WorldWideScience

Sample records for quasi-one-dimensional frustrated antiferromagnet

  1. NMR relaxation rate in quasi one-dimensional antiferromagnets

    Science.gov (United States)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  2. A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs

  3. Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet

    Science.gov (United States)

    Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.

    Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.

  4. Specific heat study of quasi-one-dimensional antiferromagnetic model for an organic polymer chain

    International Nuclear Information System (INIS)

    Qu Shaohua; Zhu Lin

    2008-01-01

    The specific heat of an infinite one-dimensional polymer chain bearing periodically arranged side radicals connected to the even sites is studied by means of quantum transfer-matrix method based on a Ising-Heisenberg model. In the absence of the exchange interactions between side radicals and the main chain, the curves of specific heat show a round peak due to the antiferromagnetic excitations for the all antiferromagnetic interactions along the polymer chain. Considering the exchange interactions between the side radicals and the main chain, the curves of the specific heat show double-peak structure for ferromagnetic interactions between the radicals and main chain, indicating that a competition between ferromagnetic and antiferromagnetic interactions and the possibility of the occurrence of the stable ferrimagnetic state along the polymer chain

  5. Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain

    International Nuclear Information System (INIS)

    Wu, F; Wang, W Z

    2006-01-01

    Using the exact diagonalization technique, we study the properties of the ground state of a spin-1/2 antiferromagnetic Heisenberg model for a zigzag polymer chain with side radicals connected to the even sites. We consider the nearest-neighbour exchange J and the next-nearest-neighbour exchange αJ along the main chain, and J 1 between the even site on the main chain and the radical site. For small α the ground state is ferrimagnetic. For α>α c1 , the ground state is a spiral phase, which is characterized by a peak of the static structure factor S(q) locating at an incommensurate value q max . For α>α c2 , the ground state is antiferromagnetic. With increasing J 1 , α c1 decreases while α c2 has a maximum at about J 1 = 0.5. For very small J 1 and α = 0.5, the spin configuration on the main chain is a product of nearest-neighbour singlets. In the antiferromagnetic phase, if J 1 is large enough the even site and the radical site form a singlet with exchange-decoupling from the odd site while the odd sites approximately form an antiferromagnetic chain

  6. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    ,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...

  7. A neutron scattering study of the quasi-one-dimensional, dilute Ising-like antiferromagnet CsCo0.83Mg0.17Br3

    International Nuclear Information System (INIS)

    Rogge, R.B.; Gaulin, B.D.; Harrison, A.

    1992-01-01

    Neutron scattering measurements have been performed on a single crystal sample of CsCo 0.83 Mg 0.17 Br 3 , a quasi-one-dimensional, Ising-like antiferromagnet. Residual three-dimensional interactions between the dilute magnetic chains precipitate a phase transition to long range order at T N ∼ 8.5 K, and short range correlations persist as high as 40 K. Relatively high energy inelastic scattering from both ''bulk'' spin wave modes and ''end'' modes is observed from the finite chains. The low energy inelastic spectrum is dominated by soliton scattering due to anti-phase domain walls propagating along the finite chains

  8. Observation of non-linear effects in a quasi-one-dimensional antiferromagnet: magnetic excitations in CsVCl sub 3

    CERN Document Server

    Inami, T; Tanaka, H

    1997-01-01

    The spin dynamics of the hexagonal ABX sub 3 -type quasi-one-dimensional antiferromagnet CsVCl sub 3 is investigated by means of an inelastic neutron scattering technique. In good qualitative agreement with a recent spin-wave calculation including higher-order terms, a large scattering cross-section arising from two-magnon excitations is observed at the one-dimensional antiferromagnetic zone centre. In addition, we measured spin-wave excitations between the chains precisely and revealed that the spin-wave dispersion curves are modified in energy and in intensity on account of the anticrossing between the one-magnon branches and two-magnon continuum. These results demonstrate that anharmonic terms are important in the spin dynamics of CsVCl sub 3 even at low temperatures. We also measured the temperature dependence of the magnetic excitations and found that far above the Neel temperature the two-magnon process gives a considerable contribution to the inelastic spectrum. (author)

  9. Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects

    Science.gov (United States)

    Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.

    2014-07-01

    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.

  10. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo_2V_2O_8

    International Nuclear Information System (INIS)

    Liu Juan-Juan; Wang Jin-Chen; Luo Wei; Sheng Jie-Ming; Bao Wei; He Zhang-Zhen; Danilkin, S. A.

    2016-01-01

    The magnetic structure of the spin-chain antiferromagnet SrCo_2V2O_8 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature T_N = 4.96 K. The moment of 2.16μ_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo_2V_2O_8 warrants SrCo_2V_2O_8 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism. (paper)

  11. Characterization of quasi-one-dimensional S=1/2 Heisenberg antiferromagnets Sr2Cu(PO4)2 and Ba2Cu(PO4)2 with magnetic susceptibility, specific heat, and thermal analysis

    International Nuclear Information System (INIS)

    Belik, A.A.; Azuma, M.; Takano, M.

    2004-01-01

    Properties of Sr 2 Cu(PO 4 ) 2 and Ba 2 Cu(PO 4 ) 2 having [Cu(PO 4 ) 2 ] ∞ linear chains in their structures with Cu-O-P-O-Cu linkages were studied by magnetic susceptibility (T=2-400 K, H=100 Oe) and specific heat measurements (T=0.45-21 K). Magnetic susceptibility versus temperature curves, χ(T), showed broad maxima at T M =92 K for Sr 2 Cu(PO 4 ) 2 and T M =82 K for Ba 2 Cu(PO 4 ) 2 characteristic of quasi-one-dimensional systems. The χ(T) data were excellently fitted by the spin susceptibility curve for the uniform S=1/2 chain (plus temperature-independent and Curie-Weiss terms) with g=2.153(4) and J/k B =143.6(2) K for Sr 2 Cu(PO 4 ) 2 and g=2.073(4) and J/k B =132.16(9) K for Ba 2 Cu(PO 4 ) 2 (Hamiltonian H=JΣS i S i+1 ). The similar J/k B values were obtained from the specific heat data. No anomaly was observed on the specific heat from 0.45 to 21 K for both compounds indicating that the temperatures of long-range magnetic ordering, T N , were below 0.45 K. Sr 2 Cu(PO 4 ) 2 and Ba 2 Cu(PO 4 ) 2 are an excellent physical realization of the S=1/2 linear chain Heisenberg antiferromagnet with k B T N /J 2 CuO 3 (k B T N /J∼0.25%) and γ-LiV 2 O 5 (k B T N /J 2 Cu(PO 4 ) 2 and Ba 2 Cu(PO 4 ) 2 were stable in air up to 1280 and 1150 K, respectively

  12. Magnetic structure and dispersion relation of the S =1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8 in a transverse magnetic field

    Science.gov (United States)

    Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.

    2017-07-01

    BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.

  13. Plasma properties of quasi-one-dimensional ring

    CERN Document Server

    Shmelev, G M

    2001-01-01

    The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy

  14. Quasi-one-dimensional scattering in a discrete model

    DEFF Research Database (Denmark)

    Valiente, Manuel; Mølmer, Klaus

    2011-01-01

    We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...

  15. Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors

    DEFF Research Database (Denmark)

    Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.

    2003-01-01

    The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....

  16. Quasi-One-Dimensional Intermittent Flux Behavior in Superconducting Films

    Directory of Open Access Journals (Sweden)

    A. J. Qviller

    2012-01-01

    Full Text Available Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching avalanches that are commonly found in superconducting films.

  17. Quasi-one-dimensional intermittent flux behavior in superconducting films

    OpenAIRE

    Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.; Vestgården, J. I.; Mozhaev, Peter; Hansen, Jørn Bindslev; Johansen, T. H.

    2012-01-01

    Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a ...

  18. Quasi-one-dimensional metals on semiconductor surfaces with defects

    International Nuclear Information System (INIS)

    Hasegawa, Shuji

    2010-01-01

    Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.

  19. The quantum flux in quasis one-dimensional conductors

    International Nuclear Information System (INIS)

    Ventura, J.

    1989-01-01

    A method is presented which quantizes electromagnetic fluxes directly in flux space. It is based on the commutation law [φ B , φ E ] = i, where φ B is the magnetic flux, and φ E the longitudinal electric flux of a quasi one-dimensional conductor. The relevance of such a method for the description of the quantized Hall plateaus is discussed. In a second step, the polarization electric flux is introduced, together with a method for quantization of hybrid variables formed with pure electromagnetic fluxes plus electronic variables. (author) [pt

  20. Shell-crossing in quasi-one-dimensional flow

    Science.gov (United States)

    Rampf, Cornelius; Frisch, Uriel

    2017-10-01

    Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the density singular. Shell-crossing is well understood in one dimension (1D), but not in higher dimensions. This paper is about quasi-one-dimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shell-crossing using the Euler-Poisson equations written in Lagrangian coordinates. The signature of shell-crossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence, the problem of the first shell-crossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Here, all-order recursion relations are obtained for the time-Taylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shell-crossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time τ ˜ t2/3. For simplicity, calculations are restricted to an Einstein-de Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.

  1. Neutron scattering and μSR investigations of quasi-one-dimensional magnetism in the spin =3/2 compound Li3RuO4

    DEFF Research Database (Denmark)

    Manuel, P.; Adroja, D. T.; Lindgård, Per-Anker

    2011-01-01

    The S = 3/2, quasi-one-dimensional (1D) zig-zag chain Heisenberg antiferromagnet Li3RuO4 has been investigated using heat capacity, inelastic neutron scattering, neutron diffraction, and μSR measurements on a powder sample. Our neutron diffraction and μSR studies confirm a long-range ordering of ...

  2. Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yuto [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Matsushita, Yoshitaka [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Oda, Migaku; Yoshida, Hiroyuki [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-02-15

    Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by a weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.

  3. Magnetocaloric properties of a frustrated Blume-Capel antiferromagnet

    Directory of Open Access Journals (Sweden)

    Žukovič Milan

    2014-07-01

    Full Text Available Low-temperature magnetization processes and magnetocaloric properties of a geometrically frustrated spin-1 Blume-Capel model on a triangular lattice are studied by Monte Carlo simulations. The model is found to display qualitatively different behavior depending on the sign of the single-ion anisotropy D. For positive values of D we observe two magnetization plateaus, similar to the spin-1/2 Ising antiferromagnet, and negative isothermal entropy changes for any field intensity. For a range of small negative values of D there are four magnetization plateaus and the entropy changes can be either negative or positive, depending on the field. If D is negative but large in absolute value then the entropy changes are solely positive.

  4. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  5. Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics

    CERN Document Server

    Abdulloev, K O

    1999-01-01

    The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)

  6. Effects of interfacial frustration in ferromagnet/antiferromagnet bilayers

    Science.gov (United States)

    Urazhdin, Sergei; Ma, Tianyu

    While the ferromagnet (F)/antiferromagnet (AF) bilayers have been extensively studied in the context of exchange bias, and more recently in the context of antiferromagnetic spintronics, the fundamental understanding of the nature of the magnetic state in this system is still a subject a debate. We will present measurements of magnetization aging in several F/AF systems based on AF=FeMn, CoO, and NiO, universally observed in all of these systems when AF layers are sufficiently thin. Quite generally, the aging curves are well-described by the power law with a small exponent. We show that the aging characteristics such as the dependence on temperature and the magnetic history are inconsistent with the Arrhenius activation, disproving the granular models of exchange bias. Furthermore, we show that the aging characteristics qualitatively change across the exchange bias blocking temperature, demonstrating that the latter is similar to the glass transition temperature, and is not simply of a characteristic activation temperature of the AF domains. We discuss the our findings in the context of frustration due to the random effective exchange field at the F/AF interface. supported by NSF DMR.

  7. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    2008-01-01

    It is proved that for general, not necessarily periodic, quasi one-dimensional systems the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one-dimensional systems, and this proves the strong Marzari-Vanderbilt conjecture. If the system has some translation symmetries (e.g. usual translations, screw...

  8. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    It is proved that for general, not necessarily periodic quasi one dimensional systems, the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one dimensional systems. If the system has some translation symmetries (e.g. usual translations, screw transformations), they are "inherited" bythe Wannier basis....

  9. Spin-zero sound in one- and quasi-one-dimensional 3He

    International Nuclear Information System (INIS)

    Hernandez, E.S.

    2002-01-01

    The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension

  10. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....

  11. State switching kinetics for quasi-one-dimensional nanosystems: Effects of Finite length and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2017-01-15

    The state switching in an extended quasi-one-dimensional material is modeled by the stochastic formation of local new-state nuclei and their subsequent growth along the system axis. An analytical approach is developed to describe the influence of defects, dividing a sample into an ensemble of finite-length segments, on its state switching kinetics. As applied to magnetic systems, the method makes it possible to calculate magnetization curves for different defect concentrations and parameters of material.

  12. Quasi-one-dimensional Hall physics in the Harper–Hofstadter–Mott model

    Science.gov (United States)

    Kozarski, Filip; Hügel, Dario; Pollet, Lode

    2018-04-01

    We study the ground-state phase diagram of the strongly interacting Harper–Hofstadter–Mott model at quarter flux on a quasi-one-dimensional lattice consisting of a single magnetic flux quantum in y-direction. In addition to superfluid phases with various density patterns, the ground-state phase diagram features quasi-one-dimensional analogs of fractional quantum Hall phases at fillings ν = 1/2 and 3/2, where the latter is only found thanks to the hopping anisotropy and the quasi-one-dimensional geometry. At integer fillings—where in the full two-dimensional system the ground-state is expected to be gapless—we observe gapped non-degenerate ground-states: at ν = 1 it shows an odd ‘fermionic’ Hall conductance, while the Hall response at ν = 2 consists of the transverse transport of a single particle–hole pair, resulting in a net zero Hall conductance. The results are obtained by exact diagonalization and in the reciprocal mean-field approximation.

  13. A quasi-one-dimensional model for the Giacobini-Zinner plasma tail

    International Nuclear Information System (INIS)

    Malara, F.; Einaudi, G.; Mangeney, A.

    1989-01-01

    An assumption of quasi-one-dimensionality is used to derive a simple set of equations describing the comet Giacobini-Zinner tail configuration. The MHD equations are expanded in terms of a parameter representing the ratio of the length scale in the direction perpendicular to the neutral sheet over the length scale in the direction parallel to the tail. It is shown that in this way it is possible to obtain much information on the structure of the tail and to fit reasonably well the observations made by the ICE spacecraft

  14. Electron energy-loss spectroscopy of quasi-one-dimensional cuprates and vanadates

    International Nuclear Information System (INIS)

    Atzkern, S.

    2001-01-01

    In a combination of experimental and theoretical methods in this thesis the electronic structures of quasi-one-dimensional cuprates and vanadates were studied. For this the momentum-dependent loss function was measured by means of the electron energy-loss spectroscopy in transmission on monocrystals of Li 2 CuO 2 , CuGeO 3 , V 2 O 5 and α'-NaVO 5 . The comparison of the experimental data with results from band-structure and cluster calculations allowed conclusions on the mobility and correlations of the electrons in these systems

  15. Quasi-one-dimensional electron transport over the surface of a liquid-helium film

    International Nuclear Information System (INIS)

    Sokolov, Sviatoslav; Studart, Nelson

    2003-01-01

    Quasi-one-dimensional mobility of surface electrons over a liquid-helium suspended film is studied for a conducting channel. The electron mobility is calculated taking into account the electron scattering by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate both in one-electron regime and in the so-called complete-control limit where the influence of inter-electron collisions on the electron distribution function is taken into account. It is shown that the mobility for low temperatures is dominated by the surface-defect scattering and its temperature dependence is essentially different from that of the electron-ripplon scattering

  16. Quasi-One-Dimensional Particle-in-Cell Simulation of Magnetic Nozzles

    Science.gov (United States)

    Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.

    2015-01-01

    A method for the quasi-one-dimensional simulation of magnetic nozzles is presented and simulations of a magnetic nozzle are performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration are investigated. Magnetic field forces acting on the electrons are found to be responsible for the formation of potential structures which accelerate ions. The effects of the plasma density variation alone are found to only weakly affect ion acceleration. Strongly diverging magnetic fields drive more rapid potential drops.

  17. Effects of weak localization in quasi-one-dimensional electronic system over liquid helium

    CERN Document Server

    Kovdrya, Y Z; Gladchenko, S P

    2001-01-01

    One measured rho sub x sub x magnetoresistance of a quasi-one-dimensional electronic system over liquid helium within gas scattering range (1.3-2.0 K temperature range). It is shown that with increase of magnetic field the magnetoresistance is reduced at first and them upon passing over minimum it begins to increase from rho sub x sub x approx B sup 2 law. One anticipated that the negative magnetoresistance detected in the course of experiments resulted from the effects of weak localization. The experiment results are in qualitative conformity with the theoretical model describing processes of weak localization in single-dimensional nondegenerate electronic systems

  18. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2017-09-01

    Full Text Available Based on the density functional theory combined with the nonequilibrium Green’s function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs and the composite of AGNRs and single walled carbon nanotubes (SWCNTs were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6 increases in the presence of the wrinkle, which is opposite to that of AGNR(5 and AGNR(7. The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  19. The electronic structure of quasi-one-dimensional disordered systems with parallel multi-chains

    International Nuclear Information System (INIS)

    Liu Xiaoliang; Xu Hui; Deng Chaosheng; Ma Songshan

    2006-01-01

    For the quasi-one-dimensional disordered systems with parallel multi-chains, taking a special method to code the sites and just considering the nearest-neighbor hopping integral, we write the systems' Hamiltonians as precisely symmetric matrixes, which can be transformed into three diagonally symmetric matrixes by using the Householder transformation. The densities of states, the localization lengths and the conductance of the systems are calculated numerically using the minus eigenvalue theory and the transfer matrix method. From the results of quasi-one-dimensional disordered systems with varied chains, we find, the energy band of the systems extends slightly, the energy gaps are observed and the distribution of the density of states changes obviously with the increase of the dimensionality. Especially, for the systems with four, five or six chains, at the energy band center, there exist extended states whose localization lengths are greater than the size of the systems, accordingly, there having great conductance. With the increasing of the number of the chains, the correlated ranges expand and the systems present the similar behavior to that with off-diagonal long-range correlation

  20. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    Science.gov (United States)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  1. Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7

    DEFF Research Database (Denmark)

    Gaulin, B.D.; Reimers, J.N.; Mason, T.E.

    1992-01-01

    The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...

  2. Defects in quasi-one dimensional oxide conductors: K0.3MoO3

    International Nuclear Information System (INIS)

    Smith, K.E.; Breuer, K.; Goldberg, D.; Greenblatt, M.; McCarroll, W.; Hulbert, S.L.

    1995-01-01

    The electronic structure of the prototypical quasi-one dimensional (ID) conductor K 0.3 MoO 3 has been studied using high resolution photoemission spectroscopy. In particular, the electronic structure of defects was investigated in order to understand the mechanism for charge density wave pinning and destruction of the Peierls transition. Defects were found to radically alter the electronic structure close to the Fermi level (E F ), thus strongly modifying the structure of the Fermi surface. While a low emission intensity at E F has been interpreted as evidence for a Luttinger liquid ground state in a 1D metal, the authors show that non-stoichiometric surfaces lead to similar effects. The nature of the ground state is discussed in the context of these results

  3. Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

    Science.gov (United States)

    Wang, Chong; Yu, Daiwei; Liu, Xiaoqiang; Chen, Rongyan; Du, Xinyu; Hu, Biaoyan; Wang, Lichen; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi; Feng, Ji; Wang, Nanlin; Li, Yuan

    2017-08-01

    We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) "quadrumerization" of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.

  4. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

    DEFF Research Database (Denmark)

    Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole

    2014-01-01

    We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...

  5. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  6. Magnetotransport in a quasi-one-dimensional electron system over superfluid helium

    CERN Document Server

    Nikolaenko, V A; Gladchenko, S P

    2002-01-01

    Magnetotransport in a nondegenerate quasi-one-dimensional electron system (Q1D) over superfluid helium is investigated experimentally. The experiments were carried out at perpendicular magnetic fields, B 0.9 K) and the electron-ripplon scattering (T 1(here omega sub c is the cyclotron frequency and t is the relaxation time of the electron system) agree qualitatively with the self-consistent Born approximation theory for a 2D electron system over helium. It is supposed that the quantitative discrepancies in the experimental and theoretical data are connected with different peculiar features of the investigated and analyzed electron systems. The experimental data on electron mobility at low temperatures and small magnetic fields coincide with the theoretical calculation made for the Q1D system. The negative magnetoresistance of the channels observed both in the electron-gas scattering and electron-ripplon scattering regions is supposed to be due to weak localization of carriers in the investigated electron syst...

  7. Topological superconductor in quasi-one-dimensional Tl2 -xMo6Se6

    Science.gov (United States)

    Huang, Shin-Ming; Hsu, Chuang-Han; Xu, Su-Yang; Lee, Chi-Cheng; Shiau, Shiue-Yuan; Lin, Hsin; Bansil, Arun

    2018-01-01

    We propose that the quasi-one-dimensional molybdenum selenide compound Tl2 -xMo6Se6 is a time-reversal-invariant topological superconductor induced by intersublattice pairing, even in the absence of spin-orbit coupling (SOC). No noticeable change in superconductivity is observed in Tl-deficient (0 ≤x ≤0.1 ) compounds. At weak SOC, the superconductor prefers the triplet d vector lying perpendicular to the chain direction and two-dimensional E2 u symmetry, which is driven to a nematic order by spontaneous rotation symmetry breaking. The locking energy of the d vector is estimated to be weak and hence the proof of its direction would rely on tunneling or phase-sensitive measurements.

  8. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    Science.gov (United States)

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  9. Solitons and polarons in quasi-one dimensional conducting polymers and related materials

    International Nuclear Information System (INIS)

    Campbell, D.K.

    1983-01-01

    In recent years it has become increasingly appreciated that fundamentally nonlinear excitations - solitons - play an essential role in an incredible variety of natural systems. These solitons, which frequently exhibit remarkable stability under interactions and perturbations, often dominate the transport, response, or structural properties of the systems in which they occur. In this article, we present an introduction to the solitons that occur in quasi-one-dimensional conducting polymers (synmetals) and related systems. The relevance of this subject to molecular electronic devices is twofold. First, many of these materials have molecular structures similar to possible prototype molecular switches. Second, to understand in detail how a molecular electronic device could work, it is essential to have a broad perspective on the nature of possible excitations in a variety of natural and synthetic molecular materials. 51 references

  10. Polyacene and a new class of quasi-one-dimensional conductors

    International Nuclear Information System (INIS)

    Kivelson, S.; Chapman, O.L.

    1983-01-01

    Most one-dimensional conductors are quite similar since the Fermi surface is a point and the electron energy dispersion relation near the Fermi surface is linear. It is pointed out that in polyacene the Fermi surface lies at the edge of the Brillouin zone, but that an accidental degeneracy between the valence and conduction bands makes it metallic nonetheless. The dispersion relation is therefore quadratic, and the density of states diverges at the Fermi surface. Thus, polyacene [(C 4 H 2 )/sub n/] and its possible derivatives represent a conceptually new class of quasi-one-dimensional conductors. Moreover, we find that this class of materials has the possibility of possessing interesting condensed phases including high-temperature superconductivity and ferromagnetism

  11. Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip

    International Nuclear Information System (INIS)

    Cador, Olivier; Gatteschi, Dante; Sessoli, Roberta; Barra, Anne-Laure; Timco, Grigore A.; Winpenny, Richard E.P.

    2005-01-01

    The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site

  12. Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip

    Energy Technology Data Exchange (ETDEWEB)

    Cador, Olivier [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Gatteschi, Dante [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Sessoli, Roberta [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy)]. E-mail: roberta.sessoli@unifi.it; Barra, Anne-Laure [Laboratoire des Champs Magnetiques Intenses-CNRS, F-38042 Grenoble Cede 9 (France); Timco, Grigore A. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Winpenny, Richard E.P. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2005-04-15

    The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site.

  13. Ordering kinetics in quasi-one-dimensional Ising-like systems

    International Nuclear Information System (INIS)

    Mueller, M.; Paul, W.

    1993-01-01

    Results are presented of a Monte Carlo simulation of the kinetics of ordering in the two-dimensional nearest-neighbor Ising model in an L x M geometry with two free boundaries of length M much-gt L. This model can be viewed as representing an adsorbant on a stepped surface with mean terrace width L. The authors follow the ordering kinetics after quenches to temperatures 0.25 ≤T/T c ≤1 starting from a random initial configuration at a coverage of Θ=0.5 in the corresponding lattice gas picture. The systems evolve in time according to a Glauber kinetics with nonconserved order parameter. The equilibrium structure is given by a one-dimensional sequence of ordered domains. The ordering process evolves from a short initial two-dimensional ordering process through a crossover region to a quasi-one-dimensional behavior. The whole process is diffusive (inverse half-width of the structure factor peak 1/Δq parallel ∝ √t), in contrast to a model proposed by Kawasaki et al., where an intermediate logarithmic growth law is expected. All results are completely describable in the picture of an annihilating random walk (ARW) of domain walls. 36 refs., 16 figs

  14. Unconventional Andreev reflection on the quasi-one-dimensional superconductor Nb2PdxSe5

    Directory of Open Access Journals (Sweden)

    Yeping Jiang

    2016-04-01

    Full Text Available We have carried out Andreev reflection measurements on point contact junctions between normal metal and single crystals of the quasi-one-dimensional (Q1D superconductor Nb2PdxSe5 (Tc ∼ 5.5 K. The contacts of the junctions were made on either self-cleaved surfaces or crystal edges so that the current flow directions in the two types of junctions are different, and the measurements provide a directional probe for the order parameter of the superconductor. Junctions made in both configurations show typical resistances of ∼20-30 Ohms, and a clear double-gap Andreev reflection feature was consistently observed at low temperatures. Quantitative analysis of the conductance spectrum based on a modified Blonder-Tinkham-Klapwijk (BTK model suggests that the amplitudes of two order parameters may have angular dependence in the a-c plane. Moreover, the gap to transition temperature ratio (Δ/TC for the larger gap is substantially higher than the BCS ratio expected for phonon-mediated s-wave superconductors. We argue that the anisotropic superconducting order parameter and the extremely large gap to transition temperature ratio may be associated with an unconventional pairing mechanism in the inorganic Q1D superconductor.

  15. Magnetotransport in a quasi-one-dimensional electron system over superfluid helium

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Kovdrya, Yu.Z.; Gladchenko, S.P.

    2002-01-01

    Magnetotransport in a nondegenerate quasi-one-dimensional electron system (Q1D) over superfluid helium is investigated experimentally. The experiments were carried out at perpendicular magnetic fields, B xx of the conducting channels mainly grows with increasing B for both the electron-gas atom scattering (T > 0.9 K) and the electron-ripplon scattering (T c τ>1(here ω c is the cyclotron frequency and t is the relaxation time of the electron system) agree qualitatively with the self-consistent Born approximation theory for a 2D electron system over helium. It is supposed that the quantitative discrepancies in the experimental and theoretical data are connected with different peculiar features of the investigated and analyzed electron systems. The experimental data on electron mobility at low temperatures and small magnetic fields coincide with the theoretical calculation made for the Q1D system. The negative magnetoresistance of the channels observed both in the electron-gas scattering and electron-ripplon scattering regions is supposed to be due to weak localization of carriers in the investigated electron system

  16. Metal-Insulator Phase Transition in Quasi-One-Dimensional VO2 Structures

    Directory of Open Access Journals (Sweden)

    Woong-Ki Hong

    2015-01-01

    Full Text Available The metal-insulator transition (MIT in strongly correlated oxides has attracted considerable attention from both theoretical and experimental researchers. Among the strongly correlated oxides, vanadium dioxide (VO2 has been extensively studied in the last decade because of a sharp, reversible change in its optical, electrical, and magnetic properties at approximately 341 K, which would be possible and promising to develop functional devices with advanced technology by utilizing MITs. However, taking the step towards successful commercialization requires the comprehensive understanding of MIT mechanisms, enabling us to manipulate the nature of transitions. In this regard, recently, quasi-one-dimensional (quasi-1D VO2 structures have been intensively investigated due to their attractive geometry and unique physical properties to observe new aspects of transitions compared with their bulk counterparts. Thus, in this review, we will address recent research progress in the development of various approaches for the modification of MITs in quasi-1D VO2 structures. Furthermore, we will review recent studies on realizing novel functional devices based on quasi-1D VO2 structures for a wide range of applications, such as a gas sensor, a flexible strain sensor, an electrical switch, a thermal memory, and a nonvolatile electrical memory with multiple resistance.

  17. Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3

    Science.gov (United States)

    Sakuma, Tasuku; Nishino, Shunsuke; Miyata, Masanobu; Koyano, Mikio

    2018-06-01

    Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3 ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K-1 m-1 along the one-dimensional direction ( b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = -530 μV K-1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.

  18. Quasi-one-dimensional density of states in a single quantum ring.

    Science.gov (United States)

    Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong

    2017-01-05

    Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.

  19. Collective ratchet effects and reversals for active matter particles on quasi-one-dimensional asymmetric substrates.

    Science.gov (United States)

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-10-19

    Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.

  20. Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.

    Science.gov (United States)

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua

    2017-07-01

    We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.

  1. Two dimensionality in quasi-one-dimensional cobalt oxides confirmed by muon-spin spectroscopy

    International Nuclear Information System (INIS)

    Sugiyama, J.; Nozaki, H.; Ikedo, Y.; Mukai, K.; Andreica, D.; Amato, A.; Brewer, J.H.; Ansaldo, E.J.; Morris, G.D.; Takami, T.; Ikuta, H.

    2007-01-01

    The quasi-one-dimensional (Q1D) cobalt oxides, A n+2 Co n+1 O 3n+3 (A=Ca, Sr and Ba, n=1-∼), were investigated by muon-spin spectroscopy under applied pressures of up to 1.1GPa. The relationship between the onset Neel temperature T N on and the inter-chain distance (d ic ), which increases monotonically with n, is well fitted by the formula T N /T N,0 =(1-d ic /d ic,0 ) β . The T N on -d ic curve also predicts a large P dependence of T N for the compounds with n>=5, i.e., in the vicinity of d ic,0 , while the n=1-4 compounds show only a very small effect. Indeed, our high-pressure μ + SR results show that T N of BaCoO 3 (n=∼) is enhanced by P, with a slope of 2.1 K/GPa, whereas no detectable changes between ambient pressure and 1.0 GPa for both Ca 3 Co 2 O 6 (n=1) and Sr 4 Co 3 O 9 (n=2). This clearly confirms the role of the 2D-AF interaction on T N on in the Q1D cobalt oxides

  2. Magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity

    International Nuclear Information System (INIS)

    Zhang, Chuanyi; Zhang, Weifeng

    2015-01-01

    We theoretically study the magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity. A critical magnetic field is obtained, and the bistability appears if a magnetic field is greater than the critical value. For a positive energy detuning of the pump from the bare exciton polaritons, one bistability loop first emerges, then it divides into two loops, and finally one of them vanishes with the increasing magnetic field. This phenomenon originates from the magnetic-field modulated interactions for opposite spins. In the variational process, there are two important effects: one is a logic gate with a small variation of the excitation laser, and the other is a spin texture like skyrmion and this texture is periodic if the energy detuning varies periodically in real space, which is useful for designing the spin-dependent optoelectronic devices. - Highlights: • We study the bistability induced by a magnetic field in a microcavity. • One bistability loop can divide into two, and then the two loops return to one. • A spin texture like skyrmion and logic gate arise in the variation of bistability loop

  3. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    Science.gov (United States)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  4. Colloid-Colloid Hydrodynamic Interaction Around a Bend in a Quasi-One-Dimensional Channel

    Science.gov (United States)

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Lin, Binhua; Rice, Stuart

    We report a study of the correlation between a pair of particles in a colloid suspension in a bent quasi-one-dimensional (q1d) channel as a function of bend angle. As the bend angle becomes more acute, we observe an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. Further, we observe that the peak value of D12, the coupling term in the pair diffusion tensor that characterizes the effect of the motion of particle 1 on particle 2, coincides with the first peak in the pair correlation function, and that the pair separation dependence of D12 mimics that of the pair correlation function. We show that the observed behavior is a consequence of the geometric constraints imposed by the single-file requirement that the particle centers lie on the centerline of the channel and the requirement that the hydrodynamic flow must follow the channel around the bend. We find that the correlation between a pair of particles in a colloidal suspension in a bent q1D channel has the same functional dependence on the pair correlation function as in a straight q1D channel when measured in a coordinate system that follows the centerline of the bent channel. NSF MRSEC (DMR-1420709), Dreyfus Foundation (SI-14-014).

  5. Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3

    Science.gov (United States)

    Sakuma, Tasuku; Nishino, Shunsuke; Miyata, Masanobu; Koyano, Mikio

    2018-02-01

    Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K-1 m-1 along the one-dimensional direction (b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = -530 μV K-1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.

  6. Frustrated antiferromagnets at high fields: Bose-Einstein condensation in degenerate spectra

    International Nuclear Information System (INIS)

    Jackeli, G.; Zhitomirsky, M.E.

    2004-01-01

    Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the J 1 -J 2 frustrated square-lattice antiferromagnet with J 2 =(1/2)J 1 and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into a partially magnetized state is treated via a mapping to a dilute gas of hard-core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave vectors at (π,π) and (π,0,0) for the two models. We predict a unique form for the magnetization curve ΔM=S-M≅μ (d-1)/2 (logμ) (d-1) , where μ is a distance from the quantum critical point

  7. Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In

    Science.gov (United States)

    Sala, G.; Mašková, S.; Stone, M. B.

    2017-10-01

    We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.

  8. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    Directory of Open Access Journals (Sweden)

    Borovský Michal

    2016-01-01

    Full Text Available The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1. The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  9. Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Claessen, R.; Sing, M.; Schwingenschlogl, U.

    2002-01-01

    The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto...

  10. Quasi-one-dimensional magnetic behaviour of the Ising system CsFeCl3.2aq

    NARCIS (Netherlands)

    Kopinga, K.; Steiner, M.; Jonge, de W.J.M.

    1985-01-01

    The magnetic behaviour of the quasi-one-dimensional system CsFeCl3.2aq(aq=H2O, D2O) has been investigated by heat capacity measurements, quasi-elastic neutron scattering and spin-cluster resonance. the experiments demonstrate that below 25K the compound is a very good realisation of an (S=1/2) Ising

  11. NMR studies at high magnetic fields of LiVGe_2O_6, a quasi one-dimensional spin S=1 system

    Science.gov (United States)

    Vonlanthen, P.; Tanaka, K. B.; Clark, W. G.; Gavilano, J. L.; Ott, H. R.; Millet, P.; Mila, F.; Kuhns, P.; Reyes, A. P.; Moulton, W. G.

    2001-03-01

    We report ^7Li NMR studies of LiVGe_2O_6, a quasi one-dimensional spin S=1 system. Our measurements include NMR spectra, the spin-lattice relaxation rate, T_1-1, and the spin-spin relaxation rate, T_2-1, obtained at magnetic fields (B) of 9 and 23 T and temperatures (T) over the range 1.8 - 300 K. The 9 T NMR spectra show a continuous transfer of spectral weight from a paramagnetic phase to an antiferromagnetic one in a narrow temperature range of about 2 K around the transition temperature TN ≈ 25 K. Both phases coexist in this range. Below 10 K, well into the antiferromagnetic phase, the T_1-1 measurements are consistent with electron spin excitations across an energy gap (Δ) with Δ/k_B≈ 14 K at 9 T and 11 K at about 23 T; i.e., applying a large B slightly reduces Δ. Changing B from 9 to 23 T increases TN by 1 K. Thus, TN is influenced only marginally by B up to 23 Tesla. The UCLA part of the work was supported by NSF Grants DMR-9705369 and DMR-0072524.

  12. Quantitative study of quasi-one-dimensional Bose gas experiments via the stochastic Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Cockburn, S. P.; Gallucci, D.; Proukakis, N. P.

    2011-01-01

    The stochastic Gross-Pitaevskii equation is shown to be an excellent model for quasi-one-dimensional Bose gas experiments, accurately reproducing the in situ density profiles recently obtained in the experiments of Trebbia et al.[Phys. Rev. Lett. 97, 250403 (2006)] and van Amerongen et al.[Phys. Rev. Lett. 100, 090402 (2008)] and the density fluctuation data reported by Armijo et al.[Phys. Rev. Lett. 105, 230402 (2010)]. To facilitate such agreement, we propose and implement a quasi-one-dimensional extension to the one-dimensional stochastic Gross-Pitaevskii equation for the low-energy, axial modes, while atoms in excited transverse modes are treated as independent ideal Bose gases.

  13. Quantum-chemical studies of quasi-one-dimensional electron systems. Part 2. Cumulenes and origin of the forbidden zone

    Directory of Open Access Journals (Sweden)

    Yuriy Kruglyak

    2015-06-01

    Full Text Available This review is devoted to the basic problem in quantum theory of quasi-one-dimensional electron systems like polyenes (Part 1 and cumulenes (Part 2 – physical origin of the forbidden zone in these and analogous 1D electron systems due to two possible effects – Peierls instability (bond alternation and Mott instability (electron correlation. Both possible contradiction and coexistence of the Mott and Peierls instabilities are summerized on the basis of the Kiev quantum chemistry team research projects.

  14. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    Science.gov (United States)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  15. 133Cs NMR investigation of 2D frustrated Heisenberg antiferromagnet, Cs2CuCl4

    Science.gov (United States)

    Vachon, M.-A.; Kundhikanjana, W.; Straub, A.; Mitrovic, V. F.; Reyes, A. P.; Kuhns, P.; Coldea, R.; Tylczynski, Z.

    2006-10-01

    We report 133Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs2CuCl4 down to 2 K and up to 15 T. We show that 133Cs NMR is a good probe of the magnetic degrees of freedom in this material. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (\\skew3\\hat{b} axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.

  16. Direct evidence of spin frustration in the fcc antiferromagnet NiS sub 2

    CERN Document Server

    Matsuura, M; Endoh, Y; Hirota, K; Yamada, K

    2002-01-01

    NiS sub 2 is a well-known Mott insulator with anomalous antiferromagnetic long-range order of coexistent type I (Q sub M =(1,0,0), T sub N sub 1 =40 K) and type II (Q sub M =(1/2,1/2,1/2), T sub N sub 2 =30 K). Extensive neutron-scattering measurements reveal that magnetism in NiS sub 2 is governed by geometrical spin frustration, resulting in magnetic diffuse scattering extending along the fcc zone boundary. Although the diffuse scattering exists at temperatures as high as 250 K (6T sub N sub 1), it disappears rapidly below T sub N sub 2 , associated with minor crystal distortion. We observed a clear energy gap in addition to the low-energy spin-wave excitation at significantly below 30 K, and obtain evidence that degeneracy due to the coexistence of the two types of antiferromagnetism is relieved in the ground state via the reduction in symmetry due to distortion. (orig.)

  17. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    Science.gov (United States)

    Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.

    2016-11-01

    We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.

  18. A neutron scattering study of the quasi-one-dimensional conductor (TaSe{sub 4}){sub 2}I

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, J.E.; Currat, R. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Monceau, P. [Centre de Recherches sur les Tres Basses Temperatures, associe a l' Universite Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex 9 (France); Hennion, B. [Laboratoire Leon Brillouin, Centre d' Etudes de Saclay, 91191 Gif-sur-Yvette Cedex (France); Berger, H.; Levy, F. [Institut de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    1998-06-15

    The Peierls phase transition in the quasi-one-dimensional conductor (TaSe{sub 4}){sub 2}I is investigated by means of elastic and inelastic neutron scattering. The effective critical exponent {beta}, extracted from the temperature dependence of the integrated intensity from the CDW satellite reflections, is anomalously low, suggesting that the phase transition may be of first order. The intensity distribution among symmetry-related satellite reflections indicates a domain structure with slowly fluctuating domain populations. Correlation lengths associated with the diverging 'central peak' are determined and are found to be nearly isotropic, at variance with results obtained on other quasi-one-dimensional compounds, such as platinum chains (KCP) or blue bronze, K{sub 0.3}MoO{sub 3}. Doping with 1.2% Nb has a severe effect on the modulated state. The low-temperature satellites are replaced by a diffuse scattering distribution elongated along c*. The absence of a phonon soft mode and the presence of a diverging central peak at the phase transition is interpreted within the framework of strong electron-phonon coupling. Finally, we propose a Ginzburg-Landau phenomenological model, where the interplay between the electronically coupled optical-like order parameter (Ta-atom tetramerization along the chain axis) and the elastic deformations lies at the origin of the phase transition in (TaSe{sub 4}){sub 2}I. (author)

  19. A quasi-one-dimensional velocity regime of super-thermal electron stream propagation through the solar corona

    International Nuclear Information System (INIS)

    Levin, B.N.

    1984-01-01

    The propagation of an inhomogeneous stream of fast electrons through the corona - the type III radio burst source - is considered. It is shown, that the angular spectrum width of plasma waves excited by the stream is defined both by Landau damping by particles of the diffuse component and by damping (in the region of large phase velocities) by particles of the stream itself having large pitch angles. The regime of quasi-one-dimensional diffusion in the velocity space is realized only in the presence of a sufficiently dense diffuse component of super-thermal particles and only for a sufficiently large inhomogeneity scale of the stream. A large scale of the stream space profile is formed, evidently, close to the region of injection of super-thermal particles. It is the result of 'stripping' of part of the electrons from the stream front to its slower part due to essential non-one-dimensionality of the particle diffusion in velocity space. Results obtained may explain, in particular, the evolution of a stream particle angular spectrum in the generation region of type III radio bursts observed by spacecrafts (Lin et al., 1981). For the relatively low energetic part of the stream, the oblique plasma wave stabilization by a diffuse component results in a quasi-one-dimensional regime of diffusion. The latter conserves the beam-like structure of this part of the stream. (orig.)

  20. Antiferromagnetic geometric frustration under the influence of the next-nearest-neighbor interaction. An exactly solvable model

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-02-01

    The influence of the next-nearest-neighbor interaction on the properties of the geometrically frustrated antiferromagnetic systems is investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the square-kagome recursive lattice, where the next-nearest-neighbor interaction is supposed between sites within each elementary square of the lattice. The thermodynamic properties of the model are investigated in detail and it is shown that the competition between the nearest-neighbor antiferromagnetic interaction and the next-nearest-neighbor ferromagnetic interaction changes properties of the single-point ground states but does not change the frustrated character of the basic model. On the other hand, the presence of the antiferromagnetic next-nearest-neighbor interaction leads to the enhancement of the frustration effects with the formation of additional plateau and single-point ground states at low temperatures. Exact expressions for magnetizations and residual entropies of all ground states of the model are found. It is shown that the model exhibits various ground states with the same value of magnetization but different macroscopic degeneracies as well as the ground states with different values of magnetization but the same value of the residual entropy. The specific heat capacity is investigated and it is shown that the model exhibits the Schottky-type anomaly behavior in the vicinity of each single-point ground state value of the magnetic field. The formation of the field-induced double-peak structure of the specific heat capacity at low temperatures is demonstrated and it is shown that its very existence is directly related to the presence of highly macroscopically degenerated single-point ground states in the model.

  1. [mu]SR magnetic response in frustrated antiferromagnets of type RMn[sub 2] (R = rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. (Physics Dept., TU Munich, Garching (Germany)); Asch, L. (Physics Dept., TU Munich, Garching (Germany)); Kratzer, A. (Physics Dept., TU Munich, Garching (Germany)); Kalvius, G.M. (Physics Dept., TU Munich, Garching (Germany)); Muench, K.H. (Physics Dept., TU Munich, Garching (Germany)); Ballou, R. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Deportes, J. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Waeppling, R. (Dept. of Physics, Univ. of Uppsala (Sweden)); Litterst, F.J. (Inst. for Metal Physics, TU Braunschweig (Germany)); Klauss, H.H. (Inst. for Metal Physics, TU Braunschweig (Germany)); Niedermayer, C. (Faculty for Physics, Univ. Konstanz (Germany)); Chappert, J. (CEA/DRFMC, CEN Grenoble, 38 (France))

    1994-07-01

    Zero, longitudinal and transverse field [mu]SR was carried out in the antiferromagnets YMn[sub 2], Y[sub 0.95] Tb[sub 0.15] Mn[sub 2], Y[sub 0.9]Tb[sub 0.1]Mn[sub 2], Y[sub 0.99] Sc[sub 0.01] Mn[sub 2], Y[sub 0.98]Sc[sub 0.02]Mn[sub 2] and TbMn[sub 2]. The dynamics of Mn magnetic moments above T[sub N] is typical for an itinerant antiferromagnet. Within a certain temperature range above T[sub N] part of the material enters a randomly ordered (spin glass like) magnetic state as an out-come of frustration. At temperatures above [approx] 150 K the muon spin relaxation rate indicates that the muon has become mobile. (orig.)

  2. X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals

    Directory of Open Access Journals (Sweden)

    J.Grigas

    2007-01-01

    Full Text Available The paper presents the X-ray photoelectron spectra (XPS of the valence band (VB and of the principal core levels from the (110 and (001 crystal surfaces for the quasi-one-dimensional high permittivity SbSeI single crystal isostructural to ferroelectric SbSI. The XPS were measured with monochromatized Al Ka radiation in the energy range of 0-1400 eV at room temperature. The VB is located from 1.6 to 20 eV below the Fermi level. Experimental energies of the VB and core levels are compared with the results of theoretical ab initio calculations of the molecular model of the SbSeI crystal. The electronic structure of the VB is revealed. Shifts in the core-level binding energies of surface atoms relative to bulk ones, which show a dependency on surface crystallography, have been observed. The chemical shifts of the core levels (CL in the SbSeI crystal for the Sb, I and Se states are obtained.

  3. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  4. Anisotropic transport in the quasi-one-dimensional semiconductor Li{sub 0.33}MoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Moshfeghyeganeh, S.; Cote, A. N.; Cohn, J. L., E-mail: cohn@physics.miami.edu [Department of Physics, University of Miami, Coral Gables, Florida 33124 (United States); Neumeier, J. J. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2016-03-07

    Transport measurements (electrical resistivity, Seebeck coefficient, and thermal conductivity) in the temperature range 80–500 K are presented for single crystals of the quasi-one-dimensional (Q1D) semiconductor Li{sub 0.33}MoO{sub 3}. Opposite signs are observed for the Seebeck coefficient along the trinclinic a and c axes, with S{sub c} − S{sub a} ≃ 250 μV/K near room temperature and ≃100 μV/K at 380 K. The thermal conductivity at room temperature in the a-c planes was ∼2 W/m K and ∼10 times smaller along b*. A weak structural anomaly at T{sub s} ≈ 355 K, identified in the temperature-dependent lattice constants, coincides with anomalies in the electrical properties. Analysis of the electronic transport at T > T{sub s} favors an intrinsic semiconductor picture for transport along the most conducting Q1D axis and small-polaronic transport along the other directions, providing insight into the origin of the Seebeck anisotropy.

  5. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2018-07-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  6. Conduction in rectangular quasi-one-dimensional and two-dimensional random resistor networks away from the percolation threshold.

    Science.gov (United States)

    Kiefer, Thomas; Villanueva, Guillermo; Brugger, Jürgen

    2009-08-01

    In this study we investigate electrical conduction in finite rectangular random resistor networks in quasione and two dimensions far away from the percolation threshold p(c) by the use of a bond percolation model. Various topologies such as parallel linear chains in one dimension, as well as square and triangular lattices in two dimensions, are compared as a function of the geometrical aspect ratio. In particular we propose a linear approximation for conduction in two-dimensional systems far from p(c), which is useful for engineering purposes. We find that the same scaling function, which can be used for finite-size scaling of percolation thresholds, also applies to describe conduction away from p(c). This is in contrast to the quasi-one-dimensional case, which is highly nonlinear. The qualitative analysis of the range within which the linear approximation is legitimate is given. A brief link to real applications is made by taking into account a statistical distribution of the resistors in the network. Our results are of potential interest in fields such as nanostructured or composite materials and sensing applications.

  7. Coupling of structure to magnetic and superconducting orders in quasi-one-dimensional K2Cr3As3

    Science.gov (United States)

    Taddei, K. M.; Zheng, Q.; Sefat, A. S.; de la Cruz, C.

    2017-11-01

    Quasi-one-dimensional A2Cr3As3 (with A =K , Cs, Rb) is an intriguing new family of superconductors which exhibit many similar features to the cuprate and iron-based unconventional superconductor families. Yet, in contrast to these systems, no charge or magnetic ordering has been observed which could provide the electronic correlations presumed necessary for an unconventional superconducting pairing mechanism—an absence which defies predictions of first-principles models. We report the results of neutron scattering experiments on polycrystalline K2Cr3As3 (Tc˜7 K ) which probed the low-temperature dynamics near Tc. Neutron diffraction data evidence a subtle response of the nuclear lattice to the onset of superconductivity while inelastic scattering reveals a highly dispersive column of intensity at the commensurate wave vector q =(00 1/2 ) which loses intensity beneath Tc—indicative of short-range magnetic fluctuations. Using linear spin-wave theory, we model the observed scattering and suggest a possible structure to the short-range magnetic order. These observations suggest that K2Cr3As3 is in close proximity to a magnetic instability and that the incipient magnetic order both couples strongly to the lattice and competes with superconductivity, in direct analogy with the iron-based superconductors.

  8. Superconductor to spin-density-wave transition in quasi-one-dimensional metals with repulsive anisotropic interaction

    International Nuclear Information System (INIS)

    Rozhkov, A.V.

    2007-01-01

    A mechanism for superconductivity in a quasi-one-dimensional system with repulsive Ising-anisotropic interaction is studied. The Ising anisotropy opens the gap Δ s in the spin sector of the model. This gap allows the triplet superconductivity and the spin-density wave as the only broken symmetry phases. These phases are separated by the first order transition. The transport properties of the system are investigated in different parts of the phase diagram. The calculation of DC conductivity σ(T) in the high-temperature phase shows that the function σ(T) cannot be used as an indicator of a superconducting ground state: even if σ(T) is a decreasing function at high temperature, yet, the ground state may be insulating spin-density wave; the opposite is also true. The calculation of the spin dynamical structure factor S zz (q, ω) demonstrates that it is affected by the superconducting phase transition in a qualitative fashion: below T c the structure factor develops a gap with a coherent excitation inside this gap

  9. Localization length in a quasi-one-dimensional disordered system in the presence of an electric field

    International Nuclear Information System (INIS)

    Gasparian, Vladimir; Cahay, Marc; Jodar, Esther

    2011-01-01

    A two-dimensional δ-potential Kronig-Penney model for quasi-one-dimensional (Q1D) disordered systems is used to study analytically the influence of a constant electric field on the inverse localization length (LL). Based on the Green's function formalism we have calculated LL as a function of the incoming energy E, electric field F, length L of the Q1D sample, number of modes M in the transverse direction and the amount of disorder w. We show that, for large L in Q1D systems, states are weakly localized, i.e. we deal with power-law localization. With increasing electric field in Q1D mesoscopic systems a transition from exponential to a power-law behavior takes place, as in 1D systems. We note that the graphs showing the inverse LL change significantly with increasing F (for fixed M) rather than with increasing M (for fixed F). We also show that the graphs representing the ratio of the corresponding localization length without and with electric field collapse for all modes M into a universal curve in the Q1D strip model.

  10. Exchange correlation effects on plasmons and on charge-density wave instability in narrow-band quasi-one-dimensional metals

    International Nuclear Information System (INIS)

    Nobile, A.; Tosatti, E.

    1979-05-01

    The coexistence of tight-binding and exchange-correlation effects inside each chain of a model quasi-one-dimensional metal, on both plasmon and charge density wave properties have been studied. The results, while in qualitative agreement with other treatments of the problem at long wavelengths, indicate a strong tendency for plasmons to turn into excitons at larger momenta, and to exhibit an ''excitonic'' charge-density wave instability at k approximately 2ksub(F). The nature of the plasmon branches and of the excitonic charge distortion is examined. Relevance to existing quasi-one-dimensional materials is also discussed. (author)

  11. Hysteretic and intermittent regimes in the subcritical bifurcation of a quasi-one-dimensional system of interacting particles

    Science.gov (United States)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2016-01-01

    In this article, we study the effects of white Gaussian additive thermal noise on a subcritical pitchfork bifurcation. We consider a quasi-one-dimensional system of particles that are transversally confined, with short-range (non-Coulombic) interactions and periodic boundary conditions in the longitudinal direction. In such systems, there is a structural transition from a linear order to a staggered row, called the zigzag transition. There is a finite range of transverse confinement stiffnesses for which the stable configuration at zero temperature is a localized zigzag pattern surrounded by aligned particles, which evidences the subcriticality of the bifurcation. We show that these configurations remain stable for a wide temperature range. At zero temperature, the transition between a straight line and such localized zigzag patterns is hysteretic. We have studied the influence of thermal noise on the hysteresis loop. Its description is more difficult than at T =0 K since thermally activated jumps between the two configurations always occur and the system cannot stay forever in a unique metastable state. Two different regimes have to be considered according to the temperature value with respect to a critical temperature Tc(τobs) that depends on the observation time τobs. An hysteresis loop is still observed at low temperature, with a width that decreases as the temperature increases toward Tc(τobs) . In contrast, for T >Tc(τobs) the memory of the initial condition is lost by stochastic jumps between the configurations. The study of the mean residence times in each configuration gives a unique opportunity to precisely determine the barrier height that separates the two configurations, without knowing the complete energy landscape of this many-body system. We also show how to reconstruct the hysteresis loop that would exist at T =0 K from high-temperature simulations.

  12. Frustrated Heisenberg Antiferromagnets on Cubic Lattices: Magnetic Structures, Exchange Gaps, and Non-Conventional Critical Behaviour

    OpenAIRE

    Ignatenko, A. N.; Irkhin, V. Yu.

    2016-01-01

    We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...

  13. Phase transitions in two-dimensional uniformly frustrated XY models. I. antiferromagnetic model on a triangular lattice

    International Nuclear Information System (INIS)

    Korshunov, S.E.; Uimin, G.V.

    1986-01-01

    A most popular model in the family of two-dimensional uniformly-frustrated XY models is the antiferromagnetic model on a triangular lattice (AF XY(t) model). Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the ''generalized'' AF XY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-interger charges, equivalent to the AF XY(t) model with the Berezinskii-Villain interaction

  14. Er2Ti2O7: Evidence of quantum order by disorder in a frustrated antiferromagnet

    DEFF Research Database (Denmark)

    Champion, J.D.M.; Harris, M.J.; Holdsworth, P.C.W.

    2003-01-01

    Er(2)Ti(2)O(7) has been suggested to be a realization of the frustrated XY pyrochlore lattice antiferromagnet, for which theory predicts fluctuation-induced symmetry breaking in a highly degenerate ground state manifold. We present a theoretical analysis of the classical model compared...

  15. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  16. Physical Properties of (NH4)2Pt(CN)4[Clo.42].3H2O: A new Quasi-One-Dimensional Conductor

    DEFF Research Database (Denmark)

    Carneiro, Kim; Petersen, A. S.; Underhill, A. E.

    1979-01-01

    The quasi-one-dimensional conductor (NH4)2[Pt(CN)4]Cl0.42·3H2O, ACP(Cl), has been studied experimentally by means of electrical conduction measurements, x-ray diffuse scattering, and neutron inelastic scattering. This allows the determination of all the physical parameters of interest for the the......The quasi-one-dimensional conductor (NH4)2[Pt(CN)4]Cl0.42·3H2O, ACP(Cl), has been studied experimentally by means of electrical conduction measurements, x-ray diffuse scattering, and neutron inelastic scattering. This allows the determination of all the physical parameters of interest...

  17. Collinear Order in Frustrated Quantum Antiferromagnet on Square Lattice (CuBr)LaNb2O7

    Science.gov (United States)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro; Yasuda, Jun; Baba, Yoichi; Nishi, Masakazu; Hirota, Kazuma; Narumi, Yasuo; Hagiwara, Masayuki; Kindo, Koichi; Saito, Takashi; Ajiro, Yoshitami; Yoshimura, Kazuyoshi

    2006-11-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional S = 1/2 square-lattice system (CuBr)LaNb2O7, prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb2O7. (CuBr)LaNb2O7 exhibits a second-order magnetic transition at 32 K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb2O7, despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q = (π, 0, π) with a reduced moment of 0.6μB. Mixed ferromagnetic nearest-neighbor (J1) and antiferromagnetic second-nearest-neighbor (J2) interactions are of comparable strength (J1/kB = -35.6 K and J2/kB = 41.3 K), placing the system in a more frustrated region of the CAF phase than ever reported.

  18. Collinear order in frustrated quantum antiferromagnet on square lattice (CuBr)LaNb2O7

    International Nuclear Information System (INIS)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro

    2006-01-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional s=1/2 square-lattice system (CuBr)LaNb 2 O 7 , prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb 2 O 7 . (CuBr)LaNb 2 O 7 exhibits a second-order magnetic transition at 32K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb 2 O 7 , despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q=(π, 0, π) with a reduced moment of 0.6μ B . Mixed ferromagnetic nearest-neighbor (J 1 ) and antiferromagnetic second-nearest-neighbor (J 2 ) interactions are of comparable strength (J 1 /k B =-35.6K and J 2 /k B =41.3K), placing the system in a more frustrated region of the CAF phase than ever reported. (author)

  19. Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)(2)O-4 spinels

    DEFF Research Database (Denmark)

    Zaharko, O.; Cervellino, A.; Tsurkan, V.

    2010-01-01

    Using neutron powder diffraction and Monte Carlo simulations we show that a spin-liquid regime emerges at all compositions in the diamond-lattice antiferromagnets Co(Al1−xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbor exchange coupling J2 is gradually superseded...... by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third......-neighbor exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1−xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher...

  20. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    Science.gov (United States)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  1. Antiferromagnetism, structural instability and frustration in intermetallic AFe4X2 systems

    Science.gov (United States)

    Rosner, Helge; Bergmann, Christoph; Weber, Katharina; Kraft, Inga; Mufti, N.; Klauss, Hans-Henning; Dellmann, T.; Woike, T.; Geibel, Christoph

    2013-03-01

    Magnetic systems with reduced dimensionality or frustration attract strong interest because these features lead to an increase of quantum fluctuations and often result in unusual properties. Here, we present a detailed study of the magnetic, thermodynamic, and structural properties of the intermetallic AFe4X2 compounds (A=Sc,Y,Lu,Zr; X=Si,Ge) crystallizing in the ZrFe4Si2 structure type. Our results evidence that these compounds cover the whole regime from frustrated AFM order up to an AFM quantum critical point. Susceptibility χ(T), specific heat, resistivity, and T-dependent XRD measurements were performed on polycrystalline samples. In all compounds we observed a Curie-Weiss behavior in χ(T) at high T indicating a paramagnetic moment of about 3μB/Fe. Magnetic and structural transitions as previously reported for YFe4Ge2 occur in all compounds with trivalent A. However, transition temperatures, nature of the transition as well as the relation between structural and magnetic transitions change significantly with the A element. Low TN's and large θCW /TN ratios confirm the relevance of frustration. The results are analyzed and discussed with respect to electronic, structural and magnetic instabilities applying DFT calculations. Financial support from the DFG (GRK 1621) is acknowledged

  2. Interaction, coalescence, and collapse of localized patterns in a quasi-one-dimensional system of interacting particles

    Science.gov (United States)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2017-01-01

    We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.

  3. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Ceccatto, H.A.; Gazza, C.J.; Trumper, A.E.

    1992-07-01

    The Schwinger boson approach to quantum helimagnets is discussed. It is shown that in order to get quantitative agreement with exact results on finite lattices, parity-breaking pairing of bosons must be allowed. The so-called J 1 - J 2 - J 3 model is studied, particularly on the special line J 2 = 2J 3 . A quantum disordered phase is found between the Neel and spiral phases, though notably only in the strong quantum limit S = 1/2, and for the third-neighbor coupling J 3 ≥ 0.038 J 1 . For spins S≥1 the spiral phase goes continuously to an antiferromagnetic order. (author). 19 refs, 3 figs

  4. NMR study of quasi-one-dimensional itinerant-electron magnets RMn{sub 4}Al{sub 8} (R=Y, Lu and Sc)

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Y. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)], E-mail: rk04j052@yahoo.co.jp; Nakamura, H.; Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2008-04-01

    {sup 55}Mn-NMR measurements, which revealed previously the presence of spin pseudogap in YMn{sub 4}Al{sub 8}, have been extended to LuMn{sub 4}Al{sub 8} and ScMn{sub 4}Al{sub 8}. Temperature (T) dependences of the Knight shift, K, and the nuclear spin-lattice relaxation rate, 1/T{sub 1}, are well explained by the same pseudogap model used to explain a broad maximum observed in the T-dependence of the susceptibility, indicating common nature in the spin excitation spectrum in the quasi-one-dimensional itinerant-electron compounds.

  5. In-Plane Angular Effect of Magnetoresistance of Quasi-One-Dimensional Organic Metals, (DMET) 2AuBr 2 and (TMTSF) 2ClO 4

    Science.gov (United States)

    Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao

    1997-08-01

    Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.

  6. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  7. Band dependence of charge density wave in quasi-one-dimensional Ta2NiSe7 probed by orbital magnetoresistance

    Science.gov (United States)

    He, Jiaming; Zhang, Yiran; Wen, Libin; Yang, Yusen; Liu, Jinyu; Wu, Yueshen; Lian, Hailong; Xing, Hui; Wang, Shun; Mao, Zhiqiang; Liu, Ying

    2017-07-01

    Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here, we report our results of the magnetoresistance (MR) on Ta2NiSe7. A breakdown of Kohler's rule is found upon entering the CDW state. Concomitantly, a clear change in curvature in the field dependence of MR is observed. We show that the curvature change is well described by the two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the p orbitals from Se atoms dominate the change in transport through CDW transition.

  8. Low-temperature structural transition in the quasi-one-dimensional spin-1/2 compound L i2C u2O (SO4) 2

    Science.gov (United States)

    Rousse, G.; Rodríguez-Carvajal, J.; Giacobbe, C.; Sun, M.; Vaccarelli, O.; Radtke, G.

    2017-04-01

    A thorough structural exploration has been made on the quasi-one-dimensional S =1 /2 compound L i2C u2O (SO4) 2 by neutron and synchrotron x-ray diffraction. It reveals the occurrence of a structural transition at 125 K, characterized by a lowering of symmetry from P 42/m to P 1 ¯ , which is possibly driven by an exchange striction mechanism. This transition involves a dimerization of some Cu in the edge-sharing tetrahedral Cu chains. A symmetry mode analysis indicates that one representation, Γ3+Γ4+ , dominates the structural transition. Interestingly, no intermediate structure with P 112 /m symmetry is observed experimentally. Lastly, temperature dependent magnetic susceptibility measurements and neutron diffraction reveal that the magnetic ground state of this compound is a spin-singlet with a spin gap, characterized by the absence of long-range magnetic order down to 1.7 K.

  9. Nonlinear Magnus-induced dynamics and Shapiro spikes for ac and dc driven skyrmions on periodic quasi-one-dimensional substrates

    Science.gov (United States)

    Reichhardt, Charles; Reichhardt, Cynthia J. Olson

    We numerically examine skyrmions interacting with a periodic quasi-one-dimensional substrate. When we drive the skyrmions perpendicular to the substrate periodicity direction, a rich variety of nonlinear Magnus-induced effects arise, in contrast to an overdamped system that shows only a linear velocity-force curve for this geometry. The skyrmion velocity-force curve is strongly nonlinear and we observe a Magnus-induced speed-up effect when the pinning causes the Magnus velocity response to align with the dissipative response. At higher applied drives these components decouple, resulting in strong negative differential conductivity. For skyrmions under combined ac and dc driving, we find a new class of phase locking phenomena in which the velocity-force curves contain a series of what we call Shapiro spikes, distinct from the Shapiro steps observed in overdamped systems. There are also regimes in which the skyrmion moves in the direction opposite to the applied dc drive to give negative mobility.

  10. Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb2O4 with transition temperature up to 4.28 K

    Directory of Open Access Journals (Sweden)

    Haifeng eLi

    2014-07-01

    Full Text Available The Neel temperature of the new frustrated family of SrRE2O4 (RE = rare earth compounds is yet limited to 0.9 K, which more or less hampers a complete understanding of the magnetic frustrations and spin interactions. Here we report on a new frustrated member to the family, SrTb2O4 with a record TN = 4.28(2 K, and an experimental study of the magnetic interacting and frustrating mechanisms by polarized and unpolarized neutron scattering. The compound of SrTb2O4 displays an incommensurate antiferromagnetic (AFM order with a transverse wave vector Q = (0.5924(1, 0.0059(1, 0 albeit with partially-ordered moments, 1.92(6 uB at 0.5 K, stemming from only one of the two inequivalent Tb sites by virtue of their different octahedral distortions. The localized moments are confined to the bc plane, 11.9(66 degree away from the b axis by single-ion anisotropy. We reveal that this AFM order is dominated mainly by dipole-dipole interactions and disclose that the octahedral distortion, nearest-neighbour (NN ferromagnetic (FM arrangement, different next NN FM and AFM configurations, and in-plane anisotropic spin correlations are vital to the magnetic structure and associated multiple frustrations. The discovery of the thus far highest AFM transition temperature renders SrTb2O4 a new friendly frustrated platform in the family for exploring the nature of magnetic interactions and frustrations.

  11. Collinear order in the frustrated spin-(1)/(2) antiferromagnet Li{sub 2}CuW{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Tsirlin, Alexander A. [NICPB, Tallinn (Estonia); Nath, Ramesh; Ranjith, Kumar [Indian Institute of Science Education and Research, Trivandrum (India); Kasinathan, Deepa [MPI CPfS, Dresden (Germany); Skoulatos, Markos [Laboratory of Neutron Scattering, PSI, Villigen (Switzerland)

    2015-07-01

    Li{sub 2}CuW{sub 2}O{sub 8} is a three-dimensional spin-(1)/(2) antiferromagnet that features collinear spin order despite abundant magnetic frustration that would normally trigger a non-collinear incommensurate order, at least on the classical level. Using density-functional calculations, we establish the spin lattice comprising two non-coplanar triangular networks that introduce frustration along all three crystallographic directions. Magnetic susceptibility and heat capacity reveal a 1D-like magnetic response, which is, however, inconsistent with the naive spin-chain model. Moreover, the high saturation field of 29 T compared to the susceptibility maximum at as low as 8.5 K give strong evidence for the importance of interchain couplings and the magnetic frustration. Below T{sub N} ≅ 3.9 K, Li{sub 2}CuW{sub 2}O{sub 8} develops collinear magnetic order with parallel spins along a and c and antiparallel spins along b. The ordered moment is about 0.7 μ{sub B} according to neutron powder diffraction. This qualifies Li{sub 2}CuW{sub 2}O{sub 8} as a unique three-dimensional spin-(1)/(2) antiferromagnet, where collinear magnetic order is stabilized by quantum fluctuations.

  12. μSR Study of the Unusual Magnetic Ordering in the Frustrated Antiferromagnet Zn(CrxGa1-x)2O4

    International Nuclear Information System (INIS)

    Kikuchi, H.; Fukushima, H.; Higemoto, W.; Nishiyama, K.

    2001-01-01

    μSR spectra on the spin frustrating spinel antiferromagnet Zn(Cr x Ga 1-x ) 2 O 4 (x=0.9,1.0) have been measured. For x=1.0 compound, both the relaxation rate and the initial asymmetry showed distinct anomalies at the Neel temperature. The magnetic susceptibility for the x=0.9 compound was known to have a faint peak at around 12 K, whose origin was not clear so far. Our μSR study revealed that this temperature is the onset temperature of development of the magnetic correlation accompanied by appreciable spin fluctuations.

  13. Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction.

    Science.gov (United States)

    Cai, Kai; Liu, Jiawei; Zhang, Huan; Huang, Zhao; Lu, Zhicheng; Foda, Mohamed F; Li, Tingting; Han, Heyou

    2015-05-11

    An intermediate-template-directed method has been developed for the synthesis of quasi-one-dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core-shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7 Au PABNTs showed higher electrocatalytic activity and durability in the oxygen-reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero-nanostructures with controlled size and shape by utilizing an intermediate template. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On the control parameters of the quasi-one dimensional superconductivity in Sc{sub 3}CoC{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Eickerling, Georg; Hauf, Christoph; Scheidt, Ernst-Wilhelm; Reichardt, Lena; Schneider, Christian; Scherer, Wolfgang [Institut fuer Physik, Universitaet Augsburg, Universitaetstrasse 1, 86179 Augsburg (Germany); Munoz, Alfonso [Departamento de Fisica Fundamental II, Instituto de Materiales y Nanotecnologia, Universidad de La Laguna, Tenerife (Spain); Lopez-Moreno, Sinhue [Escuela Superior Cd. Sahagun, Universidad Autonoma del Estado de Hidalgo, Carretera Cd. Sahagun-Otumba s/n. 43990, Hidalgo (Mexico); Humberto Romero, Aldo [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Max Planck Institut fuer Mikrostruktur Physik, Weinberg 2, 06120 Halle (Germany); Porcher, Florence; Andre, Gilles [Laboratoire Leon Brillouin, UMR12 CEA-CNRS, Bat 563 CEA Saclay, 91191 Gif sur Yvette Cedex (France); Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, 48149 Muenster (Germany)

    2013-09-15

    Within the series of ternary rare-earth transition metal carbides Sc{sub 3}TC{sub 4} (T = Fe, Co, Ni) only the Co congener displays a structural phase transition at 72 K and an onset of bulk superconductivity at 4.5 K. In this paper we present the results of a detailed analysis of the structural, electronic, and vibrational properties of the low-temperature phase of Sc{sub 3}CoC{sub 4} that represents one of the few well-documented examples of a quasi one-dimensional (1D) superconductor. Variable temperature neutron powder diffraction and low temperature X-ray diffraction experiments were performed in order to confirm the subtle structural distortions during the phase transition. The results of periodic electronic structure calculations indicate, that the structural transition can clearly be identified as a Peierls-type distortion and by a comparison with the isostructural carbide Sc{sub 3}FeC{sub 4} we are able to identify the chemical, electronic, and the vibrational control parameters of the transition. Topological analyses of the electron density distribution and of the valence shell charge concentrations at the cobalt atom finally allow us to directly correlate the changes in the electronic structure due to the Peierls transition in reciprocal space with the according subtle changes in the real space properties of Sc{sub 3}CoC{sub 4}. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    Science.gov (United States)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  16. 1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc3CoC4.

    Science.gov (United States)

    He, Mingquan; Wong, Chi Ho; Shi, Dian; Tse, Pok Lam; Scheidt, Ernst-Wilhelm; Eickerling, Georg; Scherer, Wolfgang; Sheng, Ping; Lortz, Rolf

    2015-02-25

    The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

  17. Quasi-linear magnetoresistance and the violation of Kohler's rule in the quasi-one-dimensional Ta₄Pd₃Te₁₆ superconductor.

    Science.gov (United States)

    Xu, Xiaofeng; Jiao, W H; Zhou, N; Guo, Y; Li, Y K; Dai, Jianhui; Lin, Z Q; Liu, Y J; Zhu, Zengwei; Lu, Xin; Yuan, H Q; Cao, Guanghan

    2015-08-26

    We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta4Pd3Te16 (Tc ~ 4.6 K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-law dependence, Δρ∝B(α) with the exponent α close to 1 over a wide temperature and field range. The magnetoresistance shows no sign of saturation up to 50 T studied. The linear magnetoresistance observed in Ta4Pd3Te16 is found to be overall inconsistent with the interpretations based on the Dirac fermions in the quantum limit, charge conductivity fluctuations as well as quantum electron-electron interference. Moreover, it is observed that the Kohler's rule, regardless of the field orientations, is violated in its normal state. This result suggests the loss of charge carriers in the normal state of this chain-containing compound, due presumably to the charge-density-wave fluctuations.

  18. Atomic-Scale Origin of the Quasi-One-Dimensional Metallic Conductivity in Strontium Niobates with Perovskite-Related Layered Structures.

    Science.gov (United States)

    Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg

    2017-12-26

    The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.

  19. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    International Nuclear Information System (INIS)

    Freiberg, Arvi; Raetsep, Margus; Timpmann, Kou; Trinkunas, Gediminas

    2009-01-01

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q y electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes

  20. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)], E-mail: arvi.freiberg@ut.ee; Raetsep, Margus; Timpmann, Kou [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Trinkunas, Gediminas [Insitute of Physics, Savanoriu pr. 231, LT-02300 Vilnius (Lithuania)

    2009-02-23

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q{sub y} electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes.

  1. Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}): Peroxovanadate sol gel synthesis and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Moreira, Eduardo Ceretta [Laboratório de Espectroscopia, Universidade Federal do Pampa, Campus Bagé, Bagé 96400-970 (Brazil); Dias, Fábio Teixeira; Neves Vieira, Valdemar das [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Brandt, Iuri Stefani; Cas Viegas, Alexandre da; Pasa, André Avelino [Laboratório de Filmes Finos e Superfícies, Universidade Federal de Santa Catarina, Caixa Postal 476, Florianópolis 88.040-900 (Brazil)

    2015-01-15

    Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{sub 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.

  2. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    Science.gov (United States)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  3. High-field magnetotransport in microstructures of the frustrated antiferromagnet Yb2Pt2Pb

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. [Max Planck Inst. for Chemical Physics, Dresden (Germany); Moll, P. J. W. [Max Planck Inst. for Chemical Physics, Dresden (Germany); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    Frustrated quantum magnets exhibit a rich variety of non-trivial quantum ground states due to their remnant entropy at zero temperature. Most studied materials are insulators, with magnetic coupling of localized spins mediated by exchange interactions. Yb2Pt2Pb (YPP) is a rare example of a metallic frustrated quantum magnet, where Yb3+ J=7/2 moments are arranged in dimers forming a Shastry-Sutherland lattice. In addition, the itinerant charge carriers of the metal provide gapless excitations able to mediate magnetic interactions (RKKY) as well as hybridize with the 4f-states, which has been proposed to lead to a novel charge-orbital separation. YPP orders antiferromagnetically (AFM) below TN = 2.1 K, and strong g-factor anisotropy confines the spins into the ab planes. Accordingly, fields aligned parallel to the planes suppress the AFM order already below 4 T, while fields of up to 65 T along the c direction do not lead to saturation in the magnetization and step-like features even at B ~ 25 T were observed [4]. Here we probe the electronic structure of YPP by quantum oscillation and conductivity measurements in high fields, which tune the energy balance of the 4f states and thus the degree of charge-orbital separation.

  4. High-order study of the quantum critical behavior of a frustrated spin-1/2 antiferromagnet on a stacked honeycomb bilayer

    Science.gov (United States)

    Bishop, R. F.; Li, P. H. Y.

    2017-12-01

    We study a frustrated spin-1/2 J1-J2-J3-J1⊥ Heisenberg antiferromagnet on an A A -stacked bilayer honeycomb lattice. In each layer we consider nearest-neighbor (NN), next-nearest-neighbor, and next-next-nearest-neighbor antiferromagnetic (AFM) exchange couplings J1,J2 , and J3, respectively. The two layers are coupled with an AFM NN exchange coupling J1⊥≡δ J1 . The model is studied for arbitrary values of δ along the line J3=J2≡α J1 that includes the most highly frustrated point at α =1/2 , where the classical ground state is macroscopically degenerate. The coupled cluster method is used at high orders of approximation to calculate the magnetic order parameter and the triplet spin gap. We are thereby able to give an accurate description of the quantum phase diagram of the model in the α δ plane in the window 0 ≤α ≤1 ,0 ≤δ ≤1 . This includes two AFM phases with Néel and striped order, and an intermediate gapped paramagnetic phase that exhibits various forms of valence-bond crystalline order. We obtain accurate estimations of the two phase boundaries, δ =δci(α) , or equivalently, α =αc i(δ ) , with i =1 (Néel) and 2 (striped). The two boundaries exhibit an "avoided crossing" behavior with both curves being re-entrant. Thus, in this α δ window, Néel order exists only for values of δ in the range δc1 (α ) , with δc1 0 for αc 1(0 ) ≈0.49 (1 ) , and striped order similarly exists only for values of δ in the range δc2 (α ) , with δc2 αc2(0) ≈0.600 (5 ) and δc2 0 for αc 2(0 ) >α >α2<≈0.56 (1 ) .

  5. Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs{sub 2}CuCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cong, P. T., E-mail: t.pham@hzdr.de [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Postulka, L.; Wolf, B.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M., E-mail: michael.lang@physik.uni-frankfurt.de [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Well, N. van [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2016-10-14

    Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.

  6. Ground State of Quasi-One Dimensional Competing Spin Chain Cs2Cu2Mo3O12 at zero and Finite Fields

    Science.gov (United States)

    Matsui, Kazuki; Goto, Takayuki; Angel, Julia; Watanabe, Isao; Sasaki, Takahiko; Hase, Masashi

    The ground state of competing-spin-chain Cs2Cu2Mo3O12 with the ferromagnetic exchange interaction J1 = -93 K on nearest-neighboring spins and the antiferromagnetic one J2 = +33 K on next-nearest-neighboring spins was investigated by ZF/LF-μSR and 133Cs-NMR in the 3He temperature range. The zero-field μSR relaxation rate λ shows a significant increase below 1.85 K, suggesting the existence of magnetic order, which is consistent with the recent report on the specific heat. However, LF decoupling data at the lowest temperature 0.3 K indicate that the spins fluctuate dynamically, suggesting that the system is in a quasi-static ordered state under zero field. This idea is further supported by the fact that the broadening in NMR spectra below TN is weakened at low field below 2 T.

  7. Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J1-J2-J3 ferromagnets

    International Nuclear Information System (INIS)

    Zinke, R; Richter, J; Drechsler, S-L

    2010-01-01

    We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J 3 on the ground state of the spin- 1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J 1 and frustrating antiferromagnetic next-nearest-neighbor interaction J 2 . A third-neighbor exchange J 3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO 4 or LiCu 2 O 2 . In particular, we calculate the critical point J 2 c as a function of J 3 , where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J 3 the ferro-spiral transition is always continuous and the critical values J 2 c of the classical and the quantum model coincide. On the other hand, for ferromagnetic J 3 ∼ 1 | the critical value J 2 c of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro-spiral transition.

  8. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    Science.gov (United States)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  9. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  10. Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires%准一维纳米线电子输运的梯度无序效应

    Institute of Scientific and Technical Information of China (English)

    段玲; 胡飞; 丁建文

    2011-01-01

    考虑实际体系的梯度无序和结散射,发展格林函数矩阵分解消元方法,研究了准一维纳米线的电子输运性质.结果表明,由于结散射,电导随能量呈现振荡行为,无序的引入破坏了电子相干性,在低无序度区平均电导呈现异常增加,呈现一个新的电导峰.当表面存在无序但无梯度衰减时,体系的平均电导随无序度增强先减后增,出现类局域—退局域性转变.当表面无序线性衰减时,平均电导在强无序区稍有增加,而当表面无序高斯型衰减时,平均电导指数衰减,类局域—退局域性转变消失,不同于以前的理论预言.研究结果对准一维纳米线电子器件的结构设计和应用有指导作用.%Considering both the gradient decay of the real disorder and the contact scattering,we investigate the electronic transport in quasi-one-dimensional nanowires by developing a decomposition elimination method for Green's function matrix.In the presence the contact scattering,the conductance oscillates with energy.For some energies of incident electrons,an abnormal enhancement is obtained in the average conductance due to the destroyed coherence by the introduction of much low disorder,showing that there appears a new conductance peak.In the absence of disorder gradient,the average conductance firstly decreases then increases with disorder strength,indicating that there exists a localization-delocalization transition.In the presence of linearly decaying disorder,the average conductance increases slightly in a strong disorder region.In the case of the Gaussian-type decaying disorder,the average conductance decreases exponentially and the localization-delocalization transition disappears,which is different from previous thereotical result.The results are helpful for the design and the application of quasi-one-dimensional nanowires device.

  11. Local magnetic susceptibility, spin dynamics, and charge order in the quasi-one-dimensional conductor β -Li0.33V2O5 investigated by site-selective 51V NMR

    Science.gov (United States)

    Yamauchi, Ichihiro; Itoh, Masayuki; Yamauchi, Touru; Yamaura, Jun-Ichi; Ueda, Yutaka

    2017-11-01

    51V NMR measurements have been conducted on a single crystal of the quasi-one-dimensional conductor β -Li0.33V2O5 which undergoes a metal-insulator (MI) transition at TMI˜170 K. In the metallic phase, we obtain 51V Knight shift and electric field gradient tensors. From the analysis of the 51V Knight shifts, we find that the charge disproportionation appears even in the metallic state and the electronic structure is represented within a model of weakly coupled ladders containing two types of ladders with distinct carrier densities. Based on the 51V nuclear spin-lattice relaxation rate, we discuss the spin dynamics within the one-dimensional electron gas model. From the analysis of several nonmagnetic V5 + spectra observed in the insulating phase, we propose a possible charge-order pattern which has a superlattice modulation larger than those in other family members of β -A0.33V2O5 (A =Na and Ag). Finally, we discuss the A -ion dependence of the electronic structure, the charge disproportionation, and the charge order in β -A0.33V2O5 .

  12. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sakhratov, Yu. A. [National High Magnetic Field Laboratory (United States); Svistov, L. E., E-mail: svistov@kapitza.ras.ru [Russian Academy Sciences, Kapitza Institute for Physical Problems (Russian Federation); Kuhns, P. L.; Zhou, H. D.; Reyes, A. P. [National High Magnetic Field Laboratory (United States)

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  13. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    Science.gov (United States)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  14. Approximate eigenvalue determination of geometrically frustrated magnetic molecules

    Directory of Open Access Journals (Sweden)

    A.M. Läuchli

    2009-01-01

    Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.

  15. High pressure synthesis and magnetic studies of quasi one dimensional systems Sr{sub n-1} Cu{sub n+1} O{sub 2n} (n=3,5)

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, M.; Hiroi, Z.; Takano, M. [Kyoto Univ. (Japan)] [and others

    1994-12-31

    SrCu{sub 2}O{sub 3} and Sr{sub 2}Cu{sub 3}O{sub 5} containing two-leg and three-leg S=1/2 ladders made of antiferromagnetic Cu-O-Cu linear bonds, respectively, were synthesized at high pressure, and their crystallographic and magnetic properties were investigated. Both susceptibility and T{sub 1} data of NMR revealed the existence of a large spin gap only for SrCu{sub 2}O{sub 3}. Superconductivity, which had been predicted theoretically for carrier-doped SrCu{sub 2}O{sub 3} could not be realized although partial substitution of La{sup 3+} for Sr{sup 2+} seemed to be carried out successfully. Electron carriers injected seems to remain localized.

  16. Magnetic field effects of tow-leg Heisenberg antiferromagnetic ladders: Thermodynamic properties

    International Nuclear Information System (INIS)

    Wang Xiaoqun; Yu Lu

    2000-05-01

    Using the recently developed transfer-matrix renormalization group method, we have studied the thermodynamic properties of two-leg antiferromagnetic ladders in the magnetic field. Based on different behavior of magnetization, we found disordered spin liquid, Luttinger liquid, spin-polarized phases and a classical regime depending on magnetic field and temperature. Our calculations in Luttinger liquid regime suggest that both the divergence of the NMR relaxation rate and the anomalous specific heat behavior observed on Cu 2 (C 5 H 12 N 2 ) 2 Cl 4 are due to quasi-one-dimensional effect rather than three-dimensional ordering. (author)

  17. Why does the disorder of R-pn and rac-pn ligands in the quasi-one-dimensional bromo-bridged NiIII complexes, [Ni(pn)2Br]Br2 (pn=1,2-diaminopropane) afford similar STM patterns?

    Science.gov (United States)

    Wu, Hashen; Kawakami, Daisuke; Sasaki, Mari; Xie, Jimin; Takaishi, Shinya; Kajiwara, Takashi; Miyasaka, Hitoshi; Yamashita, Masahiro; Matsuzaki, Hiroyuki; Okamoto, Hiroshi

    2007-09-03

    The disordered patterns of R- and rac-1,2-diaminopropane (pn) in quasi-one-dimensional bromo-bridged Ni(III) complexes, [NiIII(pn)2Br]Br2, have been investigated by single-crystal X-ray structure determination and scanning tunneling microscopy (STM). X-ray structure determination shows that the methyl moieties are disordered on the right- and left-hand sides with half occupancies in both compounds, while the carbon atoms of the ethylene moieties of pn ligands are disordered in [Ni(rac-pn)2Br]Br2 and not disordered in [Ni(R-pn)2Br]Br2. In the STM images of both compounds, the bright spots are not straight but fluctuated with the similar patterns. We have concluded that tunnel current from the STM tip to metal ions are detected via methyl groups of pn ligands.

  18. Quasi one dimensional transport in individual electrospun composite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wang, B.; Zhou, S. [Research Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Grabbert, N.; Ngo, H.-D. [Microsystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin (Germany)

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  19. Quasi-one-dimensional intermittent flux behavior in superconducting films

    DEFF Research Database (Denmark)

    Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.

    2012-01-01

    Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa2Cu3O7-δ deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. ...

  20. Investigation of quasi-one-dimensional finite phononic crystal with ...

    Indian Academy of Sciences (India)

    discrete models in the LM method, the increment of the number of components in a unit cell cannot ... frequency-response function (FRF) or transmission coefficients. The width of the .... where i is an integer and t is the discrete time interval.

  1. Spinons, Solitons, and Breathers in Quasi-One-Dimensional Magnets

    Science.gov (United States)

    Broholm, Collin

    2006-03-01

    By scattering neutrons from coordination polymer magnets, we contrast the effects of a uniform and a staggered magnetic field on the quantum critical state of a spin-1/2 chain. In a partially magnetized state of copper pyrazine dinitrate (CuPzN) we find bounded spectral continua indicating that neutrons scatter from spin-1/2 quasi-particle pairs [1]. The complex boundaries including an incommensurate soft spot result from a field induced shift in the Fermi points for these quasi-particles. The measurements indicate that the magnetized state of CuPzN remains quantum critical. Copper benzoate [2] and CuCl2^.2(dimethylsulfoxide) (CDC) [3] differ from CuPzN in that there are two spins per unit cell along the spin chain. Rather than continuous spectra, we find resolution limited gapped excitations when these materials are subject to high fields. So with two spins per unit cell, an applied field can drive the spin-1/2 chain away from criticality. The explanation for this effect was provided by Affleck and Oshikawa. The alternating coordination environment induces a transverse staggered field and spinon binding. The quantum sine-Gordon model is the relevant low energy field theory and it predicts soliton and breather excitations at specific energies and wave vectors that we compare to the experiments. We shall also compare a complete measurement of the dynamic spin correlation function for CDC in a field to exact diagonalization results for a spin-1/2 chain with a staggered and uniform magnetic field [4]. [1] M. B. Stone, D. H. Reich, C. Broholm, K. Lefmann, C. Rischel, C. P. Landee, and M. M. Turnbull, Phys. Rev. Lett. 91, 037205 (2003). [2] M. Kenzelmann, Y. Chien, C. Broholm, D. H. Reich, and Y. Qiu, Phys. Rev. Lett. 93, 017204 (2004). [3] D. C. Dender, P. R. Hammar, Daniel H. Reich, C. Broholm, and G. Aeppli, Phys. Rev. Lett. 79, 1750 (1997). [4] M. Kenzelmann, C. D. Batista, Y. Chen, C. Broholm, D. H. Reich, S. Park, and Y. Qiu, Phys. Rev. B 71, 094411 (2005).

  2. Phonon scattering in quasi-one-dimensional structure

    Energy Technology Data Exchange (ETDEWEB)

    Bourahla, B., E-mail: bourahla_boualem@yahoo.f [Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou, BP 17 RP 15000 (Algeria); Laboratoire de Physique de l' etat Condense, UMR 6087, Universite du Maine, 72085 Le Mans (France); Nafa, O. [Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou, BP 17 RP 15000 (Algeria); Tigrine, R. [Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou, BP 17 RP 15000 (Algeria); Laboratoire de Physique de l' etat Condense, UMR 6087, Universite du Maine, 72085 Le Mans (France)

    2011-02-15

    We introduce a model to study a symmetric nanocontact, whereby its mechanical properties can be analyzed via the vibration spectra. The model system consists of two groups of triple semi-infinite atomic chains joined by atoms in between. The matching method theoretical approach is used to calculate the coherent reflection and transmission scattering probabilities, the characteristic vibration Green functions and densities of states (DOS), for the vibration components of the individual atomic sites that constitute a complete representation of the nanocontact domain boundaries. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the nanocontact domain. The analysis of the vibration spectra and the DOS demonstrate the fluctuations, related to Fano resonances, due to the coherent coupling between traveling phonons and the localized vibration modes in the nanocontact domain.

  3. Frustrated lattices of Ising chains

    International Nuclear Information System (INIS)

    Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A

    2012-01-01

    The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)

  4. Antiferromagnetic spintronics

    Science.gov (United States)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  5. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.; Manchon, Aurelien; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  6. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.

    2018-02-15

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  7. Antiferromagnetic skyrmions

    Science.gov (United States)

    Tretiakov, Oleg; Barker, Joseph

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.

  8. Antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Martí, Xavier; Wadley, P.; Wunderlich, Joerg

    2016-01-01

    Roč. 11, č. 3 (2016), 231-241 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 38.986, year: 2016

  9. Neutron-scattering studies of the S=2 antiferromagnetic chain MnCl3(C10D8N2)

    International Nuclear Information System (INIS)

    Granroth, G.E.; Nagler, S.E.; Coldea, R.; Eccleston, R.S.; Ward, B.H.; Talham, D.R.; Meisel, M.W.

    2002-01-01

    Quasi-elastic and inelastic neutron scattering studies of the quasi-one-dimensional S=2 antiferromagnet MnCl 3 (C 10 D 8 N 2 ) are reported. The quasi-elastic measurements exhibit a broad peak at Q∼0.69 A -1 , which is consistent with short-range antiferromagnetic coupling between neighboring Mn 3+ ions. Inelastic experiments, at 150 mK and Q=0.70 A -1 , reveal decreased magnetic scattering at energies less than 0.2 meV when compared to similar studies at 20 K. These results provide microscopic evidence for the presence of a Haldane gap and are consistent with the bulk magnetization measurements of Granroth et al. (orig.)

  10. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  11. Specific heat of S=1 quasi-1D antiferromagnet NDMAP in magnetic fields

    International Nuclear Information System (INIS)

    Tsujii, H.; Honda, Z.; Andraka, B.; Katsumata, K.; Takano, Y.

    2003-01-01

    NDMAP, Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ), is a quasi-one-dimensional S=1 Heisenberg antiferromagnet with Haldane-gap energies of 22 and 5.5 K for excitations polarized parallel and perpendicular to the chain c-axis, respectively. We have extended the specific-heat measurements by Honda et al. in this compound to 150 mK in temperature and 18 T in magnetic field, employing a novel relaxation calorimeter. The experiment provides an accurate determination of the exponent for the transition line for the field-assisted ordered phase. In addition, a new feature has been found in the phase diagram at around 14 T

  12. Magnetic Properties of the S=2 Heisenberg Antiferromagnetic Chain Compound MnCl3(bpy)

    International Nuclear Information System (INIS)

    Hagiwara, M; Idutsu, Y; Honda, Z; Yamamoto, S

    2012-01-01

    We report the results of magnetic susceptibilities at temperatures between 2 and 300 K, and magnetization in magnetic fields of up to 52 T on polycrystalline samples of MnCl 3 (bpy) (bpy=2, 2'-bipyridine) and the comparison with numerical calculations. This compound is one of the rare examples of the spin 2 quasi-one-dimensional Heisenberg antiferromagnet, and the magnetic properties of tiny single crystal samples were reported previously. The temperature dependence of magnetic susceptibility and the magnetization curve after subtracting the contribution of magnetic impurity are well fitted to those calculated by a quantum Monte Carlo method with the intrachain exchange constant J/k B =31.2 K and the g-value g=2.02 which are comparable to reported values (J/k B =34.8±1.6 K and g=2.04±0.04).

  13. Thermal conductivity of a quantum spin-1/2 antiferromagnetic chain with magnetic impurities

    International Nuclear Information System (INIS)

    Zviagin, A.A.

    2008-01-01

    We present an exact theory that describes how magnetic impurities change the behavior of the thermal conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic impurities and a large concentration of impurities with similar values of the couplings to the host chain (a weak disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope of that behavior becomes smaller, compared to the homogeneous case. The strong disorder in the distribution of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity, compared to the linear-in-T dependence of the homogeneous chain and the chain with weak disorder. Recent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin systems manifest qualitative agreement with our results

  14. Frustration in biomolecules.

    Science.gov (United States)

    Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G

    2014-11-01

    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature

  15. Frustration and quantum criticality

    Science.gov (United States)

    Vojta, Matthias

    2018-06-01

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality.

  16. Frustration and quantum criticality.

    Science.gov (United States)

    Vojta, Matthias

    2018-03-15

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality. © 2018 IOP Publishing Ltd.

  17. Neutron-scattering studies of the S=2 antiferromagnetic chain MnCl sub 3 (C sub 1 sub 0 D sub 8 N sub 2)

    CERN Document Server

    Granroth, G E; Coldea, R; Eccleston, R S; Ward, B H; Talham, D R; Meisel, M W

    2002-01-01

    Quasi-elastic and inelastic neutron scattering studies of the quasi-one-dimensional S=2 antiferromagnet MnCl sub 3 (C sub 1 sub 0 D sub 8 N sub 2) are reported. The quasi-elastic measurements exhibit a broad peak at Q approx 0.69 A sup - sup 1 , which is consistent with short-range antiferromagnetic coupling between neighboring Mn sup 3 sup + ions. Inelastic experiments, at 150 mK and Q=0.70 A sup - sup 1 , reveal decreased magnetic scattering at energies less than 0.2 meV when compared to similar studies at 20 K. These results provide microscopic evidence for the presence of a Haldane gap and are consistent with the bulk magnetization measurements of Granroth et al. (orig.)

  18. Ising antiferromagnet on the Archimedean lattices

    Science.gov (United States)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  19. Electric control of antiferromagnets

    OpenAIRE

    Fina, I.; Marti, X.

    2016-01-01

    In the past five years, most of the paradigmatic concepts employed in spintronics have been replicated substituting ferromagnets by antiferromagnets in critical parts of the devices. The numerous research efforts directed to manipulate and probe the magnetic moments in antiferromagnets have been gradually established a new and independent field known as antiferromagnetic spintronics. In this paper, we focus on the electrical control and detection of antiferromagnetic moments at a constant tem...

  20. Shrink, twist, ripple and melt: Studies of frustrated liquid crystals

    Science.gov (United States)

    Fernsler, Jonathan G.

    Complex structures can arise out of a simple system with more than one competing influence on its behavior. The protypical example of this is the two-dimensional triangular lattice Ising model. The ferromagnetic model has two simple degenerate ground states of all spins up or down, but the antiferromagnetic model is a frustrated system. Its geometry does not allow satisfaction of the antiferro condition everywhere, which produces complex ordered structures with dimerization of the spins [1]. Without frustration, the complex structures and phase behavior are lost. All of the topics discussed in this thesis concern smectic liquid crystals. Liquid crystals are perhaps uniquely adept at manifesting frustrated phases. Their combination of periodicity in one or more dimensions allows ordered structures, yet their fluid nature in remaining dimensions allows creation of defects and extraordinarily complex structures in ways that a normal crystal could not tolerate. Liquid crystals contain a huge menagerie of frustrated phases and effects including the polarization modulated [2], vortex lattice [3], twist grain boundary [4], and blue [5] phases, as well as frustrated structures such as cholesteric or SmC* helix unwinding [6], defect lattices in thin films [7], and bend melted grain boundary defects [8], arising from boundary conditions and field effects. In this thesis, we study four liquid crystal systems that show unusual phase behavior or complex structures, deriving from the effects of frustration. Frustration, despite some human prejudices against the word, leaves nature all the more interesting and beautiful.

  1. Anti-ferromagnetic Heisenberg model on bilayer honeycomb

    International Nuclear Information System (INIS)

    Shoja, M.; Shahbazi, F.

    2012-01-01

    Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.

  2. Perspectives of antiferromagnetic spintronics

    Science.gov (United States)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  3. Field-controlled spin current in frustrated spin chains

    Directory of Open Access Journals (Sweden)

    A.K. Kolezhuk

    2009-01-01

    Full Text Available We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-S chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.

  4. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    International Nuclear Information System (INIS)

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  5. Novel manganate Cs{sub 23}Mn{sub 16}O{sub 28} containing two different types of quasi one-dimensional polyanions, {sup 1}{sub ∞}[MnO{sub 2}]{sub n} and unique {sup 1}{sub ∞}[Mn{sub 3}O{sub 5}]{sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, Juergen; Jansen, Martin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Senaris-Rodriguez, Maria A. [Dept. Quimica, Facultad de Ciencias, Universidad de A Coruna (Spain); Klemenz, Sebastian [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany)

    2017-11-17

    Cs{sub 23}Mn{sub 16}O{sub 23} was synthesized via the azide/nitrate route from mixtures of Mn{sub 2}O{sub 3}, CsNO{sub 3}, and CsN{sub 3}. This manganese(II/III) mixed-valent oxide, which contains only one Mn{sup 3+} besides 15 Mn{sup 2+} cations, was studied by single-crystal X-ray diffraction and magnetic susceptibility measurements. Its crystal structure [P anti 1, Z = 1, a = 1114.26(2), b = 1185.53(2), c = 1205.39(2) pm, α = 70.596(1), β = 80.377(2), γ = 83.072(2) , R{sub 1} = 0.033] is based on a honeycomb-like arrangement of cesium atoms, providing the space for two different types of one-dimensional polyoxomanganate anions, illustrated by the syntax Cs{sub 23}[MnO{sub 2}]{sub 4}[Mn{sub 3}O{sub 5}]{sub 4}. Magnetic susceptibility measurements indicate dominant antiferromagnetic intra-chain interactions present already at ambient temperature and long range inter-chain magnetic ordering at 11 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Magnetic behaviour of interacting antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Markovich, V; Jung, G; Gorodetsky, G; Puzniak, R; Wisniewski, A; Skourski, Y; Mogilyanski, D

    2012-01-01

    Magnetic properties of interacting La 0.2 Ca 0.8 MnO 3 nanoparticles have been investigated. The field-induced transition from antiferromagnetic (AFM) to ferromagnetic (FM) state in the La 0.2 Ca 0.8 MnO 3 bulk has been observed at exceptionally high magnetic fields. For large particles, the field-induced transition widens while magnetization progressively decreases. In small particles the transition is almost fully suppressed. The thermoremanence and isothermoremanence curves constitute fingerprints of irreversible magnetization originating from nanoparticle shells. We have ascribed the magnetic behaviour of nanoparticles to a core-shell scenario with two main magnetic contributions; one attributed to the formation of a collective state formed by FM clusters in frustrated coordination at the surfaces of interacting AFM nanoparticles and the other associated with inner core behaviour as a two-dimensional diluted antiferromagnet. (paper)

  7. Weyl magnons in breathing pyrochlore antiferromagnets

    Science.gov (United States)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  8. Narrow and broad solitons in the antiferromagnetic chains of CsCoCl3 and TMMC

    International Nuclear Information System (INIS)

    Boucher, J.P.; Regnault, L.P.; Pires, A.; Rossat-Mignod, J.; Henry, Y.; Bouillot, J.; Stirling, W.G.; Renard, J.P.

    1984-06-01

    The two quasi one-dimensional (1D) compounds CsCoCl 3 and (CH 3 ) 4 NMnCl 3 (TMMC) are almost ideal systems in which to study soliton excitations. Both they have antiferromagnetic (AF) couplings in the chains and at low temperature they exhibit an Ising symmetry favourable for the occurence of solitons. This symmetry is an intrinsic property of CsCoCl 3 while in TMMC it is only achieved by the application of an external magnetic field H perpendicular to the chains. In the lD short range order regime two energetically equivalent configurations are expected for the spins. Solitons can be seen as Bloch walls separating ordered domains and allowing the spins to pass from one configuration to the other. In the case of a ''strong'' Ising symmetry (CsCoCl 3 ) the walls are reduced to one lattice unit (''narrow'' solitons) while in the case of a ''weak'' Ising symmetry (TMMC) the walls extend over several lattice units (10 to 30) (''broad'' solitons). To maintain a paramagnetic state, these walls move rapidly along the chains inducing characteristic fluctuations. The investigation of these two compounds, CsCoCl 3 and TMMC illustrates the advantage of antiferromagnets as the AF mode yields an accurate determination of the soliton regime. Narrow and broad solitons are observed to behave very similarly

  9. Magnetic domains and frustration in metallic CePdAl

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Stefan; Huesges, Zita; Huang, Chien-Lung; Stockert, Oliver [Max Planck Institute CPfS, Dresden (Germany); Fritsch, Veronika; Sakai, Akito [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Grube, Kai; Taubenheim, Christian; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany)

    2016-07-01

    Magnetic frustration is an exciting topic in condensed matter physics, since it can lead to new ground states of materials, e.g. a spin liquid or spin glass state. Effects of magnetic frustration have been investigated intensively for insulating materials. However, the existence of magnetic frustration in metallic systems is still under debate. CePdAl is a metallic Kondo system, where geometric magnetic frustration arises from the formation of Ce ions on a distorted Kagome lattice. Neutron scattering experiments revealed, that only two thirds of the magnetic Ce moments order antiferromagnetically below T{sub N}=2.7 K, whereas the other third remains mainly disordered. Thermodynamic as well as neutron scattering measurements are presented to verify the existence of partial magnetic frustration in CePdAl. Recently neutron diffraction experiments under magnetic fields applied along two orthogonal directions in the magnetically hard basal plane were performed. They show opposite effects on the magnetic intensity of a selected magnetic domain depending on the field direction with respect to the propagation vector. If this is only an effect of different domain population or also due to a change in magnetic frustration shall be discussed.

  10. Topics on frustrated spin systems and high-temperature superconductors

    International Nuclear Information System (INIS)

    Lu Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered is the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties were studied for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion. When fully frustrated, an interesting short-range order and some unusual scaling behavior were obtained. The other frustrated spin system studied is the magnetic phase of YBa 2 Cu 3 O 6+x via a classical spin model, with appropriate anisotropic exchange couplings and randomly located spins of distribution probability as a function of x. There is a first order boundary between Type 1 and Type 2 in the Ising case, while there is no real phase boundary in the cases of continuous spin. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  11. Topics on frustrated spin systems and high-temperature superconductors

    International Nuclear Information System (INIS)

    Lu, Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered was the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion were studied. When fully frustrated, an interesting short range order and some unusual scaling behavior were obtained. In the two tetragonally distorted cases, contracting and expanding in the crystallographic c-direction, AF long range orders and some hysteresis behavior were found. A general phase diagram was constructed as a function of the degree of the distortion. The other frustrated spin system that was studied is the magnetic phase of YBa2Cu3O(6+x). A classical spin model, was constructed, and various properties in its Ising, Heisenberg, and x-y versions were studied. The susceptibility was calculated as a function of temperature for various values of x. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  12. Multipartite entanglement and frustration

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G

    2010-01-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  13. Multipartite entanglement and frustration

    Science.gov (United States)

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2010-02-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  14. Multipartite entanglement and frustration

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica, Universita di Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma (Italy)], E-mail: paolo.facchi@ba.infn.it

    2010-02-15

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  15. Perspectives of antiferromagnetic spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  16. Ordering due to disorder in frustrated quantum magnetic system

    International Nuclear Information System (INIS)

    Yildirim, T.

    1999-01-01

    The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S

  17. Frustrated Lewis Pairs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.

  18. Spintronics of antiferromagnetic systems

    International Nuclear Information System (INIS)

    Gomonaj, E.V.; Loktev, V.M.

    2014-01-01

    Spintronics of antiferromagnetics is a new field that has developed in a fascinating research topic in physics of magnetism. Antiferromagnetics, like ferromagnetic materials experience the influence of spin-polarized current, even though they show no macroscopic magnetization. The mechanism of this phenomenon is related to spin-dependent interaction between free and localized electrons-sd-exchange. Due to the peculiarities of antiferromagnetic materials (complicated magnetic structure, essential role of the exchange interactions, lack of macroscopic magnetization) spintronics of antiferromagnets appeals to new theoretical and experimental approaches. The purpose of this review is to systemize and summarize the recent progress in this field. We start with a short introduction into the structure and dynamics of antiferromagnets and proceed with discussion of different microscopic and phenomenological theories for description of current-induced phenomena in ferro-/antiferromagnetic heterostructures. We also consider the problems of the reverse influence of antiferromagnetic ordering on current, and effectiveness of the fully antiferromagnetic spin valve. In addition, we shortly review and interpret the available experimental results.

  19. Domain wall motion in magnetically frustrated nanorings

    Science.gov (United States)

    Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.

    2012-06-01

    We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.

  20. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  1. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.

    Science.gov (United States)

    Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C

    2013-05-03

    Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.

  2. Fractional excitations in the square-lattice quantum antiferromagnet

    DEFF Research Database (Denmark)

    Piazza, B. Dalla; Mourigal, M.; Christensen, Niels Bech

    2015-01-01

    -projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wavevector, these fractional excitations are bound and form conventional magnons. Our results establish...... the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration....

  3. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  4. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  5. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Science.gov (United States)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  6. Phase-space networks of geometrically frustrated systems.

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  7. User Frustrations as Opportunities

    Directory of Open Access Journals (Sweden)

    Michael Weiss

    2012-04-01

    Full Text Available User frustrations are an excellent source of new product ideas. Starting with this observation, this article describes an approach that entrepreneurs can use to discover business opportunities. Opportunity discovery starts with a problem that the user has, but may not be able to articulate. User-centered design techniques can help elicit those latent needs. The entrepreneur should then try to understand how users are solving their problem today, before proposing a solution that draws on the unique skills and technical capabilities available to the entrepreneur. Finally, an in-depth understanding of the user allows the entrepreneur to hone in on the points of difference and resonance that are the foundation of a strong customer value proposition.

  8. Theoretical and experimental investigations of frustrated pyrochlore magnets

    International Nuclear Information System (INIS)

    Champion, John Dickon Mathison

    2001-01-01

    This thesis describes the investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Monte Carlo simulations and analytical calculations have been performed on a pyrochlore ferromagnet with local (111) easy-axis anisotropy related to the problem of 'spin ice'. The anisotropy-temperature-magnetic field phase diagram was determined. It contained a tricritical point as well as features related to some real ferroelectrics. A pyrochlore antiferromagnet with local (111) easy-plane anisotropy was studied by Monte Carlo simulation. A general expression for its degenerate ground states was discovered and normal- modes out of the ground states were calculated. Both systems are frustrated yet have a long-range ordered state at low temperature. The degeneracy lifting observed is discussed as well as the reasons for its presence. The rare-earth titanate series Ln 2 Ti 2 O 7 (Ln = rare earth), crystallizes in the Fd3-barm space group, with the magnetic ions situated on the 16c sites which constitute the pyrochlore lattice. Crystal-field effects are known to play a significant role in the frustration observed in these compounds. Powder neutron diffraction was performed on gadolinium and erbium titanate. Both systems are frustrated antiferromagnets yet show long-range magnetic order at ∼ 1 K and ∼ 1.2 K respectively. The magnetic structures of both these compounds have been determined by powder neutron diffraction techniques and related to other theoretical results as well as the theoretical results of the author. Further neutron scattering experiments on the 'spin ice' materials Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 are also described. (author)

  9. Teaching Students to Overcome Frustration.

    Science.gov (United States)

    Henley, Martin

    1997-01-01

    Offers concrete strategies for teaching students about frustration, reducing classroom stress, and integrating frustration-tolerance techniques into the regular curriculum. Discusses how to teach self-control within the curriculum with tips on relaxation, support, and acknowledging accomplishments. Claims that such steps will reduce related…

  10. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  11. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    DEFF Research Database (Denmark)

    Lotz, Mikkel Rønne; Boll, Mads; Hansen, Ole

    2014-01-01

    to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D...... conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation...

  12. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...

  13. Exact solution of a quasi-one-dimensional model with long range interaction (coupled tomonaga chains)

    International Nuclear Information System (INIS)

    Nguyen Minh Khue; Solyom, J.

    1980-03-01

    The novel method proposed by one of the authors to calculate exactly the response functions of the one-dimensional Tomonaga-model is described in more detail. The method is generalized for the case of a system of coupled chains where both the interchain and interchain interactions have forward scattering components only. The model does not show real phase transition at any finite temperature indicating that the interchain backward scattering or hopping is needed to have an ordering of the chains at finite temperature. (author)

  14. Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions

    International Nuclear Information System (INIS)

    Cuevas, J.; Malomed, Boris A.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2009-01-01

    We study families of one-dimensional matter-wave bright solitons supported by the competition of contact and dipole-dipole (DD) interactions of opposite signs. Soliton families are found, and their stability is investigated in the free space and in the presence of an optical lattice (OL). Free-space solitons may exist with an arbitrarily weak local attraction if the strength of the DD repulsion is fixed. In the case of the DD attraction, solitons do not exist beyond a maximum value of the local-repulsion strength. In the system which includes the OL, a stability region for subfundamental solitons is found in the second finite band gap. For the existence of gap solitons (GSs) under the attractive DD interaction, the contact repulsion must be strong enough. In the opposite case of the DD repulsion, GSs exist if the contact attraction is not too strong. Collisions between solitons in the free space are studied too. In the case of the local attraction, they merge or pass through each other at small and large velocities, respectively. In the presence of the local repulsion, slowly moving solitons bounce from each other.

  15. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  16. Sidewall gated double well quasi-one-dimensional resonant tunneling transistors

    Science.gov (United States)

    Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Youtsey, C.

    1997-12-01

    We present gating characteristics of submicron vertical resonant tunneling transistors in double quantum well heterostructures. Current-voltage characteristics at room temperature and 77 K for devices with minimum feature widths of 0.9 and 0.7 μm are presented and discussed. The evolution of the I-V characteristics with increasing negative gate biases is related to the change in the lateral confinement, with a transition from a large area 2D to a quasi-1D. Even gating of multiple wells and lateral confinement effects observable at 77 K make these devices ideally suited for applications in multi-valued logic systems and low-dimensional structures.

  17. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    Science.gov (United States)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column domain. The centre of the discussion will be the Lagrangian statistics which is collected from the individual behaviour of the tracked particles.

  18. Neutron diffraction study of quasi-one-dimensional spin-chain ...

    Indian Academy of Sciences (India)

    The high temperature magnetic susceptibility obeys the Curie–Weiss law; the value of the paramagnetic Curie temperature () decreases as the concentration of iron increases and it becomes negative for = 0.4. No extra Bragg peak as well as no observable enhancement in the intensity of the fundamental (nuclear) ...

  19. Backscattering from width variations in quasi-one-dimensional strips of topological insulators

    International Nuclear Information System (INIS)

    Takagaki, Y

    2012-01-01

    Conductance modulations in wide-narrow-wide electron waveguides constructed from a two-dimensional topological insulator are investigated numerically. The conductance exhibits the Fabry-Perot oscillation at the opening of the helical edge states in the narrow segment when the potential offset imposed in the segment is varied. The quantum multiple reflections between the two ends of the narrow segment manifested by the oscillation demonstrate that the topological states are not protected from the scattering caused by an abrupt change in the channel width. The bulk states do not affect the vulnerability against the geometry scattering but they give rise to resonant transmission in an unconventional fashion.

  20. Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Wang, Shun-Jin; Jia, Cheng-Long; An, Jun-Hong; Zhao, Dun; Luo, Hong-Gang

    2003-01-01

    The analytical dark and bright soliton solutions of the one-dimensional Gross-Pitaevskii equation with a confining potential are obtained. For the bright soliton, the recent experimental finding is studied, and the particle number of the soliton and the window of the particle numbers for the bright soliton to occur are estimated analytically and in good agreement with the experimental data. The existence of dark soliton for the attractive interaction and bright soliton for the repulsive interaction is predicted under proper conditions

  1. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    International Nuclear Information System (INIS)

    Lotz, Mikkel R.; Boll, Mads; Bøggild, Peter; Petersen, Dirch H.; Hansen, Ole; Kjær, Daniel

    2014-01-01

    The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects

  2. Proton conductivity in quasi-one dimensional hydrogen-bonded systems: A nonlinear approach

    International Nuclear Information System (INIS)

    Tsironis, G.; Phevmatikos, S.

    1988-01-01

    Defect formation and transport in a hydrogen-bonded system is studied via a two-sublattice soliton-bearing one-dimensional model. Ionic and orientational defects are associated with distinct nonlinear topological excitations in the present model. The dynamics of these excitations is studied both analytically and with the use of numerical simulations. It is shown that the two types of defects are soliton solutions of a double Sine--Gordon equation which describes the motion of the protons in the long-wavelength limit. With each defect there is an associated deformation in the ionic lattice that, for small speeds, follows the defect dynamically albeit resisting its motion. Free propagation as well as collision properties of the proton solitons are presented. 33 refs., 10 figs

  3. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    Science.gov (United States)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2CO3) and MoO3, respectively. Cs2CO3 was found to strongly electron dope black phosphorus. The electron mobility of black phosphorus was significantly enhanced to ˜27 cm2V-1s-1 after 10 nm Cs2CO3 modification, indicating a greatly improved electron transport behavior. In contrast, MoO3 decoration demonstrated a giant hole doping effect. In situ PES characterization confirms the interfacial charge transfer between black phosphorus and doping layers. This doping can also modulate the Schottky junctions formed between metal contacts and black phosphorus flakes, and hence to enhance the responsivity of black phosphorus based photodetectors. These findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics. Following the same surface transfer doping technique, I will demonstrate a remarkable performance enhancement of graphene/Si Schottky junction based self-powered photodetectors via surface modification with MoO3 thin film. It was found that the photocurrent responsivity of MoO3 doped graphene/Si photodetectors was highly increased under a wide spectrum of illuminated light from ultraviolet to near infrared. The current on-off ratio reached up to ˜104 under illumination of 500 nm light with intensity of ˜62 muWcm-2. More importantly, the external quantum efficiency of graphene/Si devices was significantly enhanced up to ˜80% by almost four times in the visible light region after MoO3 functionalization. The largely improved photodetecting performance originates from the increased Schottky barrier height at the graphene/Si interface as well as the reduced series resistance after MoO3 modification, which was further corroborated by the in situ PES and electrical transport characterizations. These observations promise a simple method to effectively modify the graphene/Si Schottky junction based self-powered photodetectors and thus significantly enhance their photodetecting performance. After discussion of the first surface functionalization method, next I will introduce the second approach which is H2 annealing, to greatly extend the photoresponse range of single MoO3 nanobelt based photodetector from UV to visible light by introducing substantial gap states. After annealing, the conductance of MoO3 nanobelt was largely enhanced; at the same time, the photodetector possessed wide visible spectrum response. As corroborated by in situ PES investigations, such strong wide spectrum photoresponse arises from the largely enriched oxygen vacancies and gap states in MoO3 nanobelt after H2 annealing. These results open up a new avenue to extend the wide bandgap metal oxide nanomaterials based optoelectronics devices with efficient visible light response through surface modification, i.e. the introduction of the high density of carefully engineered gap states.

  4. Multichain Mean-Field Theory of Quasi-One-Dimensional Quantum Spin Systems

    International Nuclear Information System (INIS)

    Sandvik, A.W.

    1999-01-01

    A multichain mean-field theory is developed and applied to a two-dimensional system of weakly coupled S=1/2 Heisenberg chains. The environment of a chain C 0 is modeled by a number of neighboring chains C δ , δ=±1, hor-ellipsis,± , with the edge chains C ±n coupled to a staggered field. Using a quantum Monte Carlo method, the effective (2n+1) -chain Hamiltonian is solved self-consistently for n up to 4 . The results are compared with simulation results for the original Hamiltonian on large rectangular lattices. Both methods show that the staggered magnetization M for small interchain couplings α behaves as M∼√(α) enhanced by a multiplicative logarithmic correction. copyright 1999 The American Physical Society

  5. Resistively detected NMR line shapes in a quasi-one-dimensional electron system

    Science.gov (United States)

    Fauzi, M. H.; Singha, A.; Sahdan, M. F.; Takahashi, M.; Sato, K.; Nagase, K.; Muralidharan, B.; Hirayama, Y.

    2017-06-01

    We observe variation in the resistively detected nuclear magnetic resonance (RDNMR) line shapes in quantum Hall breakdown. The breakdown occurs locally in a gate-defined quantum point contact (QPC) region. Of particular interest is the observation of a dispersive line shape occurring when the bulk two-dimensional electron gas (2DEG) set to νb=2 and the QPC filling factor to the vicinity of νQPC=1 , strikingly resemble the dispersive line shape observed on a 2D quantum Hall state. This previously unobserved line shape in a QPC points to a simultaneous occurrence of two hyperfine-mediated spin flip-flop processes within the QPC. Those events give rise to two different sets of nuclei polarized in the opposite direction and positioned at a separate region with different degrees of electronic spin polarization.

  6. Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures

    DEFF Research Database (Denmark)

    Abdullaev, F. Kh.; Ögren, Magnus; Sørensen, Mads Peter

    2013-01-01

    The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering...... length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited....

  7. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien; Saidaoui, Hamed Ben Mohamed; Ghosh, Sumit

    2015-01-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  8. Nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch

    2008-01-01

    I denne Ph.D. afhandling studeres forskellige egenskaber ved antiferromagnetiske nanopartikler. I en ideel antiferromagnet er spinnene orienteret således at der ikke er et resulterende magnetisk moment. I nanopartikler af antiferromagnetiske materialer er denne kompensation på grund af forskellig...

  9. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  10. Prospect for antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Jungwirth, Tomáš

    2015-01-01

    Roč. 51, č. 4 (2015), s. 2900104 ISSN 0018-9464 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  11. Frustration: A common user experience

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    % of their time redoing lost work. Thus, the frustrating experiences accounted for a total of 27% of the time, This main finding is exacerbated by several supplementary findings. For example, the users were unable to fix 26% of the experienced problems, and they rated that the problems recurred with a median....... In the present study, 21 users self-reported their frustrating experiences during an average of 1.72 hours of computer use. As in the previous studies the amount of time lost due to frustrating experiences was disturbing. The users spent 16% of their time trying to fix encountered problems and another 11...

  12. Frustration by Multiple Spin Exchange in 2D Solid 3He Films

    International Nuclear Information System (INIS)

    Siqueira, M.; Nyeki, J.; Cowan, B.; Saunders, J.

    1997-01-01

    Measurements of the magnetization and heat capacity of the second layer of 3 He films adsorbed on graphite indicate that the evolution of the exchange from antiferromagnetic to ferromagnetic arises from a tuning of the competing exchange processes. At certain coverages the coexistence of an antiferromagnetic heat capacity with a ferromagnetic magnetization is a clear manifestation, predicted by theory, of frustration. At the ferromagnetic anomaly the system is well described by series expansions for a 2D Heisenberg ferromagnet on a triangular lattice. copyright 1997 The American Physical Society

  13. Superconductivity in doped antiferromagnets

    International Nuclear Information System (INIS)

    Lagos, M.

    1990-09-01

    The antiferromagnetic S = 1/2 Heisenberg model is extended to account for the presence of holes. The holes move along a sublattice whose sites are located in between the spin sites. The spin-hole coupling arises from the modification of the exchange interaction between two neighbouring spins when the site between them is occupied by a hole. this physical picture leads to a generalized version of the so called t-J model Hamiltonian. The use of a recently developed method that introduces spin-O excitations for dealing with the Heisenberg antiferromagnetic model allows us to map the model Hamiltonian onto a Froelich one, with the spin-O magnetic excitations substituting phonons. The case of electrons moving along the spin sites is discussed as well. (author). 16 refs, 2 figs

  14. d-wave superconductivity in the frustrated two-dimensional periodic Anderson model

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2015-02-01

    Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.

  15. Concepts of antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo

    2017-01-01

    Roč. 11, č. 4 (2017), 1-8, č. článku 1700022. ISSN 1862-6254 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.032, year: 2016

  16. Spin reorientation via antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  17. Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    International Nuclear Information System (INIS)

    MacDougall, Gregory J.; Gout, Delphine J.; Zarestky, Jerel L.; Ehlers, Georg; Podlesnyak, Andrey A.; McGuire, Michael A.; Mandrus, David; Nagler, Stephen E.

    2011-01-01

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.

  18. Frustration in Condensed Matter and Protein Folding

    Science.gov (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  19. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  20. Deliberate exotic magnetism via frustration and topology

    Science.gov (United States)

    Nisoli, Cristiano; Kapaklis, Vassilios; Schiffer, Peter

    2017-03-01

    Introduced originally to mimic the unusual, frustrated behaviour of spin ice pyrochlores, artificial spin ice can be realized in odd, dedicated geometries that open the door to new manifestations of a higher level of frustration.

  1. A spin-frustrated cobalt(II) carbonate pyrochlore network.

    Science.gov (United States)

    Zheng, Yanzhen; Ellern, Arkady; Kögerler, Paul

    2011-11-01

    The crystal structure of the cobalt(II) carbonate-based compound cobalt(II) dicarbonate trisodium chloride, Co(CO(3))(2)Na(3)Cl, grown from a water-ethanol mixture, exhibits a three-dimensional network of corner-sharing {Co(4)(μ(3)-CO(3))(4)} tetrahedral building blocks, in which the Co(II) centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O-CO(2))(6) environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na(+) and Cl(-) ions. Antiferromagnetic coupling between adjacent Co(II) centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position 3, one Na atom on position 2 and a carbonate C atom on position 3.

  2. Antisite disorder-induced low-field magnetoresistance in some frustrated Sr2FeMoO6

    International Nuclear Information System (INIS)

    Cai Tianyi; Ju Sheng; Li Zhenya

    2006-01-01

    Considering the existence of antiferromagnetic patches induced by the antisite disorder in ferrimagnetic Sr 2 FeMoO 6 , we have developed a resistor network model to account for the effects of the antisite disorder on the magnetoresistance in this material. It is proposed that the magnetic disorder resulting from the existence of frustration around the antiferromagnetic patches will be suppressed under the applied magnetic field and low-field magnetoresistance will be observed. For samples with low levels of antisite defects, the magnetoresistive behaviour may be strongly affected by the different degrees of magnetic inhomogeneity. Our calculated results are in agreement with experimental observations

  3. Critical behavior of 2 and 3 dimensional ferro- and antiferromagnetic spin ice systems in the framework of the Effective Field Renormalization Group technique

    OpenAIRE

    Garcia-Adeva, A. J.; Huber, D. L.

    2001-01-01

    In this work we generalize and subsequently apply the Effective Field Renormalization Group technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagome and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As ...

  4. Quadrupolar frustration in shastry-sutherland lattice of DyB4 studied by resonant x-ray scattering

    International Nuclear Information System (INIS)

    Okuyama, Daisuke; Matsumura, Takeshi; Nakao, Hironori; Murakami, Youichi

    2005-01-01

    We have observed geometrical frustration of quadrupolar and magnetic moments in dysprosium tetraboride, DyB 4 , where the rare-earth sites form a Shastry-Sutherland lattice. Resonant X-ray scattering at the L III absorption edge of Dy was utilized. Analysis of the energy, polarization, temperature, and azimuthal-angle dependences of the E1 resonance of the (100) forbidden reflection show that the magnetic and quadrupolar components within the frustrated c plane have a short-range correlation, suggesting that the moments are fluctuating. In contrast, the basic antiferromagnetic component along the c-axis has a long-range order. (author)

  5. Quantum Number Fractionalization in Antiferromagnets

    OpenAIRE

    Laughlin, R. B.; Giuliano, D.; Caracciolo, R.; White, O.

    1998-01-01

    This is a pedagogical introduction to the mathematics of 1-dimensional spin-1/2 antiferromagnets. Topics covered include the Haldane-Shastry Hamiltonian, vector ``supercharges'', conserved spin currents, spinons, the supersymmetric Kuramoto-Yokoyama Hamiltonian, and holons.

  6. Weyl magnons in noncoplanar stacked kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-03-01

    Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.

  7. Study into critical properties of 3D frustrated Heisenberg model on triangular lattice by the use of Monte Carlo methods

    International Nuclear Information System (INIS)

    Murtazaev, A.K.; Ramazanov, M.K.; Badiev, M.K.

    2009-01-01

    The critical properties of the 3D frustrated antiferromagnetic Heisenberg model on a triangular lattice are investigated by the replica Monte Carlo method. The static magnetic and chiral critical exponents of heat capacity a = 0.05(2), magnetization Β 0.30(1), Β k = 0.52(2), susceptibility Γ = 1.36(2), Γ k = 0.93(3), and correlation radius Ν 0.64(1), Ν k = 0.64(2) are calculated by using the finitesize scaling theory. The critical Fisher exponents η = - 0.06(3), η k = 0.63(4) for this model are estimated for the first time. A new universality class of the critical behavior is shown to be formed by the 3D frustrated Heisenberg model on the triangular lattice. A type of the interlayer exchange interaction is found to influence the universality class of antiferromagnetic Heisenberg model on the a triangular lattice.

  8. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    Science.gov (United States)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  9. Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice.

    Science.gov (United States)

    Owerre, S A

    2017-09-27

    In the conventional ferromagnetic systems, topological magnon bands and thermal Hall effect are due to the Dzyaloshinskii-Moriya interaction (DMI). In principle, however, the DMI is either negligible or it is not allowed by symmetry in some quantum magnets. Therefore, we expect that topological magnon features will not be present in those systems. In addition, quantum magnets on the triangular-lattice are not expected to possess topological features as the DMI or spin-chirality cancels out due to equal and opposite contributions from adjacent triangles. Here, however, we predict that the isomorphic frustrated honeycomb-lattice and bilayer triangular-lattice antiferromagnetic system will exhibit topological magnon bands and topological thermal Hall effect in the absence of an intrinsic DMI. These unconventional topological magnon features are present as a result of magnetic-field-induced non-coplanar spin configurations with nonzero scalar spin chirality. The relevance of the results to realistic bilayer triangular antiferromagnetic materials are discussed.

  10. Solution to the sign problem in a frustrated quantum impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Hann, Connor T., E-mail: connor.hann@yale.edu [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Huffman, Emilie [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Chandrasekharan, Shailesh [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Center for High Energy Physics, Indian Institute of Science, Bangalore, 560 012 (India)

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weight configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.

  11. NMR evidence of a gapless chiral phase in the S=1 zigzag antiferromagnet CaV2O4

    International Nuclear Information System (INIS)

    Fukushima, Hiroyuki; Kikuchi, Hikomitsu; Chiba, Meiro; Fujii, Yutaka; Yamamoto, Yoshiyuki; Hori, Hidenobu

    2002-01-01

    We have performed magnetic susceptibility and 51 V NMR experiments with CaV 2 O 4 , a model substance for a frustrated S=1 spin chain with competing nearest neighbor (NN) and next-nearest neighbor (NNN) antiferromagnetic interactions. We report on the analysis of the magnetic susceptibility and the 51 V NMR experiments suggesting a gapless nature of CaV 2 O 4 . The absence of a spin gap is in clear contrast to the case of a non-frustrated spin chains which usually have a Haldane gap. (author)

  12. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  13. On the geometry of fracture and frustration

    NARCIS (Netherlands)

    Koning, Vinzenz

    2014-01-01

    Geometric frustration occurs when local order cannot propagate through space. A common example is the surface of a soccer ball, which cannot be tiled with hexaganons only. Geometric frustration can also be present in materials. In fact, geometry can act as an instrument to design the mechanical,

  14. Frustration Tolerance in Youth With ADHD.

    Science.gov (United States)

    Seymour, Karen E; Macatee, Richard; Chronis-Tuscano, Andrea

    2016-06-08

    The objective of this study was to compare children with ADHD with children without ADHD on frustration tolerance and to examine the role of oppositional defiant disorder (ODD) in frustration tolerance within the sample. Participants included 67 children ages 10 to 14 years-old with (n = 37) and without (n = 30) Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) ADHD who completed the Mirror Tracing Persistence Task (MTPT), a validated computerized behavioral measure of frustration tolerance. Children with ADHD were more likely to quit this task than children without ADHD, demonstrating lower levels of frustration tolerance. There were no differences in frustration tolerance between children with ADHD + ODD and those with ADHD - ODD. Moreover, ODD did not moderate the relationship between ADHD and frustration tolerance. Our results suggest that low frustration tolerance is directly linked to ADHD and not better accounted for by ODD. This research highlights specific behavioral correlates of frustration in children with ADHD. © The Author(s) 2016.

  15. Antiferromagnetism and its origin in iron-based superconductors (Review Article)

    International Nuclear Information System (INIS)

    Ding, Ming-Cui; Zhang, Yu-Zhong; Lin, Hai-Qing

    2014-01-01

    In iron-based superconductors, unravelling the origin of the antiferromagnetism is a crucial step towards understanding the high-T c superconductivity as it is widely believed that the magnetic fluctuations play important roles in the formation of the Cooper pairs. Therefore, in this paper, we will briefly review experimental results related to the antiferromagnetic state in iron-based superconductors and focus on a review of the theoretical investigations which show applicability of the itinerant scenario to the observed antiferromagnetism and corresponding phase transitions in various families of the iron-based superconductors. A proposal of coupling between frustrated and un frustrated bands for understanding the reduced magnetic moment typically observed in iron pnictides is also reviewed. While all the above theoretical investigations do not rule out a possible existence of localized electrons in iron-based superconductors, these results strongly indicate a close relation between itinerant electrons and the magnetically ordered state and point out the importance of taking into account the orbital degrees of freedom.

  16. Quasi One-Dimensional Model of Natural Draft Wet-Cooling Tower Flow, Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2015-01-01

    Full Text Available The article deals with the development of CFD (Computational Fluid Dynamics model of natural draft wet-cooling tower flow, heat and mass transfer. The moist air flow is described by the system of conservation laws along with additional equations. Moist air is assumed to be homogeneous mixture of dry air and water vapour. Liquid phase in the fill zone is described by the system of ordinary differential equations. Boundary value problem for the system of conservation laws is discretized in space using Kurganov-Tadmor central scheme and in time using strong stability preserving Runge-Kutta scheme. Initial value problems in the fill zone is solved by using standard fourth order Runge-Kutta scheme. The interaction between liquid water and moist air is done by source terms in governing equations.

  17. Collisional plasma transport: two-dimensional scalar formulation of the initial boundary value problem and quasi one-dimensional models

    International Nuclear Information System (INIS)

    Mugge, J.W.

    1979-10-01

    The collisional plasma transport problem is formulated as an initial boundary value problem for general characteristic boundary conditions. Starting from the full set of hydrodynamic and electrodynamic equations an expansion in the electron-ion mass ratio together with a multiple timescale method yields simplified equations on each timescale. On timescales where many collisions have taken place for the simplified equations the initial boundary value problem is formulated. Through the introduction of potentials a two-dimensional scalar formulation in terms of quasi-linear integro-differential equations of second order for a domain consisting of plasma and vacuum sub-domains is obtained. (Auth.)

  18. Superfluidity breakdown of periodic matter waves in quasi-one-dimensional annular traps via resonant scattering with moving defects

    Czech Academy of Sciences Publication Activity Database

    Yulin, A.V.; Bludov, Yu.V.; Konotop, V. V.; Kuzmiak, Vladimír; Salerno, M.

    2013-01-01

    Roč. 87, č. 3 (2013) ISSN 1050-2947 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : Superfluidity * Bose-Einstein condensates * Matter Waves Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.991, year: 2013

  19. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  20. The Heisenberg antiferromagnet on the square-kagomé lattice

    Directory of Open Access Journals (Sweden)

    J. Richter

    2009-01-01

    Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.

  1. How to manipulate magnetic states of antiferromagnets

    Science.gov (United States)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  2. Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers

    International Nuclear Information System (INIS)

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2015-01-01

    The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)

  3. Meperidine addiction or treatment frustration?

    Science.gov (United States)

    Hung, C I; Liu, C Y; Chen, C Y; Yang, C H; Yeh, E K

    2001-01-01

    There have been few studies of the psychiatric characteristics of analgesics addiction. The physician's perceptions that patients were addicted to analgesics might be partially attributable to frustration with poor response to treatment. In this retrospective study, we evaluated the medical records of 20 subjects (15 male and 5 female) who were perceived as having addiction to meperidine by general physicians. The most common medical diagnosis among these patients was chronic pancreatitis (7/20). Among them, five had a past history of suicide attempt and three had self-injury behavior during the index admission. The fact that subjects were perceived as being addicted might be attributable to a vicious cycle of the following factors: 1) chronic intractable pain; 2) poor staff-patient relationship; 3) lower pain threshold or tolerance due to anxiety or depression; 4) patients with a history or tendency of substance abuse; 5) placebo use and inadequate analgesics regimen. The findings of this study suggest that the importance of the following diagnostic and treatment procedures in these patients: 1) suicide risk should be evaluated; 2) comorbid psychiatric diseases should be treated; 3) factors that cause a vicious cycle in pain control should be identified; 4) misconceptions of opiate analgesics among medical staff should be discussed; 5) poor staff-patient relationship should be managed aggressively; and 6) "addiction" is a critical diagnosis that should be avoided if possible.

  4. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.

    2017-05-30

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  5. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.; Sinova, J.; Manchon, Aurelien; Marti, X.; Wunderlich, J.; Felser, C.

    2017-01-01

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  6. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  7. Neutron scattering studies on frustrated magnets

    International Nuclear Information System (INIS)

    Arima, Taka-hisa

    2013-01-01

    A lot of frustrated magnetic systems exhibit a nontrivial magnetic order, such as long-wavelength modulation, noncollinear, or noncoplanar order. The nontrivial order may pave the way for the novel magnetic function of matter. Neutron studies are necessary to determine the magnetic structures in the frustrated magnetic systems. In particular, spin-polarized neutron scattering is a useful technique for the investigation of the novel physical properties relevant to the nontrivial spin arrangement. Here some neutron studies on a multiferroic perovskite manganese oxide system are demonstrated as a typical case. The frustrated magnetic systems may also a playground of novel types of local magnetic excitations, which behave like particles in contrast to the magnetic waves. It is becoming a good challenge to study such particle-type magnetic excitations relevant to the magnetic frustration. (author)

  8. Analogies between antiferromagnets and antiferroelectrics

    International Nuclear Information System (INIS)

    Enz, C.P.; Matthias, B.T.

    1980-01-01

    Ferro- and antiferromagnetism in the Laves phase TiBesub(2-x) Cusub(x) occurs for 0.1 4 H 2 PO 4 and its solid solutions with TlH 2 PO 4 and with the ferroelectric KH 2 PO 4 are discussed as function of deuteration and of pressure. Another analogy as function of pressure is established with the antiferroelectric perovskite PbZrO 3 . (author)

  9. Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4

    Science.gov (United States)

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.

    2018-04-01

    Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.

  10. Dipolar Antiferromagnetism and Quantum Criticality in LiErF4

    International Nuclear Information System (INIS)

    Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik

    2012-01-01

    Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

  11. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  12. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  13. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.

    Science.gov (United States)

    Hu, Yong; Chi, Xiaodan; Li, Xuesi; Liu, Yan; Du, An

    2017-11-22

    In triangular-lattice magnets, the coexistence of third-neighbor antiferromagnetic and nearest-neighbor ferromagnetic exchange interactions can induce rich magnetic phases including noncoplanar skyrmion crystals. Based on Monte Carlo simulation, we studied the dependence of magnetic phase transition on exchange interaction strength. Under the consideration of uniaxial anisotropy and magnetic field both perpendicular to the film plane, a large antiferromagnetic exchange interaction induces a high frustration. When the value of antiferromagnetic exchange interaction is one and a half times larger than the ferromagnetic one, a magnetic phase composed of canting spin stripes, never observed in the chiral magnets, forms. Interestingly, different canting spin stripes along three 120 degree propagation directions may coexist randomly in a magnetic phase, attesting that the canting spin stripes are three-fold degenerate states akin to helices and the multiple state of canting spin stripes is a circular configuration with zero skyrmion charge number. Moreover, skyrmions and antiskyrmions can be observed simultaneously in the configuration at the low temperature nearly close to 0 K, and their configuration and diameter properties are discussed. Finally, the mechanisms of skyrmion creation and annihilation are properly interpreted by comparing exchange and Zeeman energy terms.

  14. Misjudging frustrations in spin liquids from oversimplified use of Curie-Weiss law

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Abhishek, E-mail: msan@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Ray, Sugata [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2017-02-15

    Absence of a single smoking-gun experiment to identify a quantum spin liquid, has kept their characterisation difficult till date. Featureless dc magnetic susceptibility and large antiferromagnetic frustration are always considered as the essential pointers to these systems. However, we show that the amount of frustration estimated by using generalised Curie-Weiss law on these susceptibility data are prone to errors and thus should be dealt with caution. We measure and analyse susceptibility data of Ba{sub 3}ZnIr{sub 2}O{sub 9}, a spin orbital liquid candidate and Gd{sub 2}O{sub 3}, a 1.5 K antiferromagnet and show the distinguishing features between them. A continuous and significant change in Curie and Weiss constants is seen to take place in Ba{sub 3}ZnIr{sub 2}O{sub 9} and other reported spin liquids with the change in the range of fitting temperatures showing the need of a temperature ‘range-of-fit’ analysis before commenting on the Weiss constants of spin liquids. The variation observed is similar to fluctuations among topological sectors persisting over a range of temperature in spin-ice candidates. On the other hand, even though we find correlations to exist at even 100 times the ordering temperature in Gd{sub 2}O{sub 3}, no such fluctuation is observed which may be used as an additional distinguishing signature of spin liquids over similarly featureless correlated paramagnets. - Highlights: • Curie-Weiss fitting may give erroneous frustration parameters in spin-liquids. • The results depend upon choice of fitting method and temperature range used. • More appropriate method is to use a ʽrange of fit’ analysis. • Can distinguish between spin-liquids and correlated paramagnets.

  15. Possibility of a two-dimensional spin liquid in CePdAl induced by partial geometric frustration?

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, V. [Universitaet Augsburg, Institut fuer Physik, Experimentalphysik VI (Germany); Karlsruher Institut fuer Technologie (Germany); Grube, K.; Kittler, W.; Taubenheim, C.; Loehneysen, H. von [Karlsruher Institut fuer Technologie (Germany); Huesges, Z.; Lucas, S.; Stockert, O. [Max-Planck-Institut fuer chemische Physik fester Stoffe, Dresden (Germany); Green, E. [Hochfeldzentrum Dresden-Rossendorf (Germany)

    2015-07-01

    CePdAl crystallizes in the hexagonal ZrNiAl structure, where the magnetic ions form a distorted kagome lattice. At T{sub N} = 2.7 K the onset of antiferromagnetic (AF) order is observed. Neutron scattering experiments revealed a partial frustration in the distorted kagome planes of this structure: two-thirds of the Ce moments form ferromagnetic chains, which are antiferromagnetically coupled, the remaining third do not participate in any long-range order. Along the c-axis the magnetic moments exhibit an amplitude modulation. Accordingly, the kagome planes are stacked on top of each other, resulting in corrugated AF planes parallel to the c-axis formed by the ordered magnetic moments, which are separated by the frustrated moments. It is an intriguing and yet unresolved question if this third of frustrated moments forms a spin liquid state in CePdAl. Based on measurements of specific heat, thermal expansion, magnetization and electrical resistivity we want to discuss this possibility.

  16. Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn2Bi2

    Science.gov (United States)

    Kawaguchi, N.; Urata, T.; Hatano, T.; Iida, K.; Ikuta, H.

    2018-04-01

    We found a large and unique magnetoresistance (MR) effect for CaMn2Bi2 . When the magnetic field was applied along the crystallographic c axis at low temperatures, the resistivity increased with the magnetic field and the MR ratio reached several hundred percent, but then it decreased with further increasing the applied field. In addition, the angle dependence measurement revealed a strong anisotropy. This compound is an antiferromagnetic semiconductor with a narrow band gap, and Mn atoms form a corrugated honeycomb lattice. Therefore, a frustration among the magnetic moments is expected, and we propose that our observations can be understood by a nonmonotonic modulation of magnetic fluctuation under the magnetic field.

  17. Spiral phases of doped antiferromagnets

    International Nuclear Information System (INIS)

    Shraiman, B.I.; Siggia, E.D.

    1990-01-01

    The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs

  18. Maximal frustration as an immunological principle.

    Science.gov (United States)

    de Abreu, F Vistulo; Mostardinha, P

    2009-03-06

    A fundamental problem in immunology is that of understanding how the immune system selects promptly which cells to kill without harming the body. This problem poses an apparent paradox. Strong reactivity against pathogens seems incompatible with perfect tolerance towards self. We propose a different view on cellular reactivity to overcome this paradox: effector functions should be seen as the outcome of cellular decisions which can be in conflict with other cells' decisions. We argue that if cellular systems are frustrated, then extensive cross-reactivity among the elements in the system can decrease the reactivity of the system as a whole and induce perfect tolerance. Using numerical and mathematical analyses, we discuss two simple models that perform optimal pathogenic detection with no autoimmunity if cells are maximally frustrated. This study strongly suggests that a principle of maximal frustration could be used to build artificial immune systems. It would be interesting to test this principle in the real adaptive immune system.

  19. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  20. Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration

    Science.gov (United States)

    Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.

    2018-03-01

    We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.

  1. High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields

    International Nuclear Information System (INIS)

    Farnell, D J J; Zinke, R; Richter, J; Schulenburg, J

    2009-01-01

    We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the quantum Monte Carlo (QMC) method suffers from the 'sign problem'. Results for this model in the presence of magnetic field are rarer than those for the square-lattice system. Here we determine and solve the basic CCM equations by using the localized approximation scheme commonly referred to as the 'LSUBm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetization and the local (sublattice) magnetizations as a function of the magnetic field strength. Our results for the lattice magnetization of the square-lattice case compare well to the results from QMC approaches for all values of the applied external magnetic field. We find a value for the magnetic susceptibility of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our estimate for the range of the extent of the (M/M s =) 1/3 magnetization plateau for the triangular-lattice antiferromagnet is 1.37 SWT = 0.0794. Higher-order calculations are thus suggested for both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular lattice conclusively.

  2. [French validation of the Frustration Discomfort Scale].

    Science.gov (United States)

    Chamayou, J-L; Tsenova, V; Gonthier, C; Blatier, C; Yahyaoui, A

    2016-08-01

    Rational emotive behavior therapy originally considered the concept of frustration intolerance in relation to different beliefs or cognitive patterns. Psychological disorders or, to some extent, certain affects such as frustration could result from irrational beliefs. Initially regarded as a unidimensional construct, recent literature considers those irrational beliefs as a multidimensional construct; such is the case for the phenomenon of frustration. In order to measure frustration intolerance, Harrington (2005) developed and validated the Frustration Discomfort Scale. The scale includes four dimensions of beliefs: emotional intolerance includes beliefs according to which emotional distress is intolerable and must be controlled or avoided as soon as possible. The intolerance of discomfort or demand for comfort is the second dimension based on beliefs that life should be peaceful and comfortable and that any inconvenience, effort or hassle should be avoided. The third dimension is entitlement, which includes beliefs about personal goals, such as merit, fairness, respect and gratification, and that others must not frustrate those non-negotiable desires. The fourth dimension is achievement, which reflects demands for high expectations or standards. The aim of this study was to translate and validate in a French population the Frustration and Discomfort Scale developed by Harrington (2005), assess its psychometric properties, highlight the four factors structure of the scale, and examine the relationships between this concept and both emotion regulation and perceived stress. We translated the Frustration Discomfort Scale from English to French and back from French to English in order to ensure good quality of translation. We then submitted the scale to 289 students (239 females and 50 males) from the University of Savoy in addition to the Cognitive Emotional Regulation Questionnaire and the Perceived Stress Scale. The results showed satisfactory psychometric

  3. Geometric Magnetic Frustration in Li3Mg2OsO6 Studied with Muon Spin Relaxation

    Science.gov (United States)

    Carlo, J. P.; Derakhshan, S.; Greedan, J. E.

    Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A5BO6, in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of Li3Mg2OsO6 using muon spin relaxation (μSR), a highly sensitive local probe of magnetism. Previous studies of this family included Li5OsO6, which exhibits AF order below 50K with minimal evidence for frustration, and Li4MgReO6, which exhibits glassy magnetism. Li3Mg2RuO6, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, Li3Mg2OsO6 (5d3 vs. 4d3) exhibits very different behavior, revealed by μSR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration. Financial support from the Research Corporation for Science Advancement.

  4. Frustration-Instigated Behavior and Learned Helplessness.

    Science.gov (United States)

    Winefield, Anthony H.

    1979-01-01

    Compares M. E. P. Seligman's recent work on learned helplessness with N. R. F. Maier's 30-year-old work on frustration behavior. Notes striking similarities between the two approaches. Concludes that the learned helplessness model might explain the "abnormal fixations" that Maier reported. (Author/RL)

  5. Children, Hyperactivity and Low Frustration Tolerance.

    Science.gov (United States)

    Shaughnessy, Michael F.; Scott, Patricia Carol

    This paper addresses issues regarding the hyperactive child, the impulsive child, and the low frustration tolerance child. It points out the subjectivity involved in identifying children as hyperactive, and outlines various forms of hyperactivity: the child who is in constant movement, the child who manages control in school but exhibits whirlwind…

  6. Frustrated Lewis pairs: Design and reactivity

    Indian Academy of Sciences (India)

    for FLP systems and their unique reactivity are discussed here. Keywords. Lewis .... we will concentrate on the design principles of such. FLPs and the ... Designs of frustrated Lewis pairs ..... 64 and neutral titanium (III) complex [Cp2TiOC6.

  7. Frustrated Lewis pairs-assisted tritium labeling

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Široká, Sabina; Elbert, Tomáš

    2016-01-01

    Roč. 14, č. 5 (2016), s. 219 ISSN 2336-7202. [Sjezd českých a slovenských chemických společností /68./. 04.09.2016-07.09.2016, Praha] Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * one-pot synthesis * tritium -labeling Subject RIV: CC - Organic Chemistry

  8. Magnetization plateaux and jumps in frustrated four-leg spin tubes in magnetic fields

    International Nuclear Information System (INIS)

    Rosales, H D; Arlego, M; Albarracín, F A Gómez

    2014-01-01

    We study the ground state phase diagram of a frustrated spin-1/2 four-leg tube in an external magnetic field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings by means of three different approaches: density matrix renormalization group (DMRG), a low-energy effective Hamiltonian (LEH) and a Hartree variational approach (HVA). We find that in the limit of weakly interacting plaquettes, singlet and triplet states play an important role in the formation of magnetization plateaux. We study the transition regions numerically and analytically, and find that they are described, at first order in a strong- coupling expansion, by an XXZ spin-1/2 chain in a magnetic field. These results are consistent with the DMRG and HVA calculations

  9. Candidate for a fully frustrated square lattice in a verdazyl-based salt

    Science.gov (United States)

    Yamaguchi, H.; Tamekuni, Y.; Iwasaki, Y.; Hosokoshi, Y.

    2018-05-01

    We present an experimental realization of an S =1 /2 fully frustrated square lattice (FFSL) composed of a verdazyl-based salt (p -MePy-V) (TCNQ ) .(CH3)2CO . Ab initio molecular orbital calculations indicate that there are four types of competing ferro- and antiferromagnetic nearest-neighbor interactions present in the system, which combine to form an S =1 /2 FFSL. Below room temperature, the magnetic susceptibility of the material can be considered to arise from the S =1 /2 FFSL formed by the p -MePy-V and indicates that the system forms a quantum valence-bond solid state whose excitation energy is gapped. Furthermore, we also observe semiconducting behavior arising from the one-dimensional chain structure of the TCNQ molecules.

  10. Organizational Frustration: A Model and Review of the Literature.

    Science.gov (United States)

    Spector, Paul E.

    1978-01-01

    This discussion is divided into four parts: (1) the definition of frustration; (2) general behavioral reactions to frustration which have implications for organizations; (3) integration of the individual behavioral reactions into a model of organizational frustration; and (4) a review of the supporting evidence for the model. (Author)

  11. Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Javed, Qurat-ul-ain; Feng-Ping Wang; Rafique, M. Yasir; Toufiq, Arbab Mohammad; Iqbal, M. Zubair

    2012-01-01

    We have reported new magnetic and optical properties of Mn 2 O 3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV—visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn 2 O 3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn 2 O 3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at T N = 83 K. Furthermore, the Mn 2 O 3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remnant magnetization (1.52 emu/g). The UV—visible spectrophotometry was used to determine the transmittance behaviour of Mn 2 O 3 nanostructures. A direct optical band gap of 1.2 eV was acquired by using the Davis—Mott model. The UV—visible spectrum indicates that the absorption is prominent in the visible region, and transparency is more than 80% in the UV region

  12. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  13. Antiferromagnetic resonance excited by oscillating electric currents

    Science.gov (United States)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  14. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  15. Magnon Spin Nernst Effect in Antiferromagnets

    Science.gov (United States)

    Zyuzin, Vladimir A.; Kovalev, Alexey A.

    2016-11-01

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  16. Magnon Spin Nernst Effect in Antiferromagnets.

    Science.gov (United States)

    Zyuzin, Vladimir A; Kovalev, Alexey A

    2016-11-18

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  17. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  18. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Surungan, Tasrief, E-mail: tasrief@unhas.ac.id; Bansawang, B.J.; Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar, South Sulawesi 90245 (Indonesia)

    2016-03-11

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  19. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    International Nuclear Information System (INIS)

    Surungan, Tasrief; Bansawang, B.J.; Tahir, Dahlang

    2016-01-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  20. Quantum phase transition with dissipative frustration

    Science.gov (United States)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  1. Quantum frustrated and correlated electron systems

    Directory of Open Access Journals (Sweden)

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  2. Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder

    Science.gov (United States)

    Qi, Yan; Lv, Song-Wei; Du, An; Yu, Nai-sen

    2016-11-01

    We study a mixed spin-(3/2, 1) ladder system with antiferromagnetic rung coupling and next-nearest-neighbor interaction. The exactly solved Ising-chain model is employed to investigate the ground-state properties and thermodynamics of the low-dimensional ladder system. Our results show that the competition between different exchange couplings brings in a large variety of ground states characterized by various values of normalized magnetization equal to 0, 1/5, 2/5, 3/5, 1. Moreover, an interesting double-peak structure is also detected in the thermal dependence of magnetic susceptibility and specific heat when the frustration comes into play. It is shown that the double-peak phenomenon at zero-field for the case of AF2 ground-state arises from the very strong antiferromagnetic rung coupling, while other cases are attributed to the excitations induced by temperature and external field around the phase boundary. Project supported by the National Natural Science Foundation of China (Grant No. 11547236), the General Project of the Education Department of Liaoning Province, China (Grant No. L2015130), the Fundamental Research Funds for the Central Universities, China (Grant Nos. DC201501065 and DCPY2016014), and the Doctoral Starting-up Foundation of Dalian Nationalities University, China.

  3. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    International Nuclear Information System (INIS)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-01-01

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb 2 Ti 2 O 7 . However, previous structural studies indicated that Tb 2 Ti 2 O 7 is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb 2 Ti 2 O 7 is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u 2 's) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L III and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb 2 Ti 2 O 7 has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures

  4. Properties of Haldane Excitations and Multiparticle States in the Antiferromagnetic Spin-1 Chain Compound CsNiCl3

    International Nuclear Information System (INIS)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.; Tun, Z.; Coldea, Radu; Enderle, M.

    2002-01-01

    We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl 3 . Measurements over a wide range of wave-vector transfers along the chain confirm that above T N CsNiCl 3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length ζ = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl 3 for T ∼< 12 K, possibly caused by multiply frustrated interchain interactions.

  5. Magnetization plateaus in the spin-1/2 antiferromagnetic Heisenberg model on a kagome-strip chain

    Science.gov (United States)

    Morita, Katsuhiro; Sugimoto, Takanori; Sota, Shigetoshi; Tohyama, Takami

    2018-01-01

    The spin-1/2 Heisenberg model on a kagome lattice is a typical frustrated quantum spin system. The basic structure of a kagome lattice is also present in the kagome-strip lattice in one dimension, where a similar type of frustration is expected. We thus study the magnetization plateaus of the spin-1/2 Heisenberg model on a kagome-strip chain with three-independent antiferromagnetic exchange interactions using the density-matrix renormalization-group method. In a certain range of exchange parameters, we find twelve kinds of magnetization plateaus, nine of which have magnetic structures breaking translational and/or reflection symmetry spontaneously. The structures are classified by an array of five-site unit cells with specific bond-spin correlations. In a case with a nontrivial plateau, namely a 3/10 plateau, we find long-period magnetic structure with a period of four unit cells.

  6. Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.

  7. Field-induced phase transitions in antiferromagnetic systems

    International Nuclear Information System (INIS)

    Smeets, J.P.M.

    1984-05-01

    Neutron scattering experiments and magnetization measurements are carried out on cobalt bromide hexahydrate, of which 48% of the water molecules are replaced by deuterium oxide molecules. Results were compared with data obtained from non-deuterated cobalt bromide hexahydrate. Neutron scattering experiments showed the importance of the deuterium fraction. Interplay exists between the crystallographic system and the magnetic system, which is influenced by changing the deuterium fraction. Neutron scattering and magnetization experiments on partially deuterated RbFeCl 3 .2H 2 O and CsFeCl 3 .2H 2 O were performed to study the magnetic phase transitions in these quasi one-dimensional Ising compounds. The observed behaviour in the various phases can be described by the nucleation theory of chain reversals. (Auth.)

  8. Evolved Minimal Frustration in Multifunctional Biomolecules.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  9. Complexity due to disorder and frustration

    International Nuclear Information System (INIS)

    Sherrington, D.

    1990-01-01

    In these lectures the author aims to demonstrate that quenched disorder and frustrated interactions combine to produce rich and complex behavior, static and dynamic, in a wealth of situations ranging from solid-state physics, through NP-hard optimization (e.g., in operational research), to neural models for memory. The techniques employed draw heavily on statistical mechanics and automaton theory, but the conventional versions of these subjects require non-trivial extension to deal with the new phenomena, leading to the development of new concepts. 16 refs., 12 figs

  10. Gifts and exchanges problems, frustrations, and triumphs

    CERN Document Server

    Katz, Linda S; Denning, Catherine

    2013-01-01

    This important book explores the many questions challenging librarians who work with gifts and exchanges (G&E) as part of their daily responsibilities. Too often, because of shrinking library budgets, library gifts are considered burdensome and unprofitable drains on both financial and personnel resources. However, Gifts and Exchanges: Problems, Frustrations, . . . and Triumphs gives you solutions that will allow you to embrace your library's gifts as rewards. In this book, you will discover the latest ways of disposing unwanted materials, planning and holding book sales and auctions, and oper

  11. Geometrically frustrated magnetic structures of the heavy-fermion compound CePdAl studied by powder neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)

    1996-12-09

    The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)

  12. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  13. Packing frustration in dense confined fluids.

    Science.gov (United States)

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  14. Theoretical modeling of diluted antiferromagnetic systems

    International Nuclear Information System (INIS)

    Pozo, J; Elgueta, R; Acevedo, R

    2000-01-01

    Some magnetic properties of a Diluted Antiferromagnetic System (DAFS) are studied. The model of the two sub-networks for antiferromagnetism is used and a Heisenberg Hamiltonian type is proposed, where the square operators are expressed in terms of boson operators with the approach of spin waves. The behavior of the diluted system's fundamental state depends basically on the competition effect between the anisotropy field and the Weiss molecular field. The approach used allows the diluted system to be worked for strong anisotropies as well as when these are very weak

  15. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien

    2017-01-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque

  16. Magnetic phase diagram of a frustrated spin ladder

    Science.gov (United States)

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  17. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    Science.gov (United States)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  18. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  19. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  20. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  1. Metallic and antiferromagnetic fixed points from gravity

    Science.gov (United States)

    Paul, Chandrima

    2018-06-01

    We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.

  2. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  3. Thermoinduced magnetization in nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine

    2004-01-01

    We show that there is a thermoinduced contribution to the magnetic moment of nanoparticles of antiferromagnetic materials. It arises from thermal excitations of the uniform spin-precession mode, and it has the unusual property that its magnitude increases with increasing temperature. This has...

  4. Infrared investigation of the phonon spectrum in the frustrated spin cluster compound FeTe{sub 2}O{sub 5}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Pfuner, F; Degiorgi, L [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Berger, H; Forro, L [Institut de Physique de la Matiere Complexe (IPMC), EPF Lausanne, CH-1015 Lausanne (Switzerland)

    2009-09-16

    We present our optical investigations on the frustrated spin cluster compound FeTe{sub 2}O{sub 5}Cl, which develops a long-range antiferromagnetic order below 10 K. We measure the optical reflectivity from the far-infrared to the ultraviolet with polarized light. We focus our attention on the lattice dynamics by discussing the infrared-active modes. Our findings reveal a polarization dependence of the vibrational modes but which do not seem to be affected by structural anomalies linked to the magnetically ordered state at low temperatures.

  5. Magnetoresistance and spin frustration at low temperature in LaMn sub 1 sub - sub x Ni sub x O sub 3 sub + subdelta (0 <= x <= 0.1)

    CERN Document Server

    Yamamoto, A

    2003-01-01

    This paper investigates the relation between the temperature dependence of magnetoresistance (MR) and spin frustration in LaMnO sub 3 sub + subdelta when Ni is doped into the Mn site. The specimens experience magnetic frustration introduced by the competition between antiferromagnetic (AFM) and ferromagnetic (FM) interactions. According to the temperature dependence of magnetization after cooling the specimen in zero field and non-zero field, Ni-doped specimens behave like cluster glasses. This magnetic frustration at the low temperature is believed to result from the disordered spin structure between AFM and FM phases in these specimens. When the structural symmetry in the specimen is higher, the FM arrangement increases by double the exchange interaction. However, MR decreases in the same temperature region for the same reason. We suggest that the temperature dependence of MR below the Curie temperature in the Ni-doped specimen is controlled by the change of magnetization that occurs with structural change.

  6. Characterizing and quantifying frustration in quantum many-body systems.

    Science.gov (United States)

    Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F

    2011-12-23

    We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.

  7. Two-dimensional magnetism in the triangular antiferromagnet NiGa2S4

    International Nuclear Information System (INIS)

    Nambu, Yusuke

    2013-01-01

    At sufficiently low temperatures, electron spins in normal magnets generally order into some fashion, for instance, ferromagnetic and antiferromagnetic. Geometrical frustration and/or reduced dimensionality can suppress such conventional orders, and occasionally induce unknown states of matter. This is the case for the two-dimensional (2D) triangular antiferromagnet Ni(Ga 2 S 4 , in which S=1 nickel spins do not order, instead show an exotic magnetism. We found (1) a resonant critical slowing down toward T*=8.5 K followed by a viscous spin liquid behavior, and (2) a spin-size dependent ground state. To elucidate (1), spin dynamics ranging from 10 -13 to 10 0 seconds were quantitatively explored through the experimental techniques such as inelastic neutron scattering, backscattering, neutron spin echo, ac and nonlinear susceptibilities. The finding of (2) is evidenced by impurity effects. Integer spins substituted systems such as zinc and iron ions retain a quadratic temperature dependence of the magnetic specific heat as for the parent compound. However, substitutions of half-odd integer spins, cobalt and manganese ions, eventually induce a distinct behavior, indicating an importance of integer size of spins to stabilize the 2D magnetism realized in NiGa 2 S 4 . The article gives our experimental findings and as well as some relevant theoretical scenarios. (author)

  8. Thermodynamic investigations of the quasi-2d triangular Heisenberg antiferromagnet Cs{sub 2}CuCl{sub 2}Br{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tutsch, Ulrich; Postulka, Lars; Wolf, Bernd; Lang, Michael; Well, Natalija van; Ritter, Franz; Krellner, Cornelius; Assmus, Wolf [Physikalisches Institut, Goethe-University Frankfurt (Germany)

    2015-07-01

    The system Cs{sub 2}CuCl{sub 4-x}Br{sub x} (0 ≤ x ≤ 4) is a quasi-two-dimensional Heisenberg antiferromagnet with a triangular in-plane arrangement of the spin-spin couplings. The ratio J{sup '}/J of the corresponding coupling constants determines the degree of frustration in the system and has been found to be 0.34 (x = 0) and 0.74 (x = 4) for the border compounds. One may ask whether for some intermediate Br concentration an even higher degree of frustration can be reached. Indeed, some indications have been reported by Ono et al. Here, we present specific heat C and susceptibility χ measurements below 1 K in magnetic fields B up to 13.5 T for the intermediate compound Cs{sub 2}CuCl{sub 2}Br{sub 2}, which, due to site-selective substitution, shows a well-ordered halide sublattice. Indications for an antiferromagnetic transition are observed around 90 mK for B = 0. A small field of B = 0.14 T is sufficient to fully suppress this anomaly. Taking into account the high saturation field of about 20 T, extrapolated from χ(T = const, B) scans at low temperatures, this small ordered region in the B-T plane clearly indicates a high degree of frustration in Cs{sub 2}CuCl{sub 2}Br{sub 2}.

  9. Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4

    DEFF Research Database (Denmark)

    Zaharko, O.; Christensen, Niels Bech; Cervellino, A.

    2011-01-01

    at the q = 0 positions are broad and their line shapes have strong Lorentzian contributions. Additionally, the peaks are connected by weak diffuse streaks oriented along the directions. The observed short-range magnetic correlations are explained within the spiral spin-liquid model. The specific...... shape of the energy landscape of the system, with an extremely flat energy minimum around q = 0 and many low-lying excited spiral states with q = , results in thermal population of this manifold at finite temperatures. The agreement between the experimental results and the spiral spin-liquid model...... is only qualitative, indicating that microstructure effects might be important to achieve quantitative agreement. Application of a magnetic field significantly perturbs the spiral spin-liquid correlations. The magnetic peaks remain broad but acquire more Gaussian line shapes and increase in intensity...

  10. Spin glass behavior of the antiferromagnetic Heisenberg model on scale free network

    International Nuclear Information System (INIS)

    Surungan, Tasrief; Zen, Freddy P; Williams, Anthony G

    2015-01-01

    Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. The study by Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in d-dimensional regular lattices for (d ≤ 3). We can make an analogy for the connectivity density (m) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of m for the existence of SG behaviour, analogous to the lower critical dimension (d l ) for the canonical SG systems. Here we study system with m = 2, 3, 4 and 5. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of m and estimated its corersponding critical temperature. (paper)

  11. Search for the Heisenberg spin glass on rewired cubic lattices with antiferromagnetic interaction

    International Nuclear Information System (INIS)

    Surungan, Tasrief

    2016-01-01

    Spin glass (SG) is a typical magnetic system which is mainly characterized by a frozen random spin orientation at low temperatures. Frustration and randomness are considered to be the key ingredients for the existence of SGs. Previously, Bartolozzi et al . [Phys. Rev. B73, 224419 (2006)] found that the antiferromagnetic (AF) Ising spins on scale free network (SFN) exhibited SG behavior. This is purely AF system, a new type of SG different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely due to a topological factor and its randomness is brought by irregular connectivity. Recently, it was reported that the AF Heisenberg model on SFN exhibited SG behavior [Surungan et al ., JPCS, 640, 012005 (2015)/doi:10.1088/1742-6596/640/1/012005]. In order to accommodate the notion of spatial dimension, we further investigated this type of system by studying an AF Heisenberg model on rewired cubic lattices, constructed by adding one extra bond randomly connecting each spin to one of its next-nearest neighbors. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase. (paper)

  12. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    Science.gov (United States)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  13. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-06-14

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb{sub 2}Ti{sub 2}O{sub 7}. However, previous structural studies indicated that Tb{sub 2}Ti{sub 2}O{sub 7} is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb{sub 2}Ti{sub 2}O{sub 7} is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u{sup 2}'s) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L{sub III} and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb{sub 2}Ti{sub 2}O{sub 7} has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures.

  14. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    Science.gov (United States)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  15. Isolable Triradical Trication of Hexaaza[16]paracyclophane with Embedded 9,10-Anthrylenes: A Frustrated Three-Spin System.

    Science.gov (United States)

    Kurata, Ryohei; Sakamaki, Daisuke; Uebe, Masashi; Kinoshita, Mariko; Iwanaga, Tetsuo; Matsumoto, Takashi; Ito, Akihiro

    2017-08-18

    A new derivative of hexaaza[1 6 ]paracyclophane in which p-phenylenes are alternately replaced by 9,10-anthrylenes was prepared to investigate the impact on overall π-conjugation as well as conformational change of the macrocycle. The charge and spin distribution for one-electron and three-electron oxidation of the macrocycle was elucidated by means of electrochemical, spectroelectrochemical, EPR spectroscopic, and SQUID magnetometric methods. In particular, the triradical trication was successfully isolated as an air-stable salt, and moreover, its structure was disclosed by X-ray analysis. The triradical trication was characterized as a spin-frustrated three-spin system with the antiferromagnetic exchange interaction (J/k B ≃ - 74 K).

  16. Theory of antiferromagnetic pairing in cuprate superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.

    2006-01-01

    A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed

  17. Antiferromagnetic transition in graphene functionalized with nitroaniline

    Science.gov (United States)

    Komlev, Anton A.; Makarova, Tatiana L.; Lahderanta, Erkki; Semenikhin, Petr Valeryevich; Veinger, Anatoly I.; Kochman, Igor V.; Magnani, Giacomo; Bertoni, Giovanni; Pontiroli, Daniele; Ricco, Mauro

    2017-07-01

    Magnetic properties of graphene nanostructures functionalized with aromatic radicals were investigated by electron spin resonance (ESR) and superconducting quantum interference device (SQUID) techniques. Three types of functionalized graphene samples were investigated (functionalization was performed by 4-bromoaniline, 4-nitroaniline, or 4-chloroaniline). According to SQUID measurements, in case of functionalization by nitroaniline, sharp change in temperature dependence of magnetic susceptibility was observed near 120 K. Such behavior was explained as antiferromagnetic ordering. The same but more extended effect was observed in ESR measurements below 160 K. In the ESR measurements, only one resonance line with g-factor equal to 2.003 was observed. Based on the temperature dependencies of spin concentration and resonance position and intensity, the effect was explained as antiferromagnetic ordering along the extended defects on the basal planes of the graphene.

  18. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  19. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  20. Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain

    OpenAIRE

    Hao, Xiang; Zhu, Shiqun

    2008-01-01

    The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...

  1. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  2. Synthesis, characterization and magnetic properties of a manganese (II) silicate containing frustrated S=5/2 zig–zag ladders

    International Nuclear Information System (INIS)

    Brandão, P.; Santos, A.M. dos; Paixão, L.S.; Reis, M.S.

    2014-01-01

    The hydrothermal synthesis, structural characterization and magnetic properties of a manganese silicate with ideal formula of NaMn 2 Si 3 O 8 (OH) is reported. This compound is a synthetic analog to the naturally occurring mineral Serandite. The crystal structure comprises MnO 6 octahedra and SiO 4 tetrahedra. The MnO 6 share four edges with neighboring octahedra forming double chains. These chains are connected by silicate chains Si 3 O 8 (OH) resulting in an open framework structure with six-member ring channels where sodium ions are located. From the magnetic point of view, the intra-chain exchange between neighboring S=5/2 manganese ions is weak, partly due to the distortion observed in the octahedra, but also due to the frustrated topology of the chain. A successful fitting of the magnetic susceptibility was obtained by considering a double chain numerical model with Monte Carlo derived empirical parameters. -- Graphical abstract: A manganese silicate prepared hydrothermally with formula NaMn 2 Si 3 O 8 (OH) possessing the structure of the mineral Serandite contains doubled chains of edge-sharing MnO 6 octahedra. The magnetic susceptibility was measured and shows an antiferromagnetic behavior. Highlights: • Characterization of a synthetic analog to the mineral Serandite: NaMn 2 Si 3 O 8 (OH). • Fitting of the magnetic susceptibility considering a classical regular chain. • Weak metal–oxygen–metal super-exchange interactions; antiferromagnetic in nature. • Elevated degree of frustration along the chain, without sign of interchain ordering

  3. Edge currents in frustrated Josephson junction ladders

    Science.gov (United States)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  4. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  5. Model calculation of thermal conductivity in antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.

    2015-11-01

    A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.

  6. Doping effects on the relaxation of frustration and magnetic properties of YMn0.9Cu0.1O3

    Science.gov (United States)

    Xiao, L. X.; Xia, Z. C.; Wang, X.; Ni, Y.; Yu, W.; Shi, L. R.; Jin, Z.; Xiao, G. L.

    2017-12-01

    The crystal structure and magnetic properties of hexagonal YMn0.9Cu0.1O3 single crystal are systematically investigated. The refinement results of XRD show the lattice constant decreases, which is unusually due to the doped Cu2+ ion has a larger ionic radius than the Mn3+ ions. The XPS results show that the coexistence of Mn2+, Mn3+ and Mn4+ ions in YMn0.9Cu0.1O3 single crystal. Magnetization measurements show that Cu doped YMn0.9Cu0.1O3 and parent YMnO3 have almost the same antiferromagnetic transition temperature TN, which indicates the AFM interaction is robust in the geometry frustrated system. Because doping directly destroy some of the Mn3+ ions nets, the relaxation of frustration of Mn in-plane 2D triangular geometry network leads to the significantly decrease of Mn3+ ions AFM interaction. In addition, the coexistence and competition between the ferromagnetic and antiferromagnetic interactions among the Mn2+, Mn3+ and Mn4+ ions lead to a complicated and irreversible magnetization behavior in YMn0.9Cu0.1O3 single crystal.

  7. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  8. The effect of Coulomb interactions on the ac mobility of charges in quasi-one-dimensional systems. Example : Discotic liquid crystals

    NARCIS (Netherlands)

    Siebbeles, L.D.A.; Movaghar, B.

    2000-01-01

    Using Monte Carlo simulations we calculate the frequency dependence of the diffusive mobility of a group of carriers on a short one-dimensional chain. We allow the carriers to interact with each other through weakly screened long-range Coulomb potentials. We consider both doped systems with discrete

  9. Spin excitations and quantum criticality in the quasi-one-dimensional Ising-like ferromagnet CoCl2·2D2O in a transverse field

    DEFF Research Database (Denmark)

    Larsen, J.; Schäffer, T. K.; Hansen, U. B.

    2017-01-01

    We present experimental evidence for a quantum phase transition in the easy-axis S = 3/2 anisotropic quasione-dimensional ferromagnet CoCl2 · 2D2O in a transverse field. Elastic neutron scattering shows that the magnetic order parameter vanishes at a transverse critical field μ0Hc = 16.05(4) T......, while inelastic neutron scattering shows that the gap in the magnetic excitation spectrum vanishes at the same field value, and reopens for H>Hc. The field dependence of the order parameter and the gap are well described by critical exponents β = 0.45 ± 0.09 and zν close to 1/2, implying...... that the quantum phase transition in CoCl2 · 2D2O differs significantly from the textbook version of a S = 1/2 Ising chain in a transverse field. We attribute the difference to weak but finite three-dimensionality of the magnetic interactions....

  10. High-pressure crystal growth and magnetic and electrical properties of the quasi-one dimensional osmium oxide Na2OsO4

    International Nuclear Information System (INIS)

    Shi, Y.G.; Guo, Y.F.; Yu, S.; Arai, M.; Belik, A.A.; Sato, A.; Yamaura, K.; Takayama-Muromachi, E.

    2010-01-01

    Na 2 OsO 4 crystals were grown by a NaCl flux method under high pressure. It crystallizes in the Ca 2 IrO 4 -type structure without having additional elements or metal vacancies, which are usually accommodated. It appears that Na 2 OsO 4 is a metal-stoichiometric Ca 2 IrO 4 -type compound never been synthesized to date. Na 2 OsO 4 has the octahedral environment of Os 6+ O 6 so that the electronic configuration is 5d 2 , suggesting the magnetic S=1 ground state. However, magnetization, electrical resistivity, and specific heat measurements indicated that the non-magnetic S=0 state is much likely for Na 2 OsO 4 than the S=1 state. Band structure calculations and the structure analysis found that the disagreement is probably due to the statically uniaxial compression of the OsO 6 octahedra, resulting in splitting of the t 2 g band. - Graphical abstract: Na 2 OsO 4 crystals were grown by a NaCl flux method under high pressure. It crystallizes in the Ca 2 IrO 4 -type structure comprising infinite Os 6+ O 6 octahedra (5d 2 ) chains. The crystal growth, the crystal structure, and the magnetic and electrical properties are reported.

  11. Quasi-one-dimensional polaronic states due to the preferential reduction in the Li sub 1 sub + sub x V sub 3 O sub 8 insertion electrode

    CERN Document Server

    Onoda, M

    2003-01-01

    The structural and electronic properties of the Li sub 1 sub + sub x V sub 3 O sub 8 insertion electrode, where 0 sup 0.1 with nearly stoichiometric oxygen atoms, small polarons exist without carrier-creation energy at high temperatures, while at low temperatures the conduction may be of variable-range hopping (VRH) type. For x > 0.2, one-dimensional magnetic properties appear due to sizable exchange couplings and order-disorder effects of additional Li ions may lead to significant change of transport properties. For the intermediate composition 0 < x sup<= 0.1, strong randomness of the Li doping and the congenital oxygen deficiency cause VRH states even at high temperatures.

  12. Magnetovolume effects of quasi-one-dimensional itinerant electron magnets (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Y. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: rk04j052@stkt.u-hyogo.ac.jp; Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Nakamura, H. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2006-05-01

    Magnetovolume effects of 3d heavy-electron compounds with linear spin chains, (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8} with x=<0.15 and =1, have been investigated to get information on the ground state of LaMn{sub 4}Al{sub 8} and the nature of spin fluctuations in this system. The negative thermal expansion observed for LaMn{sub 4}Al{sub 8} is suppressed by the substitution of a small amount of Y for La. Together with the field-cooled effect in the susceptibility, the magnetovolume effect suggests the development of short-range magnetic correlation in LaMn{sub 4}Al{sub 8} at low temperatures.

  13. Exploring the Nature of Exciton Localization in Quasi One-Dimensional GaAs/AlGaAs Quantum Well Tube Nanowires

    Science.gov (United States)

    Jackson, Howard; Badada, Bekele; Shi, Teng; Smith, Leigh; Zheng, Changlin; Etheridge, Joanne; Jiang, Nian; Tan, Hoe; Jagadish, Channupati

    We explore the nature of exciton localization in single GaAs/AlGaAs nanowire quantum well tube (QWT) devices using photocurrent (PC) spectroscopy combined with simultaneous photoluminescence (PL) and photoluminescence excitation (PLE) measurements. Excitons confined to GaAs quantum well tubes of 8 and 4 nm widths embedded into an AlGaAs barrier are seen to ionize at high bias. Spectroscopic signatures of the ground and excited states confined to the QWT seen in PL, PLE and PC data are consistent with simple numerical calculations. The demonstration of good electrical contact with the QWTs enables the study of Stark effect shifts in the sharp emission lines of excitons localized to quantum dot-like states within the QWT. Atomic resolution cross-sectional TEM measurements, an analysis of the temperature dependence of PL and time-resolved PL as well as the quantum confined Stark effect of these dots provide insights into the nature of the exciton localization in these nanostructures. We acknowledge the financial support of NSF DMR 1507844, DMR 151373 and ECCS 1509706 and the Australian Research Council.

  14. Reply to 'Comment on 'Motion of an impurity particle in an ultracold quasi-one-dimensional gas of hard-core bosons''

    International Nuclear Information System (INIS)

    Girardeau, M. D.; Minguzzi, A.

    2010-01-01

    In their Comment Giraud and Combescot (GC) [Phys. Rev. A 82, 037603 (2010)] point out that the contribution to the impurity-boson distribution function ρ bi (x-y) of a term we dropped is not negligible, rather than being negligible in the thermodynamic limit as we had conjectured. We now agree with them, but our results for ρ bi are highly accurate for large impurity-boson mass ratio m i /m, for all values of x-y and boson-impurity coupling constant.

  15. Effect of impurity scattering on the linear and nonlinear conductances of quasi-one-dimensional disordered quantum wires by asymmetrically lateral confinement

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K M; Juang, C H; Hsu, S Y [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Umansky, V, E-mail: syhsu@mail.nctu.edu.t [Braun Center for Submicron Research, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-10-06

    We have studied the linear conductance and source-drain bias spectroscopies of clean and disordered quantum wires (QWs) against thermal cycling and lateral shifting, which change the impurity configuration. Conductance quantization and the zero bias anomaly (ZBA) are robust in clean QWs. In contrast, disordered QWs show complexities in the ways of conductance resonance, peak splitting and trace crossing in source-drain bias spectroscopies. The experimental results and theoretical predictions are in congruence. Moreover, the resonant state arising from the impurities results in either a single peak or double-splitting peaks in the spectroscopies from the detailed impurity configurations. The resonant splitting peaks are found to influence the ZBA, indicating that a clean QW is crucial for investigating the intrinsic characteristics of the ZBA of QWs.

  16. Effect of impurity scattering on the linear and nonlinear conductances of quasi-one-dimensional disordered quantum wires by asymmetrically lateral confinement

    International Nuclear Information System (INIS)

    Liu, K M; Juang, C H; Hsu, S Y; Umansky, V

    2010-01-01

    We have studied the linear conductance and source-drain bias spectroscopies of clean and disordered quantum wires (QWs) against thermal cycling and lateral shifting, which change the impurity configuration. Conductance quantization and the zero bias anomaly (ZBA) are robust in clean QWs. In contrast, disordered QWs show complexities in the ways of conductance resonance, peak splitting and trace crossing in source-drain bias spectroscopies. The experimental results and theoretical predictions are in congruence. Moreover, the resonant state arising from the impurities results in either a single peak or double-splitting peaks in the spectroscopies from the detailed impurity configurations. The resonant splitting peaks are found to influence the ZBA, indicating that a clean QW is crucial for investigating the intrinsic characteristics of the ZBA of QWs.

  17. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  18. Frustrated Total Internal Reflection: A Simple Application and Demonstration.

    Science.gov (United States)

    Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.

    2003-01-01

    Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)

  19. Low Tolerance for Frustration: Target Group for Reading Disabilities

    Science.gov (United States)

    Orlow, Maria

    1974-01-01

    Presents findings which can aid in the prevention and remediation of reading disabilities in children who have a low tolerance for frustration, many of whom often become acute reading disability cases. (TO)

  20. Antiferromagnetic Ordering in Quasi-Triangular Localized Spin System, β'-Et2Me2P[Pd(dmit)2]2, Studied by 13C NMR

    Science.gov (United States)

    Otsuka, Kei; Iikubo, Hideaki; Kogure, Takayuki; Takano, Yoshiki; Hiraki, Ko-ichi; Takahashi, Toshihiro; Cui, Hengbo; Kato, Reizo

    2014-05-01

    We performed 13C NMR measurements of a selectively 13C isotope-labeled single-crystal sample of a frustrated spin system, β'-Et2Me2P[Pd(dmit)2]2. A long-range antiferromagnetic (AF) ordering below 17 K was confirmed by the observation of NMR spectrum broadening and well split resonance lines at lower temperatures. NMR spectra in the AF state can be well explained by a two sublattice model. From the analysis of the angular dependence of the NMR spectrum, we clarified the magnetic structure in the AF state, where the easy and hard axes are the crystallographic c*- and b-axes, respectively, and the effective localized moments are quite small, ˜0.28 μB/dimer. This suggests a strong quantum fluctuation effect due to magnetic frustrations in a quasi-triangular spin-1/2 system.

  1. Exact ground and excited states of an antiferromagnetic quantum spin model

    International Nuclear Information System (INIS)

    Bose, I.

    1989-08-01

    A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab

  2. Relieving geometrical frustration through doping in the Dy1−x Cax BaCo4O7 swedenborgites

    International Nuclear Information System (INIS)

    Nath Panja, Soumendra; Kumar, Jitender; Dengre, Shanu; Nair, Sunil

    2016-01-01

    The geometrically frustrated antiferromagnet DyBaCo 4 O 7 is investigated through a combination of x-ray diffraction, magnetization and dielectric measurements. Systematic doping in the series Dy 1−x Ca x BaCo 4 O 7 causes a lifting of the geometrical frustration resulting in a structural transition from a trigonal P31c to an orthorhombic Pbn2 1 symmetry at x   =  0.4. This structural transition can also be accessed as a function of temperature, and all our orthorhombic specimens exhibit this transition at elevated temperatures. The temperature at which this structural transition occurs is observed to scale linearly with the mean ionic radius of the R site ion. However, CaBaCo 4 O 7 which has an equal number of Co 2+  and Co 3+ ions clearly violates this quasilinear relationship, indicating that charge ordering could also play a critical role in stabilizing the orthorhombic distortion in this system. Using thermoremanent magnetization measurements to circumvent the problem of the large paramagnetic background arising from Dy 3+ ions, we chart out the phase diagram of the Dy 1−x Ca x BaCo 4 O 7 series. (paper)

  3. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  4. Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model

    Science.gov (United States)

    Orth, Peter P.

    2014-03-01

    In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.

  5. Origin of ferroelectricity and exotic magnetism in frustrated LiCuVO4

    Science.gov (United States)

    Mourigal, Martin

    2013-03-01

    The spin-1/2 Heisenberg chain with competing ferromagnetic nearest-neighbor (J1) and antiferromagnetic next-nearest neighbor (J2) interactions is probably one the simplest, yet richest model in frustrated magnetism. It is experimentally realized in a diversity of Mott insulators, in particular in copper-oxide materials built-up from edge-sharing CuO6 octahedra. The quasi-1D compound LiCuVO4 stands out for the diverse emergent magnetic and multiferroic phenomena it displays, its simple crystal structure and its availability as high-quality single crystals. I will review recent elastic neutron scattering works on LiCuVO4 which elucidate the nature of its ground-state as a function of applied electric field and magnetic field up to 14 T. Below 3.5 T, a model long-range ordered ferroelectric spin-cycloid is unveiled, its chirality fully controlled by an applied electric field, and the corresponding magnetoelectric coupling in excellent agreement with the predictions of a purely electronic mechanism based on spin currents. Above 8 T, a transition to a new quantum state is observed. This new phase resembles the longitudinal density-wave of magnon-pairs (p=2 SDW) predicted in the purely 1D case but is characterized by the intriguing absence of long-ranged dipolar correlations. Work performed at the Institut Laue-Langevin in Grenoble and in collaboration with M. Enderle, B. Fåk, R. K. Kremer and J. Law.

  6. Frustrated magnetization in PrxLa1-xBaCuO5Fe

    International Nuclear Information System (INIS)

    Ortiz, W.A.; Araujo-Moreira, F.M.; Prassides, K.

    1999-01-01

    The crystal structure of the system Pr x La 1-x BaCuO 5 Fe has been recently reviewed. The magnetic structure of samples with x = 0 and x = 1 is mainly due to effective local moments of iron and copper. In Pr-rich samples, Fe ions occupy two non-equivalent positions, making it substantially plausible that two or more magnetic subsets might coexist in the system. This contribution presents magnetization studies on five samples of the Pr x La 1-x BaCuO 5 Fe system (x = 0.0, 0.2, 0.5, 0.7 and 1.0). All samples exhibit a strong irreversible behavior between zero-field-cooled and field-cooled procedures below a certain irreversibility temperature T i . Above T i , both branches are coincident and well described by a Curie-Weiss fitting. Decreasing the temperature below T i , the zero-field-cooled response increases less than the field-cooled curve, indicating some degree of frustrated antiferromagnetic couplings. (orig.)

  7. Ordering phenomena in a heterostructure of frustrated and unfrustrated triangular-lattice Ising layers

    Science.gov (United States)

    Žukovič, Milan; Tomita, Yusuke; Kamiya, Y.

    2017-07-01

    We study critical and magnetic properties of a bilayer Ising system consisting of two triangular planes A and B, with the antiferromagnetic (AF) coupling JA and the ferromagnetic (FM) one JB for the respective layers, which are coupled by the interlayer interaction JAB by using Monte Carlo simulations. When JA and JB are of the same order, the unfrustrated FM plane orders first at a high temperature Tc 1˜JB . The spontaneous FM order then exerts influence on the other frustrated AF plane as an effective magnetic field, which subsequently induces a ferrimagnetic order in this plane at low temperatures below Tc 2. When short-range order is developed in the AF plane while the influence of the FM plane is still small, there appears a preemptive Berezinskii-Kosterlitz-Thouless-type pseudocritical crossover regime just above the ferrimagnetic phase transition point, where the short-distance behavior up to a rather large length scale exponentially diverging in ∝JA/T is controlled by a line of Gaussian fixed points at T =0 . In the crossover region, a continuous variation in the effective critical exponent 4/9 ≲ηeff≲1/2 is observed. The phase diagram by changing the ratio JA/JB is also investigated.

  8. Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies

    Science.gov (United States)

    Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg

    2018-03-01

    A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.

  9. Critical behavior of two- and three-dimensional ferromagnetic and antiferromagnetic spin-ice systems using the effective-field renormalization group technique

    Science.gov (United States)

    Garcia-Adeva, Angel J.; Huber, David L.

    2001-07-01

    In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.

  10. Modified spin-wave theory with ordering vector optimization: frustrated bosons on the spatially anisotropic triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Hauke, Philipp [ICFO-Institut de Ciencies Fotoniques, Meditarranean Technology Park, E-08860 Castelldefels, Barcelona (Spain); Roscilde, Tommaso [Laboratoire de Physique, Ecole Normale Superieure de Lyon, 46 Allee d' Italie, F-69007 Lyon (France); Murg, Valentin; Ignacio Cirac, J; Schmied, Roman, E-mail: Philipp.Hauke@icfo.e [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2010-05-15

    We investigate a system of frustrated hardcore bosons, modeled by an XY antiferromagnet on the spatially anisotropic triangular lattice, using Takahashi's modified spin-wave (MSW) theory. In particular, we implement ordering vector optimization on the ordered reference state of MSW theory, which leads to significant improvement of the theory and accounts for quantum corrections to the classically ordered state. The MSW results at zero temperature compare favorably to exact diagonalization (ED) and projected entangled-pair state (PEPS) calculations. The resulting zero-temperature phase diagram includes a one-dimensional (1D) quasi-ordered phase, a 2D Neel ordered phase and a 2D spiraling ordered phase. Strong indications coming from the ED and PEPS calculations, as well as from the breakdown of MSW theory, suggest that the various ordered or quasi-ordered phases are separated by spin-liquid phases with short-range correlations, in analogy to what has been predicted for the Heisenberg model on the same lattice. Within MSW theory, we also explore the finite-temperature phase diagram. In agreement with the Berezinskii-Kosterlitz-Thouless (BKT) theory, we find that zero-temperature long-range-ordered phases turn into quasi-ordered phases (up to a BKT transition temperature), while zero-temperature quasi-ordered phases become short-range correlated at finite temperature. These results show that, despite its simplicity, MSW theory is very well suited to describing ordered and quasi-ordered phases of frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at zero and finite temperatures. While MSW theory, just as other theoretical methods, cannot describe spin-liquid phases, its breakdown provides a fast and reliable method for singling out Hamiltonians that may feature these intriguing quantum phases. We thus suggest a tool for guiding our search for interesting systems whose properties are necessarily studied with a physical quantum simulator

  11. Low-temperature nuclear magnetic resonance investigation of systems frustrated by competing exchange interactions

    Science.gov (United States)

    Roy, Beas

    This doctoral thesis emphasizes on the study of frustrated systems which form a very interesting class of compounds in physics. The technique used for the investigation of the magnetic properties of the frustrated materials is Nuclear Magnetic Resonance (NMR). NMR is a very novel tool for the microscopic study of the spin systems. NMR enables us to investigate the local magnetic properties of any system exclusively. The NMR experiments on the different systems yield us knowledge of the static as well as the dynamic behavior of the electronic spins. Frustrated systems bear great possibilities of revelation of new physics through the new ground states they exhibit. The vandates AA'VO(PO4)2 [AA' ≡ Zn2 and BaCd] are great prototypes of the J1-J2 model which consists of magnetic ions sitting on the corners of a square lattice. Frustration is caused by the competing nearest-neighbor (NN) and next-nearest neighbor (NNN) exchange interactions. The NMR investigation concludes a columnar antiferromagnetic (AFM) state for both the compounds from the sharp peak of the nuclear spin-lattice relaxation rate (1/T1) and a sudden broadening of the 31P-NMR spectrum. The important conclusion from our study is the establishment of the first H-P-T phase diagram of BaCdVO(PO4)2. Application of high pressure reduces the saturation field (HS) in BaCdVO(PO4)2 and decreases the ratio J2/J1, pushing the system more towards a questionable boundary (a disordered ground state) between the columnar AFM and a ferromagnetic ground state. A pressure up to 2.4 GPa will completely suppress HS. The Fe ions in the `122' iron-arsenide superconductors also sit on a square lattice thus closely resembling the J1-J2 model. The 75As-NMR and Nuclear Quadrupole Resonance (NQR) experiments are conducted in the compound CaFe2As2 prepared by two different heat treatment methods (`as-grown' and `annealed'). Interestingly the two samples show two different ground states. While the ground state of the `as

  12. Anisotropic magnetoresistance in an antiferromagnetic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Fina, I.; Martí, Xavier; Yi, D.; Liu, J.; Chu, J.-H.; Rayan-Serrao, C.; Suresha, S.; Shick, Alexander; Železný, Jakub; Jungwirth, Tomáš; Fontcuberta, J.; Ramesh, R.

    2014-01-01

    Roč. 5, SEP (2014), "4671-1"-"4671-7" ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G; GA ČR(CZ) GAP204/10/0330 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : antiferromagnets * semiconductors * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 11.470, year: 2014

  13. Room-temperature antiferromagnetic memory resistor

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, P.; Paull, R.J.; Clarkson, J.D.; Kudrnovský, Josef; Turek, Ilja; Kuneš, Jan; Yi, D.; Chu, J.-H.; Nelson, C.T.; You, L.; Arenholz, E.; Salahuddin, S.; Fontcuberta, J.; Jungwirth, Tomáš; Ramesh, R.

    2014-01-01

    Roč. 13, č. 4 (2014), s. 367-374 ISSN 1476-1122 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR(CZ) GAP204/11/1228 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 ; RVO:68081723 Keywords : spintronics * antiferromagnets * memories Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 36.503, year: 2014

  14. Solitons in one-dimensional antiferromagnetic chains

    International Nuclear Information System (INIS)

    Pires, A.S.T.; Talim, S.L.; Costa, B.V.

    1989-01-01

    We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions

  15. Dirac Fermions in an Antiferromagnetic Semimetal

    Science.gov (United States)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.

    Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry  and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both  and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.

  16. Antiferromagnetic domains in rare earth metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S B [Hull Univ. (UK). Dept. of Applied Physics

    1975-12-01

    Anomalies in the c-axis elastic properties of antiferromagnetic Dy, 50% Tb-Ho and 60% Gd-Y are reported. The anomalies are only present when the sample is cycled from the ferromagnetic to the antiferromagnetic state and are attributed to domains in the helical regime.

  17. Spin transport and spin torque in antiferromagnetic devices

    Science.gov (United States)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  18. Scattering of neutrons and critical phenomena in antiferromagnetic fermi liquid

    International Nuclear Information System (INIS)

    Akhiezer, I.A.; Barannik, E.A.

    1980-01-01

    The scattering of slow neutrons in an antiferromagnetic with collectivized magnetic electrons is considered and it is shown to significantly differ from the neutron scattering in an antiferromagnetic with localized magnetic electrons. The behaviour of scattering cross sections and fluctuation correlators near the Neel point is studied. These magnitudes are shown to increase with the critical index r=-1 [ru

  19. Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian

    1988-01-01

    The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs

  20. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine

    2007-01-01

    The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles, the co...

  1. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  2. Order by Quenched Disorder in the Model Triangular Antiferromagnet RbFe (MoO4 )2

    Science.gov (United States)

    Smirnov, A. I.; Soldatov, T. A.; Petrenko, O. A.; Takata, A.; Kida, T.; Hagiwara, M.; Shapiro, A. Ya.; Zhitomirsky, M. E.

    2017-07-01

    We observe a disappearance of the 1 /3 magnetization plateau and a striking change of the magnetic configuration under a moderate doping of the model triangular antiferromagnet RbFe (MoO4 )2 . The reason is an effective lifting of degeneracy of mean-field ground states by a random potential of impurities, which compensates, in the low-temperature limit, the fluctuation contribution to free energy. These results provide a direct experimental confirmation of the fluctuation origin of the ground state in a real frustrated system. The change of the ground state to a least collinear configuration reveals an effective positive biquadratic exchange provided by the structural disorder. On heating, doped samples regain the structure of a pure compound, thus allowing for an investigation of the remarkable competition between thermal and structural disorder.

  3. Perfect synchronization in networks of phase-frustrated oscillators

    Science.gov (United States)

    Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki

    2017-11-01

    Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.

  4. Acid-base chemistry of frustrated water at protein interfaces.

    Science.gov (United States)

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. © 2015 Federation of European Biochemical Societies.

  5. Characteristic signatures of quantum criticality driven by geometrical frustration.

    Science.gov (United States)

    Tokiwa, Yoshifumi; Stingl, Christian; Kim, Moo-Sung; Takabatake, Toshiro; Gegenwart, Philipp

    2015-04-01

    Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn, where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion, and magnetic Grüneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven be geometrical frustration. We also discovered a spin flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin liquid-like state.

  6. Frustrations among graduates of athletic training education programs.

    Science.gov (United States)

    Bowman, Thomas G; Dodge, Thomas M

    2013-01-01

    Although previous researchers have begun to identify sources of athletic training student stress, the specific reasons for student frustrations are not yet fully understood. It is important for athletic training administrators to understand sources of student frustration to provide a supportive learning environment. To determine the factors that lead to feelings of frustration while completing a professional athletic training education program (ATEP). Qualitative study. National Athletic Trainers' Association (NATA) accredited postprofessional education program. Fourteen successful graduates (12 women, 2 men) of accredited professional undergraduate ATEPs enrolled in an NATA-accredited postprofessional education program. We conducted semistructured interviews and analyzed data with a grounded theory approach using open, axial, and selective coding procedures. We negotiated over the coding scheme and performed peer debriefings and member checks to ensure trustworthiness of the results. Four themes emerged from the data: (1) Athletic training student frustrations appear to stem from the amount of stress involved in completing an ATEP, leading to anxiety and feelings of being overwhelmed. (2) The interactions students have with classmates, faculty, and preceptors can also be a source of frustration for athletic training students. (3) Monotonous clinical experiences often left students feeling disengaged. (4) Students questioned entering the athletic training profession because of the fear of work-life balance problems and low compensation. In order to reduce frustration, athletic training education programs should validate students' decisions to pursue athletic training and validate their contributions to the ATEP; provide clinical education experiences with graded autonomy; encourage positive personal interactions between students, faculty, and preceptors; and successfully model the benefits of a career in athletic training.

  7. Psychometric properties of Frustration Discomfort Scale in a Turkish sample.

    Science.gov (United States)

    Ozer, Bilge Uzun; Demir, Ayhan; Harrington, Neil

    2012-08-01

    The present study assessed the psychometric properties of the Frustration Discomfort Scale for Turkish college students. The Frustration Discomfort Scale (FDS), Procrastination Assessment Scale-Student, and Rosenberg Self-Esteem Scale were administered to a sample of 171 (98 women, 73 men) Turkish college students. The results of the confirmatory factor analysis yielded fit index values demonstrating viability of the four-dimensional solution as in the original. Findings also revealed that, as predicted, the Discomfort Intolerance subscale of Turkish FDS was most strongly correlated with procrastination. Overall results provided evidence for the factor validity and reliability of the Turkish version of the scale for use in a Turkish population.

  8. Two-dimensional frustrated spin systems in high magnetic fields

    International Nuclear Information System (INIS)

    Schmidt, B; Shannon, N; Thalmeier, P

    2006-01-01

    We discuss our numerical results on the properties of the S = 1/2 frustrated J 1 -J 2 Heisenberg model on a square lattice as a function of temperature and frustration angle φ = tan -1 (J 2 /J 1 ) in an applied magnetic field. We cover the full phase diagram of the model in the range π ≤ φ ≤ π. The discussion includes the parameter dependence of the saturation field itself, and addresses the instabilities associated with it. We also discuss the magnetocaloric effect of the model and show how it can be used to uniquely determine the effective interaction constants of the compounds which were investigated experimentally

  9. Antiferromagnetic spinor condensates in a bichromatic superlattice

    Science.gov (United States)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  10. Magnetostriction and magnetoelastic domains in antiferromagnets

    International Nuclear Information System (INIS)

    Gomonay, Helen; Loktev, Vadim M.

    2002-01-01

    The problem of the observable equilibrium domain structure (DS) in pure antiferromagnets is investigated with the use of continuous elasticity theory. It is shown that the difference between the bulk and surface magnetoelastic strains causes imaginary 'incompatibility elastic charges' analogous to the surface 'magnetic' charges in ferromagnets. The corresponding long-range field is shown to contribute to the 'stray' energy of the sample that governs the appearance of the DS, the contribution from the 'elastic charges' being proportional to the sample volume. Competition between the elastic 'stray' field, which favours inhomogeneous strain distribution, and an external field, which tends to make the sample homogeneous, provides a reversible reconstruction of the DS under the action of the external magnetic field. (author)

  11. Lifting the geometric frustration through a monoclinic distortion in “114” YBaFe4O7.0: Magnetism and transport

    International Nuclear Information System (INIS)

    Duffort, V.; Sarkar, T.; Caignaert, V.; Pralong, V.; Raveau, B.; Avdeev, M.; Cervellino, A.; Waerenborgh, J.C.; Tsipis, E.V.

    2013-01-01

    The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe 4 O 7.0 by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T S =180 K, a magnetic transition is observed below T N =95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k 1 =(0,0,½), shows that one iron Fe2 exhibits a larger magnetic moment than the three others, suggesting a possible charge ordering according to the formula YBaFe 3+ Fe 3 2+ O 7.0 . The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T S =180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe 4 O 7 . Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe 4 O 7 were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K

  12. How Is Frustration Related to Online Gamer Loyalty? A Synthesis of Multiple Theories.

    Science.gov (United States)

    Huang, Han-Chung; Liao, Gen-Yih; Chiu, Kay-Ling; Teng, Ching-I

    2017-11-01

    Online games can frustrate their gamers, but little was known about how such frustration impacts gamer loyalty. Because novice and experienced gamers may respond differently to frustration, this study investigates how gamers' frustration influences their loyalty and how this influence may differ between novice and experienced gamers. Because of the complexity of this issue, multiple theories were synthesized to develop the theoretical model. This study collected responses from 558 online gamers. Findings indicate that frustration is positively related to novice gamers' participation in task teams, and subsequently their loyalty. However, frustration is negatively related to the self-efficacy of experienced gamers and to their loyalty.

  13. Influence of job frustration, narcissism and demographic variables ...

    African Journals Online (AJOL)

    The study examines the hypothesised relationship among job frustration, narcissism, demographic variables and professional ethical behaviour among Nigerian Police officers. One hundred policemen drawn from four police divisions of Benin Area Command of Edo State participated in the study. There were 18 females ...

  14. More Opportunities than Wealth. A Network of Power and Frustration

    Energy Technology Data Exchange (ETDEWEB)

    Mahault, Benoit Alexandre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saxena, Avadh Behari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nisoli, Cristiano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-17

    We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. We study the interplay of power, satisfaction and frustration in the problem of wealth distribution, concentration, and inequality. This framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity, only minimally ameliorated by disorder in a non-optimized society. The picture is however dramatically modified when hard constraints are imposed over agents, and they are forced to share wealth with neighbors on a network. We discuss the case of random networks and scale free networks. We then propose an out of equilibrium dynamics of the networks, based on a competition of power and frustration in the decision-making of agents that leads to network evolution. We show that the ratio of power and frustration controls different dynamical regimes separated by kinetic transition and characterized by drastically different values of the indices of equality.

  15. 41 CFR 101-26.311 - Frustrated shipments.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Frustrated shipments. 101-26.311 Section 101-26.311 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  16. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Pedersen, M. H. F.

    2015-01-01

    Roč. 71, č. 6 (2015), s. 917-921 ISSN 0040-4020 Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * hydrogen activation * benzyl alcohol * tritium labeling * labeled compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.645, year: 2015

  17. Academic Culture in Malaysia: Sources of Satisfaction and Frustration

    Science.gov (United States)

    Da Wan, Chang; Chapman, David W.; Zain, Ahmad Nurulazam Md; Hutcheson, Sigrid; Lee, Molly; Austin, Ann E.

    2015-01-01

    This paper examines the sources of satisfaction and frustration among Malaysian academics across three types of higher education institutions (HEIs)--public research university, public comprehensive university and private non-profit university. Based on interview with 67 academics across six HEIs, there is a clear pattern and relationship between…

  18. Getting Frustrated: Modelling Emotion Contagion in Stranded Passengers

    NARCIS (Netherlands)

    van der Wal, C. Natalie; Couwenberg, Maik; Bosse, T.

    2017-01-01

    Train passengers can get stranded due to a variety of events, such as a delay, technical malfunctioning or a natural disaster. Stranded passengers can get frustrated, which could escalate in misbehaviours. Examples are verbal and physical violence or dangerous behaviours such as opening emergency

  19. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  20. Universal properties of strongly frustrated quantum magnets in high magnetic fields

    International Nuclear Information System (INIS)

    Richter, J.

    2007-01-01

    For a class of frustrated antiferromagnetic spin systems including e.g. the 1D saw tooth chain, the 2D kagom'e and checkerboard, the 3D pyrochlore lattices exact eigenstates consisting of several independent localized magnons in a ferromagnetic environment can be constructed. Important structural elements of the relevant systems are triangles being attached to polygons or lines. Then the magnons can be trapped on these polygons/lines. If the concentration of localized magnons is small they can be distributed randomly over the lattice. Increasing the number of localized magnons their distribution over the lattice becomes more regular and finally the magnons condensate in a crystal-like state. The physical relevance of these eigenstates emerges in high magnetic fields where they become ground states of the system. The spin systems having localized-magnon eigenstates exhibit universal features at low-temperatures in the vicinity of the saturation field: (i) The ground-state magnetization exhibits a macroscopic jump to saturation. This jump is accompanied by a preceding plateau (ii) The ground state at the saturation field is highly degenerate. The degeneracy grows exponentially with the system size and leads to a low-temperature maximum in the isothermal entropy versus field curve at the saturation field and to an enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones. (iii) By mapping the localized magnon spin degrees of freedom on a hard-core lattice gas one can find explicit analytical universal expressions for the low-temperature thermodynamics near saturation field. (iv) The magnetic system may exhibit a field-tuned structural instability in the vicinity of the saturation field. (author)

  1. Reciprocal propagation of surface modes in an antiferromagnetic film

    International Nuclear Information System (INIS)

    Oliveira, F.A.; Amato, M.A.

    1987-09-01

    Linear response theory is used to evaluate the Green's functions describing the fluctuations in an antiferromagnetic film at zero applied field. It is shown the similarities between the dielectric and magnetic excitations. (Author) [pt

  2. Long-range interactions in antiferromagnetic quantum spin chains

    Science.gov (United States)

    Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.

    2017-08-01

    We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.

  3. Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

    Science.gov (United States)

    Poilblanc, Didier

    2017-09-01

    A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

  4. Electronic energy spectra in antiferromagnetic media with broken reciprocity

    International Nuclear Information System (INIS)

    Vitebsky, I.; Edelkind, J.; Bogachek, E.N.; Scherbakov, A.G.; Landman, U.

    1997-01-01

    Electronic energy spectra var-epsilon(q) of antiferromagnetically ordered media may display nonreciprocity; that is, the energies corresponding to Bloch states with wave numbers q and -q may be different. In this paper a simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antiferromagnetically ordered crystals as well as periodical layered structures. copyright 1997 The American Physical Society

  5. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  6. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  7. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    Science.gov (United States)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  8. fNIRS Evidence of Prefrontal Regulation of Frustration in Early Childhood

    OpenAIRE

    Perlman, Susan B.; Luna, Beatriz; Hein, Tyler C.; Huppert, Theodore J.

    2013-01-01

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3–5 year-old children, who are not readily adaptable for typical neu...

  9. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    Science.gov (United States)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  10. Helical waves in easy-plane antiferromagnets

    Science.gov (United States)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  11. Antiferromagnetism and magnetoleasticity of UNiAl

    International Nuclear Information System (INIS)

    Sechovsky, V.; Honda, F.; Svoboda, P.; Prokes, K.; Chernyavsky, O.; Doerr, M.; Rotter, M.; Loewenhaupt, M.

    2003-01-01

    We report on a thermal-expansion (TE) and magnetostriction (MS) study of the antiferromagnet UNiAl at temperatures 2-90 K and in magnetic fields up to 16.5 T applied along the c-axis. The TE along the c-axis (in 0 T) exhibits a broad valley centered around 35 K. This anomaly is nearly removed in 16.5 T. For T≤7 K a sharp metamagnetic transition (MT) observed in UNiAl at 11.4 T and it is accompanied by abrupt MS effects of +1.3x10 -4 and -1.8x10 -4 along the a- and c-axis, respectively. In fields above the MT a negligible additional negative MS is induced along c-axis whereas the a-axis and consequently the volume expand considerably, which indicates a field-induced enhancement of the U magnetic moment. T>7 K, the MT becomes gradually smeared out but a non-negligible MS is observed even for T>T N . In the light of these results the TE anomaly measured in zero field may be attributed to AF that survives at temperatures far above T N

  12. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation

    Science.gov (United States)

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-04-01

    Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials.

  13. Dilute antiferromagnetism in magnetically doped phosphorene

    Directory of Open Access Journals (Sweden)

    Andrew Allerdt

    2017-11-01

    Full Text Available We study the competition between Kondo physics and indirect exchange on monolayer black phos-phorous using a realistic description of the band structure in combination with the density matrixrenormalization group (DMRG method. The Hamiltonian is reduced to a one-dimensional problemvia an exact canonical transformation that makes it amenable to DMRG calculations, yielding exactresults that fully incorporate the many-body physics. We find that a perturbative description of theproblem is not appropriate and cannot account for the slow decay of the correlations and the completelack of ferromagnetism. In addition, at some particular distances, the impurities decouple formingtheir own independent Kondo states. This can be predicted from the nodes of the Lindhard function.Our results indicate a possible route toward realizing dilute anti-ferromagnetism in phosphorene. Received: 19 September 2017, Accepted: 12 October 2017; Edited by: K. Hallberg; DOI: http://dx.doi.org/10.4279/PIP.090008 Cite as: A Allerdt, A E Feiguin, Papers in Physics 9, 090008 (2017

  14. Room-temperature antiferromagnetic memory resistor.

    Science.gov (United States)

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  15. Quantum disordered phase in a doped antiferromagnet

    International Nuclear Information System (INIS)

    Kuebert, C.; Muramatsu, A.

    1995-01-01

    A quantitative description of the transition to a quantum disordered phase in a doped antiferromagnet is obtained for the long-wavelength limit of the spin-fermion model, which is given by the O(3) non-linear σ model, a free fermionic part and current-current interactions. By choosing local spin quantization axes for the fermionic spinor we show that the low-energy limit of the model is equivalent to a U(1) gauge theory, where both the bosonic and fermionic degrees of freedom are minimally coupled to a vector gauge field. Within a large-N expansion, the strength of the gauge fields is found to be determined by the gap in the spin-wave spectrum, which is dynamically generated. The explicit doping dependence of the spin-gap is determined as a function of the parameters of the original model. As a consequence of the above, the gauge-fields mediate a long-range interaction among dopant holes and S-1/2 magnetic excitations only in the quantum disordered phase. The possible bound-states in this regime correspond to charge-spin separation and pairing

  16. Low temperature spin dynamics and high pressure effects in frustrated pyrochlores

    Science.gov (United States)

    Mirebeau, Isabelle

    2008-03-01

    Frustrated pyrochlores R2M2O7, where R^3+ is a rare earth and M^4+ a transition or sp metal ion, show a large variety of exotic magnetic states due to the geometrical frustration of the pyrochlore lattice, consisting of corner sharing tetrahedra for both R and M ions. Neutron scattering allows one to measure their magnetic ground state as well as the spin fluctuations, in a microscopic way. An applied pressure may change the subtle energy balance between magnetic interactions, inducing new magnetic states. In this talk, I will review recent neutron results on Terbium pyrochlores, investigated by high pressure neutron diffraction and inelastic neutron scattering. Tb2M2O7 pyrochlores show respectively a spin liquid state for M=Ti [1], an ordered spin ice state for M= Sn [2], and a spin glass state with chemical order for M=Mo [3]. In Tb2Ti2O7 spin liquid, where only Tb^3+ ions are magnetic, an applied pressure induces long range antiferromagnetic order due to a small distortion of the lattice and magneto elastic coupling [4]. In Tb2Sn2O7, the substitution of Ti^4+ by the bigger Sn^4+ ion expands the lattice, inducing a long range ordered ferromagnetic state, with the local structure of a spin ice [2] and unconventional spin fluctuations [2,5]. The local ground state and excited crystal field states of the Tb^3+ ion were recently investigated by inelastic neutron scattering in both compounds [6]. Tb2Mo2O7, where Mo^4+ ions are also magnetic, shows an even more rich behaviour, due to the complex interaction between frustrated Tb and Mo lattices, having respectively localized and itinerant magnetism. In Tb2Mo2O7 spin glass, the lattice expansion induced by Tb/La substitution yields an ordered ferromagnetic state, which transforms back to spin glass under applied pressure [7]. New data about the spin fluctuations in these compounds, as measured by inelastic neutron scattering, will be presented. The talk will be dedicated to the memory of Igor Goncharenko, a renowned

  17. Effects of coexisting spin disorder and antiferromagnetism on the magnetic behavior of nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, M., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar [INIFTA-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Cabrera, A. F., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar; Desimoni, J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Stewart, S. J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Instituto Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Av. Calchaquí No. 6200, Florencio Varela (Argentina)

    2014-06-07

    We report a magnetic study on nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} (0.00 ≤ x ≤ 0.30) alloys using static magnetic measurements. The alloys are mainly composed by an antiferromagnetic fcc phase and a disordered region that displays a spin-glass-like behavior. The interplay between the antiferromagnetic and magnetically disordered phases establishes an exchange anisotropy that gives rise to a loop shift at temperatures below the freezing temperature of moments belonging to the disordered region. The loop shift is more noticeable as the Cu content increases, which also enhances the spin-glass-like features. Further, in the x = 0.30 alloy the alignment imposed by applied magnetic fields higher than 4 kOe prevail over the configuration determined by the frustration mechanism that characterizes the spin glass-like phase.

  18. Social comparison mediates chimpanzees' responses to loss, not frustration

    DEFF Research Database (Denmark)

    Hopper, Lydia M; Lambeth, Susan P; Schapiro, Steve

    2014-01-01

    Why do chimpanzees react when their partner gets a better deal than them? Do they note the inequity or do their responses reflect frustration in response to unattainable rewards? To tease apart inequity and contrast, we tested chimpanzees in a series of conditions that created loss through...... individual contrast, through inequity, or by both. Chimpanzees were tested in four social and two individual conditions in which they received food rewards in return for exchanging tokens with an experimenter. In conditions designed to create individual contrast, after completing an exchange, the chimpanzees...... were given a relatively less-preferred reward than the one they were previously shown. The chimpanzees' willingness to accept the less-preferred rewards was independent of previously offered foods in both the social and individual conditions. In conditions that created frustration through inequity...

  19. VHA Chaplains: challenges, roles, rewards, and frustrations of the work.

    Science.gov (United States)

    Beder, Joan; Yan, Grace W

    2013-01-01

    Chaplains working in the Veterans Health Administration have numerous roles and challenges. They work closely with other behavioral health professionals, especially social workers, to address the multiplicity of needs of the Veteran population. They are essentially an understudied subset of the military Chaplaincy service (most studies focus on those engaged in combat areas). In this exploratory qualitative study, VHA Chaplains responded to a survey to determine how they defined their role and professional challenges, what they felt were the rewards and frustrations of their work and their unique function within the VHA system. Findings showed that role differences between Chaplains and social workers and other behavioral health providers are clearly defined; rewards and challenges were diverse and frustrations were common to those working in a bureaucratic structure.

  20. Devil's staircase in a fully frustrated superconducting array

    International Nuclear Information System (INIS)

    Kim, S.; Choi, M.Y.

    1993-01-01

    A two-dimensional fully frustrated superconducting array with a combined direct and alternating applied current is studied both analytically and numerically. At zero temperature equations of motion can be reduced through the use of the translational symmetry present in the system. Remarkably, we find a series of subharmonic steps in addition to standard integer and half-integer giant Shapiro steps, leading to devil's staircase structure. We also present results of detailed numerical simulations, which indeed reveal such subharmonic fine structure. (orig.)

  1. Thermal excitations of frustrated XY spins in two dimensions

    International Nuclear Information System (INIS)

    Benakli, M.; Zheng, H.; Gabay, M.

    1996-11-01

    We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square (FFSQXY) XY models. The novel aspect of our method is that it preserves the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations consist of coupled phase and chiral excitations. As a result, we find that for frustrated systems the effective interactions between phase variables is long range and oscillatory in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show that our analytical calculations produce accurate results at all temperature T; this is seen at low T in the spin wave stiffness constant and in the staggered chirality; this is also the case near T c : transitions are driven by the SW part associated with domain walls and vortices, but the coupling between phase and chiral variables is still relevant in the critical region. In that regime our analytical results yield the correct T dependence for bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature T CG of the frustrated XY models. In particular, we find that T CG tracks chiral rather than phase fluctuations. Our results provide support for a single phase transition scenario in the FFTXY and FFSQXY models. (author). 35 refs, 8 figs

  2. Level of Ethics, Ethical Frustration and Accountant Discretionary Practices

    OpenAIRE

    Tamminen, Rauno; Leskinen, Markku

    1996-01-01

    In this paper it is shown with the help of a small sample that accounting is ethically loaded; that there exists ethical frustration caused by situational factors related to accounting; and that most probably the situational pressures may also change the level of ethics in the Kohlbergian sense; and that in studying accounting-related ethical problems empirically, the paper-and pencil tests and interviewing may give biased results. The accountant's model of the world is supplemented with ...

  3. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    Science.gov (United States)

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Magnetically frustrated double perovskites: synthesis, structural properties, and magnetic order of Sr{sub 2}BOsO{sub 6} (B = Y, In, Sc)

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Avijit Kumar; Sarapulova, Angelina; Adler, Peter; Kanungo, Sudipta; Mikhailova, Daria; Schnelle, Walter; Hu, Zhiwei; Kuo, Changyang; Yan, Binghai; Felser, Claudia; Tjeng, Liu Hao [Max-Planck-Institut fuer Chemische Physik fester Stoffe,Dresden (Germany); Reehuis, Manfred [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Siruguri, Vasudeva; Rayaprol, Sudhindra [UGC-DAE Consortium for Scientific Research (CSR), Mumbai Centre, Mumbai (India); Soo, Yunlian [Department of Physics, National Tsing Hua University, Hsinchu (China); Jansen, Martin [Max-Planck-Institut fuer Chemische Physik fester Stoffe,Dresden (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2015-02-15

    Double perovskites Sr{sub 2}BOsO{sub 6} (B = Y, In, and Sc) were prepared from the respective binary metal oxides, and their structural, magnetic, and electronic properties were investigated. At room temperature all these compounds crystallize in the monoclinic space group P2{sub 1}/n. They contain magnetic osmium (Os{sup 5+}, t{sub 2g}{sup 3}) ions and are antiferromagnetic insulators with Neel temperatures T{sub N} = 53 K, 26 K, and 92 K for B = Y, In, and Sc, respectively. Powder neutron diffraction studies on Sr{sub 2}YOsO{sub 6} and Sr{sub 2}InOsO{sub 6} showed that the crystal structures remain unchanged down to 3 K. The Y and In compounds feature a type I antiferromagnetic spin structure with ordered Os moments of 1.91 μ{sub B} and 1.77 μ{sub B}, respectively. The trend in T{sub N} does not simply follow the development of the lattice parameters, which suggests that d{sup 0} compared to d{sup 10} ions on the B site favor a somewhat different balance of exchange interactions in the frustrated Os{sup 5+} fcc-like lattice. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS' EXPERIENCES.

    Science.gov (United States)

    Opoku-Boateng, Gloria A

    2015-01-01

    User frustration research has been one way of looking into clinicians' experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians' frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take.

  6. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Science.gov (United States)

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Understanding the Impact of User Frustration Intensities on Task Performance Using the OCC Theory of Emotions

    Science.gov (United States)

    Washington, Gloria

    2012-01-01

    Have you heard the saying "frustration is written all over your falce"? Well this saying is true, but that is not the only place. Frustration is written all over your face and your body. The human body has various means to communicate an emotion without the utterance of a single word. The Media Equation says that people interact with computers as if they are human: this includes experiencing frustration. This research measures frustration by monitoring human body-based measures such as heart rate, posture, skin temperature. and respiration. The OCC Theory of Emotions is used to separate frustration into different levels or intensities. The results of this study showed that individual intensities of frustration exist, so that task performance is not degraded. Results from this study can be used by usability testers to model how much frustration is needed before task performance measures start to decrease.

  8. Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange.

    Science.gov (United States)

    Kumar, Manoranjan; Parvej, Aslam; Soos, Zoltán G

    2015-08-12

    The spin-1/2 chain with isotropic Heisenberg exchange J1, J2  >  0 between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed J1/J2 between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor S(q) that diverges at wave vector qm in QLRO(q(m)) phases with periodicity 2π/q(m) but remains finite in gapped phases. S(q(m)) is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of S(q(m)) are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO(π/2) phase between  -1.2  quantum critical points at small frustration J2 but disagree in the sector of weak exchange J1 between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.

  9. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    Science.gov (United States)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  10. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  11. Large magnetization and frustration switching of magnetoresistance in the double-perovskite ferrimagnet Mn2FeReO6.

    Science.gov (United States)

    Arévalo-López, Angel M; McNally, Graham M; Attfield, J Paul

    2015-10-05

    Ferrimagnetic A2 BB'O6 double perovskites, such as Sr2 FeMoO6 , are important spin-polarized conductors. Introducing transition metals at the A-sites offers new possibilities to increase magnetization and tune magnetoresistance. Herein we report a ferrimagnetic double perovskite, Mn2 FeReO6 , synthesized at high pressure which has a high Curie temperature of 520 K and magnetizations of up to 5.0 μB which greatly exceed those for other double perovskite ferrimagnets. A novel switching transition is discovered at 75 K where magnetoresistance changes from conventional negative tunneling behavior to large positive values, up to 265 % at 7 T and 20 K. Neutron diffraction shows that the switch is driven by magnetic frustration from antiferromagnetic Mn(2+) spin ordering which cants Fe(3+) and Re(5+) spins and reduces spin-polarization. Ferrimagnetic double perovskites based on A-site Mn(2+) thus offer new opportunities to enhance magnetization and control magnetoresistance in spintronic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  13. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    Science.gov (United States)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  14. Role of the antiferromagnetic bulk spins in exchange bias

    International Nuclear Information System (INIS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-01-01

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  15. Antiferromagnetic phase of the gapless semiconductor V3Al

    Science.gov (United States)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  16. Key role of orbital anisotropy in geometrically frustrated electron system

    International Nuclear Information System (INIS)

    Onishi, Hiroaki; Hotta, Takashi

    2005-01-01

    By using the density matrix renormalization group method, we investigate ground- and excited-state properties of the e g -orbital degenerate Hubbard model at quarter filling for two kinds of lattices, zigzag chain and ladder. In the zigzag chain, the system is effectively regarded as a decoupled double chain of the S=12 antiferromagnetic Heisenberg model, and the spin gap is approximately zero, similar to the case of weakly coupled Heisenberg chains. On the other hand, in the ladder, the spin correlation on the rung remains robust and the spin gap exists

  17. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    Science.gov (United States)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  18. Spin waves in antiferromagnetic FeF2

    DEFF Research Database (Denmark)

    Hutchings, M T; Rainford, B.D.; Guggenheim, H J

    1970-01-01

    Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...

  19. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  20. Magnetoresistive properties of non-uniform state of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.

    1996-01-01

    The phenomenological model of magnetoresistive properties of magneto-non-single-phase state of alloyed magnetic semiconductors is considered using the concept derived for a description of magnetoresistive effects in layered and granular magnetic metals. By assuming that there exists a magneto-non-single state in the manganites having the perovskite structure, it is possible to describe, in the framework of above approach, large magnetoresistive effects of manganite phases with antiferromagnetic order and semiconductor-type conductivity as well as those with antiferromagnetic properties and metallic-type conductivity

  1. PREFACE: The International Conference on Highly Frustrated Magnetism HFM2008

    Science.gov (United States)

    Eremin, Ilya; Brenig, Wolfram; Kremer, Reinhard; Litterst, Jochen

    2009-01-01

    The International Conference on Highly Frustrated Magnetism 2008 (HFM2008) took place on 7-12 September 2008 at the Technische Universität Carolo-Wilhelmina zu Braunschweig, Germany. This conference was the fourth event in a series of meetings, which started in Waterloo, Canada (HFM 2000), followed by the second one in Grenoble, France (HFM 2003), and the third meeting in Osaka, Japan (HFM 2006). HFM2008 attracted more than 220 participants from all over the world. The number of participants of the HFM conference series has been increasing steadily, from about 80 participants at HFM 2000, to 120 participants at HFM 2003, and 190 participants at HFM 2006, demonstrating that highly frustrated magnetism remains a rapidly growing area of research in condensed matter physics. At the end of HFM2008 it was decided that the next International Conference on Highly Frustrated Magnetism will be held in Baltimore, USA in 2010. HFM2008 saw four plenary talks by R Moessner, S Nakatsuji, S-W Cheong, and S Sachdev, 18 invited presentations, 30 contributed talks and about 160 poster presentations from all areas of frustrated magnetism. The subjects covered by the conference included: Kagome systems Itinerant frustrated systems Spinels and pyrochlore materials Triangular systems Unconventional order and spin liquids Chain systems Chain systems Novel frustrated systems This volume of Journal of Physics: Conference Series contains the proceedings of HFM2008 with 83 papers that provide a scientific record of the scientific topics covered by the conference. All articles have been refereed by experts in the field. It is our hope that the reader will enjoy and profit from the HFM2008 Proceedings. Ilya Eremin Proceedings Editor Wolfram Brenig, Reinhard Kremer, and Jochen Litterst Co-Editors International Advisory Board L Balents (USA) F Becca (Italy) S Bramwell (UK) P Fulde (Germany) B D Gaulin (Canada) J E Greedan (Canada) A Harrison (France) Z Hiroi (Japan) H Kawamura (Japan) A Keren

  2. Proposed frustrated-total-reflection acoustic sensing method

    International Nuclear Information System (INIS)

    Hull, J.R.

    1981-01-01

    Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves

  3. The search for competing charge orders in frustrated ladder systems

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    A recent study revealed the dynamics of the charge sector of a one-dimensional quarter- filled electronic system with extended Hubbard interactions to be that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. With the twin motivations of studying the co-existing charge and spin order found in strongly correlated chain systems and the effects of inter-chain couplings, we investigate the phase diagram of coupled effective (TFIM) systems. A bosonisation and RG analysis for a two-leg TFIM ladder yields a rich phase diagram showing Wigner/Peierls charge order and Neel/dimer spin order. In a broad parameter regime, the orbital antiferromagnetic phase is found to be stable. An intermediate gapless phase of finite width is found to lie in between two charge-ordered gapped phases. Kosterlitz-Thouless transitions are found to lead from the gapless phase to either of the charge-ordered phases. Low energy effective Hamiltonian analyses of a strongly coupled 2-chain ladder system confirm a phase diagram with in-chain CO, rung-dimer, and orbital antiferromagnetic ordered phases with varying interchain couplings as well as superconductivity upon hole-doping. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (autor)

  4. Frustration in the pattern formation of polysyllabic words

    Science.gov (United States)

    Hayata, Kazuya

    2016-12-01

    A novel frustrated system is given for the analysis of (m + 1)-syllabled vocal sounds for languages with the m-vowel system, where the varieties of vowels are assumed to be m (m > 2). The necessary and sufficient condition for observing the sound frustration is that the configuration of m vowels in an m-syllabled word has a preference for the ‘repulsive’ type, in which there is no duplication of an identical vowel. For languages that meet this requirement, no (m + 1)-syllabled word can in principle select the present type because at most m different vowels are available and consequently the duplicated use of an identical vowel is inevitable. For languages showing a preference for the ‘attractive’ type, where an identical vowel aggregates in a word, there arises no such conflict. In this paper, we first elucidate for Arabic with m = 3 how to deal with the conflicting situation, where a statistical approach based on the chi-square testing is employed. In addition to the conventional three-vowel system, analyses are made also for Russian, where a polysyllabic word contains both a stressed and an indeterminate vowel. Through the statistical analyses the selection scheme for quadrisyllabic configurations is found to be strongly dependent on the parts of speech as well as the gender of nouns. In order to emphasize the relevance to the sound model of binary oppositions, analyzed results of Greek verbs are also given.

  5. Excitations in a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Birgeneau, R. J.; Walker, L. R.; Guggenheim, H. J.

    1975-01-01

    Inelastic neutron scattering studies of the magnetic excitations in the planar Heisenberg random antiferromagnet Rb2Mn0.5Ni0.5F4 at 7K are reported. Two well-defined bands of excitations are observed. A simple mean crystal model is found to predict accurately the measured dispersion relations using...

  6. Observation of Antiferromagnetic Resonance in an Organic Superconductor

    DEFF Research Database (Denmark)

    Torrance, J. B.; Pedersen, H. J.; Bechgaard, K.

    1982-01-01

    Anomalous microwave absorption has been observed in the organic superconductor TMTSF2AsF6 (TMTSF: tetramethyltetraselenafulvalene) below its metal-nonmetal transition near 12 K. This absorption is unambiguously identified as antiferromagnetic resonance by the excellent agreement between a spin...

  7. Static and dynamic behaviour of antiferromagnetic linear chains

    International Nuclear Information System (INIS)

    Henkens, L.S.J.M.

    1977-01-01

    This thesis deals with an experimental study of the static and dynamic behaviour of s=1/2 heisenberg antiferromagnetic linear chains in the temperature range of 0,05K 4 , CuSeO 4 .5H 2 O, and CuBeF 4 .5H 2 O, all of which are isomorphic salts

  8. Antiferromagnetic ground state in NpCoGe

    Czech Academy of Sciences Publication Activity Database

    Colineau, E.; Griveau, J.C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, Alexander; Caciuffo, R.

    2014-01-01

    Roč. 89, č. 11 (2014), "115135-1"-"115135-11" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : neptunium * anti-ferromagnetism * quantum critical phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  9. On the magnetism of Heisenberg double-layer antiferromagnets

    International Nuclear Information System (INIS)

    Uijen, C.M.J. van.

    1980-01-01

    The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)

  10. 235U NMR study of the itinerant antiferromagnet USb2

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Ikushima, Kenji; Kambe, Shinsaku; Tokunaga, Yo; Aoki, Dai; Haga, Yoshinori; O-bar nuki, Yoshichika; Yasuoka, Hiroshi; Walstedt, Russell E.

    2005-01-01

    We have succeeded in resolving a 235 U antiferromagnetic nuclear magnetic resonance (AFNMR) signal using 235 U-enriched samples of USb 2 . The uranium hyperfine field and coupling constant estimated for this compound are consistent with those from other experiments. This is the first reported observation of 235 U NMR in conducting host material

  11. NdRhSn: A ferromagnet with an antiferromagnetic precursor

    Czech Academy of Sciences Publication Activity Database

    Mihalik, M.; Prokleška, J.; Kamarád, Jiří; Prokeš, K.; Isnard, O.; McIntyre, G. J.; Dönni, A.; Yoshii, S.; Kitazawa, H.; Sechovský, V.; de Boer, F.R.

    2011-01-01

    Roč. 83, č. 10 (2011), "104403-1"-"104403-10" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : NdRhSn * ferromagnet * antiferromagnetic precursor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  12. Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain

    International Nuclear Information System (INIS)

    Daniel, M.; Amuda, R.

    1994-11-01

    We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs

  13. Ferro- and antiferro-magnetism in (Np, Pu)BC

    Czech Academy of Sciences Publication Activity Database

    Klimczuk, T.; Shick, Alexander; Kozub, Agnieszka L.; Griveau, J.C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.

    2015-01-01

    Roč. 3, č. 4 (2015), "041803-1"-"041803-9" ISSN 2166-532X R&D Projects: GA ČR GA15-07172S Institutional support: RVO:68378271 Keywords : ferromagetism * antiferromagnetism * magnetic anisotropy * strong electron correlations * spin-orbit coupling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.323, year: 2015

  14. An exact method for computing the frustration index in signed networks using binary programming

    OpenAIRE

    Aref, Samin; Mason, Andrew J.; Wilson, Mark C.

    2016-01-01

    Computing the frustration index of a signed graph is a key step toward solving problems in many fields including social networks, physics, material science, and biology. The frustration index determines the distance of a network from a state of total structural balance. Although the definition of the frustration index goes back to 1960, its exact algorithmic computation, which is closely related to classic NP-hard graph problems, has only become a focus in recent years. We develop three new b...

  15. Frustration of contract e impossibility of performance en el common law inglés

    OpenAIRE

    José Félix Chamie

    2009-01-01

    Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  16. Frustration of contract e impossibility of performance en el common law inglés

    Directory of Open Access Journals (Sweden)

    José Félix Chamie

    2009-06-01

    Full Text Available Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  17. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Directory of Open Access Journals (Sweden)

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  18. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament

    OpenAIRE

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2016-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tact...

  19. [Tolerance for frustration as a reliability factor in the work of the human operator].

    Science.gov (United States)

    Makarevich, O F

    1986-01-01

    Frustration tolerance is a personality trait that contributes to the reliable performance of an air traffic controller. This paper presents the results of a psychological examination of air traffic controllers using the Rosenzweig frustration test and emphasizes a correlation between the predominant behavior type in frustrating circumstances and professional success. The paper contains examples of realistic observations over air traffic controllers which confirm experimental data.

  20. The regulation of induced depression during a frustrating situation: benefits of expressive suppression in Chinese individuals.

    Science.gov (United States)

    Yuan, Jiajin; Liu, Yingying; Ding, Nanxiang; Yang, Jiemin

    2014-01-01

    Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies.

  1. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  2. The association between Internet addiction and belief of frustration intolerance: the gender difference.

    Science.gov (United States)

    Ko, Chih-Hung; Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Chung-Sheng; Wang, Shing-Yaw

    2008-06-01

    This study evaluated the association between Internet addiction and frustration intolerance, the gender difference of frustration intolerance, and the gender differences of the association between Internet addiction and frustration intolerance. Participants were 2,114 students (1,204 male and 910 female) who were recruited to complete the Chen Internet Addiction Scale and Frustration Discomfort scale. Females had higher scores on the subscale of entitlement and emotional intolerance and the total scale of the frustration intolerance. There was a significant gender difference on the association between Internet addiction and frustration intolerance. The association was higher in male adolescents. Regression analysis revealed male adolescents with Internet addiction had higher intolerance to frustration of entitlement and emotional discomfort, and female adolescents with it had higher intolerance to emotional discomfort and lower tolerance to frustration of achievement. Frustration intolerance should be evaluated for adolescents with Internet addiction, especially for males. Rational emotive behavior therapy focusing on different irrational beliefs should be provided to male and female adolescents with Internet addiction.

  3. Neutron diffraction study and theoretical analysis of the antiferromagnetic order and the diffuse scattering in the layered kagome system CaBaCo2Fe2O7

    Science.gov (United States)

    Reim, J. D.; Rosén, E.; Zaharko, O.; Mostovoy, M.; Robert, J.; Valldor, M.; Schweika, W.

    2018-04-01

    The hexagonal swedenborgite, CaBaCo2Fe2O7 , is a chiral frustrated antiferromagnet, in which magnetic ions form alternating kagome and triangular layers. We observe a long-range √{3 }×√{3 } antiferromagnetic order setting in below TN=160 K by neutron diffraction on single crystals of CaBaCo2Fe2O7 . Both magnetization and polarized neutron single crystal diffraction measurements show that close to TN spins lie predominantly in the a b plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya interactions. The ordered structure can be described and refined within the magnetic space group P 31 m' . Diffuse scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and coexistence of the √{3 }×√{3 } order with disorder. The coexistence can be explained by the freedom to vary spins without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken inversion symmetry of the lattice, in agreement with our symmetry analysis.

  4. The dynamics of the Frustrated Ising Lattice Gas

    International Nuclear Information System (INIS)

    Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.

    2000-04-01

    The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)

  5. Trimeric Hydrogen Bond in Geometrically Frustrated Hydroxyl Cobalt Halogenides

    International Nuclear Information System (INIS)

    Xiao-Dong, Liu; Masato, Hagihala; Xu-Guang, Zheng; Dong-Dong, Meng; Wan-Jun, Tao; Sen-Lin, Zhang; Qi-Xin, Guo

    2011-01-01

    The mid-infrared absorption spectra of geometrically frustrated hydroxyl cobalt halogenides Co 2 (OH) 3 Cl and Co 2 (OH) 3 Br are measured by FTIR spectrometers, and the stretching vibrational modes of hydroxyl groups are found to be 3549cm −1 and 3524cm −1 respectively. Through finding their true terminal O-H group stretching vibration frequencies, we obtain 107cm −1 and 99cm −1 red shift caused by the corresponding O-H···Cl and O-H···Br hydrogen bonds. Rarely reported trimeric hydrogen bonds (Co 3 ≡O-H) 3 ···Cl/Br are pointed out to demonstrate the relative weakness of this kind of hydrogen bond which may have a critical effect on the lattice symmetry and magnetic structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Langevin dynamics simulations of large frustrated Josephson junction arrays

    International Nuclear Information System (INIS)

    Groenbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.

    1991-01-01

    Long-time Langevin dynamics simulations of large (N x N,N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: (1) Relaxation from an initially random flux configuration as a universal fit to a glassy stretched-exponential type of relaxation for the intermediate temperatures T(0.3 T c approx-lt T approx-lt 0.7 T c ), and an activated dynamic behavior for T ∼ T c ; (2) a glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response

  7. Langevin dynamics simulations of large frustrated Josephson junction arrays

    International Nuclear Information System (INIS)

    Gronbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.

    1991-01-01

    Long-time Langevin dynamics simulations of large (N x N, N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: Relaxation from an initially random flux configuration as a ''universal'' fit to a ''glassy'' stretched-exponential type of relaxation for the intermediate temperatures T (0.3 T c approx-lt T approx-lt 0.7 T c ), and an ''activated dynamic'' behavior for T ∼ T c A glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response

  8. Localized-magnon states in strongly frustrated quantum spin lattices

    International Nuclear Information System (INIS)

    Richter, J.

    2005-01-01

    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones

  9. Frustration-free Hamiltonians supporting Majorana zero edge modes

    International Nuclear Information System (INIS)

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  10. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Science.gov (United States)

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  11. Developmental Changes in the Rosenzweig Picture--Frustration Study, Children's Form.

    Science.gov (United States)

    Graybill, Daniel

    1987-01-01

    Study examined the validity of 1948 norms of the Picture-Frustration Study, Children's Form. Instrument was administered to 140 children, grades 2 through 6, as part of a project investigating effects of video games. Though findings differed from the 1948 norms, they supported the validity of the Children's Form of the Picture-Frustration Study.…

  12. Effects of Frustration on the Response Rate of Skid Row Alcoholics on a Performance Task

    Science.gov (United States)

    Scorzelli, James F.; Reinke-Scorzelli, Mary

    1976-01-01

    Determines the changes that may occur in the response rates of 14 skid row alcoholics on a performance task after the introduction of a frustration operation. Results suggest a possible relationship between low frustration tolerance and the method by which these individuals tend to motivate themselves. (Author)

  13. Doping of Ga in antiferromagnetic semiconductor α-Cr2O3 and its effects on magnetic and electronic properties

    Science.gov (United States)

    Bhowmik, R. N.; Venkata Siva, K.; Ranganathan, R.; Mazumdar, Chandan

    2017-06-01

    The samples of Ga-doped Cr2O3 have been prepared using chemical co-precipitation route. X-ray diffraction pattern and Raman spectra have indicated rhombohedral crystal structure with space group R 3 bar C. Magnetic measurements indicated diluted antiferromagnetic (AFM) spin order in Ga-doped α-Cr2O3 and ferrimagnetic ordering of spins at about 50-60 K is confirmed from the analysis of the temperature dependence of dc magnetization and ac susceptibility data. Apart from magnetic dilution effect, the samples have shown superparamagnetic behavior below 50 K due to frustrated surface spins of the nano-sized grains. The samples have shown non-linear electronic properties. The current-voltage (I-V) characteristics of the Ga-doped α-Cr2O3 samples are remarkably different from α-Cr2O3 sample. The bi-stable electronic states and negative differential resistance are some of the unique non-linear electronic properties that the I-V curves of Ga-doped samples have exhibited. Optical study revealed three electronic transitions in the samples associated with band gap energy at about 2.67-2.81 eV, 1.91-2.11 eV, 1.28-1.35 eV, respectively. The results indicated multi-level electronic structure in Ga-doped α-Cr2O3 system.

  14. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  15. Frustration influences impact of history and disciplinary attitudes on physical discipline decision making.

    Science.gov (United States)

    Russa, Mary B; Rodriguez, Christina M; Silvia, Paul J

    2014-01-01

    Although intergenerational patterns of punitive physical punishment garner considerable research attention, the mechanisms by which historical, cognitive, and contextual factors interplay to influence disciplinary responding remains poorly understood. Disciplinary attitudes have been shown to mediate the association between disciplinary history and disciplinary responding. The present study investigated whether frustration influences these mediation effects. Half of a sample of 330 undergraduates was randomly assigned to frustration induction. Structural equation modeling confirmed that, for participants in the frustration condition, the relation between disciplinary history and physical discipline decision-making was fully mediated by attitudes approving physical discipline. In contrast, for respondents in the no-frustration condition, the pathway from disciplinary history to discipline decision-making was only partially mediated by attitudes. Under conditions of frustration, attitudes may become a more central means by which personal disciplinary history is associated with disciplinary decision-making. © 2013 Wiley Periodicals, Inc.

  16. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics.

    Science.gov (United States)

    Parra, R Gonzalo; Schafer, Nicholas P; Radusky, Leandro G; Tsai, Min-Yeh; Guzovsky, A Brenda; Wolynes, Peter G; Ferreiro, Diego U

    2016-07-08

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The classification of idiopathic spasmodic torticollis: three types based on social adaptation and frustration tolerance.

    Science.gov (United States)

    Kashiwase, H; Kato, M

    1997-12-01

    In this study, idiopathic spasmodic torticollis (ST) has been classfied into three types from the opinion of social adaptation and the differences of frustration tolerance. The three types were as follows: type I (overadaptive type), type II (maladaptive type), and type III (compatible type). Type I is a typical psychosomatic with high frustration tolerance. Type II is personality disorder with low frustration tolerance. In type III, frustration tolerance varies depending on social circumstances (i.e., different at home and at the office). In type I, the prognosis of ST is generally unfavorable, since it is associated with recurrence and prolongation of the symptoms. In type II, the prognosis of ST is generally favorable. However, type II patients experience relationship or social difficulties. One characteristic of type III is that the onset of symptoms is usually found in an older person because of proper use of frustration tolerance at home and at the office.

  18. Antiferromagnetic exchange coupling measurements on single Co clusters

    Science.gov (United States)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  19. Soft modes in the easy plane pyrochlore antiferromagnet

    International Nuclear Information System (INIS)

    Champion, J D M; Holdsworth, P C W

    2004-01-01

    Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts

  20. Antiferromagnetic ordering of Er2NiSi3 compound

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2014-01-01

    Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)

  1. Magnetization behavior of nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1997-09-01

    The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.

  2. Spintronic materials and devices based on antiferromagnetic metals

    OpenAIRE

    Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.

    2017-01-01

    In this paper, we review our recent experimental developments on antiferromagnet (AFM) spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring i...

  3. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    OpenAIRE

    Vemulkar, T; Mansell, Rhodri; Petit, Dorothee Celine; Cowburn, Russell Paul; Lesniak, MS

    2015-01-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer...

  4. Magnetization behavior of nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    International Nuclear Information System (INIS)

    Loeffler, J.; Wagner, W.; Svygenhoven, H. van; Meier, J.; Doudin, B.; Ansermet, J.P.

    1997-01-01

    The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs

  5. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  6. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  7. Long range anti-ferromagnetic spin model for prebiotic evolution

    International Nuclear Information System (INIS)

    Nokura, Kazuo

    2003-01-01

    I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states

  8. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  9. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

    Czech Academy of Sciences Publication Activity Database

    Galceran, R.; Fina, I.; Cisneros-Fernandez, J.; Bozzo, B.; Frontera, C.; Lopez-Mir, L.; Deniz, H.; Park, K.W.; Park, B.G.; Balcells, J.; Martí, Xavier; Jungwirth, Tomáš; Martínez, B.

    2016-01-01

    Roč. 6, Oct (2016), 1-6, č. článku 35471. ISSN 2045-2322 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.259, year: 2016

  10. Antiferromagnetism in reduced YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Casalta, H.; Schleger, P.; Montfrooij, W.; Andersen, N.H.; Lebech, B.; Liang Ruixing; Hardy, W.N.

    1995-01-01

    Magnetic ordering was investigated by neutron scattering in an YBa 2 Cu 3 O 6+x single crystal. We observed antiferromagnetic ordering (AFI) (T N =410 K for x=0.1 and T N =368 K for x=0.18), but found no evidence for a reordering down to 2 K (AFII). The magnetic structure factors are presented to emphasize the anisotropic character of the form factor. ((orig.))

  11. Interface states in stressed semiconductor heterojunction with antiferromagnetic ordering

    International Nuclear Information System (INIS)

    Kantser, V.G.

    1995-08-01

    The stressed heterojunctions with antiferromagnetic ordering in which the constituents have opposite band edge symmetry and their gaps have opposite signs have been investigated. The interface states have been shown to appear in these heterojunctions and they are spin-split. As a result if the Fermi level gets into one of the interface bands then it leads to magnetic ordering in the interface plane. That is if the interface magnetization effect can be observed. (author). 14 refs, 2 figs

  12. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    Science.gov (United States)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  13. Magnetic Transport in Spin Antiferromagnets for Spintronics Applications

    Directory of Open Access Journals (Sweden)

    Mohamed Azzouz

    2017-10-01

    Full Text Available Had magnetic monopoles been ubiquitous as electrons are, we would probably have had a different form of matter, and power plants based on currents of these magnetic charges would have been a familiar scene of modern technology. Magnetic dipoles do exist, however, and in principle one could wonder if we can use them to generate magnetic currents. In the present work, we address the issue of generating magnetic currents and magnetic thermal currents in electrically-insulating low-dimensional Heisenberg antiferromagnets by invoking the (broken electricity-magnetism duality symmetry. The ground state of these materials is a spin-liquid state that can be described well via the Jordan–Wigner fermions, which permit an easy definition of the magnetic particle and thermal currents. The magnetic and magnetic thermal conductivities are calculated in the present work using the bond–mean field theory. The spin-liquid states in these antiferromagnets are either gapless or gapped liquids of spinless fermions whose flow defines a current just as the one defined for electrons in a Fermi liquid. The driving force for the magnetic current is a magnetic field with a gradient along the magnetic conductor. We predict the generation of a magneto-motive force and realization of magnetic circuits using low-dimensional Heisenberg antiferromagnets. The present work is also about claiming that what the experiments in spintronics attempt to do is trying to treat the magnetic degrees of freedoms on the same footing as the electronic ones.

  14. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  15. Spin-lattice effects in selected antiferromagnetic materials

    Czech Academy of Sciences Publication Activity Database

    Zherlitsyn, S.; Yasin, S.; Wosnitza, J.; Zvyagin, A.A.; Andreev, Alexander V.; Tsurkan, V.

    2014-01-01

    Roč. 40, č. 2 (2014), s. 123-133 ISSN 1063-777X R&D Projects: GA ČR GAP204/12/0150 Grant - others:AVČR(CZ) M100101203 Keywords : low-dimensional spin systems * frustrated chromium spinels * spin-strain interaction * uranium -based compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 2014

  16. Unusual spin frozen state in a frustrated pyrochlore system NaCaCo{sub 2}F{sub 7} as observed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R.; Brueckner, F.; Klauss, H.H. [IFP, TU Dresden (Germany); Krizan, J.W.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-07-01

    We present {sup 23}Na -and {sup 19}F NMR results on the magnetically frustrated pyrochlore NaCaCo{sub 2}F{sub 7} with a frustration index of f = θ{sub CW}/T{sub f} ∝ 56. Recent neutron scattering experiments proposed XY like antiferromagnetic spin clusters at low energies in NaCaCo{sub 2}F{sub 7}. {sup 23}Na NMR -spectra reveal the presence of two magnetically non equivalent Na sites in conjunction with the local Co{sup 2+} spin structure. Below 3.6 K both the {sup 23}Na -and {sup 19}F spectra broaden due to the formation of static spin correlations. A huge reduction of the {sup 19}F -and {sup 23}Na NMR signal intensity hints at a quasi-static field distribution in NaCaCo{sub 2}F{sub 7} in this regime. The {sup 19}F spin-lattice relaxation rate {sup 19}(1/T{sub 1}) exhibits a peak at around 2.9 K, at the same temperature range where ac and dc susceptibility data show a broad maximum. The character of the spin fluctuation appears to be isotropic. The overall temperature dependence of {sup 19}(1/T{sub 1}) can be described by the BPP theory considering a fluctuating hyperfine field with an autocorrelation function. The correlation time of the autocorrelation function exhibits an activation behavior further indicating the spin-frozen state. While the present NMR studies suggest the spin frozen state at low temperatures, μSR investigations however reveal the presence of so called persistent spin dynamics down to 20 mK implying an exotic ground state in NaCaCo{sub 2}F{sub 7}.

  17. CePdAl. A frustrated Kondo lattice at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Veronika [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Karlsruhe Institute of Technology (Germany); Sakai, Akito; Gegenwart, Philipp [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Huesges, Zita; Lucas, Stefan; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Taubenheim, Christian; Grube, Kai; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany); Huang, Chien-Lung [Karlsruhe Institute of Technology (Germany); Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    CePdAl is one of the rare frustrated Kondo lattice systems that can be tuned across a quantum critical point (QCP) by means of chemical pressure, i. e., the substitution of Pd by Ni. Magnetic frustration and Kondo effect are antithetic phenomena: The Kondo effect with the incipient delocalization of the magnetic moments, is not beneficial for the formation of a frustrated state. On the other hand, magnetic frustrated exchange interactions between the local moments can result in a breakdown of Kondo screening. Furthermore, the fate of frustration is unclear when approaching the QCP, since there is no simple observable to quantify the degree of frustration. We present thermodynamic and neutron scattering experiments on CePd{sub 1-x}Ni{sub x}Al close to the critical concentration x ∼0.14. Our experiments indicate that even at the QCP magnetic frustration is still present, opening the perspective to find new universality classes at such a quantum phase transition.

  18. Role-separating ordering in social dilemmas controlled by topological frustration

    Science.gov (United States)

    Amaral, Marco A.; Perc, Matjaž; Wardil, Lucas; Szolnoki, Attila; da Silva Júnior, Elton J.; da Silva, Jafferson K. L.

    2017-03-01

    ``Three is a crowd" is an old proverb that applies as much to social interactions as it does to frustrated configurations in statistical physics models. Accordingly, social relations within a triangle deserve special attention. With this motivation, we explore the impact of topological frustration on the evolutionary dynamics of the snowdrift game on a triangular lattice. This topology provides an irreconcilable frustration, which prevents anticoordination of competing strategies that would be needed for an optimal outcome of the game. By using different strategy updating protocols, we observe complex spatial patterns in dependence on payoff values that are reminiscent to a honeycomb-like organization, which helps to minimize the negative consequence of the topological frustration. We relate the emergence of these patterns to the microscopic dynamics of the evolutionary process, both by means of mean-field approximations and Monte Carlo simulations. For comparison, we also consider the same evolutionary dynamics on the square lattice, where of course the topological frustration is absent. However, with the deletion of diagonal links of the triangular lattice, we can gradually bridge the gap to the square lattice. Interestingly, in this case the level of cooperation in the system is a direct indicator of the level of topological frustration, thus providing a method to determine frustration levels in an arbitrary interaction network.

  19. Analog assessment of frustration tolerance: association with self-reported child abuse risk and physiological reactivity.

    Science.gov (United States)

    Rodriguez, Christina M; Russa, Mary Bower; Kircher, John C

    2015-08-01

    Although frustration has long been implicated in promoting aggression, the potential for poor frustration tolerance to function as a risk factor for physical child abuse risk has received minimal attention. Instead, much of the extant literature has examined the role of anger in physical abuse risk, relying on self-reports of the experience or expression of anger, despite the fact that this methodology is often acknowledged as vulnerable to bias. Therefore, the present investigation examined whether a more implicit, analog assessment of frustration tolerance specifically relevant to parenting would reveal an association with various markers of elevated physical child abuse risk in a series of samples that varied with regard to age, parenting status, and abuse risk. An analog task was designed to evoke parenting-relevant frustration: the task involved completing an unsolvable task while listening to a crying baby or a toddler's temper tantrum; time scores were generated to gauge participants' persistence in the task when encountering such frustration. Across these studies, low frustration tolerance was associated with increased physical child abuse potential, greater use of parent-child aggression in discipline encounters, dysfunctional disciplinary style, support for physical discipline use and physical discipline escalation, and increased heart rate. Future research directions that could better inform intervention and prevention programs are discussed, including working to clarify the processes underlying frustration intolerance and potential interactive influences that may exacerbate physical child abuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The difficult doctor? Characteristics of physicians who report frustration with patients: an analysis of survey data

    Directory of Open Access Journals (Sweden)

    Garrett Joanne M

    2006-10-01

    Full Text Available Abstract Background Literature on difficult doctor-patient relationships has focused on the "difficult patient." Our objective was to determine physician and practice characteristics associated with greater physician-reported frustration with patients. Methods We conducted a secondary analysis of the Physicians Worklife Survey, which surveyed a random national sample of physicians. Participants were 1391 family medicine, general internal medicine, and medicine subspecialty physicians. The survey assessed physician and practice characteristics, including stress, depression and anxiety symptoms, practice setting, work hours, case-mix, and control over administrative and clinical practice. Physicians estimated the percentage of their patients who were "generally frustrating to deal with." We categorized physicians by quartile of reported frustrating patients and compared characteristics of physicians in the top quartile to those in the other three quartiles. We used logistic regression to model physician characteristics associated with greater frustration. Results In unadjusted analyses, physicians who reported high frustration with patients were younger (p 55 per week, higher stress, practice in a medicine subspeciality, and greater number of patients with psychosocial problems or substance abuse. Conclusion Personal and practice characteristics of physicians who report high frustration with patients differ from those of other physicians. Understanding factors contributing to physician frustration with patients may allow us to improve the quality of patient-physician relationships.

  1. The Regulation of Induced Depression during a Frustrating Situation: Benefits of Expressive Suppression in Chinese Individuals

    Science.gov (United States)

    Ding, Nanxiang; Yang, Jiemin

    2014-01-01

    Background Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Method Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Results Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Conclusions Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies. PMID:24827934

  2. The regulation of induced depression during a frustrating situation: benefits of expressive suppression in Chinese individuals.

    Directory of Open Access Journals (Sweden)

    Jiajin Yuan

    Full Text Available BACKGROUND: Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. METHOD: Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. RESULTS: Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. CONCLUSIONS: Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies.

  3. Perceived levels of frustration during clinical situations in athletic training students.

    Science.gov (United States)

    Heinerichs, Scott; Curtis, Neil; Gardiner-Shires, Alison

    2014-01-01

    Athletic training students (ATSs) are involved in various situations during the clinical experience that may cause them to express levels of frustration. Understanding levels of frustration in ATSs is important because frustration can affect student learning, and the clinical experience is critical to their development as professionals. To explore perceived levels of frustration in ATSs during clinical situations and to determine if those perceptions differ based on sex. Cross-sectional study with a survey instrument. A total of 14 of 19 professional, undergraduate athletic training programs accredited by the Commission on Accreditation of Athletic Training Education in Pennsylvania. Of a possible 438 athletic training students, 318 (72.6%) completed the survey. The Athletic Training Student Frustration Inventory was developed and administered. The survey gathered demographic information and included 24 Likert-scale items centering on situations associated with the clinical experience. Descriptive statistics were computed on all items. The Mann-Whitney U was used to evaluate differences between male and female students. A higher level of frustration was perceived during the following clinical situations: lack of respect by student-athletes and coaching staffs, the demands of the clinical experience, inability of ATSs to perform or remember skills, and ATSs not having the opportunity to apply their skills daily. Higher levels of frustration were perceived in female than male ATSs in several areas. Understanding student frustration during clinical situations is important to better appreciate the clinical education experience. Low levels of this emotion are expected; however, when higher levels exist, learning can be affected. Whereas we cannot eliminate student frustrations, athletic training programs and preceptors need to be aware of this emotion in order to create an environment that is more conducive to learning.

  4. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    Science.gov (United States)

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Frustration-guided motion planning reveals conformational transitions in proteins.

    Science.gov (United States)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  6. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    Directory of Open Access Journals (Sweden)

    C. R. Wiebe

    2015-04-01

    Full Text Available Pyrochlore structures, of chemical formula A2B2O7 (A and B are typically trivalent and tetravalent ions, respectively, have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the RA/RB cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ RA/RB ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure, metastable pyrochlores exist up to RA/RB = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  7. Phase transition and frustration in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Hasnaoui, K.

    2008-10-01

    The thermodynamics of nuclear matter which constitutes the crust of proto-neutron stars and neutron stars is studied in this thesis. Obtaining information on the star matter thermodynamics will enhance the understanding of physical phenomena involved in the cooling of proto-neutron stars, and in the formation of type II supernovae. One of the main goals is to extract the star-matter phase diagram in order to determine if instabilities and/or critical points are present. The work is divided into two parts: in the first one classical approaches are developed, while the second one presents a quantum approach. The classical approaches are based on the Ising model and on the renormalisation group. They give us qualitative information on the phenomenology of phase transitions for star matter, and allow a discussion on the properties of the phase diagram under the generic phenomenon of Coulomb frustration. The quantum approach is based on a fermionic molecular dynamics model that we have developed from the density functional formalism, and numerically implemented using Skyrme forces optimized on neutron rich nuclei and neutron matter. This thesis work shows some first applications to the study the thermodynamics of finite nuclear systems, as well as nuclear structure calculations for light nuclei. A new formalism based on the molecular dynamics model is sketched which will ultimately allow treating the numerical quantum problem for the infinite star matter. (author)

  8. Nematic quantum liquid crystals of bosons in frustrated lattices

    Science.gov (United States)

    Zhu, Guanyu; Koch, Jens; Martin, Ivar

    2016-04-01

    The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique minimum in the single-particle dispersion where macroscopic number of bosons can condense. Here, we consider a family of tight-binding models with macroscopically degenerate lowest energy bands, separated from other bands by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic momentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

  9. Frustration in the energy landscapes of multidomain protein misfolding.

    Science.gov (United States)

    Zheng, Weihua; Schafer, Nicholas P; Wolynes, Peter G

    2013-01-29

    Frustration from strong interdomain interactions can make misfolding a more severe problem in multidomain proteins than in single-domain proteins. On the basis of bioinformatic surveys, it has been suggested that lowering the sequence identity between neighboring domains is one of nature's solutions to the multidomain misfolding problem. We investigate folding of multidomain proteins using the associative-memory, water-mediated, structure and energy model (AWSEM), a predictive coarse-grained protein force field. We find that reducing sequence identity not only decreases the formation of domain-swapped contacts but also decreases the formation of strong self-recognition contacts between β-strands with high hydrophobic content. The ensembles of misfolded structures that result from forming these amyloid-like interactions are energetically disfavored compared with the native state, but entropically favored. Therefore, these ensembles are more stable than the native ensemble under denaturing conditions, such as high temperature. Domain-swapped contacts compete with self-recognition contacts in forming various trapped states, and point mutations can shift the balance between the two types of interaction. We predict that multidomain proteins that lack these specific strong interdomain interactions should fold reliably.

  10. The Act of Giving and Frustration: An Analysis in Determination of Psychological Distance

    Directory of Open Access Journals (Sweden)

    Wagner Junior Ladeira

    2016-03-01

    Full Text Available This article aims to analyze a scenario of giving, within a time gap, can be influenced by the frustration of an unfulfilled goal. From an experimental plan was checking the indulgence with others and with the gift at Christmas (Study 1, the influence of own frustrations (Study 2 and others (Study 3. The results show that the increase (decrease of frustration with the layout for goal himself can generate indulgence (control at the time of giving both to himself as another person.

  11. Frustrated magnetic response of a superconducting Nb film with a square lattice of columnar defects

    Energy Technology Data Exchange (ETDEWEB)

    Zadorosny, R; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Lepienski, C M [Universidade Federal do Parana, Departamento de Fisica, Curitiba, PR (Brazil); Patino, E; Blamire, M G [Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)], E-mail: rafazad@df.ufscar.br

    2008-02-01

    The magnetic response of a superconducting system presenting a frustrated state is investigated. The system is a superconducting film with mechanically pierced columns, cooled in a field which is then removed. Frustration originates from the competition between return flux of a dipole - created by flux trapped in the empty columns - and flux exclusion by the surrounding superconductor in the Meissner state. The system resolves the incompatibility among conflicting constraints, leading to frustration, by eliminating return flux, which is possibly assimilated by nearby columns, as manifested by a sudden reduction of the magnetic moment on the decreasing field branch of the hysteresis loop.

  12. Frustrated magnetic response of a superconducting Nb film with a square lattice of columnar defects

    International Nuclear Information System (INIS)

    Zadorosny, R; Ortiz, W A; Lepienski, C M; Patino, E; Blamire, M G

    2008-01-01

    The magnetic response of a superconducting system presenting a frustrated state is investigated. The system is a superconducting film with mechanically pierced columns, cooled in a field which is then removed. Frustration originates from the competition between return flux of a dipole - created by flux trapped in the empty columns - and flux exclusion by the surrounding superconductor in the Meissner state. The system resolves the incompatibility among conflicting constraints, leading to frustration, by eliminating return flux, which is possibly assimilated by nearby columns, as manifested by a sudden reduction of the magnetic moment on the decreasing field branch of the hysteresis loop

  13. Magnetic dimerization in the frustrated spin ladder Li2Cu2O (SO4)2

    Science.gov (United States)

    Vaccarelli, O.; Rousse, G.; Saúl, A.; Radtke, G.

    2017-11-01

    The magnetic properties of Li2Cu2O (SO4)2 are investigated in the framework of density functional theory. In its high-temperature tetragonal structure, this compound appears as a rare material realization of a frustrated spin-1/2 two-leg ladder, where magnetic frustration arises from competing nearest and next-nearest interactions along the legs. Through a large magnetoelastic coupling, the triclinic distortion occurring around 125 K is shown to induce the formation of a staggered dimer structure, lifting most of the magnetic frustration.

  14. The spatially anisotropic triangular lattice antiferromagnet: Popov-Fedotov method

    International Nuclear Information System (INIS)

    Nga, Pham Thi Thanh; Trang, Phan Thu; Thang, Nguyen Toan

    2017-01-01

    We present an analysis of the antiferromagnetic Heisenberg model on an triangular lattice with spatially anisotropic J 1 - J 2 exchange interactions. We apply the Popov-Fedotov method based on introducing an imaginary valued chemical potential to enforce the auxiliary fermion constraint exactly. The staggered magnetization, magnon spectra, free energy are computed in one loop approximation and compared using two different constraints: exact and on average. In the limit of zero temperature the results are identical, whereas at higher temperature significant differences are found. The comparisons with the results obtained by other methods are discussed. (paper)

  15. Antiferromagnetism in EuPdGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Albedah, Mohammed A. [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Al-Qadi, Khalid [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha (Qatar); Stadnik, Zbigniew M., E-mail: stadnik@uottawa.ca [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Przewoźnik, Janusz [Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków (Poland)

    2014-11-15

    Highlights: • We show that EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type structure with the lattice constants a = 4.4457(1) Å and c = 10.1703(2). • We demonstrate that EuPdGe{sub 3} is an antiferromagnet with the Néel temperature T{sub N} = 12.16(1) K. • The temperature dependence of the hyperfine magnetic field follows a S = 7/2 Brillouin function. • We find that the Debye temperature of the studied compound is 199(2) K. - Abstract: The results of X-ray diffraction, magnetic susceptibility and magnetization, and {sup 151}Eu Mössbauer spectroscopy measurements of polycrystalline EuPdGe{sub 3} are reported. EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type tetragonal structure (space group I4mm) with the lattice constants a=4.4457(1)Å and c=10.1703(2)Å. The results are consistent with EuPdGe{sub 3} being an antiferromagnet with the Néel temperature T{sub N}=12.16(1)K and with the Eu spins S=7/2 in the ab plane. The temperature dependence of the magnetic susceptibility above T{sub N} follows the modified Curie-Weiss law with the effective magnetic moment of 7.82(1) μ{sub B} per Eu atom and the paramagnetic Curie temperature of -5.3(1)K indicative of dominant antiferromagnetic interactions. The M(H) isotherms for temperatures approaching T{sub N} from above are indicative of dynamical short-range antiferromagnetic ordering in the sample. The temperature dependence of the hyperfine magnetic field follows a S=7/2 Brillouin function. The principal component of the electric field gradient tensor is shown to increase with decreasing temperature and is well described by a T{sup 3/2} power-law relation. The Debye temperature of EuPdGe{sub 3} determined from the Mössbauer data is 199(2) K.

  16. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  17. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  18. Quantum phase transitions of a disordered antiferromagnetic topological insulator

    Science.gov (United States)

    Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.

    2014-01-01

    We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.

  19. Microscopic theory of coexistence of superconductivity and antiferromagnetism

    International Nuclear Information System (INIS)

    Ashkenazi, J.; Kuper, C.G.; Ron, A.

    1983-01-01

    A theory of the coexistence of superconductivity and antiferromagnetism is presented. We study the role of the ''diagonal'' exchange coupling between magnetic ions and conduction electrons, using Eliashberg's formalism. This coupling generates a spatial displacement of the Cooper-paired states, and thus reduces the pairing strength. The reduction is linear in the exchange integral and the staggered magnetization. The theory agrees well with experiment for Dy/sub 1.2/Mo 6 S 8 and Tb/sub 1.2/Mo 6 S 8

  20. Analytical results for a hole in an antiferromagnet

    International Nuclear Information System (INIS)

    Li, Y.M.; d'Ambrumenil, N.; Su, Z.B.

    1996-04-01

    The Green's function for a hole moving in an antiferromagnet is derived analytically in the long-wavelength limit. We find that the infrared divergence is eliminated in two and higher dimensions so that the quasiparticle weight is finite. Our results also suggest that the hole motion is polaronic in nature with a bandwidth proportional to t 2 /J exp[-c(t/J) 2 ] (c is a constant) for J/t >or approx 0.5. The connection of the long-wavelength approximation to the first-order approximation in the cumulant expansion is also clarified. (author). 23 refs, 2 figs