ in the higher (>2 kV) peak is significantly reduced with decreasing latitude. This partially accounts for the statistical trend of lower potential drop magnitudes at lower latitudes. The two Φ occurrence frequency peaks correspond to two different regimes (one with eΦ/kTe ~ or > 1 and one with eΦ/kTe current-voltage relation where source electron density rather than Φ is most directly controlled by the field-aligned current density. These observations and their ramifications represent a significant step forward in the understanding of field-aligned currents, auroral acceleration, and magnetospheric-ionospheric coupling.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.
1989-12-01
Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs
Current Understanding of the Health Effects of Electromagnetic Fields.
Miah, Tayaba; Kamat, Deepak
2017-04-01
There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.]. Copyright 2017, SLACK Incorporated.
Multiphoton processes for atoms in intense electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Collins, L.A.; Abdallah, J.; Csanak, G.
1995-12-31
Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).
Occupational exposure to electromagnetic fields and sex-differential risk of uveal melanoma
DEFF Research Database (Denmark)
Behrens, Thomas Flensted; Lynge, Elsebeth; Cree, Ian
2010-01-01
The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries.......The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries....
Bianchi type-I model with conformally invariant scalar and electromagnetic field
International Nuclear Information System (INIS)
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-01-01
A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt
Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.
2014-01-01
We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil
International Nuclear Information System (INIS)
Kieback, D.
1996-01-01
The present brochure of the Professional Association for Fine Mechanics and Electrical Engineering gives a selective account on the effects of electromagnetic fields on human beings. The second part deals with regulations for safety and health protection at working places exposed to electromagnetic fields. (VHE) [de
International Nuclear Information System (INIS)
Anon.
2008-01-01
This new meta-analysis found a slight increase in the risk of brain cancer and of leukemia in populations occupationally exposed to electromagnetic fields. it does not, however, support the hypothesis that electromagnetic fields have an effect on these cancers. (author)
Assessment of occupational exposure to radio frequency electromagnetic fields
Directory of Open Access Journals (Sweden)
Halina Aniołczyk
2015-06-01
Full Text Available Background: European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency electromagnetic field (RF EMF (range: 100 kHz – 300 GHz and indicate workplaces with the highest risk to employee health. Material and Methods: Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland were analyzed. The analysis covered the results of electric field intensity (E for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI values were also analyzed. The determinations and measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. Results: The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold and microwave diathermy units (up to 8-fold. Conclusions: Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio communication facilities (especially radio and TV broadcasting stations. Med Pr 2015;66(2:199–212
Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.
Niu, D; Zhu, F; Qiu, R; Niu, Q
2016-01-01
High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.
Hyperthermic effect of magnetic nanoparticles under electromagnetic field
Directory of Open Access Journals (Sweden)
Giovanni Baldi
2009-06-01
Full Text Available Magnetic nanoparticles have attracted increasingly attention due to their potential applications in many industrial fields, even extending their use in biomedical applications. In the latter contest the main features of magnetic nanoparticles are the possibility to be driven by external magnetic fields, the ability to pass through capillaries without occluding them and to absorb and convert electromagnetic radiation in to heat (Magnetic Fluid Hyperthermia. The main challenges of the current works on hyperthermia deal with the achievement of highly efficiency magnetic nanoparticles, the surface grafting with ligands able to facilitate their specific internalisation in tumour cells and the design of stealth nanocomposites able to circulate in the blood compartment for a long time. This article presents the synthesis of cobalt ferrite nanoparticles dispersed in diethylene glycol via the so called polyol strategy and the crystal size control through successive synthesis steps. Preliminary heat dissipation evaluations on the prepared samples were carried out and the question of how particles sizes affect their magnetic and hyperthermic properties was addressed as well. Furthermore we will present how surface chemistry can be modified in order to change the dispersity of the product without affecting magnetic and hyperthermic properties.
Vacuum in the presence of electromagnetic fields and rotating boundaries
International Nuclear Information System (INIS)
Manogue, C.A.
1984-01-01
Two investigations of the properties of the vacuum are made. The first is a reconsideration of the classic Klein paradox, particle creation due to the presence of very strong external electromagnetic potentials. Expectation values of the current, momentum, and number operators, each of which is a measure of particle creation, are calculated for both massive spin zero and massive spin one half fields. The relationship between super-radiance and pair creation is explained. A review of past work by other authors is included and common conceptual errors are pointed out. The second investigation concerns the rotation of the vacuum caused by the rotation of boundaries. Just as the presence of boundaries can create a change in the vacuum expectation value of the energy density (the Casimir effect), the rotation of such boundaries can create changes in the vacuum expectation value of the momentum density. Calculations of the Casimir effect are made for a massless scalar field confined to an infinitely long square box. The change in the vacuum expectation value of the momentum density is calculated if this same box is rotating around its long central axis. In contrast, it is shown that for an infinitely long circular cylinder there is no change in the momentum density
Electromagnetically induced transparency resonances inverted in magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)
2015-12-15
The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.
Bray–Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Stanisavljev, Dragomir R., E-mail: dragisa@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia); Velikić, Zoran [Institute of Physics, University of Belgrade, Pregrevica 118, Zemun (Serbia); Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia)
2014-09-30
Highlights: • Oscillatory Bray–Liebhafsky reaction is coupled with the radiofrequency radiation. • The effects of radiofrequency field on oscillatory parameters are investigated. • Radiofrequency power of up to the 0.2 W did not produced observable changes. • The explanation related with dissipative and capacitive effects is given. • Open the possibility of investigations of reactive effects on biological systems. - Abstract: Oscillatory Bray–Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60–110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.
Jankowski, Wojciech; Henrykowska, Gabriela; Smigielski, Janusz; Pacholski, Krzysztof; Dziedziczak-Buczyńska, Maria; Kałka, Krzysztof; Buczyński, Andrzej
2008-06-01
Being a natural environmental factor, an electromagnetic field exists from the beginning of the life on Earth and it has an influence on maintenance of life processes. Natural electromagnetic fields affect day and year rhythms of plants, animals and humans. As a result of an electromagnetic field's activity, there occurs a disorder of blood platelets' function, which may, in consequence, lead to acute and chronic conditions dangerous to health and life. The aim of this work was to assess the influence, which a shape of an electromagnetic field of low frequency has on generating free radicals and enzymatic activity of superoxide dismutase in human blood platelets. Suspension of human blood platelets was subjected to activity of electromagnetic field of different shapes, frequency of 50 Hz and induction of 10 mT for 15 and 30 minutes. An electromagnetic field was generated with Helmholtz coils arranged on a bracket, inside of which test tubes with the blood platelets' suspension were put. Next, they were subjected to an activity of a specific electromagnetic field. The measurement of free radicals generation indicated an increase, in comparison with the initial values, after 15 minutes as well as 30 minutes of exposition, regardless of the electromagnetic field's shape, whereas the enzymatic activity of superoxide dismutase decreased, in comparison with the initial values, after 15 minutes as well as 30 minutes of exposition, regardless of the applied electromagnetic field's shape. Basing on obtained results, it may be stated that the level of generating free radicals as well as the level of enzymatic activity of superoxide dismutase in tested blood cells indicates significant dependence on an electromagnetic field's shape. The greatest changes have been observed during the activity of a rectangular and triangular pulse.
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Non-ionizing electromagnetic fields on offshore installations
International Nuclear Information System (INIS)
Stark, G.M.; Heaton, B.
1996-01-01
The concern over the effects of occupational exposure to non-ionizing electromagnetic fields (EMF) has greatly increased in recent years. A great deal of knowledge is known about the thermal effects of radiofrequency EMF's and at the moment, many epidemiological and laboratory studies are being performed on extremely low frequency (ELF) and very low frequency (VLF) EMF's. Some studies have reported an increased risk of leukaemia and other cancers in children living close to overhead power cables and power industry electrical workers. Wertheimer and Leeper reported cancer links in children residing near overhead power cables as early as 1979 and many subsequent studies have continued to make similar associations. These studies suggest that prolonged exposure to higher than normal magnetic fields increases the occurrence of certain cancers in both children and adults. The most common associations are between EMF's and leukaemia, other haematopoetic cancers, brain cancers, central nervous system cancers or melanomas. Studies of adults living near overhead lines by Youngson et al. and working in the electricity industry by Armstrong et al. and Savitz and Loomis have also shown associations with certain cancers. The epidemiological studies are incomplete in several areas and many have been openly criticized. As yet, there is no conclusive laboratory evidence but studies are ongoing. The Hendee and Boteler study suggested that 'EMF's might be cancer promoters but are unlikely to be cancer initiators'. In addition to ELF studies, there have been many reports investigating exposure to EMF's from visual display units with equivocal results. Laboratory studies have reported conflicting results and as yet the hazard, if any, is still uncertain. Reports have also recorded exposure levels of operators in broadcast radio stations showing a variety of levels dependent on the occupation. In December 1992, the Commission of the European Communities proposed a council Directive on
Berberyan, A. Kh; Garakov, V. G.
2018-04-01
A large number of works have been devoted to investigation of the influence of the piezoelectric properties of a material on the propagation of elastic waves [1–3]. Herewith, the quasi-static piezoelasticity model was mainly used. In the problem of an electromagnetic wave reflection from an elastic medium with piezoelectric properties, it is necessary to consider hyperbolic equations [4].
Electromagnetic field effects on Υ-meson dissociation in PbPb collisions at LHC energies
Energy Technology Data Exchange (ETDEWEB)
Hoelck, J.; Wolschin, G. [Institut fuer Theoretische Physik der Universitaet Heidelberg (Germany)
2017-12-15
We investigate the effect of the electromagnetic field generated in relativistic heavy-ion collisions on the dissociation of Υ mesons. The electromagnetic field is calculated using a simple model which characterizes the emerging quark-gluon plasma (QGP) by its conductivity only. A numerical estimate of the field strength experienced by Υ mesons embedded in the expanding QGP and its consequences on the Υ dissociation is made. The electromagnetic field effects prove to be negligible compared to the established strong-interaction suppression mechanisms. (orig.)
Quaternion analysis of generalized electromagnetic fields in chiral media
International Nuclear Information System (INIS)
Bisht, P. S. . Email. ps_bisht123@rediffmail.com
2007-01-01
The time dependent Maxwell's equations in presence of electric and magnetic charges has been developed in chiral media and the solutions for the classical problem are obtained in unique, simple and consistent manner. The quaternionic reformulation of generalized electromagnetic fields in chiral media has also been developed in compact and consistent way. Simulation of neutron backscattering process applied to organic material detection. Forero Martinez, Nancy Carolina; Cristancho, Fernando (Nuclear Physics Group, Universidad Nacional de Colombia, Bogota D.C. (Colombia)) Abstract Atomic and nuclear physics based sensors might offer new possibilities in de-mining. There is a particular interest in the possibility of using neutrons for the non-intrusive detection of hidden contraband, explosives or illicit drugs. The Neutron Backscattering Technique, based on the detection of the produced thermal neutrons, is known to be a useful tool to detect hidden explosives which present an elevated concentration of light elements (H, C, N, O). In this way we present the simulated results using the program package Geant4. Different variables were modified including the soil composition and the studied materials. (Author)
Neurovegetative disturbances in workers exposed to 50 Hz electromagnetic fields
International Nuclear Information System (INIS)
Bortkiewicz, A.; Gadzicka, E.; Zmyslony, M.; Szymczak, W.
2006-01-01
Since the circulatory and nervous systems are composed of of electrically excitable tissues, it is plausible that they can be stimulated by electromagnetic fields (EMF). No clinical studies have as been carried out to explain whether and how occupational exposure to 50 Hz EMF can influence the neurovegetative regulation of the cardiovascular function. The present project was undertaken to assess the the autonomic function in workers occupationally exposed to 50 Hz EMF, by analyzing the heart rate variability. The study group comprised 63 workers of switchyard substations, aged 22-67 years (39.2±10.0 years), and the control group 42 workers of radio link stations, aged 20-68 years (40.7±9.2 years), employed at workposts free from EMF exposure. The age range and employment duration in both groups did not differ significantly. To assess the neurovegetative regulation of the cardiac function, heart rate variability HRV) analysis was made based on 512 normal heart beats recorded at rest. The analysis, performed using fast Fourier transformation, concerned the time - and frequency-domain HRV parameters. Power spectrum in the very low (VLF), low (LF) and high (HF) frequency bands was determined. The relative risk of decreased HRV (STD R-R ) was significantly higher in the study group than in control (65% vs. 47%). It was concluded that occupational exposure to 50 Hz EMF could influence the neurovegetative regulation of the cardiovascular system. (author)
Study of extremely low frequency electromagnetic fields in infant incubators.
Cermáková, Eleonora
2003-01-01
The aim of the work was to present the results of measurements of extremely low frequency electromagnetic fields (ELF EMF), namely the magnetic flux density, inside infant incubators, and to compare these results with the data published by other authors who point out to a possible association between leukemia or other diseases observed in newborns kept in incubators after the birth and the ELF EMF exposure in the incubator. The measured magnetic flux densities were compared with the reference values for this frequency range indicated in the European Union (EU) recommendations. The repeated measurements in incubators were made with a calibrated magnetometer EFA 300 in the frequency range of 5-30 kHz. Effective values of magnetic flux densities of ELF EMF were determined taking account of the reference values. The results of many repeated measurements showing the values of magnetic flux density in modern incubators with plastic supporting frame, were compared with those obtained in old type incubators with iron skeleton. A power frequency of 50 Hz was detected in the incubator and the ELF EMF values were by over two orders lower than the EU reference values. The paper emphasizes the need to take a special care of newborns kept in incubators even if only the sub-reference values are detected. The EU reference values are intended for the adult human population. A baby in an incubator has much smaller dimensions, higher electric conductivity and maybe trigger another mechanism of response to ELF EMF than that indicated in this paper.
Effect of electromagnetic field on Kordylewski clouds formation
Salnikova, Tatiana; Stepanov, Sergey
2018-05-01
In previous papers the authors suggest a clarification of the phenomenon of appearance-disappearance of Kordylewski clouds - accumulation of cosmic dust mass in the vicinity of the triangle libration points of the Earth-Moon system. Under gravi-tational and light perturbation of the Sun the triangle libration points aren't the points of relative equilibrium. However, there exist the stable periodic motion of the particles, surrounding every of the triangle libration points. Due to this fact we can consider a probabilistic model of the dust clouds formation. These clouds move along the periodical orbits in small vicinity of the point of periodical orbit. To continue this research we suggest a mathematical model to investigate also the electromagnetic influences, arising under consideration of the charged dust particles in the vicinity of the triangle libration points of the Earth-Moon system. In this model we take under consideration the self-unduced force field within the set of charged particles, the probability distribution density evolves according to the Vlasov equation.
Classical particles with spin in electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Amorim, R.M. de.
1977-02-01
Following a review of several problems connected with classical particles with intrinsic angular momentum are reproduced the Frenkel equations (with the condition S sup(μν)U sub(ν)=0) by means of a holonomic variational principle, and have related them to Bargann, Michel and Tededgie equations. The treatment is then generalized to the case in wich S sup(μν)U sub(ν)=0 and the resulting equation coincide in the linearized limit with those obtained by Suttorp and de Groot. Also, by using variational principles, the generalizations to Frenkel equations are obtained, as well as to those of Suttorp and de Groot when electromagnetic and gravitational interactions are considered. Finally, those equations are analysed according to a scheme proposed by Oliveira and Tiommo where the gravitational interactions are described by gravielectric and gravimagnetic fields. The analogies in these equations of motion between the gravitational and eletromagnetic interactions, in the case in which the particle has a giromagnetic factor g=1, are shown. The last results complete a previous study by wald. (Author) [pt
Directory of Open Access Journals (Sweden)
Lalsingh Khalsa
2018-01-01
Full Text Available This paper is an attempt to determine quasi-static thermal stresses in a thin elliptical plate which is subjected to transient temperature on the top face with zero temperature on the lower face and the homogeneous boundary condition of the third kind on the fixed elliptical curved surface. The solution to conductivity equation is elucidated by employing a classical method. The solution of stress components is achieved by using Goodier’s and Airy’s potential function involving the Mathieu and modified functions and their derivatives. The obtained numerical results are accurate enough for practical purposes, better understanding of the underlying elliptic object, and better estimates of the thermal effect on the thermoelastic problem. The conclusions emphasize the importance of better understanding of the underlying elliptic structure, improved understanding of its relationship to circular object profile, and better estimates of the thermal effect on the thermoelastic problem.
Zeng, Ke; Singisetti, Uttam
2017-09-01
The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.
International Nuclear Information System (INIS)
Li, Hejie; Jiang, Zhengyi; Wei, Dongbin; Gao, Xingjian; Xu, Jianzhong; Zhang, Xiaoming
2015-01-01
Highlights: • We used AFM and EBSD to analyses the surface asperity flattening process. • Analysis of the influence of deformation rate on the surface asperity flattening. • Investigation of the effect of lubrication on microstructure development. • Deformation rate influence the generation of orientation components obviously. - Abstract: In a quasi-static cold uniaxial planar compression, surface asperity evolution and microstructure analysis of Al 6061T5 alloy are carried out by employing Atomic Force Microscope (AFM) and Electron Backscattered Diffraction (EBSD) methods. Strain rate affects the surface asperity evolution obviously. While lubrication can hinder the surface asperity flattening by constraining the surface localized deformation. Lubrication can accelerate the crystallization in CUPC process. It also impedes the activation of some orientation components by hindering the activation of related slip systems in light metal Al alloy
International Nuclear Information System (INIS)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
International Nuclear Information System (INIS)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
Tatalias, M; Bockisch, C J; Bertolini, G; Straumann, D; Palla, A
2011-03-01
Estimation of subjective whole-body tilt in stationary roll positions after rapid rotations shows hysteresis. We asked whether this phenomenon is also present during continuous quasi-static whole-body rotation and whether gravitational cues are a major contributing factor. Using a motorized turntable, 8 healthy subjects were rotated continuously about the earth-horizontal naso-occipital axis (earth-vertical roll plane) and the earth-vertical naso-occipital axis (earth-horizontal roll plane). In both planes, three full constant velocity rotations (2°/s) were completed in clockwise and counterclockwise directions (acceleration = 0.05°/s(2), velocity plateau reached after 40 s). Subjects adjusted a visual line along the perceived longitudinal body axis (pLBA) every 2 s. pLBA deviation from the longitudinal body axis was plotted as a function of whole-body roll position, and a sine function was fitted. At identical whole-body earth-vertical roll plane positions, pLBA differed depending on whether the position was reached by a rotation from upright or by passing through upside down. After the first 360° rotation, pLBA at upright whole-body position deviated significantly in the direction of rotation relative to pLBA prior to rotation initiation. This deviation remained unchanged after subsequent full rotations. In contrast, earth-horizontal roll plane rotations resulted in similar pLBA before and after each rotation cycle. We conclude that the deviation of pLBA in the direction of rotation during quasi-static earth-vertical roll plane rotations reflects static antihysteresis and might be a consequence of the known static hysteresis of ocular counterroll: a visual line that is perceived that earth-vertical is expected to be antihysteretic, if ocular torsion is hysteretic.
Yazdanpanah, J.
2018-02-01
In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Herb F. [Univ. of Wisconsin, Madison, WI (United States); Haimson, Bezalel C. [Univ. of Wisconsin, Madison, WI (United States); Doe, Thomas W. [Golder Associates Inc., Redmond, VA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-02-01
Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and the elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.
Grobbe, N.
2016-01-01
In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:
1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.
2. Investigate the potential of
Near-Field Spectral Effects due to Electromagnetic Surface Excitations
Shchegrov , Andrei ,; Joulain , Karl; Carminati , Rémi; Greffet , Jean-Jacques
2000-01-01
International audience; We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can display remarkable differences in the near and the far zones. The spectral changes occur due to the loss of evanescent modes and are especially pronounced for systems which support surface waves. PACS numbers: 78.20. – e, 05.40. – a, 44.40. + a, 87.64.Xx Spectroscopy of electromagnetic radiation is perhaps the most powerful exploration tool employed in natural sciences: ast...
Two-photon cooperative emission in the presence of athermal electromagnetic field
International Nuclear Information System (INIS)
Enaki, N.A.; Mihalache, D.
1997-01-01
The possibility of cooperative spontaneous two-photon emission of an extended radiators system and the influence of the external thermal electromagnetic field on the spontaneous emission rate, in such a system, are investigated. It is concluded that, in an external electromagnetic field, the two-photon cooperative emission rate increases significantly. The importance of this effect on the emission of gamma rays from inverted long-lived isomers triggered by X-ray thermal fields, is emphasized
Relations between focusing power of space-charge lenses and external electromagnetic fields
International Nuclear Information System (INIS)
Yu Qingchang; Qiu Hong; Huang Jiachang
1991-01-01
Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed
Czech Academy of Sciences Publication Activity Database
Jelínek, František; Pokorný, Jiří; Šaroch, Jaroslav; Trkal, Viktor; Hašek, Jiří; Palán, B.
1999-01-01
Roč. 48, č. 2 (1999), s. 261-266 ISSN 0302-4598. [Electromagnetic Fields in Biological Systems. Prague, 13.09.1998-16.09.1998] R&D Projects: GA ČR GA102/97/0867 Grant - others:EU COST (XE) OC 244B.40 Institutional research plan: CEZ:AV0Z2067918 Keywords : electromagnetic fields * cellular biophysics * field strength measurement Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.085, year: 1999
International Nuclear Information System (INIS)
Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez
2008-01-01
We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor
International Nuclear Information System (INIS)
Qiong-gui Lin; Department of Physics, Zhongshan University, Guangzhou 510275
1999-01-01
Neutral fermions of spin-1/2 with magnetic moment can interact with electromagnetic fields through nonminimal coupling. In 2 + 1 dimensions the electromagnetic field strength plays the same role to the magnetic moment as the vector potential to the electric charge. This duality enables one to obtain physical results for neutral particles from known ones for charged particles. We give the probability of neutral particle-antiparticle pair creation in a vacuum by non-uniform electromagnetic fields produced by constant uniform charge and current densities. (author)
Radiofrequency-electromagnetic field exposures in kindergarten children.
Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza
2017-09-01
The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.
Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.
Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin
2017-02-01
Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grant, Ian S
1990-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient
International Nuclear Information System (INIS)
Kim, Se Yun
2009-01-01
This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.
Effects of 1.84 GHz radio-frequency electromagnetic field on sperm ...
African Journals Online (AJOL)
sunny t
found that, compared with sham group, the sperm morphology and ... harmful effects of electromagnetic fields emitted from ... RF-EMF, which are widely selected for mobile ... Laboratory Animal Centre, the Fourth Military Medical University,.
National Research Council Canada - National Science Library
Jones, D
1995-01-01
.... Pulsing electromagnetic fields (PEMFs)have been shown to speed the healing of non-union fractures and we have used them successfully to treat stress fractures in the lower limbs. All women at Ft...
Peculiarities of natural electromagnetic field variations in the interval of periods of 60-240 min
International Nuclear Information System (INIS)
Kovtun, A.A.; Smirnov, M.Yu.
1996-01-01
Intensification of the oscillation amplitude of the natural electromagnetic field within 60-240 min period interval at practically all the latitudes was observed during the Earth re-entry to plasma high-speed flow
Effect of electromagnetic fields on the chondrogenic differentiation under microgravity conditions
National Aeronautics and Space Administration — A combination therapy of electromagnetic fields (EMF) and simulated microgravity (SMG) has not been examined in regenerative medicine of cartilage. In the present...
Effect of radio frequency waves of electromagnetic field on the tubulin.
Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi
2013-09-01
Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.
Niessen, E.M.J.; Niessen, E.M.J.; Zandbergen, P.J.
1993-01-01
Analytical results are presented concerning the electromagnetic response of a composite superconducting wire in fields parallel to the wire axis, using the Maxwell equations supplemented with constitutive equations. The problem is nonlinear due to the nonlinearity in the constitutive equation
Extremely low frequency electromagnetic field in combination with Î² ...
African Journals Online (AJOL)
Fatemeh Sanie-Jahromi
Extremely low frequency (<300 Hz) electromagnetic field (EMF) is shown to decrease ... Production and hosting by Elsevier B.V. This is an open access article under ..... mouse liver induced by morphine and protected by antioxidants.
Conversion of photons into spinless particles in periodic external electromagnetic field
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa
1996-08-01
The conversion of photons into axions and dilatons in a periodic external electromagnetic field, namely in the TE 10 mode, are considered in detail. The differential cross sections are given. (author). 16 refs
National Research Council Canada - National Science Library
Steenman, Daryl
1999-01-01
.... In the far-field of these tested objects, actual sources of high reflectivity or "Hot Spots" on the tested objects can be isolated to within only one half the wavelength of the electromagnetic wave used for testing...
High energy pair production in arbitrary configuration of intense electromagnetic fields
International Nuclear Information System (INIS)
Ayasli, S.; Hacinliyan, A.
1978-01-01
The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)
The effect of extreme-low-frequency electromagnetic field on air ...
African Journals Online (AJOL)
Electromagnetic fields produce alternating electric fields and modify static electric fields in the vicinity. These electric fields, if large enough, can alter the concentration or transport of airborne particles (including particles harmful to health). In this study, the concentration of radioactive materials (gamma radiation) was ...
Modeling microwave electromagnetic field absorption in muscle tissues
Felbacq, D.; Clerjon, S.; Damez, J. L.; Zolla, F.
2002-07-01
Absorption of electromagnetic energy in human tissues is an important issue with respect to the safety of low-level exposure. Simulation is a way to a better understanding of electromagnetic dosimetry. This letter presents a comparison between results obtained from a numerical simulation and experimental data of absorbed energy by a muscle. Simulation was done using a bidimensional double-scale homogenization scheme leading to the effective permittivity tensor. Experimental measurements were performed at 10 GHz on bovine muscle, 30 hours after slaughter, thanks to the open-ended rectangular waveguide method. Results show a good agreement between measurements and simulated data.
Hearing aids' electromagnetic immunity to environmental RF fields
International Nuclear Information System (INIS)
Facta, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.
2004-01-01
In this work, the electromagnetic interference on hearing aids was evaluated. Electromagnetic (EM) immunity tests on different types of hearing aids were carried out, using signals of intensity and modulation comparable to those present in the environment. The purpose of this work is to characterise the interference, establishing the immunity threshold for different frequencies and finding out which types of hearing aids are more susceptible, and in which frequency range. The tests were carried out in a GTEM cell on seven hearing aids, using AM and GSM signals in the radiofrequency (RF) range. (authors)
International Nuclear Information System (INIS)
Denisov, V.I.; Krivchenkov, I.V.; Denisov, I.P.
2002-01-01
The study on the electromagnetic waves propagation in the neutron star magnetic dipole and gravitation fields, taking place according to the vacuum nonlinear electrodynamics laws, is carried out. It is shown that depending on the polarization the electromagnetic signals in this field propagate by different beams and with various velocities. The law on these signals motion by beams is established. The calculation of differences in the times of the electromagnetic signals propagation, having the same source up to the detector, is presented. It is shown that this difference in some cases may reach enough measurable value of 1 μs [ru
International Nuclear Information System (INIS)
Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li
2010-01-01
A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)
Evaluation Of Electromagnetic Fields For Frequencies 900 MHz-1 800 MHz In Tirana
Kuqi Dhurata; Malkaj Partizan; Kuka Shklqim; Kuqali Margarita; Hoxha Adhurim; Mulaj Tatjana; Goga Marjola; Dokuzi Hazbi
2015-01-01
Abstract The massive use of mobile phone as a communication tool nowadays is accompanied the ever increasing interest of the public and researchers for the possibly impact on human health as a result of exposure to the electromagnetic fields that accompany these devices. Therefore knowing the level of exposure electromagnetic fields of this electronic equipment has been and will be in the future interest object to the public and the subject of study for the researchers. In this paper are pres...
Combination transition radiation in a medium excited by an electromagnetic field
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.
1976-01-01
The radiation emitted by a uniformly moving charged particle in a medium excited by an electromagnetic field is considered by taking into account the interaction between the electromagnetic waves and optical phonon wave. The frequencies are found, in the vicinity of which the two-wave approximation should be applied in order to determine the radiation field. It is shown that in the vicinity of these frequencies the radiation considerably differs from the Cherenkov radiation
Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter
2009-03-31
AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields
Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse
International Nuclear Information System (INIS)
Milant'ev, V.P.; Turikov, V.A.
2006-01-01
In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done
Nuclear β decay with a massive neutrino in an external electromagnetic field
International Nuclear Information System (INIS)
Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.
1986-01-01
Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)
Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A
2009-12-01
Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.
The views of primary care physicians on health risks from electromagnetic fields
DEFF Research Database (Denmark)
Berg-Beckhoff, Gabi; Heyer, Kristina; Kowall, Bernd
2010-01-01
The aim of this study was to find out what primary care physicians in Germany think about the possible health risks of electromagnetic fields (EMF) and how they deal with this topic in discussions with patients.......The aim of this study was to find out what primary care physicians in Germany think about the possible health risks of electromagnetic fields (EMF) and how they deal with this topic in discussions with patients....
Lazetić, Bogosav
2003-01-01
The biosphere consists of all ecosystems of earth and is characterized by electromagnetic fields of different frequencies. Physics and natural sciences and disciplines are focused on their origin and characteristics. NATURAL ELECTROMAGNETIC FIELDS: There is a well defined idea that natural electromagnetic activity of the Earth's atmosphere throughout evolution led to appearance of electromagnetic homeostasis, i.e. maintenance of inner electromagnetic mileu. It can be supposed that during the evolution of living organisms natural electromagnetic fields were associated with biochemical processes and as a result of natural selection became an important information system and obligatory component of life. The results presented here show that there is no reason to doubt that natural electromagnetic fields are an important ecologic factor. On the contrary, we have to emphasize that natural electromagnetic environment is necessary for life on the Earth. Today intensity of artificial electromagnetic fields is ten to hundred times higher than of natural electromagnetic fields. Danger from electromagnetic fields is an acute and actual problem which increases knowing that there won't be a spot without artificial electromagnetic field on our planet.
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that ...
Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere
Kochetov, Andrey; Terina, Galina
Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J
Low-frequency electromagnetic radiation field interaction with cerebral nervous MT
International Nuclear Information System (INIS)
Gao Feng; Zhou Yi; Xiao Detao; Zhang Dengyu
2009-01-01
We investigate the interaction characteristics and mechanism of electromagnetic radiation field and cerebral nervous system. When the electromagnetic radiation is non-ionization low-frequency electromagnetic field, the two-state physical system in the cytoskeletal microtubule (MT) can be quantized. The state of information bits in cerebral neurons system is described by density matrix, and the system dynamics equation is established and solved. It indicates that when the brain is exposed to non-ionization low-frequency electromagnetic field, the density matrix non-opposite angle element of cerebral nervous qubit will never be zero, its quantum coherence characteristic can keep well, and the brain function will also be not damaged. (authors)
Electromagnetic field measurements in ULF-ELF-VLF [0.001 Hz─100 KHz] bands
Directory of Open Access Journals (Sweden)
C. Di Lorenzo
2008-01-01
Full Text Available We are reporting the technological and scientific objectives of the MEM project. The MEM project has been activated in the INGV Observatory of L'Aquila to create in Central Italy a network of observatories in order to monitoring the electromagnetic signals in the frequency band [0.001 Hz–100 kHz]. Some examples of the instrumentation developed in the frame of the project are reported. An innovative technique, based on the wide band interferometry is proposed to obtain detailed information concerning the several detected electromagnetic sources. Moreover, data from each station will be elaborated to investigate different sectors as the structure of ground electric conductibility, the electromagnetic phenomena connected with seismic activity, the separation of the electromagnetic fields originated in the Earth's interior and the electromagnetic phenomena originated in the magnetosphere, in the ionosphere and in the Earth-ionosphere cavity.
Mohammed, Touseef Ahmed Faisal
Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source
International Nuclear Information System (INIS)
Sreenivasan, P.R.
2014-01-01
Many researchers had suggested a sort of scaling procedure for predicting the quasi-static J–R curves from dynamic J–R curves obtained from instrumented Charpy V-notch (CVN) impact tests using key-curve, compliance or other procedures. Chaouadi, based on extensive tests and literature data, had quantitatively formalized the method and suggested general applicability of his method for a class of steels. In this paper, first, the Chauoadi-procedure is tried on some selected data from the literature (including the data used by Chaouadi and other workers) and an adaptation of the method is suggested using Wallin's as well as Landes's lower bound methods for upper-shelf J–R curve estimation from CVN energy. Using Chaouadi and other data as the benchmark, suitable scaling factors have been determined that enable estimation of quasi-static J–R curves from CVN energy alone, without the need for dynamic CVN J–R curves. The final formulae are given. This new method can be called modified Wallin–Landes procedure. Then this method is applied to fracture toughness and reference temperature (T 0 – ASTM E-1921) estimation from the full Charpy-transition data. The results are compared with those from the author's IGC-procedure, and modifications, if any, are suggested. Based on the new results, it is suggested that the IGC-procedure may be modified as: final T Q-est = T Q-IGC for T Q-Sch dy ≤ 20 °C (in the IGC-procedure the dividing temperature was 60 °C); and for T Q-Sch dy > 20 °C, T Q-IGC = T Q-WLm (different from the IGC-procedre and subscript WLm indicating modified Wallin–Landes procedure). For the 59 or more steels examined (including highly irradiated steels), the T Q-WL estimates at higher temperatures are consistent and conservative; a few non-conservative values are acceptably less than 20 °C, whereas other predictions show non-conservatism of up to 40–50 °C. At lower temperatures, T Q-IGC is consistently conservative and not over
An analysis of the electromagnetic field in multi-polar linear induction system
International Nuclear Information System (INIS)
Chervenkova, Todorka; Chervenkov, Atanas
2002-01-01
In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)
Żak, Arkadiusz
2014-01-01
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557
Huy, N.Q.
2010-01-01
Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance
A large deformation theory of solids subject to electromagnetic loads and its application
International Nuclear Information System (INIS)
Nishiguchi, I.; Sasaki, M.
1993-01-01
A large deformation theory of deformable solids is proposed in which the interaction with electromagnetic fields is taken into account. Weak forms of the Maxwell's equations in a fixed reference configuration together with the balance of momentum constitute the governing equations for our theory. The weak forms of the Maxwell's equations in a reference configuration can be derived by the direct transformation from spatial weak forms. The results coincide with the weak forms obtained from the local expressions by Lax and Nelson though we made a distinction between the covariant and contravariant vector explicitly. For the deformable body subject to the electromagnetic fields, weak forms of the Ampere's law and/or the Faraday's law, when combined with the weak form of the balance of momentum, can serve as the governing equations of the theory. As is known, however, these equations are not sufficient to describe the response of a specific material due to a given loading. As for the momentum balance, we need the dependency of stress on the deformation and objective constitutive equations of hyperelasticity, hypoelasticity and inelasticity are available. Parallel to these, objective constitutive equations for the electromagnetism are discussed. As an application of the theory, linearized equations for quasi-static deformation under magnetic field is derived based on the vector potential formulation. (author)
[The effect of electromagnetic fields on living organisms: plants, birds and animals].
Rochalska, Małgorzata
2007-01-01
Electromagnetic fields, constant and alternating, are a static element of the environment. They originate from both natural and man-made sources. Depending on the type of the field, its intensity and time of activity, they exert different effects on the natural world (plants and animals). Some animals utilize magnetic field of the earth for their own purposes.
Effects of electromagnetic field of 33 and 275 kv influences on ...
African Journals Online (AJOL)
user
2012-08-16
Aug 16, 2012 ... vacant land beneath high voltage transmission lines to grow leaf ... Studies on suitability of vegetables beneath power lines ... analysis. Electromagnetic field strength measurement. Electric field (kV/m) and magnetic field (mT) reading were taken at ..... faint extra band at Rf 0.09 in lanes 4 (30 m), 5 (40 m), 6.
Electromagnetic-field equations in the six-dimensional space-time R6
International Nuclear Information System (INIS)
Teli, M.T.; Palaskar, D.
1984-01-01
Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts
Simulation of Heat Transfer and Electromagnetic Fields of Protected Microcomputers
Directory of Open Access Journals (Sweden)
Josef Lakatos
2006-01-01
Full Text Available The paper presents results of collaboration between Department of mechatronics and electronics at University of Žilina and VÚVT Engineering a.s. Žilina in area of heat transfer simulations and disturbing electromagnetic radiation simulations in computer construction. The simulations results were used in development of protected microcomputer prototypes in frame of applied research at both of workplaces.
Electromagnetic Near Field Measurements of Two Critical Assemblies
Energy Technology Data Exchange (ETDEWEB)
Goettee, Jeffrey David
2015-11-03
The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.
Relativistic kinematics of the electromagnetic fields of a guided mode
International Nuclear Information System (INIS)
Rivlin, Lev A
2000-01-01
It is shown that during the observation of a wave in a waveguide from a comoving reference system travelling at a velocity equal to the group velocity of the wave, the wave propagation is halted and the electromagnetic energy contained in the waveguide proves to be stationary. The nonzero rest mass of the photons in the waveguide is equivalent to this rest energy and is identical with the rest mass measured in dynamic experiments. (laser applications and other topics in quantum electronics)